Long-Term Predictive Modelling of the Craniofacial Complex Using Machine Learning on 2D Cephalometric Radiographs

This study aimed to predict long-term growth-related changes in skeletal and dental relationships within the craniofacial complex using machine learning (ML) models. Cephalometric radiographs from 301 subjects, taken at pre-pubertal (T1, age 11) and post-pubertal stages (T2, age 18), were analysed....

Full description

Saved in:
Bibliographic Details
Published inInternational dental journal Vol. 75; no. 1; pp. 236 - 247
Main Authors Myers, Michael, Brown, Michael D., Badirli, Sarkhan, Eckert, George J., Johnson, Diane Helen-Marie, Turkkahraman, Hakan
Format Journal Article
LanguageEnglish
Published England Elsevier Inc 01.02.2025
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract This study aimed to predict long-term growth-related changes in skeletal and dental relationships within the craniofacial complex using machine learning (ML) models. Cephalometric radiographs from 301 subjects, taken at pre-pubertal (T1, age 11) and post-pubertal stages (T2, age 18), were analysed. Three ML models—Lasso regression, Random Forest, and Support Vector Regression (SVR)—were trained on a subset of 240 subjects, while 61 subjects were used for testing. Model performance was evaluated using mean absolute error (MAE), intraclass correlation coefficients (ICCs), and clinical thresholds (2 mm or 2°). MAEs for skeletal measurements ranged from 1.36° (maxilla to cranial base angle) to 4.12 mm (mandibular length), and for dental measurements from 1.26 mm (lower incisor position) to 5.40° (upper incisor inclination). ICCs indicated moderate to excellent agreement between actual and predicted values. The highest prediction accuracy within the 2 mm or 2° clinical thresholds was achieved for maxilla to cranial base angle (80%), lower incisor position (75%), and maxilla to mandible angle (70%). Pre-pubertal measurements and sex consistently emerged as the most important predictive factors. ML models demonstrated the ability to predict post-pubertal values for maxilla to cranial base, mandible to cranial base, maxilla to mandible angles, upper and lower incisor positions, and upper face height with a clinically acceptable margin of 2 mm or 2°. Prediction accuracy was higher for skeletal relationships compared to dental relationships over the 8-year growth period. Pre-pubertal values of the measurements and sex emerged consistently as the most important predictors of the post-pubertal values.
AbstractList This study aimed to predict long-term growth-related changes in skeletal and dental relationships within the craniofacial complex using machine learning (ML) models. Cephalometric radiographs from 301 subjects, taken at pre-pubertal (T1, age 11) and post-pubertal stages (T2, age 18), were analysed. Three ML models-Lasso regression, Random Forest, and Support Vector Regression (SVR)-were trained on a subset of 240 subjects, while 61 subjects were used for testing. Model performance was evaluated using mean absolute error (MAE), intraclass correlation coefficients (ICCs), and clinical thresholds (2 mm or 2°). MAEs for skeletal measurements ranged from 1.36° (maxilla to cranial base angle) to 4.12 mm (mandibular length), and for dental measurements from 1.26 mm (lower incisor position) to 5.40° (upper incisor inclination). ICCs indicated moderate to excellent agreement between actual and predicted values. The highest prediction accuracy within the 2 mm or 2° clinical thresholds was achieved for maxilla to cranial base angle (80%), lower incisor position (75%), and maxilla to mandible angle (70%). Pre-pubertal measurements and sex consistently emerged as the most important predictive factors. ML models demonstrated the ability to predict post-pubertal values for maxilla to cranial base, mandible to cranial base, maxilla to mandible angles, upper and lower incisor positions, and upper face height with a clinically acceptable margin of 2 mm or 2°. Prediction accuracy was higher for skeletal relationships compared to dental relationships over the 8-year growth period. Pre-pubertal values of the measurements and sex emerged consistently as the most important predictors of the post-pubertal values.
This study aimed to predict long-term growth-related changes in skeletal and dental relationships within the craniofacial complex using machine learning (ML) models.OBJECTIVEThis study aimed to predict long-term growth-related changes in skeletal and dental relationships within the craniofacial complex using machine learning (ML) models.Cephalometric radiographs from 301 subjects, taken at pre-pubertal (T1, age 11) and post-pubertal stages (T2, age 18), were analysed. Three ML models-Lasso regression, Random Forest, and Support Vector Regression (SVR)-were trained on a subset of 240 subjects, while 61 subjects were used for testing. Model performance was evaluated using mean absolute error (MAE), intraclass correlation coefficients (ICCs), and clinical thresholds (2 mm or 2°).MATERIALS AND METHODSCephalometric radiographs from 301 subjects, taken at pre-pubertal (T1, age 11) and post-pubertal stages (T2, age 18), were analysed. Three ML models-Lasso regression, Random Forest, and Support Vector Regression (SVR)-were trained on a subset of 240 subjects, while 61 subjects were used for testing. Model performance was evaluated using mean absolute error (MAE), intraclass correlation coefficients (ICCs), and clinical thresholds (2 mm or 2°).MAEs for skeletal measurements ranged from 1.36° (maxilla to cranial base angle) to 4.12 mm (mandibular length), and for dental measurements from 1.26 mm (lower incisor position) to 5.40° (upper incisor inclination). ICCs indicated moderate to excellent agreement between actual and predicted values. The highest prediction accuracy within the 2 mm or 2° clinical thresholds was achieved for maxilla to cranial base angle (80%), lower incisor position (75%), and maxilla to mandible angle (70%). Pre-pubertal measurements and sex consistently emerged as the most important predictive factors.RESULTSMAEs for skeletal measurements ranged from 1.36° (maxilla to cranial base angle) to 4.12 mm (mandibular length), and for dental measurements from 1.26 mm (lower incisor position) to 5.40° (upper incisor inclination). ICCs indicated moderate to excellent agreement between actual and predicted values. The highest prediction accuracy within the 2 mm or 2° clinical thresholds was achieved for maxilla to cranial base angle (80%), lower incisor position (75%), and maxilla to mandible angle (70%). Pre-pubertal measurements and sex consistently emerged as the most important predictive factors.ML models demonstrated the ability to predict post-pubertal values for maxilla to cranial base, mandible to cranial base, maxilla to mandible angles, upper and lower incisor positions, and upper face height with a clinically acceptable margin of 2 mm or 2°. Prediction accuracy was higher for skeletal relationships compared to dental relationships over the 8-year growth period. Pre-pubertal values of the measurements and sex emerged consistently as the most important predictors of the post-pubertal values.CONCLUSIONSML models demonstrated the ability to predict post-pubertal values for maxilla to cranial base, mandible to cranial base, maxilla to mandible angles, upper and lower incisor positions, and upper face height with a clinically acceptable margin of 2 mm or 2°. Prediction accuracy was higher for skeletal relationships compared to dental relationships over the 8-year growth period. Pre-pubertal values of the measurements and sex emerged consistently as the most important predictors of the post-pubertal values.
Objective: This study aimed to predict long-term growth-related changes in skeletal and dental relationships within the craniofacial complex using machine learning (ML) models. Materials and Methods: Cephalometric radiographs from 301 subjects, taken at pre-pubertal (T1, age 11) and post-pubertal stages (T2, age 18), were analysed. Three ML models—Lasso regression, Random Forest, and Support Vector Regression (SVR)—were trained on a subset of 240 subjects, while 61 subjects were used for testing. Model performance was evaluated using mean absolute error (MAE), intraclass correlation coefficients (ICCs), and clinical thresholds (2 mm or 2°). Results: MAEs for skeletal measurements ranged from 1.36° (maxilla to cranial base angle) to 4.12 mm (mandibular length), and for dental measurements from 1.26 mm (lower incisor position) to 5.40° (upper incisor inclination). ICCs indicated moderate to excellent agreement between actual and predicted values. The highest prediction accuracy within the 2 mm or 2° clinical thresholds was achieved for maxilla to cranial base angle (80%), lower incisor position (75%), and maxilla to mandible angle (70%). Pre-pubertal measurements and sex consistently emerged as the most important predictive factors. Conclusions: ML models demonstrated the ability to predict post-pubertal values for maxilla to cranial base, mandible to cranial base, maxilla to mandible angles, upper and lower incisor positions, and upper face height with a clinically acceptable margin of 2 mm or 2°. Prediction accuracy was higher for skeletal relationships compared to dental relationships over the 8-year growth period. Pre-pubertal values of the measurements and sex emerged consistently as the most important predictors of the post-pubertal values.
AbstractObjectiveThis study aimed to predict long-term growth-related changes in skeletal and dental relationships within the craniofacial complex using machine learning (ML) models. Materials and MethodsCephalometric radiographs from 301 subjects, taken at pre-pubertal (T1, age 11) and post-pubertal stages (T2, age 18), were analysed. Three ML models—Lasso regression, Random Forest, and Support Vector Regression (SVR)—were trained on a subset of 240 subjects, while 61 subjects were used for testing. Model performance was evaluated using mean absolute error (MAE), intraclass correlation coefficients (ICCs), and clinical thresholds (2 mm or 2°). ResultsMAEs for skeletal measurements ranged from 1.36° (maxilla to cranial base angle) to 4.12 mm (mandibular length), and for dental measurements from 1.26 mm (lower incisor position) to 5.40° (upper incisor inclination). ICCs indicated moderate to excellent agreement between actual and predicted values. The highest prediction accuracy within the 2 mm or 2° clinical thresholds was achieved for maxilla to cranial base angle (80%), lower incisor position (75%), and maxilla to mandible angle (70%). Pre-pubertal measurements and sex consistently emerged as the most important predictive factors. ConclusionsML models demonstrated the ability to predict post-pubertal values for maxilla to cranial base, mandible to cranial base, maxilla to mandible angles, upper and lower incisor positions, and upper face height with a clinically acceptable margin of 2 mm or 2°. Prediction accuracy was higher for skeletal relationships compared to dental relationships over the 8-year growth period. Pre-pubertal values of the measurements and sex emerged consistently as the most important predictors of the post-pubertal values.
Author Myers, Michael
Johnson, Diane Helen-Marie
Turkkahraman, Hakan
Eckert, George J.
Brown, Michael D.
Badirli, Sarkhan
Author_xml – sequence: 1
  givenname: Michael
  surname: Myers
  fullname: Myers, Michael
  organization: Department of Orthodontics and Oral Facial Genetics, Indiana University School of Dentistry, Indianapolis, Indiana, USA
– sequence: 2
  givenname: Michael D.
  orcidid: 0009-0001-7365-0296
  surname: Brown
  fullname: Brown, Michael D.
  organization: Indiana University School of Dentistry, Indianapolis, Indiana, USA
– sequence: 3
  givenname: Sarkhan
  surname: Badirli
  fullname: Badirli, Sarkhan
  organization: Eli Lilly & Company, Indianapolis, Indiana, USA
– sequence: 4
  givenname: George J.
  orcidid: 0000-0001-7798-7155
  surname: Eckert
  fullname: Eckert, George J.
  organization: Department of Biostatistics and Health Data Science, Indiana University School of Medicine, Indianapolis, Indiana, USA
– sequence: 5
  givenname: Diane Helen-Marie
  surname: Johnson
  fullname: Johnson, Diane Helen-Marie
  organization: Department of Orthodontics and Oral Facial Genetics, Indiana University School of Dentistry, Indianapolis, Indiana, USA
– sequence: 6
  givenname: Hakan
  orcidid: 0000-0001-9052-7700
  surname: Turkkahraman
  fullname: Turkkahraman, Hakan
  email: haturk@iu.edu
  organization: Department of Orthodontics and Oral Facial Genetics, Indiana University School of Dentistry, Indianapolis, Indiana, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39757033$$D View this record in MEDLINE/PubMed
BookMark eNqVkt1rFDEUxQep2G31PxCZR19mzed8gChl_SpsUbQF30Lm5s5uxtlkm8wu9r83063FPoj4FEjO_V1yzjnJjpx3mGXPKZlTQstX_dwadGM_Z4SJOWVzwvijbEbrShaykd-PshkhjBSl5M1xdhJjT4ioOSmfZMe8qWRFOJ9l10vvVsUlhk3-JaCxMNo95hfe4DBYt8p9l49rzBdBO-s7DVYP-cJvtgP-zK_ipLjQsLYO8yXq4G5HXM7e5QvcrvXgNzgGC_lXbaxfBb1dx6fZ404PEZ_dnafZ1Yf3l4tPxfLzx_PF2bIAWVdj0bTSCK5r2qFuKZcdk62osWPUgBC8aRgA44aQlkDZsq6sNE9_AuBQGtMwfpqdH7jG615tg93ocKO8tur2woeV0mG0MKCiAjTXTVdhQwUhVBMjQBrEsqOlETSx3h5Y2127QQPJ96CHB9CHL86u1crvFaU1KTmtE-HlHSH46x3GUW1shGSyduh3UXEqU3KlkGWSvvhz2f2W36ElgTgIIPgYA3b3EkrU1A3Vq0M31NQNRZlK3Uhjbw5jmFzfWwwqgkUHKfWAMCZb7P8CIHXEgh5-4A3G3u-CS4kqqmIaUN-m-k3tYyIhBZ1sfP13wL_3_wKdyu4o
Cites_doi 10.3390/diagnostics13172740
10.1016/S0002-9416(84)90028-9
10.1007/978-3-030-92310-5_77
10.1111/ocr.12641
10.1016/j.ajodo.2015.04.017
10.3390/diagnostics13091553
10.1016/j.ortho.2023.100759
10.1177/00220345630420014701
10.1007/s00056-022-00421-7
10.1109/TBME.2006.876638
10.2319/031723-181.1
10.1055/s-0043-1770913
10.1007/s00056-017-0095-z
10.1016/j.identj.2024.04.021
10.1055/s-0039-1694799
10.1186/s12903-023-02881-8
10.1016/S0889-5406(98)70198-2
10.1093/ejo/cji062
10.1016/S0889-5406(95)70159-1
10.1016/S0889-5406(94)70022-2
10.1093/ejo/12.4.389
10.2319/020309-67.1
10.1016/j.identj.2023.03.007
10.1016/j.cmpb.2020.105513
10.1053/j.sodo.2005.04.007
10.2319/122515-887.1
10.1111/ocr.12764
10.2319/021220-100.1
10.1016/0889-5406(87)90392-1
10.3390/diagnostics13162713
10.1002/ajpa.1330290217
10.1053/j.sodo.2007.05.004
10.1016/j.identj.2023.10.003
10.1016/0002-9416(69)90036-0
10.1016/j.ajodo.2004.02.008
10.2319/041708-218.1
10.3390/diagnostics13172729
10.1016/0002-9416(82)90464-X
10.1016/j.forsciint.2017.10.004
10.3390/diagnostics13213369
10.1053/j.sodo.2024.01.006
10.1016/0002-9416(83)90177-X
ContentType Journal Article
Copyright 2024 The Authors
The Authors
Copyright © 2024 The Authors. Published by Elsevier Inc. All rights reserved.
2024 The Authors 2024
Copyright_xml – notice: 2024 The Authors
– notice: The Authors
– notice: Copyright © 2024 The Authors. Published by Elsevier Inc. All rights reserved.
– notice: 2024 The Authors 2024
DBID 6I.
AAFTH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOA
DOI 10.1016/j.identj.2024.12.023
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE

MEDLINE - Academic



Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Dentistry
EISSN 1875-595X
EndPage 247
ExternalDocumentID oai_doaj_org_article_14ca3a9f7e914001a0d4c5dee6f16d41
PMC11806318
39757033
10_1016_j_identj_2024_12_023
S0020653924016411
1_s2_0_S0020653924016411
Genre Evaluation Study
Journal Article
GroupedDBID ---
.1-
.FO
.GA
.Y3
05W
0R~
1OC
31~
3SF
50Z
52M
52U
52V
53G
5GY
8-0
8-1
8-3
8-4
8-5
930
A03
AAEDW
AAESR
AAEVG
AALRI
AAMMB
AANHP
AAONW
AAWTL
AAXUO
AAYWO
AAZKR
ABCUV
ABLJU
ABPVW
ACBWZ
ACGFO
ACGFS
ACMXC
ACPOU
ACPRK
ACRPL
ACVFH
ACXQS
ACYXJ
ADBBV
ADCNI
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADVLN
ADXAS
ADZMN
AEFGJ
AEIMD
AENEX
AEUPX
AFBPY
AFFNX
AFGKR
AFJKZ
AFPUW
AFRHN
AGQPQ
AGXDD
AHMBA
AIDQK
AIDYY
AIGII
AITUG
AIURR
AJAOE
AJUYK
AKBMS
AKRWK
AKYEP
ALAGY
ALMA_UNASSIGNED_HOLDINGS
AMBMR
AMRAJ
AMYDB
APXCP
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BHBCM
BMXJE
BRXPI
CS3
D-E
D-F
DCZOG
DPXWK
DRFUL
DRMAN
DRSTM
EBS
EJD
F00
F01
F04
F5P
FDB
FEDTE
FUBAC
G-S
GK1
GODZA
GROUPED_DOAJ
H.T
H.X
HF~
HVGLF
HZ~
LH4
LITHE
LOXES
LUTES
LW6
LYRES
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
MY~
N04
N05
NF~
O66
O9-
OK1
P2P
P2W
P2X
PQQKQ
Q.N
QB0
R.K
ROL
RPM
SUPJJ
UB1
V8K
W8V
WBKPD
WBNRW
WIH
WIJ
WIK
WOHZO
WPGGZ
XG2
Z5R
ZGI
ZZTAW
~WT
33P
34H
A8Z
AAHHS
ACCFJ
ADZOD
AEEZP
AEQDE
AEUQT
AFCTW
AFPWT
AIWBW
AJBDE
LATKE
P4E
PKN
6I.
AAFTH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
ID FETCH-LOGICAL-c587t-9b5d43a81feab135f25b48ef21dc443992cc23d00b0c6b2f67a3570cc3c6dd923
IEDL.DBID DOA
ISSN 0020-6539
1875-595X
IngestDate Wed Aug 27 01:05:51 EDT 2025
Thu Aug 21 18:38:15 EDT 2025
Fri Jul 11 01:55:42 EDT 2025
Mon Jul 21 05:55:38 EDT 2025
Tue Jul 01 00:33:21 EDT 2025
Sat Feb 01 16:04:39 EST 2025
Tue Feb 25 20:20:36 EST 2025
Tue Aug 26 18:48:02 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Growth and development
Cephalometric analysis
Artificial intelligence
Orthodontics
Machine learning
Craniofacial complex
Language English
License This is an open access article under the CC BY-NC-ND license.
Copyright © 2024 The Authors. Published by Elsevier Inc. All rights reserved.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c587t-9b5d43a81feab135f25b48ef21dc443992cc23d00b0c6b2f67a3570cc3c6dd923
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Undefined-1
ObjectType-Feature-3
content type line 23
ORCID 0000-0001-9052-7700
0000-0001-7798-7155
0009-0001-7365-0296
OpenAccessLink https://doaj.org/article/14ca3a9f7e914001a0d4c5dee6f16d41
PMID 39757033
PQID 3151876456
PQPubID 23479
PageCount 12
ParticipantIDs doaj_primary_oai_doaj_org_article_14ca3a9f7e914001a0d4c5dee6f16d41
pubmedcentral_primary_oai_pubmedcentral_nih_gov_11806318
proquest_miscellaneous_3151876456
pubmed_primary_39757033
crossref_primary_10_1016_j_identj_2024_12_023
elsevier_sciencedirect_doi_10_1016_j_identj_2024_12_023
elsevier_clinicalkeyesjournals_1_s2_0_S0020653924016411
elsevier_clinicalkey_doi_10_1016_j_identj_2024_12_023
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-02-01
PublicationDateYYYYMMDD 2025-02-01
PublicationDate_xml – month: 02
  year: 2025
  text: 2025-02-01
  day: 01
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle International dental journal
PublicationTitleAlternate Int Dent J
PublicationYear 2025
Publisher Elsevier Inc
Elsevier
Publisher_xml – name: Elsevier Inc
– name: Elsevier
References Lee, Ahmad, Frazier, Dundar, Turkkahraman (bib0019) 2024; 85
Parrish, O'Connell, Eckert, Hughes, Badirli, Turkkahraman (bib0024) 2023; 13
Yue, Yin, Li, Wang, Xu (bib0036) 2006; 53
Bao, Zhang, Yu, Li, Cao, Shu (bib0035) 2023; 23
Bishara, Fahl, Peterson (bib0050) 1983; 84
Leavitt, Volovic, Steinhauer (bib0018) 2023; 26
De Clerck, Proffit (bib0009) 2015; 148
Bjork (bib0030) 1968; 29
Oueis, Ono, Takagi (bib0049) 2002; 24
Niño-Sandoval, Guevara Pérez, González, Jaque, Infante-Contreras (bib0022) 2017; 281
Leslie, Southard, Southard, Casko, Jakobsen, Tolley (bib0047) 1998; 114
Kaźmierczak, Juszka, Vandevska-Radunovic, Maal, Fudalej, Mańdziuk (bib0021) 2021
Bjork (bib0029) 1963; 42
Moon, Shin, Lee, Cho, Park, Donatelli (bib0031) 2023; 94
Nanda, Ghosh (bib0042) 1995; 107
Baik (bib0008) 2007; 13
Lu, Yu, Li, Cao, Chen, Hua (bib0011) 2024
Ngan (bib0007) 2005; 11
Liu, Behrents, Buschang (bib0043) 2010; 80
Turkkahraman, Cetin (bib0002) 2017; 78
Wu, Zhang, Ye, Dai, Zhao, Zhao (bib0012) 2024
Lee, Daniel, Swartz, Baumrind, Korn (bib0046) 1987; 91
Wood, Anigbo, Eckert, Stewart, Dundar, Turkkahraman (bib0023) 2023; 13
Turkkahraman, Eliacik, Findik (bib0003) 2016; 86
Zakhar, Hazime, Eckert, Wong, Badirli, Turkkahraman (bib0025) 2023; 13
Maganur, Vishwanathaiah, Mashyakhy, Abumelha, Robaian, Almohareb (bib0010) 2024; 74
Skieller, Björk, Linde-Hansen (bib0045) 1984; 86
AAOF Craniofacial Growth Legacy Collection.
Iseri, Solow (bib0039) 1990; 12
Accessed January 3, 2025.
De Clerck, Proffit (bib0005) 2015; 148
Tulloch, Proffit, Phillips (bib0006) 2004; 125
Turkkahraman (bib0015) 2023; 17
Mason, Kelly, Eckert, Dean, Dundar, Turkkahraman (bib0017) 2023; 21
Kaźmierczak S, Juszka Z, Fudalej P, Mańdziuk J. Prediction of the facial growth direction with machine learning methods. arXiv e-prints 2021; Jun:arXiv-2106.
Larkin, Kim, Kim, Baek, Yamada, Park (bib0032) 2024; 27
Esmaeilyfard, Bonyadifard, Paknahad (bib0014) 2024; 74
Kim, Shim, Park, Kim, Lee, Kim (bib0038) 2020; 194
Al-Abdwani, Moles, Noar (bib0041) 2009; 79
Hwang, Moon, Kim, Donatelli, Lee (bib0037) 2021; 91
Hägg, Taranger (bib0044) 1982; 82
Aki, Nanda, Currier, Nanda (bib0048) 1994; 106
Björk (bib0028) 1969; 55
Jiwa (bib0026) 2020
Seehra, Pandis (bib0034) 2024; 30
Chau, Li, Tew, Thu, McGrath, Lo (bib0013) 2023; 73
Chen, Zhang, Zhou (bib0040) 2014; 7
Türkkahraman, Sayin (bib0004) 2006; 28
Volovic, Badirli, Ahmad (bib0016) 2023; 13
Ozzeybek Can, Turkkahraman (bib0001) 2019; 13
Kim, Kuroda, Soeda, Koizumi, Yamaguchi (bib0027) 2023; 13
De Clerck (10.1016/j.identj.2024.12.023_bib0005) 2015; 148
Hägg (10.1016/j.identj.2024.12.023_bib0044) 1982; 82
Niño-Sandoval (10.1016/j.identj.2024.12.023_bib0022) 2017; 281
Turkkahraman (10.1016/j.identj.2024.12.023_bib0003) 2016; 86
Hwang (10.1016/j.identj.2024.12.023_bib0037) 2021; 91
Moon (10.1016/j.identj.2024.12.023_bib0031) 2023; 94
Larkin (10.1016/j.identj.2024.12.023_bib0032) 2024; 27
10.1016/j.identj.2024.12.023_bib0033
Lee (10.1016/j.identj.2024.12.023_bib0046) 1987; 91
Skieller (10.1016/j.identj.2024.12.023_bib0045) 1984; 86
Kim (10.1016/j.identj.2024.12.023_bib0038) 2020; 194
Turkkahraman (10.1016/j.identj.2024.12.023_bib0015) 2023; 17
Esmaeilyfard (10.1016/j.identj.2024.12.023_bib0014) 2024; 74
Ozzeybek Can (10.1016/j.identj.2024.12.023_bib0001) 2019; 13
Tulloch (10.1016/j.identj.2024.12.023_bib0006) 2004; 125
Bjork (10.1016/j.identj.2024.12.023_bib0029) 1963; 42
Yue (10.1016/j.identj.2024.12.023_bib0036) 2006; 53
Al-Abdwani (10.1016/j.identj.2024.12.023_bib0041) 2009; 79
Oueis (10.1016/j.identj.2024.12.023_bib0049) 2002; 24
Zakhar (10.1016/j.identj.2024.12.023_bib0025) 2023; 13
Aki (10.1016/j.identj.2024.12.023_bib0048) 1994; 106
Leavitt (10.1016/j.identj.2024.12.023_bib0018) 2023; 26
Iseri (10.1016/j.identj.2024.12.023_bib0039) 1990; 12
Chen (10.1016/j.identj.2024.12.023_bib0040) 2014; 7
Mason (10.1016/j.identj.2024.12.023_bib0017) 2023; 21
Maganur (10.1016/j.identj.2024.12.023_bib0010) 2024; 74
Nanda (10.1016/j.identj.2024.12.023_bib0042) 1995; 107
Lu (10.1016/j.identj.2024.12.023_bib0011) 2024
Wu (10.1016/j.identj.2024.12.023_bib0012) 2024
Parrish (10.1016/j.identj.2024.12.023_bib0024) 2023; 13
Björk (10.1016/j.identj.2024.12.023_bib0028) 1969; 55
Chau (10.1016/j.identj.2024.12.023_bib0013) 2023; 73
Bao (10.1016/j.identj.2024.12.023_bib0035) 2023; 23
Baik (10.1016/j.identj.2024.12.023_bib0008) 2007; 13
Leslie (10.1016/j.identj.2024.12.023_bib0047) 1998; 114
Seehra (10.1016/j.identj.2024.12.023_bib0034) 2024; 30
Ngan (10.1016/j.identj.2024.12.023_bib0007) 2005; 11
De Clerck (10.1016/j.identj.2024.12.023_bib0009) 2015; 148
Bishara (10.1016/j.identj.2024.12.023_bib0050) 1983; 84
Wood (10.1016/j.identj.2024.12.023_bib0023) 2023; 13
Kim (10.1016/j.identj.2024.12.023_bib0027) 2023; 13
Türkkahraman (10.1016/j.identj.2024.12.023_bib0004) 2006; 28
Kaźmierczak (10.1016/j.identj.2024.12.023_bib0021) 2021
Turkkahraman (10.1016/j.identj.2024.12.023_bib0002) 2017; 78
10.1016/j.identj.2024.12.023_bib0020
Bjork (10.1016/j.identj.2024.12.023_bib0030) 1968; 29
Volovic (10.1016/j.identj.2024.12.023_bib0016) 2023; 13
Liu (10.1016/j.identj.2024.12.023_bib0043) 2010; 80
Lee (10.1016/j.identj.2024.12.023_bib0019) 2024; 85
Jiwa (10.1016/j.identj.2024.12.023_bib0026) 2020
References_xml – volume: 42
  start-page: 400
  year: 1963
  end-page: 411
  ident: bib0029
  article-title: Variations in the growth pattern of the human mandible: longitudinal radiographic study by the implant method
  publication-title: J Dent Res
– volume: 85
  start-page: 239
  year: 2024
  end-page: 249
  ident: bib0019
  article-title: A novel machine learning model for class III surgery decision
  publication-title: J Orofac Orthop
– volume: 13
  start-page: 2740
  year: 2023
  ident: bib0016
  article-title: A novel machine learning model for predicting orthodontic treatment duration
  publication-title: Diagnostics (Basel)
– volume: 94
  start-page: 207
  year: 2023
  end-page: 215
  ident: bib0031
  article-title: Comparison of individualized facial growth prediction models based on the partial least squares and artificial intelligence
  publication-title: Angle Orthodontist
– volume: 194
  year: 2020
  ident: bib0038
  article-title: Web-based fully automated cephalometric analysis by deep learning
  publication-title: Comput Methods Prog Biomed
– volume: 74
  start-page: 917
  year: 2024
  end-page: 929
  ident: bib0010
  article-title: Development of artificial intelligence models for tooth numbering and detection: a systematic review
  publication-title: Int Dent J
– volume: 21
  year: 2023
  ident: bib0017
  article-title: A machine learning model for orthodontic extraction/non-extraction decision in a racially and ethnically diverse patient population
  publication-title: Int Orthod
– volume: 29
  start-page: 243
  year: 1968
  end-page: 254
  ident: bib0030
  article-title: The use of metallic implants in the study of facial growth in children: method and application
  publication-title: Am J Phys Anthropol
– volume: 53
  start-page: 1615
  year: 2006
  end-page: 1623
  ident: bib0036
  article-title: Automated 2-D cephalometric analysis on X-ray images by a model-based approach
  publication-title: IEEE Trans Biomed Eng
– start-page: 665
  year: 2021
  end-page: 673
  ident: bib0021
  article-title: Prediction of the facial growth direction is challenging
  publication-title: International Conference on Neural Information Processing
– volume: 78
  start-page: 338
  year: 2017
  end-page: 347
  ident: bib0002
  article-title: Comparison of two treatment strategies for the early treatment of an anterior skeletal open bite: Posterior bite block-vertical pull chin cup (PBB-VPC) vs. posterior bite block-high pull headgear (PBB-HPH)
  publication-title: J Orofac Orthop
– start-page: 67
  year: 2020
  ident: bib0026
  article-title: Applicability of Deep Learning for Mandibular Growth Prediction
– volume: 86
  start-page: 359
  year: 1984
  end-page: 370
  ident: bib0045
  article-title: Prediction of mandibular growth rotation evaluated from a longitudinal implant sample
  publication-title: Am J Orthod
– volume: 125
  start-page: 657
  year: 2004
  end-page: 667
  ident: bib0006
  article-title: Outcomes in a 2-phase randomized clinical trial of early class II treatment
  publication-title: Am J Orthod Dentofacial Orthop
– volume: 26
  start-page: 552
  year: 2023
  end-page: 559
  ident: bib0018
  article-title: Can we predict orthodontic extraction patterns by using machine learning?
  publication-title: Orthod Craniofac Res
– volume: 13
  start-page: 1553
  year: 2023
  ident: bib0023
  article-title: Prediction of the post-pubertal mandibular length and Y axis of growth by using various machine learning techniques: a retrospective longitudinal study
  publication-title: Diagnostics (Basel)
– volume: 27
  start-page: 535
  year: 2024
  end-page: 543
  ident: bib0032
  article-title: Accuracy of artificial intelligence-assisted growth prediction in skeletal Class I preadolescent patients using serial lateral cephalograms for a 2-year growth interval
  publication-title: Orthod Craniofac Res
– volume: 11
  start-page: 140
  year: 2005
  end-page: 145
  ident: bib0007
  article-title: Early timely treatment of class III malocclusion
  publication-title: Semin Orthodontics
– volume: 30
  start-page: 68
  year: 2024
  end-page: 71
  ident: bib0034
  article-title: Pay attention to the analysis: common statistical errors in orthodontic randomised clinical trials
  publication-title: Semin Orthodontics
– volume: 148
  start-page: 37
  year: 2015
  end-page: 46
  ident: bib0009
  article-title: Growth modification of the face: A current perspective with emphasis on Class III treatment
  publication-title: Am J Orthod Dentofacial Orthop
– volume: 7
  start-page: 3454
  year: 2014
  end-page: 3460
  ident: bib0040
  article-title: The effects of incisor inclination changes on the position of point A in Class II division 2 malocclusion using three-dimensional evaluation: a long-term prospective study
  publication-title: Int J Clin Exp Med
– volume: 28
  start-page: 27
  year: 2006
  end-page: 34
  ident: bib0004
  article-title: Effects of activator and activator headgear treatment: comparison with untreated class II subjects
  publication-title: Eur J Orthod
– volume: 91
  start-page: 395
  year: 1987
  end-page: 402
  ident: bib0046
  article-title: Assessment of a method for the prediction of mandibular rotation
  publication-title: Am J Orthod Dentofacial Orthop
– reference: AAOF Craniofacial Growth Legacy Collection.
– volume: 86
  start-page: 1026
  year: 2016
  end-page: 1032
  ident: bib0003
  article-title: Effects of miniplate anchored and conventional forsus fatigue resistant devices in the treatment of Class II malocclusion
  publication-title: Angle Orthod
– volume: 148
  start-page: 37
  year: 2015
  end-page: 46
  ident: bib0005
  article-title: Growth modification of the face: a current perspective with emphasis on class III treatment
  publication-title: Am J Orthod Dentofacial Orthop
– reference: Kaźmierczak S, Juszka Z, Fudalej P, Mańdziuk J. Prediction of the facial growth direction with machine learning methods. arXiv e-prints 2021; Jun:arXiv-2106.
– volume: 13
  start-page: 2713
  year: 2023
  ident: bib0025
  article-title: Prediction of pubertal mandibular growth in males with class II malocclusion by utilizing machine learning
  publication-title: Diagnostics (Basel)
– volume: 74
  start-page: 328
  year: 2024
  end-page: 334
  ident: bib0014
  article-title: Dental caries detection and classification in CBCT images using deep learning
  publication-title: Int Dent J
– volume: 73
  start-page: 724
  year: 2023
  end-page: 730
  ident: bib0013
  article-title: Accuracy of artificial intelligence-based photographic detection of gingivitis
  publication-title: Int Dent J
– year: 2024
  ident: bib0011
  article-title: Artificial intelligence–related dental research: bibliometric and altmetric analysis
  publication-title: Int Dent J
– volume: 13
  start-page: 3369
  year: 2023
  ident: bib0027
  article-title: Validation of machine learning models for craniofacial growth prediction
  publication-title: Diagnostics
– volume: 55
  start-page: 585
  year: 1969
  end-page: 599
  ident: bib0028
  article-title: Prediction of mandibular growth rotation
  publication-title: Am J Orthod
– volume: 82
  start-page: 299
  year: 1982
  end-page: 309
  ident: bib0044
  article-title: Maturation indicators and the pubertal growth spurt
  publication-title: Am J Orthod
– volume: 13
  start-page: 2729
  year: 2023
  ident: bib0024
  article-title: Short- and long-term prediction of the post-pubertal mandibular length and Y-axis in females utilizing machine learning
  publication-title: Diagnostics (Basel)
– volume: 13
  start-page: 143
  year: 2019
  end-page: 149
  ident: bib0001
  article-title: Effects of rapid maxillary expansion and facemask therapy on the soft tissue profiles of class III patients at different growth stages
  publication-title: Eur J Dent
– year: 2024
  ident: bib0012
  article-title: Comparison of the efficacy of artificial intelligence-powered software in crown design: an in vitro study
  publication-title: Int Dent J
– volume: 80
  start-page: 97
  year: 2010
  end-page: 105
  ident: bib0043
  article-title: Mandibular growth, remodeling, and maturation during infancy and early childhood
  publication-title: Angle Orthod
– volume: 281
  start-page: 187.e1
  year: 2017
  end-page: 187.e7
  ident: bib0022
  article-title: Use of automated learning techniques for predicting mandibular morphology in skeletal class I, II and III
  publication-title: Forensic Sci Int
– volume: 17
  start-page: 567
  year: 2023
  end-page: 568
  ident: bib0015
  article-title: Embracing the unprecedented pace of change: Artificial intelligence's impact on dentistry and beyond
  publication-title: Eur J Dent
– volume: 106
  start-page: 60
  year: 1994
  end-page: 69
  ident: bib0048
  article-title: Assessment of symphysis morphology as a predictorof the direction of mandibular growth
  publication-title: Am J Orthod Dentofacial Orthop
– volume: 12
  start-page: 389
  year: 1990
  end-page: 398
  ident: bib0039
  article-title: Growth displacement of the maxilla in girls studied by the implant method
  publication-title: Eur J Orthod
– volume: 13
  start-page: 158
  year: 2007
  end-page: 174
  ident: bib0008
  article-title: Limitations in orthopedic and camouflage treatment for class III malocclusion
  publication-title: Semin Orthodontics
– volume: 24
  start-page: 264
  year: 2002
  end-page: 268
  ident: bib0049
  article-title: Prediction of mandibular growth in Japanese children age 4 to 9 years
  publication-title: Pediatr Dent
– volume: 107
  start-page: 79
  year: 1995
  end-page: 90
  ident: bib0042
  article-title: Longitudinal growth changes in the sagittal relationship of maxilla and mandible
  publication-title: Am J Orthod Dentofacial Orthop
– reference: . Accessed January 3, 2025.
– volume: 79
  start-page: 462
  year: 2009
  end-page: 467
  ident: bib0041
  article-title: Change of incisor inclination effects on points A and B
  publication-title: Angle Orthod
– volume: 23
  start-page: 191
  year: 2023
  ident: bib0035
  article-title: Evaluating the accuracy of automated cephalometric analysis based on artificial intelligence
  publication-title: BMC Oral Health
– volume: 91
  start-page: 329
  year: 2021
  end-page: 335
  ident: bib0037
  article-title: Evaluation of automated cephalometric analysis based on the latest deep learning method
  publication-title: Angle Orthod
– volume: 114
  start-page: 659
  year: 1998
  end-page: 667
  ident: bib0047
  article-title: Prediction of mandibular growth rotation: assessment of the Skieller, Björk, and Linde-Hansen method
  publication-title: Am J Orthod Dentofacial Orthop
– volume: 84
  start-page: 133
  year: 1983
  end-page: 139
  ident: bib0050
  article-title: Longitudinal changes in the ANB angle and Wits appraisal: clinical implications
  publication-title: Am J Orthod
– volume: 13
  start-page: 2740
  year: 2023
  ident: 10.1016/j.identj.2024.12.023_bib0016
  article-title: A novel machine learning model for predicting orthodontic treatment duration
  publication-title: Diagnostics (Basel)
  doi: 10.3390/diagnostics13172740
– start-page: 665
  year: 2021
  ident: 10.1016/j.identj.2024.12.023_bib0021
  article-title: Prediction of the facial growth direction is challenging
– volume: 86
  start-page: 359
  year: 1984
  ident: 10.1016/j.identj.2024.12.023_bib0045
  article-title: Prediction of mandibular growth rotation evaluated from a longitudinal implant sample
  publication-title: Am J Orthod
  doi: 10.1016/S0002-9416(84)90028-9
– volume: 7
  start-page: 3454
  year: 2014
  ident: 10.1016/j.identj.2024.12.023_bib0040
  article-title: The effects of incisor inclination changes on the position of point A in Class II division 2 malocclusion using three-dimensional evaluation: a long-term prospective study
  publication-title: Int J Clin Exp Med
– ident: 10.1016/j.identj.2024.12.023_bib0020
  doi: 10.1007/978-3-030-92310-5_77
– volume: 26
  start-page: 552
  year: 2023
  ident: 10.1016/j.identj.2024.12.023_bib0018
  article-title: Can we predict orthodontic extraction patterns by using machine learning?
  publication-title: Orthod Craniofac Res
  doi: 10.1111/ocr.12641
– volume: 148
  start-page: 37
  year: 2015
  ident: 10.1016/j.identj.2024.12.023_bib0009
  article-title: Growth modification of the face: A current perspective with emphasis on Class III treatment
  publication-title: Am J Orthod Dentofacial Orthop
  doi: 10.1016/j.ajodo.2015.04.017
– volume: 13
  start-page: 1553
  year: 2023
  ident: 10.1016/j.identj.2024.12.023_bib0023
  article-title: Prediction of the post-pubertal mandibular length and Y axis of growth by using various machine learning techniques: a retrospective longitudinal study
  publication-title: Diagnostics (Basel)
  doi: 10.3390/diagnostics13091553
– volume: 21
  year: 2023
  ident: 10.1016/j.identj.2024.12.023_bib0017
  article-title: A machine learning model for orthodontic extraction/non-extraction decision in a racially and ethnically diverse patient population
  publication-title: Int Orthod
  doi: 10.1016/j.ortho.2023.100759
– ident: 10.1016/j.identj.2024.12.023_bib0033
– volume: 42
  start-page: 400
  issue: 1
  year: 1963
  ident: 10.1016/j.identj.2024.12.023_bib0029
  article-title: Variations in the growth pattern of the human mandible: longitudinal radiographic study by the implant method
  publication-title: J Dent Res
  doi: 10.1177/00220345630420014701
– volume: 148
  start-page: 37
  year: 2015
  ident: 10.1016/j.identj.2024.12.023_bib0005
  article-title: Growth modification of the face: a current perspective with emphasis on class III treatment
  publication-title: Am J Orthod Dentofacial Orthop
  doi: 10.1016/j.ajodo.2015.04.017
– volume: 85
  start-page: 239
  year: 2024
  ident: 10.1016/j.identj.2024.12.023_bib0019
  article-title: A novel machine learning model for class III surgery decision
  publication-title: J Orofac Orthop
  doi: 10.1007/s00056-022-00421-7
– volume: 53
  start-page: 1615
  year: 2006
  ident: 10.1016/j.identj.2024.12.023_bib0036
  article-title: Automated 2-D cephalometric analysis on X-ray images by a model-based approach
  publication-title: IEEE Trans Biomed Eng
  doi: 10.1109/TBME.2006.876638
– volume: 94
  start-page: 207
  year: 2023
  ident: 10.1016/j.identj.2024.12.023_bib0031
  article-title: Comparison of individualized facial growth prediction models based on the partial least squares and artificial intelligence
  publication-title: Angle Orthodontist
  doi: 10.2319/031723-181.1
– volume: 17
  start-page: 567
  year: 2023
  ident: 10.1016/j.identj.2024.12.023_bib0015
  article-title: Embracing the unprecedented pace of change: Artificial intelligence's impact on dentistry and beyond
  publication-title: Eur J Dent
  doi: 10.1055/s-0043-1770913
– volume: 78
  start-page: 338
  year: 2017
  ident: 10.1016/j.identj.2024.12.023_bib0002
  article-title: Comparison of two treatment strategies for the early treatment of an anterior skeletal open bite: Posterior bite block-vertical pull chin cup (PBB-VPC) vs. posterior bite block-high pull headgear (PBB-HPH)
  publication-title: J Orofac Orthop
  doi: 10.1007/s00056-017-0095-z
– volume: 74
  start-page: 917
  year: 2024
  ident: 10.1016/j.identj.2024.12.023_bib0010
  article-title: Development of artificial intelligence models for tooth numbering and detection: a systematic review
  publication-title: Int Dent J
  doi: 10.1016/j.identj.2024.04.021
– volume: 13
  start-page: 143
  year: 2019
  ident: 10.1016/j.identj.2024.12.023_bib0001
  article-title: Effects of rapid maxillary expansion and facemask therapy on the soft tissue profiles of class III patients at different growth stages
  publication-title: Eur J Dent
  doi: 10.1055/s-0039-1694799
– year: 2024
  ident: 10.1016/j.identj.2024.12.023_bib0011
  article-title: Artificial intelligence–related dental research: bibliometric and altmetric analysis
  publication-title: Int Dent J
– volume: 23
  start-page: 191
  year: 2023
  ident: 10.1016/j.identj.2024.12.023_bib0035
  article-title: Evaluating the accuracy of automated cephalometric analysis based on artificial intelligence
  publication-title: BMC Oral Health
  doi: 10.1186/s12903-023-02881-8
– volume: 114
  start-page: 659
  year: 1998
  ident: 10.1016/j.identj.2024.12.023_bib0047
  article-title: Prediction of mandibular growth rotation: assessment of the Skieller, Björk, and Linde-Hansen method
  publication-title: Am J Orthod Dentofacial Orthop
  doi: 10.1016/S0889-5406(98)70198-2
– volume: 28
  start-page: 27
  year: 2006
  ident: 10.1016/j.identj.2024.12.023_bib0004
  article-title: Effects of activator and activator headgear treatment: comparison with untreated class II subjects
  publication-title: Eur J Orthod
  doi: 10.1093/ejo/cji062
– year: 2024
  ident: 10.1016/j.identj.2024.12.023_bib0012
  article-title: Comparison of the efficacy of artificial intelligence-powered software in crown design: an in vitro study
  publication-title: Int Dent J
– volume: 107
  start-page: 79
  year: 1995
  ident: 10.1016/j.identj.2024.12.023_bib0042
  article-title: Longitudinal growth changes in the sagittal relationship of maxilla and mandible
  publication-title: Am J Orthod Dentofacial Orthop
  doi: 10.1016/S0889-5406(95)70159-1
– volume: 106
  start-page: 60
  year: 1994
  ident: 10.1016/j.identj.2024.12.023_bib0048
  article-title: Assessment of symphysis morphology as a predictorof the direction of mandibular growth
  publication-title: Am J Orthod Dentofacial Orthop
  doi: 10.1016/S0889-5406(94)70022-2
– volume: 24
  start-page: 264
  year: 2002
  ident: 10.1016/j.identj.2024.12.023_bib0049
  article-title: Prediction of mandibular growth in Japanese children age 4 to 9 years
  publication-title: Pediatr Dent
– volume: 12
  start-page: 389
  year: 1990
  ident: 10.1016/j.identj.2024.12.023_bib0039
  article-title: Growth displacement of the maxilla in girls studied by the implant method
  publication-title: Eur J Orthod
  doi: 10.1093/ejo/12.4.389
– volume: 80
  start-page: 97
  year: 2010
  ident: 10.1016/j.identj.2024.12.023_bib0043
  article-title: Mandibular growth, remodeling, and maturation during infancy and early childhood
  publication-title: Angle Orthod
  doi: 10.2319/020309-67.1
– volume: 73
  start-page: 724
  year: 2023
  ident: 10.1016/j.identj.2024.12.023_bib0013
  article-title: Accuracy of artificial intelligence-based photographic detection of gingivitis
  publication-title: Int Dent J
  doi: 10.1016/j.identj.2023.03.007
– volume: 194
  year: 2020
  ident: 10.1016/j.identj.2024.12.023_bib0038
  article-title: Web-based fully automated cephalometric analysis by deep learning
  publication-title: Comput Methods Prog Biomed
  doi: 10.1016/j.cmpb.2020.105513
– volume: 11
  start-page: 140
  year: 2005
  ident: 10.1016/j.identj.2024.12.023_bib0007
  article-title: Early timely treatment of class III malocclusion
  publication-title: Semin Orthodontics
  doi: 10.1053/j.sodo.2005.04.007
– volume: 86
  start-page: 1026
  year: 2016
  ident: 10.1016/j.identj.2024.12.023_bib0003
  article-title: Effects of miniplate anchored and conventional forsus fatigue resistant devices in the treatment of Class II malocclusion
  publication-title: Angle Orthod
  doi: 10.2319/122515-887.1
– volume: 27
  start-page: 535
  year: 2024
  ident: 10.1016/j.identj.2024.12.023_bib0032
  article-title: Accuracy of artificial intelligence-assisted growth prediction in skeletal Class I preadolescent patients using serial lateral cephalograms for a 2-year growth interval
  publication-title: Orthod Craniofac Res
  doi: 10.1111/ocr.12764
– volume: 91
  start-page: 329
  year: 2021
  ident: 10.1016/j.identj.2024.12.023_bib0037
  article-title: Evaluation of automated cephalometric analysis based on the latest deep learning method
  publication-title: Angle Orthod
  doi: 10.2319/021220-100.1
– volume: 91
  start-page: 395
  year: 1987
  ident: 10.1016/j.identj.2024.12.023_bib0046
  article-title: Assessment of a method for the prediction of mandibular rotation
  publication-title: Am J Orthod Dentofacial Orthop
  doi: 10.1016/0889-5406(87)90392-1
– volume: 13
  start-page: 2713
  year: 2023
  ident: 10.1016/j.identj.2024.12.023_bib0025
  article-title: Prediction of pubertal mandibular growth in males with class II malocclusion by utilizing machine learning
  publication-title: Diagnostics (Basel)
  doi: 10.3390/diagnostics13162713
– volume: 29
  start-page: 243
  year: 1968
  ident: 10.1016/j.identj.2024.12.023_bib0030
  article-title: The use of metallic implants in the study of facial growth in children: method and application
  publication-title: Am J Phys Anthropol
  doi: 10.1002/ajpa.1330290217
– volume: 13
  start-page: 158
  year: 2007
  ident: 10.1016/j.identj.2024.12.023_bib0008
  article-title: Limitations in orthopedic and camouflage treatment for class III malocclusion
  publication-title: Semin Orthodontics
  doi: 10.1053/j.sodo.2007.05.004
– volume: 74
  start-page: 328
  year: 2024
  ident: 10.1016/j.identj.2024.12.023_bib0014
  article-title: Dental caries detection and classification in CBCT images using deep learning
  publication-title: Int Dent J
  doi: 10.1016/j.identj.2023.10.003
– volume: 55
  start-page: 585
  year: 1969
  ident: 10.1016/j.identj.2024.12.023_bib0028
  article-title: Prediction of mandibular growth rotation
  publication-title: Am J Orthod
  doi: 10.1016/0002-9416(69)90036-0
– volume: 125
  start-page: 657
  year: 2004
  ident: 10.1016/j.identj.2024.12.023_bib0006
  article-title: Outcomes in a 2-phase randomized clinical trial of early class II treatment
  publication-title: Am J Orthod Dentofacial Orthop
  doi: 10.1016/j.ajodo.2004.02.008
– volume: 79
  start-page: 462
  year: 2009
  ident: 10.1016/j.identj.2024.12.023_bib0041
  article-title: Change of incisor inclination effects on points A and B
  publication-title: Angle Orthod
  doi: 10.2319/041708-218.1
– volume: 13
  start-page: 2729
  year: 2023
  ident: 10.1016/j.identj.2024.12.023_bib0024
  article-title: Short- and long-term prediction of the post-pubertal mandibular length and Y-axis in females utilizing machine learning
  publication-title: Diagnostics (Basel)
  doi: 10.3390/diagnostics13172729
– volume: 82
  start-page: 299
  year: 1982
  ident: 10.1016/j.identj.2024.12.023_bib0044
  article-title: Maturation indicators and the pubertal growth spurt
  publication-title: Am J Orthod
  doi: 10.1016/0002-9416(82)90464-X
– start-page: 67
  year: 2020
  ident: 10.1016/j.identj.2024.12.023_bib0026
– volume: 281
  start-page: 187.e1
  year: 2017
  ident: 10.1016/j.identj.2024.12.023_bib0022
  article-title: Use of automated learning techniques for predicting mandibular morphology in skeletal class I, II and III
  publication-title: Forensic Sci Int
  doi: 10.1016/j.forsciint.2017.10.004
– volume: 13
  start-page: 3369
  year: 2023
  ident: 10.1016/j.identj.2024.12.023_bib0027
  article-title: Validation of machine learning models for craniofacial growth prediction
  publication-title: Diagnostics
  doi: 10.3390/diagnostics13213369
– volume: 30
  start-page: 68
  year: 2024
  ident: 10.1016/j.identj.2024.12.023_bib0034
  article-title: Pay attention to the analysis: common statistical errors in orthodontic randomised clinical trials
  publication-title: Semin Orthodontics
  doi: 10.1053/j.sodo.2024.01.006
– volume: 84
  start-page: 133
  year: 1983
  ident: 10.1016/j.identj.2024.12.023_bib0050
  article-title: Longitudinal changes in the ANB angle and Wits appraisal: clinical implications
  publication-title: Am J Orthod
  doi: 10.1016/0002-9416(83)90177-X
SSID ssj0048306
Score 2.3837266
Snippet This study aimed to predict long-term growth-related changes in skeletal and dental relationships within the craniofacial complex using machine learning (ML)...
AbstractObjectiveThis study aimed to predict long-term growth-related changes in skeletal and dental relationships within the craniofacial complex using...
Objective: This study aimed to predict long-term growth-related changes in skeletal and dental relationships within the craniofacial complex using machine...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 236
SubjectTerms Adolescent
Adolescent Development - physiology
Artificial intelligence
Body Size - physiology
Cephalometric analysis
Cephalometry - methods
Cephalometry - statistics & numerical data
Child
Craniofacial complex
Dentistry
Face - diagnostic imaging
Growth and development
Humans
Incisor - diagnostic imaging
Incisor - growth & development
Machine learning
Male
Mandible - diagnostic imaging
Mandible - growth & development
Maxilla - diagnostic imaging
Maxilla - growth & development
Orthodontics
Predictive Learning Models
Predictive Value of Tests
Puberty
Radiography - methods
Radiography - statistics & numerical data
Random Allocation
Random Forest
Regression Analysis
Reproducibility of Results
Retrospective Studies
Scientific Research Reports
Skull Base - diagnostic imaging
Skull Base - growth & development
Title Long-Term Predictive Modelling of the Craniofacial Complex Using Machine Learning on 2D Cephalometric Radiographs
URI https://www.clinicalkey.com/#!/content/1-s2.0-S0020653924016411
https://www.clinicalkey.es/playcontent/1-s2.0-S0020653924016411
https://dx.doi.org/10.1016/j.identj.2024.12.023
https://www.ncbi.nlm.nih.gov/pubmed/39757033
https://www.proquest.com/docview/3151876456
https://pubmed.ncbi.nlm.nih.gov/PMC11806318
https://doaj.org/article/14ca3a9f7e914001a0d4c5dee6f16d41
Volume 75
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQL3BBvFleMhJXCz9iJ3ssW6oKAUKolXqzHD_oVm1Smq3Un8-MnVQbQCoHrps40XrGM9_E4-8j5J2WvPFcRRZ4Exnk28haKSMDtIuK1sgwk7stvpqDo-rTsT7ekvrCnrBCD1wm7r2ovFNumeq4hFqAC8dD5XWI0SRhQj6yLiHnTcVUicFVo7KqJs_FkVbL6dBc7uxCtc7NKdSGssqfAqWaJaXM3T_LTX9iz99bKLdy0v4Dcn8Ek3S3_ImH5E7sHpG7e9gAhBpuj8nPz333gx1C9KXfLnFLBoMbRf2zTMVN-0QBANIVJKx1nxx-PqcYIc7iNc3NBPRLbraMdORhhSEdlXt0FS9O3Fl_jnpcnn53YV2or4cn5Gj_4-HqgI0iC8zrpt6wZatDpVwjUnStUDpJ3VZNTFIEX2GxIr2XKnDecm9amUztlK6598qbEAAePiU7Xd_F54QaFIB0WtZeOXiEaoJuuUlaSbBXUGlB2DTL9qJwadipyezUFqtYtIoV0oJVFuQDmuLmXmTCzj-Af9jRP-xt_rEgejKknQ6bQniEB61veXn9t3FxGNf4YIUd4E6L292Z4BewEdSeQmyPHGFMgSf_8M63k6dZWOW4deO62F8NVgEwg7wFaHdBnhXPu5kWQJRIowajm5lPzuZtfqVbn2QmceT_MxDVX_yPmX5J7kkUR84t7a_IzubyKr4GxLZp3-TF-QsGiz2J
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Long-Term+Predictive+Modelling+of+the+Craniofacial+Complex+Using+Machine+Learning+on+2D+Cephalometric+Radiographs&rft.jtitle=International+dental+journal&rft.au=Michael+Myers&rft.au=Michael+D.+Brown&rft.au=Sarkhan+Badirli&rft.au=George+J.+Eckert&rft.date=2025-02-01&rft.pub=Elsevier&rft.issn=0020-6539&rft.volume=75&rft.issue=1&rft.spage=236&rft.epage=247&rft_id=info:doi/10.1016%2Fj.identj.2024.12.023&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_14ca3a9f7e914001a0d4c5dee6f16d41
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0020-6539&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0020-6539&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0020-6539&client=summon