Zika Virus Infection during Pregnancy in Mice Causes Placental Damage and Fetal Demise

Zika virus (ZIKV) infection in pregnant women causes intrauterine growth restriction, spontaneous abortion, and microcephaly. Here, we describe two mouse models of placental and fetal disease associated with in utero transmission of ZIKV. Female mice lacking type I interferon signaling (Ifnar1−/−) c...

Full description

Saved in:
Bibliographic Details
Published inCell Vol. 165; no. 5; pp. 1081 - 1091
Main Authors Miner, Jonathan J., Cao, Bin, Govero, Jennifer, Smith, Amber M., Fernandez, Estefania, Cabrera, Omar H., Garber, Charise, Noll, Michelle, Klein, Robyn S., Noguchi, Kevin K., Mysorekar, Indira U., Diamond, Michael S.
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 19.05.2016
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Zika virus (ZIKV) infection in pregnant women causes intrauterine growth restriction, spontaneous abortion, and microcephaly. Here, we describe two mouse models of placental and fetal disease associated with in utero transmission of ZIKV. Female mice lacking type I interferon signaling (Ifnar1−/−) crossed to wild-type (WT) males produced heterozygous fetuses resembling the immune status of human fetuses. Maternal inoculation at embryonic day 6.5 (E6.5) or E7.5 resulted in fetal demise that was associated with ZIKV infection of the placenta and fetal brain. We identified ZIKV within trophoblasts of the maternal and fetal placenta, consistent with a trans-placental infection route. Antibody blockade of Ifnar1 signaling in WT pregnant mice enhanced ZIKV trans-placental infection although it did not result in fetal death. These models will facilitate the study of ZIKV pathogenesis, in utero transmission, and testing of therapies and vaccines to prevent congenital malformations. [Display omitted] •Establishment of an in utero transmission model of ZIKV infection•ZIKV infects placental cells and results in intrauterine growth restriction•ZIKV infection and injury of the fetal brain is observed•ZIKV infection of fetuses can occur by a trans-placental route Zika virus infection of mice early in pregnancy results in infection of the placenta and fetal brain, causing a fetal syndrome that resembles the intrauterine growth restriction and spontaneous abortion observed in ZIKV-infected pregnant women.
AbstractList Zika virus (ZIKV) infection in pregnant women causes intrauterine growth restriction, spontaneous abortion, and microcephaly. Here, we describe two mouse models of placental and fetal disease associated with in utero transmission of ZIKV. Female mice lacking type I interferon signaling (Ifnar1−/−) crossed to wild-type (WT) males produced heterozygous fetuses resembling the immune status of human fetuses. Maternal inoculation at embryonic day 6.5 (E6.5) or E7.5 resulted in fetal demise that was associated with ZIKV infection of the placenta and fetal brain. We identified ZIKV within trophoblasts of the maternal and fetal placenta, consistent with a trans-placental infection route. Antibody blockade of Ifnar1 signaling in WT pregnant mice enhanced ZIKV trans-placental infection although it did not result in fetal death. These models will facilitate the study of ZIKV pathogenesis, in utero transmission, and testing of therapies and vaccines to prevent congenital malformations.
Zika virus (ZIKV) infection in pregnant women causes intrauterine growth restriction, spontaneous abortion, and microcephaly. Here, we describe two mouse models of placental and fetal disease associated with in utero transmission of ZIKV. Female mice lacking type I interferon signaling (Ifnar1(-/-)) crossed to wild-type (WT) males produced heterozygous fetuses resembling the immune status of human fetuses. Maternal inoculation at embryonic day 6.5 (E6.5) or E7.5 resulted in fetal demise that was associated with ZIKV infection of the placenta and fetal brain. We identified ZIKV within trophoblasts of the maternal and fetal placenta, consistent with a trans-placental infection route. Antibody blockade of Ifnar1 signaling in WT pregnant mice enhanced ZIKV trans-placental infection although it did not result in fetal death. These models will facilitate the study of ZIKV pathogenesis, in utero transmission, and testing of therapies and vaccines to prevent congenital malformations.
Zika virus (ZIKV) infection in pregnant women causes intrauterine growth restriction, spontaneous abortion, and microcephaly. Here, we describe two mouse models of placental and fetal disease associated with in utero transmission of ZIKV. Female mice lacking type I interferon signaling (Ifnar1(-/-)) crossed to wild-type (WT) males produced heterozygous fetuses resembling the immune status of human fetuses. Maternal inoculation at embryonic day 6.5 (E6.5) or E7.5 resulted in fetal demise that was associated with ZIKV infection of the placenta and fetal brain. We identified ZIKV within trophoblasts of the maternal and fetal placenta, consistent with a trans-placental infection route. Antibody blockade of Ifnar1 signaling in WT pregnant mice enhanced ZIKV trans-placental infection although it did not result in fetal death. These models will facilitate the study of ZIKV pathogenesis, in utero transmission, and testing of therapies and vaccines to prevent congenital malformations.Zika virus (ZIKV) infection in pregnant women causes intrauterine growth restriction, spontaneous abortion, and microcephaly. Here, we describe two mouse models of placental and fetal disease associated with in utero transmission of ZIKV. Female mice lacking type I interferon signaling (Ifnar1(-/-)) crossed to wild-type (WT) males produced heterozygous fetuses resembling the immune status of human fetuses. Maternal inoculation at embryonic day 6.5 (E6.5) or E7.5 resulted in fetal demise that was associated with ZIKV infection of the placenta and fetal brain. We identified ZIKV within trophoblasts of the maternal and fetal placenta, consistent with a trans-placental infection route. Antibody blockade of Ifnar1 signaling in WT pregnant mice enhanced ZIKV trans-placental infection although it did not result in fetal death. These models will facilitate the study of ZIKV pathogenesis, in utero transmission, and testing of therapies and vaccines to prevent congenital malformations.
Zika virus (ZIKV) infection in pregnant women causes intrauterine growth restriction, spontaneous abortion, and microcephaly. Here, we describe two mouse models of placental and fetal disease associated with in utero transmission of ZIKV. Female mice lacking type I interferon signaling ( Ifnar1 −/− ) crossed to wild-type (WT) males produced heterozygous fetuses resembling the immune status of human fetuses. Maternal inoculation at embryonic day 6.5 (E6.5) or E7.5 resulted in fetal demise that was associated with ZIKV infection of the placenta and fetal brain. We identified ZIKV within trophoblasts of the maternal and fetal placenta, consistent with a trans-placental infection route. Antibody blockade of Ifnar1 signaling in WT pregnant mice enhanced ZIKV trans-placental infection although it did not result in fetal death. These models will facilitate the study of ZIKV pathogenesis, in utero transmission, and testing of therapies and vaccines to prevent congenital malformations.
Zika virus (ZIKV) infection in pregnant women causes intrauterine growth restriction, spontaneous abortion, and microcephaly. Here, we describe two mouse models of placental and fetal disease associated with in utero transmission of ZIKV. Female mice lacking type I interferon signaling (Ifnar1 super(-/-)) crossed to wild-type (WT) males produced heterozygous fetuses resembling the immune status of human fetuses. Maternal inoculation at embryonic day 6.5 (E6.5) or E7.5 resulted in fetal demise that was associated with ZIKV infection of the placenta and fetal brain. We identified ZIKV within trophoblasts of the maternal and fetal placenta, consistent with a trans-placental infection route. Antibody blockade of Ifnar1 signaling in WT pregnant mice enhanced ZIKV trans-placental infection although it did not result in fetal death. These models will facilitate the study of ZIKV pathogenesis, in utero transmission, and testing of therapies and vaccines to prevent congenital malformations.
Zika virus (ZIKV) infection in pregnant women causes intrauterine growth restriction, spontaneous abortion, and microcephaly. Here, we describe two mouse models of placental and fetal disease associated with in utero transmission of ZIKV. Female mice lacking type I interferon signaling (Ifnar1−/−) crossed to wild-type (WT) males produced heterozygous fetuses resembling the immune status of human fetuses. Maternal inoculation at embryonic day 6.5 (E6.5) or E7.5 resulted in fetal demise that was associated with ZIKV infection of the placenta and fetal brain. We identified ZIKV within trophoblasts of the maternal and fetal placenta, consistent with a trans-placental infection route. Antibody blockade of Ifnar1 signaling in WT pregnant mice enhanced ZIKV trans-placental infection although it did not result in fetal death. These models will facilitate the study of ZIKV pathogenesis, in utero transmission, and testing of therapies and vaccines to prevent congenital malformations. [Display omitted] •Establishment of an in utero transmission model of ZIKV infection•ZIKV infects placental cells and results in intrauterine growth restriction•ZIKV infection and injury of the fetal brain is observed•ZIKV infection of fetuses can occur by a trans-placental route Zika virus infection of mice early in pregnancy results in infection of the placenta and fetal brain, causing a fetal syndrome that resembles the intrauterine growth restriction and spontaneous abortion observed in ZIKV-infected pregnant women.
Author Garber, Charise
Cao, Bin
Fernandez, Estefania
Miner, Jonathan J.
Noguchi, Kevin K.
Diamond, Michael S.
Klein, Robyn S.
Cabrera, Omar H.
Noll, Michelle
Mysorekar, Indira U.
Govero, Jennifer
Smith, Amber M.
AuthorAffiliation 5 Department of Obstetrics and Gynecology, Washington University School of Medicine, Saint Louis, MO 63110
7 The Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, Saint Louis, MO 63110
4 Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO 63110
6 Department of Psychiatry, Washington University School of Medicine, Saint Louis, MO 63110
1 Department of Medicine, Washington University School of Medicine, Saint Louis, MO 63110
3 Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, MO 63110
2 Department of Anatomy and Neurobiology, Washington University School of Medicine, Saint Louis, MO 63110
AuthorAffiliation_xml – name: 6 Department of Psychiatry, Washington University School of Medicine, Saint Louis, MO 63110
– name: 7 The Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, Saint Louis, MO 63110
– name: 2 Department of Anatomy and Neurobiology, Washington University School of Medicine, Saint Louis, MO 63110
– name: 3 Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, MO 63110
– name: 1 Department of Medicine, Washington University School of Medicine, Saint Louis, MO 63110
– name: 4 Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO 63110
– name: 5 Department of Obstetrics and Gynecology, Washington University School of Medicine, Saint Louis, MO 63110
Author_xml – sequence: 1
  givenname: Jonathan J.
  surname: Miner
  fullname: Miner, Jonathan J.
  organization: Department of Medicine, Washington University School of Medicine, Saint Louis, MO 63110, USA
– sequence: 2
  givenname: Bin
  surname: Cao
  fullname: Cao, Bin
  organization: Department of Obstetrics and Gynecology, Washington University School of Medicine, Saint Louis, MO 63110, USA
– sequence: 3
  givenname: Jennifer
  surname: Govero
  fullname: Govero, Jennifer
  organization: Department of Medicine, Washington University School of Medicine, Saint Louis, MO 63110, USA
– sequence: 4
  givenname: Amber M.
  surname: Smith
  fullname: Smith, Amber M.
  organization: Department of Medicine, Washington University School of Medicine, Saint Louis, MO 63110, USA
– sequence: 5
  givenname: Estefania
  surname: Fernandez
  fullname: Fernandez, Estefania
  organization: Department of Medicine, Washington University School of Medicine, Saint Louis, MO 63110, USA
– sequence: 6
  givenname: Omar H.
  surname: Cabrera
  fullname: Cabrera, Omar H.
  organization: Department of Psychiatry, Washington University School of Medicine, Saint Louis, MO 63110, USA
– sequence: 7
  givenname: Charise
  surname: Garber
  fullname: Garber, Charise
  organization: Department of Medicine, Washington University School of Medicine, Saint Louis, MO 63110, USA
– sequence: 8
  givenname: Michelle
  surname: Noll
  fullname: Noll, Michelle
  organization: Department of Medicine, Washington University School of Medicine, Saint Louis, MO 63110, USA
– sequence: 9
  givenname: Robyn S.
  surname: Klein
  fullname: Klein, Robyn S.
  organization: Department of Medicine, Washington University School of Medicine, Saint Louis, MO 63110, USA
– sequence: 10
  givenname: Kevin K.
  surname: Noguchi
  fullname: Noguchi, Kevin K.
  organization: Department of Psychiatry, Washington University School of Medicine, Saint Louis, MO 63110, USA
– sequence: 11
  givenname: Indira U.
  surname: Mysorekar
  fullname: Mysorekar, Indira U.
  email: mysorekari@wudosis.wustl.edu
  organization: Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO 63110, USA
– sequence: 12
  givenname: Michael S.
  surname: Diamond
  fullname: Diamond, Michael S.
  email: diamond@borcim.wustl.edu
  organization: Department of Medicine, Washington University School of Medicine, Saint Louis, MO 63110, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/27180225$$D View this record in MEDLINE/PubMed
BookMark eNqFUk1v1DAQtVAR3Rb-AAfkI5cE2-uvSAgJLfRDKqIH6IGLNetMFi9Zp9hJpf57HLZFwKE92bLfe_Nm3hyRgzhEJOQlZzVnXL_Z1h77vhblXjNVM2afkAVnjakkN-KALBhrRGW1kYfkKOctKwil1DNyKAy3TAi1IFffwg-gVyFNmZ7HDv0YhkjbKYW4oZcJNxGiv6Uh0k_BI13BlDHTyx48xhF6-gF2sEEKsaUn-PsBdyHjc_K0gz7ji7vzmHw9-fhldVZdfD49X72_qLyyZqwM07i2HvWSdw1qA9Cg4WvZMGUFAmN-raFVTC6V8dB0HVOdlqKTHjopvVwek3d73etpvcN2NpWgd9cp7CDdugGC-_cnhu9uM9w4aY20lheB13cCafg5YR5dsT-PFSIOU3aiDE2IRir1KLSM1OriVD6uyk3DpBZKswJ99XcHf6zfR1QAdg_wacg5Yed8GGGOqTQUeseZm7fBbd1cwM3b4JhyJetCFf9R79UfJL3dk7DkdhMwuewDRo9tSGU9XDuEh-i_AH40zVk
CitedBy_id crossref_primary_10_1371_journal_pntd_0006880
crossref_primary_10_1186_s12974_020_01904_3
crossref_primary_10_3389_fimmu_2020_01977
crossref_primary_10_1038_srep34793
crossref_primary_10_1080_23328940_2016_1208319
crossref_primary_10_1590_0100_3984_2017_0098
crossref_primary_10_1016_j_molmed_2016_06_004
crossref_primary_10_3389_fgene_2021_680342
crossref_primary_10_1007_s11481_017_9743_8
crossref_primary_10_1172_jci_insight_122678
crossref_primary_10_3390_pathogens11080853
crossref_primary_10_1371_journal_pntd_0008707
crossref_primary_10_3389_fmicb_2019_01465
crossref_primary_10_1093_infdis_jiz239
crossref_primary_10_1038_s41421_018_0042_1
crossref_primary_10_3390_applmicrobiol2040059
crossref_primary_10_1186_s12915_022_01344_w
crossref_primary_10_3390_biomedicines9060643
crossref_primary_10_3390_v9100297
crossref_primary_10_1371_journal_ppat_1012756
crossref_primary_10_1016_j_ebiom_2016_09_028
crossref_primary_10_1016_j_ebiom_2022_103930
crossref_primary_10_1186_s40478_018_0572_7
crossref_primary_10_1016_j_ebiom_2016_09_022
crossref_primary_10_3390_v11090878
crossref_primary_10_1128_JVI_01765_16
crossref_primary_10_3390_v14081619
crossref_primary_10_1016_j_chom_2019_10_001
crossref_primary_10_7554_eLife_64734
crossref_primary_10_1016_j_neuron_2019_01_010
crossref_primary_10_1016_j_jrhm_2016_11_007
crossref_primary_10_1128_JVI_00038_18
crossref_primary_10_1016_j_chom_2016_12_010
crossref_primary_10_1016_j_ejmech_2016_12_058
crossref_primary_10_1016_j_virol_2017_12_026
crossref_primary_10_1038_nature18952
crossref_primary_10_3390_v10010049
crossref_primary_10_1002_adhm_201900476
crossref_primary_10_1126_scitranslmed_abq6517
crossref_primary_10_1016_j_pathol_2017_07_008
crossref_primary_10_1016_j_ram_2020_08_003
crossref_primary_10_3390_v13040554
crossref_primary_10_1016_j_ajog_2018_08_035
crossref_primary_10_1016_j_etp_2016_11_004
crossref_primary_10_1073_pnas_2101713118
crossref_primary_10_3390_v9100287
crossref_primary_10_1038_ncomms15743
crossref_primary_10_1371_journal_pbio_2006592
crossref_primary_10_3390_v10010046
crossref_primary_10_1007_s12035_017_0442_5
crossref_primary_10_3390_v13061107
crossref_primary_10_2217_fvl_2017_0137
crossref_primary_10_1128_mBio_02063_16
crossref_primary_10_3390_pathogens12020194
crossref_primary_10_3201_eid2304_161879
crossref_primary_10_3389_fimmu_2021_610456
crossref_primary_10_1016_j_cell_2017_04_008
crossref_primary_10_1016_j_molmed_2017_01_004
crossref_primary_10_1016_j_virusres_2017_08_018
crossref_primary_10_1016_j_celrep_2016_08_038
crossref_primary_10_2222_jsv_68_1
crossref_primary_10_1016_j_virusres_2021_198544
crossref_primary_10_1038_emi_2016_141
crossref_primary_10_1038_s41541_024_00927_8
crossref_primary_10_1371_journal_ppat_1006184
crossref_primary_10_1128_mbio_01742_23
crossref_primary_10_3390_v13091807
crossref_primary_10_1016_S0140_6736_16_30930_8
crossref_primary_10_1128_JVI_00554_17
crossref_primary_10_1016_j_celrep_2017_03_058
crossref_primary_10_1093_cid_cix166
crossref_primary_10_3390_ph16101385
crossref_primary_10_5812_pedinfect_58308
crossref_primary_10_1093_brain_aww158
crossref_primary_10_1021_acs_chemrev_7b00719
crossref_primary_10_1038_s41598_018_21894_w
crossref_primary_10_1016_j_bbrc_2017_01_074
crossref_primary_10_1097_GRF_0000000000000343
crossref_primary_10_3390_v12030291
crossref_primary_10_1016_j_tjog_2017_08_003
crossref_primary_10_3390_tropicalmed4020058
crossref_primary_10_1016_j_stem_2016_11_014
crossref_primary_10_3390_cells10113085
crossref_primary_10_1177_1753495X18775899
crossref_primary_10_1128_JVI_01970_16
crossref_primary_10_1002_jmv_24731
crossref_primary_10_1038_s41467_020_19096_y
crossref_primary_10_1002_bdr2_1006
crossref_primary_10_1016_j_stem_2019_11_016
crossref_primary_10_1038_s41392_024_01917_x
crossref_primary_10_1186_s40478_017_0450_8
crossref_primary_10_1126_sciimmunol_aao1680
crossref_primary_10_1128_JVI_00163_17
crossref_primary_10_1007_s40435_021_00856_7
crossref_primary_10_1128_JVI_01018_18
crossref_primary_10_3389_fneur_2019_00319
crossref_primary_10_1128_mBio_01962_21
crossref_primary_10_1016_j_bbr_2024_115114
crossref_primary_10_3390_ijms20051101
crossref_primary_10_1128_AAC_00289_20
crossref_primary_10_1371_journal_pntd_0007537
crossref_primary_10_3389_fimmu_2019_01928
crossref_primary_10_1056_NEJMcibr1605445
crossref_primary_10_1371_journal_ppat_1006164
crossref_primary_10_7705_biomedica_v38i0_4413
crossref_primary_10_3389_fcell_2024_1340308
crossref_primary_10_3389_fcimb_2016_00206
crossref_primary_10_1002_dneu_22820
crossref_primary_10_1371_journal_ppat_1009788
crossref_primary_10_2217_fvl_2018_0170
crossref_primary_10_1021_acsomega_9b00374
crossref_primary_10_1080_20477724_2016_1234804
crossref_primary_10_3390_v11100961
crossref_primary_10_1038_s41467_017_00737_8
crossref_primary_10_1111_cmi_13302
crossref_primary_10_3389_fimmu_2018_02464
crossref_primary_10_1038_s41467_018_04777_6
crossref_primary_10_1074_jbc_RA120_015165
crossref_primary_10_1016_j_rmu_2017_09_001
crossref_primary_10_1038_ncomms14575
crossref_primary_10_1371_journal_pone_0261821
crossref_primary_10_1089_jir_2017_0011
crossref_primary_10_1089_vim_2017_0046
crossref_primary_10_1371_journal_ppat_1007474
crossref_primary_10_1038_s41593_017_0038_4
crossref_primary_10_3390_v13101929
crossref_primary_10_1016_j_celrep_2019_01_052
crossref_primary_10_1128_JVI_01982_18
crossref_primary_10_1002_ijgo_12663
crossref_primary_10_3389_fmicb_2019_00029
crossref_primary_10_1007_s15010_016_0935_6
crossref_primary_10_1128_jvi_01122_22
crossref_primary_10_1007_s00705_018_3911_x
crossref_primary_10_5501_wjv_v7_i1_10
crossref_primary_10_1016_j_actbio_2019_09_019
crossref_primary_10_1016_j_meegid_2020_104364
crossref_primary_10_1038_emi_2016_103
crossref_primary_10_1038_s41579_018_0134_9
crossref_primary_10_1186_s41182_022_00485_6
crossref_primary_10_1038_ncomms15672
crossref_primary_10_1016_j_coviro_2017_06_011
crossref_primary_10_1021_acs_biochem_6b01056
crossref_primary_10_1177_1093526618790742
crossref_primary_10_1007_s12640_016_9635_3
crossref_primary_10_1038_s41467_017_02499_9
crossref_primary_10_3389_fviro_2021_783407
crossref_primary_10_1038_s41598_023_30342_3
crossref_primary_10_1038_s41598_021_82028_3
crossref_primary_10_1016_j_chom_2016_05_015
crossref_primary_10_1172_jci_insight_86654
crossref_primary_10_3389_fmicb_2020_598203
crossref_primary_10_1016_j_virol_2017_04_013
crossref_primary_10_1016_j_antiviral_2019_04_013
crossref_primary_10_1371_journal_ppat_1006258
crossref_primary_10_1371_journal_ppat_1006378
crossref_primary_10_3390_ph17080988
crossref_primary_10_1186_s13071_016_1634_y
crossref_primary_10_1016_j_antiviral_2017_11_004
crossref_primary_10_2217_fvl_2018_0034
crossref_primary_10_3389_fmicb_2017_01554
crossref_primary_10_1371_journal_pntd_0006000
crossref_primary_10_1089_vim_2017_0145
crossref_primary_10_1038_s41421_019_0140_8
crossref_primary_10_3390_ijerph17113806
crossref_primary_10_1038_s41590_019_0477_z
crossref_primary_10_1016_j_antiviral_2021_105117
crossref_primary_10_1093_infdis_jix465
crossref_primary_10_1016_j_antiviral_2022_105512
crossref_primary_10_12688_f1000research_9648_1
crossref_primary_10_1093_infdis_jix462
crossref_primary_10_3389_fnins_2023_1119943
crossref_primary_10_1016_j_amc_2018_11_042
crossref_primary_10_1038_s41564_018_0233_4
crossref_primary_10_3389_fmicb_2023_1098323
crossref_primary_10_1002_prca_202100042
crossref_primary_10_1016_j_ebiom_2017_09_034
crossref_primary_10_1371_journal_ppat_1006004
crossref_primary_10_1161_CIRCRESAHA_116_309866
crossref_primary_10_1371_journal_pntd_0008424
crossref_primary_10_1016_j_jviromet_2017_08_012
crossref_primary_10_1007_s00203_016_1268_7
crossref_primary_10_1002_tox_24424
crossref_primary_10_1371_journal_ppat_1008538
crossref_primary_10_1016_j_virusres_2017_09_005
crossref_primary_10_1016_j_cell_2016_08_004
crossref_primary_10_1371_journal_pone_0257408
crossref_primary_10_3389_fimmu_2019_02886
crossref_primary_10_3390_v9070165
crossref_primary_10_1016_j_bios_2019_01_040
crossref_primary_10_1016_j_celrep_2020_108339
crossref_primary_10_1128_spectrum_01137_22
crossref_primary_10_1523_JNEUROSCI_3124_16_2017
crossref_primary_10_1038_s41598_017_16475_2
crossref_primary_10_1371_journal_pone_0202820
crossref_primary_10_1128_jvi_01373_22
crossref_primary_10_1038_s42003_022_03902_y
crossref_primary_10_1371_journal_pntd_0008413
crossref_primary_10_1093_cercor_bhad432
crossref_primary_10_1021_acsomega_8b01002
crossref_primary_10_3389_fphar_2019_00642
crossref_primary_10_1186_s40478_022_01351_6
crossref_primary_10_1126_science_aaw7733
crossref_primary_10_1371_journal_ppat_1008521
crossref_primary_10_1038_s41586_018_0446_y
crossref_primary_10_1038_s41598_019_52613_8
crossref_primary_10_3390_cells8121519
crossref_primary_10_1002_jmv_28243
crossref_primary_10_1038_srep41389
crossref_primary_10_1016_j_ydbio_2025_02_002
crossref_primary_10_1016_j_celrep_2019_02_062
crossref_primary_10_3389_fimmu_2020_00592
crossref_primary_10_3923_ijp_2017_370_377
crossref_primary_10_3389_fncel_2019_00389
crossref_primary_10_1038_s41598_018_31149_3
crossref_primary_10_1093_femsle_fnw202
crossref_primary_10_1002_anbr_202200010
crossref_primary_10_1155_2018_9517842
crossref_primary_10_1371_journal_pntd_0005363
crossref_primary_10_1371_journal_pntd_0006210
crossref_primary_10_1126_scisignal_aas9332
crossref_primary_10_1186_s12974_019_1566_5
crossref_primary_10_3390_v12010072
crossref_primary_10_1128_AAC_00394_19
crossref_primary_10_1155_2019_7375217
crossref_primary_10_1016_j_virol_2023_03_006
crossref_primary_10_1080_21505594_2019_1656503
crossref_primary_10_1126_science_aah6157
crossref_primary_10_1016_j_virol_2020_05_005
crossref_primary_10_3390_tropicalmed6020095
crossref_primary_10_1038_s41467_025_56927_2
crossref_primary_10_2217_fvl_2018_0115
crossref_primary_10_3389_fviro_2021_720760
crossref_primary_10_1016_j_ebiom_2016_11_017
crossref_primary_10_1016_j_ebiom_2017_09_021
crossref_primary_10_4110_in_2017_17_5_287
crossref_primary_10_1002_ana_24968
crossref_primary_10_3390_v13102029
crossref_primary_10_1016_j_chom_2017_08_012
crossref_primary_10_1002_mas_21674
crossref_primary_10_1038_s41598_018_28890_0
crossref_primary_10_1080_17460441_2019_1597050
crossref_primary_10_1016_j_antiviral_2016_11_023
crossref_primary_10_3389_fimmu_2021_764746
crossref_primary_10_1016_j_antiviral_2017_08_007
crossref_primary_10_3390_v13010013
crossref_primary_10_1016_j_immuni_2017_02_005
crossref_primary_10_1128_mSphereDirect_00190_17
crossref_primary_10_1128_JVI_01445_20
crossref_primary_10_1016_j_celrep_2016_12_045
crossref_primary_10_3390_v15081632
crossref_primary_10_1007_s13311_016_0443_5
crossref_primary_10_1016_j_cell_2024_10_028
crossref_primary_10_1128_JVI_00186_18
crossref_primary_10_1007_s13365_017_0513_4
crossref_primary_10_1038_nature20564
crossref_primary_10_3389_froh_2021_735634
crossref_primary_10_12688_f1000research_12695_1
crossref_primary_10_1371_journal_ppat_1006684
crossref_primary_10_1016_j_celrep_2018_03_080
crossref_primary_10_1126_scitranslmed_aao7090
crossref_primary_10_1371_journal_pntd_0008453
crossref_primary_10_3389_fmicb_2017_02557
crossref_primary_10_1002_cne_24640
crossref_primary_10_1038_s42003_019_0344_3
crossref_primary_10_1038_nrmicro_2016_125
crossref_primary_10_1038_srep32227
crossref_primary_10_1111_voxs_12500
crossref_primary_10_3389_fmed_2021_674645
crossref_primary_10_1007_s13365_018_0614_8
crossref_primary_10_3390_v14020386
crossref_primary_10_1016_j_cytogfr_2018_01_008
crossref_primary_10_1093_infdis_jix396
crossref_primary_10_3389_fimmu_2022_826091
crossref_primary_10_1038_s41598_017_17067_w
crossref_primary_10_3390_v15010142
crossref_primary_10_1016_j_pneurobio_2021_102054
crossref_primary_10_1038_nature20556
crossref_primary_10_3390_pathogens11030321
crossref_primary_10_1016_j_braindev_2016_10_012
crossref_primary_10_3390_ijms26010047
crossref_primary_10_3390_v13102088
crossref_primary_10_1007_s12250_018_0007_4
crossref_primary_10_1016_j_antiviral_2016_11_003
crossref_primary_10_1038_s41467_019_12063_2
crossref_primary_10_1371_journal_pntd_0005054
crossref_primary_10_1371_journal_pntd_0005296
crossref_primary_10_1016_j_tim_2016_06_002
crossref_primary_10_3390_v12070765
crossref_primary_10_1038_s41426_018_0044_y
crossref_primary_10_1007_s10439_018_2090_y
crossref_primary_10_12688_f1000research_9370_1
crossref_primary_10_1016_j_celrep_2016_06_028
crossref_primary_10_1007_s13365_017_0514_3
crossref_primary_10_3390_v11010049
crossref_primary_10_5858_arpa_2016_0401_OA
crossref_primary_10_1016_j_celrep_2016_08_079
crossref_primary_10_1093_infdis_jiz338
crossref_primary_10_1128_JVI_00912_16
crossref_primary_10_1146_annurev_virology_092818_015740
crossref_primary_10_1038_s41598_018_27611_x
crossref_primary_10_1139_cjm_2019_0331
crossref_primary_10_3389_fimmu_2023_1060959
crossref_primary_10_1371_journal_pntd_0007343
crossref_primary_10_1016_j_immuni_2017_02_012
crossref_primary_10_1038_s41598_020_57545_2
crossref_primary_10_1016_j_celrep_2016_07_049
crossref_primary_10_3390_v10020095
crossref_primary_10_1084_jem_20170957
crossref_primary_10_1159_000495660
crossref_primary_10_1128_JVI_00818_21
crossref_primary_10_3389_fmicb_2017_00110
crossref_primary_10_1089_scd_2016_0231
crossref_primary_10_1016_j_chom_2016_07_002
crossref_primary_10_1038_s41598_018_28257_5
crossref_primary_10_1016_j_antiviral_2022_105500
crossref_primary_10_1016_j_chom_2016_07_004
crossref_primary_10_1038_s41467_018_05458_0
crossref_primary_10_1371_journal_ppat_1007507
crossref_primary_10_1038_s41598_017_07099_7
crossref_primary_10_1159_000486841
crossref_primary_10_15252_embr_201949183
crossref_primary_10_1016_j_ajog_2023_08_012
crossref_primary_10_1097_MRM_0000000000000126
crossref_primary_10_1097_PGP_0000000000000807
crossref_primary_10_1002_rmv_2021
crossref_primary_10_1371_journal_pone_0187720
crossref_primary_10_3390_v10100541
crossref_primary_10_3390_v13112244
crossref_primary_10_1016_j_cell_2018_03_019
crossref_primary_10_1016_j_ebiom_2023_104739
crossref_primary_10_3389_fimmu_2019_01045
crossref_primary_10_3390_v10100547
crossref_primary_10_1038_ni_3849
crossref_primary_10_1016_j_coviro_2017_09_005
crossref_primary_10_15252_embr_202152450
crossref_primary_10_3389_fcimb_2021_640987
crossref_primary_10_3390_v11010029
crossref_primary_10_1016_j_immuni_2019_01_005
crossref_primary_10_1073_pnas_1616097114
crossref_primary_10_1016_j_chom_2017_02_015
crossref_primary_10_2217_fmb_2017_0213
crossref_primary_10_1016_j_pcl_2017_03_012
crossref_primary_10_1084_jem_20240694
crossref_primary_10_3389_fmicb_2019_00817
crossref_primary_10_1186_s40409_017_0131_x
crossref_primary_10_1016_j_intimp_2023_110512
crossref_primary_10_1038_s41598_018_22840_6
crossref_primary_10_1016_j_virol_2020_07_014
crossref_primary_10_1590_0074_02760160510
crossref_primary_10_1128_JVI_01575_20
crossref_primary_10_1186_s12985_018_0989_4
crossref_primary_10_15252_embr_202051978
crossref_primary_10_1128_JVI_00067_20
crossref_primary_10_1128_mBio_01716_20
crossref_primary_10_1126_science_aam7120
crossref_primary_10_3389_fimmu_2018_01850
crossref_primary_10_1371_journal_ppat_1006994
crossref_primary_10_1089_dna_2016_3404
crossref_primary_10_1172_jci_insight_92428
crossref_primary_10_1111_jnc_14576
crossref_primary_10_1038_s41418_019_0324_7
crossref_primary_10_1126_scitranslmed_adh0043
crossref_primary_10_1016_j_virs_2022_01_021
crossref_primary_10_1016_j_celrep_2023_112126
crossref_primary_10_1371_journal_pntd_0009575
crossref_primary_10_3389_fimmu_2024_1400977
crossref_primary_10_1128_JVI_01485_18
crossref_primary_10_1371_journal_pntd_0011657
crossref_primary_10_1128_mSphere_00173_19
crossref_primary_10_15252_embj_201899347
crossref_primary_10_1007_s12035_017_0635_y
crossref_primary_10_1371_journal_pone_0218539
crossref_primary_10_1016_j_stem_2016_07_019
crossref_primary_10_1016_j_virol_2017_01_023
crossref_primary_10_3390_v16010028
crossref_primary_10_1093_infdis_jiy606
crossref_primary_10_3389_fimmu_2018_01640
crossref_primary_10_1038_s41467_023_41158_0
crossref_primary_10_1038_cddis_2016_266
crossref_primary_10_1038_s41564_018_0236_1
crossref_primary_10_1093_molbev_msw270
crossref_primary_10_3389_fmicb_2018_01350
crossref_primary_10_1002_bies_202000103
crossref_primary_10_1016_j_bmc_2024_117682
crossref_primary_10_3389_fmicb_2022_847588
crossref_primary_10_1093_cid_ciw878
crossref_primary_10_1016_j_immuni_2018_07_017
crossref_primary_10_3390_v10100550
crossref_primary_10_1016_j_cell_2016_07_020
crossref_primary_10_1016_j_coviro_2018_11_010
crossref_primary_10_1016_j_jviromet_2024_115053
crossref_primary_10_3390_v10110598
crossref_primary_10_1007_s12250_018_0030_5
crossref_primary_10_1038_s41420_020_00379_8
crossref_primary_10_3389_fimmu_2020_00175
crossref_primary_10_3390_v10110597
crossref_primary_10_1016_j_ajog_2017_10_001
crossref_primary_10_1038_emi_2016_99
crossref_primary_10_1038_emi_2017_68
crossref_primary_10_3390_tropicalmed4030104
crossref_primary_10_1016_j_cell_2022_06_051
crossref_primary_10_1016_j_chom_2017_01_004
crossref_primary_10_1038_emi_2017_67
crossref_primary_10_3390_v10110593
crossref_primary_10_1371_journal_ppat_1007938
crossref_primary_10_3389_fmats_2021_631373
crossref_primary_10_1016_j_antiviral_2017_06_001
crossref_primary_10_1073_pnas_1620558114
crossref_primary_10_1016_j_tibtech_2016_10_001
crossref_primary_10_1038_s41598_017_04138_1
crossref_primary_10_5858_arpa_2016_0397_SA
crossref_primary_10_1097_AOG_0000000000002538
crossref_primary_10_3390_v12040418
crossref_primary_10_1128_JVI_00389_19
crossref_primary_10_1097_FM9_0000000000000133
crossref_primary_10_15252_embj_201695597
crossref_primary_10_3389_fimmu_2020_02070
crossref_primary_10_1016_j_virusres_2017_11_003
crossref_primary_10_3390_v16081330
crossref_primary_10_1016_j_stem_2022_04_004
crossref_primary_10_3390_v9120383
crossref_primary_10_1055_s_0042_1750156
crossref_primary_10_1128_mBio_00952_17
crossref_primary_10_3389_fmicb_2018_02028
crossref_primary_10_1016_j_ajog_2018_04_047
crossref_primary_10_1016_j_stem_2016_08_005
crossref_primary_10_1126_sciadv_aaw6284
crossref_primary_10_1371_journal_pntd_0009388
crossref_primary_10_1038_ni_3515
crossref_primary_10_1038_s41467_024_54479_5
crossref_primary_10_1016_S1473_3099_16_30193_1
crossref_primary_10_1038_s41467_018_03337_2
crossref_primary_10_4049_jimmunol_1901289
crossref_primary_10_1016_j_antiviral_2023_105549
crossref_primary_10_1080_21645515_2016_1219004
crossref_primary_10_3390_v13112157
crossref_primary_10_1002_rmv_2050
crossref_primary_10_1016_j_antiviral_2023_105542
crossref_primary_10_1038_s41541_021_00426_0
crossref_primary_10_1080_19396368_2020_1753850
crossref_primary_10_1111_tmi_13019
crossref_primary_10_1016_j_cjca_2024_09_012
crossref_primary_10_1038_s41598_018_27224_4
crossref_primary_10_3390_ijms22010035
crossref_primary_10_3390_ijms222010996
crossref_primary_10_1038_s41467_022_35407_x
crossref_primary_10_1111_trf_14037
crossref_primary_10_3389_fcimb_2017_00327
crossref_primary_10_1186_s13071_017_2224_3
crossref_primary_10_3390_vaccines8030496
crossref_primary_10_1038_s41467_019_13589_1
crossref_primary_10_1016_j_apjtm_2017_03_020
crossref_primary_10_1007_s00129_016_3966_2
crossref_primary_10_1016_j_celrep_2016_05_075
crossref_primary_10_1093_biolre_ioac095
crossref_primary_10_1038_nmicrobiol_2017_36
crossref_primary_10_1111_aji_12605
crossref_primary_10_1016_j_ajog_2017_01_020
crossref_primary_10_1128_jvi_01954_23
crossref_primary_10_3389_fmicb_2018_01018
crossref_primary_10_1016_j_indcrop_2020_112503
crossref_primary_10_1002_med_21786
crossref_primary_10_1016_j_antiviral_2018_07_017
crossref_primary_10_1038_s41564_017_0092_4
crossref_primary_10_1038_s41598_017_00193_w
crossref_primary_10_1101_gad_298216_117
crossref_primary_10_1099_jgv_0_001641
crossref_primary_10_1128_mBio_00758_19
crossref_primary_10_1371_journal_pntd_0010359
crossref_primary_10_1016_j_coviro_2016_09_013
crossref_primary_10_1128_JVI_01722_17
crossref_primary_10_1080_22221751_2018_1559707
crossref_primary_10_15212_ZOONOSES_2021_0017
crossref_primary_10_1038_s41564_017_0016_3
crossref_primary_10_1242_dev_143768
crossref_primary_10_1111_aji_12613
crossref_primary_10_3390_v9060143
crossref_primary_10_1111_aji_12616
crossref_primary_10_3390_v14050876
crossref_primary_10_1111_aji_12615
crossref_primary_10_1016_j_ebiom_2023_104457
crossref_primary_10_1590_0074_02760240125
crossref_primary_10_1007_s10753_018_0936_y
crossref_primary_10_1038_cr_2016_68
crossref_primary_10_1128_JVI_01034_19
crossref_primary_10_3390_pathogens11121410
crossref_primary_10_1186_s12985_022_01860_9
crossref_primary_10_1016_j_bbadis_2021_166244
crossref_primary_10_3389_fcell_2023_1268565
crossref_primary_10_1021_acs_jmedchem_9b00775
crossref_primary_10_1016_S1473_3099_16_30372_3
crossref_primary_10_1128_JVI_01086_20
crossref_primary_10_3389_fvets_2020_00023
crossref_primary_10_7554_eLife_39023
crossref_primary_10_1038_s41598_019_43303_6
crossref_primary_10_1111_imcb_12549
crossref_primary_10_1016_j_bioorg_2021_105303
crossref_primary_10_1038_s41579_018_0039_7
crossref_primary_10_3390_v10050233
crossref_primary_10_1007_s12250_020_00208_3
crossref_primary_10_1111_imm_12681
crossref_primary_10_1016_j_ebiom_2019_05_014
crossref_primary_10_3390_ijms242115921
crossref_primary_10_3389_fncel_2021_695106
crossref_primary_10_1080_20477724_2020_1845005
crossref_primary_10_1371_journal_pntd_0009183
crossref_primary_10_1016_j_vaccine_2019_09_093
crossref_primary_10_3390_nu15010124
crossref_primary_10_3390_v13101992
crossref_primary_10_1007_s11481_017_9736_7
crossref_primary_10_1016_j_immuni_2019_03_025
crossref_primary_10_3389_fcimb_2017_00486
crossref_primary_10_1126_sciimmunol_aat6114
crossref_primary_10_5812_jpr_9813
crossref_primary_10_1371_journal_pmed_1002203
crossref_primary_10_1128_AAC_00411_17
crossref_primary_10_1126_sciadv_aav3208
crossref_primary_10_1080_17460441_2021_1973999
crossref_primary_10_1016_j_ajog_2018_06_005
crossref_primary_10_1186_s12864_022_08919_5
crossref_primary_10_3390_ijms25042144
crossref_primary_10_4049_jimmunol_1900888
crossref_primary_10_1126_scitranslmed_aar2749
crossref_primary_10_1038_s42003_020_1109_8
crossref_primary_10_1242_bio_031807
crossref_primary_10_1038_nrd_2017_33
crossref_primary_10_1111_jcmm_15059
crossref_primary_10_5005_jp_journals_11002_0055
crossref_primary_10_1186_s12985_024_02547_z
crossref_primary_10_1038_s41467_021_22341_7
crossref_primary_10_3389_fmicb_2018_03252
crossref_primary_10_1128_JVI_01471_19
crossref_primary_10_1172_jci_insight_88461
crossref_primary_10_3390_ph12030101
crossref_primary_10_1128_JVI_01905_16
crossref_primary_10_3390_microorganisms8121996
crossref_primary_10_1080_09273948_2017_1294184
crossref_primary_10_3390_vaccines9050438
crossref_primary_10_1016_j_celrep_2018_12_095
crossref_primary_10_1242_dev_156752
crossref_primary_10_1097_GCO_0000000000000440
crossref_primary_10_3389_fimmu_2022_773191
crossref_primary_10_1007_s40473_016_0101_6
crossref_primary_10_1038_s41385_020_00374_3
crossref_primary_10_1002_eji_201847483
crossref_primary_10_1097_GCO_0000000000000323
crossref_primary_10_1016_j_amjms_2016_12_018
crossref_primary_10_1016_j_antiviral_2017_04_017
crossref_primary_10_3389_fnins_2023_1306166
crossref_primary_10_1128_mbio_03857_21
crossref_primary_10_1111_imr_13087
crossref_primary_10_1016_j_micinf_2018_03_001
crossref_primary_10_1128_mSphere_00576_17
crossref_primary_10_1038_s41426_018_0170_6
crossref_primary_10_3390_pathogens11091033
crossref_primary_10_1016_j_ajpath_2019_12_005
crossref_primary_10_1073_pnas_2205013119
crossref_primary_10_3201_eid2303_161499
crossref_primary_10_4049_jimmunol_1901310
crossref_primary_10_1128_JVI_00484_17
crossref_primary_10_1016_j_virusres_2017_07_025
crossref_primary_10_1080_21505594_2021_1996059
crossref_primary_10_1038_srep35296
crossref_primary_10_1002_jmv_24582
crossref_primary_10_3390_cells9061476
crossref_primary_10_1089_vim_2019_0076
crossref_primary_10_1111_cmi_12744
crossref_primary_10_1111_imm_12883
crossref_primary_10_1021_acsinfecdis_6b00161
crossref_primary_10_1071_MA16057
crossref_primary_10_1080_22221751_2023_2300466
crossref_primary_10_1073_pnas_1919269117
crossref_primary_10_1038_nrendo_2016_101
crossref_primary_10_5713_ab_22_0143
crossref_primary_10_7554_eLife_73792
crossref_primary_10_1016_j_ebiom_2017_04_029
crossref_primary_10_1016_j_ebiom_2017_10_019
crossref_primary_10_1126_sciimmunol_aar3446
crossref_primary_10_1038_nm_4193
crossref_primary_10_1097_AOG_0000000000003577
crossref_primary_10_1016_j_virol_2021_03_019
crossref_primary_10_3390_vaccines10091517
crossref_primary_10_1099_jgv_0_001153
crossref_primary_10_3389_fgene_2019_00918
crossref_primary_10_3390_ijerph13101031
crossref_primary_10_1016_j_virol_2016_11_002
crossref_primary_10_1213_ANE_0000000000001770
crossref_primary_10_1016_j_vaccine_2016_10_034
crossref_primary_10_3390_vaccines12020215
crossref_primary_10_1016_j_antiviral_2018_04_010
crossref_primary_10_1016_S0140_6736_17_31450_2
crossref_primary_10_1038_s41564_019_0375_z
crossref_primary_10_1016_j_celrep_2017_10_059
crossref_primary_10_1128_IAI_00923_17
crossref_primary_10_3390_ijms231810282
crossref_primary_10_1017_S0950268818000419
crossref_primary_10_1038_nm_4184
crossref_primary_10_3389_fviro_2022_782906
crossref_primary_10_1007_s13337_017_0399_z
crossref_primary_10_1038_ncomms12204
crossref_primary_10_1038_s41598_019_46291_9
crossref_primary_10_1016_j_neuron_2016_11_031
crossref_primary_10_3389_fmedt_2020_604160
crossref_primary_10_1016_j_addr_2021_113950
crossref_primary_10_1016_j_cell_2017_06_040
crossref_primary_10_1038_s41598_017_11514_4
crossref_primary_10_4236_ojog_2019_95069
crossref_primary_10_1128_JVI_02019_17
crossref_primary_10_1002_wdev_273
crossref_primary_10_1016_j_ebiom_2019_08_060
crossref_primary_10_1038_nrmicro_2016_80
crossref_primary_10_1007_s10815_019_01493_y
crossref_primary_10_1038_s41467_021_22846_1
crossref_primary_10_1128_JVI_00009_17
crossref_primary_10_1016_j_cyto_2019_02_009
crossref_primary_10_1111_aji_12578
crossref_primary_10_1016_j_cell_2018_08_069
crossref_primary_10_3390_v12121371
crossref_primary_10_1016_j_clinthera_2017_07_001
crossref_primary_10_1016_j_celrep_2021_109107
crossref_primary_10_1002_jmv_25345
crossref_primary_10_1038_s41598_017_16952_8
crossref_primary_10_1016_j_stem_2016_06_009
crossref_primary_10_1016_j_gpb_2019_06_004
crossref_primary_10_1016_j_micinf_2018_02_008
crossref_primary_10_1038_s41541_024_00823_1
crossref_primary_10_1016_j_micinf_2018_02_009
crossref_primary_10_1016_j_isci_2024_109088
crossref_primary_10_1371_journal_pntd_0004877
crossref_primary_10_3390_jcm10020268
crossref_primary_10_1007_s00705_023_05726_5
crossref_primary_10_1038_s41598_019_56291_4
crossref_primary_10_1371_journal_ppat_1012408
crossref_primary_10_1523_JNEUROSCI_1376_19_2019
crossref_primary_10_3389_fcimb_2017_00062
Cites_doi 10.15585/mmwr.mm6506e1
10.1128/JVI.00252-16
10.1128/JVI.01320-14
10.1126/science.aaf5036
10.1016/S0165-0378(01)00143-7
10.1056/NEJMsr1604338
10.1371/journal.pntd.0004517
10.3201/eid2102.141363
10.1371/journal.pone.0128636
10.1128/mBio.01316-15
10.1016/S0140-6736(16)00651-6
10.1073/pnas.92.24.11284
10.15585/mmwr.mm6503e3
10.1056/NEJMoa1600651
10.2807/1560-7917.ES2014.19.9.20720
10.1371/journal.pntd.0004682
10.1126/science.7777856
10.1016/j.placenta.2013.12.007
10.1016/S0140-6736(16)00006-4
10.1128/IAI.12.5.1173-1183.1975
10.1128/IAI.2.3.320-325.1970
10.1128/JVI.77.21.11357-11366.2003
10.1016/j.stem.2016.02.016
10.1016/S1473-3099(16)00095-5
10.1152/physiol.00001.2005
10.1016/j.mib.2011.11.006
10.1128/genomeA.00500-14
10.2350/14-09-1548-CR.1
10.1016/j.ydbio.2005.05.010
10.1128/JVI.01732-06
10.1016/j.pneurobio.2013.04.001
10.1093/infdis/141.6.712
10.1146/annurev-virology-031413-085524
10.4269/ajtmh.16-0111
10.1002/9780471729259.mc15d03s31
10.1056/NEJMoa1602412
10.1016/j.chom.2016.03.010
10.3201/eid1408.080287
10.1371/journal.ppat.1002804
10.1056/NEJMc1602964
10.1089/jir.2006.26.804
ContentType Journal Article
Copyright 2016 Elsevier Inc.
Copyright © 2016 Elsevier Inc. All rights reserved.
Copyright_xml – notice: 2016 Elsevier Inc.
– notice: Copyright © 2016 Elsevier Inc. All rights reserved.
DBID 6I.
AAFTH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7U9
H94
7S9
L.6
5PM
DOI 10.1016/j.cell.2016.05.008
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
Virology and AIDS Abstracts
AIDS and Cancer Research Abstracts
AGRICOLA
AGRICOLA - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
AIDS and Cancer Research Abstracts
Virology and AIDS Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA
MEDLINE
MEDLINE - Academic

AIDS and Cancer Research Abstracts

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1097-4172
EndPage 1091
ExternalDocumentID PMC4874881
27180225
10_1016_j_cell_2016_05_008
S0092867416305566
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIAID NIH HHS
  grantid: R01 AI104972
– fundername: NICHD NIH HHS
  grantid: R01 HD052664
– fundername: NICHD NIH HHS
  grantid: U54 HD087011
– fundername: NIAID NIH HHS
  grantid: R01 AI073755
– fundername: NIAID NIH HHS
  grantid: T32 AI007163
– fundername: NINDS NIH HHS
  grantid: R01 NS052632
– fundername: NHGRI NIH HHS
  grantid: R25 HG006687
– fundername: NIAID NIH HHS
  grantid: U19 AI083019
GroupedDBID ---
--K
-DZ
-ET
-~X
0R~
0WA
1RT
1~5
29B
2FS
2WC
3EH
4.4
457
4G.
53G
5GY
5RE
62-
6I.
6J9
7-5
85S
AACTN
AAEDW
AAFTH
AAFWJ
AAIAV
AAKRW
AAKUH
AAUCE
AAVLU
AAXJY
AAXUO
ABCQX
ABJNI
ABMAC
ABMWF
ABOCM
ABVKL
ACGFO
ACGFS
ACNCT
ADBBV
ADEZE
ADJPV
AEFWE
AENEX
AEXQZ
AFTJW
AGHSJ
AGKMS
AHHHB
AIDAL
AITUG
ALKID
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ASPBG
AVWKF
AZFZN
BAWUL
CS3
DIK
DU5
E3Z
EBS
EJD
F5P
FCP
FDB
FIRID
HH5
IH2
IHE
IXB
J1W
JIG
K-O
KOO
KQ8
L7B
LX5
M3Z
M41
N9A
NCXOZ
O-L
O9-
OK1
P2P
RCE
RIG
RNS
ROL
RPZ
SCP
SDG
SDP
SES
SSZ
TAE
TN5
TR2
TWZ
UKR
UPT
VQA
WH7
WQ6
YZZ
ZA5
ZCA
.-4
.55
.GJ
.HR
1CY
1VV
2KS
3O-
5VS
6TJ
9M8
AAEDT
AAHBH
AAIKJ
AALRI
AAMRU
AAQFI
AAQXK
AAYJJ
AAYWO
AAYXX
ABDGV
ABDPE
ABEFU
ABWVN
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
ADVLN
ADXHL
AETEA
AEUPX
AFPUW
AGCQF
AGHFR
AGQPQ
AI.
AIGII
AKAPO
AKBMS
AKRWK
AKYEP
APXCP
CITATION
FEDTE
FGOYB
G-2
HVGLF
HZ~
H~9
MVM
OHT
OMK
OZT
PUQ
R2-
UBW
UHB
VH1
X7M
YYP
YYQ
ZGI
ZHY
ZKB
ZY4
CGR
CUY
CVF
ECM
EFKBS
EIF
NPM
7X8
7U9
H94
7S9
L.6
5PM
ID FETCH-LOGICAL-c587t-706eb8ce631f9e67aa9e71b490582ea00cb6ad504357ca9ff05f642f4caf44c43
IEDL.DBID IXB
ISSN 0092-8674
1097-4172
IngestDate Thu Aug 21 18:20:08 EDT 2025
Thu Jul 10 17:47:52 EDT 2025
Mon Jul 21 10:09:13 EDT 2025
Fri Jul 11 06:22:52 EDT 2025
Mon Jul 21 05:47:56 EDT 2025
Tue Jul 01 02:16:55 EDT 2025
Thu Apr 24 22:56:10 EDT 2025
Fri Feb 23 02:30:31 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
License This article is made available under the Elsevier license.
Copyright © 2016 Elsevier Inc. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c587t-706eb8ce631f9e67aa9e71b490582ea00cb6ad504357ca9ff05f642f4caf44c43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Co-first authors.
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S0092867416305566
PMID 27180225
PQID 1790462560
PQPubID 23479
PageCount 11
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_4874881
proquest_miscellaneous_2000229455
proquest_miscellaneous_1808643541
proquest_miscellaneous_1790462560
pubmed_primary_27180225
crossref_citationtrail_10_1016_j_cell_2016_05_008
crossref_primary_10_1016_j_cell_2016_05_008
elsevier_sciencedirect_doi_10_1016_j_cell_2016_05_008
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2016-05-19
PublicationDateYYYYMMDD 2016-05-19
PublicationDate_xml – month: 05
  year: 2016
  text: 2016-05-19
  day: 19
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Cell
PublicationTitleAlternate Cell
PublicationYear 2016
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Pinto, Brien, Lam, Johnson, Chiang, Hiscott, Sarathy, Barrett, Shresta, Diamond (bib30) 2015; 6
Brasil, Pereira, Raja Gabaglia, Damasceno, Wakimoto, Ribeiro Nogueira, Carvalho de Sequeira, Machado Siqueira, Abreu de Carvalho, Cotrim da Cunha (bib8) 2016
Rossi, Tesh, Azar, Muruato, Hanley, Auguste, Langsjoen, Paessler, Vasilakis, Weaver (bib33) 2016
Zeldovich, Bakardjiev (bib44) 2012; 8
Andersen, Hanson (bib4) 1975; 12
Lanciotti, Kosoy, Laven, Velez, Lambert, Johnson, Stanfield, Duffy (bib21) 2008; 14
Mlakar, Korva, Tul, Popović, Poljšak-Prijatelj, Mraz, Kolenc, Resman Rus, Vesnaver Vipotnik, Fabjan Vodušek (bib25) 2016; 374
Oehler, Watrin, Larre, Leparc-Goffart, Lastère, Valour, Baudouin, Mallet, Musso, Ghawche (bib28) 2014; 19
Sheehan, Lazear, Diamond, Schreiber (bib38) 2015; 10
Carteaux, Maquart, Bedet, Contou, Brugières, Fourati, Cleret de Langavant, de Broucker, Brun-Buisson, Leparc-Goffart, Mekontso Dessap (bib12) 2016; 374
Chaturvedi, Mathur, Chandra, Das, Tandon, Singh (bib14) 1980; 141
Calvet, Aguiar, Melo, Sampaio, de Filippis, Fabri, Araujo, de Sequeira, de Mendonça, de Oliveira (bib10) 2016
Simmons, Cross (bib39) 2005; 284
Oliphant, Nybakken, Engle, Xu, Nelson, Sukupolvi-Petty, Marri, Lachmi, Olshevsky, Fremont (bib29) 2006; 80
Robbins, Bakardjiev (bib32) 2012; 15
Hwang, Hertzog, Holland, Sumarsono, Tymms, Hamilton, Whitty, Bertoncello, Kola (bib20) 1995; 92
Rasmussen, Jamieson, Honein, Petersen (bib31) 2016
Staples, Dziuban, Fischer, Cragan, Rasmussen, Cannon, Frey, Renquist, Lanciotti, Muñoz (bib40) 2016; 65
Allison, Tao, O’Riordain, Mandl, Harrison, Heinz (bib2) 2003; 77
Andersen, Hanson (bib3) 1970; 2
Martines, Bhatnagar, Keating, Silva-Flannery, Muehlenbachs, Gary, Goldsmith, Hale, Ritter, Rollin (bib24) 2016; 65
Chervenak, Rosenberg, Brightman, Chitkara, Jeanty (bib15) 1987; 69
Lazear, Diamond (bib22) 2016; 90
Sheehan, Lai, Dunn, Bruce, Diamond, Heutel, Dungo-Arthur, Carrero, White, Hertzog (bib37) 2006; 26
Brien, Lazear, Diamond (bib9) 2013; 31
Edwards, Popek, Wise, Hatzenbuehler, Arunachalam, Hair (bib17) 2015; 18
Arechavaleta-Velasco, Koi, Strauss, Parry (bib5) 2002; 55
Cao, Mysorekar (bib11) 2014; 35
Bayer, Lennemann, Ouyang, Bramley, Morosky, Marques, Cherry, Sadovsky, Coyne (bib7) 2016; 16
Faria, Azevedo, Kraemer, Souza, Cunha, Hill, Thézé, Bonsall, Bowden, Rissanen (bib18) 2016; 352
Delorme-Axford, Sadovsky, Coyne (bib16) 2014; 1
Semple, Blomgren, Gimlin, Ferriero, Noble-Haeusslein (bib36) 2013; 106-107
Finlay, Darlington (bib19) 1995; 268
Sarathy, White, Li, Gorder, Pyles, Campbell, Milligan, Bourne, Barrett (bib34) 2015; 89
Aliota, Caine, Walker, Larkin, Camacho, Osorio (bib1) 2016; 10
Ventura, Maia, Bravo-Filho, Góis, Belfort (bib42) 2016; 387
Lazear, Govero, Smith, Platt, Fernandez, Miner, Diamond (bib23) 2016
Musso, Roche, Robin, Nhan, Teissier, Cao-Lormeau (bib26) 2015; 21
Tang, Hammack, Ogden, Wen, Qian, Li, Yao, Shin, Zhang, Lee (bib41) 2016
Nguyen, Morrow, Novick, Cambareri, Olson, Aubry, Snedeker, Anand, Huang, Morse (bib27) 2002; 51
Baronti, Piorkowski, Charrel, Boubis, Leparc-Goffart, de Lamballerie (bib6) 2014; 2
Sarno, Sacramento, Khouri, do Rosário, Costa, Archanjo, Santos, Nery, Vasilakis, Ko, de Almeida (bib35) 2016; 10
Watson, Cross (bib43) 2005; 20
Cauchemez, Besnard, Bompard, Dub, Guillemette-Artur, Eyrolle-Guignot, Salje, Van Kerkhove, Abadie, Garel (bib13) 2016
Zeldovich (10.1016/j.cell.2016.05.008_bib44) 2012; 8
Faria (10.1016/j.cell.2016.05.008_bib18) 2016; 352
Oehler (10.1016/j.cell.2016.05.008_bib28) 2014; 19
Rossi (10.1016/j.cell.2016.05.008_bib33) 2016
Pinto (10.1016/j.cell.2016.05.008_bib30) 2015; 6
Bayer (10.1016/j.cell.2016.05.008_bib7) 2016; 16
Lanciotti (10.1016/j.cell.2016.05.008_bib21) 2008; 14
Brien (10.1016/j.cell.2016.05.008_bib9) 2013; 31
Rasmussen (10.1016/j.cell.2016.05.008_bib31) 2016
Sarno (10.1016/j.cell.2016.05.008_bib35) 2016; 10
Andersen (10.1016/j.cell.2016.05.008_bib3) 1970; 2
Simmons (10.1016/j.cell.2016.05.008_bib39) 2005; 284
Lazear (10.1016/j.cell.2016.05.008_bib22) 2016; 90
Arechavaleta-Velasco (10.1016/j.cell.2016.05.008_bib5) 2002; 55
Mlakar (10.1016/j.cell.2016.05.008_bib25) 2016; 374
Sheehan (10.1016/j.cell.2016.05.008_bib38) 2015; 10
Oliphant (10.1016/j.cell.2016.05.008_bib29) 2006; 80
Cauchemez (10.1016/j.cell.2016.05.008_bib13) 2016
Sarathy (10.1016/j.cell.2016.05.008_bib34) 2015; 89
Staples (10.1016/j.cell.2016.05.008_bib40) 2016; 65
Edwards (10.1016/j.cell.2016.05.008_bib17) 2015; 18
Tang (10.1016/j.cell.2016.05.008_bib41) 2016
Lazear (10.1016/j.cell.2016.05.008_bib23) 2016
Baronti (10.1016/j.cell.2016.05.008_bib6) 2014; 2
Brasil (10.1016/j.cell.2016.05.008_bib8) 2016
Ventura (10.1016/j.cell.2016.05.008_bib42) 2016; 387
Nguyen (10.1016/j.cell.2016.05.008_bib27) 2002; 51
Semple (10.1016/j.cell.2016.05.008_bib36) 2013; 106-107
Chaturvedi (10.1016/j.cell.2016.05.008_bib14) 1980; 141
Aliota (10.1016/j.cell.2016.05.008_bib1) 2016; 10
Robbins (10.1016/j.cell.2016.05.008_bib32) 2012; 15
Andersen (10.1016/j.cell.2016.05.008_bib4) 1975; 12
Cao (10.1016/j.cell.2016.05.008_bib11) 2014; 35
Chervenak (10.1016/j.cell.2016.05.008_bib15) 1987; 69
Sheehan (10.1016/j.cell.2016.05.008_bib37) 2006; 26
Martines (10.1016/j.cell.2016.05.008_bib24) 2016; 65
Allison (10.1016/j.cell.2016.05.008_bib2) 2003; 77
Calvet (10.1016/j.cell.2016.05.008_bib10) 2016
Carteaux (10.1016/j.cell.2016.05.008_bib12) 2016; 374
Musso (10.1016/j.cell.2016.05.008_bib26) 2015; 21
Hwang (10.1016/j.cell.2016.05.008_bib20) 1995; 92
Watson (10.1016/j.cell.2016.05.008_bib43) 2005; 20
Delorme-Axford (10.1016/j.cell.2016.05.008_bib16) 2014; 1
Finlay (10.1016/j.cell.2016.05.008_bib19) 1995; 268
27392219 - Cell Stem Cell. 2016 Jul 7;19(1):4-6. doi: 10.1016/j.stem.2016.06.009
27339887 - Nat Rev Endocrinol. 2016 Aug;12(8):437-8. doi: 10.1038/nrendo.2016.101
27211788 - Nat Rev Microbiol. 2016 Jul;14(7):401. doi: 10.1038/nrmicro.2016.80
27345865 - Trends Mol Med. 2016 Aug;22(8):639-641. doi: 10.1016/j.molmed.2016.06.004
References_xml – volume: 141
  start-page: 712
  year: 1980
  end-page: 715
  ident: bib14
  article-title: Transplacental infection with Japanese encephalitis virus
  publication-title: J. Infect. Dis.
– volume: 284
  start-page: 12
  year: 2005
  end-page: 24
  ident: bib39
  article-title: Determinants of trophoblast lineage and cell subtype specification in the mouse placenta
  publication-title: Dev. Biol.
– volume: 10
  start-page: e0004682
  year: 2016
  ident: bib1
  article-title: Characterization of Lethal Zika Virus Infection in AG129 Mice
  publication-title: PLoS Negl. Trop. Dis.
– volume: 55
  start-page: 113
  year: 2002
  end-page: 121
  ident: bib5
  article-title: Viral infection of the trophoblast: time to take a serious look at its role in abnormal implantation and placentation?
  publication-title: J. Reprod. Immunol.
– volume: 374
  start-page: 951
  year: 2016
  end-page: 958
  ident: bib25
  article-title: Zika Virus Associated with Microcephaly
  publication-title: N. Engl. J. Med.
– volume: 26
  start-page: 804
  year: 2006
  end-page: 819
  ident: bib37
  article-title: Blocking monoclonal antibodies specific for mouse IFN-alpha/beta receptor subunit 1 (IFNAR-1) from mice immunized by in vivo hydrodynamic transfection
  publication-title: Journal of interferon & cytokine research
– year: 2016
  ident: bib8
  article-title: Zika Virus Infection in Pregnant Women in Rio de Janeiro - Preliminary Report
  publication-title: N. Engl. J. Med.
– volume: 18
  start-page: 155
  year: 2015
  end-page: 158
  ident: bib17
  article-title: Ascending in utero herpes simplex virus infection in an initially healthy-appearing premature infant
  publication-title: Pediatr. Dev. Pathol.
– volume: 352
  start-page: 345
  year: 2016
  end-page: 349
  ident: bib18
  article-title: Zika virus in the Americas: Early epidemiological and genetic findings
  publication-title: Science
– volume: 20
  start-page: 180
  year: 2005
  end-page: 193
  ident: bib43
  article-title: Development of structures and transport functions in the mouse placenta
  publication-title: Physiology (Bethesda)
– year: 2016
  ident: bib33
  article-title: Characterization of a Novel Murine Model to Study Zika Virus
  publication-title: Am. J. Trop. Med. Hyg.
– volume: 65
  start-page: 159
  year: 2016
  end-page: 160
  ident: bib24
  article-title: Notes from the Field: Evidence of Zika Virus Infection in Brain and Placental Tissues from Two Congenitally Infected Newborns and Two Fetal Losses - Brazil, 2015
  publication-title: MMWR Morb. Mortal. wkly. Rep.
– volume: 6
  year: 2015
  ident: bib30
  article-title: Defining New Therapeutics Using a More Immunocompetent Mouse Model of Antibody-Enhanced Dengue Virus Infection
  publication-title: MBio
– volume: 35
  start-page: 139
  year: 2014
  end-page: 142
  ident: bib11
  article-title: Intracellular bacteria in placental basal plate localize to extravillous trophoblasts
  publication-title: Placenta
– volume: 12
  start-page: 1173
  year: 1975
  end-page: 1183
  ident: bib4
  article-title: Intrauterine infection of mice with St. Louis encephalitis virus: immunological, physiological, neurological, and behavioral effects on progeny
  publication-title: Infect. Immun.
– volume: 15
  start-page: 36
  year: 2012
  end-page: 43
  ident: bib32
  article-title: Pathogens and the placental fortress
  publication-title: Curr. Opin. Microbiol.
– year: 2016
  ident: bib41
  article-title: Zika Virus Infects Human Cortical Neural Progenitors and Attenuates Their Growth
  publication-title: Cell Stem Cell
– volume: 2
  start-page: 320
  year: 1970
  end-page: 325
  ident: bib3
  article-title: Experimental transplacental transmission of st. Louis encephalitis virus in mice
  publication-title: Infect. Immun.
– volume: 2
  start-page: e00500
  year: 2014
  end-page: e00514
  ident: bib6
  article-title: Complete coding sequence of zika virus from a French polynesia outbreak in 2013
  publication-title: Genome Announc.
– volume: 16
  start-page: 30100
  year: 2016
  end-page: 30107
  ident: bib7
  article-title: Type III Interferons Produced by Human Placental Trophoblasts Confer Protection against Zika Virus Infection
  publication-title: Cell Host Microbe
– volume: 374
  start-page: 1595
  year: 2016
  end-page: 1596
  ident: bib12
  article-title: Zika Virus Associated with Meningoencephalitis
  publication-title: N. Engl. J. Med.
– year: 2016
  ident: bib23
  article-title: A Mouse Model of Zika Virus Pathogenesis
  publication-title: Cell Host Microbe
– volume: 268
  start-page: 1578
  year: 1995
  end-page: 1584
  ident: bib19
  article-title: Linked regularities in the development and evolution of mammalian brains
  publication-title: Science
– year: 2016
  ident: bib31
  article-title: Zika Virus and Birth Defects - Reviewing the Evidence for Causality
  publication-title: N. Engl. J. Med.
– volume: 387
  start-page: 228
  year: 2016
  ident: bib42
  article-title: Zika virus in Brazil and macular atrophy in a child with microcephaly
  publication-title: Lancet
– volume: 106-107
  start-page: 1
  year: 2013
  end-page: 16
  ident: bib36
  article-title: Brain development in rodents and humans: Identifying benchmarks of maturation and vulnerability to injury across species
  publication-title: Prog. Neurobiol.
– volume: 14
  start-page: 1232
  year: 2008
  end-page: 1239
  ident: bib21
  article-title: Genetic and serologic properties of Zika virus associated with an epidemic, Yap State, Micronesia, 2007
  publication-title: Emerg. Infect. Dis.
– volume: 10
  start-page: e0004517
  year: 2016
  ident: bib35
  article-title: Zika Virus Infection and Stillbirths: A Case of Hydrops Fetalis, Hydranencephaly and Fetal Demise
  publication-title: PLoS Negl. Trop. Dis.
– year: 2016
  ident: bib10
  article-title: Detection and sequencing of Zika virus from amniotic fluid of fetuses with microcephaly in Brazil: a case study
  publication-title: Lancet Infect. Dis.
– volume: 31
  year: 2013
  ident: bib9
  article-title: Propagation, quantification, detection, and storage of west nile virus
  publication-title: Current protocols in microbiology
– volume: 10
  start-page: e0128636
  year: 2015
  ident: bib38
  article-title: Selective Blockade of Interferon-α and -β Reveals Their Non-Redundant Functions in a Mouse Model of West Nile Virus Infection
  publication-title: PLoS ONE
– volume: 21
  start-page: 359
  year: 2015
  end-page: 361
  ident: bib26
  article-title: Potential sexual transmission of Zika virus
  publication-title: Emerg. Infect. Dis.
– volume: 1
  start-page: 133
  year: 2014
  end-page: 146
  ident: bib16
  article-title: The Placenta as a Barrier to Viral Infections
  publication-title: Annu Rev Virol
– volume: 89
  start-page: 1254
  year: 2015
  end-page: 1266
  ident: bib34
  article-title: A lethal murine infection model for dengue virus 3 in AG129 mice deficient in type I and II interferon receptors leads to systemic disease
  publication-title: J. Virol.
– volume: 77
  start-page: 11357
  year: 2003
  end-page: 11366
  ident: bib2
  article-title: Two distinct size classes of immature and mature subviral particles from tick-borne encephalitis virus
  publication-title: J. Virol.
– volume: 92
  start-page: 11284
  year: 1995
  end-page: 11288
  ident: bib20
  article-title: A null mutation in the gene encoding a type I interferon receptor component eliminates antiproliferative and antiviral responses to interferons alpha and beta and alters macrophage responses
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 8
  start-page: e1002804
  year: 2012
  ident: bib44
  article-title: Host defense and tolerance: unique challenges in the placenta
  publication-title: PLoS Pathog.
– year: 2016
  ident: bib13
  article-title: Association between Zika virus and microcephaly in French Polynesia, 2013–15: a retrospective study
  publication-title: The Lancet
– volume: 69
  start-page: 908
  year: 1987
  end-page: 910
  ident: bib15
  article-title: A prospective study of the accuracy of ultrasound in predicting fetal microcephaly
  publication-title: Obstet. Gynecol.
– volume: 19
  start-page: 20720
  year: 2014
  ident: bib28
  article-title: Zika virus infection complicated by Guillain-Barre syndrome--case report, French Polynesia, December 2013
  publication-title: Euro Surveill.
– volume: 80
  start-page: 12149
  year: 2006
  end-page: 12159
  ident: bib29
  article-title: Antibody recognition and neutralization determinants on domains I and II of West Nile Virus envelope protein
  publication-title: J. Virol.
– volume: 90
  start-page: 4864
  year: 2016
  end-page: 4875
  ident: bib22
  article-title: Zika Virus: New Clinical Syndromes and Its Emergence in the Western Hemisphere
  publication-title: J. Virol.
– volume: 51
  start-page: 1135
  year: 2002
  end-page: 1136
  ident: bib27
  article-title: Intrauterine West Nile virus infection--New York, 2002
  publication-title: MMWR Morb. Mortal. wkly. Rep.
– volume: 65
  start-page: 63
  year: 2016
  end-page: 67
  ident: bib40
  article-title: Interim Guidelines for the Evaluation and Testing of Infants with Possible Congenital Zika Virus Infection - United States, 2016
  publication-title: MMWR Morb. Mortal. wkly. Rep.
– volume: 65
  start-page: 159
  year: 2016
  ident: 10.1016/j.cell.2016.05.008_bib24
  article-title: Notes from the Field: Evidence of Zika Virus Infection in Brain and Placental Tissues from Two Congenitally Infected Newborns and Two Fetal Losses - Brazil, 2015
  publication-title: MMWR Morb. Mortal. wkly. Rep.
  doi: 10.15585/mmwr.mm6506e1
– volume: 69
  start-page: 908
  year: 1987
  ident: 10.1016/j.cell.2016.05.008_bib15
  article-title: A prospective study of the accuracy of ultrasound in predicting fetal microcephaly
  publication-title: Obstet. Gynecol.
– volume: 90
  start-page: 4864
  year: 2016
  ident: 10.1016/j.cell.2016.05.008_bib22
  article-title: Zika Virus: New Clinical Syndromes and Its Emergence in the Western Hemisphere
  publication-title: J. Virol.
  doi: 10.1128/JVI.00252-16
– volume: 89
  start-page: 1254
  year: 2015
  ident: 10.1016/j.cell.2016.05.008_bib34
  article-title: A lethal murine infection model for dengue virus 3 in AG129 mice deficient in type I and II interferon receptors leads to systemic disease
  publication-title: J. Virol.
  doi: 10.1128/JVI.01320-14
– volume: 352
  start-page: 345
  year: 2016
  ident: 10.1016/j.cell.2016.05.008_bib18
  article-title: Zika virus in the Americas: Early epidemiological and genetic findings
  publication-title: Science
  doi: 10.1126/science.aaf5036
– volume: 55
  start-page: 113
  year: 2002
  ident: 10.1016/j.cell.2016.05.008_bib5
  article-title: Viral infection of the trophoblast: time to take a serious look at its role in abnormal implantation and placentation?
  publication-title: J. Reprod. Immunol.
  doi: 10.1016/S0165-0378(01)00143-7
– year: 2016
  ident: 10.1016/j.cell.2016.05.008_bib31
  article-title: Zika Virus and Birth Defects - Reviewing the Evidence for Causality
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMsr1604338
– volume: 10
  start-page: e0004517
  year: 2016
  ident: 10.1016/j.cell.2016.05.008_bib35
  article-title: Zika Virus Infection and Stillbirths: A Case of Hydrops Fetalis, Hydranencephaly and Fetal Demise
  publication-title: PLoS Negl. Trop. Dis.
  doi: 10.1371/journal.pntd.0004517
– volume: 21
  start-page: 359
  year: 2015
  ident: 10.1016/j.cell.2016.05.008_bib26
  article-title: Potential sexual transmission of Zika virus
  publication-title: Emerg. Infect. Dis.
  doi: 10.3201/eid2102.141363
– volume: 10
  start-page: e0128636
  year: 2015
  ident: 10.1016/j.cell.2016.05.008_bib38
  article-title: Selective Blockade of Interferon-α and -β Reveals Their Non-Redundant Functions in a Mouse Model of West Nile Virus Infection
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0128636
– volume: 6
  year: 2015
  ident: 10.1016/j.cell.2016.05.008_bib30
  article-title: Defining New Therapeutics Using a More Immunocompetent Mouse Model of Antibody-Enhanced Dengue Virus Infection
  publication-title: MBio
  doi: 10.1128/mBio.01316-15
– year: 2016
  ident: 10.1016/j.cell.2016.05.008_bib13
  article-title: Association between Zika virus and microcephaly in French Polynesia, 2013–15: a retrospective study
  publication-title: The Lancet
  doi: 10.1016/S0140-6736(16)00651-6
– volume: 92
  start-page: 11284
  year: 1995
  ident: 10.1016/j.cell.2016.05.008_bib20
  article-title: A null mutation in the gene encoding a type I interferon receptor component eliminates antiproliferative and antiviral responses to interferons alpha and beta and alters macrophage responses
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.92.24.11284
– volume: 65
  start-page: 63
  year: 2016
  ident: 10.1016/j.cell.2016.05.008_bib40
  article-title: Interim Guidelines for the Evaluation and Testing of Infants with Possible Congenital Zika Virus Infection - United States, 2016
  publication-title: MMWR Morb. Mortal. wkly. Rep.
  doi: 10.15585/mmwr.mm6503e3
– volume: 374
  start-page: 951
  year: 2016
  ident: 10.1016/j.cell.2016.05.008_bib25
  article-title: Zika Virus Associated with Microcephaly
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMoa1600651
– volume: 19
  start-page: 20720
  year: 2014
  ident: 10.1016/j.cell.2016.05.008_bib28
  article-title: Zika virus infection complicated by Guillain-Barre syndrome--case report, French Polynesia, December 2013
  publication-title: Euro Surveill.
  doi: 10.2807/1560-7917.ES2014.19.9.20720
– volume: 51
  start-page: 1135
  year: 2002
  ident: 10.1016/j.cell.2016.05.008_bib27
  article-title: Intrauterine West Nile virus infection--New York, 2002
  publication-title: MMWR Morb. Mortal. wkly. Rep.
– volume: 10
  start-page: e0004682
  year: 2016
  ident: 10.1016/j.cell.2016.05.008_bib1
  article-title: Characterization of Lethal Zika Virus Infection in AG129 Mice
  publication-title: PLoS Negl. Trop. Dis.
  doi: 10.1371/journal.pntd.0004682
– volume: 268
  start-page: 1578
  year: 1995
  ident: 10.1016/j.cell.2016.05.008_bib19
  article-title: Linked regularities in the development and evolution of mammalian brains
  publication-title: Science
  doi: 10.1126/science.7777856
– volume: 35
  start-page: 139
  year: 2014
  ident: 10.1016/j.cell.2016.05.008_bib11
  article-title: Intracellular bacteria in placental basal plate localize to extravillous trophoblasts
  publication-title: Placenta
  doi: 10.1016/j.placenta.2013.12.007
– volume: 387
  start-page: 228
  year: 2016
  ident: 10.1016/j.cell.2016.05.008_bib42
  article-title: Zika virus in Brazil and macular atrophy in a child with microcephaly
  publication-title: Lancet
  doi: 10.1016/S0140-6736(16)00006-4
– volume: 12
  start-page: 1173
  year: 1975
  ident: 10.1016/j.cell.2016.05.008_bib4
  article-title: Intrauterine infection of mice with St. Louis encephalitis virus: immunological, physiological, neurological, and behavioral effects on progeny
  publication-title: Infect. Immun.
  doi: 10.1128/IAI.12.5.1173-1183.1975
– volume: 2
  start-page: 320
  year: 1970
  ident: 10.1016/j.cell.2016.05.008_bib3
  article-title: Experimental transplacental transmission of st. Louis encephalitis virus in mice
  publication-title: Infect. Immun.
  doi: 10.1128/IAI.2.3.320-325.1970
– volume: 77
  start-page: 11357
  year: 2003
  ident: 10.1016/j.cell.2016.05.008_bib2
  article-title: Two distinct size classes of immature and mature subviral particles from tick-borne encephalitis virus
  publication-title: J. Virol.
  doi: 10.1128/JVI.77.21.11357-11366.2003
– year: 2016
  ident: 10.1016/j.cell.2016.05.008_bib41
  article-title: Zika Virus Infects Human Cortical Neural Progenitors and Attenuates Their Growth
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2016.02.016
– year: 2016
  ident: 10.1016/j.cell.2016.05.008_bib10
  article-title: Detection and sequencing of Zika virus from amniotic fluid of fetuses with microcephaly in Brazil: a case study
  publication-title: Lancet Infect. Dis.
  doi: 10.1016/S1473-3099(16)00095-5
– volume: 20
  start-page: 180
  year: 2005
  ident: 10.1016/j.cell.2016.05.008_bib43
  article-title: Development of structures and transport functions in the mouse placenta
  publication-title: Physiology (Bethesda)
  doi: 10.1152/physiol.00001.2005
– volume: 15
  start-page: 36
  year: 2012
  ident: 10.1016/j.cell.2016.05.008_bib32
  article-title: Pathogens and the placental fortress
  publication-title: Curr. Opin. Microbiol.
  doi: 10.1016/j.mib.2011.11.006
– volume: 2
  start-page: e00500
  year: 2014
  ident: 10.1016/j.cell.2016.05.008_bib6
  article-title: Complete coding sequence of zika virus from a French polynesia outbreak in 2013
  publication-title: Genome Announc.
  doi: 10.1128/genomeA.00500-14
– volume: 18
  start-page: 155
  year: 2015
  ident: 10.1016/j.cell.2016.05.008_bib17
  article-title: Ascending in utero herpes simplex virus infection in an initially healthy-appearing premature infant
  publication-title: Pediatr. Dev. Pathol.
  doi: 10.2350/14-09-1548-CR.1
– volume: 284
  start-page: 12
  year: 2005
  ident: 10.1016/j.cell.2016.05.008_bib39
  article-title: Determinants of trophoblast lineage and cell subtype specification in the mouse placenta
  publication-title: Dev. Biol.
  doi: 10.1016/j.ydbio.2005.05.010
– volume: 80
  start-page: 12149
  year: 2006
  ident: 10.1016/j.cell.2016.05.008_bib29
  article-title: Antibody recognition and neutralization determinants on domains I and II of West Nile Virus envelope protein
  publication-title: J. Virol.
  doi: 10.1128/JVI.01732-06
– volume: 106-107
  start-page: 1
  year: 2013
  ident: 10.1016/j.cell.2016.05.008_bib36
  article-title: Brain development in rodents and humans: Identifying benchmarks of maturation and vulnerability to injury across species
  publication-title: Prog. Neurobiol.
  doi: 10.1016/j.pneurobio.2013.04.001
– volume: 141
  start-page: 712
  year: 1980
  ident: 10.1016/j.cell.2016.05.008_bib14
  article-title: Transplacental infection with Japanese encephalitis virus
  publication-title: J. Infect. Dis.
  doi: 10.1093/infdis/141.6.712
– volume: 1
  start-page: 133
  year: 2014
  ident: 10.1016/j.cell.2016.05.008_bib16
  article-title: The Placenta as a Barrier to Viral Infections
  publication-title: Annu Rev Virol
  doi: 10.1146/annurev-virology-031413-085524
– year: 2016
  ident: 10.1016/j.cell.2016.05.008_bib33
  article-title: Characterization of a Novel Murine Model to Study Zika Virus
  publication-title: Am. J. Trop. Med. Hyg.
  doi: 10.4269/ajtmh.16-0111
– volume: 31
  year: 2013
  ident: 10.1016/j.cell.2016.05.008_bib9
  article-title: Propagation, quantification, detection, and storage of west nile virus
  publication-title: Current protocols in microbiology
  doi: 10.1002/9780471729259.mc15d03s31
– year: 2016
  ident: 10.1016/j.cell.2016.05.008_bib8
  article-title: Zika Virus Infection in Pregnant Women in Rio de Janeiro - Preliminary Report
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMoa1602412
– year: 2016
  ident: 10.1016/j.cell.2016.05.008_bib23
  article-title: A Mouse Model of Zika Virus Pathogenesis
  publication-title: Cell Host Microbe
  doi: 10.1016/j.chom.2016.03.010
– volume: 16
  start-page: 30100
  year: 2016
  ident: 10.1016/j.cell.2016.05.008_bib7
  article-title: Type III Interferons Produced by Human Placental Trophoblasts Confer Protection against Zika Virus Infection
  publication-title: Cell Host Microbe
– volume: 14
  start-page: 1232
  year: 2008
  ident: 10.1016/j.cell.2016.05.008_bib21
  article-title: Genetic and serologic properties of Zika virus associated with an epidemic, Yap State, Micronesia, 2007
  publication-title: Emerg. Infect. Dis.
  doi: 10.3201/eid1408.080287
– volume: 8
  start-page: e1002804
  year: 2012
  ident: 10.1016/j.cell.2016.05.008_bib44
  article-title: Host defense and tolerance: unique challenges in the placenta
  publication-title: PLoS Pathog.
  doi: 10.1371/journal.ppat.1002804
– volume: 374
  start-page: 1595
  year: 2016
  ident: 10.1016/j.cell.2016.05.008_bib12
  article-title: Zika Virus Associated with Meningoencephalitis
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMc1602964
– volume: 26
  start-page: 804
  year: 2006
  ident: 10.1016/j.cell.2016.05.008_bib37
  article-title: Blocking monoclonal antibodies specific for mouse IFN-alpha/beta receptor subunit 1 (IFNAR-1) from mice immunized by in vivo hydrodynamic transfection
  publication-title: Journal of interferon & cytokine research
  doi: 10.1089/jir.2006.26.804
– reference: 27345865 - Trends Mol Med. 2016 Aug;22(8):639-641. doi: 10.1016/j.molmed.2016.06.004
– reference: 27392219 - Cell Stem Cell. 2016 Jul 7;19(1):4-6. doi: 10.1016/j.stem.2016.06.009
– reference: 27339887 - Nat Rev Endocrinol. 2016 Aug;12(8):437-8. doi: 10.1038/nrendo.2016.101
– reference: 27211788 - Nat Rev Microbiol. 2016 Jul;14(7):401. doi: 10.1038/nrmicro.2016.80
SSID ssj0008555
Score 2.660295
Snippet Zika virus (ZIKV) infection in pregnant women causes intrauterine growth restriction, spontaneous abortion, and microcephaly. Here, we describe two mouse...
SourceID pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1081
SubjectTerms abortion (animals)
animal models
Animals
antibodies
Apoptosis
brain
Brain - embryology
Brain - pathology
Brain - virology
congenital abnormalities
Disease Models, Animal
Female
females
fetal death
Fetal Diseases - pathology
Fetal Diseases - virology
fetus
heterozygosity
humans
interferons
Male
males
Mice
Mice, Inbred C57BL
pathogenesis
placenta
Placenta Diseases - pathology
Placenta Diseases - virology
Pregnancy
Pregnancy Complications, Infectious - pathology
Pregnancy Complications, Infectious - virology
pregnant women
Receptor, Interferon alpha-beta - genetics
Receptor, Interferon alpha-beta - metabolism
RNA, Viral - isolation & purification
vaccines
Zika virus
Zika Virus - physiology
Zika Virus Infection - pathology
Zika Virus Infection - virology
Title Zika Virus Infection during Pregnancy in Mice Causes Placental Damage and Fetal Demise
URI https://dx.doi.org/10.1016/j.cell.2016.05.008
https://www.ncbi.nlm.nih.gov/pubmed/27180225
https://www.proquest.com/docview/1790462560
https://www.proquest.com/docview/1808643541
https://www.proquest.com/docview/2000229455
https://pubmed.ncbi.nlm.nih.gov/PMC4874881
Volume 165
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEBZLINBLaZI-tnmgQG_FxLL1sI7pJksSSNhDE5ZehGyPWqetE_ZxyL_vjB9Lt2n30KOlEVifpNGMmPmGsQ86h1JLVUZBmzSSJfjIWllGNqWAIR1sXNI75PWNvriVV1M1HbBRnwtDYZWd7m91eqOtu5aTDs2Tx6qiHF-bZLqxKIgRhmi3U5k1SXzTTyttnCnVVjGwePJRukucaWO86HGcwrt0w95JJSb_fjk9Nz7_jKH87VIav2IvO2uSn7Y_vMMGUO-y7ba-5NMeu_tSfff8rpot5_yyi7qqeZuZyCcz-EpsG0-8qvk16gs-8ss5zPmEXtYpSZKf-Z-obrivSz6GpoGqw8Frdjs-_zy6iLpCClGhMrOITKwhzwrQqQgWtPHeghG5tLHKEvBxXOTal8RlpkzhbQixCuiXBFn4IGUh0zdsq36o4R3joYjTHH0qkBIdEStyRLLMMwMyeJF6MWSiR9AVHcs4Fbv44fpwsntHqDtC3cXKIepD9nE15rHl2NgorfqFcWs7xeElsHHccb-KDrGibl_Dw3LuiKRMarL9Nshk6PshPlL8WyZp2ISsVGrI3ra7YzWfxBDVXoI9Zm3frASI5nu9p66-NXTf6FKilhXv_3Pe--wFfVHEg7AHbGsxW8IhGlKL_Kg5Kb8AVRIbyw
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKEYIL4s3yNBKcUNQ48SM-cICW1S7tVj201YqLcRIbwiOtNrtC-7v4g8wkzorlsQekXm0nij87n2esmW8IeS5zV0ouyshLlUa8dDbSmpeRTjFgSHodl3gPOTmUoxP-biqmW-RHnwuDYZWB-ztOb9k6tOwENHfOqwpzfHWSydaiQEUYGSIr993yO_htzavxHizyiyQZvj3eHUWhtEBUiEzNIxVLl2eFkynz2kllrXaK5VzHIkucjeMil7ZEdS-hCqu9j4UHS93zwnrOC57Cey-Ry2B9KGSD8fTNiv4zIbqyCRqoBj4vZOp0QWV4G4_xZLKVC8Waln8_Df-0dn8P2vzlFBzeINeD-UpfdwjdJFuuvkWudAUtl7fJ6fvqi6Wn1WzR0HEI86pplwpJj2buI8p7LGlV0wkQFN21i8Y19Aiv8jErk-7Zb8Bv1NYlHbq2AcvRuTvk5ELgvUu267Pa3SfUF3GagxPnOAfPR7MckCzzTDnuLUstGxDWI2iKIGuO1TW-mj5-7bNB1A2ibmJhAPUBebl65rwT9dg4WvQLY9a2poFTZ-Nzz_pVNIAVdtvanS0ag6poXKKxuWFMBs4m4MPZv8ckrXyR5kIMyL1ud6zmkyjU9kugR63tm9UA1BVf76mrT62-OPiwQOvswX_O-ym5OjqeHJiD8eH-Q3INezDcgulHZHs-W7jHYMXN8yftX0PJh4v-TX8CTNBZlQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Zika+Virus+Infection+during+Pregnancy+in+Mice+Causes+Placental+Damage+and+Fetal+Demise&rft.jtitle=Cell&rft.au=Miner%2C+Jonathan+J&rft.au=Cao%2C+Bin&rft.au=Govero%2C+Jennifer&rft.au=Smith%2C+Amber+M&rft.date=2016-05-19&rft.issn=1097-4172&rft.eissn=1097-4172&rft.volume=165&rft.issue=5&rft.spage=1081&rft_id=info:doi/10.1016%2Fj.cell.2016.05.008&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0092-8674&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0092-8674&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0092-8674&client=summon