Zika Virus Infection during Pregnancy in Mice Causes Placental Damage and Fetal Demise
Zika virus (ZIKV) infection in pregnant women causes intrauterine growth restriction, spontaneous abortion, and microcephaly. Here, we describe two mouse models of placental and fetal disease associated with in utero transmission of ZIKV. Female mice lacking type I interferon signaling (Ifnar1−/−) c...
Saved in:
Published in | Cell Vol. 165; no. 5; pp. 1081 - 1091 |
---|---|
Main Authors | , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
19.05.2016
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Zika virus (ZIKV) infection in pregnant women causes intrauterine growth restriction, spontaneous abortion, and microcephaly. Here, we describe two mouse models of placental and fetal disease associated with in utero transmission of ZIKV. Female mice lacking type I interferon signaling (Ifnar1−/−) crossed to wild-type (WT) males produced heterozygous fetuses resembling the immune status of human fetuses. Maternal inoculation at embryonic day 6.5 (E6.5) or E7.5 resulted in fetal demise that was associated with ZIKV infection of the placenta and fetal brain. We identified ZIKV within trophoblasts of the maternal and fetal placenta, consistent with a trans-placental infection route. Antibody blockade of Ifnar1 signaling in WT pregnant mice enhanced ZIKV trans-placental infection although it did not result in fetal death. These models will facilitate the study of ZIKV pathogenesis, in utero transmission, and testing of therapies and vaccines to prevent congenital malformations.
[Display omitted]
•Establishment of an in utero transmission model of ZIKV infection•ZIKV infects placental cells and results in intrauterine growth restriction•ZIKV infection and injury of the fetal brain is observed•ZIKV infection of fetuses can occur by a trans-placental route
Zika virus infection of mice early in pregnancy results in infection of the placenta and fetal brain, causing a fetal syndrome that resembles the intrauterine growth restriction and spontaneous abortion observed in ZIKV-infected pregnant women. |
---|---|
AbstractList | Zika virus (ZIKV) infection in pregnant women causes intrauterine growth restriction, spontaneous abortion, and microcephaly. Here, we describe two mouse models of placental and fetal disease associated with in utero transmission of ZIKV. Female mice lacking type I interferon signaling (Ifnar1−/−) crossed to wild-type (WT) males produced heterozygous fetuses resembling the immune status of human fetuses. Maternal inoculation at embryonic day 6.5 (E6.5) or E7.5 resulted in fetal demise that was associated with ZIKV infection of the placenta and fetal brain. We identified ZIKV within trophoblasts of the maternal and fetal placenta, consistent with a trans-placental infection route. Antibody blockade of Ifnar1 signaling in WT pregnant mice enhanced ZIKV trans-placental infection although it did not result in fetal death. These models will facilitate the study of ZIKV pathogenesis, in utero transmission, and testing of therapies and vaccines to prevent congenital malformations. Zika virus (ZIKV) infection in pregnant women causes intrauterine growth restriction, spontaneous abortion, and microcephaly. Here, we describe two mouse models of placental and fetal disease associated with in utero transmission of ZIKV. Female mice lacking type I interferon signaling (Ifnar1(-/-)) crossed to wild-type (WT) males produced heterozygous fetuses resembling the immune status of human fetuses. Maternal inoculation at embryonic day 6.5 (E6.5) or E7.5 resulted in fetal demise that was associated with ZIKV infection of the placenta and fetal brain. We identified ZIKV within trophoblasts of the maternal and fetal placenta, consistent with a trans-placental infection route. Antibody blockade of Ifnar1 signaling in WT pregnant mice enhanced ZIKV trans-placental infection although it did not result in fetal death. These models will facilitate the study of ZIKV pathogenesis, in utero transmission, and testing of therapies and vaccines to prevent congenital malformations. Zika virus (ZIKV) infection in pregnant women causes intrauterine growth restriction, spontaneous abortion, and microcephaly. Here, we describe two mouse models of placental and fetal disease associated with in utero transmission of ZIKV. Female mice lacking type I interferon signaling (Ifnar1(-/-)) crossed to wild-type (WT) males produced heterozygous fetuses resembling the immune status of human fetuses. Maternal inoculation at embryonic day 6.5 (E6.5) or E7.5 resulted in fetal demise that was associated with ZIKV infection of the placenta and fetal brain. We identified ZIKV within trophoblasts of the maternal and fetal placenta, consistent with a trans-placental infection route. Antibody blockade of Ifnar1 signaling in WT pregnant mice enhanced ZIKV trans-placental infection although it did not result in fetal death. These models will facilitate the study of ZIKV pathogenesis, in utero transmission, and testing of therapies and vaccines to prevent congenital malformations.Zika virus (ZIKV) infection in pregnant women causes intrauterine growth restriction, spontaneous abortion, and microcephaly. Here, we describe two mouse models of placental and fetal disease associated with in utero transmission of ZIKV. Female mice lacking type I interferon signaling (Ifnar1(-/-)) crossed to wild-type (WT) males produced heterozygous fetuses resembling the immune status of human fetuses. Maternal inoculation at embryonic day 6.5 (E6.5) or E7.5 resulted in fetal demise that was associated with ZIKV infection of the placenta and fetal brain. We identified ZIKV within trophoblasts of the maternal and fetal placenta, consistent with a trans-placental infection route. Antibody blockade of Ifnar1 signaling in WT pregnant mice enhanced ZIKV trans-placental infection although it did not result in fetal death. These models will facilitate the study of ZIKV pathogenesis, in utero transmission, and testing of therapies and vaccines to prevent congenital malformations. Zika virus (ZIKV) infection in pregnant women causes intrauterine growth restriction, spontaneous abortion, and microcephaly. Here, we describe two mouse models of placental and fetal disease associated with in utero transmission of ZIKV. Female mice lacking type I interferon signaling ( Ifnar1 −/− ) crossed to wild-type (WT) males produced heterozygous fetuses resembling the immune status of human fetuses. Maternal inoculation at embryonic day 6.5 (E6.5) or E7.5 resulted in fetal demise that was associated with ZIKV infection of the placenta and fetal brain. We identified ZIKV within trophoblasts of the maternal and fetal placenta, consistent with a trans-placental infection route. Antibody blockade of Ifnar1 signaling in WT pregnant mice enhanced ZIKV trans-placental infection although it did not result in fetal death. These models will facilitate the study of ZIKV pathogenesis, in utero transmission, and testing of therapies and vaccines to prevent congenital malformations. Zika virus (ZIKV) infection in pregnant women causes intrauterine growth restriction, spontaneous abortion, and microcephaly. Here, we describe two mouse models of placental and fetal disease associated with in utero transmission of ZIKV. Female mice lacking type I interferon signaling (Ifnar1 super(-/-)) crossed to wild-type (WT) males produced heterozygous fetuses resembling the immune status of human fetuses. Maternal inoculation at embryonic day 6.5 (E6.5) or E7.5 resulted in fetal demise that was associated with ZIKV infection of the placenta and fetal brain. We identified ZIKV within trophoblasts of the maternal and fetal placenta, consistent with a trans-placental infection route. Antibody blockade of Ifnar1 signaling in WT pregnant mice enhanced ZIKV trans-placental infection although it did not result in fetal death. These models will facilitate the study of ZIKV pathogenesis, in utero transmission, and testing of therapies and vaccines to prevent congenital malformations. Zika virus (ZIKV) infection in pregnant women causes intrauterine growth restriction, spontaneous abortion, and microcephaly. Here, we describe two mouse models of placental and fetal disease associated with in utero transmission of ZIKV. Female mice lacking type I interferon signaling (Ifnar1−/−) crossed to wild-type (WT) males produced heterozygous fetuses resembling the immune status of human fetuses. Maternal inoculation at embryonic day 6.5 (E6.5) or E7.5 resulted in fetal demise that was associated with ZIKV infection of the placenta and fetal brain. We identified ZIKV within trophoblasts of the maternal and fetal placenta, consistent with a trans-placental infection route. Antibody blockade of Ifnar1 signaling in WT pregnant mice enhanced ZIKV trans-placental infection although it did not result in fetal death. These models will facilitate the study of ZIKV pathogenesis, in utero transmission, and testing of therapies and vaccines to prevent congenital malformations. [Display omitted] •Establishment of an in utero transmission model of ZIKV infection•ZIKV infects placental cells and results in intrauterine growth restriction•ZIKV infection and injury of the fetal brain is observed•ZIKV infection of fetuses can occur by a trans-placental route Zika virus infection of mice early in pregnancy results in infection of the placenta and fetal brain, causing a fetal syndrome that resembles the intrauterine growth restriction and spontaneous abortion observed in ZIKV-infected pregnant women. |
Author | Garber, Charise Cao, Bin Fernandez, Estefania Miner, Jonathan J. Noguchi, Kevin K. Diamond, Michael S. Klein, Robyn S. Cabrera, Omar H. Noll, Michelle Mysorekar, Indira U. Govero, Jennifer Smith, Amber M. |
AuthorAffiliation | 5 Department of Obstetrics and Gynecology, Washington University School of Medicine, Saint Louis, MO 63110 7 The Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, Saint Louis, MO 63110 4 Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO 63110 6 Department of Psychiatry, Washington University School of Medicine, Saint Louis, MO 63110 1 Department of Medicine, Washington University School of Medicine, Saint Louis, MO 63110 3 Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, MO 63110 2 Department of Anatomy and Neurobiology, Washington University School of Medicine, Saint Louis, MO 63110 |
AuthorAffiliation_xml | – name: 6 Department of Psychiatry, Washington University School of Medicine, Saint Louis, MO 63110 – name: 7 The Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, Saint Louis, MO 63110 – name: 2 Department of Anatomy and Neurobiology, Washington University School of Medicine, Saint Louis, MO 63110 – name: 3 Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, MO 63110 – name: 1 Department of Medicine, Washington University School of Medicine, Saint Louis, MO 63110 – name: 4 Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO 63110 – name: 5 Department of Obstetrics and Gynecology, Washington University School of Medicine, Saint Louis, MO 63110 |
Author_xml | – sequence: 1 givenname: Jonathan J. surname: Miner fullname: Miner, Jonathan J. organization: Department of Medicine, Washington University School of Medicine, Saint Louis, MO 63110, USA – sequence: 2 givenname: Bin surname: Cao fullname: Cao, Bin organization: Department of Obstetrics and Gynecology, Washington University School of Medicine, Saint Louis, MO 63110, USA – sequence: 3 givenname: Jennifer surname: Govero fullname: Govero, Jennifer organization: Department of Medicine, Washington University School of Medicine, Saint Louis, MO 63110, USA – sequence: 4 givenname: Amber M. surname: Smith fullname: Smith, Amber M. organization: Department of Medicine, Washington University School of Medicine, Saint Louis, MO 63110, USA – sequence: 5 givenname: Estefania surname: Fernandez fullname: Fernandez, Estefania organization: Department of Medicine, Washington University School of Medicine, Saint Louis, MO 63110, USA – sequence: 6 givenname: Omar H. surname: Cabrera fullname: Cabrera, Omar H. organization: Department of Psychiatry, Washington University School of Medicine, Saint Louis, MO 63110, USA – sequence: 7 givenname: Charise surname: Garber fullname: Garber, Charise organization: Department of Medicine, Washington University School of Medicine, Saint Louis, MO 63110, USA – sequence: 8 givenname: Michelle surname: Noll fullname: Noll, Michelle organization: Department of Medicine, Washington University School of Medicine, Saint Louis, MO 63110, USA – sequence: 9 givenname: Robyn S. surname: Klein fullname: Klein, Robyn S. organization: Department of Medicine, Washington University School of Medicine, Saint Louis, MO 63110, USA – sequence: 10 givenname: Kevin K. surname: Noguchi fullname: Noguchi, Kevin K. organization: Department of Psychiatry, Washington University School of Medicine, Saint Louis, MO 63110, USA – sequence: 11 givenname: Indira U. surname: Mysorekar fullname: Mysorekar, Indira U. email: mysorekari@wudosis.wustl.edu organization: Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO 63110, USA – sequence: 12 givenname: Michael S. surname: Diamond fullname: Diamond, Michael S. email: diamond@borcim.wustl.edu organization: Department of Medicine, Washington University School of Medicine, Saint Louis, MO 63110, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/27180225$$D View this record in MEDLINE/PubMed |
BookMark | eNqFUk1v1DAQtVAR3Rb-AAfkI5cE2-uvSAgJLfRDKqIH6IGLNetMFi9Zp9hJpf57HLZFwKE92bLfe_Nm3hyRgzhEJOQlZzVnXL_Z1h77vhblXjNVM2afkAVnjakkN-KALBhrRGW1kYfkKOctKwil1DNyKAy3TAi1IFffwg-gVyFNmZ7HDv0YhkjbKYW4oZcJNxGiv6Uh0k_BI13BlDHTyx48xhF6-gF2sEEKsaUn-PsBdyHjc_K0gz7ji7vzmHw9-fhldVZdfD49X72_qLyyZqwM07i2HvWSdw1qA9Cg4WvZMGUFAmN-raFVTC6V8dB0HVOdlqKTHjopvVwek3d73etpvcN2NpWgd9cp7CDdugGC-_cnhu9uM9w4aY20lheB13cCafg5YR5dsT-PFSIOU3aiDE2IRir1KLSM1OriVD6uyk3DpBZKswJ99XcHf6zfR1QAdg_wacg5Yed8GGGOqTQUeseZm7fBbd1cwM3b4JhyJetCFf9R79UfJL3dk7DkdhMwuewDRo9tSGU9XDuEh-i_AH40zVk |
CitedBy_id | crossref_primary_10_1371_journal_pntd_0006880 crossref_primary_10_1186_s12974_020_01904_3 crossref_primary_10_3389_fimmu_2020_01977 crossref_primary_10_1038_srep34793 crossref_primary_10_1080_23328940_2016_1208319 crossref_primary_10_1590_0100_3984_2017_0098 crossref_primary_10_1016_j_molmed_2016_06_004 crossref_primary_10_3389_fgene_2021_680342 crossref_primary_10_1007_s11481_017_9743_8 crossref_primary_10_1172_jci_insight_122678 crossref_primary_10_3390_pathogens11080853 crossref_primary_10_1371_journal_pntd_0008707 crossref_primary_10_3389_fmicb_2019_01465 crossref_primary_10_1093_infdis_jiz239 crossref_primary_10_1038_s41421_018_0042_1 crossref_primary_10_3390_applmicrobiol2040059 crossref_primary_10_1186_s12915_022_01344_w crossref_primary_10_3390_biomedicines9060643 crossref_primary_10_3390_v9100297 crossref_primary_10_1371_journal_ppat_1012756 crossref_primary_10_1016_j_ebiom_2016_09_028 crossref_primary_10_1016_j_ebiom_2022_103930 crossref_primary_10_1186_s40478_018_0572_7 crossref_primary_10_1016_j_ebiom_2016_09_022 crossref_primary_10_3390_v11090878 crossref_primary_10_1128_JVI_01765_16 crossref_primary_10_3390_v14081619 crossref_primary_10_1016_j_chom_2019_10_001 crossref_primary_10_7554_eLife_64734 crossref_primary_10_1016_j_neuron_2019_01_010 crossref_primary_10_1016_j_jrhm_2016_11_007 crossref_primary_10_1128_JVI_00038_18 crossref_primary_10_1016_j_chom_2016_12_010 crossref_primary_10_1016_j_ejmech_2016_12_058 crossref_primary_10_1016_j_virol_2017_12_026 crossref_primary_10_1038_nature18952 crossref_primary_10_3390_v10010049 crossref_primary_10_1002_adhm_201900476 crossref_primary_10_1126_scitranslmed_abq6517 crossref_primary_10_1016_j_pathol_2017_07_008 crossref_primary_10_1016_j_ram_2020_08_003 crossref_primary_10_3390_v13040554 crossref_primary_10_1016_j_ajog_2018_08_035 crossref_primary_10_1016_j_etp_2016_11_004 crossref_primary_10_1073_pnas_2101713118 crossref_primary_10_3390_v9100287 crossref_primary_10_1038_ncomms15743 crossref_primary_10_1371_journal_pbio_2006592 crossref_primary_10_3390_v10010046 crossref_primary_10_1007_s12035_017_0442_5 crossref_primary_10_3390_v13061107 crossref_primary_10_2217_fvl_2017_0137 crossref_primary_10_1128_mBio_02063_16 crossref_primary_10_3390_pathogens12020194 crossref_primary_10_3201_eid2304_161879 crossref_primary_10_3389_fimmu_2021_610456 crossref_primary_10_1016_j_cell_2017_04_008 crossref_primary_10_1016_j_molmed_2017_01_004 crossref_primary_10_1016_j_virusres_2017_08_018 crossref_primary_10_1016_j_celrep_2016_08_038 crossref_primary_10_2222_jsv_68_1 crossref_primary_10_1016_j_virusres_2021_198544 crossref_primary_10_1038_emi_2016_141 crossref_primary_10_1038_s41541_024_00927_8 crossref_primary_10_1371_journal_ppat_1006184 crossref_primary_10_1128_mbio_01742_23 crossref_primary_10_3390_v13091807 crossref_primary_10_1016_S0140_6736_16_30930_8 crossref_primary_10_1128_JVI_00554_17 crossref_primary_10_1016_j_celrep_2017_03_058 crossref_primary_10_1093_cid_cix166 crossref_primary_10_3390_ph16101385 crossref_primary_10_5812_pedinfect_58308 crossref_primary_10_1093_brain_aww158 crossref_primary_10_1021_acs_chemrev_7b00719 crossref_primary_10_1038_s41598_018_21894_w crossref_primary_10_1016_j_bbrc_2017_01_074 crossref_primary_10_1097_GRF_0000000000000343 crossref_primary_10_3390_v12030291 crossref_primary_10_1016_j_tjog_2017_08_003 crossref_primary_10_3390_tropicalmed4020058 crossref_primary_10_1016_j_stem_2016_11_014 crossref_primary_10_3390_cells10113085 crossref_primary_10_1177_1753495X18775899 crossref_primary_10_1128_JVI_01970_16 crossref_primary_10_1002_jmv_24731 crossref_primary_10_1038_s41467_020_19096_y crossref_primary_10_1002_bdr2_1006 crossref_primary_10_1016_j_stem_2019_11_016 crossref_primary_10_1038_s41392_024_01917_x crossref_primary_10_1186_s40478_017_0450_8 crossref_primary_10_1126_sciimmunol_aao1680 crossref_primary_10_1128_JVI_00163_17 crossref_primary_10_1007_s40435_021_00856_7 crossref_primary_10_1128_JVI_01018_18 crossref_primary_10_3389_fneur_2019_00319 crossref_primary_10_1128_mBio_01962_21 crossref_primary_10_1016_j_bbr_2024_115114 crossref_primary_10_3390_ijms20051101 crossref_primary_10_1128_AAC_00289_20 crossref_primary_10_1371_journal_pntd_0007537 crossref_primary_10_3389_fimmu_2019_01928 crossref_primary_10_1056_NEJMcibr1605445 crossref_primary_10_1371_journal_ppat_1006164 crossref_primary_10_7705_biomedica_v38i0_4413 crossref_primary_10_3389_fcell_2024_1340308 crossref_primary_10_3389_fcimb_2016_00206 crossref_primary_10_1002_dneu_22820 crossref_primary_10_1371_journal_ppat_1009788 crossref_primary_10_2217_fvl_2018_0170 crossref_primary_10_1021_acsomega_9b00374 crossref_primary_10_1080_20477724_2016_1234804 crossref_primary_10_3390_v11100961 crossref_primary_10_1038_s41467_017_00737_8 crossref_primary_10_1111_cmi_13302 crossref_primary_10_3389_fimmu_2018_02464 crossref_primary_10_1038_s41467_018_04777_6 crossref_primary_10_1074_jbc_RA120_015165 crossref_primary_10_1016_j_rmu_2017_09_001 crossref_primary_10_1038_ncomms14575 crossref_primary_10_1371_journal_pone_0261821 crossref_primary_10_1089_jir_2017_0011 crossref_primary_10_1089_vim_2017_0046 crossref_primary_10_1371_journal_ppat_1007474 crossref_primary_10_1038_s41593_017_0038_4 crossref_primary_10_3390_v13101929 crossref_primary_10_1016_j_celrep_2019_01_052 crossref_primary_10_1128_JVI_01982_18 crossref_primary_10_1002_ijgo_12663 crossref_primary_10_3389_fmicb_2019_00029 crossref_primary_10_1007_s15010_016_0935_6 crossref_primary_10_1128_jvi_01122_22 crossref_primary_10_1007_s00705_018_3911_x crossref_primary_10_5501_wjv_v7_i1_10 crossref_primary_10_1016_j_actbio_2019_09_019 crossref_primary_10_1016_j_meegid_2020_104364 crossref_primary_10_1038_emi_2016_103 crossref_primary_10_1038_s41579_018_0134_9 crossref_primary_10_1186_s41182_022_00485_6 crossref_primary_10_1038_ncomms15672 crossref_primary_10_1016_j_coviro_2017_06_011 crossref_primary_10_1021_acs_biochem_6b01056 crossref_primary_10_1177_1093526618790742 crossref_primary_10_1007_s12640_016_9635_3 crossref_primary_10_1038_s41467_017_02499_9 crossref_primary_10_3389_fviro_2021_783407 crossref_primary_10_1038_s41598_023_30342_3 crossref_primary_10_1038_s41598_021_82028_3 crossref_primary_10_1016_j_chom_2016_05_015 crossref_primary_10_1172_jci_insight_86654 crossref_primary_10_3389_fmicb_2020_598203 crossref_primary_10_1016_j_virol_2017_04_013 crossref_primary_10_1016_j_antiviral_2019_04_013 crossref_primary_10_1371_journal_ppat_1006258 crossref_primary_10_1371_journal_ppat_1006378 crossref_primary_10_3390_ph17080988 crossref_primary_10_1186_s13071_016_1634_y crossref_primary_10_1016_j_antiviral_2017_11_004 crossref_primary_10_2217_fvl_2018_0034 crossref_primary_10_3389_fmicb_2017_01554 crossref_primary_10_1371_journal_pntd_0006000 crossref_primary_10_1089_vim_2017_0145 crossref_primary_10_1038_s41421_019_0140_8 crossref_primary_10_3390_ijerph17113806 crossref_primary_10_1038_s41590_019_0477_z crossref_primary_10_1016_j_antiviral_2021_105117 crossref_primary_10_1093_infdis_jix465 crossref_primary_10_1016_j_antiviral_2022_105512 crossref_primary_10_12688_f1000research_9648_1 crossref_primary_10_1093_infdis_jix462 crossref_primary_10_3389_fnins_2023_1119943 crossref_primary_10_1016_j_amc_2018_11_042 crossref_primary_10_1038_s41564_018_0233_4 crossref_primary_10_3389_fmicb_2023_1098323 crossref_primary_10_1002_prca_202100042 crossref_primary_10_1016_j_ebiom_2017_09_034 crossref_primary_10_1371_journal_ppat_1006004 crossref_primary_10_1161_CIRCRESAHA_116_309866 crossref_primary_10_1371_journal_pntd_0008424 crossref_primary_10_1016_j_jviromet_2017_08_012 crossref_primary_10_1007_s00203_016_1268_7 crossref_primary_10_1002_tox_24424 crossref_primary_10_1371_journal_ppat_1008538 crossref_primary_10_1016_j_virusres_2017_09_005 crossref_primary_10_1016_j_cell_2016_08_004 crossref_primary_10_1371_journal_pone_0257408 crossref_primary_10_3389_fimmu_2019_02886 crossref_primary_10_3390_v9070165 crossref_primary_10_1016_j_bios_2019_01_040 crossref_primary_10_1016_j_celrep_2020_108339 crossref_primary_10_1128_spectrum_01137_22 crossref_primary_10_1523_JNEUROSCI_3124_16_2017 crossref_primary_10_1038_s41598_017_16475_2 crossref_primary_10_1371_journal_pone_0202820 crossref_primary_10_1128_jvi_01373_22 crossref_primary_10_1038_s42003_022_03902_y crossref_primary_10_1371_journal_pntd_0008413 crossref_primary_10_1093_cercor_bhad432 crossref_primary_10_1021_acsomega_8b01002 crossref_primary_10_3389_fphar_2019_00642 crossref_primary_10_1186_s40478_022_01351_6 crossref_primary_10_1126_science_aaw7733 crossref_primary_10_1371_journal_ppat_1008521 crossref_primary_10_1038_s41586_018_0446_y crossref_primary_10_1038_s41598_019_52613_8 crossref_primary_10_3390_cells8121519 crossref_primary_10_1002_jmv_28243 crossref_primary_10_1038_srep41389 crossref_primary_10_1016_j_ydbio_2025_02_002 crossref_primary_10_1016_j_celrep_2019_02_062 crossref_primary_10_3389_fimmu_2020_00592 crossref_primary_10_3923_ijp_2017_370_377 crossref_primary_10_3389_fncel_2019_00389 crossref_primary_10_1038_s41598_018_31149_3 crossref_primary_10_1093_femsle_fnw202 crossref_primary_10_1002_anbr_202200010 crossref_primary_10_1155_2018_9517842 crossref_primary_10_1371_journal_pntd_0005363 crossref_primary_10_1371_journal_pntd_0006210 crossref_primary_10_1126_scisignal_aas9332 crossref_primary_10_1186_s12974_019_1566_5 crossref_primary_10_3390_v12010072 crossref_primary_10_1128_AAC_00394_19 crossref_primary_10_1155_2019_7375217 crossref_primary_10_1016_j_virol_2023_03_006 crossref_primary_10_1080_21505594_2019_1656503 crossref_primary_10_1126_science_aah6157 crossref_primary_10_1016_j_virol_2020_05_005 crossref_primary_10_3390_tropicalmed6020095 crossref_primary_10_1038_s41467_025_56927_2 crossref_primary_10_2217_fvl_2018_0115 crossref_primary_10_3389_fviro_2021_720760 crossref_primary_10_1016_j_ebiom_2016_11_017 crossref_primary_10_1016_j_ebiom_2017_09_021 crossref_primary_10_4110_in_2017_17_5_287 crossref_primary_10_1002_ana_24968 crossref_primary_10_3390_v13102029 crossref_primary_10_1016_j_chom_2017_08_012 crossref_primary_10_1002_mas_21674 crossref_primary_10_1038_s41598_018_28890_0 crossref_primary_10_1080_17460441_2019_1597050 crossref_primary_10_1016_j_antiviral_2016_11_023 crossref_primary_10_3389_fimmu_2021_764746 crossref_primary_10_1016_j_antiviral_2017_08_007 crossref_primary_10_3390_v13010013 crossref_primary_10_1016_j_immuni_2017_02_005 crossref_primary_10_1128_mSphereDirect_00190_17 crossref_primary_10_1128_JVI_01445_20 crossref_primary_10_1016_j_celrep_2016_12_045 crossref_primary_10_3390_v15081632 crossref_primary_10_1007_s13311_016_0443_5 crossref_primary_10_1016_j_cell_2024_10_028 crossref_primary_10_1128_JVI_00186_18 crossref_primary_10_1007_s13365_017_0513_4 crossref_primary_10_1038_nature20564 crossref_primary_10_3389_froh_2021_735634 crossref_primary_10_12688_f1000research_12695_1 crossref_primary_10_1371_journal_ppat_1006684 crossref_primary_10_1016_j_celrep_2018_03_080 crossref_primary_10_1126_scitranslmed_aao7090 crossref_primary_10_1371_journal_pntd_0008453 crossref_primary_10_3389_fmicb_2017_02557 crossref_primary_10_1002_cne_24640 crossref_primary_10_1038_s42003_019_0344_3 crossref_primary_10_1038_nrmicro_2016_125 crossref_primary_10_1038_srep32227 crossref_primary_10_1111_voxs_12500 crossref_primary_10_3389_fmed_2021_674645 crossref_primary_10_1007_s13365_018_0614_8 crossref_primary_10_3390_v14020386 crossref_primary_10_1016_j_cytogfr_2018_01_008 crossref_primary_10_1093_infdis_jix396 crossref_primary_10_3389_fimmu_2022_826091 crossref_primary_10_1038_s41598_017_17067_w crossref_primary_10_3390_v15010142 crossref_primary_10_1016_j_pneurobio_2021_102054 crossref_primary_10_1038_nature20556 crossref_primary_10_3390_pathogens11030321 crossref_primary_10_1016_j_braindev_2016_10_012 crossref_primary_10_3390_ijms26010047 crossref_primary_10_3390_v13102088 crossref_primary_10_1007_s12250_018_0007_4 crossref_primary_10_1016_j_antiviral_2016_11_003 crossref_primary_10_1038_s41467_019_12063_2 crossref_primary_10_1371_journal_pntd_0005054 crossref_primary_10_1371_journal_pntd_0005296 crossref_primary_10_1016_j_tim_2016_06_002 crossref_primary_10_3390_v12070765 crossref_primary_10_1038_s41426_018_0044_y crossref_primary_10_1007_s10439_018_2090_y crossref_primary_10_12688_f1000research_9370_1 crossref_primary_10_1016_j_celrep_2016_06_028 crossref_primary_10_1007_s13365_017_0514_3 crossref_primary_10_3390_v11010049 crossref_primary_10_5858_arpa_2016_0401_OA crossref_primary_10_1016_j_celrep_2016_08_079 crossref_primary_10_1093_infdis_jiz338 crossref_primary_10_1128_JVI_00912_16 crossref_primary_10_1146_annurev_virology_092818_015740 crossref_primary_10_1038_s41598_018_27611_x crossref_primary_10_1139_cjm_2019_0331 crossref_primary_10_3389_fimmu_2023_1060959 crossref_primary_10_1371_journal_pntd_0007343 crossref_primary_10_1016_j_immuni_2017_02_012 crossref_primary_10_1038_s41598_020_57545_2 crossref_primary_10_1016_j_celrep_2016_07_049 crossref_primary_10_3390_v10020095 crossref_primary_10_1084_jem_20170957 crossref_primary_10_1159_000495660 crossref_primary_10_1128_JVI_00818_21 crossref_primary_10_3389_fmicb_2017_00110 crossref_primary_10_1089_scd_2016_0231 crossref_primary_10_1016_j_chom_2016_07_002 crossref_primary_10_1038_s41598_018_28257_5 crossref_primary_10_1016_j_antiviral_2022_105500 crossref_primary_10_1016_j_chom_2016_07_004 crossref_primary_10_1038_s41467_018_05458_0 crossref_primary_10_1371_journal_ppat_1007507 crossref_primary_10_1038_s41598_017_07099_7 crossref_primary_10_1159_000486841 crossref_primary_10_15252_embr_201949183 crossref_primary_10_1016_j_ajog_2023_08_012 crossref_primary_10_1097_MRM_0000000000000126 crossref_primary_10_1097_PGP_0000000000000807 crossref_primary_10_1002_rmv_2021 crossref_primary_10_1371_journal_pone_0187720 crossref_primary_10_3390_v10100541 crossref_primary_10_3390_v13112244 crossref_primary_10_1016_j_cell_2018_03_019 crossref_primary_10_1016_j_ebiom_2023_104739 crossref_primary_10_3389_fimmu_2019_01045 crossref_primary_10_3390_v10100547 crossref_primary_10_1038_ni_3849 crossref_primary_10_1016_j_coviro_2017_09_005 crossref_primary_10_15252_embr_202152450 crossref_primary_10_3389_fcimb_2021_640987 crossref_primary_10_3390_v11010029 crossref_primary_10_1016_j_immuni_2019_01_005 crossref_primary_10_1073_pnas_1616097114 crossref_primary_10_1016_j_chom_2017_02_015 crossref_primary_10_2217_fmb_2017_0213 crossref_primary_10_1016_j_pcl_2017_03_012 crossref_primary_10_1084_jem_20240694 crossref_primary_10_3389_fmicb_2019_00817 crossref_primary_10_1186_s40409_017_0131_x crossref_primary_10_1016_j_intimp_2023_110512 crossref_primary_10_1038_s41598_018_22840_6 crossref_primary_10_1016_j_virol_2020_07_014 crossref_primary_10_1590_0074_02760160510 crossref_primary_10_1128_JVI_01575_20 crossref_primary_10_1186_s12985_018_0989_4 crossref_primary_10_15252_embr_202051978 crossref_primary_10_1128_JVI_00067_20 crossref_primary_10_1128_mBio_01716_20 crossref_primary_10_1126_science_aam7120 crossref_primary_10_3389_fimmu_2018_01850 crossref_primary_10_1371_journal_ppat_1006994 crossref_primary_10_1089_dna_2016_3404 crossref_primary_10_1172_jci_insight_92428 crossref_primary_10_1111_jnc_14576 crossref_primary_10_1038_s41418_019_0324_7 crossref_primary_10_1126_scitranslmed_adh0043 crossref_primary_10_1016_j_virs_2022_01_021 crossref_primary_10_1016_j_celrep_2023_112126 crossref_primary_10_1371_journal_pntd_0009575 crossref_primary_10_3389_fimmu_2024_1400977 crossref_primary_10_1128_JVI_01485_18 crossref_primary_10_1371_journal_pntd_0011657 crossref_primary_10_1128_mSphere_00173_19 crossref_primary_10_15252_embj_201899347 crossref_primary_10_1007_s12035_017_0635_y crossref_primary_10_1371_journal_pone_0218539 crossref_primary_10_1016_j_stem_2016_07_019 crossref_primary_10_1016_j_virol_2017_01_023 crossref_primary_10_3390_v16010028 crossref_primary_10_1093_infdis_jiy606 crossref_primary_10_3389_fimmu_2018_01640 crossref_primary_10_1038_s41467_023_41158_0 crossref_primary_10_1038_cddis_2016_266 crossref_primary_10_1038_s41564_018_0236_1 crossref_primary_10_1093_molbev_msw270 crossref_primary_10_3389_fmicb_2018_01350 crossref_primary_10_1002_bies_202000103 crossref_primary_10_1016_j_bmc_2024_117682 crossref_primary_10_3389_fmicb_2022_847588 crossref_primary_10_1093_cid_ciw878 crossref_primary_10_1016_j_immuni_2018_07_017 crossref_primary_10_3390_v10100550 crossref_primary_10_1016_j_cell_2016_07_020 crossref_primary_10_1016_j_coviro_2018_11_010 crossref_primary_10_1016_j_jviromet_2024_115053 crossref_primary_10_3390_v10110598 crossref_primary_10_1007_s12250_018_0030_5 crossref_primary_10_1038_s41420_020_00379_8 crossref_primary_10_3389_fimmu_2020_00175 crossref_primary_10_3390_v10110597 crossref_primary_10_1016_j_ajog_2017_10_001 crossref_primary_10_1038_emi_2016_99 crossref_primary_10_1038_emi_2017_68 crossref_primary_10_3390_tropicalmed4030104 crossref_primary_10_1016_j_cell_2022_06_051 crossref_primary_10_1016_j_chom_2017_01_004 crossref_primary_10_1038_emi_2017_67 crossref_primary_10_3390_v10110593 crossref_primary_10_1371_journal_ppat_1007938 crossref_primary_10_3389_fmats_2021_631373 crossref_primary_10_1016_j_antiviral_2017_06_001 crossref_primary_10_1073_pnas_1620558114 crossref_primary_10_1016_j_tibtech_2016_10_001 crossref_primary_10_1038_s41598_017_04138_1 crossref_primary_10_5858_arpa_2016_0397_SA crossref_primary_10_1097_AOG_0000000000002538 crossref_primary_10_3390_v12040418 crossref_primary_10_1128_JVI_00389_19 crossref_primary_10_1097_FM9_0000000000000133 crossref_primary_10_15252_embj_201695597 crossref_primary_10_3389_fimmu_2020_02070 crossref_primary_10_1016_j_virusres_2017_11_003 crossref_primary_10_3390_v16081330 crossref_primary_10_1016_j_stem_2022_04_004 crossref_primary_10_3390_v9120383 crossref_primary_10_1055_s_0042_1750156 crossref_primary_10_1128_mBio_00952_17 crossref_primary_10_3389_fmicb_2018_02028 crossref_primary_10_1016_j_ajog_2018_04_047 crossref_primary_10_1016_j_stem_2016_08_005 crossref_primary_10_1126_sciadv_aaw6284 crossref_primary_10_1371_journal_pntd_0009388 crossref_primary_10_1038_ni_3515 crossref_primary_10_1038_s41467_024_54479_5 crossref_primary_10_1016_S1473_3099_16_30193_1 crossref_primary_10_1038_s41467_018_03337_2 crossref_primary_10_4049_jimmunol_1901289 crossref_primary_10_1016_j_antiviral_2023_105549 crossref_primary_10_1080_21645515_2016_1219004 crossref_primary_10_3390_v13112157 crossref_primary_10_1002_rmv_2050 crossref_primary_10_1016_j_antiviral_2023_105542 crossref_primary_10_1038_s41541_021_00426_0 crossref_primary_10_1080_19396368_2020_1753850 crossref_primary_10_1111_tmi_13019 crossref_primary_10_1016_j_cjca_2024_09_012 crossref_primary_10_1038_s41598_018_27224_4 crossref_primary_10_3390_ijms22010035 crossref_primary_10_3390_ijms222010996 crossref_primary_10_1038_s41467_022_35407_x crossref_primary_10_1111_trf_14037 crossref_primary_10_3389_fcimb_2017_00327 crossref_primary_10_1186_s13071_017_2224_3 crossref_primary_10_3390_vaccines8030496 crossref_primary_10_1038_s41467_019_13589_1 crossref_primary_10_1016_j_apjtm_2017_03_020 crossref_primary_10_1007_s00129_016_3966_2 crossref_primary_10_1016_j_celrep_2016_05_075 crossref_primary_10_1093_biolre_ioac095 crossref_primary_10_1038_nmicrobiol_2017_36 crossref_primary_10_1111_aji_12605 crossref_primary_10_1016_j_ajog_2017_01_020 crossref_primary_10_1128_jvi_01954_23 crossref_primary_10_3389_fmicb_2018_01018 crossref_primary_10_1016_j_indcrop_2020_112503 crossref_primary_10_1002_med_21786 crossref_primary_10_1016_j_antiviral_2018_07_017 crossref_primary_10_1038_s41564_017_0092_4 crossref_primary_10_1038_s41598_017_00193_w crossref_primary_10_1101_gad_298216_117 crossref_primary_10_1099_jgv_0_001641 crossref_primary_10_1128_mBio_00758_19 crossref_primary_10_1371_journal_pntd_0010359 crossref_primary_10_1016_j_coviro_2016_09_013 crossref_primary_10_1128_JVI_01722_17 crossref_primary_10_1080_22221751_2018_1559707 crossref_primary_10_15212_ZOONOSES_2021_0017 crossref_primary_10_1038_s41564_017_0016_3 crossref_primary_10_1242_dev_143768 crossref_primary_10_1111_aji_12613 crossref_primary_10_3390_v9060143 crossref_primary_10_1111_aji_12616 crossref_primary_10_3390_v14050876 crossref_primary_10_1111_aji_12615 crossref_primary_10_1016_j_ebiom_2023_104457 crossref_primary_10_1590_0074_02760240125 crossref_primary_10_1007_s10753_018_0936_y crossref_primary_10_1038_cr_2016_68 crossref_primary_10_1128_JVI_01034_19 crossref_primary_10_3390_pathogens11121410 crossref_primary_10_1186_s12985_022_01860_9 crossref_primary_10_1016_j_bbadis_2021_166244 crossref_primary_10_3389_fcell_2023_1268565 crossref_primary_10_1021_acs_jmedchem_9b00775 crossref_primary_10_1016_S1473_3099_16_30372_3 crossref_primary_10_1128_JVI_01086_20 crossref_primary_10_3389_fvets_2020_00023 crossref_primary_10_7554_eLife_39023 crossref_primary_10_1038_s41598_019_43303_6 crossref_primary_10_1111_imcb_12549 crossref_primary_10_1016_j_bioorg_2021_105303 crossref_primary_10_1038_s41579_018_0039_7 crossref_primary_10_3390_v10050233 crossref_primary_10_1007_s12250_020_00208_3 crossref_primary_10_1111_imm_12681 crossref_primary_10_1016_j_ebiom_2019_05_014 crossref_primary_10_3390_ijms242115921 crossref_primary_10_3389_fncel_2021_695106 crossref_primary_10_1080_20477724_2020_1845005 crossref_primary_10_1371_journal_pntd_0009183 crossref_primary_10_1016_j_vaccine_2019_09_093 crossref_primary_10_3390_nu15010124 crossref_primary_10_3390_v13101992 crossref_primary_10_1007_s11481_017_9736_7 crossref_primary_10_1016_j_immuni_2019_03_025 crossref_primary_10_3389_fcimb_2017_00486 crossref_primary_10_1126_sciimmunol_aat6114 crossref_primary_10_5812_jpr_9813 crossref_primary_10_1371_journal_pmed_1002203 crossref_primary_10_1128_AAC_00411_17 crossref_primary_10_1126_sciadv_aav3208 crossref_primary_10_1080_17460441_2021_1973999 crossref_primary_10_1016_j_ajog_2018_06_005 crossref_primary_10_1186_s12864_022_08919_5 crossref_primary_10_3390_ijms25042144 crossref_primary_10_4049_jimmunol_1900888 crossref_primary_10_1126_scitranslmed_aar2749 crossref_primary_10_1038_s42003_020_1109_8 crossref_primary_10_1242_bio_031807 crossref_primary_10_1038_nrd_2017_33 crossref_primary_10_1111_jcmm_15059 crossref_primary_10_5005_jp_journals_11002_0055 crossref_primary_10_1186_s12985_024_02547_z crossref_primary_10_1038_s41467_021_22341_7 crossref_primary_10_3389_fmicb_2018_03252 crossref_primary_10_1128_JVI_01471_19 crossref_primary_10_1172_jci_insight_88461 crossref_primary_10_3390_ph12030101 crossref_primary_10_1128_JVI_01905_16 crossref_primary_10_3390_microorganisms8121996 crossref_primary_10_1080_09273948_2017_1294184 crossref_primary_10_3390_vaccines9050438 crossref_primary_10_1016_j_celrep_2018_12_095 crossref_primary_10_1242_dev_156752 crossref_primary_10_1097_GCO_0000000000000440 crossref_primary_10_3389_fimmu_2022_773191 crossref_primary_10_1007_s40473_016_0101_6 crossref_primary_10_1038_s41385_020_00374_3 crossref_primary_10_1002_eji_201847483 crossref_primary_10_1097_GCO_0000000000000323 crossref_primary_10_1016_j_amjms_2016_12_018 crossref_primary_10_1016_j_antiviral_2017_04_017 crossref_primary_10_3389_fnins_2023_1306166 crossref_primary_10_1128_mbio_03857_21 crossref_primary_10_1111_imr_13087 crossref_primary_10_1016_j_micinf_2018_03_001 crossref_primary_10_1128_mSphere_00576_17 crossref_primary_10_1038_s41426_018_0170_6 crossref_primary_10_3390_pathogens11091033 crossref_primary_10_1016_j_ajpath_2019_12_005 crossref_primary_10_1073_pnas_2205013119 crossref_primary_10_3201_eid2303_161499 crossref_primary_10_4049_jimmunol_1901310 crossref_primary_10_1128_JVI_00484_17 crossref_primary_10_1016_j_virusres_2017_07_025 crossref_primary_10_1080_21505594_2021_1996059 crossref_primary_10_1038_srep35296 crossref_primary_10_1002_jmv_24582 crossref_primary_10_3390_cells9061476 crossref_primary_10_1089_vim_2019_0076 crossref_primary_10_1111_cmi_12744 crossref_primary_10_1111_imm_12883 crossref_primary_10_1021_acsinfecdis_6b00161 crossref_primary_10_1071_MA16057 crossref_primary_10_1080_22221751_2023_2300466 crossref_primary_10_1073_pnas_1919269117 crossref_primary_10_1038_nrendo_2016_101 crossref_primary_10_5713_ab_22_0143 crossref_primary_10_7554_eLife_73792 crossref_primary_10_1016_j_ebiom_2017_04_029 crossref_primary_10_1016_j_ebiom_2017_10_019 crossref_primary_10_1126_sciimmunol_aar3446 crossref_primary_10_1038_nm_4193 crossref_primary_10_1097_AOG_0000000000003577 crossref_primary_10_1016_j_virol_2021_03_019 crossref_primary_10_3390_vaccines10091517 crossref_primary_10_1099_jgv_0_001153 crossref_primary_10_3389_fgene_2019_00918 crossref_primary_10_3390_ijerph13101031 crossref_primary_10_1016_j_virol_2016_11_002 crossref_primary_10_1213_ANE_0000000000001770 crossref_primary_10_1016_j_vaccine_2016_10_034 crossref_primary_10_3390_vaccines12020215 crossref_primary_10_1016_j_antiviral_2018_04_010 crossref_primary_10_1016_S0140_6736_17_31450_2 crossref_primary_10_1038_s41564_019_0375_z crossref_primary_10_1016_j_celrep_2017_10_059 crossref_primary_10_1128_IAI_00923_17 crossref_primary_10_3390_ijms231810282 crossref_primary_10_1017_S0950268818000419 crossref_primary_10_1038_nm_4184 crossref_primary_10_3389_fviro_2022_782906 crossref_primary_10_1007_s13337_017_0399_z crossref_primary_10_1038_ncomms12204 crossref_primary_10_1038_s41598_019_46291_9 crossref_primary_10_1016_j_neuron_2016_11_031 crossref_primary_10_3389_fmedt_2020_604160 crossref_primary_10_1016_j_addr_2021_113950 crossref_primary_10_1016_j_cell_2017_06_040 crossref_primary_10_1038_s41598_017_11514_4 crossref_primary_10_4236_ojog_2019_95069 crossref_primary_10_1128_JVI_02019_17 crossref_primary_10_1002_wdev_273 crossref_primary_10_1016_j_ebiom_2019_08_060 crossref_primary_10_1038_nrmicro_2016_80 crossref_primary_10_1007_s10815_019_01493_y crossref_primary_10_1038_s41467_021_22846_1 crossref_primary_10_1128_JVI_00009_17 crossref_primary_10_1016_j_cyto_2019_02_009 crossref_primary_10_1111_aji_12578 crossref_primary_10_1016_j_cell_2018_08_069 crossref_primary_10_3390_v12121371 crossref_primary_10_1016_j_clinthera_2017_07_001 crossref_primary_10_1016_j_celrep_2021_109107 crossref_primary_10_1002_jmv_25345 crossref_primary_10_1038_s41598_017_16952_8 crossref_primary_10_1016_j_stem_2016_06_009 crossref_primary_10_1016_j_gpb_2019_06_004 crossref_primary_10_1016_j_micinf_2018_02_008 crossref_primary_10_1038_s41541_024_00823_1 crossref_primary_10_1016_j_micinf_2018_02_009 crossref_primary_10_1016_j_isci_2024_109088 crossref_primary_10_1371_journal_pntd_0004877 crossref_primary_10_3390_jcm10020268 crossref_primary_10_1007_s00705_023_05726_5 crossref_primary_10_1038_s41598_019_56291_4 crossref_primary_10_1371_journal_ppat_1012408 crossref_primary_10_1523_JNEUROSCI_1376_19_2019 crossref_primary_10_3389_fcimb_2017_00062 |
Cites_doi | 10.15585/mmwr.mm6506e1 10.1128/JVI.00252-16 10.1128/JVI.01320-14 10.1126/science.aaf5036 10.1016/S0165-0378(01)00143-7 10.1056/NEJMsr1604338 10.1371/journal.pntd.0004517 10.3201/eid2102.141363 10.1371/journal.pone.0128636 10.1128/mBio.01316-15 10.1016/S0140-6736(16)00651-6 10.1073/pnas.92.24.11284 10.15585/mmwr.mm6503e3 10.1056/NEJMoa1600651 10.2807/1560-7917.ES2014.19.9.20720 10.1371/journal.pntd.0004682 10.1126/science.7777856 10.1016/j.placenta.2013.12.007 10.1016/S0140-6736(16)00006-4 10.1128/IAI.12.5.1173-1183.1975 10.1128/IAI.2.3.320-325.1970 10.1128/JVI.77.21.11357-11366.2003 10.1016/j.stem.2016.02.016 10.1016/S1473-3099(16)00095-5 10.1152/physiol.00001.2005 10.1016/j.mib.2011.11.006 10.1128/genomeA.00500-14 10.2350/14-09-1548-CR.1 10.1016/j.ydbio.2005.05.010 10.1128/JVI.01732-06 10.1016/j.pneurobio.2013.04.001 10.1093/infdis/141.6.712 10.1146/annurev-virology-031413-085524 10.4269/ajtmh.16-0111 10.1002/9780471729259.mc15d03s31 10.1056/NEJMoa1602412 10.1016/j.chom.2016.03.010 10.3201/eid1408.080287 10.1371/journal.ppat.1002804 10.1056/NEJMc1602964 10.1089/jir.2006.26.804 |
ContentType | Journal Article |
Copyright | 2016 Elsevier Inc. Copyright © 2016 Elsevier Inc. All rights reserved. |
Copyright_xml | – notice: 2016 Elsevier Inc. – notice: Copyright © 2016 Elsevier Inc. All rights reserved. |
DBID | 6I. AAFTH AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7U9 H94 7S9 L.6 5PM |
DOI | 10.1016/j.cell.2016.05.008 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic Virology and AIDS Abstracts AIDS and Cancer Research Abstracts AGRICOLA AGRICOLA - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AIDS and Cancer Research Abstracts Virology and AIDS Abstracts AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA MEDLINE MEDLINE - Academic AIDS and Cancer Research Abstracts |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1097-4172 |
EndPage | 1091 |
ExternalDocumentID | PMC4874881 27180225 10_1016_j_cell_2016_05_008 S0092867416305566 |
Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NIAID NIH HHS grantid: R01 AI104972 – fundername: NICHD NIH HHS grantid: R01 HD052664 – fundername: NICHD NIH HHS grantid: U54 HD087011 – fundername: NIAID NIH HHS grantid: R01 AI073755 – fundername: NIAID NIH HHS grantid: T32 AI007163 – fundername: NINDS NIH HHS grantid: R01 NS052632 – fundername: NHGRI NIH HHS grantid: R25 HG006687 – fundername: NIAID NIH HHS grantid: U19 AI083019 |
GroupedDBID | --- --K -DZ -ET -~X 0R~ 0WA 1RT 1~5 29B 2FS 2WC 3EH 4.4 457 4G. 53G 5GY 5RE 62- 6I. 6J9 7-5 85S AACTN AAEDW AAFTH AAFWJ AAIAV AAKRW AAKUH AAUCE AAVLU AAXJY AAXUO ABCQX ABJNI ABMAC ABMWF ABOCM ABVKL ACGFO ACGFS ACNCT ADBBV ADEZE ADJPV AEFWE AENEX AEXQZ AFTJW AGHSJ AGKMS AHHHB AIDAL AITUG ALKID ALMA_UNASSIGNED_HOLDINGS AMRAJ ASPBG AVWKF AZFZN BAWUL CS3 DIK DU5 E3Z EBS EJD F5P FCP FDB FIRID HH5 IH2 IHE IXB J1W JIG K-O KOO KQ8 L7B LX5 M3Z M41 N9A NCXOZ O-L O9- OK1 P2P RCE RIG RNS ROL RPZ SCP SDG SDP SES SSZ TAE TN5 TR2 TWZ UKR UPT VQA WH7 WQ6 YZZ ZA5 ZCA .-4 .55 .GJ .HR 1CY 1VV 2KS 3O- 5VS 6TJ 9M8 AAEDT AAHBH AAIKJ AALRI AAMRU AAQFI AAQXK AAYJJ AAYWO AAYXX ABDGV ABDPE ABEFU ABWVN ACRPL ACVFH ADCNI ADMUD ADNMO ADVLN ADXHL AETEA AEUPX AFPUW AGCQF AGHFR AGQPQ AI. AIGII AKAPO AKBMS AKRWK AKYEP APXCP CITATION FEDTE FGOYB G-2 HVGLF HZ~ H~9 MVM OHT OMK OZT PUQ R2- UBW UHB VH1 X7M YYP YYQ ZGI ZHY ZKB ZY4 CGR CUY CVF ECM EFKBS EIF NPM 7X8 7U9 H94 7S9 L.6 5PM |
ID | FETCH-LOGICAL-c587t-706eb8ce631f9e67aa9e71b490582ea00cb6ad504357ca9ff05f642f4caf44c43 |
IEDL.DBID | IXB |
ISSN | 0092-8674 1097-4172 |
IngestDate | Thu Aug 21 18:20:08 EDT 2025 Thu Jul 10 17:47:52 EDT 2025 Mon Jul 21 10:09:13 EDT 2025 Fri Jul 11 06:22:52 EDT 2025 Mon Jul 21 05:47:56 EDT 2025 Tue Jul 01 02:16:55 EDT 2025 Thu Apr 24 22:56:10 EDT 2025 Fri Feb 23 02:30:31 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Language | English |
License | This article is made available under the Elsevier license. Copyright © 2016 Elsevier Inc. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c587t-706eb8ce631f9e67aa9e71b490582ea00cb6ad504357ca9ff05f642f4caf44c43 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Co-first authors. |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S0092867416305566 |
PMID | 27180225 |
PQID | 1790462560 |
PQPubID | 23479 |
PageCount | 11 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_4874881 proquest_miscellaneous_2000229455 proquest_miscellaneous_1808643541 proquest_miscellaneous_1790462560 pubmed_primary_27180225 crossref_citationtrail_10_1016_j_cell_2016_05_008 crossref_primary_10_1016_j_cell_2016_05_008 elsevier_sciencedirect_doi_10_1016_j_cell_2016_05_008 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2016-05-19 |
PublicationDateYYYYMMDD | 2016-05-19 |
PublicationDate_xml | – month: 05 year: 2016 text: 2016-05-19 day: 19 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Cell |
PublicationTitleAlternate | Cell |
PublicationYear | 2016 |
Publisher | Elsevier Inc |
Publisher_xml | – name: Elsevier Inc |
References | Pinto, Brien, Lam, Johnson, Chiang, Hiscott, Sarathy, Barrett, Shresta, Diamond (bib30) 2015; 6 Brasil, Pereira, Raja Gabaglia, Damasceno, Wakimoto, Ribeiro Nogueira, Carvalho de Sequeira, Machado Siqueira, Abreu de Carvalho, Cotrim da Cunha (bib8) 2016 Rossi, Tesh, Azar, Muruato, Hanley, Auguste, Langsjoen, Paessler, Vasilakis, Weaver (bib33) 2016 Zeldovich, Bakardjiev (bib44) 2012; 8 Andersen, Hanson (bib4) 1975; 12 Lanciotti, Kosoy, Laven, Velez, Lambert, Johnson, Stanfield, Duffy (bib21) 2008; 14 Mlakar, Korva, Tul, Popović, Poljšak-Prijatelj, Mraz, Kolenc, Resman Rus, Vesnaver Vipotnik, Fabjan Vodušek (bib25) 2016; 374 Oehler, Watrin, Larre, Leparc-Goffart, Lastère, Valour, Baudouin, Mallet, Musso, Ghawche (bib28) 2014; 19 Sheehan, Lazear, Diamond, Schreiber (bib38) 2015; 10 Carteaux, Maquart, Bedet, Contou, Brugières, Fourati, Cleret de Langavant, de Broucker, Brun-Buisson, Leparc-Goffart, Mekontso Dessap (bib12) 2016; 374 Chaturvedi, Mathur, Chandra, Das, Tandon, Singh (bib14) 1980; 141 Calvet, Aguiar, Melo, Sampaio, de Filippis, Fabri, Araujo, de Sequeira, de Mendonça, de Oliveira (bib10) 2016 Simmons, Cross (bib39) 2005; 284 Oliphant, Nybakken, Engle, Xu, Nelson, Sukupolvi-Petty, Marri, Lachmi, Olshevsky, Fremont (bib29) 2006; 80 Robbins, Bakardjiev (bib32) 2012; 15 Hwang, Hertzog, Holland, Sumarsono, Tymms, Hamilton, Whitty, Bertoncello, Kola (bib20) 1995; 92 Rasmussen, Jamieson, Honein, Petersen (bib31) 2016 Staples, Dziuban, Fischer, Cragan, Rasmussen, Cannon, Frey, Renquist, Lanciotti, Muñoz (bib40) 2016; 65 Allison, Tao, O’Riordain, Mandl, Harrison, Heinz (bib2) 2003; 77 Andersen, Hanson (bib3) 1970; 2 Martines, Bhatnagar, Keating, Silva-Flannery, Muehlenbachs, Gary, Goldsmith, Hale, Ritter, Rollin (bib24) 2016; 65 Chervenak, Rosenberg, Brightman, Chitkara, Jeanty (bib15) 1987; 69 Lazear, Diamond (bib22) 2016; 90 Sheehan, Lai, Dunn, Bruce, Diamond, Heutel, Dungo-Arthur, Carrero, White, Hertzog (bib37) 2006; 26 Brien, Lazear, Diamond (bib9) 2013; 31 Edwards, Popek, Wise, Hatzenbuehler, Arunachalam, Hair (bib17) 2015; 18 Arechavaleta-Velasco, Koi, Strauss, Parry (bib5) 2002; 55 Cao, Mysorekar (bib11) 2014; 35 Bayer, Lennemann, Ouyang, Bramley, Morosky, Marques, Cherry, Sadovsky, Coyne (bib7) 2016; 16 Faria, Azevedo, Kraemer, Souza, Cunha, Hill, Thézé, Bonsall, Bowden, Rissanen (bib18) 2016; 352 Delorme-Axford, Sadovsky, Coyne (bib16) 2014; 1 Semple, Blomgren, Gimlin, Ferriero, Noble-Haeusslein (bib36) 2013; 106-107 Finlay, Darlington (bib19) 1995; 268 Sarathy, White, Li, Gorder, Pyles, Campbell, Milligan, Bourne, Barrett (bib34) 2015; 89 Aliota, Caine, Walker, Larkin, Camacho, Osorio (bib1) 2016; 10 Ventura, Maia, Bravo-Filho, Góis, Belfort (bib42) 2016; 387 Lazear, Govero, Smith, Platt, Fernandez, Miner, Diamond (bib23) 2016 Musso, Roche, Robin, Nhan, Teissier, Cao-Lormeau (bib26) 2015; 21 Tang, Hammack, Ogden, Wen, Qian, Li, Yao, Shin, Zhang, Lee (bib41) 2016 Nguyen, Morrow, Novick, Cambareri, Olson, Aubry, Snedeker, Anand, Huang, Morse (bib27) 2002; 51 Baronti, Piorkowski, Charrel, Boubis, Leparc-Goffart, de Lamballerie (bib6) 2014; 2 Sarno, Sacramento, Khouri, do Rosário, Costa, Archanjo, Santos, Nery, Vasilakis, Ko, de Almeida (bib35) 2016; 10 Watson, Cross (bib43) 2005; 20 Cauchemez, Besnard, Bompard, Dub, Guillemette-Artur, Eyrolle-Guignot, Salje, Van Kerkhove, Abadie, Garel (bib13) 2016 Zeldovich (10.1016/j.cell.2016.05.008_bib44) 2012; 8 Faria (10.1016/j.cell.2016.05.008_bib18) 2016; 352 Oehler (10.1016/j.cell.2016.05.008_bib28) 2014; 19 Rossi (10.1016/j.cell.2016.05.008_bib33) 2016 Pinto (10.1016/j.cell.2016.05.008_bib30) 2015; 6 Bayer (10.1016/j.cell.2016.05.008_bib7) 2016; 16 Lanciotti (10.1016/j.cell.2016.05.008_bib21) 2008; 14 Brien (10.1016/j.cell.2016.05.008_bib9) 2013; 31 Rasmussen (10.1016/j.cell.2016.05.008_bib31) 2016 Sarno (10.1016/j.cell.2016.05.008_bib35) 2016; 10 Andersen (10.1016/j.cell.2016.05.008_bib3) 1970; 2 Simmons (10.1016/j.cell.2016.05.008_bib39) 2005; 284 Lazear (10.1016/j.cell.2016.05.008_bib22) 2016; 90 Arechavaleta-Velasco (10.1016/j.cell.2016.05.008_bib5) 2002; 55 Mlakar (10.1016/j.cell.2016.05.008_bib25) 2016; 374 Sheehan (10.1016/j.cell.2016.05.008_bib38) 2015; 10 Oliphant (10.1016/j.cell.2016.05.008_bib29) 2006; 80 Cauchemez (10.1016/j.cell.2016.05.008_bib13) 2016 Sarathy (10.1016/j.cell.2016.05.008_bib34) 2015; 89 Staples (10.1016/j.cell.2016.05.008_bib40) 2016; 65 Edwards (10.1016/j.cell.2016.05.008_bib17) 2015; 18 Tang (10.1016/j.cell.2016.05.008_bib41) 2016 Lazear (10.1016/j.cell.2016.05.008_bib23) 2016 Baronti (10.1016/j.cell.2016.05.008_bib6) 2014; 2 Brasil (10.1016/j.cell.2016.05.008_bib8) 2016 Ventura (10.1016/j.cell.2016.05.008_bib42) 2016; 387 Nguyen (10.1016/j.cell.2016.05.008_bib27) 2002; 51 Semple (10.1016/j.cell.2016.05.008_bib36) 2013; 106-107 Chaturvedi (10.1016/j.cell.2016.05.008_bib14) 1980; 141 Aliota (10.1016/j.cell.2016.05.008_bib1) 2016; 10 Robbins (10.1016/j.cell.2016.05.008_bib32) 2012; 15 Andersen (10.1016/j.cell.2016.05.008_bib4) 1975; 12 Cao (10.1016/j.cell.2016.05.008_bib11) 2014; 35 Chervenak (10.1016/j.cell.2016.05.008_bib15) 1987; 69 Sheehan (10.1016/j.cell.2016.05.008_bib37) 2006; 26 Martines (10.1016/j.cell.2016.05.008_bib24) 2016; 65 Allison (10.1016/j.cell.2016.05.008_bib2) 2003; 77 Calvet (10.1016/j.cell.2016.05.008_bib10) 2016 Carteaux (10.1016/j.cell.2016.05.008_bib12) 2016; 374 Musso (10.1016/j.cell.2016.05.008_bib26) 2015; 21 Hwang (10.1016/j.cell.2016.05.008_bib20) 1995; 92 Watson (10.1016/j.cell.2016.05.008_bib43) 2005; 20 Delorme-Axford (10.1016/j.cell.2016.05.008_bib16) 2014; 1 Finlay (10.1016/j.cell.2016.05.008_bib19) 1995; 268 27392219 - Cell Stem Cell. 2016 Jul 7;19(1):4-6. doi: 10.1016/j.stem.2016.06.009 27339887 - Nat Rev Endocrinol. 2016 Aug;12(8):437-8. doi: 10.1038/nrendo.2016.101 27211788 - Nat Rev Microbiol. 2016 Jul;14(7):401. doi: 10.1038/nrmicro.2016.80 27345865 - Trends Mol Med. 2016 Aug;22(8):639-641. doi: 10.1016/j.molmed.2016.06.004 |
References_xml | – volume: 141 start-page: 712 year: 1980 end-page: 715 ident: bib14 article-title: Transplacental infection with Japanese encephalitis virus publication-title: J. Infect. Dis. – volume: 284 start-page: 12 year: 2005 end-page: 24 ident: bib39 article-title: Determinants of trophoblast lineage and cell subtype specification in the mouse placenta publication-title: Dev. Biol. – volume: 10 start-page: e0004682 year: 2016 ident: bib1 article-title: Characterization of Lethal Zika Virus Infection in AG129 Mice publication-title: PLoS Negl. Trop. Dis. – volume: 55 start-page: 113 year: 2002 end-page: 121 ident: bib5 article-title: Viral infection of the trophoblast: time to take a serious look at its role in abnormal implantation and placentation? publication-title: J. Reprod. Immunol. – volume: 374 start-page: 951 year: 2016 end-page: 958 ident: bib25 article-title: Zika Virus Associated with Microcephaly publication-title: N. Engl. J. Med. – volume: 26 start-page: 804 year: 2006 end-page: 819 ident: bib37 article-title: Blocking monoclonal antibodies specific for mouse IFN-alpha/beta receptor subunit 1 (IFNAR-1) from mice immunized by in vivo hydrodynamic transfection publication-title: Journal of interferon & cytokine research – year: 2016 ident: bib8 article-title: Zika Virus Infection in Pregnant Women in Rio de Janeiro - Preliminary Report publication-title: N. Engl. J. Med. – volume: 18 start-page: 155 year: 2015 end-page: 158 ident: bib17 article-title: Ascending in utero herpes simplex virus infection in an initially healthy-appearing premature infant publication-title: Pediatr. Dev. Pathol. – volume: 352 start-page: 345 year: 2016 end-page: 349 ident: bib18 article-title: Zika virus in the Americas: Early epidemiological and genetic findings publication-title: Science – volume: 20 start-page: 180 year: 2005 end-page: 193 ident: bib43 article-title: Development of structures and transport functions in the mouse placenta publication-title: Physiology (Bethesda) – year: 2016 ident: bib33 article-title: Characterization of a Novel Murine Model to Study Zika Virus publication-title: Am. J. Trop. Med. Hyg. – volume: 65 start-page: 159 year: 2016 end-page: 160 ident: bib24 article-title: Notes from the Field: Evidence of Zika Virus Infection in Brain and Placental Tissues from Two Congenitally Infected Newborns and Two Fetal Losses - Brazil, 2015 publication-title: MMWR Morb. Mortal. wkly. Rep. – volume: 6 year: 2015 ident: bib30 article-title: Defining New Therapeutics Using a More Immunocompetent Mouse Model of Antibody-Enhanced Dengue Virus Infection publication-title: MBio – volume: 35 start-page: 139 year: 2014 end-page: 142 ident: bib11 article-title: Intracellular bacteria in placental basal plate localize to extravillous trophoblasts publication-title: Placenta – volume: 12 start-page: 1173 year: 1975 end-page: 1183 ident: bib4 article-title: Intrauterine infection of mice with St. Louis encephalitis virus: immunological, physiological, neurological, and behavioral effects on progeny publication-title: Infect. Immun. – volume: 15 start-page: 36 year: 2012 end-page: 43 ident: bib32 article-title: Pathogens and the placental fortress publication-title: Curr. Opin. Microbiol. – year: 2016 ident: bib41 article-title: Zika Virus Infects Human Cortical Neural Progenitors and Attenuates Their Growth publication-title: Cell Stem Cell – volume: 2 start-page: 320 year: 1970 end-page: 325 ident: bib3 article-title: Experimental transplacental transmission of st. Louis encephalitis virus in mice publication-title: Infect. Immun. – volume: 2 start-page: e00500 year: 2014 end-page: e00514 ident: bib6 article-title: Complete coding sequence of zika virus from a French polynesia outbreak in 2013 publication-title: Genome Announc. – volume: 16 start-page: 30100 year: 2016 end-page: 30107 ident: bib7 article-title: Type III Interferons Produced by Human Placental Trophoblasts Confer Protection against Zika Virus Infection publication-title: Cell Host Microbe – volume: 374 start-page: 1595 year: 2016 end-page: 1596 ident: bib12 article-title: Zika Virus Associated with Meningoencephalitis publication-title: N. Engl. J. Med. – year: 2016 ident: bib23 article-title: A Mouse Model of Zika Virus Pathogenesis publication-title: Cell Host Microbe – volume: 268 start-page: 1578 year: 1995 end-page: 1584 ident: bib19 article-title: Linked regularities in the development and evolution of mammalian brains publication-title: Science – year: 2016 ident: bib31 article-title: Zika Virus and Birth Defects - Reviewing the Evidence for Causality publication-title: N. Engl. J. Med. – volume: 387 start-page: 228 year: 2016 ident: bib42 article-title: Zika virus in Brazil and macular atrophy in a child with microcephaly publication-title: Lancet – volume: 106-107 start-page: 1 year: 2013 end-page: 16 ident: bib36 article-title: Brain development in rodents and humans: Identifying benchmarks of maturation and vulnerability to injury across species publication-title: Prog. Neurobiol. – volume: 14 start-page: 1232 year: 2008 end-page: 1239 ident: bib21 article-title: Genetic and serologic properties of Zika virus associated with an epidemic, Yap State, Micronesia, 2007 publication-title: Emerg. Infect. Dis. – volume: 10 start-page: e0004517 year: 2016 ident: bib35 article-title: Zika Virus Infection and Stillbirths: A Case of Hydrops Fetalis, Hydranencephaly and Fetal Demise publication-title: PLoS Negl. Trop. Dis. – year: 2016 ident: bib10 article-title: Detection and sequencing of Zika virus from amniotic fluid of fetuses with microcephaly in Brazil: a case study publication-title: Lancet Infect. Dis. – volume: 31 year: 2013 ident: bib9 article-title: Propagation, quantification, detection, and storage of west nile virus publication-title: Current protocols in microbiology – volume: 10 start-page: e0128636 year: 2015 ident: bib38 article-title: Selective Blockade of Interferon-α and -β Reveals Their Non-Redundant Functions in a Mouse Model of West Nile Virus Infection publication-title: PLoS ONE – volume: 21 start-page: 359 year: 2015 end-page: 361 ident: bib26 article-title: Potential sexual transmission of Zika virus publication-title: Emerg. Infect. Dis. – volume: 1 start-page: 133 year: 2014 end-page: 146 ident: bib16 article-title: The Placenta as a Barrier to Viral Infections publication-title: Annu Rev Virol – volume: 89 start-page: 1254 year: 2015 end-page: 1266 ident: bib34 article-title: A lethal murine infection model for dengue virus 3 in AG129 mice deficient in type I and II interferon receptors leads to systemic disease publication-title: J. Virol. – volume: 77 start-page: 11357 year: 2003 end-page: 11366 ident: bib2 article-title: Two distinct size classes of immature and mature subviral particles from tick-borne encephalitis virus publication-title: J. Virol. – volume: 92 start-page: 11284 year: 1995 end-page: 11288 ident: bib20 article-title: A null mutation in the gene encoding a type I interferon receptor component eliminates antiproliferative and antiviral responses to interferons alpha and beta and alters macrophage responses publication-title: Proc. Natl. Acad. Sci. USA – volume: 8 start-page: e1002804 year: 2012 ident: bib44 article-title: Host defense and tolerance: unique challenges in the placenta publication-title: PLoS Pathog. – year: 2016 ident: bib13 article-title: Association between Zika virus and microcephaly in French Polynesia, 2013–15: a retrospective study publication-title: The Lancet – volume: 69 start-page: 908 year: 1987 end-page: 910 ident: bib15 article-title: A prospective study of the accuracy of ultrasound in predicting fetal microcephaly publication-title: Obstet. Gynecol. – volume: 19 start-page: 20720 year: 2014 ident: bib28 article-title: Zika virus infection complicated by Guillain-Barre syndrome--case report, French Polynesia, December 2013 publication-title: Euro Surveill. – volume: 80 start-page: 12149 year: 2006 end-page: 12159 ident: bib29 article-title: Antibody recognition and neutralization determinants on domains I and II of West Nile Virus envelope protein publication-title: J. Virol. – volume: 90 start-page: 4864 year: 2016 end-page: 4875 ident: bib22 article-title: Zika Virus: New Clinical Syndromes and Its Emergence in the Western Hemisphere publication-title: J. Virol. – volume: 51 start-page: 1135 year: 2002 end-page: 1136 ident: bib27 article-title: Intrauterine West Nile virus infection--New York, 2002 publication-title: MMWR Morb. Mortal. wkly. Rep. – volume: 65 start-page: 63 year: 2016 end-page: 67 ident: bib40 article-title: Interim Guidelines for the Evaluation and Testing of Infants with Possible Congenital Zika Virus Infection - United States, 2016 publication-title: MMWR Morb. Mortal. wkly. Rep. – volume: 65 start-page: 159 year: 2016 ident: 10.1016/j.cell.2016.05.008_bib24 article-title: Notes from the Field: Evidence of Zika Virus Infection in Brain and Placental Tissues from Two Congenitally Infected Newborns and Two Fetal Losses - Brazil, 2015 publication-title: MMWR Morb. Mortal. wkly. Rep. doi: 10.15585/mmwr.mm6506e1 – volume: 69 start-page: 908 year: 1987 ident: 10.1016/j.cell.2016.05.008_bib15 article-title: A prospective study of the accuracy of ultrasound in predicting fetal microcephaly publication-title: Obstet. Gynecol. – volume: 90 start-page: 4864 year: 2016 ident: 10.1016/j.cell.2016.05.008_bib22 article-title: Zika Virus: New Clinical Syndromes and Its Emergence in the Western Hemisphere publication-title: J. Virol. doi: 10.1128/JVI.00252-16 – volume: 89 start-page: 1254 year: 2015 ident: 10.1016/j.cell.2016.05.008_bib34 article-title: A lethal murine infection model for dengue virus 3 in AG129 mice deficient in type I and II interferon receptors leads to systemic disease publication-title: J. Virol. doi: 10.1128/JVI.01320-14 – volume: 352 start-page: 345 year: 2016 ident: 10.1016/j.cell.2016.05.008_bib18 article-title: Zika virus in the Americas: Early epidemiological and genetic findings publication-title: Science doi: 10.1126/science.aaf5036 – volume: 55 start-page: 113 year: 2002 ident: 10.1016/j.cell.2016.05.008_bib5 article-title: Viral infection of the trophoblast: time to take a serious look at its role in abnormal implantation and placentation? publication-title: J. Reprod. Immunol. doi: 10.1016/S0165-0378(01)00143-7 – year: 2016 ident: 10.1016/j.cell.2016.05.008_bib31 article-title: Zika Virus and Birth Defects - Reviewing the Evidence for Causality publication-title: N. Engl. J. Med. doi: 10.1056/NEJMsr1604338 – volume: 10 start-page: e0004517 year: 2016 ident: 10.1016/j.cell.2016.05.008_bib35 article-title: Zika Virus Infection and Stillbirths: A Case of Hydrops Fetalis, Hydranencephaly and Fetal Demise publication-title: PLoS Negl. Trop. Dis. doi: 10.1371/journal.pntd.0004517 – volume: 21 start-page: 359 year: 2015 ident: 10.1016/j.cell.2016.05.008_bib26 article-title: Potential sexual transmission of Zika virus publication-title: Emerg. Infect. Dis. doi: 10.3201/eid2102.141363 – volume: 10 start-page: e0128636 year: 2015 ident: 10.1016/j.cell.2016.05.008_bib38 article-title: Selective Blockade of Interferon-α and -β Reveals Their Non-Redundant Functions in a Mouse Model of West Nile Virus Infection publication-title: PLoS ONE doi: 10.1371/journal.pone.0128636 – volume: 6 year: 2015 ident: 10.1016/j.cell.2016.05.008_bib30 article-title: Defining New Therapeutics Using a More Immunocompetent Mouse Model of Antibody-Enhanced Dengue Virus Infection publication-title: MBio doi: 10.1128/mBio.01316-15 – year: 2016 ident: 10.1016/j.cell.2016.05.008_bib13 article-title: Association between Zika virus and microcephaly in French Polynesia, 2013–15: a retrospective study publication-title: The Lancet doi: 10.1016/S0140-6736(16)00651-6 – volume: 92 start-page: 11284 year: 1995 ident: 10.1016/j.cell.2016.05.008_bib20 article-title: A null mutation in the gene encoding a type I interferon receptor component eliminates antiproliferative and antiviral responses to interferons alpha and beta and alters macrophage responses publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.92.24.11284 – volume: 65 start-page: 63 year: 2016 ident: 10.1016/j.cell.2016.05.008_bib40 article-title: Interim Guidelines for the Evaluation and Testing of Infants with Possible Congenital Zika Virus Infection - United States, 2016 publication-title: MMWR Morb. Mortal. wkly. Rep. doi: 10.15585/mmwr.mm6503e3 – volume: 374 start-page: 951 year: 2016 ident: 10.1016/j.cell.2016.05.008_bib25 article-title: Zika Virus Associated with Microcephaly publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa1600651 – volume: 19 start-page: 20720 year: 2014 ident: 10.1016/j.cell.2016.05.008_bib28 article-title: Zika virus infection complicated by Guillain-Barre syndrome--case report, French Polynesia, December 2013 publication-title: Euro Surveill. doi: 10.2807/1560-7917.ES2014.19.9.20720 – volume: 51 start-page: 1135 year: 2002 ident: 10.1016/j.cell.2016.05.008_bib27 article-title: Intrauterine West Nile virus infection--New York, 2002 publication-title: MMWR Morb. Mortal. wkly. Rep. – volume: 10 start-page: e0004682 year: 2016 ident: 10.1016/j.cell.2016.05.008_bib1 article-title: Characterization of Lethal Zika Virus Infection in AG129 Mice publication-title: PLoS Negl. Trop. Dis. doi: 10.1371/journal.pntd.0004682 – volume: 268 start-page: 1578 year: 1995 ident: 10.1016/j.cell.2016.05.008_bib19 article-title: Linked regularities in the development and evolution of mammalian brains publication-title: Science doi: 10.1126/science.7777856 – volume: 35 start-page: 139 year: 2014 ident: 10.1016/j.cell.2016.05.008_bib11 article-title: Intracellular bacteria in placental basal plate localize to extravillous trophoblasts publication-title: Placenta doi: 10.1016/j.placenta.2013.12.007 – volume: 387 start-page: 228 year: 2016 ident: 10.1016/j.cell.2016.05.008_bib42 article-title: Zika virus in Brazil and macular atrophy in a child with microcephaly publication-title: Lancet doi: 10.1016/S0140-6736(16)00006-4 – volume: 12 start-page: 1173 year: 1975 ident: 10.1016/j.cell.2016.05.008_bib4 article-title: Intrauterine infection of mice with St. Louis encephalitis virus: immunological, physiological, neurological, and behavioral effects on progeny publication-title: Infect. Immun. doi: 10.1128/IAI.12.5.1173-1183.1975 – volume: 2 start-page: 320 year: 1970 ident: 10.1016/j.cell.2016.05.008_bib3 article-title: Experimental transplacental transmission of st. Louis encephalitis virus in mice publication-title: Infect. Immun. doi: 10.1128/IAI.2.3.320-325.1970 – volume: 77 start-page: 11357 year: 2003 ident: 10.1016/j.cell.2016.05.008_bib2 article-title: Two distinct size classes of immature and mature subviral particles from tick-borne encephalitis virus publication-title: J. Virol. doi: 10.1128/JVI.77.21.11357-11366.2003 – year: 2016 ident: 10.1016/j.cell.2016.05.008_bib41 article-title: Zika Virus Infects Human Cortical Neural Progenitors and Attenuates Their Growth publication-title: Cell Stem Cell doi: 10.1016/j.stem.2016.02.016 – year: 2016 ident: 10.1016/j.cell.2016.05.008_bib10 article-title: Detection and sequencing of Zika virus from amniotic fluid of fetuses with microcephaly in Brazil: a case study publication-title: Lancet Infect. Dis. doi: 10.1016/S1473-3099(16)00095-5 – volume: 20 start-page: 180 year: 2005 ident: 10.1016/j.cell.2016.05.008_bib43 article-title: Development of structures and transport functions in the mouse placenta publication-title: Physiology (Bethesda) doi: 10.1152/physiol.00001.2005 – volume: 15 start-page: 36 year: 2012 ident: 10.1016/j.cell.2016.05.008_bib32 article-title: Pathogens and the placental fortress publication-title: Curr. Opin. Microbiol. doi: 10.1016/j.mib.2011.11.006 – volume: 2 start-page: e00500 year: 2014 ident: 10.1016/j.cell.2016.05.008_bib6 article-title: Complete coding sequence of zika virus from a French polynesia outbreak in 2013 publication-title: Genome Announc. doi: 10.1128/genomeA.00500-14 – volume: 18 start-page: 155 year: 2015 ident: 10.1016/j.cell.2016.05.008_bib17 article-title: Ascending in utero herpes simplex virus infection in an initially healthy-appearing premature infant publication-title: Pediatr. Dev. Pathol. doi: 10.2350/14-09-1548-CR.1 – volume: 284 start-page: 12 year: 2005 ident: 10.1016/j.cell.2016.05.008_bib39 article-title: Determinants of trophoblast lineage and cell subtype specification in the mouse placenta publication-title: Dev. Biol. doi: 10.1016/j.ydbio.2005.05.010 – volume: 80 start-page: 12149 year: 2006 ident: 10.1016/j.cell.2016.05.008_bib29 article-title: Antibody recognition and neutralization determinants on domains I and II of West Nile Virus envelope protein publication-title: J. Virol. doi: 10.1128/JVI.01732-06 – volume: 106-107 start-page: 1 year: 2013 ident: 10.1016/j.cell.2016.05.008_bib36 article-title: Brain development in rodents and humans: Identifying benchmarks of maturation and vulnerability to injury across species publication-title: Prog. Neurobiol. doi: 10.1016/j.pneurobio.2013.04.001 – volume: 141 start-page: 712 year: 1980 ident: 10.1016/j.cell.2016.05.008_bib14 article-title: Transplacental infection with Japanese encephalitis virus publication-title: J. Infect. Dis. doi: 10.1093/infdis/141.6.712 – volume: 1 start-page: 133 year: 2014 ident: 10.1016/j.cell.2016.05.008_bib16 article-title: The Placenta as a Barrier to Viral Infections publication-title: Annu Rev Virol doi: 10.1146/annurev-virology-031413-085524 – year: 2016 ident: 10.1016/j.cell.2016.05.008_bib33 article-title: Characterization of a Novel Murine Model to Study Zika Virus publication-title: Am. J. Trop. Med. Hyg. doi: 10.4269/ajtmh.16-0111 – volume: 31 year: 2013 ident: 10.1016/j.cell.2016.05.008_bib9 article-title: Propagation, quantification, detection, and storage of west nile virus publication-title: Current protocols in microbiology doi: 10.1002/9780471729259.mc15d03s31 – year: 2016 ident: 10.1016/j.cell.2016.05.008_bib8 article-title: Zika Virus Infection in Pregnant Women in Rio de Janeiro - Preliminary Report publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa1602412 – year: 2016 ident: 10.1016/j.cell.2016.05.008_bib23 article-title: A Mouse Model of Zika Virus Pathogenesis publication-title: Cell Host Microbe doi: 10.1016/j.chom.2016.03.010 – volume: 16 start-page: 30100 year: 2016 ident: 10.1016/j.cell.2016.05.008_bib7 article-title: Type III Interferons Produced by Human Placental Trophoblasts Confer Protection against Zika Virus Infection publication-title: Cell Host Microbe – volume: 14 start-page: 1232 year: 2008 ident: 10.1016/j.cell.2016.05.008_bib21 article-title: Genetic and serologic properties of Zika virus associated with an epidemic, Yap State, Micronesia, 2007 publication-title: Emerg. Infect. Dis. doi: 10.3201/eid1408.080287 – volume: 8 start-page: e1002804 year: 2012 ident: 10.1016/j.cell.2016.05.008_bib44 article-title: Host defense and tolerance: unique challenges in the placenta publication-title: PLoS Pathog. doi: 10.1371/journal.ppat.1002804 – volume: 374 start-page: 1595 year: 2016 ident: 10.1016/j.cell.2016.05.008_bib12 article-title: Zika Virus Associated with Meningoencephalitis publication-title: N. Engl. J. Med. doi: 10.1056/NEJMc1602964 – volume: 26 start-page: 804 year: 2006 ident: 10.1016/j.cell.2016.05.008_bib37 article-title: Blocking monoclonal antibodies specific for mouse IFN-alpha/beta receptor subunit 1 (IFNAR-1) from mice immunized by in vivo hydrodynamic transfection publication-title: Journal of interferon & cytokine research doi: 10.1089/jir.2006.26.804 – reference: 27345865 - Trends Mol Med. 2016 Aug;22(8):639-641. doi: 10.1016/j.molmed.2016.06.004 – reference: 27392219 - Cell Stem Cell. 2016 Jul 7;19(1):4-6. doi: 10.1016/j.stem.2016.06.009 – reference: 27339887 - Nat Rev Endocrinol. 2016 Aug;12(8):437-8. doi: 10.1038/nrendo.2016.101 – reference: 27211788 - Nat Rev Microbiol. 2016 Jul;14(7):401. doi: 10.1038/nrmicro.2016.80 |
SSID | ssj0008555 |
Score | 2.660295 |
Snippet | Zika virus (ZIKV) infection in pregnant women causes intrauterine growth restriction, spontaneous abortion, and microcephaly. Here, we describe two mouse... |
SourceID | pubmedcentral proquest pubmed crossref elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1081 |
SubjectTerms | abortion (animals) animal models Animals antibodies Apoptosis brain Brain - embryology Brain - pathology Brain - virology congenital abnormalities Disease Models, Animal Female females fetal death Fetal Diseases - pathology Fetal Diseases - virology fetus heterozygosity humans interferons Male males Mice Mice, Inbred C57BL pathogenesis placenta Placenta Diseases - pathology Placenta Diseases - virology Pregnancy Pregnancy Complications, Infectious - pathology Pregnancy Complications, Infectious - virology pregnant women Receptor, Interferon alpha-beta - genetics Receptor, Interferon alpha-beta - metabolism RNA, Viral - isolation & purification vaccines Zika virus Zika Virus - physiology Zika Virus Infection - pathology Zika Virus Infection - virology |
Title | Zika Virus Infection during Pregnancy in Mice Causes Placental Damage and Fetal Demise |
URI | https://dx.doi.org/10.1016/j.cell.2016.05.008 https://www.ncbi.nlm.nih.gov/pubmed/27180225 https://www.proquest.com/docview/1790462560 https://www.proquest.com/docview/1808643541 https://www.proquest.com/docview/2000229455 https://pubmed.ncbi.nlm.nih.gov/PMC4874881 |
Volume | 165 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEBZLINBLaZI-tnmgQG_FxLL1sI7pJksSSNhDE5ZehGyPWqetE_ZxyL_vjB9Lt2n30KOlEVifpNGMmPmGsQ86h1JLVUZBmzSSJfjIWllGNqWAIR1sXNI75PWNvriVV1M1HbBRnwtDYZWd7m91eqOtu5aTDs2Tx6qiHF-bZLqxKIgRhmi3U5k1SXzTTyttnCnVVjGwePJRukucaWO86HGcwrt0w95JJSb_fjk9Nz7_jKH87VIav2IvO2uSn7Y_vMMGUO-y7ba-5NMeu_tSfff8rpot5_yyi7qqeZuZyCcz-EpsG0-8qvk16gs-8ss5zPmEXtYpSZKf-Z-obrivSz6GpoGqw8Frdjs-_zy6iLpCClGhMrOITKwhzwrQqQgWtPHeghG5tLHKEvBxXOTal8RlpkzhbQixCuiXBFn4IGUh0zdsq36o4R3joYjTHH0qkBIdEStyRLLMMwMyeJF6MWSiR9AVHcs4Fbv44fpwsntHqDtC3cXKIepD9nE15rHl2NgorfqFcWs7xeElsHHccb-KDrGibl_Dw3LuiKRMarL9Nshk6PshPlL8WyZp2ISsVGrI3ra7YzWfxBDVXoI9Zm3frASI5nu9p66-NXTf6FKilhXv_3Pe--wFfVHEg7AHbGsxW8IhGlKL_Kg5Kb8AVRIbyw |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKEYIL4s3yNBKcUNQ48SM-cICW1S7tVj201YqLcRIbwiOtNrtC-7v4g8wkzorlsQekXm0nij87n2esmW8IeS5zV0ouyshLlUa8dDbSmpeRTjFgSHodl3gPOTmUoxP-biqmW-RHnwuDYZWB-ztOb9k6tOwENHfOqwpzfHWSydaiQEUYGSIr993yO_htzavxHizyiyQZvj3eHUWhtEBUiEzNIxVLl2eFkynz2kllrXaK5VzHIkucjeMil7ZEdS-hCqu9j4UHS93zwnrOC57Cey-Ry2B9KGSD8fTNiv4zIbqyCRqoBj4vZOp0QWV4G4_xZLKVC8Waln8_Df-0dn8P2vzlFBzeINeD-UpfdwjdJFuuvkWudAUtl7fJ6fvqi6Wn1WzR0HEI86pplwpJj2buI8p7LGlV0wkQFN21i8Y19Aiv8jErk-7Zb8Bv1NYlHbq2AcvRuTvk5ELgvUu267Pa3SfUF3GagxPnOAfPR7MckCzzTDnuLUstGxDWI2iKIGuO1TW-mj5-7bNB1A2ibmJhAPUBebl65rwT9dg4WvQLY9a2poFTZ-Nzz_pVNIAVdtvanS0ag6poXKKxuWFMBs4m4MPZv8ckrXyR5kIMyL1ud6zmkyjU9kugR63tm9UA1BVf76mrT62-OPiwQOvswX_O-ym5OjqeHJiD8eH-Q3INezDcgulHZHs-W7jHYMXN8yftX0PJh4v-TX8CTNBZlQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Zika+Virus+Infection+during+Pregnancy+in+Mice+Causes+Placental+Damage+and+Fetal+Demise&rft.jtitle=Cell&rft.au=Miner%2C+Jonathan+J&rft.au=Cao%2C+Bin&rft.au=Govero%2C+Jennifer&rft.au=Smith%2C+Amber+M&rft.date=2016-05-19&rft.issn=1097-4172&rft.eissn=1097-4172&rft.volume=165&rft.issue=5&rft.spage=1081&rft_id=info:doi/10.1016%2Fj.cell.2016.05.008&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0092-8674&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0092-8674&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0092-8674&client=summon |