NLRP6 Inflammasome Orchestrates the Colonic Host-Microbial Interface by Regulating Goblet Cell Mucus Secretion

Mucus production by goblet cells of the large intestine serves as a crucial antimicrobial protective mechanism at the interface between the eukaryotic and prokaryotic cells of the mammalian intestinal ecosystem. However, the regulatory pathways involved in goblet cell-induced mucus secretion remain...

Full description

Saved in:
Bibliographic Details
Published inCell Vol. 156; no. 5; pp. 1045 - 1059
Main Authors Wlodarska, Marta, Thaiss, Christoph A., Nowarski, Roni, Henao-Mejia, Jorge, Zhang, Jian-Ping, Brown, Eric M., Frankel, Gad, Levy, Maayan, Katz, Meirav N., Philbrick, William M., Elinav, Eran, Finlay, B. Brett, Flavell, Richard A.
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 27.02.2014
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Mucus production by goblet cells of the large intestine serves as a crucial antimicrobial protective mechanism at the interface between the eukaryotic and prokaryotic cells of the mammalian intestinal ecosystem. However, the regulatory pathways involved in goblet cell-induced mucus secretion remain largely unknown. Here, we demonstrate that the NLRP6 inflammasome, a recently described regulator of colonic microbiota composition and biogeographical distribution, is a critical orchestrator of goblet cell mucin granule exocytosis. NLRP6 deficiency leads to defective autophagy in goblet cells and abrogated mucus secretion into the large intestinal lumen. Consequently, NLRP6 inflammasome-deficient mice are unable to clear enteric pathogens from the mucosal surface, rendering them highly susceptible to persistent infection. This study identifies an innate immune regulatory pathway governing goblet cell mucus secretion, linking nonhematopoietic inflammasome signaling to autophagy and highlighting the goblet cell as a critical innate immune player in the control of intestinal host-microbial mutualism. [Display omitted] [Display omitted] •The NLRP6 inflammasome is highly expressed in intestinal goblet cells•NLRP6 inflammasome regulates goblet cell mucus secretion•NLRP6 regulation of goblet cells is mediated through induction of autophagy•Altered NLRP6 signaling induces impaired mucus layer and susceptibility to infection Intestinal goblet cells secrete mucus and antimicrobial peptides to ward off pathogens, with the NLRP6 inflammasome, an immune sensor, being central to regulating mucus granule secretion.
AbstractList Mucus production by goblet cells of the large intestine serves as a crucial anti microbial protective mechanism at the interface between the eukaryotic and prokaryotic cells of the mammalian intestinal ecosystem. However, the regulatory pathways involved in goblet cell-induced mucus secretion remain largely unknown. Here we demonstrate that the NLRP6 inflammasome, a recently described regulator of colonic microbiota composition and bio-geographical distribution, is a critical orchestrator of goblet cell mucin granule exocytosis. NLRP6 deficiency leads to defective autophagy in goblet cells and abrogated mucin secretion into the large intestinal lumen. Consequently, NLRP6 inflammasome-deficient mice are unable to clear enteric pathogens from the mucosal surface, rendering them highly susceptible to persistent infection. This study identifies the first innate immune regulatory pathway governing goblet cell mucus secretion, linking non-hematopoietic inflammasome signaling to autophagy and highlighting the goblet cell as a critical innate immune player in the control of intestinal host-microbial mutualism.
Mucus production by goblet cells of the large intestine serves as a crucial antimicrobial protective mechanism at the interface between the eukaryotic and prokaryotic cells of the mammalian intestinal ecosystem. However, the regulatory pathways involved in goblet cell-induced mucus secretion remain largely unknown. Here, we demonstrate that the NLRP6 inflammasome, a recently described regulator of colonic microbiota composition and biogeographical distribution, is a critical orchestrator of goblet cell mucin granule exocytosis. NLRP6 deficiency leads to defective autophagy in goblet cells and abrogated mucus secretion into the large intestinal lumen. Consequently, NLRP6 inflammasome-deficient mice are unable to clear enteric pathogens from the mucosal surface, rendering them highly susceptible to persistent infection. This study identifies an innate immune regulatory pathway governing goblet cell mucus secretion, linking nonhematopoietic inflammasome signaling to autophagy and highlighting the goblet cell as a critical innate immune player in the control of intestinal host-microbial mutualism.[Display omitted]
Mucus production by goblet cells of the large intestine serves as a crucial antimicrobial protective mechanism at the interface between the eukaryotic and prokaryotic cells of the mammalian intestinal ecosystem. However, the regulatory pathways involved in goblet cell-induced mucus secretion remain largely unknown. Here, we demonstrate that the NLRP6 inflammasome, a recently described regulator of colonic microbiota composition and biogeographical distribution, is a critical orchestrator of goblet cell mucin granule exocytosis. NLRP6 deficiency leads to defective autophagy in goblet cells and abrogated mucus secretion into the large intestinal lumen. Consequently, NLRP6 inflammasome-deficient mice are unable to clear enteric pathogens from the mucosal surface, rendering them highly susceptible to persistent infection. This study identifies an innate immune regulatory pathway governing goblet cell mucus secretion, linking nonhematopoietic inflammasome signaling to autophagy and highlighting the goblet cell as a critical innate immune player in the control of intestinal host-microbial mutualism. [Display omitted] [Display omitted] •The NLRP6 inflammasome is highly expressed in intestinal goblet cells•NLRP6 inflammasome regulates goblet cell mucus secretion•NLRP6 regulation of goblet cells is mediated through induction of autophagy•Altered NLRP6 signaling induces impaired mucus layer and susceptibility to infection Intestinal goblet cells secrete mucus and antimicrobial peptides to ward off pathogens, with the NLRP6 inflammasome, an immune sensor, being central to regulating mucus granule secretion.
Mucus production by goblet cells of the large intestine serves as a crucial antimicrobial protective mechanism at the interface between the eukaryotic and prokaryotic cells of the mammalian intestinal ecosystem. However, the regulatory pathways involved in goblet cell-induced mucus secretion remain largely unknown. Here, we demonstrate that the NLRP6 inflammasome, a recently described regulator of colonic microbiota composition and biogeographical distribution, is a critical orchestrator of goblet cell mucin granule exocytosis. NLRP6 deficiency leads to defective autophagy in goblet cells and abrogated mucus secretion into the large intestinal lumen. Consequently, NLRP6 inflammasome-deficient mice are unable to clear enteric pathogens from the mucosal surface, rendering them highly susceptible to persistent infection. This study identifies an innate immune regulatory pathway governing goblet cell mucus secretion, linking nonhematopoietic inflammasome signaling to autophagy and highlighting the goblet cell as a critical innate immune player in the control of intestinal host-microbial mutualism. PAPERCLIP:
Summary Mucus production by goblet cells of the large intestine serves as a crucial antimicrobial protective mechanism at the interface between the eukaryotic and prokaryotic cells of the mammalian intestinal ecosystem. However, the regulatory pathways involved in goblet cell-induced mucus secretion remain largely unknown. Here, we demonstrate that the NLRP6 inflammasome, a recently described regulator of colonic microbiota composition and biogeographical distribution, is a critical orchestrator of goblet cell mucin granule exocytosis. NLRP6 deficiency leads to defective autophagy in goblet cells and abrogated mucus secretion into the large intestinal lumen. Consequently, NLRP6 inflammasome-deficient mice are unable to clear enteric pathogens from the mucosal surface, rendering them highly susceptible to persistent infection. This study identifies an innate immune regulatory pathway governing goblet cell mucus secretion, linking nonhematopoietic inflammasome signaling to autophagy and highlighting the goblet cell as a critical innate immune player in the control of intestinal host-microbial mutualism. PaperClip Help with MP3 files Options
Mucus production by goblet cells of the large intestine serves as a crucial antimicrobial protective mechanism at the interface between the eukaryotic and prokaryotic cells of the mammalian intestinal ecosystem. However, the regulatory pathways involved in goblet cell-induced mucus secretion remain largely unknown. Here, we demonstrate that the NLRP6 inflammasome, a recently described regulator of colonic microbiota composition and biogeographical distribution, is a critical orchestrator of goblet cell mucin granule exocytosis. NLRP6 deficiency leads to defective autophagy in goblet cells and abrogated mucus secretion into the large intestinal lumen. Consequently, NLRP6 inflammasome-deficient mice are unable to clear enteric pathogens from the mucosal surface, rendering them highly susceptible to persistent infection. This study identifies an innate immune regulatory pathway governing goblet cell mucus secretion, linking nonhematopoietic inflammasome signaling to autophagy and highlighting the goblet cell as a critical innate immune player in the control of intestinal host-microbial mutualism. PAPERCLIP:Mucus production by goblet cells of the large intestine serves as a crucial antimicrobial protective mechanism at the interface between the eukaryotic and prokaryotic cells of the mammalian intestinal ecosystem. However, the regulatory pathways involved in goblet cell-induced mucus secretion remain largely unknown. Here, we demonstrate that the NLRP6 inflammasome, a recently described regulator of colonic microbiota composition and biogeographical distribution, is a critical orchestrator of goblet cell mucin granule exocytosis. NLRP6 deficiency leads to defective autophagy in goblet cells and abrogated mucus secretion into the large intestinal lumen. Consequently, NLRP6 inflammasome-deficient mice are unable to clear enteric pathogens from the mucosal surface, rendering them highly susceptible to persistent infection. This study identifies an innate immune regulatory pathway governing goblet cell mucus secretion, linking nonhematopoietic inflammasome signaling to autophagy and highlighting the goblet cell as a critical innate immune player in the control of intestinal host-microbial mutualism. PAPERCLIP:
Author Philbrick, William M.
Elinav, Eran
Henao-Mejia, Jorge
Levy, Maayan
Flavell, Richard A.
Nowarski, Roni
Wlodarska, Marta
Brown, Eric M.
Thaiss, Christoph A.
Finlay, B. Brett
Frankel, Gad
Katz, Meirav N.
Zhang, Jian-Ping
AuthorAffiliation 8 Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
1 Michael Smith Laboratories, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
4 Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA
7 Research Center for digestive tract and liver diseases, Tel Aviv Sourasky Medical Center, Sackler faculty of Medicine, Tel Aviv University, Tel Aviv, 64239, Israel
9 Howard Hughes Medical Institute
3 Immunology Department, Weizmann Institute of Science, Rehovot 76100, Israel
6 MRC Center for Molecular Bacteriology and Infection, Department of Life Sciences, Flowers Building, Imperial College, London, SW7 2AZ, UK
5 Center on Endocrinology and Metabolism, Yale University School of Medicine, New Haven, CT 06520, USA
2 Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
AuthorAffiliation_xml – name: 1 Michael Smith Laboratories, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
– name: 2 Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
– name: 3 Immunology Department, Weizmann Institute of Science, Rehovot 76100, Israel
– name: 7 Research Center for digestive tract and liver diseases, Tel Aviv Sourasky Medical Center, Sackler faculty of Medicine, Tel Aviv University, Tel Aviv, 64239, Israel
– name: 9 Howard Hughes Medical Institute
– name: 5 Center on Endocrinology and Metabolism, Yale University School of Medicine, New Haven, CT 06520, USA
– name: 6 MRC Center for Molecular Bacteriology and Infection, Department of Life Sciences, Flowers Building, Imperial College, London, SW7 2AZ, UK
– name: 8 Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
– name: 4 Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA
Author_xml – sequence: 1
  givenname: Marta
  surname: Wlodarska
  fullname: Wlodarska, Marta
  organization: Michael Smith Laboratories, The University of British Columbia, Vancouver, BC V6T 1Z4, Canada
– sequence: 2
  givenname: Christoph A.
  surname: Thaiss
  fullname: Thaiss, Christoph A.
  organization: Immunology Department, Weizmann Institute of Science, Rehovot 76100, Israel
– sequence: 3
  givenname: Roni
  surname: Nowarski
  fullname: Nowarski, Roni
  organization: Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA
– sequence: 4
  givenname: Jorge
  surname: Henao-Mejia
  fullname: Henao-Mejia, Jorge
  organization: Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA
– sequence: 5
  givenname: Jian-Ping
  surname: Zhang
  fullname: Zhang, Jian-Ping
  organization: Center on Endocrinology and Metabolism, Yale University School of Medicine, New Haven, CT 06520, USA
– sequence: 6
  givenname: Eric M.
  surname: Brown
  fullname: Brown, Eric M.
  organization: Michael Smith Laboratories, The University of British Columbia, Vancouver, BC V6T 1Z4, Canada
– sequence: 7
  givenname: Gad
  surname: Frankel
  fullname: Frankel, Gad
  organization: MRC Center for Molecular Bacteriology and Infection, Department of Life Sciences, Flowers Building, Imperial College, London SW7 2AZ, UK
– sequence: 8
  givenname: Maayan
  surname: Levy
  fullname: Levy, Maayan
  organization: Immunology Department, Weizmann Institute of Science, Rehovot 76100, Israel
– sequence: 9
  givenname: Meirav N.
  surname: Katz
  fullname: Katz, Meirav N.
  organization: Immunology Department, Weizmann Institute of Science, Rehovot 76100, Israel
– sequence: 10
  givenname: William M.
  surname: Philbrick
  fullname: Philbrick, William M.
  organization: Center on Endocrinology and Metabolism, Yale University School of Medicine, New Haven, CT 06520, USA
– sequence: 11
  givenname: Eran
  surname: Elinav
  fullname: Elinav, Eran
  email: eran.elinav@weizmann.ac.il
  organization: Immunology Department, Weizmann Institute of Science, Rehovot 76100, Israel
– sequence: 12
  givenname: B. Brett
  surname: Finlay
  fullname: Finlay, B. Brett
  email: bfinlay@interchange.ubc.ca
  organization: Michael Smith Laboratories, The University of British Columbia, Vancouver, BC V6T 1Z4, Canada
– sequence: 13
  givenname: Richard A.
  surname: Flavell
  fullname: Flavell, Richard A.
  email: richard.flavell@yale.edu
  organization: Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/24581500$$D View this record in MEDLINE/PubMed
BookMark eNqNUsFu1DAUjFAR3RZ-gAPykUvCsxM7joSQ0Kq0lbYUFThbjvdl16vELrZTqX-PV9si4FA4-fBmxm_mzUlx5LzDonhNoaJAxbtdZXAcKwa0qYBWwMSzYkGha8uGtuyoWAB0rJSibY6Lkxh3ACA55y-KY9ZwSTnAonCfVzdfBLl0w6inSUc_IbkOZosxBZ0wkrRFsvSjd9aQCx9TeWVN8L3VYyYlDIM2SPp7coObedTJug059_2IiSzzcuRqNnMkX9EETNa7l8XzQY8RXz28p8X3T2fflhfl6vr8cvlxVRou21R2EmUvgEvdyc4gbQChlVRq2vI1lx0yZMMggEpTS9YYRLamYqiZ6Oqesb4-LT4cdG_nfsK1QZftjOo22EmHe-W1VX9OnN2qjb9TDdBWNJAF3j4IBP9jzmmoycZ93Nqhn6NiOUwGjDH6TyjlQkhe16z-Dyg0lNeUygx987uDX6s_ni4D5AGQzxFjwEEZm_Q-5GzIjoqC2rdE7dT-A7VviQKqcksylf1FfVR_kvT-QMJ8tzuLQUVj0Rlc24AmqbW3T9F_AtFT1WA
CitedBy_id crossref_primary_10_3389_fimmu_2023_1065181
crossref_primary_10_3390_cells9071647
crossref_primary_10_1155_2022_2818136
crossref_primary_10_1111_imr_12616
crossref_primary_10_3390_ijms241612583
crossref_primary_10_15407_fz66_06_097
crossref_primary_10_3389_fimmu_2022_1027289
crossref_primary_10_1146_annurev_immunol_070119_115104
crossref_primary_10_1016_j_cell_2015_10_048
crossref_primary_10_1080_15548627_2021_1909406
crossref_primary_10_1016_j_smim_2024_101891
crossref_primary_10_1007_s12011_023_03770_5
crossref_primary_10_11569_wcjd_v27_i17_1076
crossref_primary_10_1111_iej_13091
crossref_primary_10_1038_nature18847
crossref_primary_10_1016_j_celrep_2022_111454
crossref_primary_10_1016_j_ebiom_2021_103751
crossref_primary_10_1016_j_cell_2016_11_003
crossref_primary_10_1038_mi_2015_46
crossref_primary_10_1038_mi_2016_14
crossref_primary_10_1073_pnas_2007807118
crossref_primary_10_1016_j_molimm_2023_06_002
crossref_primary_10_4049_jimmunol_1701216
crossref_primary_10_3390_biom10060825
crossref_primary_10_1128_AEM_00826_19
crossref_primary_10_1016_j_cmet_2017_06_018
crossref_primary_10_3389_fimmu_2020_571731
crossref_primary_10_1002_ijc_31836
crossref_primary_10_1016_j_jpedsurg_2018_08_059
crossref_primary_10_1038_nri_2016_100
crossref_primary_10_1016_j_bbagrm_2023_194955
crossref_primary_10_1177_0022034518775036
crossref_primary_10_1007_s12026_022_09286_9
crossref_primary_10_1172_JCI84429
crossref_primary_10_1016_j_ajpath_2022_03_002
crossref_primary_10_1007_s11427_016_0325_6
crossref_primary_10_1080_08820139_2017_1360341
crossref_primary_10_1002_mnfr_202100821
crossref_primary_10_3389_fcell_2023_1228283
crossref_primary_10_1007_s11255_015_1126_6
crossref_primary_10_1093_gbe_evx014
crossref_primary_10_1111_imr_12602
crossref_primary_10_1016_j_micinf_2023_105274
crossref_primary_10_1080_2162402X_2014_1003011
crossref_primary_10_1080_27694127_2022_2119743
crossref_primary_10_1038_cti_2016_38
crossref_primary_10_1152_physiol_00025_2014
crossref_primary_10_3390_ijms20030649
crossref_primary_10_1128_spectrum_04698_22
crossref_primary_10_3390_cimb46010030
crossref_primary_10_1016_j_tcb_2014_12_009
crossref_primary_10_3892_mmr_2018_9679
crossref_primary_10_1080_19490976_2022_2152307
crossref_primary_10_1016_j_lfs_2019_117084
crossref_primary_10_1007_s00535_016_1242_9
crossref_primary_10_1007_s00109_021_02043_9
crossref_primary_10_1016_j_immuni_2015_04_004
crossref_primary_10_1016_j_jare_2023_01_013
crossref_primary_10_1038_mi_2015_32
crossref_primary_10_1038_nature22075
crossref_primary_10_1038_s41423_022_00968_w
crossref_primary_10_3748_wjg_v27_i48_8283
crossref_primary_10_1016_j_cell_2016_03_046
crossref_primary_10_1016_j_hbpd_2020_04_003
crossref_primary_10_3748_wjg_v28_i43_6109
crossref_primary_10_1016_j_intimp_2019_105977
crossref_primary_10_1038_mi_2017_19
crossref_primary_10_1038_mi_2017_18
crossref_primary_10_1016_j_tins_2020_09_003
crossref_primary_10_1016_j_celrep_2021_109176
crossref_primary_10_1016_j_jaci_2019_05_006
crossref_primary_10_1053_j_gastro_2017_11_276
crossref_primary_10_1146_annurev_immunol_042718_041841
crossref_primary_10_1038_s41392_019_0074_5
crossref_primary_10_1002_fsn3_2391
crossref_primary_10_3390_cells10092172
crossref_primary_10_3389_fsurg_2022_788437
crossref_primary_10_1038_mi_2016_55
crossref_primary_10_1053_j_gastro_2016_03_039
crossref_primary_10_1016_j_jcmgh_2018_03_001
crossref_primary_10_3389_fnut_2022_890314
crossref_primary_10_1111_febs_16298
crossref_primary_10_1093_intimm_dxu066
crossref_primary_10_1186_s12979_017_0101_8
crossref_primary_10_1016_j_celrep_2021_109043
crossref_primary_10_1152_ajpgi_00234_2014
crossref_primary_10_3390_foods12010186
crossref_primary_10_1080_19490976_2017_1279378
crossref_primary_10_1007_s00335_018_9783_2
crossref_primary_10_1021_acs_jafc_0c05260
crossref_primary_10_1038_s41590_020_0681_x
crossref_primary_10_1089_jmf_2021_K_0150
crossref_primary_10_1101_gad_284091_116
crossref_primary_10_1093_pcmedi_pbac022
crossref_primary_10_1080_15384101_2017_1317414
crossref_primary_10_1016_j_chom_2017_06_007
crossref_primary_10_1016_j_freeradbiomed_2016_11_011
crossref_primary_10_1038_mi_2015_93
crossref_primary_10_1016_j_clim_2019_108264
crossref_primary_10_1111_nmo_14372
crossref_primary_10_1016_j_it_2017_01_001
crossref_primary_10_1007_s00018_023_04948_9
crossref_primary_10_1016_j_celrep_2017_12_027
crossref_primary_10_1093_intimm_dxu059
crossref_primary_10_1016_j_celrep_2017_12_026
crossref_primary_10_1038_s41423_020_0366_2
crossref_primary_10_1038_s41568_022_00462_5
crossref_primary_10_1111_cmi_12365
crossref_primary_10_3390_ijms252313058
crossref_primary_10_1016_j_cell_2023_04_025
crossref_primary_10_1038_s41419_025_07422_5
crossref_primary_10_1016_j_scib_2021_01_025
crossref_primary_10_1016_j_molimm_2018_12_024
crossref_primary_10_3389_fcell_2021_703310
crossref_primary_10_3389_fmicb_2023_1174968
crossref_primary_10_1146_annurev_immunol_051116_052424
crossref_primary_10_3390_ijms21175999
crossref_primary_10_1016_j_jmb_2021_167278
crossref_primary_10_1038_s41385_020_00357_4
crossref_primary_10_3389_fimmu_2024_1248907
crossref_primary_10_3390_nu13041331
crossref_primary_10_1016_j_mucimm_2024_10_004
crossref_primary_10_1016_j_cell_2015_11_041
crossref_primary_10_3389_fphys_2015_00341
crossref_primary_10_1080_21505594_2019_1573050
crossref_primary_10_3389_fimmu_2019_01937
crossref_primary_10_1016_j_chest_2017_11_008
crossref_primary_10_3389_fmicb_2024_1413490
crossref_primary_10_1016_j_semcdb_2016_06_009
crossref_primary_10_4049_jimmunol_1402098
crossref_primary_10_1016_j_immuni_2014_05_014
crossref_primary_10_1016_j_it_2015_06_002
crossref_primary_10_1016_j_celrep_2023_112549
crossref_primary_10_1159_000495850
crossref_primary_10_1093_ibd_izaa273
crossref_primary_10_3390_nu14153164
crossref_primary_10_1128_mSystems_00392_19
crossref_primary_10_1002_cti2_1404
crossref_primary_10_1099_jgv_0_000401
crossref_primary_10_15430_JCP_2017_22_2_62
crossref_primary_10_2119_molmed_2017_00077
crossref_primary_10_3389_fmicb_2022_898559
crossref_primary_10_3389_fphys_2020_00561
crossref_primary_10_1016_j_molmed_2015_06_003
crossref_primary_10_1038_s41467_023_37101_y
crossref_primary_10_3109_00365521_2014_966321
crossref_primary_10_1016_j_carbpol_2020_116398
crossref_primary_10_1111_cmi_13079
crossref_primary_10_1016_j_immuni_2017_03_016
crossref_primary_10_1126_science_aab3145
crossref_primary_10_1007_s10620_024_08453_2
crossref_primary_10_1016_j_chom_2014_02_014
crossref_primary_10_1016_j_intimp_2017_05_027
crossref_primary_10_1111_1348_0421_12318
crossref_primary_10_1128_CMR_00049_16
crossref_primary_10_3390_ijms15069594
crossref_primary_10_1177_17562848231176889
crossref_primary_10_1007_s11255_023_03760_5
crossref_primary_10_1038_mi_2017_71
crossref_primary_10_11569_wcjd_v30_i21_928
crossref_primary_10_1007_s10620_016_4045_1
crossref_primary_10_1038_nri_2016_88
crossref_primary_10_3390_microorganisms11112616
crossref_primary_10_1038_s41435_021_00124_w
crossref_primary_10_1111_cmi_13184
crossref_primary_10_3390_ijms21197359
crossref_primary_10_1016_j_bbadis_2024_167035
crossref_primary_10_1093_ecco_jcc_jjv223
crossref_primary_10_1038_nrurol_2017_25
crossref_primary_10_3389_fimmu_2016_00054
crossref_primary_10_1111_imr_13408
crossref_primary_10_1152_ajpgi_00221_2021
crossref_primary_10_1111_all_13619
crossref_primary_10_1016_j_molmed_2018_01_004
crossref_primary_10_1177_1753425917722206
crossref_primary_10_1039_D0FO02556A
crossref_primary_10_1016_j_chom_2015_04_008
crossref_primary_10_1038_mi_2016_77
crossref_primary_10_3389_fimmu_2017_01353
crossref_primary_10_3390_nu7085314
crossref_primary_10_3389_fcell_2022_874940
crossref_primary_10_1016_j_xcrm_2024_101398
crossref_primary_10_1021_acs_jafc_0c04119
crossref_primary_10_1038_s41467_019_11811_8
crossref_primary_10_1080_17474124_2019_1671822
crossref_primary_10_1126_science_aaf7419
crossref_primary_10_1126_scisignal_2005357
crossref_primary_10_1080_19490976_2016_1142036
crossref_primary_10_1073_pnas_1407001111
crossref_primary_10_1016_j_chom_2014_05_016
crossref_primary_10_3390_nu12061765
crossref_primary_10_1371_journal_ppat_1007308
crossref_primary_10_3389_fimmu_2020_00575
crossref_primary_10_1146_annurev_immunol_042617_053253
crossref_primary_10_1038_s12276_023_00960_y
crossref_primary_10_1111_imr_13406
crossref_primary_10_3390_molecules26061704
crossref_primary_10_1016_j_rvsc_2022_09_014
crossref_primary_10_1038_nrgastro_2015_94
crossref_primary_10_3390_nu15122655
crossref_primary_10_1038_ncomms15004
crossref_primary_10_1016_j_fsi_2018_03_040
crossref_primary_10_1016_j_tcb_2021_06_010
crossref_primary_10_1126_sciadv_aaz6717
crossref_primary_10_1371_journal_ppat_1005121
crossref_primary_10_2147_JIR_S288288
crossref_primary_10_1038_srep23342
crossref_primary_10_1039_C6FO00831C
crossref_primary_10_1093_ibd_izaa232
crossref_primary_10_1016_j_bbi_2022_01_019
crossref_primary_10_1111_imm_13293
crossref_primary_10_3390_foods14071110
crossref_primary_10_1189_jlb_4MR0716_330R
crossref_primary_10_3389_fimmu_2023_1260705
crossref_primary_10_3390_ijms22083876
crossref_primary_10_2183_pjab_92_423
crossref_primary_10_3389_fmicb_2025_1499202
crossref_primary_10_1007_s00277_024_05745_5
crossref_primary_10_1186_s13578_024_01220_w
crossref_primary_10_1016_j_jim_2015_02_003
crossref_primary_10_1016_j_cell_2022_09_024
crossref_primary_10_1016_j_dci_2016_01_024
crossref_primary_10_1186_s12974_015_0367_8
crossref_primary_10_1146_annurev_immunol_101320_011235
crossref_primary_10_1093_procel_pwad028
crossref_primary_10_3389_fcimb_2024_1346087
crossref_primary_10_1007_s00204_020_02801_7
crossref_primary_10_1016_j_clim_2015_05_014
crossref_primary_10_1038_s41575_018_0054_1
crossref_primary_10_1172_JCI88879
crossref_primary_10_3748_wjg_v28_i32_4475
crossref_primary_10_1002_jpen_2274
crossref_primary_10_1016_j_jep_2021_114108
crossref_primary_10_1152_ajpgi_00181_2017
crossref_primary_10_1039_D1FO03815J
crossref_primary_10_1186_s41232_018_0063_z
crossref_primary_10_1038_s41422_020_0332_7
crossref_primary_10_1084_jem_20190679
crossref_primary_10_1093_nar_gkac687
crossref_primary_10_1002_JLB_HI1118_461R
crossref_primary_10_3390_ijms21228729
crossref_primary_10_1080_00365521_2025_2479566
crossref_primary_10_1155_2017_8201672
crossref_primary_10_1016_j_cell_2015_06_001
crossref_primary_10_1038_nature22967
crossref_primary_10_1172_JCI123263
crossref_primary_10_2147_JIR_S318327
crossref_primary_10_1016_j_mam_2020_100858
crossref_primary_10_1016_j_mam_2020_100859
crossref_primary_10_1038_emm_2017_20
crossref_primary_10_1371_journal_pone_0128453
crossref_primary_10_3389_fimmu_2020_584288
crossref_primary_10_1084_jem_20181832
crossref_primary_10_3390_pathogens9121008
crossref_primary_10_1038_mi_2017_87
crossref_primary_10_1007_s00109_020_01962_3
crossref_primary_10_3389_fimmu_2017_01674
crossref_primary_10_1002_1873_3468_14848
crossref_primary_10_18231_j_ijpi_2020_036
crossref_primary_10_3389_fcell_2021_725821
crossref_primary_10_1016_j_trsl_2022_09_002
crossref_primary_10_1016_j_cdnut_2024_104431
crossref_primary_10_1007_s00018_019_03190_6
crossref_primary_10_1016_j_psj_2024_103958
crossref_primary_10_1128_microbiolspec_MCHD_0049_2016
crossref_primary_10_1101_gr_194118_115
crossref_primary_10_1016_j_jmb_2017_03_031
crossref_primary_10_1080_19490976_2024_2413372
crossref_primary_10_1007_s11695_019_04152_4
crossref_primary_10_1016_j_micinf_2016_03_008
crossref_primary_10_1097_MIB_0000000000000151
crossref_primary_10_1007_s12026_014_8544_x
crossref_primary_10_1038_ni_3384
crossref_primary_10_1038_srep09253
crossref_primary_10_1016_j_ijmm_2021_151486
crossref_primary_10_1007_s00018_017_2509_x
crossref_primary_10_1021_acs_jafc_8b03340
crossref_primary_10_3390_ijms25169096
crossref_primary_10_1007_s00253_020_10896_2
crossref_primary_10_3390_cancers13174342
crossref_primary_10_1038_nri_2015_17
crossref_primary_10_3390_ijms221910224
crossref_primary_10_1016_j_smim_2023_101807
crossref_primary_10_3389_fimmu_2023_1147925
crossref_primary_10_1016_j_cell_2024_08_012
crossref_primary_10_1038_s41598_020_71633_3
crossref_primary_10_1038_s41598_017_17037_2
crossref_primary_10_1016_j_jpha_2023_05_005
crossref_primary_10_2147_JIR_S335882
crossref_primary_10_1042_BSR20201471
crossref_primary_10_1038_nprot_2016_100
crossref_primary_10_1038_s41575_018_0079_5
crossref_primary_10_1016_j_apsb_2023_03_010
crossref_primary_10_1002_hep_27982
crossref_primary_10_1016_j_smim_2023_101815
crossref_primary_10_1111_joim_13238
crossref_primary_10_3390_cells10123358
crossref_primary_10_1038_s41421_023_00550_2
crossref_primary_10_3389_fimmu_2014_00169
crossref_primary_10_1016_j_jaut_2023_103114
crossref_primary_10_1146_annurev_immunol_032713_120238
crossref_primary_10_1016_j_immuni_2019_08_005
crossref_primary_10_1038_s41435_024_00309_z
crossref_primary_10_2147_JIR_S345664
crossref_primary_10_1038_s41392_023_01687_y
crossref_primary_10_1038_s41421_020_0167_x
crossref_primary_10_2139_ssrn_4165624
crossref_primary_10_1074_jbc_M114_632257
crossref_primary_10_1111_jfb_14908
crossref_primary_10_1111_imr_12296
crossref_primary_10_3390_molecules25194572
crossref_primary_10_3389_fimmu_2016_00695
crossref_primary_10_1016_j_lfs_2022_120760
crossref_primary_10_18632_oncotarget_22876
crossref_primary_10_18632_oncotarget_5587
crossref_primary_10_1038_s41579_019_0252_z
crossref_primary_10_1093_burnst_tkad004
crossref_primary_10_1021_acs_chemrestox_0c00051
crossref_primary_10_1016_j_jaut_2019_01_008
crossref_primary_10_1186_s40168_019_0713_7
crossref_primary_10_1146_annurev_pathol_012414_040431
crossref_primary_10_1016_j_gtc_2016_09_004
crossref_primary_10_1111_imr_12289
crossref_primary_10_1016_j_ijbiomac_2019_11_159
crossref_primary_10_1038_s41598_017_11744_6
crossref_primary_10_1038_cmi_2016_29
crossref_primary_10_1111_imm_13117
crossref_primary_10_3390_biology9120415
crossref_primary_10_1111_imr_12281
crossref_primary_10_1093_jhered_esx059
crossref_primary_10_1016_j_jhepr_2021_100344
crossref_primary_10_3390_microorganisms10030519
crossref_primary_10_1038_s41581_019_0118_7
crossref_primary_10_3390_ijms222413642
crossref_primary_10_1016_j_yexcr_2023_113871
crossref_primary_10_1097_MOG_0000000000000117
crossref_primary_10_1016_j_vetmic_2017_08_008
crossref_primary_10_1002_eji_202049065
crossref_primary_10_1097_MEG_0000000000002789
crossref_primary_10_3390_cells8010007
crossref_primary_10_1016_j_nbd_2024_106434
crossref_primary_10_1093_ibd_izy244
crossref_primary_10_37349_emed_2022_00087
crossref_primary_10_1007_s10571_020_01027_6
crossref_primary_10_1155_2015_828264
crossref_primary_10_1007_s12307_015_0177_7
crossref_primary_10_1097_MIB_0000000000000230
crossref_primary_10_1002_ptr_6695
crossref_primary_10_1016_j_bbrc_2020_11_047
crossref_primary_10_1038_s41575_022_00675_x
crossref_primary_10_1038_s41577_023_00932_3
crossref_primary_10_3390_biomedicines10102344
crossref_primary_10_1002_jcp_28722
crossref_primary_10_1038_s41385_018_0021_8
crossref_primary_10_3892_etm_2021_10974
crossref_primary_10_1016_j_cmet_2016_01_003
crossref_primary_10_1038_ncomms9292
crossref_primary_10_1038_nrmicro3315
crossref_primary_10_1016_j_bbcan_2022_188802
crossref_primary_10_1016_j_lfs_2024_122686
crossref_primary_10_1111_eci_12548
crossref_primary_10_1007_s00281_018_0701_1
crossref_primary_10_1016_j_bbrc_2022_08_046
crossref_primary_10_1158_2326_6066_CIR_16_0269
crossref_primary_10_1007_s10620_016_4032_6
crossref_primary_10_1186_s12967_024_05623_8
crossref_primary_10_1186_s40168_022_01326_8
crossref_primary_10_1016_j_chom_2025_02_008
crossref_primary_10_1155_2016_2862173
crossref_primary_10_1016_j_nbd_2019_104714
crossref_primary_10_3390_biomedicines11072066
crossref_primary_10_3390_ncrna10040038
crossref_primary_10_1016_j_cell_2021_09_032
crossref_primary_10_1126_sciimmunol_abk2092
crossref_primary_10_1016_j_mib_2020_06_007
crossref_primary_10_1016_j_trsl_2020_03_012
crossref_primary_10_1111_imm_13326
crossref_primary_10_1080_15548627_2017_1389358
crossref_primary_10_3920_BM2019_0059
crossref_primary_10_1016_j_mib_2016_10_003
crossref_primary_10_1093_ndt_gfz169
crossref_primary_10_1051_medsci_20173303018
crossref_primary_10_1186_s43556_024_00179_x
crossref_primary_10_1016_j_ceb_2015_04_016
crossref_primary_10_4161_21645515_2014_979640
crossref_primary_10_3389_fimmu_2019_01266
crossref_primary_10_1002_fft2_191
crossref_primary_10_1007_s00467_015_3153_z
crossref_primary_10_1126_science_aar3318
crossref_primary_10_1038_s41522_024_00563_z
crossref_primary_10_1038_s41598_019_57043_0
crossref_primary_10_3389_fimmu_2020_02054
crossref_primary_10_1016_j_jmb_2014_09_011
crossref_primary_10_1038_s41577_023_00849_x
crossref_primary_10_1097_ICO_0000000000001717
crossref_primary_10_1128_mBio_01087_19
crossref_primary_10_1016_j_molmed_2016_01_002
crossref_primary_10_1038_srep29353
crossref_primary_10_2174_1381612825666190319114641
crossref_primary_10_1186_s12964_020_00599_6
crossref_primary_10_1155_2023_6613064
crossref_primary_10_1080_09168451_2019_1580135
crossref_primary_10_4161_21688370_2014_982426
crossref_primary_10_1038_nri_2016_58
crossref_primary_10_1016_j_tins_2022_10_002
crossref_primary_10_1111_iej_13469
crossref_primary_10_20538_1682_0363_2022_1_121_132
crossref_primary_10_1111_febs_15731
crossref_primary_10_1111_jnc_15242
crossref_primary_10_1097_MIB_0000000000000318
crossref_primary_10_1038_pr_2014_157
crossref_primary_10_3389_fimmu_2017_01168
crossref_primary_10_1002_jpen_1956
crossref_primary_10_1038_s41564_019_0373_1
crossref_primary_10_1371_journal_pone_0185025
crossref_primary_10_1002_eji_201444972
crossref_primary_10_1534_genetics_117_200782
crossref_primary_10_1016_j_clinre_2014_10_008
crossref_primary_10_3390_cancers12123500
crossref_primary_10_3390_cells11020182
crossref_primary_10_1016_j_jmb_2017_11_006
crossref_primary_10_1016_j_pt_2015_03_010
crossref_primary_10_3390_ijms21031103
crossref_primary_10_1146_annurev_immunol_032414_112306
crossref_primary_10_1002_path_4357
crossref_primary_10_4049_jimmunol_1800938
crossref_primary_10_1242_dev_155317
crossref_primary_10_1016_j_molmed_2016_04_003
crossref_primary_10_1007_s00018_024_05124_3
crossref_primary_10_1016_j_alit_2024_12_006
crossref_primary_10_1016_j_cell_2018_09_047
crossref_primary_10_15252_emmm_202013452
crossref_primary_10_1016_j_cytogfr_2014_07_001
crossref_primary_10_1016_j_lssr_2024_03_003
crossref_primary_10_1038_mi_2016_132
crossref_primary_10_3389_fnut_2022_907386
crossref_primary_10_3390_microorganisms7120663
crossref_primary_10_1186_s13045_024_01541_w
crossref_primary_10_1038_s41467_019_12573_z
crossref_primary_10_1038_bjc_2016_189
crossref_primary_10_1007_s00281_014_0451_7
crossref_primary_10_1016_j_ebiom_2022_104061
crossref_primary_10_1267_ahc_24_00049
crossref_primary_10_1007_s11011_025_01554_5
crossref_primary_10_1371_journal_pone_0134259
crossref_primary_10_56782_pps_229
crossref_primary_10_1371_journal_pntd_0009171
crossref_primary_10_1186_s12929_019_0512_2
crossref_primary_10_1038_s41568_019_0123_y
crossref_primary_10_1016_j_tcb_2021_01_003
crossref_primary_10_3389_fvets_2020_00123
crossref_primary_10_1007_s00281_017_0658_5
crossref_primary_10_1016_j_semcdb_2018_01_001
crossref_primary_10_1016_j_ijbiomac_2023_123862
crossref_primary_10_1096_fj_202002622R
crossref_primary_10_15252_embr_201439943
crossref_primary_10_1016_j_conb_2019_11_021
crossref_primary_10_3390_molecules24213813
crossref_primary_10_3389_fimmu_2023_1224383
crossref_primary_10_1083_jcb_201602089
crossref_primary_10_3389_fcimb_2021_806680
crossref_primary_10_26599_FSHW_2022_9250060
crossref_primary_10_3390_ijms221910851
crossref_primary_10_1038_s42003_022_03491_w
crossref_primary_10_1038_nri_2017_7
crossref_primary_10_1016_j_ijbiomac_2017_02_074
crossref_primary_10_1007_s13238_020_00707_9
crossref_primary_10_1126_scisignal_aaa4696
crossref_primary_10_15789_1563_0625_PAP_1893
crossref_primary_10_1155_2020_2549763
crossref_primary_10_1371_journal_pone_0166048
crossref_primary_10_3390_pharmaceutics14112383
crossref_primary_10_3389_fimmu_2021_804870
crossref_primary_10_3390_cancers14133150
crossref_primary_10_26599_FSHW_2024_9250094
crossref_primary_10_1016_j_coi_2020_11_006
crossref_primary_10_1016_j_celrep_2017_04_046
crossref_primary_10_1016_j_mib_2024_102456
crossref_primary_10_1097_MOG_0000000000000246
crossref_primary_10_1093_ecco_jcc_jjy038
crossref_primary_10_3389_fimmu_2019_02057
crossref_primary_10_1097_MOG_0000000000000121
crossref_primary_10_1080_15548627_2015_1056967
crossref_primary_10_3389_fimmu_2020_01810
crossref_primary_10_1038_s41419_019_1634_x
crossref_primary_10_1021_acs_jafc_2c08444
crossref_primary_10_1111_cmi_12501
crossref_primary_10_1556_030_2021_01532
crossref_primary_10_1007_s11739_023_03374_w
crossref_primary_10_1016_j_atherosclerosis_2015_05_035
crossref_primary_10_1016_j_coi_2014_05_006
crossref_primary_10_1111_jgh_15596
crossref_primary_10_1111_imm_12760
crossref_primary_10_1038_s41598_020_58863_1
crossref_primary_10_1111_pim_12517
crossref_primary_10_1186_s12964_024_01504_1
crossref_primary_10_1128_microbiolspec_BAI_0004_2019
crossref_primary_10_1007_s00281_024_01026_5
crossref_primary_10_1016_j_mib_2021_09_005
crossref_primary_10_1111_all_15388
crossref_primary_10_1371_journal_pone_0125945
crossref_primary_10_1016_j_bbi_2020_03_012
crossref_primary_10_1016_j_cell_2016_11_040
crossref_primary_10_1172_JCI73945
crossref_primary_10_1172_jci_insight_150607
crossref_primary_10_3389_fphys_2020_629141
crossref_primary_10_1111_imm_12511
crossref_primary_10_1038_s41467_023_41739_z
crossref_primary_10_1042_BST20221300
crossref_primary_10_1128_mBio_02820_19
crossref_primary_10_3389_fimmu_2022_882521
crossref_primary_10_1016_j_intimp_2023_111414
crossref_primary_10_1111_cpr_12555
crossref_primary_10_1097_MOG_0000000000000143
crossref_primary_10_1097_CCO_0000000000000346
crossref_primary_10_1016_j_chom_2016_03_003
crossref_primary_10_1016_j_semcdb_2018_03_012
crossref_primary_10_1111_imm_12989
crossref_primary_10_3390_nu8010044
crossref_primary_10_1016_j_micinf_2024_105398
crossref_primary_10_1073_pnas_2321419121
crossref_primary_10_1002_pmic_201500120
crossref_primary_10_1016_j_advnut_2024_100307
crossref_primary_10_1016_j_mucimm_2024_02_008
crossref_primary_10_3389_fimmu_2019_01091
crossref_primary_10_1016_j_immuni_2015_03_012
crossref_primary_10_1084_jem_20210324
crossref_primary_10_1111_imr_12901
crossref_primary_10_1007_s10787_017_0414_4
crossref_primary_10_1016_j_psj_2024_104367
crossref_primary_10_1016_j_immuni_2020_02_016
crossref_primary_10_1038_s41385_020_0256_z
crossref_primary_10_3390_ijms24043665
crossref_primary_10_1128_JVI_01682_18
crossref_primary_10_3390_ijms18112379
crossref_primary_10_1016_j_fsi_2023_109083
Cites_doi 10.1038/nature07416
10.1111/j.1462-5822.2011.01578.x
10.1016/j.cell.2010.01.025
10.1126/science.1222195
10.1126/science.1172747
10.1016/S0014-5793(02)03416-6
10.1073/pnas.1100981108
10.1016/B978-0-12-410524-9.00003-7
10.1038/mi.2008.5
10.1007/978-1-62703-523-1_14
10.1016/j.chom.2007.08.002
10.4049/jimmunol.181.7.4709
10.1016/j.jaci.2010.12.1078
10.1056/NEJMra1205406
10.1016/j.cmet.2010.11.011
10.1053/j.gastro.2006.04.020
10.1038/emboj.2013.233
10.1073/pnas.0803124105
10.1128/IAI.00848-06
10.1038/mi.2012.115
10.1016/j.jaut.2013.07.001
10.1091/mbc.E03-09-0704
10.1016/j.immuni.2011.05.007
10.1016/S1074-7613(00)80543-9
10.1016/j.abb.2012.03.019
10.1126/science.7535475
10.1177/002215540205000609
10.1371/journal.pone.0022459
10.1371/journal.ppat.1000902
10.1021/pr2010988
10.1242/dev.125.7.1285
10.1128/IAI.00093-07
10.1016/j.immuni.2006.02.004
10.1038/nature11250
10.1073/pnas.1307575110
10.1073/pnas.1120269109
10.1038/labinvest.2008.28
10.1016/j.cell.2011.04.022
10.1038/nature10809
10.1016/j.devcel.2011.08.016
10.1016/0016-5085(94)90537-1
10.1146/annurev.ph.57.030195.003101
10.4049/jimmunol.1100412
10.1073/pnas.0404034101
10.1371/journal.pbio.0050244
ContentType Journal Article
Copyright 2014 Elsevier Inc.
Copyright © 2014 Elsevier Inc. All rights reserved.
2017 Elsevier Inc. All rights reserved. 2017
Copyright_xml – notice: 2014 Elsevier Inc.
– notice: Copyright © 2014 Elsevier Inc. All rights reserved.
– notice: 2017 Elsevier Inc. All rights reserved. 2017
DBID 6I.
AAFTH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7T7
8FD
C1K
FR3
P64
7S9
L.6
5PM
DOI 10.1016/j.cell.2014.01.026
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
Industrial and Applied Microbiology Abstracts (Microbiology A)
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Biotechnology and BioEngineering Abstracts
AGRICOLA
AGRICOLA - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
Engineering Research Database
Technology Research Database
Industrial and Applied Microbiology Abstracts (Microbiology A)
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA

MEDLINE
Engineering Research Database
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1097-4172
EndPage 1059
ExternalDocumentID PMC4017640
24581500
10_1016_j_cell_2014_01_026
S0092867414000786
Genre Research Support, U.S. Gov't, Non-P.H.S
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: NIDDK NIH HHS
  grantid: P30 DK045735
– fundername: Howard Hughes Medical Institute
– fundername: CIHR
– fundername: Medical Research Council
  grantid: MR/J006874/1
GroupedDBID ---
--K
-DZ
-ET
-~X
0R~
0WA
1RT
1~5
29B
2FS
2WC
3EH
4.4
457
4G.
53G
5GY
5RE
5VS
62-
6I.
6J9
7-5
85S
AACTN
AAEDT
AAEDW
AAFTH
AAFWJ
AAIAV
AAKRW
AAKUH
AAQFI
AAUCE
AAVLU
AAXJY
AAXUO
AAYJJ
ABCQX
ABJNI
ABMAC
ABMWF
ABOCM
ABVKL
ACGFO
ACGFS
ACNCT
ADBBV
ADEZE
ADJPV
AEFWE
AENEX
AEXQZ
AFTJW
AGHFR
AGHSJ
AGKMS
AHHHB
AIDAL
AITUG
ALKID
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ASPBG
AVWKF
AZFZN
BAWUL
CS3
DIK
DU5
E3Z
EBS
EJD
F5P
FCP
FDB
FIRID
HH5
IH2
IHE
IXB
J1W
JIG
K-O
KOO
KQ8
L7B
LX5
M3Z
M41
N9A
NCXOZ
O-L
O9-
OK1
P2P
RCE
RIG
RNS
ROL
RPZ
SCP
SDG
SDP
SES
SSZ
TAE
TN5
TR2
TWZ
UKR
UPT
VQA
WH7
WQ6
YYQ
YZZ
ZA5
ZCA
.-4
.55
.GJ
.HR
1CY
1VV
2KS
3O-
6TJ
9M8
AAHBH
AAIKJ
AALRI
AAMRU
AAQXK
AAYWO
AAYXX
ABDGV
ABDPE
ABEFU
ABWVN
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
ADVLN
ADXHL
AETEA
AEUPX
AFPUW
AGCQF
AGQPQ
AI.
AIGII
AKAPO
AKBMS
AKRWK
AKYEP
APXCP
CITATION
FEDTE
FGOYB
G-2
HVGLF
HZ~
H~9
MVM
OHT
OMK
OZT
PUQ
R2-
UBW
UHB
VH1
X7M
YYP
ZGI
ZHY
ZKB
ZY4
CGR
CUY
CVF
ECM
EFKBS
EIF
NPM
7X8
7T7
8FD
C1K
FR3
P64
7S9
L.6
5PM
ID FETCH-LOGICAL-c587t-98e8b6058a989ce140e07818a175d589e2e2ff6018c3824cee2d16f32693b22b3
IEDL.DBID IXB
ISSN 0092-8674
1097-4172
IngestDate Thu Aug 21 13:42:27 EDT 2025
Wed Jul 02 04:43:51 EDT 2025
Fri Jul 11 06:58:37 EDT 2025
Tue Aug 05 10:17:39 EDT 2025
Mon Jul 21 05:53:14 EDT 2025
Thu Apr 24 23:07:24 EDT 2025
Tue Jul 01 02:16:48 EDT 2025
Fri Feb 23 02:30:35 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
License http://www.elsevier.com/open-access/userlicense/1.0
Copyright © 2014 Elsevier Inc. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c587t-98e8b6058a989ce140e07818a175d589e2e2ff6018c3824cee2d16f32693b22b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Last equal corresponding authors
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S0092867414000786
PMID 24581500
PQID 1504153118
PQPubID 23479
PageCount 15
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_4017640
proquest_miscellaneous_2000202221
proquest_miscellaneous_1566853323
proquest_miscellaneous_1504153118
pubmed_primary_24581500
crossref_citationtrail_10_1016_j_cell_2014_01_026
crossref_primary_10_1016_j_cell_2014_01_026
elsevier_sciencedirect_doi_10_1016_j_cell_2014_01_026
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2014-02-27
PublicationDateYYYYMMDD 2014-02-27
PublicationDate_xml – month: 02
  year: 2014
  text: 2014-02-27
  day: 27
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Cell
PublicationTitleAlternate Cell
PublicationYear 2014
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Chen, Liu, Wang, Bertin, Núñez (bib7) 2011; 186
Elinav, Strowig, Henao-Mejia, Flavell (bib10) 2011; 34
Forstner (bib14) 1995; 57
van der Sluis, De Koning, De Bruijn, Velcich, Meijerink, Van Goudoever, Büller, Dekker, Van Seuningen, Renes, Einerhand (bib42) 2006; 131
Grenier, Wang, Manji, Huang, Al-Garawi, Kelly, Carlson, Merriam, Lora, Briskin (bib16) 2002; 530
Kuida, Lippke, Ku, Harding, Livingston, Su, Flavell (bib25) 1995; 267
Lupp, Robertson, Wickham, Sekirov, Champion, Gaynor, Finlay (bib28) 2007; 2
Wysolmerski, Philbrick, Dunbar, Lanske, Kronenberg, Broadus (bib45) 1998; 125
Slack, Hapfelmeier, Stecher, Velykoredko, Stoel, Lawson, Geuking, Beutler, Tedder, Hardt (bib34) 2009; 325
van der Sluis, Bouma, Vincent, Velcich, Carraway, Buller, Einerhand, van Goudoever, Van Seuningen, Renes (bib43) 2008; 88
Kamada, Kim, Sham, Vallance, Puente, Martens, Núñez (bib24) 2012; 336
Stecher, Robbiani, Walker, Westendorf, Barthel, Kremer, Chaffron, Macpherson, Buer, Parkhill (bib36) 2007; 5
Elinav, Henao-Mejia, Flavell (bib12) 2013; 6
Tytgat, Büller, Opdam, Kim, Einerhand, Dekker (bib40) 1994; 107
Johansson, Phillipson, Petersson, Velcich, Holm, Hansson (bib23) 2008; 105
Henao-Mejia, Elinav, Thaiss, Licona-Limon, Flavell (bib20) 2013; 46
Cadwell, Liu, Brown, Miyoshi, Loh, Lennerz, Kishi, Kc, Carrero, Hunt (bib6) 2008; 456
Mizushima, Yamamoto, Matsui, Yoshimori, Ohsumi (bib29) 2004; 15
Henao-Mejia, Elinav, Jin, Hao, Mehal, Strowig, Thaiss, Kau, Eisenbarth, Jurczak (bib18) 2012; 482
Patel, Miyoshi, Beatty, Head, Malvin, Cadwell, Guan, Saitoh, Akira, Seglen (bib32) 2013; 32
Henao-Mejia, Elinav, Thaiss, Flavell (bib19) 2013; 117
Takeda, Tsutsui, Yoshimoto, Adachi, Yoshida, Kishimoto, Okamura, Nakanishi, Akira (bib39) 1998; 8
Elinav, Thaiss, Flavell (bib13) 2013; 1040
Normand, Delanoye-Crespin, Bressenot, Huot, Grandjean, Peyrin-Biroulet, Lemoine, Hot, Chamaillard (bib31) 2011; 108
Bergstrom, Kissoon-Singh, Gibson, Ma, Montero, Sham, Ryz, Huang, Velcich, Finlay (bib5) 2010; 6
Inoue, Nishiumi, Fujishima, Masuda, Shiomi, Yamamoto, Nishida, Azuma, Yoshida (bib22) 2012; 521
Sutterwala, Ogura, Szczepanik, Lara-Tejero, Lichtenberger, Grant, Bertin, Coyle, Galán, Askenase, Flavell (bib38) 2006; 24
Linden, Sutton, Karlsson, Korolik, McGuckin (bib27) 2008; 1
Artis, Wang, Keilbaugh, He, Brenes, Swain, Knight, Donaldson, Lazar, Miller (bib3) 2004; 101
Ushio, Ueno, Kojima, Komatsu, Tanaka, Yamamoto, Ichimura, Ezaki, Nishida, Komazawa-Sakon (bib41) 2011; 127
Stienstra, Joosten, Koenen, van Tits, van Diepen, van den Berg, Rensen, Voshol, Fantuzzi, Hijmans (bib37) 2010; 12
Gill, Wlodarska, Finlay (bib15) 2011; 13
Bergstrom, Guttman, Rumi, Ma, Bouzari, Khan, Gibson, Vogl, Vallance (bib4) 2008; 76
Choi, Ryter, Levine (bib8) 2013; 368
Anand, Malireddi, Lukens, Vogel, Bertin, Lamkanfi, Kanneganti (bib2) 2012; 488
Ambort, Johansson, Gustafsson, Nilsson, Ermund, Johansson, Koeck, Hebert, Hansson (bib1) 2012; 109
Elinav, Strowig, Kau, Henao-Mejia, Thaiss, Booth, Peaper, Bertin, Eisenbarth, Gordon, Flavell (bib11) 2011; 145
Leverkoehne, Gruber (bib26) 2002; 50
Nair, Guild, Du, Zaph, Yancopoulos, Valenzuela, Murphy, Stevens, Karow, Artis (bib30) 2008; 181
Wiles, Pickard, Peng, MacDonald, Frankel (bib44) 2006; 74
Rodríguez-Piñeiro, van der Post, Johansson, Thomsson, Nesvizhskii, Hansson (bib33) 2012; 11
DeSelm, Miller, Zou, Beatty, van Meel, Takahata, Klumperman, Tooze, Teitelbaum, Virgin (bib9) 2011; 21
Songhet, Barthel, Stecher, Müller, Kremer, Hansson, Hardt (bib35) 2011; 6
Grivennikov, Greten, Karin (bib17) 2010; 140
Hu, Elinav, Huber, Strowig, Hao, Hafemann, Jin, Wunderlich, Wunderlich, Eisenbarth, Flavell (bib21) 2013; 110
Johansson (10.1016/j.cell.2014.01.026_bib23) 2008; 105
Patel (10.1016/j.cell.2014.01.026_bib32) 2013; 32
Gill (10.1016/j.cell.2014.01.026_bib15) 2011; 13
Songhet (10.1016/j.cell.2014.01.026_bib35) 2011; 6
DeSelm (10.1016/j.cell.2014.01.026_bib9) 2011; 21
Grenier (10.1016/j.cell.2014.01.026_bib16) 2002; 530
van der Sluis (10.1016/j.cell.2014.01.026_bib42) 2006; 131
Nair (10.1016/j.cell.2014.01.026_bib30) 2008; 181
van der Sluis (10.1016/j.cell.2014.01.026_bib43) 2008; 88
Slack (10.1016/j.cell.2014.01.026_bib34) 2009; 325
Ushio (10.1016/j.cell.2014.01.026_bib41) 2011; 127
Kuida (10.1016/j.cell.2014.01.026_bib25) 1995; 267
Ambort (10.1016/j.cell.2014.01.026_bib1) 2012; 109
Bergstrom (10.1016/j.cell.2014.01.026_bib5) 2010; 6
Kamada (10.1016/j.cell.2014.01.026_bib24) 2012; 336
Stecher (10.1016/j.cell.2014.01.026_bib36) 2007; 5
Tytgat (10.1016/j.cell.2014.01.026_bib40) 1994; 107
Henao-Mejia (10.1016/j.cell.2014.01.026_bib20) 2013; 46
Leverkoehne (10.1016/j.cell.2014.01.026_bib26) 2002; 50
Rodríguez-Piñeiro (10.1016/j.cell.2014.01.026_bib33) 2012; 11
Hu (10.1016/j.cell.2014.01.026_bib21) 2013; 110
Sutterwala (10.1016/j.cell.2014.01.026_bib38) 2006; 24
Elinav (10.1016/j.cell.2014.01.026_bib11) 2011; 145
Mizushima (10.1016/j.cell.2014.01.026_bib29) 2004; 15
Wysolmerski (10.1016/j.cell.2014.01.026_bib45) 1998; 125
Anand (10.1016/j.cell.2014.01.026_bib2) 2012; 488
Chen (10.1016/j.cell.2014.01.026_bib7) 2011; 186
Henao-Mejia (10.1016/j.cell.2014.01.026_bib19) 2013; 117
Henao-Mejia (10.1016/j.cell.2014.01.026_bib18) 2012; 482
Elinav (10.1016/j.cell.2014.01.026_bib10) 2011; 34
Forstner (10.1016/j.cell.2014.01.026_bib14) 1995; 57
Inoue (10.1016/j.cell.2014.01.026_bib22) 2012; 521
Normand (10.1016/j.cell.2014.01.026_bib31) 2011; 108
Lupp (10.1016/j.cell.2014.01.026_bib28) 2007; 2
Artis (10.1016/j.cell.2014.01.026_bib3) 2004; 101
Bergstrom (10.1016/j.cell.2014.01.026_bib4) 2008; 76
Choi (10.1016/j.cell.2014.01.026_bib8) 2013; 368
Elinav (10.1016/j.cell.2014.01.026_bib12) 2013; 6
Linden (10.1016/j.cell.2014.01.026_bib27) 2008; 1
Stienstra (10.1016/j.cell.2014.01.026_bib37) 2010; 12
Elinav (10.1016/j.cell.2014.01.026_bib13) 2013; 1040
Grivennikov (10.1016/j.cell.2014.01.026_bib17) 2010; 140
Cadwell (10.1016/j.cell.2014.01.026_bib6) 2008; 456
Takeda (10.1016/j.cell.2014.01.026_bib39) 1998; 8
Wiles (10.1016/j.cell.2014.01.026_bib44) 2006; 74
24629330 - Cell Host Microbe. 2014 Mar 12;15(3):251-2. doi: 10.1016/j.chom.2014.02.014.
24782564 - Sci Signal. 2014 Apr 29;7(323):pe11. doi: 10.1126/scisignal.2005357.
References_xml – volume: 46
  start-page: 66
  year: 2013
  end-page: 73
  ident: bib20
  article-title: Role of the intestinal microbiome in liver disease
  publication-title: J. Autoimmun.
– volume: 74
  start-page: 5391
  year: 2006
  end-page: 5396
  ident: bib44
  article-title: In vivo bioluminescence imaging of the murine pathogen Citrobacter rodentium
  publication-title: Infect. Immun.
– volume: 5
  start-page: 2177
  year: 2007
  end-page: 2189
  ident: bib36
  article-title: Salmonella enterica serovar typhimurium exploits inflammation to compete with the intestinal microbiota
  publication-title: PLoS Biol.
– volume: 34
  start-page: 665
  year: 2011
  end-page: 679
  ident: bib10
  article-title: Regulation of the antimicrobial response by NLR proteins
  publication-title: Immunity
– volume: 11
  start-page: 1879
  year: 2012
  end-page: 1890
  ident: bib33
  article-title: Proteomic study of the mucin granulae in an intestinal goblet cell model
  publication-title: J. Proteome Res.
– volume: 488
  start-page: 389
  year: 2012
  end-page: 393
  ident: bib2
  article-title: NLRP6 negatively regulates innate immunity and host defence against bacterial pathogens
  publication-title: Nature
– volume: 482
  start-page: 179
  year: 2012
  end-page: 185
  ident: bib18
  article-title: Inflammasome-mediated dysbiosis regulates progression of NAFLD and obesity
  publication-title: Nature
– volume: 13
  start-page: 660
  year: 2011
  end-page: 669
  ident: bib15
  article-title: Roadblocks in the gut: barriers to enteric infection
  publication-title: Cell. Microbiol.
– volume: 2
  start-page: 204
  year: 2007
  ident: bib28
  article-title: Host-mediated inflammation disrupts the intestinal microbiota and promotes the overgrowth of Enterobacteriaceae
  publication-title: Cell Host Microbe
– volume: 181
  start-page: 4709
  year: 2008
  end-page: 4715
  ident: bib30
  article-title: Goblet cell-derived resistin-like molecule beta augments CD4+ T cell production of IFN-gamma and infection-induced intestinal inflammation
  publication-title: J. Immunol.
– volume: 325
  start-page: 617
  year: 2009
  end-page: 620
  ident: bib34
  article-title: Innate and adaptive immunity cooperate flexibly to maintain host-microbiota mutualism
  publication-title: Science
– volume: 6
  start-page: e22459
  year: 2011
  ident: bib35
  article-title: Stromal IFN-γR-signaling modulates goblet cell function during Salmonella Typhimurium infection
  publication-title: PLoS ONE
– volume: 6
  start-page: 4
  year: 2013
  end-page: 13
  ident: bib12
  article-title: Integrative inflammasome activity in the regulation of intestinal mucosal immune responses
  publication-title: Mucosal Immunol.
– volume: 57
  start-page: 585
  year: 1995
  end-page: 605
  ident: bib14
  article-title: Signal transduction, packaging and secretion of mucins
  publication-title: Annu. Rev. Physiol.
– volume: 267
  start-page: 2000
  year: 1995
  end-page: 2003
  ident: bib25
  article-title: Altered cytokine export and apoptosis in mice deficient in interleukin-1 beta converting enzyme
  publication-title: Science
– volume: 456
  start-page: 259
  year: 2008
  end-page: 263
  ident: bib6
  article-title: A key role for autophagy and the autophagy gene Atg16l1 in mouse and human intestinal Paneth cells
  publication-title: Nature
– volume: 6
  start-page: e1000902
  year: 2010
  ident: bib5
  article-title: Muc2 protects against lethal infectious colitis by disassociating pathogenic and commensal bacteria from the colonic mucosa
  publication-title: PLoS Pathog.
– volume: 109
  start-page: 5645
  year: 2012
  end-page: 5650
  ident: bib1
  article-title: Calcium and pH-dependent packing and release of the gel-forming MUC2 mucin
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 107
  start-page: 1352
  year: 1994
  end-page: 1363
  ident: bib40
  article-title: Biosynthesis of human colonic mucin: Muc2 is the prominent secretory mucin
  publication-title: Gastroenterology
– volume: 21
  start-page: 966
  year: 2011
  end-page: 974
  ident: bib9
  article-title: Autophagy proteins regulate the secretory component of osteoclastic bone resorption
  publication-title: Dev. Cell
– volume: 530
  start-page: 73
  year: 2002
  end-page: 78
  ident: bib16
  article-title: Functional screening of five PYPAF family members identifies PYPAF5 as a novel regulator of NF-kappaB and caspase-1
  publication-title: FEBS Lett.
– volume: 140
  start-page: 883
  year: 2010
  end-page: 899
  ident: bib17
  article-title: Immunity, inflammation, and cancer
  publication-title: Cell
– volume: 108
  start-page: 9601
  year: 2011
  end-page: 9606
  ident: bib31
  article-title: Nod-like receptor pyrin domain-containing protein 6 (NLRP6) controls epithelial self-renewal and colorectal carcinogenesis upon injury
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 127
  start-page: 1267
  year: 2011
  end-page: 1276
  ident: bib41
  article-title: Crucial role for autophagy in degranulation of mast cells
  publication-title: J. Allergy Clin. Immunol.
– volume: 12
  start-page: 593
  year: 2010
  end-page: 605
  ident: bib37
  article-title: The inflammasome-mediated caspase-1 activation controls adipocyte differentiation and insulin sensitivity
  publication-title: Cell Metab.
– volume: 186
  start-page: 7187
  year: 2011
  end-page: 7194
  ident: bib7
  article-title: A functional role for Nlrp6 in intestinal inflammation and tumorigenesis
  publication-title: J. Immunol.
– volume: 110
  start-page: 9862
  year: 2013
  end-page: 9867
  ident: bib21
  article-title: Microbiota-induced activation of epithelial IL-6 signaling links inflammasome-driven inflammation with transmissible cancer
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 8
  start-page: 383
  year: 1998
  end-page: 390
  ident: bib39
  article-title: Defective NK cell activity and Th1 response in IL-18-deficient mice
  publication-title: Immunity
– volume: 1040
  start-page: 185
  year: 2013
  end-page: 194
  ident: bib13
  article-title: Analysis of microbiota alterations in inflammasome-deficient mice
  publication-title: Methods Mol. Biol.
– volume: 521
  start-page: 95
  year: 2012
  end-page: 101
  ident: bib22
  article-title: Autophagy in the intestinal epithelium regulates Citrobacter rodentium infection
  publication-title: Arch. Biochem. Biophys.
– volume: 50
  start-page: 829
  year: 2002
  end-page: 838
  ident: bib26
  article-title: The murine mCLCA3 (alias gob-5) protein is located in the mucin granule membranes of intestinal, respiratory, and uterine goblet cells
  publication-title: J. Histochem. Cytochem.
– volume: 32
  start-page: 3130
  year: 2013
  end-page: 3144
  ident: bib32
  article-title: Autophagy proteins control goblet cell function by potentiating reactive oxygen species production
  publication-title: EMBO J.
– volume: 101
  start-page: 13596
  year: 2004
  end-page: 13600
  ident: bib3
  article-title: RELMbeta/FIZZ2 is a goblet cell-specific immune-effector molecule in the gastrointestinal tract
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 76
  start-page: 796
  year: 2008
  end-page: 811
  ident: bib4
  article-title: Modulation of intestinal goblet cell function during infection by an attaching and effacing bacterial pathogen
  publication-title: Infect. Immun.
– volume: 125
  start-page: 1285
  year: 1998
  end-page: 1294
  ident: bib45
  article-title: Rescue of the parathyroid hormone-related protein knockout mouse demonstrates that parathyroid hormone-related protein is essential for mammary gland development
  publication-title: Development
– volume: 15
  start-page: 1101
  year: 2004
  end-page: 1111
  ident: bib29
  article-title: In vivo analysis of autophagy in response to nutrient starvation using transgenic mice expressing a fluorescent autophagosome marker
  publication-title: Mol. Biol. Cell
– volume: 117
  start-page: 73
  year: 2013
  end-page: 97
  ident: bib19
  article-title: The intestinal microbiota in chronic liver disease
  publication-title: Adv. Immunol.
– volume: 336
  start-page: 1325
  year: 2012
  end-page: 1329
  ident: bib24
  article-title: Regulated virulence controls the ability of a pathogen to compete with the gut microbiota
  publication-title: Science
– volume: 1
  start-page: 183
  year: 2008
  end-page: 197
  ident: bib27
  article-title: Mucins in the mucosal barrier to infection
  publication-title: Mucosal Immunol.
– volume: 105
  start-page: 15064
  year: 2008
  end-page: 15069
  ident: bib23
  article-title: The inner of the two Muc2 mucin-dependent mucus layers in colon is devoid of bacteria
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 24
  start-page: 317
  year: 2006
  end-page: 327
  ident: bib38
  article-title: Critical role for NALP3/CIAS1/Cryopyrin in innate and adaptive immunity through its regulation of caspase-1
  publication-title: Immunity
– volume: 131
  start-page: 117
  year: 2006
  end-page: 129
  ident: bib42
  article-title: Muc2-deficient mice spontaneously develop colitis, indicating that MUC2 is critical for colonic protection
  publication-title: Gastroenterology
– volume: 88
  start-page: 634
  year: 2008
  end-page: 642
  ident: bib43
  article-title: Combined defects in epithelial and immunoregulatory factors exacerbate the pathogenesis of inflammation: mucin 2-interleukin 10-deficient mice
  publication-title: Lab. Invest.
– volume: 145
  start-page: 745
  year: 2011
  end-page: 757
  ident: bib11
  article-title: NLRP6 inflammasome regulates colonic microbial ecology and risk for colitis
  publication-title: Cell
– volume: 368
  start-page: 1845
  year: 2013
  end-page: 1846
  ident: bib8
  article-title: Autophagy in human health and disease
  publication-title: N. Engl. J. Med.
– volume: 456
  start-page: 259
  year: 2008
  ident: 10.1016/j.cell.2014.01.026_bib6
  article-title: A key role for autophagy and the autophagy gene Atg16l1 in mouse and human intestinal Paneth cells
  publication-title: Nature
  doi: 10.1038/nature07416
– volume: 13
  start-page: 660
  year: 2011
  ident: 10.1016/j.cell.2014.01.026_bib15
  article-title: Roadblocks in the gut: barriers to enteric infection
  publication-title: Cell. Microbiol.
  doi: 10.1111/j.1462-5822.2011.01578.x
– volume: 140
  start-page: 883
  year: 2010
  ident: 10.1016/j.cell.2014.01.026_bib17
  article-title: Immunity, inflammation, and cancer
  publication-title: Cell
  doi: 10.1016/j.cell.2010.01.025
– volume: 336
  start-page: 1325
  year: 2012
  ident: 10.1016/j.cell.2014.01.026_bib24
  article-title: Regulated virulence controls the ability of a pathogen to compete with the gut microbiota
  publication-title: Science
  doi: 10.1126/science.1222195
– volume: 325
  start-page: 617
  year: 2009
  ident: 10.1016/j.cell.2014.01.026_bib34
  article-title: Innate and adaptive immunity cooperate flexibly to maintain host-microbiota mutualism
  publication-title: Science
  doi: 10.1126/science.1172747
– volume: 530
  start-page: 73
  year: 2002
  ident: 10.1016/j.cell.2014.01.026_bib16
  article-title: Functional screening of five PYPAF family members identifies PYPAF5 as a novel regulator of NF-kappaB and caspase-1
  publication-title: FEBS Lett.
  doi: 10.1016/S0014-5793(02)03416-6
– volume: 108
  start-page: 9601
  year: 2011
  ident: 10.1016/j.cell.2014.01.026_bib31
  article-title: Nod-like receptor pyrin domain-containing protein 6 (NLRP6) controls epithelial self-renewal and colorectal carcinogenesis upon injury
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1100981108
– volume: 117
  start-page: 73
  year: 2013
  ident: 10.1016/j.cell.2014.01.026_bib19
  article-title: The intestinal microbiota in chronic liver disease
  publication-title: Adv. Immunol.
  doi: 10.1016/B978-0-12-410524-9.00003-7
– volume: 1
  start-page: 183
  year: 2008
  ident: 10.1016/j.cell.2014.01.026_bib27
  article-title: Mucins in the mucosal barrier to infection
  publication-title: Mucosal Immunol.
  doi: 10.1038/mi.2008.5
– volume: 1040
  start-page: 185
  year: 2013
  ident: 10.1016/j.cell.2014.01.026_bib13
  article-title: Analysis of microbiota alterations in inflammasome-deficient mice
  publication-title: Methods Mol. Biol.
  doi: 10.1007/978-1-62703-523-1_14
– volume: 2
  start-page: 204
  year: 2007
  ident: 10.1016/j.cell.2014.01.026_bib28
  article-title: Host-mediated inflammation disrupts the intestinal microbiota and promotes the overgrowth of Enterobacteriaceae
  publication-title: Cell Host Microbe
  doi: 10.1016/j.chom.2007.08.002
– volume: 181
  start-page: 4709
  year: 2008
  ident: 10.1016/j.cell.2014.01.026_bib30
  article-title: Goblet cell-derived resistin-like molecule beta augments CD4+ T cell production of IFN-gamma and infection-induced intestinal inflammation
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.181.7.4709
– volume: 127
  start-page: 1267
  year: 2011
  ident: 10.1016/j.cell.2014.01.026_bib41
  article-title: Crucial role for autophagy in degranulation of mast cells
  publication-title: J. Allergy Clin. Immunol.
  doi: 10.1016/j.jaci.2010.12.1078
– volume: 368
  start-page: 1845
  year: 2013
  ident: 10.1016/j.cell.2014.01.026_bib8
  article-title: Autophagy in human health and disease
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMra1205406
– volume: 12
  start-page: 593
  year: 2010
  ident: 10.1016/j.cell.2014.01.026_bib37
  article-title: The inflammasome-mediated caspase-1 activation controls adipocyte differentiation and insulin sensitivity
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2010.11.011
– volume: 131
  start-page: 117
  year: 2006
  ident: 10.1016/j.cell.2014.01.026_bib42
  article-title: Muc2-deficient mice spontaneously develop colitis, indicating that MUC2 is critical for colonic protection
  publication-title: Gastroenterology
  doi: 10.1053/j.gastro.2006.04.020
– volume: 32
  start-page: 3130
  year: 2013
  ident: 10.1016/j.cell.2014.01.026_bib32
  article-title: Autophagy proteins control goblet cell function by potentiating reactive oxygen species production
  publication-title: EMBO J.
  doi: 10.1038/emboj.2013.233
– volume: 105
  start-page: 15064
  year: 2008
  ident: 10.1016/j.cell.2014.01.026_bib23
  article-title: The inner of the two Muc2 mucin-dependent mucus layers in colon is devoid of bacteria
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0803124105
– volume: 74
  start-page: 5391
  year: 2006
  ident: 10.1016/j.cell.2014.01.026_bib44
  article-title: In vivo bioluminescence imaging of the murine pathogen Citrobacter rodentium
  publication-title: Infect. Immun.
  doi: 10.1128/IAI.00848-06
– volume: 6
  start-page: 4
  year: 2013
  ident: 10.1016/j.cell.2014.01.026_bib12
  article-title: Integrative inflammasome activity in the regulation of intestinal mucosal immune responses
  publication-title: Mucosal Immunol.
  doi: 10.1038/mi.2012.115
– volume: 46
  start-page: 66
  year: 2013
  ident: 10.1016/j.cell.2014.01.026_bib20
  article-title: Role of the intestinal microbiome in liver disease
  publication-title: J. Autoimmun.
  doi: 10.1016/j.jaut.2013.07.001
– volume: 15
  start-page: 1101
  year: 2004
  ident: 10.1016/j.cell.2014.01.026_bib29
  article-title: In vivo analysis of autophagy in response to nutrient starvation using transgenic mice expressing a fluorescent autophagosome marker
  publication-title: Mol. Biol. Cell
  doi: 10.1091/mbc.E03-09-0704
– volume: 34
  start-page: 665
  year: 2011
  ident: 10.1016/j.cell.2014.01.026_bib10
  article-title: Regulation of the antimicrobial response by NLR proteins
  publication-title: Immunity
  doi: 10.1016/j.immuni.2011.05.007
– volume: 8
  start-page: 383
  year: 1998
  ident: 10.1016/j.cell.2014.01.026_bib39
  article-title: Defective NK cell activity and Th1 response in IL-18-deficient mice
  publication-title: Immunity
  doi: 10.1016/S1074-7613(00)80543-9
– volume: 521
  start-page: 95
  year: 2012
  ident: 10.1016/j.cell.2014.01.026_bib22
  article-title: Autophagy in the intestinal epithelium regulates Citrobacter rodentium infection
  publication-title: Arch. Biochem. Biophys.
  doi: 10.1016/j.abb.2012.03.019
– volume: 267
  start-page: 2000
  year: 1995
  ident: 10.1016/j.cell.2014.01.026_bib25
  article-title: Altered cytokine export and apoptosis in mice deficient in interleukin-1 beta converting enzyme
  publication-title: Science
  doi: 10.1126/science.7535475
– volume: 50
  start-page: 829
  year: 2002
  ident: 10.1016/j.cell.2014.01.026_bib26
  article-title: The murine mCLCA3 (alias gob-5) protein is located in the mucin granule membranes of intestinal, respiratory, and uterine goblet cells
  publication-title: J. Histochem. Cytochem.
  doi: 10.1177/002215540205000609
– volume: 6
  start-page: e22459
  year: 2011
  ident: 10.1016/j.cell.2014.01.026_bib35
  article-title: Stromal IFN-γR-signaling modulates goblet cell function during Salmonella Typhimurium infection
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0022459
– volume: 6
  start-page: e1000902
  year: 2010
  ident: 10.1016/j.cell.2014.01.026_bib5
  article-title: Muc2 protects against lethal infectious colitis by disassociating pathogenic and commensal bacteria from the colonic mucosa
  publication-title: PLoS Pathog.
  doi: 10.1371/journal.ppat.1000902
– volume: 11
  start-page: 1879
  year: 2012
  ident: 10.1016/j.cell.2014.01.026_bib33
  article-title: Proteomic study of the mucin granulae in an intestinal goblet cell model
  publication-title: J. Proteome Res.
  doi: 10.1021/pr2010988
– volume: 125
  start-page: 1285
  year: 1998
  ident: 10.1016/j.cell.2014.01.026_bib45
  article-title: Rescue of the parathyroid hormone-related protein knockout mouse demonstrates that parathyroid hormone-related protein is essential for mammary gland development
  publication-title: Development
  doi: 10.1242/dev.125.7.1285
– volume: 76
  start-page: 796
  year: 2008
  ident: 10.1016/j.cell.2014.01.026_bib4
  article-title: Modulation of intestinal goblet cell function during infection by an attaching and effacing bacterial pathogen
  publication-title: Infect. Immun.
  doi: 10.1128/IAI.00093-07
– volume: 24
  start-page: 317
  year: 2006
  ident: 10.1016/j.cell.2014.01.026_bib38
  article-title: Critical role for NALP3/CIAS1/Cryopyrin in innate and adaptive immunity through its regulation of caspase-1
  publication-title: Immunity
  doi: 10.1016/j.immuni.2006.02.004
– volume: 488
  start-page: 389
  year: 2012
  ident: 10.1016/j.cell.2014.01.026_bib2
  article-title: NLRP6 negatively regulates innate immunity and host defence against bacterial pathogens
  publication-title: Nature
  doi: 10.1038/nature11250
– volume: 110
  start-page: 9862
  year: 2013
  ident: 10.1016/j.cell.2014.01.026_bib21
  article-title: Microbiota-induced activation of epithelial IL-6 signaling links inflammasome-driven inflammation with transmissible cancer
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1307575110
– volume: 109
  start-page: 5645
  year: 2012
  ident: 10.1016/j.cell.2014.01.026_bib1
  article-title: Calcium and pH-dependent packing and release of the gel-forming MUC2 mucin
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1120269109
– volume: 88
  start-page: 634
  year: 2008
  ident: 10.1016/j.cell.2014.01.026_bib43
  article-title: Combined defects in epithelial and immunoregulatory factors exacerbate the pathogenesis of inflammation: mucin 2-interleukin 10-deficient mice
  publication-title: Lab. Invest.
  doi: 10.1038/labinvest.2008.28
– volume: 145
  start-page: 745
  year: 2011
  ident: 10.1016/j.cell.2014.01.026_bib11
  article-title: NLRP6 inflammasome regulates colonic microbial ecology and risk for colitis
  publication-title: Cell
  doi: 10.1016/j.cell.2011.04.022
– volume: 482
  start-page: 179
  year: 2012
  ident: 10.1016/j.cell.2014.01.026_bib18
  article-title: Inflammasome-mediated dysbiosis regulates progression of NAFLD and obesity
  publication-title: Nature
  doi: 10.1038/nature10809
– volume: 21
  start-page: 966
  year: 2011
  ident: 10.1016/j.cell.2014.01.026_bib9
  article-title: Autophagy proteins regulate the secretory component of osteoclastic bone resorption
  publication-title: Dev. Cell
  doi: 10.1016/j.devcel.2011.08.016
– volume: 107
  start-page: 1352
  year: 1994
  ident: 10.1016/j.cell.2014.01.026_bib40
  article-title: Biosynthesis of human colonic mucin: Muc2 is the prominent secretory mucin
  publication-title: Gastroenterology
  doi: 10.1016/0016-5085(94)90537-1
– volume: 57
  start-page: 585
  year: 1995
  ident: 10.1016/j.cell.2014.01.026_bib14
  article-title: Signal transduction, packaging and secretion of mucins
  publication-title: Annu. Rev. Physiol.
  doi: 10.1146/annurev.ph.57.030195.003101
– volume: 186
  start-page: 7187
  year: 2011
  ident: 10.1016/j.cell.2014.01.026_bib7
  article-title: A functional role for Nlrp6 in intestinal inflammation and tumorigenesis
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.1100412
– volume: 101
  start-page: 13596
  year: 2004
  ident: 10.1016/j.cell.2014.01.026_bib3
  article-title: RELMbeta/FIZZ2 is a goblet cell-specific immune-effector molecule in the gastrointestinal tract
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0404034101
– volume: 5
  start-page: 2177
  year: 2007
  ident: 10.1016/j.cell.2014.01.026_bib36
  article-title: Salmonella enterica serovar typhimurium exploits inflammation to compete with the intestinal microbiota
  publication-title: PLoS Biol.
  doi: 10.1371/journal.pbio.0050244
– reference: 24782564 - Sci Signal. 2014 Apr 29;7(323):pe11. doi: 10.1126/scisignal.2005357.
– reference: 24629330 - Cell Host Microbe. 2014 Mar 12;15(3):251-2. doi: 10.1016/j.chom.2014.02.014.
SSID ssj0008555
Score 2.6155984
Snippet Mucus production by goblet cells of the large intestine serves as a crucial antimicrobial protective mechanism at the interface between the eukaryotic and...
Mucus production by goblet cells of the large intestine serves as a crucial antimicrobial protective mechanism at the interface between the eukaryotic and...
Summary Mucus production by goblet cells of the large intestine serves as a crucial antimicrobial protective mechanism at the interface between the eukaryotic...
Mucus production by goblet cells of the large intestine serves as a crucial anti microbial protective mechanism at the interface between the eukaryotic and...
SourceID pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1045
SubjectTerms Animals
Autophagy
biogeography
chronic diseases
Colitis - immunology
Colitis - microbiology
Colon - immunology
Colon - microbiology
ecosystems
enteropathogens
Epithelial Cells - immunology
Epithelial Cells - metabolism
exocytosis
goblet cells
Goblet Cells - cytology
Goblet Cells - immunology
Inflammasomes - immunology
intestinal microorganisms
Intestinal Mucosa - cytology
Intestinal Mucosa - immunology
Intestinal Mucosa - metabolism
large intestine
Mice
mucins
mucus
Mucus - metabolism
mutualism
prokaryotic cells
Receptors, Cell Surface - immunology
secretion
Title NLRP6 Inflammasome Orchestrates the Colonic Host-Microbial Interface by Regulating Goblet Cell Mucus Secretion
URI https://dx.doi.org/10.1016/j.cell.2014.01.026
https://www.ncbi.nlm.nih.gov/pubmed/24581500
https://www.proquest.com/docview/1504153118
https://www.proquest.com/docview/1566853323
https://www.proquest.com/docview/2000202221
https://pubmed.ncbi.nlm.nih.gov/PMC4017640
Volume 156
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PT9swFLYQEhKXaRts634gT-KGIhLHduzjVsEKWmFiQ-rNclxHCxopIumB_37v2UlFh-hhp6rNSxPns_0-O-99j5DDOcukc1WVlFqohDslE5S_TQqvSmC8uc845g5PL-Tkmp_PxGyLjIdcGAyr7Of-OKeH2br_5bh_msd3dY05vpopCR6RB0eHsts5VyGJb_Z1NRsrIWIVAw0jH6z7xJkY44Wb4xjexaN0p3zOOT0ln__GUD5ySqcvyYueTdIv8YZfkS3fvCY7sb7kwx5pLr5f_ZD0rKkA91vbLm49vbwPJbJQIaKlwP7oGIyb2tHJou2SaR2EmeA_w1ZhZZ2n5QO9ihXrwc3Rb1iApqNjaBOdLt2ypT-ReSK---T69OTXeJL0BRYSJ1TRJVoBIvhe1GqlHcCSetT-URY4xVwo7ZlnVQVLNuVyxTj4UzbPZAWMT-clY2X-hmw3i8a_I9Q6GPyptlyhoB73tnQsKy18KA_Y8BHJhidrXK8-jkUw_pghzOzGIBoG0TBpZgCNETlanXMXtTc2WosBMLPWgww4h43nfR7QNTC08LBt_GLZGuDKQG9yWIJtspESGE_O8udtWHjfC0QsG5G3sdes2sO4UHCddESKtf60MkD57_UjTf07yIDDyriQPH3_n-3-QHbxW0jPLz6S7e5-6T8BwerKA3Rv4iCMo7_7tiSS
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nj9MwEB0tixBcEN-UTyNxQ9EmjuPYR6hYWmgLWnal3izHdUQQm6426WH_PTNxUlHQ9sCpUjxJ4zzb85zMvAF4u-KJdK4so0JnKhJOyYjkb6PcqwIZb-oTQbnD84WcnInPy2x5AOMhF4bCKvu1P6zp3WrdHznqn-bRRVVRjq_mSqJHFJ2jkzfgJrKBnOo3TJcftsuxyrJQxkDj1EfzPnMmBHnR23GK7xJBu1Ne553-ZZ9_B1H-4ZWO78Hdnk6y9-GO78OBrx_ArVBg8uoh1IvZyTfJpnWJwJ_bZn3u2dfLrkYWSUQ0DOkfG6NxXTk2WTdtNK86ZSa8ZveusLTOs-KKnYSS9ejn2CeqQNOyMfaJzTdu07DvRD0J4EdwdvzxdDyJ-goLkctU3kZaIST0YdRqpR3iEnsS_1EWScUqU9pzz8sS92zKpYoLdKh8lcgSKZ9OC86L9DEc1uvaPwVmHc7-WFuhSFFPeFs4nhQWf5RHcMQIkuHJGtfLj1MVjF9miDP7aQgNQ2iYODGIxgjebc-5COIbe62zATCzM4QMeoe9570Z0DU4t6jZ1n69aQySZeQ3Ke7B9tlIiZQn5en1Nrz74ItMLBnBkzBqtv3hIlP4P_EI8p3xtDUg_e_dlrr60emA49Y4lyJ-9p_9fg23J6fzmZlNF1-ewx1q6XL18xdw2F5u_EtkW23xqptNvwHFHSbL
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=NLRP6+Inflammasome+Orchestrates+the+Colonic+Host-Microbial+Interface+by+Regulating+Goblet+Cell+Mucus+Secretion&rft.jtitle=Cell&rft.au=Wlodarska%2C+Marta&rft.au=Thaiss%2C+Christoph%C2%A0A.&rft.au=Nowarski%2C+Roni&rft.au=Henao-Mejia%2C+Jorge&rft.date=2014-02-27&rft.pub=Elsevier+Inc&rft.issn=0092-8674&rft.eissn=1097-4172&rft.volume=156&rft.issue=5&rft.spage=1045&rft.epage=1059&rft_id=info:doi/10.1016%2Fj.cell.2014.01.026&rft.externalDocID=S0092867414000786
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0092-8674&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0092-8674&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0092-8674&client=summon