NLRP6 Inflammasome Orchestrates the Colonic Host-Microbial Interface by Regulating Goblet Cell Mucus Secretion
Mucus production by goblet cells of the large intestine serves as a crucial antimicrobial protective mechanism at the interface between the eukaryotic and prokaryotic cells of the mammalian intestinal ecosystem. However, the regulatory pathways involved in goblet cell-induced mucus secretion remain...
Saved in:
Published in | Cell Vol. 156; no. 5; pp. 1045 - 1059 |
---|---|
Main Authors | , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
27.02.2014
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Mucus production by goblet cells of the large intestine serves as a crucial antimicrobial protective mechanism at the interface between the eukaryotic and prokaryotic cells of the mammalian intestinal ecosystem. However, the regulatory pathways involved in goblet cell-induced mucus secretion remain largely unknown. Here, we demonstrate that the NLRP6 inflammasome, a recently described regulator of colonic microbiota composition and biogeographical distribution, is a critical orchestrator of goblet cell mucin granule exocytosis. NLRP6 deficiency leads to defective autophagy in goblet cells and abrogated mucus secretion into the large intestinal lumen. Consequently, NLRP6 inflammasome-deficient mice are unable to clear enteric pathogens from the mucosal surface, rendering them highly susceptible to persistent infection. This study identifies an innate immune regulatory pathway governing goblet cell mucus secretion, linking nonhematopoietic inflammasome signaling to autophagy and highlighting the goblet cell as a critical innate immune player in the control of intestinal host-microbial mutualism.
[Display omitted]
[Display omitted]
•The NLRP6 inflammasome is highly expressed in intestinal goblet cells•NLRP6 inflammasome regulates goblet cell mucus secretion•NLRP6 regulation of goblet cells is mediated through induction of autophagy•Altered NLRP6 signaling induces impaired mucus layer and susceptibility to infection
Intestinal goblet cells secrete mucus and antimicrobial peptides to ward off pathogens, with the NLRP6 inflammasome, an immune sensor, being central to regulating mucus granule secretion. |
---|---|
AbstractList | Mucus production by goblet cells of the large intestine serves as a crucial anti microbial protective mechanism at the interface between the eukaryotic and prokaryotic cells of the mammalian intestinal ecosystem. However, the regulatory pathways involved in goblet cell-induced mucus secretion remain largely unknown. Here we demonstrate that the NLRP6 inflammasome, a recently described regulator of colonic microbiota composition and bio-geographical distribution, is a critical orchestrator of goblet cell mucin granule exocytosis. NLRP6 deficiency leads to defective autophagy in goblet cells and abrogated mucin secretion into the large intestinal lumen. Consequently, NLRP6 inflammasome-deficient mice are unable to clear enteric pathogens from the mucosal surface, rendering them highly susceptible to persistent infection. This study identifies the first innate immune regulatory pathway governing goblet cell mucus secretion, linking non-hematopoietic inflammasome signaling to autophagy and highlighting the goblet cell as a critical innate immune player in the control of intestinal host-microbial mutualism. Mucus production by goblet cells of the large intestine serves as a crucial antimicrobial protective mechanism at the interface between the eukaryotic and prokaryotic cells of the mammalian intestinal ecosystem. However, the regulatory pathways involved in goblet cell-induced mucus secretion remain largely unknown. Here, we demonstrate that the NLRP6 inflammasome, a recently described regulator of colonic microbiota composition and biogeographical distribution, is a critical orchestrator of goblet cell mucin granule exocytosis. NLRP6 deficiency leads to defective autophagy in goblet cells and abrogated mucus secretion into the large intestinal lumen. Consequently, NLRP6 inflammasome-deficient mice are unable to clear enteric pathogens from the mucosal surface, rendering them highly susceptible to persistent infection. This study identifies an innate immune regulatory pathway governing goblet cell mucus secretion, linking nonhematopoietic inflammasome signaling to autophagy and highlighting the goblet cell as a critical innate immune player in the control of intestinal host-microbial mutualism.[Display omitted] Mucus production by goblet cells of the large intestine serves as a crucial antimicrobial protective mechanism at the interface between the eukaryotic and prokaryotic cells of the mammalian intestinal ecosystem. However, the regulatory pathways involved in goblet cell-induced mucus secretion remain largely unknown. Here, we demonstrate that the NLRP6 inflammasome, a recently described regulator of colonic microbiota composition and biogeographical distribution, is a critical orchestrator of goblet cell mucin granule exocytosis. NLRP6 deficiency leads to defective autophagy in goblet cells and abrogated mucus secretion into the large intestinal lumen. Consequently, NLRP6 inflammasome-deficient mice are unable to clear enteric pathogens from the mucosal surface, rendering them highly susceptible to persistent infection. This study identifies an innate immune regulatory pathway governing goblet cell mucus secretion, linking nonhematopoietic inflammasome signaling to autophagy and highlighting the goblet cell as a critical innate immune player in the control of intestinal host-microbial mutualism. [Display omitted] [Display omitted] •The NLRP6 inflammasome is highly expressed in intestinal goblet cells•NLRP6 inflammasome regulates goblet cell mucus secretion•NLRP6 regulation of goblet cells is mediated through induction of autophagy•Altered NLRP6 signaling induces impaired mucus layer and susceptibility to infection Intestinal goblet cells secrete mucus and antimicrobial peptides to ward off pathogens, with the NLRP6 inflammasome, an immune sensor, being central to regulating mucus granule secretion. Mucus production by goblet cells of the large intestine serves as a crucial antimicrobial protective mechanism at the interface between the eukaryotic and prokaryotic cells of the mammalian intestinal ecosystem. However, the regulatory pathways involved in goblet cell-induced mucus secretion remain largely unknown. Here, we demonstrate that the NLRP6 inflammasome, a recently described regulator of colonic microbiota composition and biogeographical distribution, is a critical orchestrator of goblet cell mucin granule exocytosis. NLRP6 deficiency leads to defective autophagy in goblet cells and abrogated mucus secretion into the large intestinal lumen. Consequently, NLRP6 inflammasome-deficient mice are unable to clear enteric pathogens from the mucosal surface, rendering them highly susceptible to persistent infection. This study identifies an innate immune regulatory pathway governing goblet cell mucus secretion, linking nonhematopoietic inflammasome signaling to autophagy and highlighting the goblet cell as a critical innate immune player in the control of intestinal host-microbial mutualism. PAPERCLIP: Summary Mucus production by goblet cells of the large intestine serves as a crucial antimicrobial protective mechanism at the interface between the eukaryotic and prokaryotic cells of the mammalian intestinal ecosystem. However, the regulatory pathways involved in goblet cell-induced mucus secretion remain largely unknown. Here, we demonstrate that the NLRP6 inflammasome, a recently described regulator of colonic microbiota composition and biogeographical distribution, is a critical orchestrator of goblet cell mucin granule exocytosis. NLRP6 deficiency leads to defective autophagy in goblet cells and abrogated mucus secretion into the large intestinal lumen. Consequently, NLRP6 inflammasome-deficient mice are unable to clear enteric pathogens from the mucosal surface, rendering them highly susceptible to persistent infection. This study identifies an innate immune regulatory pathway governing goblet cell mucus secretion, linking nonhematopoietic inflammasome signaling to autophagy and highlighting the goblet cell as a critical innate immune player in the control of intestinal host-microbial mutualism. PaperClip Help with MP3 files Options Mucus production by goblet cells of the large intestine serves as a crucial antimicrobial protective mechanism at the interface between the eukaryotic and prokaryotic cells of the mammalian intestinal ecosystem. However, the regulatory pathways involved in goblet cell-induced mucus secretion remain largely unknown. Here, we demonstrate that the NLRP6 inflammasome, a recently described regulator of colonic microbiota composition and biogeographical distribution, is a critical orchestrator of goblet cell mucin granule exocytosis. NLRP6 deficiency leads to defective autophagy in goblet cells and abrogated mucus secretion into the large intestinal lumen. Consequently, NLRP6 inflammasome-deficient mice are unable to clear enteric pathogens from the mucosal surface, rendering them highly susceptible to persistent infection. This study identifies an innate immune regulatory pathway governing goblet cell mucus secretion, linking nonhematopoietic inflammasome signaling to autophagy and highlighting the goblet cell as a critical innate immune player in the control of intestinal host-microbial mutualism. PAPERCLIP:Mucus production by goblet cells of the large intestine serves as a crucial antimicrobial protective mechanism at the interface between the eukaryotic and prokaryotic cells of the mammalian intestinal ecosystem. However, the regulatory pathways involved in goblet cell-induced mucus secretion remain largely unknown. Here, we demonstrate that the NLRP6 inflammasome, a recently described regulator of colonic microbiota composition and biogeographical distribution, is a critical orchestrator of goblet cell mucin granule exocytosis. NLRP6 deficiency leads to defective autophagy in goblet cells and abrogated mucus secretion into the large intestinal lumen. Consequently, NLRP6 inflammasome-deficient mice are unable to clear enteric pathogens from the mucosal surface, rendering them highly susceptible to persistent infection. This study identifies an innate immune regulatory pathway governing goblet cell mucus secretion, linking nonhematopoietic inflammasome signaling to autophagy and highlighting the goblet cell as a critical innate immune player in the control of intestinal host-microbial mutualism. PAPERCLIP: |
Author | Philbrick, William M. Elinav, Eran Henao-Mejia, Jorge Levy, Maayan Flavell, Richard A. Nowarski, Roni Wlodarska, Marta Brown, Eric M. Thaiss, Christoph A. Finlay, B. Brett Frankel, Gad Katz, Meirav N. Zhang, Jian-Ping |
AuthorAffiliation | 8 Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada 1 Michael Smith Laboratories, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada 4 Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA 7 Research Center for digestive tract and liver diseases, Tel Aviv Sourasky Medical Center, Sackler faculty of Medicine, Tel Aviv University, Tel Aviv, 64239, Israel 9 Howard Hughes Medical Institute 3 Immunology Department, Weizmann Institute of Science, Rehovot 76100, Israel 6 MRC Center for Molecular Bacteriology and Infection, Department of Life Sciences, Flowers Building, Imperial College, London, SW7 2AZ, UK 5 Center on Endocrinology and Metabolism, Yale University School of Medicine, New Haven, CT 06520, USA 2 Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada |
AuthorAffiliation_xml | – name: 1 Michael Smith Laboratories, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada – name: 2 Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada – name: 3 Immunology Department, Weizmann Institute of Science, Rehovot 76100, Israel – name: 7 Research Center for digestive tract and liver diseases, Tel Aviv Sourasky Medical Center, Sackler faculty of Medicine, Tel Aviv University, Tel Aviv, 64239, Israel – name: 9 Howard Hughes Medical Institute – name: 5 Center on Endocrinology and Metabolism, Yale University School of Medicine, New Haven, CT 06520, USA – name: 6 MRC Center for Molecular Bacteriology and Infection, Department of Life Sciences, Flowers Building, Imperial College, London, SW7 2AZ, UK – name: 8 Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada – name: 4 Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA |
Author_xml | – sequence: 1 givenname: Marta surname: Wlodarska fullname: Wlodarska, Marta organization: Michael Smith Laboratories, The University of British Columbia, Vancouver, BC V6T 1Z4, Canada – sequence: 2 givenname: Christoph A. surname: Thaiss fullname: Thaiss, Christoph A. organization: Immunology Department, Weizmann Institute of Science, Rehovot 76100, Israel – sequence: 3 givenname: Roni surname: Nowarski fullname: Nowarski, Roni organization: Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA – sequence: 4 givenname: Jorge surname: Henao-Mejia fullname: Henao-Mejia, Jorge organization: Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA – sequence: 5 givenname: Jian-Ping surname: Zhang fullname: Zhang, Jian-Ping organization: Center on Endocrinology and Metabolism, Yale University School of Medicine, New Haven, CT 06520, USA – sequence: 6 givenname: Eric M. surname: Brown fullname: Brown, Eric M. organization: Michael Smith Laboratories, The University of British Columbia, Vancouver, BC V6T 1Z4, Canada – sequence: 7 givenname: Gad surname: Frankel fullname: Frankel, Gad organization: MRC Center for Molecular Bacteriology and Infection, Department of Life Sciences, Flowers Building, Imperial College, London SW7 2AZ, UK – sequence: 8 givenname: Maayan surname: Levy fullname: Levy, Maayan organization: Immunology Department, Weizmann Institute of Science, Rehovot 76100, Israel – sequence: 9 givenname: Meirav N. surname: Katz fullname: Katz, Meirav N. organization: Immunology Department, Weizmann Institute of Science, Rehovot 76100, Israel – sequence: 10 givenname: William M. surname: Philbrick fullname: Philbrick, William M. organization: Center on Endocrinology and Metabolism, Yale University School of Medicine, New Haven, CT 06520, USA – sequence: 11 givenname: Eran surname: Elinav fullname: Elinav, Eran email: eran.elinav@weizmann.ac.il organization: Immunology Department, Weizmann Institute of Science, Rehovot 76100, Israel – sequence: 12 givenname: B. Brett surname: Finlay fullname: Finlay, B. Brett email: bfinlay@interchange.ubc.ca organization: Michael Smith Laboratories, The University of British Columbia, Vancouver, BC V6T 1Z4, Canada – sequence: 13 givenname: Richard A. surname: Flavell fullname: Flavell, Richard A. email: richard.flavell@yale.edu organization: Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/24581500$$D View this record in MEDLINE/PubMed |
BookMark | eNqNUsFu1DAUjFAR3RZ-gAPykUvCsxM7joSQ0Kq0lbYUFThbjvdl16vELrZTqX-PV9si4FA4-fBmxm_mzUlx5LzDonhNoaJAxbtdZXAcKwa0qYBWwMSzYkGha8uGtuyoWAB0rJSibY6Lkxh3ACA55y-KY9ZwSTnAonCfVzdfBLl0w6inSUc_IbkOZosxBZ0wkrRFsvSjd9aQCx9TeWVN8L3VYyYlDIM2SPp7coObedTJug059_2IiSzzcuRqNnMkX9EETNa7l8XzQY8RXz28p8X3T2fflhfl6vr8cvlxVRou21R2EmUvgEvdyc4gbQChlVRq2vI1lx0yZMMggEpTS9YYRLamYqiZ6Oqesb4-LT4cdG_nfsK1QZftjOo22EmHe-W1VX9OnN2qjb9TDdBWNJAF3j4IBP9jzmmoycZ93Nqhn6NiOUwGjDH6TyjlQkhe16z-Dyg0lNeUygx987uDX6s_ni4D5AGQzxFjwEEZm_Q-5GzIjoqC2rdE7dT-A7VviQKqcksylf1FfVR_kvT-QMJ8tzuLQUVj0Rlc24AmqbW3T9F_AtFT1WA |
CitedBy_id | crossref_primary_10_3389_fimmu_2023_1065181 crossref_primary_10_3390_cells9071647 crossref_primary_10_1155_2022_2818136 crossref_primary_10_1111_imr_12616 crossref_primary_10_3390_ijms241612583 crossref_primary_10_15407_fz66_06_097 crossref_primary_10_3389_fimmu_2022_1027289 crossref_primary_10_1146_annurev_immunol_070119_115104 crossref_primary_10_1016_j_cell_2015_10_048 crossref_primary_10_1080_15548627_2021_1909406 crossref_primary_10_1016_j_smim_2024_101891 crossref_primary_10_1007_s12011_023_03770_5 crossref_primary_10_11569_wcjd_v27_i17_1076 crossref_primary_10_1111_iej_13091 crossref_primary_10_1038_nature18847 crossref_primary_10_1016_j_celrep_2022_111454 crossref_primary_10_1016_j_ebiom_2021_103751 crossref_primary_10_1016_j_cell_2016_11_003 crossref_primary_10_1038_mi_2015_46 crossref_primary_10_1038_mi_2016_14 crossref_primary_10_1073_pnas_2007807118 crossref_primary_10_1016_j_molimm_2023_06_002 crossref_primary_10_4049_jimmunol_1701216 crossref_primary_10_3390_biom10060825 crossref_primary_10_1128_AEM_00826_19 crossref_primary_10_1016_j_cmet_2017_06_018 crossref_primary_10_3389_fimmu_2020_571731 crossref_primary_10_1002_ijc_31836 crossref_primary_10_1016_j_jpedsurg_2018_08_059 crossref_primary_10_1038_nri_2016_100 crossref_primary_10_1016_j_bbagrm_2023_194955 crossref_primary_10_1177_0022034518775036 crossref_primary_10_1007_s12026_022_09286_9 crossref_primary_10_1172_JCI84429 crossref_primary_10_1016_j_ajpath_2022_03_002 crossref_primary_10_1007_s11427_016_0325_6 crossref_primary_10_1080_08820139_2017_1360341 crossref_primary_10_1002_mnfr_202100821 crossref_primary_10_3389_fcell_2023_1228283 crossref_primary_10_1007_s11255_015_1126_6 crossref_primary_10_1093_gbe_evx014 crossref_primary_10_1111_imr_12602 crossref_primary_10_1016_j_micinf_2023_105274 crossref_primary_10_1080_2162402X_2014_1003011 crossref_primary_10_1080_27694127_2022_2119743 crossref_primary_10_1038_cti_2016_38 crossref_primary_10_1152_physiol_00025_2014 crossref_primary_10_3390_ijms20030649 crossref_primary_10_1128_spectrum_04698_22 crossref_primary_10_3390_cimb46010030 crossref_primary_10_1016_j_tcb_2014_12_009 crossref_primary_10_3892_mmr_2018_9679 crossref_primary_10_1080_19490976_2022_2152307 crossref_primary_10_1016_j_lfs_2019_117084 crossref_primary_10_1007_s00535_016_1242_9 crossref_primary_10_1007_s00109_021_02043_9 crossref_primary_10_1016_j_immuni_2015_04_004 crossref_primary_10_1016_j_jare_2023_01_013 crossref_primary_10_1038_mi_2015_32 crossref_primary_10_1038_nature22075 crossref_primary_10_1038_s41423_022_00968_w crossref_primary_10_3748_wjg_v27_i48_8283 crossref_primary_10_1016_j_cell_2016_03_046 crossref_primary_10_1016_j_hbpd_2020_04_003 crossref_primary_10_3748_wjg_v28_i43_6109 crossref_primary_10_1016_j_intimp_2019_105977 crossref_primary_10_1038_mi_2017_19 crossref_primary_10_1038_mi_2017_18 crossref_primary_10_1016_j_tins_2020_09_003 crossref_primary_10_1016_j_celrep_2021_109176 crossref_primary_10_1016_j_jaci_2019_05_006 crossref_primary_10_1053_j_gastro_2017_11_276 crossref_primary_10_1146_annurev_immunol_042718_041841 crossref_primary_10_1038_s41392_019_0074_5 crossref_primary_10_1002_fsn3_2391 crossref_primary_10_3390_cells10092172 crossref_primary_10_3389_fsurg_2022_788437 crossref_primary_10_1038_mi_2016_55 crossref_primary_10_1053_j_gastro_2016_03_039 crossref_primary_10_1016_j_jcmgh_2018_03_001 crossref_primary_10_3389_fnut_2022_890314 crossref_primary_10_1111_febs_16298 crossref_primary_10_1093_intimm_dxu066 crossref_primary_10_1186_s12979_017_0101_8 crossref_primary_10_1016_j_celrep_2021_109043 crossref_primary_10_1152_ajpgi_00234_2014 crossref_primary_10_3390_foods12010186 crossref_primary_10_1080_19490976_2017_1279378 crossref_primary_10_1007_s00335_018_9783_2 crossref_primary_10_1021_acs_jafc_0c05260 crossref_primary_10_1038_s41590_020_0681_x crossref_primary_10_1089_jmf_2021_K_0150 crossref_primary_10_1101_gad_284091_116 crossref_primary_10_1093_pcmedi_pbac022 crossref_primary_10_1080_15384101_2017_1317414 crossref_primary_10_1016_j_chom_2017_06_007 crossref_primary_10_1016_j_freeradbiomed_2016_11_011 crossref_primary_10_1038_mi_2015_93 crossref_primary_10_1016_j_clim_2019_108264 crossref_primary_10_1111_nmo_14372 crossref_primary_10_1016_j_it_2017_01_001 crossref_primary_10_1007_s00018_023_04948_9 crossref_primary_10_1016_j_celrep_2017_12_027 crossref_primary_10_1093_intimm_dxu059 crossref_primary_10_1016_j_celrep_2017_12_026 crossref_primary_10_1038_s41423_020_0366_2 crossref_primary_10_1038_s41568_022_00462_5 crossref_primary_10_1111_cmi_12365 crossref_primary_10_3390_ijms252313058 crossref_primary_10_1016_j_cell_2023_04_025 crossref_primary_10_1038_s41419_025_07422_5 crossref_primary_10_1016_j_scib_2021_01_025 crossref_primary_10_1016_j_molimm_2018_12_024 crossref_primary_10_3389_fcell_2021_703310 crossref_primary_10_3389_fmicb_2023_1174968 crossref_primary_10_1146_annurev_immunol_051116_052424 crossref_primary_10_3390_ijms21175999 crossref_primary_10_1016_j_jmb_2021_167278 crossref_primary_10_1038_s41385_020_00357_4 crossref_primary_10_3389_fimmu_2024_1248907 crossref_primary_10_3390_nu13041331 crossref_primary_10_1016_j_mucimm_2024_10_004 crossref_primary_10_1016_j_cell_2015_11_041 crossref_primary_10_3389_fphys_2015_00341 crossref_primary_10_1080_21505594_2019_1573050 crossref_primary_10_3389_fimmu_2019_01937 crossref_primary_10_1016_j_chest_2017_11_008 crossref_primary_10_3389_fmicb_2024_1413490 crossref_primary_10_1016_j_semcdb_2016_06_009 crossref_primary_10_4049_jimmunol_1402098 crossref_primary_10_1016_j_immuni_2014_05_014 crossref_primary_10_1016_j_it_2015_06_002 crossref_primary_10_1016_j_celrep_2023_112549 crossref_primary_10_1159_000495850 crossref_primary_10_1093_ibd_izaa273 crossref_primary_10_3390_nu14153164 crossref_primary_10_1128_mSystems_00392_19 crossref_primary_10_1002_cti2_1404 crossref_primary_10_1099_jgv_0_000401 crossref_primary_10_15430_JCP_2017_22_2_62 crossref_primary_10_2119_molmed_2017_00077 crossref_primary_10_3389_fmicb_2022_898559 crossref_primary_10_3389_fphys_2020_00561 crossref_primary_10_1016_j_molmed_2015_06_003 crossref_primary_10_1038_s41467_023_37101_y crossref_primary_10_3109_00365521_2014_966321 crossref_primary_10_1016_j_carbpol_2020_116398 crossref_primary_10_1111_cmi_13079 crossref_primary_10_1016_j_immuni_2017_03_016 crossref_primary_10_1126_science_aab3145 crossref_primary_10_1007_s10620_024_08453_2 crossref_primary_10_1016_j_chom_2014_02_014 crossref_primary_10_1016_j_intimp_2017_05_027 crossref_primary_10_1111_1348_0421_12318 crossref_primary_10_1128_CMR_00049_16 crossref_primary_10_3390_ijms15069594 crossref_primary_10_1177_17562848231176889 crossref_primary_10_1007_s11255_023_03760_5 crossref_primary_10_1038_mi_2017_71 crossref_primary_10_11569_wcjd_v30_i21_928 crossref_primary_10_1007_s10620_016_4045_1 crossref_primary_10_1038_nri_2016_88 crossref_primary_10_3390_microorganisms11112616 crossref_primary_10_1038_s41435_021_00124_w crossref_primary_10_1111_cmi_13184 crossref_primary_10_3390_ijms21197359 crossref_primary_10_1016_j_bbadis_2024_167035 crossref_primary_10_1093_ecco_jcc_jjv223 crossref_primary_10_1038_nrurol_2017_25 crossref_primary_10_3389_fimmu_2016_00054 crossref_primary_10_1111_imr_13408 crossref_primary_10_1152_ajpgi_00221_2021 crossref_primary_10_1111_all_13619 crossref_primary_10_1016_j_molmed_2018_01_004 crossref_primary_10_1177_1753425917722206 crossref_primary_10_1039_D0FO02556A crossref_primary_10_1016_j_chom_2015_04_008 crossref_primary_10_1038_mi_2016_77 crossref_primary_10_3389_fimmu_2017_01353 crossref_primary_10_3390_nu7085314 crossref_primary_10_3389_fcell_2022_874940 crossref_primary_10_1016_j_xcrm_2024_101398 crossref_primary_10_1021_acs_jafc_0c04119 crossref_primary_10_1038_s41467_019_11811_8 crossref_primary_10_1080_17474124_2019_1671822 crossref_primary_10_1126_science_aaf7419 crossref_primary_10_1126_scisignal_2005357 crossref_primary_10_1080_19490976_2016_1142036 crossref_primary_10_1073_pnas_1407001111 crossref_primary_10_1016_j_chom_2014_05_016 crossref_primary_10_3390_nu12061765 crossref_primary_10_1371_journal_ppat_1007308 crossref_primary_10_3389_fimmu_2020_00575 crossref_primary_10_1146_annurev_immunol_042617_053253 crossref_primary_10_1038_s12276_023_00960_y crossref_primary_10_1111_imr_13406 crossref_primary_10_3390_molecules26061704 crossref_primary_10_1016_j_rvsc_2022_09_014 crossref_primary_10_1038_nrgastro_2015_94 crossref_primary_10_3390_nu15122655 crossref_primary_10_1038_ncomms15004 crossref_primary_10_1016_j_fsi_2018_03_040 crossref_primary_10_1016_j_tcb_2021_06_010 crossref_primary_10_1126_sciadv_aaz6717 crossref_primary_10_1371_journal_ppat_1005121 crossref_primary_10_2147_JIR_S288288 crossref_primary_10_1038_srep23342 crossref_primary_10_1039_C6FO00831C crossref_primary_10_1093_ibd_izaa232 crossref_primary_10_1016_j_bbi_2022_01_019 crossref_primary_10_1111_imm_13293 crossref_primary_10_3390_foods14071110 crossref_primary_10_1189_jlb_4MR0716_330R crossref_primary_10_3389_fimmu_2023_1260705 crossref_primary_10_3390_ijms22083876 crossref_primary_10_2183_pjab_92_423 crossref_primary_10_3389_fmicb_2025_1499202 crossref_primary_10_1007_s00277_024_05745_5 crossref_primary_10_1186_s13578_024_01220_w crossref_primary_10_1016_j_jim_2015_02_003 crossref_primary_10_1016_j_cell_2022_09_024 crossref_primary_10_1016_j_dci_2016_01_024 crossref_primary_10_1186_s12974_015_0367_8 crossref_primary_10_1146_annurev_immunol_101320_011235 crossref_primary_10_1093_procel_pwad028 crossref_primary_10_3389_fcimb_2024_1346087 crossref_primary_10_1007_s00204_020_02801_7 crossref_primary_10_1016_j_clim_2015_05_014 crossref_primary_10_1038_s41575_018_0054_1 crossref_primary_10_1172_JCI88879 crossref_primary_10_3748_wjg_v28_i32_4475 crossref_primary_10_1002_jpen_2274 crossref_primary_10_1016_j_jep_2021_114108 crossref_primary_10_1152_ajpgi_00181_2017 crossref_primary_10_1039_D1FO03815J crossref_primary_10_1186_s41232_018_0063_z crossref_primary_10_1038_s41422_020_0332_7 crossref_primary_10_1084_jem_20190679 crossref_primary_10_1093_nar_gkac687 crossref_primary_10_1002_JLB_HI1118_461R crossref_primary_10_3390_ijms21228729 crossref_primary_10_1080_00365521_2025_2479566 crossref_primary_10_1155_2017_8201672 crossref_primary_10_1016_j_cell_2015_06_001 crossref_primary_10_1038_nature22967 crossref_primary_10_1172_JCI123263 crossref_primary_10_2147_JIR_S318327 crossref_primary_10_1016_j_mam_2020_100858 crossref_primary_10_1016_j_mam_2020_100859 crossref_primary_10_1038_emm_2017_20 crossref_primary_10_1371_journal_pone_0128453 crossref_primary_10_3389_fimmu_2020_584288 crossref_primary_10_1084_jem_20181832 crossref_primary_10_3390_pathogens9121008 crossref_primary_10_1038_mi_2017_87 crossref_primary_10_1007_s00109_020_01962_3 crossref_primary_10_3389_fimmu_2017_01674 crossref_primary_10_1002_1873_3468_14848 crossref_primary_10_18231_j_ijpi_2020_036 crossref_primary_10_3389_fcell_2021_725821 crossref_primary_10_1016_j_trsl_2022_09_002 crossref_primary_10_1016_j_cdnut_2024_104431 crossref_primary_10_1007_s00018_019_03190_6 crossref_primary_10_1016_j_psj_2024_103958 crossref_primary_10_1128_microbiolspec_MCHD_0049_2016 crossref_primary_10_1101_gr_194118_115 crossref_primary_10_1016_j_jmb_2017_03_031 crossref_primary_10_1080_19490976_2024_2413372 crossref_primary_10_1007_s11695_019_04152_4 crossref_primary_10_1016_j_micinf_2016_03_008 crossref_primary_10_1097_MIB_0000000000000151 crossref_primary_10_1007_s12026_014_8544_x crossref_primary_10_1038_ni_3384 crossref_primary_10_1038_srep09253 crossref_primary_10_1016_j_ijmm_2021_151486 crossref_primary_10_1007_s00018_017_2509_x crossref_primary_10_1021_acs_jafc_8b03340 crossref_primary_10_3390_ijms25169096 crossref_primary_10_1007_s00253_020_10896_2 crossref_primary_10_3390_cancers13174342 crossref_primary_10_1038_nri_2015_17 crossref_primary_10_3390_ijms221910224 crossref_primary_10_1016_j_smim_2023_101807 crossref_primary_10_3389_fimmu_2023_1147925 crossref_primary_10_1016_j_cell_2024_08_012 crossref_primary_10_1038_s41598_020_71633_3 crossref_primary_10_1038_s41598_017_17037_2 crossref_primary_10_1016_j_jpha_2023_05_005 crossref_primary_10_2147_JIR_S335882 crossref_primary_10_1042_BSR20201471 crossref_primary_10_1038_nprot_2016_100 crossref_primary_10_1038_s41575_018_0079_5 crossref_primary_10_1016_j_apsb_2023_03_010 crossref_primary_10_1002_hep_27982 crossref_primary_10_1016_j_smim_2023_101815 crossref_primary_10_1111_joim_13238 crossref_primary_10_3390_cells10123358 crossref_primary_10_1038_s41421_023_00550_2 crossref_primary_10_3389_fimmu_2014_00169 crossref_primary_10_1016_j_jaut_2023_103114 crossref_primary_10_1146_annurev_immunol_032713_120238 crossref_primary_10_1016_j_immuni_2019_08_005 crossref_primary_10_1038_s41435_024_00309_z crossref_primary_10_2147_JIR_S345664 crossref_primary_10_1038_s41392_023_01687_y crossref_primary_10_1038_s41421_020_0167_x crossref_primary_10_2139_ssrn_4165624 crossref_primary_10_1074_jbc_M114_632257 crossref_primary_10_1111_jfb_14908 crossref_primary_10_1111_imr_12296 crossref_primary_10_3390_molecules25194572 crossref_primary_10_3389_fimmu_2016_00695 crossref_primary_10_1016_j_lfs_2022_120760 crossref_primary_10_18632_oncotarget_22876 crossref_primary_10_18632_oncotarget_5587 crossref_primary_10_1038_s41579_019_0252_z crossref_primary_10_1093_burnst_tkad004 crossref_primary_10_1021_acs_chemrestox_0c00051 crossref_primary_10_1016_j_jaut_2019_01_008 crossref_primary_10_1186_s40168_019_0713_7 crossref_primary_10_1146_annurev_pathol_012414_040431 crossref_primary_10_1016_j_gtc_2016_09_004 crossref_primary_10_1111_imr_12289 crossref_primary_10_1016_j_ijbiomac_2019_11_159 crossref_primary_10_1038_s41598_017_11744_6 crossref_primary_10_1038_cmi_2016_29 crossref_primary_10_1111_imm_13117 crossref_primary_10_3390_biology9120415 crossref_primary_10_1111_imr_12281 crossref_primary_10_1093_jhered_esx059 crossref_primary_10_1016_j_jhepr_2021_100344 crossref_primary_10_3390_microorganisms10030519 crossref_primary_10_1038_s41581_019_0118_7 crossref_primary_10_3390_ijms222413642 crossref_primary_10_1016_j_yexcr_2023_113871 crossref_primary_10_1097_MOG_0000000000000117 crossref_primary_10_1016_j_vetmic_2017_08_008 crossref_primary_10_1002_eji_202049065 crossref_primary_10_1097_MEG_0000000000002789 crossref_primary_10_3390_cells8010007 crossref_primary_10_1016_j_nbd_2024_106434 crossref_primary_10_1093_ibd_izy244 crossref_primary_10_37349_emed_2022_00087 crossref_primary_10_1007_s10571_020_01027_6 crossref_primary_10_1155_2015_828264 crossref_primary_10_1007_s12307_015_0177_7 crossref_primary_10_1097_MIB_0000000000000230 crossref_primary_10_1002_ptr_6695 crossref_primary_10_1016_j_bbrc_2020_11_047 crossref_primary_10_1038_s41575_022_00675_x crossref_primary_10_1038_s41577_023_00932_3 crossref_primary_10_3390_biomedicines10102344 crossref_primary_10_1002_jcp_28722 crossref_primary_10_1038_s41385_018_0021_8 crossref_primary_10_3892_etm_2021_10974 crossref_primary_10_1016_j_cmet_2016_01_003 crossref_primary_10_1038_ncomms9292 crossref_primary_10_1038_nrmicro3315 crossref_primary_10_1016_j_bbcan_2022_188802 crossref_primary_10_1016_j_lfs_2024_122686 crossref_primary_10_1111_eci_12548 crossref_primary_10_1007_s00281_018_0701_1 crossref_primary_10_1016_j_bbrc_2022_08_046 crossref_primary_10_1158_2326_6066_CIR_16_0269 crossref_primary_10_1007_s10620_016_4032_6 crossref_primary_10_1186_s12967_024_05623_8 crossref_primary_10_1186_s40168_022_01326_8 crossref_primary_10_1016_j_chom_2025_02_008 crossref_primary_10_1155_2016_2862173 crossref_primary_10_1016_j_nbd_2019_104714 crossref_primary_10_3390_biomedicines11072066 crossref_primary_10_3390_ncrna10040038 crossref_primary_10_1016_j_cell_2021_09_032 crossref_primary_10_1126_sciimmunol_abk2092 crossref_primary_10_1016_j_mib_2020_06_007 crossref_primary_10_1016_j_trsl_2020_03_012 crossref_primary_10_1111_imm_13326 crossref_primary_10_1080_15548627_2017_1389358 crossref_primary_10_3920_BM2019_0059 crossref_primary_10_1016_j_mib_2016_10_003 crossref_primary_10_1093_ndt_gfz169 crossref_primary_10_1051_medsci_20173303018 crossref_primary_10_1186_s43556_024_00179_x crossref_primary_10_1016_j_ceb_2015_04_016 crossref_primary_10_4161_21645515_2014_979640 crossref_primary_10_3389_fimmu_2019_01266 crossref_primary_10_1002_fft2_191 crossref_primary_10_1007_s00467_015_3153_z crossref_primary_10_1126_science_aar3318 crossref_primary_10_1038_s41522_024_00563_z crossref_primary_10_1038_s41598_019_57043_0 crossref_primary_10_3389_fimmu_2020_02054 crossref_primary_10_1016_j_jmb_2014_09_011 crossref_primary_10_1038_s41577_023_00849_x crossref_primary_10_1097_ICO_0000000000001717 crossref_primary_10_1128_mBio_01087_19 crossref_primary_10_1016_j_molmed_2016_01_002 crossref_primary_10_1038_srep29353 crossref_primary_10_2174_1381612825666190319114641 crossref_primary_10_1186_s12964_020_00599_6 crossref_primary_10_1155_2023_6613064 crossref_primary_10_1080_09168451_2019_1580135 crossref_primary_10_4161_21688370_2014_982426 crossref_primary_10_1038_nri_2016_58 crossref_primary_10_1016_j_tins_2022_10_002 crossref_primary_10_1111_iej_13469 crossref_primary_10_20538_1682_0363_2022_1_121_132 crossref_primary_10_1111_febs_15731 crossref_primary_10_1111_jnc_15242 crossref_primary_10_1097_MIB_0000000000000318 crossref_primary_10_1038_pr_2014_157 crossref_primary_10_3389_fimmu_2017_01168 crossref_primary_10_1002_jpen_1956 crossref_primary_10_1038_s41564_019_0373_1 crossref_primary_10_1371_journal_pone_0185025 crossref_primary_10_1002_eji_201444972 crossref_primary_10_1534_genetics_117_200782 crossref_primary_10_1016_j_clinre_2014_10_008 crossref_primary_10_3390_cancers12123500 crossref_primary_10_3390_cells11020182 crossref_primary_10_1016_j_jmb_2017_11_006 crossref_primary_10_1016_j_pt_2015_03_010 crossref_primary_10_3390_ijms21031103 crossref_primary_10_1146_annurev_immunol_032414_112306 crossref_primary_10_1002_path_4357 crossref_primary_10_4049_jimmunol_1800938 crossref_primary_10_1242_dev_155317 crossref_primary_10_1016_j_molmed_2016_04_003 crossref_primary_10_1007_s00018_024_05124_3 crossref_primary_10_1016_j_alit_2024_12_006 crossref_primary_10_1016_j_cell_2018_09_047 crossref_primary_10_15252_emmm_202013452 crossref_primary_10_1016_j_cytogfr_2014_07_001 crossref_primary_10_1016_j_lssr_2024_03_003 crossref_primary_10_1038_mi_2016_132 crossref_primary_10_3389_fnut_2022_907386 crossref_primary_10_3390_microorganisms7120663 crossref_primary_10_1186_s13045_024_01541_w crossref_primary_10_1038_s41467_019_12573_z crossref_primary_10_1038_bjc_2016_189 crossref_primary_10_1007_s00281_014_0451_7 crossref_primary_10_1016_j_ebiom_2022_104061 crossref_primary_10_1267_ahc_24_00049 crossref_primary_10_1007_s11011_025_01554_5 crossref_primary_10_1371_journal_pone_0134259 crossref_primary_10_56782_pps_229 crossref_primary_10_1371_journal_pntd_0009171 crossref_primary_10_1186_s12929_019_0512_2 crossref_primary_10_1038_s41568_019_0123_y crossref_primary_10_1016_j_tcb_2021_01_003 crossref_primary_10_3389_fvets_2020_00123 crossref_primary_10_1007_s00281_017_0658_5 crossref_primary_10_1016_j_semcdb_2018_01_001 crossref_primary_10_1016_j_ijbiomac_2023_123862 crossref_primary_10_1096_fj_202002622R crossref_primary_10_15252_embr_201439943 crossref_primary_10_1016_j_conb_2019_11_021 crossref_primary_10_3390_molecules24213813 crossref_primary_10_3389_fimmu_2023_1224383 crossref_primary_10_1083_jcb_201602089 crossref_primary_10_3389_fcimb_2021_806680 crossref_primary_10_26599_FSHW_2022_9250060 crossref_primary_10_3390_ijms221910851 crossref_primary_10_1038_s42003_022_03491_w crossref_primary_10_1038_nri_2017_7 crossref_primary_10_1016_j_ijbiomac_2017_02_074 crossref_primary_10_1007_s13238_020_00707_9 crossref_primary_10_1126_scisignal_aaa4696 crossref_primary_10_15789_1563_0625_PAP_1893 crossref_primary_10_1155_2020_2549763 crossref_primary_10_1371_journal_pone_0166048 crossref_primary_10_3390_pharmaceutics14112383 crossref_primary_10_3389_fimmu_2021_804870 crossref_primary_10_3390_cancers14133150 crossref_primary_10_26599_FSHW_2024_9250094 crossref_primary_10_1016_j_coi_2020_11_006 crossref_primary_10_1016_j_celrep_2017_04_046 crossref_primary_10_1016_j_mib_2024_102456 crossref_primary_10_1097_MOG_0000000000000246 crossref_primary_10_1093_ecco_jcc_jjy038 crossref_primary_10_3389_fimmu_2019_02057 crossref_primary_10_1097_MOG_0000000000000121 crossref_primary_10_1080_15548627_2015_1056967 crossref_primary_10_3389_fimmu_2020_01810 crossref_primary_10_1038_s41419_019_1634_x crossref_primary_10_1021_acs_jafc_2c08444 crossref_primary_10_1111_cmi_12501 crossref_primary_10_1556_030_2021_01532 crossref_primary_10_1007_s11739_023_03374_w crossref_primary_10_1016_j_atherosclerosis_2015_05_035 crossref_primary_10_1016_j_coi_2014_05_006 crossref_primary_10_1111_jgh_15596 crossref_primary_10_1111_imm_12760 crossref_primary_10_1038_s41598_020_58863_1 crossref_primary_10_1111_pim_12517 crossref_primary_10_1186_s12964_024_01504_1 crossref_primary_10_1128_microbiolspec_BAI_0004_2019 crossref_primary_10_1007_s00281_024_01026_5 crossref_primary_10_1016_j_mib_2021_09_005 crossref_primary_10_1111_all_15388 crossref_primary_10_1371_journal_pone_0125945 crossref_primary_10_1016_j_bbi_2020_03_012 crossref_primary_10_1016_j_cell_2016_11_040 crossref_primary_10_1172_JCI73945 crossref_primary_10_1172_jci_insight_150607 crossref_primary_10_3389_fphys_2020_629141 crossref_primary_10_1111_imm_12511 crossref_primary_10_1038_s41467_023_41739_z crossref_primary_10_1042_BST20221300 crossref_primary_10_1128_mBio_02820_19 crossref_primary_10_3389_fimmu_2022_882521 crossref_primary_10_1016_j_intimp_2023_111414 crossref_primary_10_1111_cpr_12555 crossref_primary_10_1097_MOG_0000000000000143 crossref_primary_10_1097_CCO_0000000000000346 crossref_primary_10_1016_j_chom_2016_03_003 crossref_primary_10_1016_j_semcdb_2018_03_012 crossref_primary_10_1111_imm_12989 crossref_primary_10_3390_nu8010044 crossref_primary_10_1016_j_micinf_2024_105398 crossref_primary_10_1073_pnas_2321419121 crossref_primary_10_1002_pmic_201500120 crossref_primary_10_1016_j_advnut_2024_100307 crossref_primary_10_1016_j_mucimm_2024_02_008 crossref_primary_10_3389_fimmu_2019_01091 crossref_primary_10_1016_j_immuni_2015_03_012 crossref_primary_10_1084_jem_20210324 crossref_primary_10_1111_imr_12901 crossref_primary_10_1007_s10787_017_0414_4 crossref_primary_10_1016_j_psj_2024_104367 crossref_primary_10_1016_j_immuni_2020_02_016 crossref_primary_10_1038_s41385_020_0256_z crossref_primary_10_3390_ijms24043665 crossref_primary_10_1128_JVI_01682_18 crossref_primary_10_3390_ijms18112379 crossref_primary_10_1016_j_fsi_2023_109083 |
Cites_doi | 10.1038/nature07416 10.1111/j.1462-5822.2011.01578.x 10.1016/j.cell.2010.01.025 10.1126/science.1222195 10.1126/science.1172747 10.1016/S0014-5793(02)03416-6 10.1073/pnas.1100981108 10.1016/B978-0-12-410524-9.00003-7 10.1038/mi.2008.5 10.1007/978-1-62703-523-1_14 10.1016/j.chom.2007.08.002 10.4049/jimmunol.181.7.4709 10.1016/j.jaci.2010.12.1078 10.1056/NEJMra1205406 10.1016/j.cmet.2010.11.011 10.1053/j.gastro.2006.04.020 10.1038/emboj.2013.233 10.1073/pnas.0803124105 10.1128/IAI.00848-06 10.1038/mi.2012.115 10.1016/j.jaut.2013.07.001 10.1091/mbc.E03-09-0704 10.1016/j.immuni.2011.05.007 10.1016/S1074-7613(00)80543-9 10.1016/j.abb.2012.03.019 10.1126/science.7535475 10.1177/002215540205000609 10.1371/journal.pone.0022459 10.1371/journal.ppat.1000902 10.1021/pr2010988 10.1242/dev.125.7.1285 10.1128/IAI.00093-07 10.1016/j.immuni.2006.02.004 10.1038/nature11250 10.1073/pnas.1307575110 10.1073/pnas.1120269109 10.1038/labinvest.2008.28 10.1016/j.cell.2011.04.022 10.1038/nature10809 10.1016/j.devcel.2011.08.016 10.1016/0016-5085(94)90537-1 10.1146/annurev.ph.57.030195.003101 10.4049/jimmunol.1100412 10.1073/pnas.0404034101 10.1371/journal.pbio.0050244 |
ContentType | Journal Article |
Copyright | 2014 Elsevier Inc. Copyright © 2014 Elsevier Inc. All rights reserved. 2017 Elsevier Inc. All rights reserved. 2017 |
Copyright_xml | – notice: 2014 Elsevier Inc. – notice: Copyright © 2014 Elsevier Inc. All rights reserved. – notice: 2017 Elsevier Inc. All rights reserved. 2017 |
DBID | 6I. AAFTH AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7T7 8FD C1K FR3 P64 7S9 L.6 5PM |
DOI | 10.1016/j.cell.2014.01.026 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic Industrial and Applied Microbiology Abstracts (Microbiology A) Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Biotechnology and BioEngineering Abstracts AGRICOLA AGRICOLA - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic Engineering Research Database Technology Research Database Industrial and Applied Microbiology Abstracts (Microbiology A) Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA MEDLINE Engineering Research Database MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1097-4172 |
EndPage | 1059 |
ExternalDocumentID | PMC4017640 24581500 10_1016_j_cell_2014_01_026 S0092867414000786 |
Genre | Research Support, U.S. Gov't, Non-P.H.S Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: NIDDK NIH HHS grantid: P30 DK045735 – fundername: Howard Hughes Medical Institute – fundername: CIHR – fundername: Medical Research Council grantid: MR/J006874/1 |
GroupedDBID | --- --K -DZ -ET -~X 0R~ 0WA 1RT 1~5 29B 2FS 2WC 3EH 4.4 457 4G. 53G 5GY 5RE 5VS 62- 6I. 6J9 7-5 85S AACTN AAEDT AAEDW AAFTH AAFWJ AAIAV AAKRW AAKUH AAQFI AAUCE AAVLU AAXJY AAXUO AAYJJ ABCQX ABJNI ABMAC ABMWF ABOCM ABVKL ACGFO ACGFS ACNCT ADBBV ADEZE ADJPV AEFWE AENEX AEXQZ AFTJW AGHFR AGHSJ AGKMS AHHHB AIDAL AITUG ALKID ALMA_UNASSIGNED_HOLDINGS AMRAJ ASPBG AVWKF AZFZN BAWUL CS3 DIK DU5 E3Z EBS EJD F5P FCP FDB FIRID HH5 IH2 IHE IXB J1W JIG K-O KOO KQ8 L7B LX5 M3Z M41 N9A NCXOZ O-L O9- OK1 P2P RCE RIG RNS ROL RPZ SCP SDG SDP SES SSZ TAE TN5 TR2 TWZ UKR UPT VQA WH7 WQ6 YYQ YZZ ZA5 ZCA .-4 .55 .GJ .HR 1CY 1VV 2KS 3O- 6TJ 9M8 AAHBH AAIKJ AALRI AAMRU AAQXK AAYWO AAYXX ABDGV ABDPE ABEFU ABWVN ACRPL ACVFH ADCNI ADMUD ADNMO ADVLN ADXHL AETEA AEUPX AFPUW AGCQF AGQPQ AI. AIGII AKAPO AKBMS AKRWK AKYEP APXCP CITATION FEDTE FGOYB G-2 HVGLF HZ~ H~9 MVM OHT OMK OZT PUQ R2- UBW UHB VH1 X7M YYP ZGI ZHY ZKB ZY4 CGR CUY CVF ECM EFKBS EIF NPM 7X8 7T7 8FD C1K FR3 P64 7S9 L.6 5PM |
ID | FETCH-LOGICAL-c587t-98e8b6058a989ce140e07818a175d589e2e2ff6018c3824cee2d16f32693b22b3 |
IEDL.DBID | IXB |
ISSN | 0092-8674 1097-4172 |
IngestDate | Thu Aug 21 13:42:27 EDT 2025 Wed Jul 02 04:43:51 EDT 2025 Fri Jul 11 06:58:37 EDT 2025 Tue Aug 05 10:17:39 EDT 2025 Mon Jul 21 05:53:14 EDT 2025 Thu Apr 24 23:07:24 EDT 2025 Tue Jul 01 02:16:48 EDT 2025 Fri Feb 23 02:30:35 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Language | English |
License | http://www.elsevier.com/open-access/userlicense/1.0 Copyright © 2014 Elsevier Inc. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c587t-98e8b6058a989ce140e07818a175d589e2e2ff6018c3824cee2d16f32693b22b3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Last equal corresponding authors |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S0092867414000786 |
PMID | 24581500 |
PQID | 1504153118 |
PQPubID | 23479 |
PageCount | 15 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_4017640 proquest_miscellaneous_2000202221 proquest_miscellaneous_1566853323 proquest_miscellaneous_1504153118 pubmed_primary_24581500 crossref_citationtrail_10_1016_j_cell_2014_01_026 crossref_primary_10_1016_j_cell_2014_01_026 elsevier_sciencedirect_doi_10_1016_j_cell_2014_01_026 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2014-02-27 |
PublicationDateYYYYMMDD | 2014-02-27 |
PublicationDate_xml | – month: 02 year: 2014 text: 2014-02-27 day: 27 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Cell |
PublicationTitleAlternate | Cell |
PublicationYear | 2014 |
Publisher | Elsevier Inc |
Publisher_xml | – name: Elsevier Inc |
References | Chen, Liu, Wang, Bertin, Núñez (bib7) 2011; 186 Elinav, Strowig, Henao-Mejia, Flavell (bib10) 2011; 34 Forstner (bib14) 1995; 57 van der Sluis, De Koning, De Bruijn, Velcich, Meijerink, Van Goudoever, Büller, Dekker, Van Seuningen, Renes, Einerhand (bib42) 2006; 131 Grenier, Wang, Manji, Huang, Al-Garawi, Kelly, Carlson, Merriam, Lora, Briskin (bib16) 2002; 530 Kuida, Lippke, Ku, Harding, Livingston, Su, Flavell (bib25) 1995; 267 Lupp, Robertson, Wickham, Sekirov, Champion, Gaynor, Finlay (bib28) 2007; 2 Wysolmerski, Philbrick, Dunbar, Lanske, Kronenberg, Broadus (bib45) 1998; 125 Slack, Hapfelmeier, Stecher, Velykoredko, Stoel, Lawson, Geuking, Beutler, Tedder, Hardt (bib34) 2009; 325 van der Sluis, Bouma, Vincent, Velcich, Carraway, Buller, Einerhand, van Goudoever, Van Seuningen, Renes (bib43) 2008; 88 Kamada, Kim, Sham, Vallance, Puente, Martens, Núñez (bib24) 2012; 336 Stecher, Robbiani, Walker, Westendorf, Barthel, Kremer, Chaffron, Macpherson, Buer, Parkhill (bib36) 2007; 5 Elinav, Henao-Mejia, Flavell (bib12) 2013; 6 Tytgat, Büller, Opdam, Kim, Einerhand, Dekker (bib40) 1994; 107 Johansson, Phillipson, Petersson, Velcich, Holm, Hansson (bib23) 2008; 105 Henao-Mejia, Elinav, Thaiss, Licona-Limon, Flavell (bib20) 2013; 46 Cadwell, Liu, Brown, Miyoshi, Loh, Lennerz, Kishi, Kc, Carrero, Hunt (bib6) 2008; 456 Mizushima, Yamamoto, Matsui, Yoshimori, Ohsumi (bib29) 2004; 15 Henao-Mejia, Elinav, Jin, Hao, Mehal, Strowig, Thaiss, Kau, Eisenbarth, Jurczak (bib18) 2012; 482 Patel, Miyoshi, Beatty, Head, Malvin, Cadwell, Guan, Saitoh, Akira, Seglen (bib32) 2013; 32 Henao-Mejia, Elinav, Thaiss, Flavell (bib19) 2013; 117 Takeda, Tsutsui, Yoshimoto, Adachi, Yoshida, Kishimoto, Okamura, Nakanishi, Akira (bib39) 1998; 8 Elinav, Thaiss, Flavell (bib13) 2013; 1040 Normand, Delanoye-Crespin, Bressenot, Huot, Grandjean, Peyrin-Biroulet, Lemoine, Hot, Chamaillard (bib31) 2011; 108 Bergstrom, Kissoon-Singh, Gibson, Ma, Montero, Sham, Ryz, Huang, Velcich, Finlay (bib5) 2010; 6 Inoue, Nishiumi, Fujishima, Masuda, Shiomi, Yamamoto, Nishida, Azuma, Yoshida (bib22) 2012; 521 Sutterwala, Ogura, Szczepanik, Lara-Tejero, Lichtenberger, Grant, Bertin, Coyle, Galán, Askenase, Flavell (bib38) 2006; 24 Linden, Sutton, Karlsson, Korolik, McGuckin (bib27) 2008; 1 Artis, Wang, Keilbaugh, He, Brenes, Swain, Knight, Donaldson, Lazar, Miller (bib3) 2004; 101 Ushio, Ueno, Kojima, Komatsu, Tanaka, Yamamoto, Ichimura, Ezaki, Nishida, Komazawa-Sakon (bib41) 2011; 127 Stienstra, Joosten, Koenen, van Tits, van Diepen, van den Berg, Rensen, Voshol, Fantuzzi, Hijmans (bib37) 2010; 12 Gill, Wlodarska, Finlay (bib15) 2011; 13 Bergstrom, Guttman, Rumi, Ma, Bouzari, Khan, Gibson, Vogl, Vallance (bib4) 2008; 76 Choi, Ryter, Levine (bib8) 2013; 368 Anand, Malireddi, Lukens, Vogel, Bertin, Lamkanfi, Kanneganti (bib2) 2012; 488 Ambort, Johansson, Gustafsson, Nilsson, Ermund, Johansson, Koeck, Hebert, Hansson (bib1) 2012; 109 Elinav, Strowig, Kau, Henao-Mejia, Thaiss, Booth, Peaper, Bertin, Eisenbarth, Gordon, Flavell (bib11) 2011; 145 Leverkoehne, Gruber (bib26) 2002; 50 Nair, Guild, Du, Zaph, Yancopoulos, Valenzuela, Murphy, Stevens, Karow, Artis (bib30) 2008; 181 Wiles, Pickard, Peng, MacDonald, Frankel (bib44) 2006; 74 Rodríguez-Piñeiro, van der Post, Johansson, Thomsson, Nesvizhskii, Hansson (bib33) 2012; 11 DeSelm, Miller, Zou, Beatty, van Meel, Takahata, Klumperman, Tooze, Teitelbaum, Virgin (bib9) 2011; 21 Songhet, Barthel, Stecher, Müller, Kremer, Hansson, Hardt (bib35) 2011; 6 Grivennikov, Greten, Karin (bib17) 2010; 140 Hu, Elinav, Huber, Strowig, Hao, Hafemann, Jin, Wunderlich, Wunderlich, Eisenbarth, Flavell (bib21) 2013; 110 Johansson (10.1016/j.cell.2014.01.026_bib23) 2008; 105 Patel (10.1016/j.cell.2014.01.026_bib32) 2013; 32 Gill (10.1016/j.cell.2014.01.026_bib15) 2011; 13 Songhet (10.1016/j.cell.2014.01.026_bib35) 2011; 6 DeSelm (10.1016/j.cell.2014.01.026_bib9) 2011; 21 Grenier (10.1016/j.cell.2014.01.026_bib16) 2002; 530 van der Sluis (10.1016/j.cell.2014.01.026_bib42) 2006; 131 Nair (10.1016/j.cell.2014.01.026_bib30) 2008; 181 van der Sluis (10.1016/j.cell.2014.01.026_bib43) 2008; 88 Slack (10.1016/j.cell.2014.01.026_bib34) 2009; 325 Ushio (10.1016/j.cell.2014.01.026_bib41) 2011; 127 Kuida (10.1016/j.cell.2014.01.026_bib25) 1995; 267 Ambort (10.1016/j.cell.2014.01.026_bib1) 2012; 109 Bergstrom (10.1016/j.cell.2014.01.026_bib5) 2010; 6 Kamada (10.1016/j.cell.2014.01.026_bib24) 2012; 336 Stecher (10.1016/j.cell.2014.01.026_bib36) 2007; 5 Tytgat (10.1016/j.cell.2014.01.026_bib40) 1994; 107 Henao-Mejia (10.1016/j.cell.2014.01.026_bib20) 2013; 46 Leverkoehne (10.1016/j.cell.2014.01.026_bib26) 2002; 50 Rodríguez-Piñeiro (10.1016/j.cell.2014.01.026_bib33) 2012; 11 Hu (10.1016/j.cell.2014.01.026_bib21) 2013; 110 Sutterwala (10.1016/j.cell.2014.01.026_bib38) 2006; 24 Elinav (10.1016/j.cell.2014.01.026_bib11) 2011; 145 Mizushima (10.1016/j.cell.2014.01.026_bib29) 2004; 15 Wysolmerski (10.1016/j.cell.2014.01.026_bib45) 1998; 125 Anand (10.1016/j.cell.2014.01.026_bib2) 2012; 488 Chen (10.1016/j.cell.2014.01.026_bib7) 2011; 186 Henao-Mejia (10.1016/j.cell.2014.01.026_bib19) 2013; 117 Henao-Mejia (10.1016/j.cell.2014.01.026_bib18) 2012; 482 Elinav (10.1016/j.cell.2014.01.026_bib10) 2011; 34 Forstner (10.1016/j.cell.2014.01.026_bib14) 1995; 57 Inoue (10.1016/j.cell.2014.01.026_bib22) 2012; 521 Normand (10.1016/j.cell.2014.01.026_bib31) 2011; 108 Lupp (10.1016/j.cell.2014.01.026_bib28) 2007; 2 Artis (10.1016/j.cell.2014.01.026_bib3) 2004; 101 Bergstrom (10.1016/j.cell.2014.01.026_bib4) 2008; 76 Choi (10.1016/j.cell.2014.01.026_bib8) 2013; 368 Elinav (10.1016/j.cell.2014.01.026_bib12) 2013; 6 Linden (10.1016/j.cell.2014.01.026_bib27) 2008; 1 Stienstra (10.1016/j.cell.2014.01.026_bib37) 2010; 12 Elinav (10.1016/j.cell.2014.01.026_bib13) 2013; 1040 Grivennikov (10.1016/j.cell.2014.01.026_bib17) 2010; 140 Cadwell (10.1016/j.cell.2014.01.026_bib6) 2008; 456 Takeda (10.1016/j.cell.2014.01.026_bib39) 1998; 8 Wiles (10.1016/j.cell.2014.01.026_bib44) 2006; 74 24629330 - Cell Host Microbe. 2014 Mar 12;15(3):251-2. doi: 10.1016/j.chom.2014.02.014. 24782564 - Sci Signal. 2014 Apr 29;7(323):pe11. doi: 10.1126/scisignal.2005357. |
References_xml | – volume: 46 start-page: 66 year: 2013 end-page: 73 ident: bib20 article-title: Role of the intestinal microbiome in liver disease publication-title: J. Autoimmun. – volume: 74 start-page: 5391 year: 2006 end-page: 5396 ident: bib44 article-title: In vivo bioluminescence imaging of the murine pathogen Citrobacter rodentium publication-title: Infect. Immun. – volume: 5 start-page: 2177 year: 2007 end-page: 2189 ident: bib36 article-title: Salmonella enterica serovar typhimurium exploits inflammation to compete with the intestinal microbiota publication-title: PLoS Biol. – volume: 34 start-page: 665 year: 2011 end-page: 679 ident: bib10 article-title: Regulation of the antimicrobial response by NLR proteins publication-title: Immunity – volume: 11 start-page: 1879 year: 2012 end-page: 1890 ident: bib33 article-title: Proteomic study of the mucin granulae in an intestinal goblet cell model publication-title: J. Proteome Res. – volume: 488 start-page: 389 year: 2012 end-page: 393 ident: bib2 article-title: NLRP6 negatively regulates innate immunity and host defence against bacterial pathogens publication-title: Nature – volume: 482 start-page: 179 year: 2012 end-page: 185 ident: bib18 article-title: Inflammasome-mediated dysbiosis regulates progression of NAFLD and obesity publication-title: Nature – volume: 13 start-page: 660 year: 2011 end-page: 669 ident: bib15 article-title: Roadblocks in the gut: barriers to enteric infection publication-title: Cell. Microbiol. – volume: 2 start-page: 204 year: 2007 ident: bib28 article-title: Host-mediated inflammation disrupts the intestinal microbiota and promotes the overgrowth of Enterobacteriaceae publication-title: Cell Host Microbe – volume: 181 start-page: 4709 year: 2008 end-page: 4715 ident: bib30 article-title: Goblet cell-derived resistin-like molecule beta augments CD4+ T cell production of IFN-gamma and infection-induced intestinal inflammation publication-title: J. Immunol. – volume: 325 start-page: 617 year: 2009 end-page: 620 ident: bib34 article-title: Innate and adaptive immunity cooperate flexibly to maintain host-microbiota mutualism publication-title: Science – volume: 6 start-page: e22459 year: 2011 ident: bib35 article-title: Stromal IFN-γR-signaling modulates goblet cell function during Salmonella Typhimurium infection publication-title: PLoS ONE – volume: 6 start-page: 4 year: 2013 end-page: 13 ident: bib12 article-title: Integrative inflammasome activity in the regulation of intestinal mucosal immune responses publication-title: Mucosal Immunol. – volume: 57 start-page: 585 year: 1995 end-page: 605 ident: bib14 article-title: Signal transduction, packaging and secretion of mucins publication-title: Annu. Rev. Physiol. – volume: 267 start-page: 2000 year: 1995 end-page: 2003 ident: bib25 article-title: Altered cytokine export and apoptosis in mice deficient in interleukin-1 beta converting enzyme publication-title: Science – volume: 456 start-page: 259 year: 2008 end-page: 263 ident: bib6 article-title: A key role for autophagy and the autophagy gene Atg16l1 in mouse and human intestinal Paneth cells publication-title: Nature – volume: 6 start-page: e1000902 year: 2010 ident: bib5 article-title: Muc2 protects against lethal infectious colitis by disassociating pathogenic and commensal bacteria from the colonic mucosa publication-title: PLoS Pathog. – volume: 109 start-page: 5645 year: 2012 end-page: 5650 ident: bib1 article-title: Calcium and pH-dependent packing and release of the gel-forming MUC2 mucin publication-title: Proc. Natl. Acad. Sci. USA – volume: 107 start-page: 1352 year: 1994 end-page: 1363 ident: bib40 article-title: Biosynthesis of human colonic mucin: Muc2 is the prominent secretory mucin publication-title: Gastroenterology – volume: 21 start-page: 966 year: 2011 end-page: 974 ident: bib9 article-title: Autophagy proteins regulate the secretory component of osteoclastic bone resorption publication-title: Dev. Cell – volume: 530 start-page: 73 year: 2002 end-page: 78 ident: bib16 article-title: Functional screening of five PYPAF family members identifies PYPAF5 as a novel regulator of NF-kappaB and caspase-1 publication-title: FEBS Lett. – volume: 140 start-page: 883 year: 2010 end-page: 899 ident: bib17 article-title: Immunity, inflammation, and cancer publication-title: Cell – volume: 108 start-page: 9601 year: 2011 end-page: 9606 ident: bib31 article-title: Nod-like receptor pyrin domain-containing protein 6 (NLRP6) controls epithelial self-renewal and colorectal carcinogenesis upon injury publication-title: Proc. Natl. Acad. Sci. USA – volume: 127 start-page: 1267 year: 2011 end-page: 1276 ident: bib41 article-title: Crucial role for autophagy in degranulation of mast cells publication-title: J. Allergy Clin. Immunol. – volume: 12 start-page: 593 year: 2010 end-page: 605 ident: bib37 article-title: The inflammasome-mediated caspase-1 activation controls adipocyte differentiation and insulin sensitivity publication-title: Cell Metab. – volume: 186 start-page: 7187 year: 2011 end-page: 7194 ident: bib7 article-title: A functional role for Nlrp6 in intestinal inflammation and tumorigenesis publication-title: J. Immunol. – volume: 110 start-page: 9862 year: 2013 end-page: 9867 ident: bib21 article-title: Microbiota-induced activation of epithelial IL-6 signaling links inflammasome-driven inflammation with transmissible cancer publication-title: Proc. Natl. Acad. Sci. USA – volume: 8 start-page: 383 year: 1998 end-page: 390 ident: bib39 article-title: Defective NK cell activity and Th1 response in IL-18-deficient mice publication-title: Immunity – volume: 1040 start-page: 185 year: 2013 end-page: 194 ident: bib13 article-title: Analysis of microbiota alterations in inflammasome-deficient mice publication-title: Methods Mol. Biol. – volume: 521 start-page: 95 year: 2012 end-page: 101 ident: bib22 article-title: Autophagy in the intestinal epithelium regulates Citrobacter rodentium infection publication-title: Arch. Biochem. Biophys. – volume: 50 start-page: 829 year: 2002 end-page: 838 ident: bib26 article-title: The murine mCLCA3 (alias gob-5) protein is located in the mucin granule membranes of intestinal, respiratory, and uterine goblet cells publication-title: J. Histochem. Cytochem. – volume: 32 start-page: 3130 year: 2013 end-page: 3144 ident: bib32 article-title: Autophagy proteins control goblet cell function by potentiating reactive oxygen species production publication-title: EMBO J. – volume: 101 start-page: 13596 year: 2004 end-page: 13600 ident: bib3 article-title: RELMbeta/FIZZ2 is a goblet cell-specific immune-effector molecule in the gastrointestinal tract publication-title: Proc. Natl. Acad. Sci. USA – volume: 76 start-page: 796 year: 2008 end-page: 811 ident: bib4 article-title: Modulation of intestinal goblet cell function during infection by an attaching and effacing bacterial pathogen publication-title: Infect. Immun. – volume: 125 start-page: 1285 year: 1998 end-page: 1294 ident: bib45 article-title: Rescue of the parathyroid hormone-related protein knockout mouse demonstrates that parathyroid hormone-related protein is essential for mammary gland development publication-title: Development – volume: 15 start-page: 1101 year: 2004 end-page: 1111 ident: bib29 article-title: In vivo analysis of autophagy in response to nutrient starvation using transgenic mice expressing a fluorescent autophagosome marker publication-title: Mol. Biol. Cell – volume: 117 start-page: 73 year: 2013 end-page: 97 ident: bib19 article-title: The intestinal microbiota in chronic liver disease publication-title: Adv. Immunol. – volume: 336 start-page: 1325 year: 2012 end-page: 1329 ident: bib24 article-title: Regulated virulence controls the ability of a pathogen to compete with the gut microbiota publication-title: Science – volume: 1 start-page: 183 year: 2008 end-page: 197 ident: bib27 article-title: Mucins in the mucosal barrier to infection publication-title: Mucosal Immunol. – volume: 105 start-page: 15064 year: 2008 end-page: 15069 ident: bib23 article-title: The inner of the two Muc2 mucin-dependent mucus layers in colon is devoid of bacteria publication-title: Proc. Natl. Acad. Sci. USA – volume: 24 start-page: 317 year: 2006 end-page: 327 ident: bib38 article-title: Critical role for NALP3/CIAS1/Cryopyrin in innate and adaptive immunity through its regulation of caspase-1 publication-title: Immunity – volume: 131 start-page: 117 year: 2006 end-page: 129 ident: bib42 article-title: Muc2-deficient mice spontaneously develop colitis, indicating that MUC2 is critical for colonic protection publication-title: Gastroenterology – volume: 88 start-page: 634 year: 2008 end-page: 642 ident: bib43 article-title: Combined defects in epithelial and immunoregulatory factors exacerbate the pathogenesis of inflammation: mucin 2-interleukin 10-deficient mice publication-title: Lab. Invest. – volume: 145 start-page: 745 year: 2011 end-page: 757 ident: bib11 article-title: NLRP6 inflammasome regulates colonic microbial ecology and risk for colitis publication-title: Cell – volume: 368 start-page: 1845 year: 2013 end-page: 1846 ident: bib8 article-title: Autophagy in human health and disease publication-title: N. Engl. J. Med. – volume: 456 start-page: 259 year: 2008 ident: 10.1016/j.cell.2014.01.026_bib6 article-title: A key role for autophagy and the autophagy gene Atg16l1 in mouse and human intestinal Paneth cells publication-title: Nature doi: 10.1038/nature07416 – volume: 13 start-page: 660 year: 2011 ident: 10.1016/j.cell.2014.01.026_bib15 article-title: Roadblocks in the gut: barriers to enteric infection publication-title: Cell. Microbiol. doi: 10.1111/j.1462-5822.2011.01578.x – volume: 140 start-page: 883 year: 2010 ident: 10.1016/j.cell.2014.01.026_bib17 article-title: Immunity, inflammation, and cancer publication-title: Cell doi: 10.1016/j.cell.2010.01.025 – volume: 336 start-page: 1325 year: 2012 ident: 10.1016/j.cell.2014.01.026_bib24 article-title: Regulated virulence controls the ability of a pathogen to compete with the gut microbiota publication-title: Science doi: 10.1126/science.1222195 – volume: 325 start-page: 617 year: 2009 ident: 10.1016/j.cell.2014.01.026_bib34 article-title: Innate and adaptive immunity cooperate flexibly to maintain host-microbiota mutualism publication-title: Science doi: 10.1126/science.1172747 – volume: 530 start-page: 73 year: 2002 ident: 10.1016/j.cell.2014.01.026_bib16 article-title: Functional screening of five PYPAF family members identifies PYPAF5 as a novel regulator of NF-kappaB and caspase-1 publication-title: FEBS Lett. doi: 10.1016/S0014-5793(02)03416-6 – volume: 108 start-page: 9601 year: 2011 ident: 10.1016/j.cell.2014.01.026_bib31 article-title: Nod-like receptor pyrin domain-containing protein 6 (NLRP6) controls epithelial self-renewal and colorectal carcinogenesis upon injury publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1100981108 – volume: 117 start-page: 73 year: 2013 ident: 10.1016/j.cell.2014.01.026_bib19 article-title: The intestinal microbiota in chronic liver disease publication-title: Adv. Immunol. doi: 10.1016/B978-0-12-410524-9.00003-7 – volume: 1 start-page: 183 year: 2008 ident: 10.1016/j.cell.2014.01.026_bib27 article-title: Mucins in the mucosal barrier to infection publication-title: Mucosal Immunol. doi: 10.1038/mi.2008.5 – volume: 1040 start-page: 185 year: 2013 ident: 10.1016/j.cell.2014.01.026_bib13 article-title: Analysis of microbiota alterations in inflammasome-deficient mice publication-title: Methods Mol. Biol. doi: 10.1007/978-1-62703-523-1_14 – volume: 2 start-page: 204 year: 2007 ident: 10.1016/j.cell.2014.01.026_bib28 article-title: Host-mediated inflammation disrupts the intestinal microbiota and promotes the overgrowth of Enterobacteriaceae publication-title: Cell Host Microbe doi: 10.1016/j.chom.2007.08.002 – volume: 181 start-page: 4709 year: 2008 ident: 10.1016/j.cell.2014.01.026_bib30 article-title: Goblet cell-derived resistin-like molecule beta augments CD4+ T cell production of IFN-gamma and infection-induced intestinal inflammation publication-title: J. Immunol. doi: 10.4049/jimmunol.181.7.4709 – volume: 127 start-page: 1267 year: 2011 ident: 10.1016/j.cell.2014.01.026_bib41 article-title: Crucial role for autophagy in degranulation of mast cells publication-title: J. Allergy Clin. Immunol. doi: 10.1016/j.jaci.2010.12.1078 – volume: 368 start-page: 1845 year: 2013 ident: 10.1016/j.cell.2014.01.026_bib8 article-title: Autophagy in human health and disease publication-title: N. Engl. J. Med. doi: 10.1056/NEJMra1205406 – volume: 12 start-page: 593 year: 2010 ident: 10.1016/j.cell.2014.01.026_bib37 article-title: The inflammasome-mediated caspase-1 activation controls adipocyte differentiation and insulin sensitivity publication-title: Cell Metab. doi: 10.1016/j.cmet.2010.11.011 – volume: 131 start-page: 117 year: 2006 ident: 10.1016/j.cell.2014.01.026_bib42 article-title: Muc2-deficient mice spontaneously develop colitis, indicating that MUC2 is critical for colonic protection publication-title: Gastroenterology doi: 10.1053/j.gastro.2006.04.020 – volume: 32 start-page: 3130 year: 2013 ident: 10.1016/j.cell.2014.01.026_bib32 article-title: Autophagy proteins control goblet cell function by potentiating reactive oxygen species production publication-title: EMBO J. doi: 10.1038/emboj.2013.233 – volume: 105 start-page: 15064 year: 2008 ident: 10.1016/j.cell.2014.01.026_bib23 article-title: The inner of the two Muc2 mucin-dependent mucus layers in colon is devoid of bacteria publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0803124105 – volume: 74 start-page: 5391 year: 2006 ident: 10.1016/j.cell.2014.01.026_bib44 article-title: In vivo bioluminescence imaging of the murine pathogen Citrobacter rodentium publication-title: Infect. Immun. doi: 10.1128/IAI.00848-06 – volume: 6 start-page: 4 year: 2013 ident: 10.1016/j.cell.2014.01.026_bib12 article-title: Integrative inflammasome activity in the regulation of intestinal mucosal immune responses publication-title: Mucosal Immunol. doi: 10.1038/mi.2012.115 – volume: 46 start-page: 66 year: 2013 ident: 10.1016/j.cell.2014.01.026_bib20 article-title: Role of the intestinal microbiome in liver disease publication-title: J. Autoimmun. doi: 10.1016/j.jaut.2013.07.001 – volume: 15 start-page: 1101 year: 2004 ident: 10.1016/j.cell.2014.01.026_bib29 article-title: In vivo analysis of autophagy in response to nutrient starvation using transgenic mice expressing a fluorescent autophagosome marker publication-title: Mol. Biol. Cell doi: 10.1091/mbc.E03-09-0704 – volume: 34 start-page: 665 year: 2011 ident: 10.1016/j.cell.2014.01.026_bib10 article-title: Regulation of the antimicrobial response by NLR proteins publication-title: Immunity doi: 10.1016/j.immuni.2011.05.007 – volume: 8 start-page: 383 year: 1998 ident: 10.1016/j.cell.2014.01.026_bib39 article-title: Defective NK cell activity and Th1 response in IL-18-deficient mice publication-title: Immunity doi: 10.1016/S1074-7613(00)80543-9 – volume: 521 start-page: 95 year: 2012 ident: 10.1016/j.cell.2014.01.026_bib22 article-title: Autophagy in the intestinal epithelium regulates Citrobacter rodentium infection publication-title: Arch. Biochem. Biophys. doi: 10.1016/j.abb.2012.03.019 – volume: 267 start-page: 2000 year: 1995 ident: 10.1016/j.cell.2014.01.026_bib25 article-title: Altered cytokine export and apoptosis in mice deficient in interleukin-1 beta converting enzyme publication-title: Science doi: 10.1126/science.7535475 – volume: 50 start-page: 829 year: 2002 ident: 10.1016/j.cell.2014.01.026_bib26 article-title: The murine mCLCA3 (alias gob-5) protein is located in the mucin granule membranes of intestinal, respiratory, and uterine goblet cells publication-title: J. Histochem. Cytochem. doi: 10.1177/002215540205000609 – volume: 6 start-page: e22459 year: 2011 ident: 10.1016/j.cell.2014.01.026_bib35 article-title: Stromal IFN-γR-signaling modulates goblet cell function during Salmonella Typhimurium infection publication-title: PLoS ONE doi: 10.1371/journal.pone.0022459 – volume: 6 start-page: e1000902 year: 2010 ident: 10.1016/j.cell.2014.01.026_bib5 article-title: Muc2 protects against lethal infectious colitis by disassociating pathogenic and commensal bacteria from the colonic mucosa publication-title: PLoS Pathog. doi: 10.1371/journal.ppat.1000902 – volume: 11 start-page: 1879 year: 2012 ident: 10.1016/j.cell.2014.01.026_bib33 article-title: Proteomic study of the mucin granulae in an intestinal goblet cell model publication-title: J. Proteome Res. doi: 10.1021/pr2010988 – volume: 125 start-page: 1285 year: 1998 ident: 10.1016/j.cell.2014.01.026_bib45 article-title: Rescue of the parathyroid hormone-related protein knockout mouse demonstrates that parathyroid hormone-related protein is essential for mammary gland development publication-title: Development doi: 10.1242/dev.125.7.1285 – volume: 76 start-page: 796 year: 2008 ident: 10.1016/j.cell.2014.01.026_bib4 article-title: Modulation of intestinal goblet cell function during infection by an attaching and effacing bacterial pathogen publication-title: Infect. Immun. doi: 10.1128/IAI.00093-07 – volume: 24 start-page: 317 year: 2006 ident: 10.1016/j.cell.2014.01.026_bib38 article-title: Critical role for NALP3/CIAS1/Cryopyrin in innate and adaptive immunity through its regulation of caspase-1 publication-title: Immunity doi: 10.1016/j.immuni.2006.02.004 – volume: 488 start-page: 389 year: 2012 ident: 10.1016/j.cell.2014.01.026_bib2 article-title: NLRP6 negatively regulates innate immunity and host defence against bacterial pathogens publication-title: Nature doi: 10.1038/nature11250 – volume: 110 start-page: 9862 year: 2013 ident: 10.1016/j.cell.2014.01.026_bib21 article-title: Microbiota-induced activation of epithelial IL-6 signaling links inflammasome-driven inflammation with transmissible cancer publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1307575110 – volume: 109 start-page: 5645 year: 2012 ident: 10.1016/j.cell.2014.01.026_bib1 article-title: Calcium and pH-dependent packing and release of the gel-forming MUC2 mucin publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1120269109 – volume: 88 start-page: 634 year: 2008 ident: 10.1016/j.cell.2014.01.026_bib43 article-title: Combined defects in epithelial and immunoregulatory factors exacerbate the pathogenesis of inflammation: mucin 2-interleukin 10-deficient mice publication-title: Lab. Invest. doi: 10.1038/labinvest.2008.28 – volume: 145 start-page: 745 year: 2011 ident: 10.1016/j.cell.2014.01.026_bib11 article-title: NLRP6 inflammasome regulates colonic microbial ecology and risk for colitis publication-title: Cell doi: 10.1016/j.cell.2011.04.022 – volume: 482 start-page: 179 year: 2012 ident: 10.1016/j.cell.2014.01.026_bib18 article-title: Inflammasome-mediated dysbiosis regulates progression of NAFLD and obesity publication-title: Nature doi: 10.1038/nature10809 – volume: 21 start-page: 966 year: 2011 ident: 10.1016/j.cell.2014.01.026_bib9 article-title: Autophagy proteins regulate the secretory component of osteoclastic bone resorption publication-title: Dev. Cell doi: 10.1016/j.devcel.2011.08.016 – volume: 107 start-page: 1352 year: 1994 ident: 10.1016/j.cell.2014.01.026_bib40 article-title: Biosynthesis of human colonic mucin: Muc2 is the prominent secretory mucin publication-title: Gastroenterology doi: 10.1016/0016-5085(94)90537-1 – volume: 57 start-page: 585 year: 1995 ident: 10.1016/j.cell.2014.01.026_bib14 article-title: Signal transduction, packaging and secretion of mucins publication-title: Annu. Rev. Physiol. doi: 10.1146/annurev.ph.57.030195.003101 – volume: 186 start-page: 7187 year: 2011 ident: 10.1016/j.cell.2014.01.026_bib7 article-title: A functional role for Nlrp6 in intestinal inflammation and tumorigenesis publication-title: J. Immunol. doi: 10.4049/jimmunol.1100412 – volume: 101 start-page: 13596 year: 2004 ident: 10.1016/j.cell.2014.01.026_bib3 article-title: RELMbeta/FIZZ2 is a goblet cell-specific immune-effector molecule in the gastrointestinal tract publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0404034101 – volume: 5 start-page: 2177 year: 2007 ident: 10.1016/j.cell.2014.01.026_bib36 article-title: Salmonella enterica serovar typhimurium exploits inflammation to compete with the intestinal microbiota publication-title: PLoS Biol. doi: 10.1371/journal.pbio.0050244 – reference: 24782564 - Sci Signal. 2014 Apr 29;7(323):pe11. doi: 10.1126/scisignal.2005357. – reference: 24629330 - Cell Host Microbe. 2014 Mar 12;15(3):251-2. doi: 10.1016/j.chom.2014.02.014. |
SSID | ssj0008555 |
Score | 2.6155984 |
Snippet | Mucus production by goblet cells of the large intestine serves as a crucial antimicrobial protective mechanism at the interface between the eukaryotic and... Mucus production by goblet cells of the large intestine serves as a crucial antimicrobial protective mechanism at the interface between the eukaryotic and... Summary Mucus production by goblet cells of the large intestine serves as a crucial antimicrobial protective mechanism at the interface between the eukaryotic... Mucus production by goblet cells of the large intestine serves as a crucial anti microbial protective mechanism at the interface between the eukaryotic and... |
SourceID | pubmedcentral proquest pubmed crossref elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1045 |
SubjectTerms | Animals Autophagy biogeography chronic diseases Colitis - immunology Colitis - microbiology Colon - immunology Colon - microbiology ecosystems enteropathogens Epithelial Cells - immunology Epithelial Cells - metabolism exocytosis goblet cells Goblet Cells - cytology Goblet Cells - immunology Inflammasomes - immunology intestinal microorganisms Intestinal Mucosa - cytology Intestinal Mucosa - immunology Intestinal Mucosa - metabolism large intestine Mice mucins mucus Mucus - metabolism mutualism prokaryotic cells Receptors, Cell Surface - immunology secretion |
Title | NLRP6 Inflammasome Orchestrates the Colonic Host-Microbial Interface by Regulating Goblet Cell Mucus Secretion |
URI | https://dx.doi.org/10.1016/j.cell.2014.01.026 https://www.ncbi.nlm.nih.gov/pubmed/24581500 https://www.proquest.com/docview/1504153118 https://www.proquest.com/docview/1566853323 https://www.proquest.com/docview/2000202221 https://pubmed.ncbi.nlm.nih.gov/PMC4017640 |
Volume | 156 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PT9swFLYQEhKXaRts634gT-KGIhLHduzjVsEKWmFiQ-rNclxHCxopIumB_37v2UlFh-hhp6rNSxPns_0-O-99j5DDOcukc1WVlFqohDslE5S_TQqvSmC8uc845g5PL-Tkmp_PxGyLjIdcGAyr7Of-OKeH2br_5bh_msd3dY05vpopCR6RB0eHsts5VyGJb_Z1NRsrIWIVAw0jH6z7xJkY44Wb4xjexaN0p3zOOT0ln__GUD5ySqcvyYueTdIv8YZfkS3fvCY7sb7kwx5pLr5f_ZD0rKkA91vbLm49vbwPJbJQIaKlwP7oGIyb2tHJou2SaR2EmeA_w1ZhZZ2n5QO9ihXrwc3Rb1iApqNjaBOdLt2ypT-ReSK---T69OTXeJL0BRYSJ1TRJVoBIvhe1GqlHcCSetT-URY4xVwo7ZlnVQVLNuVyxTj4UzbPZAWMT-clY2X-hmw3i8a_I9Q6GPyptlyhoB73tnQsKy18KA_Y8BHJhidrXK8-jkUw_pghzOzGIBoG0TBpZgCNETlanXMXtTc2WosBMLPWgww4h43nfR7QNTC08LBt_GLZGuDKQG9yWIJtspESGE_O8udtWHjfC0QsG5G3sdes2sO4UHCddESKtf60MkD57_UjTf07yIDDyriQPH3_n-3-QHbxW0jPLz6S7e5-6T8BwerKA3Rv4iCMo7_7tiSS |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nj9MwEB0tixBcEN-UTyNxQ9EmjuPYR6hYWmgLWnal3izHdUQQm6426WH_PTNxUlHQ9sCpUjxJ4zzb85zMvAF4u-KJdK4so0JnKhJOyYjkb6PcqwIZb-oTQbnD84WcnInPy2x5AOMhF4bCKvu1P6zp3WrdHznqn-bRRVVRjq_mSqJHFJ2jkzfgJrKBnOo3TJcftsuxyrJQxkDj1EfzPnMmBHnR23GK7xJBu1Ne553-ZZ9_B1H-4ZWO78Hdnk6y9-GO78OBrx_ArVBg8uoh1IvZyTfJpnWJwJ_bZn3u2dfLrkYWSUQ0DOkfG6NxXTk2WTdtNK86ZSa8ZveusLTOs-KKnYSS9ejn2CeqQNOyMfaJzTdu07DvRD0J4EdwdvzxdDyJ-goLkctU3kZaIST0YdRqpR3iEnsS_1EWScUqU9pzz8sS92zKpYoLdKh8lcgSKZ9OC86L9DEc1uvaPwVmHc7-WFuhSFFPeFs4nhQWf5RHcMQIkuHJGtfLj1MVjF9miDP7aQgNQ2iYODGIxgjebc-5COIbe62zATCzM4QMeoe9570Z0DU4t6jZ1n69aQySZeQ3Ke7B9tlIiZQn5en1Nrz74ItMLBnBkzBqtv3hIlP4P_EI8p3xtDUg_e_dlrr60emA49Y4lyJ-9p_9fg23J6fzmZlNF1-ewx1q6XL18xdw2F5u_EtkW23xqptNvwHFHSbL |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=NLRP6+Inflammasome+Orchestrates+the+Colonic+Host-Microbial+Interface+by+Regulating+Goblet+Cell+Mucus+Secretion&rft.jtitle=Cell&rft.au=Wlodarska%2C+Marta&rft.au=Thaiss%2C+Christoph%C2%A0A.&rft.au=Nowarski%2C+Roni&rft.au=Henao-Mejia%2C+Jorge&rft.date=2014-02-27&rft.pub=Elsevier+Inc&rft.issn=0092-8674&rft.eissn=1097-4172&rft.volume=156&rft.issue=5&rft.spage=1045&rft.epage=1059&rft_id=info:doi/10.1016%2Fj.cell.2014.01.026&rft.externalDocID=S0092867414000786 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0092-8674&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0092-8674&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0092-8674&client=summon |