Long-Term Predictive Modelling of the Craniofacial Complex Using Machine Learning on 2D Cephalometric Radiographs
This study aimed to predict long-term growth-related changes in skeletal and dental relationships within the craniofacial complex using machine learning (ML) models. Cephalometric radiographs from 301 subjects, taken at pre-pubertal (T1, age 11) and post-pubertal stages (T2, age 18), were analysed....
Saved in:
Published in | International dental journal Vol. 75; no. 1; pp. 236 - 247 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
England
Elsevier Inc
01.02.2025
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | This study aimed to predict long-term growth-related changes in skeletal and dental relationships within the craniofacial complex using machine learning (ML) models.
Cephalometric radiographs from 301 subjects, taken at pre-pubertal (T1, age 11) and post-pubertal stages (T2, age 18), were analysed. Three ML models—Lasso regression, Random Forest, and Support Vector Regression (SVR)—were trained on a subset of 240 subjects, while 61 subjects were used for testing. Model performance was evaluated using mean absolute error (MAE), intraclass correlation coefficients (ICCs), and clinical thresholds (2 mm or 2°).
MAEs for skeletal measurements ranged from 1.36° (maxilla to cranial base angle) to 4.12 mm (mandibular length), and for dental measurements from 1.26 mm (lower incisor position) to 5.40° (upper incisor inclination). ICCs indicated moderate to excellent agreement between actual and predicted values. The highest prediction accuracy within the 2 mm or 2° clinical thresholds was achieved for maxilla to cranial base angle (80%), lower incisor position (75%), and maxilla to mandible angle (70%). Pre-pubertal measurements and sex consistently emerged as the most important predictive factors.
ML models demonstrated the ability to predict post-pubertal values for maxilla to cranial base, mandible to cranial base, maxilla to mandible angles, upper and lower incisor positions, and upper face height with a clinically acceptable margin of 2 mm or 2°. Prediction accuracy was higher for skeletal relationships compared to dental relationships over the 8-year growth period. Pre-pubertal values of the measurements and sex emerged consistently as the most important predictors of the post-pubertal values. |
---|---|
AbstractList | This study aimed to predict long-term growth-related changes in skeletal and dental relationships within the craniofacial complex using machine learning (ML) models.
Cephalometric radiographs from 301 subjects, taken at pre-pubertal (T1, age 11) and post-pubertal stages (T2, age 18), were analysed. Three ML models-Lasso regression, Random Forest, and Support Vector Regression (SVR)-were trained on a subset of 240 subjects, while 61 subjects were used for testing. Model performance was evaluated using mean absolute error (MAE), intraclass correlation coefficients (ICCs), and clinical thresholds (2 mm or 2°).
MAEs for skeletal measurements ranged from 1.36° (maxilla to cranial base angle) to 4.12 mm (mandibular length), and for dental measurements from 1.26 mm (lower incisor position) to 5.40° (upper incisor inclination). ICCs indicated moderate to excellent agreement between actual and predicted values. The highest prediction accuracy within the 2 mm or 2° clinical thresholds was achieved for maxilla to cranial base angle (80%), lower incisor position (75%), and maxilla to mandible angle (70%). Pre-pubertal measurements and sex consistently emerged as the most important predictive factors.
ML models demonstrated the ability to predict post-pubertal values for maxilla to cranial base, mandible to cranial base, maxilla to mandible angles, upper and lower incisor positions, and upper face height with a clinically acceptable margin of 2 mm or 2°. Prediction accuracy was higher for skeletal relationships compared to dental relationships over the 8-year growth period. Pre-pubertal values of the measurements and sex emerged consistently as the most important predictors of the post-pubertal values. This study aimed to predict long-term growth-related changes in skeletal and dental relationships within the craniofacial complex using machine learning (ML) models.OBJECTIVEThis study aimed to predict long-term growth-related changes in skeletal and dental relationships within the craniofacial complex using machine learning (ML) models.Cephalometric radiographs from 301 subjects, taken at pre-pubertal (T1, age 11) and post-pubertal stages (T2, age 18), were analysed. Three ML models-Lasso regression, Random Forest, and Support Vector Regression (SVR)-were trained on a subset of 240 subjects, while 61 subjects were used for testing. Model performance was evaluated using mean absolute error (MAE), intraclass correlation coefficients (ICCs), and clinical thresholds (2 mm or 2°).MATERIALS AND METHODSCephalometric radiographs from 301 subjects, taken at pre-pubertal (T1, age 11) and post-pubertal stages (T2, age 18), were analysed. Three ML models-Lasso regression, Random Forest, and Support Vector Regression (SVR)-were trained on a subset of 240 subjects, while 61 subjects were used for testing. Model performance was evaluated using mean absolute error (MAE), intraclass correlation coefficients (ICCs), and clinical thresholds (2 mm or 2°).MAEs for skeletal measurements ranged from 1.36° (maxilla to cranial base angle) to 4.12 mm (mandibular length), and for dental measurements from 1.26 mm (lower incisor position) to 5.40° (upper incisor inclination). ICCs indicated moderate to excellent agreement between actual and predicted values. The highest prediction accuracy within the 2 mm or 2° clinical thresholds was achieved for maxilla to cranial base angle (80%), lower incisor position (75%), and maxilla to mandible angle (70%). Pre-pubertal measurements and sex consistently emerged as the most important predictive factors.RESULTSMAEs for skeletal measurements ranged from 1.36° (maxilla to cranial base angle) to 4.12 mm (mandibular length), and for dental measurements from 1.26 mm (lower incisor position) to 5.40° (upper incisor inclination). ICCs indicated moderate to excellent agreement between actual and predicted values. The highest prediction accuracy within the 2 mm or 2° clinical thresholds was achieved for maxilla to cranial base angle (80%), lower incisor position (75%), and maxilla to mandible angle (70%). Pre-pubertal measurements and sex consistently emerged as the most important predictive factors.ML models demonstrated the ability to predict post-pubertal values for maxilla to cranial base, mandible to cranial base, maxilla to mandible angles, upper and lower incisor positions, and upper face height with a clinically acceptable margin of 2 mm or 2°. Prediction accuracy was higher for skeletal relationships compared to dental relationships over the 8-year growth period. Pre-pubertal values of the measurements and sex emerged consistently as the most important predictors of the post-pubertal values.CONCLUSIONSML models demonstrated the ability to predict post-pubertal values for maxilla to cranial base, mandible to cranial base, maxilla to mandible angles, upper and lower incisor positions, and upper face height with a clinically acceptable margin of 2 mm or 2°. Prediction accuracy was higher for skeletal relationships compared to dental relationships over the 8-year growth period. Pre-pubertal values of the measurements and sex emerged consistently as the most important predictors of the post-pubertal values. Objective: This study aimed to predict long-term growth-related changes in skeletal and dental relationships within the craniofacial complex using machine learning (ML) models. Materials and Methods: Cephalometric radiographs from 301 subjects, taken at pre-pubertal (T1, age 11) and post-pubertal stages (T2, age 18), were analysed. Three ML models—Lasso regression, Random Forest, and Support Vector Regression (SVR)—were trained on a subset of 240 subjects, while 61 subjects were used for testing. Model performance was evaluated using mean absolute error (MAE), intraclass correlation coefficients (ICCs), and clinical thresholds (2 mm or 2°). Results: MAEs for skeletal measurements ranged from 1.36° (maxilla to cranial base angle) to 4.12 mm (mandibular length), and for dental measurements from 1.26 mm (lower incisor position) to 5.40° (upper incisor inclination). ICCs indicated moderate to excellent agreement between actual and predicted values. The highest prediction accuracy within the 2 mm or 2° clinical thresholds was achieved for maxilla to cranial base angle (80%), lower incisor position (75%), and maxilla to mandible angle (70%). Pre-pubertal measurements and sex consistently emerged as the most important predictive factors. Conclusions: ML models demonstrated the ability to predict post-pubertal values for maxilla to cranial base, mandible to cranial base, maxilla to mandible angles, upper and lower incisor positions, and upper face height with a clinically acceptable margin of 2 mm or 2°. Prediction accuracy was higher for skeletal relationships compared to dental relationships over the 8-year growth period. Pre-pubertal values of the measurements and sex emerged consistently as the most important predictors of the post-pubertal values. AbstractObjectiveThis study aimed to predict long-term growth-related changes in skeletal and dental relationships within the craniofacial complex using machine learning (ML) models. Materials and MethodsCephalometric radiographs from 301 subjects, taken at pre-pubertal (T1, age 11) and post-pubertal stages (T2, age 18), were analysed. Three ML models—Lasso regression, Random Forest, and Support Vector Regression (SVR)—were trained on a subset of 240 subjects, while 61 subjects were used for testing. Model performance was evaluated using mean absolute error (MAE), intraclass correlation coefficients (ICCs), and clinical thresholds (2 mm or 2°). ResultsMAEs for skeletal measurements ranged from 1.36° (maxilla to cranial base angle) to 4.12 mm (mandibular length), and for dental measurements from 1.26 mm (lower incisor position) to 5.40° (upper incisor inclination). ICCs indicated moderate to excellent agreement between actual and predicted values. The highest prediction accuracy within the 2 mm or 2° clinical thresholds was achieved for maxilla to cranial base angle (80%), lower incisor position (75%), and maxilla to mandible angle (70%). Pre-pubertal measurements and sex consistently emerged as the most important predictive factors. ConclusionsML models demonstrated the ability to predict post-pubertal values for maxilla to cranial base, mandible to cranial base, maxilla to mandible angles, upper and lower incisor positions, and upper face height with a clinically acceptable margin of 2 mm or 2°. Prediction accuracy was higher for skeletal relationships compared to dental relationships over the 8-year growth period. Pre-pubertal values of the measurements and sex emerged consistently as the most important predictors of the post-pubertal values. |
Author | Myers, Michael Johnson, Diane Helen-Marie Turkkahraman, Hakan Eckert, George J. Brown, Michael D. Badirli, Sarkhan |
Author_xml | – sequence: 1 givenname: Michael surname: Myers fullname: Myers, Michael organization: Department of Orthodontics and Oral Facial Genetics, Indiana University School of Dentistry, Indianapolis, Indiana, USA – sequence: 2 givenname: Michael D. orcidid: 0009-0001-7365-0296 surname: Brown fullname: Brown, Michael D. organization: Indiana University School of Dentistry, Indianapolis, Indiana, USA – sequence: 3 givenname: Sarkhan surname: Badirli fullname: Badirli, Sarkhan organization: Eli Lilly & Company, Indianapolis, Indiana, USA – sequence: 4 givenname: George J. orcidid: 0000-0001-7798-7155 surname: Eckert fullname: Eckert, George J. organization: Department of Biostatistics and Health Data Science, Indiana University School of Medicine, Indianapolis, Indiana, USA – sequence: 5 givenname: Diane Helen-Marie surname: Johnson fullname: Johnson, Diane Helen-Marie organization: Department of Orthodontics and Oral Facial Genetics, Indiana University School of Dentistry, Indianapolis, Indiana, USA – sequence: 6 givenname: Hakan orcidid: 0000-0001-9052-7700 surname: Turkkahraman fullname: Turkkahraman, Hakan email: haturk@iu.edu organization: Department of Orthodontics and Oral Facial Genetics, Indiana University School of Dentistry, Indianapolis, Indiana, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39757033$$D View this record in MEDLINE/PubMed |
BookMark | eNqVkt1rFDEUxQep2G31PxCZR19mzed8gChl_SpsUbQF30Lm5s5uxtlkm8wu9r83063FPoj4FEjO_V1yzjnJjpx3mGXPKZlTQstX_dwadGM_Z4SJOWVzwvijbEbrShaykd-PshkhjBSl5M1xdhJjT4ioOSmfZMe8qWRFOJ9l10vvVsUlhk3-JaCxMNo95hfe4DBYt8p9l49rzBdBO-s7DVYP-cJvtgP-zK_ipLjQsLYO8yXq4G5HXM7e5QvcrvXgNzgGC_lXbaxfBb1dx6fZ404PEZ_dnafZ1Yf3l4tPxfLzx_PF2bIAWVdj0bTSCK5r2qFuKZcdk62osWPUgBC8aRgA44aQlkDZsq6sNE9_AuBQGtMwfpqdH7jG615tg93ocKO8tur2woeV0mG0MKCiAjTXTVdhQwUhVBMjQBrEsqOlETSx3h5Y2127QQPJ96CHB9CHL86u1crvFaU1KTmtE-HlHSH46x3GUW1shGSyduh3UXEqU3KlkGWSvvhz2f2W36ElgTgIIPgYA3b3EkrU1A3Vq0M31NQNRZlK3Uhjbw5jmFzfWwwqgkUHKfWAMCZb7P8CIHXEgh5-4A3G3u-CS4kqqmIaUN-m-k3tYyIhBZ1sfP13wL_3_wKdyu4o |
Cites_doi | 10.3390/diagnostics13172740 10.1016/S0002-9416(84)90028-9 10.1007/978-3-030-92310-5_77 10.1111/ocr.12641 10.1016/j.ajodo.2015.04.017 10.3390/diagnostics13091553 10.1016/j.ortho.2023.100759 10.1177/00220345630420014701 10.1007/s00056-022-00421-7 10.1109/TBME.2006.876638 10.2319/031723-181.1 10.1055/s-0043-1770913 10.1007/s00056-017-0095-z 10.1016/j.identj.2024.04.021 10.1055/s-0039-1694799 10.1186/s12903-023-02881-8 10.1016/S0889-5406(98)70198-2 10.1093/ejo/cji062 10.1016/S0889-5406(95)70159-1 10.1016/S0889-5406(94)70022-2 10.1093/ejo/12.4.389 10.2319/020309-67.1 10.1016/j.identj.2023.03.007 10.1016/j.cmpb.2020.105513 10.1053/j.sodo.2005.04.007 10.2319/122515-887.1 10.1111/ocr.12764 10.2319/021220-100.1 10.1016/0889-5406(87)90392-1 10.3390/diagnostics13162713 10.1002/ajpa.1330290217 10.1053/j.sodo.2007.05.004 10.1016/j.identj.2023.10.003 10.1016/0002-9416(69)90036-0 10.1016/j.ajodo.2004.02.008 10.2319/041708-218.1 10.3390/diagnostics13172729 10.1016/0002-9416(82)90464-X 10.1016/j.forsciint.2017.10.004 10.3390/diagnostics13213369 10.1053/j.sodo.2024.01.006 10.1016/0002-9416(83)90177-X |
ContentType | Journal Article |
Copyright | 2024 The Authors The Authors Copyright © 2024 The Authors. Published by Elsevier Inc. All rights reserved. 2024 The Authors 2024 |
Copyright_xml | – notice: 2024 The Authors – notice: The Authors – notice: Copyright © 2024 The Authors. Published by Elsevier Inc. All rights reserved. – notice: 2024 The Authors 2024 |
DBID | 6I. AAFTH AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM DOA |
DOI | 10.1016/j.identj.2024.12.023 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Dentistry |
EISSN | 1875-595X |
EndPage | 247 |
ExternalDocumentID | oai_doaj_org_article_14ca3a9f7e914001a0d4c5dee6f16d41 PMC11806318 39757033 10_1016_j_identj_2024_12_023 S0020653924016411 1_s2_0_S0020653924016411 |
Genre | Evaluation Study Journal Article |
GroupedDBID | --- .1- .FO .GA .Y3 05W 0R~ 1OC 31~ 3SF 50Z 52M 52U 52V 53G 5GY 8-0 8-1 8-3 8-4 8-5 930 A03 AAEDW AAESR AAEVG AALRI AAMMB AANHP AAONW AAWTL AAXUO AAYWO AAZKR ABCUV ABLJU ABPVW ACBWZ ACGFO ACGFS ACMXC ACPOU ACPRK ACRPL ACVFH ACXQS ACYXJ ADBBV ADCNI ADEOM ADIZJ ADKYN ADMGS ADNMO ADVLN ADXAS ADZMN AEFGJ AEIMD AENEX AEUPX AFBPY AFFNX AFGKR AFJKZ AFPUW AFRHN AGQPQ AGXDD AHMBA AIDQK AIDYY AIGII AITUG AIURR AJAOE AJUYK AKBMS AKRWK AKYEP ALAGY ALMA_UNASSIGNED_HOLDINGS AMBMR AMRAJ AMYDB APXCP ASPBG ATUGU AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BHBCM BMXJE BRXPI CS3 D-E D-F DCZOG DPXWK DRFUL DRMAN DRSTM EBS EJD F00 F01 F04 F5P FDB FEDTE FUBAC G-S GK1 GODZA GROUPED_DOAJ H.T H.X HF~ HVGLF HZ~ LH4 LITHE LOXES LUTES LW6 LYRES MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MXFUL MXMAN MXSTM MY~ N04 N05 NF~ O66 O9- OK1 P2P P2W P2X PQQKQ Q.N QB0 R.K ROL RPM SUPJJ UB1 V8K W8V WBKPD WBNRW WIH WIJ WIK WOHZO WPGGZ XG2 Z5R ZGI ZZTAW ~WT 33P 34H A8Z AAHHS ACCFJ ADZOD AEEZP AEQDE AEUQT AFCTW AFPWT AIWBW AJBDE LATKE P4E PKN 6I. AAFTH AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
ID | FETCH-LOGICAL-c587t-9b5d43a81feab135f25b48ef21dc443992cc23d00b0c6b2f67a3570cc3c6dd923 |
IEDL.DBID | DOA |
ISSN | 0020-6539 1875-595X |
IngestDate | Wed Aug 27 01:05:51 EDT 2025 Thu Aug 21 18:38:15 EDT 2025 Fri Jul 11 01:55:42 EDT 2025 Mon Jul 21 05:55:38 EDT 2025 Tue Jul 01 00:33:21 EDT 2025 Sat Feb 01 16:04:39 EST 2025 Tue Feb 25 20:20:36 EST 2025 Tue Aug 26 18:48:02 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Growth and development Cephalometric analysis Artificial intelligence Orthodontics Machine learning Craniofacial complex |
Language | English |
License | This is an open access article under the CC BY-NC-ND license. Copyright © 2024 The Authors. Published by Elsevier Inc. All rights reserved. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c587t-9b5d43a81feab135f25b48ef21dc443992cc23d00b0c6b2f67a3570cc3c6dd923 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Undefined-1 ObjectType-Feature-3 content type line 23 |
ORCID | 0000-0001-9052-7700 0000-0001-7798-7155 0009-0001-7365-0296 |
OpenAccessLink | https://doaj.org/article/14ca3a9f7e914001a0d4c5dee6f16d41 |
PMID | 39757033 |
PQID | 3151876456 |
PQPubID | 23479 |
PageCount | 12 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_14ca3a9f7e914001a0d4c5dee6f16d41 pubmedcentral_primary_oai_pubmedcentral_nih_gov_11806318 proquest_miscellaneous_3151876456 pubmed_primary_39757033 crossref_primary_10_1016_j_identj_2024_12_023 elsevier_sciencedirect_doi_10_1016_j_identj_2024_12_023 elsevier_clinicalkeyesjournals_1_s2_0_S0020653924016411 elsevier_clinicalkey_doi_10_1016_j_identj_2024_12_023 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2025-02-01 |
PublicationDateYYYYMMDD | 2025-02-01 |
PublicationDate_xml | – month: 02 year: 2025 text: 2025-02-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | International dental journal |
PublicationTitleAlternate | Int Dent J |
PublicationYear | 2025 |
Publisher | Elsevier Inc Elsevier |
Publisher_xml | – name: Elsevier Inc – name: Elsevier |
References | Lee, Ahmad, Frazier, Dundar, Turkkahraman (bib0019) 2024; 85 Parrish, O'Connell, Eckert, Hughes, Badirli, Turkkahraman (bib0024) 2023; 13 Yue, Yin, Li, Wang, Xu (bib0036) 2006; 53 Bao, Zhang, Yu, Li, Cao, Shu (bib0035) 2023; 23 Bishara, Fahl, Peterson (bib0050) 1983; 84 Leavitt, Volovic, Steinhauer (bib0018) 2023; 26 De Clerck, Proffit (bib0009) 2015; 148 Bjork (bib0030) 1968; 29 Oueis, Ono, Takagi (bib0049) 2002; 24 Niño-Sandoval, Guevara Pérez, González, Jaque, Infante-Contreras (bib0022) 2017; 281 Leslie, Southard, Southard, Casko, Jakobsen, Tolley (bib0047) 1998; 114 Kaźmierczak, Juszka, Vandevska-Radunovic, Maal, Fudalej, Mańdziuk (bib0021) 2021 Bjork (bib0029) 1963; 42 Moon, Shin, Lee, Cho, Park, Donatelli (bib0031) 2023; 94 Nanda, Ghosh (bib0042) 1995; 107 Baik (bib0008) 2007; 13 Lu, Yu, Li, Cao, Chen, Hua (bib0011) 2024 Ngan (bib0007) 2005; 11 Liu, Behrents, Buschang (bib0043) 2010; 80 Turkkahraman, Cetin (bib0002) 2017; 78 Wu, Zhang, Ye, Dai, Zhao, Zhao (bib0012) 2024 Lee, Daniel, Swartz, Baumrind, Korn (bib0046) 1987; 91 Wood, Anigbo, Eckert, Stewart, Dundar, Turkkahraman (bib0023) 2023; 13 Turkkahraman, Eliacik, Findik (bib0003) 2016; 86 Zakhar, Hazime, Eckert, Wong, Badirli, Turkkahraman (bib0025) 2023; 13 Maganur, Vishwanathaiah, Mashyakhy, Abumelha, Robaian, Almohareb (bib0010) 2024; 74 Skieller, Björk, Linde-Hansen (bib0045) 1984; 86 AAOF Craniofacial Growth Legacy Collection. Iseri, Solow (bib0039) 1990; 12 Accessed January 3, 2025. De Clerck, Proffit (bib0005) 2015; 148 Tulloch, Proffit, Phillips (bib0006) 2004; 125 Turkkahraman (bib0015) 2023; 17 Mason, Kelly, Eckert, Dean, Dundar, Turkkahraman (bib0017) 2023; 21 Kaźmierczak S, Juszka Z, Fudalej P, Mańdziuk J. Prediction of the facial growth direction with machine learning methods. arXiv e-prints 2021; Jun:arXiv-2106. Larkin, Kim, Kim, Baek, Yamada, Park (bib0032) 2024; 27 Esmaeilyfard, Bonyadifard, Paknahad (bib0014) 2024; 74 Kim, Shim, Park, Kim, Lee, Kim (bib0038) 2020; 194 Al-Abdwani, Moles, Noar (bib0041) 2009; 79 Hwang, Moon, Kim, Donatelli, Lee (bib0037) 2021; 91 Hägg, Taranger (bib0044) 1982; 82 Aki, Nanda, Currier, Nanda (bib0048) 1994; 106 Björk (bib0028) 1969; 55 Jiwa (bib0026) 2020 Seehra, Pandis (bib0034) 2024; 30 Chau, Li, Tew, Thu, McGrath, Lo (bib0013) 2023; 73 Chen, Zhang, Zhou (bib0040) 2014; 7 Türkkahraman, Sayin (bib0004) 2006; 28 Volovic, Badirli, Ahmad (bib0016) 2023; 13 Ozzeybek Can, Turkkahraman (bib0001) 2019; 13 Kim, Kuroda, Soeda, Koizumi, Yamaguchi (bib0027) 2023; 13 De Clerck (10.1016/j.identj.2024.12.023_bib0005) 2015; 148 Hägg (10.1016/j.identj.2024.12.023_bib0044) 1982; 82 Niño-Sandoval (10.1016/j.identj.2024.12.023_bib0022) 2017; 281 Turkkahraman (10.1016/j.identj.2024.12.023_bib0003) 2016; 86 Hwang (10.1016/j.identj.2024.12.023_bib0037) 2021; 91 Moon (10.1016/j.identj.2024.12.023_bib0031) 2023; 94 Larkin (10.1016/j.identj.2024.12.023_bib0032) 2024; 27 10.1016/j.identj.2024.12.023_bib0033 Lee (10.1016/j.identj.2024.12.023_bib0046) 1987; 91 Skieller (10.1016/j.identj.2024.12.023_bib0045) 1984; 86 Kim (10.1016/j.identj.2024.12.023_bib0038) 2020; 194 Turkkahraman (10.1016/j.identj.2024.12.023_bib0015) 2023; 17 Esmaeilyfard (10.1016/j.identj.2024.12.023_bib0014) 2024; 74 Ozzeybek Can (10.1016/j.identj.2024.12.023_bib0001) 2019; 13 Tulloch (10.1016/j.identj.2024.12.023_bib0006) 2004; 125 Bjork (10.1016/j.identj.2024.12.023_bib0029) 1963; 42 Yue (10.1016/j.identj.2024.12.023_bib0036) 2006; 53 Al-Abdwani (10.1016/j.identj.2024.12.023_bib0041) 2009; 79 Oueis (10.1016/j.identj.2024.12.023_bib0049) 2002; 24 Zakhar (10.1016/j.identj.2024.12.023_bib0025) 2023; 13 Aki (10.1016/j.identj.2024.12.023_bib0048) 1994; 106 Leavitt (10.1016/j.identj.2024.12.023_bib0018) 2023; 26 Iseri (10.1016/j.identj.2024.12.023_bib0039) 1990; 12 Chen (10.1016/j.identj.2024.12.023_bib0040) 2014; 7 Mason (10.1016/j.identj.2024.12.023_bib0017) 2023; 21 Maganur (10.1016/j.identj.2024.12.023_bib0010) 2024; 74 Nanda (10.1016/j.identj.2024.12.023_bib0042) 1995; 107 Lu (10.1016/j.identj.2024.12.023_bib0011) 2024 Wu (10.1016/j.identj.2024.12.023_bib0012) 2024 Parrish (10.1016/j.identj.2024.12.023_bib0024) 2023; 13 Björk (10.1016/j.identj.2024.12.023_bib0028) 1969; 55 Chau (10.1016/j.identj.2024.12.023_bib0013) 2023; 73 Bao (10.1016/j.identj.2024.12.023_bib0035) 2023; 23 Baik (10.1016/j.identj.2024.12.023_bib0008) 2007; 13 Leslie (10.1016/j.identj.2024.12.023_bib0047) 1998; 114 Seehra (10.1016/j.identj.2024.12.023_bib0034) 2024; 30 Ngan (10.1016/j.identj.2024.12.023_bib0007) 2005; 11 De Clerck (10.1016/j.identj.2024.12.023_bib0009) 2015; 148 Bishara (10.1016/j.identj.2024.12.023_bib0050) 1983; 84 Wood (10.1016/j.identj.2024.12.023_bib0023) 2023; 13 Kim (10.1016/j.identj.2024.12.023_bib0027) 2023; 13 Türkkahraman (10.1016/j.identj.2024.12.023_bib0004) 2006; 28 Kaźmierczak (10.1016/j.identj.2024.12.023_bib0021) 2021 Turkkahraman (10.1016/j.identj.2024.12.023_bib0002) 2017; 78 10.1016/j.identj.2024.12.023_bib0020 Bjork (10.1016/j.identj.2024.12.023_bib0030) 1968; 29 Volovic (10.1016/j.identj.2024.12.023_bib0016) 2023; 13 Liu (10.1016/j.identj.2024.12.023_bib0043) 2010; 80 Lee (10.1016/j.identj.2024.12.023_bib0019) 2024; 85 Jiwa (10.1016/j.identj.2024.12.023_bib0026) 2020 |
References_xml | – volume: 42 start-page: 400 year: 1963 end-page: 411 ident: bib0029 article-title: Variations in the growth pattern of the human mandible: longitudinal radiographic study by the implant method publication-title: J Dent Res – volume: 85 start-page: 239 year: 2024 end-page: 249 ident: bib0019 article-title: A novel machine learning model for class III surgery decision publication-title: J Orofac Orthop – volume: 13 start-page: 2740 year: 2023 ident: bib0016 article-title: A novel machine learning model for predicting orthodontic treatment duration publication-title: Diagnostics (Basel) – volume: 94 start-page: 207 year: 2023 end-page: 215 ident: bib0031 article-title: Comparison of individualized facial growth prediction models based on the partial least squares and artificial intelligence publication-title: Angle Orthodontist – volume: 194 year: 2020 ident: bib0038 article-title: Web-based fully automated cephalometric analysis by deep learning publication-title: Comput Methods Prog Biomed – volume: 74 start-page: 917 year: 2024 end-page: 929 ident: bib0010 article-title: Development of artificial intelligence models for tooth numbering and detection: a systematic review publication-title: Int Dent J – volume: 21 year: 2023 ident: bib0017 article-title: A machine learning model for orthodontic extraction/non-extraction decision in a racially and ethnically diverse patient population publication-title: Int Orthod – volume: 29 start-page: 243 year: 1968 end-page: 254 ident: bib0030 article-title: The use of metallic implants in the study of facial growth in children: method and application publication-title: Am J Phys Anthropol – volume: 53 start-page: 1615 year: 2006 end-page: 1623 ident: bib0036 article-title: Automated 2-D cephalometric analysis on X-ray images by a model-based approach publication-title: IEEE Trans Biomed Eng – start-page: 665 year: 2021 end-page: 673 ident: bib0021 article-title: Prediction of the facial growth direction is challenging publication-title: International Conference on Neural Information Processing – volume: 78 start-page: 338 year: 2017 end-page: 347 ident: bib0002 article-title: Comparison of two treatment strategies for the early treatment of an anterior skeletal open bite: Posterior bite block-vertical pull chin cup (PBB-VPC) vs. posterior bite block-high pull headgear (PBB-HPH) publication-title: J Orofac Orthop – start-page: 67 year: 2020 ident: bib0026 article-title: Applicability of Deep Learning for Mandibular Growth Prediction – volume: 86 start-page: 359 year: 1984 end-page: 370 ident: bib0045 article-title: Prediction of mandibular growth rotation evaluated from a longitudinal implant sample publication-title: Am J Orthod – volume: 125 start-page: 657 year: 2004 end-page: 667 ident: bib0006 article-title: Outcomes in a 2-phase randomized clinical trial of early class II treatment publication-title: Am J Orthod Dentofacial Orthop – volume: 26 start-page: 552 year: 2023 end-page: 559 ident: bib0018 article-title: Can we predict orthodontic extraction patterns by using machine learning? publication-title: Orthod Craniofac Res – volume: 13 start-page: 1553 year: 2023 ident: bib0023 article-title: Prediction of the post-pubertal mandibular length and Y axis of growth by using various machine learning techniques: a retrospective longitudinal study publication-title: Diagnostics (Basel) – volume: 27 start-page: 535 year: 2024 end-page: 543 ident: bib0032 article-title: Accuracy of artificial intelligence-assisted growth prediction in skeletal Class I preadolescent patients using serial lateral cephalograms for a 2-year growth interval publication-title: Orthod Craniofac Res – volume: 11 start-page: 140 year: 2005 end-page: 145 ident: bib0007 article-title: Early timely treatment of class III malocclusion publication-title: Semin Orthodontics – volume: 30 start-page: 68 year: 2024 end-page: 71 ident: bib0034 article-title: Pay attention to the analysis: common statistical errors in orthodontic randomised clinical trials publication-title: Semin Orthodontics – volume: 148 start-page: 37 year: 2015 end-page: 46 ident: bib0009 article-title: Growth modification of the face: A current perspective with emphasis on Class III treatment publication-title: Am J Orthod Dentofacial Orthop – volume: 7 start-page: 3454 year: 2014 end-page: 3460 ident: bib0040 article-title: The effects of incisor inclination changes on the position of point A in Class II division 2 malocclusion using three-dimensional evaluation: a long-term prospective study publication-title: Int J Clin Exp Med – volume: 28 start-page: 27 year: 2006 end-page: 34 ident: bib0004 article-title: Effects of activator and activator headgear treatment: comparison with untreated class II subjects publication-title: Eur J Orthod – volume: 91 start-page: 395 year: 1987 end-page: 402 ident: bib0046 article-title: Assessment of a method for the prediction of mandibular rotation publication-title: Am J Orthod Dentofacial Orthop – reference: AAOF Craniofacial Growth Legacy Collection. – volume: 86 start-page: 1026 year: 2016 end-page: 1032 ident: bib0003 article-title: Effects of miniplate anchored and conventional forsus fatigue resistant devices in the treatment of Class II malocclusion publication-title: Angle Orthod – volume: 148 start-page: 37 year: 2015 end-page: 46 ident: bib0005 article-title: Growth modification of the face: a current perspective with emphasis on class III treatment publication-title: Am J Orthod Dentofacial Orthop – reference: Kaźmierczak S, Juszka Z, Fudalej P, Mańdziuk J. Prediction of the facial growth direction with machine learning methods. arXiv e-prints 2021; Jun:arXiv-2106. – volume: 13 start-page: 2713 year: 2023 ident: bib0025 article-title: Prediction of pubertal mandibular growth in males with class II malocclusion by utilizing machine learning publication-title: Diagnostics (Basel) – volume: 74 start-page: 328 year: 2024 end-page: 334 ident: bib0014 article-title: Dental caries detection and classification in CBCT images using deep learning publication-title: Int Dent J – volume: 73 start-page: 724 year: 2023 end-page: 730 ident: bib0013 article-title: Accuracy of artificial intelligence-based photographic detection of gingivitis publication-title: Int Dent J – year: 2024 ident: bib0011 article-title: Artificial intelligence–related dental research: bibliometric and altmetric analysis publication-title: Int Dent J – volume: 13 start-page: 3369 year: 2023 ident: bib0027 article-title: Validation of machine learning models for craniofacial growth prediction publication-title: Diagnostics – volume: 55 start-page: 585 year: 1969 end-page: 599 ident: bib0028 article-title: Prediction of mandibular growth rotation publication-title: Am J Orthod – volume: 82 start-page: 299 year: 1982 end-page: 309 ident: bib0044 article-title: Maturation indicators and the pubertal growth spurt publication-title: Am J Orthod – volume: 13 start-page: 2729 year: 2023 ident: bib0024 article-title: Short- and long-term prediction of the post-pubertal mandibular length and Y-axis in females utilizing machine learning publication-title: Diagnostics (Basel) – volume: 13 start-page: 143 year: 2019 end-page: 149 ident: bib0001 article-title: Effects of rapid maxillary expansion and facemask therapy on the soft tissue profiles of class III patients at different growth stages publication-title: Eur J Dent – year: 2024 ident: bib0012 article-title: Comparison of the efficacy of artificial intelligence-powered software in crown design: an in vitro study publication-title: Int Dent J – volume: 80 start-page: 97 year: 2010 end-page: 105 ident: bib0043 article-title: Mandibular growth, remodeling, and maturation during infancy and early childhood publication-title: Angle Orthod – volume: 281 start-page: 187.e1 year: 2017 end-page: 187.e7 ident: bib0022 article-title: Use of automated learning techniques for predicting mandibular morphology in skeletal class I, II and III publication-title: Forensic Sci Int – volume: 17 start-page: 567 year: 2023 end-page: 568 ident: bib0015 article-title: Embracing the unprecedented pace of change: Artificial intelligence's impact on dentistry and beyond publication-title: Eur J Dent – volume: 106 start-page: 60 year: 1994 end-page: 69 ident: bib0048 article-title: Assessment of symphysis morphology as a predictorof the direction of mandibular growth publication-title: Am J Orthod Dentofacial Orthop – volume: 12 start-page: 389 year: 1990 end-page: 398 ident: bib0039 article-title: Growth displacement of the maxilla in girls studied by the implant method publication-title: Eur J Orthod – volume: 13 start-page: 158 year: 2007 end-page: 174 ident: bib0008 article-title: Limitations in orthopedic and camouflage treatment for class III malocclusion publication-title: Semin Orthodontics – volume: 24 start-page: 264 year: 2002 end-page: 268 ident: bib0049 article-title: Prediction of mandibular growth in Japanese children age 4 to 9 years publication-title: Pediatr Dent – volume: 107 start-page: 79 year: 1995 end-page: 90 ident: bib0042 article-title: Longitudinal growth changes in the sagittal relationship of maxilla and mandible publication-title: Am J Orthod Dentofacial Orthop – reference: . Accessed January 3, 2025. – volume: 79 start-page: 462 year: 2009 end-page: 467 ident: bib0041 article-title: Change of incisor inclination effects on points A and B publication-title: Angle Orthod – volume: 23 start-page: 191 year: 2023 ident: bib0035 article-title: Evaluating the accuracy of automated cephalometric analysis based on artificial intelligence publication-title: BMC Oral Health – volume: 91 start-page: 329 year: 2021 end-page: 335 ident: bib0037 article-title: Evaluation of automated cephalometric analysis based on the latest deep learning method publication-title: Angle Orthod – volume: 114 start-page: 659 year: 1998 end-page: 667 ident: bib0047 article-title: Prediction of mandibular growth rotation: assessment of the Skieller, Björk, and Linde-Hansen method publication-title: Am J Orthod Dentofacial Orthop – volume: 84 start-page: 133 year: 1983 end-page: 139 ident: bib0050 article-title: Longitudinal changes in the ANB angle and Wits appraisal: clinical implications publication-title: Am J Orthod – volume: 13 start-page: 2740 year: 2023 ident: 10.1016/j.identj.2024.12.023_bib0016 article-title: A novel machine learning model for predicting orthodontic treatment duration publication-title: Diagnostics (Basel) doi: 10.3390/diagnostics13172740 – start-page: 665 year: 2021 ident: 10.1016/j.identj.2024.12.023_bib0021 article-title: Prediction of the facial growth direction is challenging – volume: 86 start-page: 359 year: 1984 ident: 10.1016/j.identj.2024.12.023_bib0045 article-title: Prediction of mandibular growth rotation evaluated from a longitudinal implant sample publication-title: Am J Orthod doi: 10.1016/S0002-9416(84)90028-9 – volume: 7 start-page: 3454 year: 2014 ident: 10.1016/j.identj.2024.12.023_bib0040 article-title: The effects of incisor inclination changes on the position of point A in Class II division 2 malocclusion using three-dimensional evaluation: a long-term prospective study publication-title: Int J Clin Exp Med – ident: 10.1016/j.identj.2024.12.023_bib0020 doi: 10.1007/978-3-030-92310-5_77 – volume: 26 start-page: 552 year: 2023 ident: 10.1016/j.identj.2024.12.023_bib0018 article-title: Can we predict orthodontic extraction patterns by using machine learning? publication-title: Orthod Craniofac Res doi: 10.1111/ocr.12641 – volume: 148 start-page: 37 year: 2015 ident: 10.1016/j.identj.2024.12.023_bib0009 article-title: Growth modification of the face: A current perspective with emphasis on Class III treatment publication-title: Am J Orthod Dentofacial Orthop doi: 10.1016/j.ajodo.2015.04.017 – volume: 13 start-page: 1553 year: 2023 ident: 10.1016/j.identj.2024.12.023_bib0023 article-title: Prediction of the post-pubertal mandibular length and Y axis of growth by using various machine learning techniques: a retrospective longitudinal study publication-title: Diagnostics (Basel) doi: 10.3390/diagnostics13091553 – volume: 21 year: 2023 ident: 10.1016/j.identj.2024.12.023_bib0017 article-title: A machine learning model for orthodontic extraction/non-extraction decision in a racially and ethnically diverse patient population publication-title: Int Orthod doi: 10.1016/j.ortho.2023.100759 – ident: 10.1016/j.identj.2024.12.023_bib0033 – volume: 42 start-page: 400 issue: 1 year: 1963 ident: 10.1016/j.identj.2024.12.023_bib0029 article-title: Variations in the growth pattern of the human mandible: longitudinal radiographic study by the implant method publication-title: J Dent Res doi: 10.1177/00220345630420014701 – volume: 148 start-page: 37 year: 2015 ident: 10.1016/j.identj.2024.12.023_bib0005 article-title: Growth modification of the face: a current perspective with emphasis on class III treatment publication-title: Am J Orthod Dentofacial Orthop doi: 10.1016/j.ajodo.2015.04.017 – volume: 85 start-page: 239 year: 2024 ident: 10.1016/j.identj.2024.12.023_bib0019 article-title: A novel machine learning model for class III surgery decision publication-title: J Orofac Orthop doi: 10.1007/s00056-022-00421-7 – volume: 53 start-page: 1615 year: 2006 ident: 10.1016/j.identj.2024.12.023_bib0036 article-title: Automated 2-D cephalometric analysis on X-ray images by a model-based approach publication-title: IEEE Trans Biomed Eng doi: 10.1109/TBME.2006.876638 – volume: 94 start-page: 207 year: 2023 ident: 10.1016/j.identj.2024.12.023_bib0031 article-title: Comparison of individualized facial growth prediction models based on the partial least squares and artificial intelligence publication-title: Angle Orthodontist doi: 10.2319/031723-181.1 – volume: 17 start-page: 567 year: 2023 ident: 10.1016/j.identj.2024.12.023_bib0015 article-title: Embracing the unprecedented pace of change: Artificial intelligence's impact on dentistry and beyond publication-title: Eur J Dent doi: 10.1055/s-0043-1770913 – volume: 78 start-page: 338 year: 2017 ident: 10.1016/j.identj.2024.12.023_bib0002 article-title: Comparison of two treatment strategies for the early treatment of an anterior skeletal open bite: Posterior bite block-vertical pull chin cup (PBB-VPC) vs. posterior bite block-high pull headgear (PBB-HPH) publication-title: J Orofac Orthop doi: 10.1007/s00056-017-0095-z – volume: 74 start-page: 917 year: 2024 ident: 10.1016/j.identj.2024.12.023_bib0010 article-title: Development of artificial intelligence models for tooth numbering and detection: a systematic review publication-title: Int Dent J doi: 10.1016/j.identj.2024.04.021 – volume: 13 start-page: 143 year: 2019 ident: 10.1016/j.identj.2024.12.023_bib0001 article-title: Effects of rapid maxillary expansion and facemask therapy on the soft tissue profiles of class III patients at different growth stages publication-title: Eur J Dent doi: 10.1055/s-0039-1694799 – year: 2024 ident: 10.1016/j.identj.2024.12.023_bib0011 article-title: Artificial intelligence–related dental research: bibliometric and altmetric analysis publication-title: Int Dent J – volume: 23 start-page: 191 year: 2023 ident: 10.1016/j.identj.2024.12.023_bib0035 article-title: Evaluating the accuracy of automated cephalometric analysis based on artificial intelligence publication-title: BMC Oral Health doi: 10.1186/s12903-023-02881-8 – volume: 114 start-page: 659 year: 1998 ident: 10.1016/j.identj.2024.12.023_bib0047 article-title: Prediction of mandibular growth rotation: assessment of the Skieller, Björk, and Linde-Hansen method publication-title: Am J Orthod Dentofacial Orthop doi: 10.1016/S0889-5406(98)70198-2 – volume: 28 start-page: 27 year: 2006 ident: 10.1016/j.identj.2024.12.023_bib0004 article-title: Effects of activator and activator headgear treatment: comparison with untreated class II subjects publication-title: Eur J Orthod doi: 10.1093/ejo/cji062 – year: 2024 ident: 10.1016/j.identj.2024.12.023_bib0012 article-title: Comparison of the efficacy of artificial intelligence-powered software in crown design: an in vitro study publication-title: Int Dent J – volume: 107 start-page: 79 year: 1995 ident: 10.1016/j.identj.2024.12.023_bib0042 article-title: Longitudinal growth changes in the sagittal relationship of maxilla and mandible publication-title: Am J Orthod Dentofacial Orthop doi: 10.1016/S0889-5406(95)70159-1 – volume: 106 start-page: 60 year: 1994 ident: 10.1016/j.identj.2024.12.023_bib0048 article-title: Assessment of symphysis morphology as a predictorof the direction of mandibular growth publication-title: Am J Orthod Dentofacial Orthop doi: 10.1016/S0889-5406(94)70022-2 – volume: 24 start-page: 264 year: 2002 ident: 10.1016/j.identj.2024.12.023_bib0049 article-title: Prediction of mandibular growth in Japanese children age 4 to 9 years publication-title: Pediatr Dent – volume: 12 start-page: 389 year: 1990 ident: 10.1016/j.identj.2024.12.023_bib0039 article-title: Growth displacement of the maxilla in girls studied by the implant method publication-title: Eur J Orthod doi: 10.1093/ejo/12.4.389 – volume: 80 start-page: 97 year: 2010 ident: 10.1016/j.identj.2024.12.023_bib0043 article-title: Mandibular growth, remodeling, and maturation during infancy and early childhood publication-title: Angle Orthod doi: 10.2319/020309-67.1 – volume: 73 start-page: 724 year: 2023 ident: 10.1016/j.identj.2024.12.023_bib0013 article-title: Accuracy of artificial intelligence-based photographic detection of gingivitis publication-title: Int Dent J doi: 10.1016/j.identj.2023.03.007 – volume: 194 year: 2020 ident: 10.1016/j.identj.2024.12.023_bib0038 article-title: Web-based fully automated cephalometric analysis by deep learning publication-title: Comput Methods Prog Biomed doi: 10.1016/j.cmpb.2020.105513 – volume: 11 start-page: 140 year: 2005 ident: 10.1016/j.identj.2024.12.023_bib0007 article-title: Early timely treatment of class III malocclusion publication-title: Semin Orthodontics doi: 10.1053/j.sodo.2005.04.007 – volume: 86 start-page: 1026 year: 2016 ident: 10.1016/j.identj.2024.12.023_bib0003 article-title: Effects of miniplate anchored and conventional forsus fatigue resistant devices in the treatment of Class II malocclusion publication-title: Angle Orthod doi: 10.2319/122515-887.1 – volume: 27 start-page: 535 year: 2024 ident: 10.1016/j.identj.2024.12.023_bib0032 article-title: Accuracy of artificial intelligence-assisted growth prediction in skeletal Class I preadolescent patients using serial lateral cephalograms for a 2-year growth interval publication-title: Orthod Craniofac Res doi: 10.1111/ocr.12764 – volume: 91 start-page: 329 year: 2021 ident: 10.1016/j.identj.2024.12.023_bib0037 article-title: Evaluation of automated cephalometric analysis based on the latest deep learning method publication-title: Angle Orthod doi: 10.2319/021220-100.1 – volume: 91 start-page: 395 year: 1987 ident: 10.1016/j.identj.2024.12.023_bib0046 article-title: Assessment of a method for the prediction of mandibular rotation publication-title: Am J Orthod Dentofacial Orthop doi: 10.1016/0889-5406(87)90392-1 – volume: 13 start-page: 2713 year: 2023 ident: 10.1016/j.identj.2024.12.023_bib0025 article-title: Prediction of pubertal mandibular growth in males with class II malocclusion by utilizing machine learning publication-title: Diagnostics (Basel) doi: 10.3390/diagnostics13162713 – volume: 29 start-page: 243 year: 1968 ident: 10.1016/j.identj.2024.12.023_bib0030 article-title: The use of metallic implants in the study of facial growth in children: method and application publication-title: Am J Phys Anthropol doi: 10.1002/ajpa.1330290217 – volume: 13 start-page: 158 year: 2007 ident: 10.1016/j.identj.2024.12.023_bib0008 article-title: Limitations in orthopedic and camouflage treatment for class III malocclusion publication-title: Semin Orthodontics doi: 10.1053/j.sodo.2007.05.004 – volume: 74 start-page: 328 year: 2024 ident: 10.1016/j.identj.2024.12.023_bib0014 article-title: Dental caries detection and classification in CBCT images using deep learning publication-title: Int Dent J doi: 10.1016/j.identj.2023.10.003 – volume: 55 start-page: 585 year: 1969 ident: 10.1016/j.identj.2024.12.023_bib0028 article-title: Prediction of mandibular growth rotation publication-title: Am J Orthod doi: 10.1016/0002-9416(69)90036-0 – volume: 125 start-page: 657 year: 2004 ident: 10.1016/j.identj.2024.12.023_bib0006 article-title: Outcomes in a 2-phase randomized clinical trial of early class II treatment publication-title: Am J Orthod Dentofacial Orthop doi: 10.1016/j.ajodo.2004.02.008 – volume: 79 start-page: 462 year: 2009 ident: 10.1016/j.identj.2024.12.023_bib0041 article-title: Change of incisor inclination effects on points A and B publication-title: Angle Orthod doi: 10.2319/041708-218.1 – volume: 13 start-page: 2729 year: 2023 ident: 10.1016/j.identj.2024.12.023_bib0024 article-title: Short- and long-term prediction of the post-pubertal mandibular length and Y-axis in females utilizing machine learning publication-title: Diagnostics (Basel) doi: 10.3390/diagnostics13172729 – volume: 82 start-page: 299 year: 1982 ident: 10.1016/j.identj.2024.12.023_bib0044 article-title: Maturation indicators and the pubertal growth spurt publication-title: Am J Orthod doi: 10.1016/0002-9416(82)90464-X – start-page: 67 year: 2020 ident: 10.1016/j.identj.2024.12.023_bib0026 – volume: 281 start-page: 187.e1 year: 2017 ident: 10.1016/j.identj.2024.12.023_bib0022 article-title: Use of automated learning techniques for predicting mandibular morphology in skeletal class I, II and III publication-title: Forensic Sci Int doi: 10.1016/j.forsciint.2017.10.004 – volume: 13 start-page: 3369 year: 2023 ident: 10.1016/j.identj.2024.12.023_bib0027 article-title: Validation of machine learning models for craniofacial growth prediction publication-title: Diagnostics doi: 10.3390/diagnostics13213369 – volume: 30 start-page: 68 year: 2024 ident: 10.1016/j.identj.2024.12.023_bib0034 article-title: Pay attention to the analysis: common statistical errors in orthodontic randomised clinical trials publication-title: Semin Orthodontics doi: 10.1053/j.sodo.2024.01.006 – volume: 84 start-page: 133 year: 1983 ident: 10.1016/j.identj.2024.12.023_bib0050 article-title: Longitudinal changes in the ANB angle and Wits appraisal: clinical implications publication-title: Am J Orthod doi: 10.1016/0002-9416(83)90177-X |
SSID | ssj0048306 |
Score | 2.3837266 |
Snippet | This study aimed to predict long-term growth-related changes in skeletal and dental relationships within the craniofacial complex using machine learning (ML)... AbstractObjectiveThis study aimed to predict long-term growth-related changes in skeletal and dental relationships within the craniofacial complex using... Objective: This study aimed to predict long-term growth-related changes in skeletal and dental relationships within the craniofacial complex using machine... |
SourceID | doaj pubmedcentral proquest pubmed crossref elsevier |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Publisher |
StartPage | 236 |
SubjectTerms | Adolescent Adolescent Development - physiology Artificial intelligence Body Size - physiology Cephalometric analysis Cephalometry - methods Cephalometry - statistics & numerical data Child Craniofacial complex Dentistry Face - diagnostic imaging Growth and development Humans Incisor - diagnostic imaging Incisor - growth & development Machine learning Male Mandible - diagnostic imaging Mandible - growth & development Maxilla - diagnostic imaging Maxilla - growth & development Orthodontics Predictive Learning Models Predictive Value of Tests Puberty Radiography - methods Radiography - statistics & numerical data Random Allocation Random Forest Regression Analysis Reproducibility of Results Retrospective Studies Scientific Research Reports Skull Base - diagnostic imaging Skull Base - growth & development |
Title | Long-Term Predictive Modelling of the Craniofacial Complex Using Machine Learning on 2D Cephalometric Radiographs |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S0020653924016411 https://www.clinicalkey.es/playcontent/1-s2.0-S0020653924016411 https://dx.doi.org/10.1016/j.identj.2024.12.023 https://www.ncbi.nlm.nih.gov/pubmed/39757033 https://www.proquest.com/docview/3151876456 https://pubmed.ncbi.nlm.nih.gov/PMC11806318 https://doaj.org/article/14ca3a9f7e914001a0d4c5dee6f16d41 |
Volume | 75 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQL3BBvFleMhJXCz9iJ3ssW6oKAUKolXqzHD_oVm1Smq3Un8-MnVQbQCoHrps40XrGM9_E4-8j5J2WvPFcRRZ4Exnk28haKSMDtIuK1sgwk7stvpqDo-rTsT7ekvrCnrBCD1wm7r2ovFNumeq4hFqAC8dD5XWI0SRhQj6yLiHnTcVUicFVo7KqJs_FkVbL6dBc7uxCtc7NKdSGssqfAqWaJaXM3T_LTX9iz99bKLdy0v4Dcn8Ek3S3_ImH5E7sHpG7e9gAhBpuj8nPz333gx1C9KXfLnFLBoMbRf2zTMVN-0QBANIVJKx1nxx-PqcYIc7iNc3NBPRLbraMdORhhSEdlXt0FS9O3Fl_jnpcnn53YV2or4cn5Gj_4-HqgI0iC8zrpt6wZatDpVwjUnStUDpJ3VZNTFIEX2GxIr2XKnDecm9amUztlK6598qbEAAePiU7Xd_F54QaFIB0WtZeOXiEaoJuuUlaSbBXUGlB2DTL9qJwadipyezUFqtYtIoV0oJVFuQDmuLmXmTCzj-Af9jRP-xt_rEgejKknQ6bQniEB61veXn9t3FxGNf4YIUd4E6L292Z4BewEdSeQmyPHGFMgSf_8M63k6dZWOW4deO62F8NVgEwg7wFaHdBnhXPu5kWQJRIowajm5lPzuZtfqVbn2QmceT_MxDVX_yPmX5J7kkUR84t7a_IzubyKr4GxLZp3-TF-QsGiz2J |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Long-Term+Predictive+Modelling+of+the+Craniofacial+Complex+Using+Machine+Learning+on+2D+Cephalometric+Radiographs&rft.jtitle=International+dental+journal&rft.au=Michael+Myers&rft.au=Michael+D.+Brown&rft.au=Sarkhan+Badirli&rft.au=George+J.+Eckert&rft.date=2025-02-01&rft.pub=Elsevier&rft.issn=0020-6539&rft.volume=75&rft.issue=1&rft.spage=236&rft.epage=247&rft_id=info:doi/10.1016%2Fj.identj.2024.12.023&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_14ca3a9f7e914001a0d4c5dee6f16d41 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0020-6539&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0020-6539&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0020-6539&client=summon |