Differential modulation of the default mode network via serotonin-1A receptors

Reflecting one's mental self is a fundamental process for evaluating the personal relevance of life events and for moral decision making and future envisioning. Although the corresponding network has been receiving growing attention, the driving neurochemical mechanisms of the default mode netw...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the National Academy of Sciences - PNAS Vol. 109; no. 7; pp. 2619 - 2624
Main Authors Hahn, Andreas, Wadsak, Wolfgang, Windischberger, Christian, Baldinger, Pia, Höflich, Anna S, Losak, Jan, Nics, Lukas, Philippe, Cécile, Kranz, Georg S, Kraus, Christoph, Mitterhauser, Markus, Karanikas, Georgios, Kasper, Siegfried, Lanzenberger, Rupert
Format Journal Article
LanguageEnglish
Published United States National Academy of Sciences 14.02.2012
National Acad Sciences
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Reflecting one's mental self is a fundamental process for evaluating the personal relevance of life events and for moral decision making and future envisioning. Although the corresponding network has been receiving growing attention, the driving neurochemical mechanisms of the default mode network (DMN) remain unknown. Here we combined positron emission tomography and functional magnetic resonance imaging to investigate modulations of the DMN via serotonin-1A receptors (5-HT1A), separated for 5-HT autoinhibition (dorsal raphe nucleus) and local inhibition (heteroreceptors in projection areas). Using two independent approaches, regional 5-HT1A binding consistently predicted DMN activity in the retrosplenial cortex for resting-state functional magnetic resonance imaging and the Tower of London task. On the other hand, both local and autoinhibitory 5-HT1A binding inversely modulated the posterior cingulate cortex, the strongest hub in the resting human brain. In the frontal part of the DMN, a negative association was found between the dorsal medial prefrontal cortex and local 5-HT1A inhibition. Our results indicate a modulation of key areas involved in self-referential processing by serotonergic neurotransmission, whereas variations in 5-HT1A binding explained a considerable amount of the individual variability in the DMN. Moreover, the brain regions associated with distinct introspective functions seem to be specifically regulated by the different 5-HT1A binding sites. Together with previously reported modulations of dopamine and GABA, this regional specialization suggests complex interactions of several neurotransmitters driving the default mode network.
AbstractList Reflecting one's mental self is a fundamental process for evaluating the personal relevance of life events and for moral decision making and future envisioning. Although the corresponding network has been receiving growing attention, the driving neurochemical mechanisms of the default mode network (DMN) remain unknown. Here we combined positron emission tomography and functional magnetic resonance imaging to investigate modulations of the DMN via serotonin-1A receptors (5-HT...), separated for 5-HT autoinhibition (dorsal raphe nucleus) and local inhibition (heteroreceptors in projection areas). Using two independent approaches, regional 5-HT... binding consistently predicted DMN activity in the retrosplenial cortex for resting-state functional magnetic resonance imaging and the Tower of London task. On the other hand, both local and autoinhibitory 5-HT... binding inversely modulated the posterior cingulate cortex, the strongest hub in the resting human brain. In the frontal part of the DMN, a negative association was found between the dorsal medial prefrontal cortex and local 5-HT... inhibition. Our results indicate a modulation of key areas involved in self-referential processing by serotonergic neurotransmission, whereas variations in 5-HT... binding explained a considerable amount of the individual variability in the DMN. Moreover, the brain regions associated with distinct introspective functions seem to be specifically regulated by the different 5-HT... binding sites. Together with previously reported modulations of dopamine and GABA, this regional specialization suggests complex interactions of several neurotransmitters driving the default mode network. (ProQuest: ... denotes formulae/symbols omitted.)
Reflecting one's mental self is a fundamental process for evaluating the personal relevance of life events and for moral decision making and future envisioning. Although the corresponding network has been receiving growing attention, the driving neurochemical mechanisms of the default mode network (DMN) remain unknown. Here we combined positron emission tomography and functional magnetic resonance imaging to investigate modulations of the DMN via serotonin-1A receptors (5-HT 1A ), separated for 5-HT autoinhibition (dorsal raphe nucleus) and local inhibition (heteroreceptors in projection areas). Using two independent approaches, regional 5-HT 1A binding consistently predicted DMN activity in the retrosplenial cortex for resting-state functional magnetic resonance imaging and the Tower of London task. On the other hand, both local and autoinhibitory 5-HT 1A binding inversely modulated the posterior cingulate cortex, the strongest hub in the resting human brain. In the frontal part of the DMN, a negative association was found between the dorsal medial prefrontal cortex and local 5-HT 1A inhibition. Our results indicate a modulation of key areas involved in self-referential processing by serotonergic neurotransmission, whereas variations in 5-HT 1A binding explained a considerable amount of the individual variability in the DMN. Moreover, the brain regions associated with distinct introspective functions seem to be specifically regulated by the different 5-HT 1A binding sites. Together with previously reported modulations of dopamine and GABA, this regional specialization suggests complex interactions of several neurotransmitters driving the default mode network.
Reflecting one's mental self is a fundamental process for evaluating the personal relevance of life events and for moral decision making and future envisioning. Although the corresponding network has been receiving growing attention, the driving neurochemical mechanisms of the default mode network (DMN) remain unknown. Here we combined positron emission tomography and functional magnetic resonance imaging to investigate modulations of the DMN via serotonin-1A receptors (5-HT(1A)), separated for 5-HT autoinhibition (dorsal raphe nucleus) and local inhibition (heteroreceptors in projection areas). Using two independent approaches, regional 5-HT(1A) binding consistently predicted DMN activity in the retrosplenial cortex for resting-state functional magnetic resonance imaging and the Tower of London task. On the other hand, both local and autoinhibitory 5-HT(1A) binding inversely modulated the posterior cingulate cortex, the strongest hub in the resting human brain. In the frontal part of the DMN, a negative association was found between the dorsal medial prefrontal cortex and local 5-HT(1A) inhibition. Our results indicate a modulation of key areas involved in self-referential processing by serotonergic neurotransmission, whereas variations in 5-HT(1A) binding explained a considerable amount of the individual variability in the DMN. Moreover, the brain regions associated with distinct introspective functions seem to be specifically regulated by the different 5-HT(1A) binding sites. Together with previously reported modulations of dopamine and GABA, this regional specialization suggests complex interactions of several neurotransmitters driving the default mode network.Reflecting one's mental self is a fundamental process for evaluating the personal relevance of life events and for moral decision making and future envisioning. Although the corresponding network has been receiving growing attention, the driving neurochemical mechanisms of the default mode network (DMN) remain unknown. Here we combined positron emission tomography and functional magnetic resonance imaging to investigate modulations of the DMN via serotonin-1A receptors (5-HT(1A)), separated for 5-HT autoinhibition (dorsal raphe nucleus) and local inhibition (heteroreceptors in projection areas). Using two independent approaches, regional 5-HT(1A) binding consistently predicted DMN activity in the retrosplenial cortex for resting-state functional magnetic resonance imaging and the Tower of London task. On the other hand, both local and autoinhibitory 5-HT(1A) binding inversely modulated the posterior cingulate cortex, the strongest hub in the resting human brain. In the frontal part of the DMN, a negative association was found between the dorsal medial prefrontal cortex and local 5-HT(1A) inhibition. Our results indicate a modulation of key areas involved in self-referential processing by serotonergic neurotransmission, whereas variations in 5-HT(1A) binding explained a considerable amount of the individual variability in the DMN. Moreover, the brain regions associated with distinct introspective functions seem to be specifically regulated by the different 5-HT(1A) binding sites. Together with previously reported modulations of dopamine and GABA, this regional specialization suggests complex interactions of several neurotransmitters driving the default mode network.
Reflecting one's mental self is a fundamental process for evaluating the personal relevance of life events and for moral decision making and future envisioning. Although the corresponding network has been receiving growing attention, the driving neurochemical mechanisms of the default mode network (DMN) remain unknown. Here we combined positron emission tomography and functional magnetic resonance imaging to investigate modulations of the DMN via serotonin-1 A receptors (5-HT₁A ), separated for 5-HT autoinhibition (dorsal raphe nucleus) and local inhibition (heteroreceptors in projection areas). Using two independent approaches, regional 5-HT₁A binding consistently predicted DMN activity in the retrosplenial cortex for resting-state functional magnetic resonance imaging and the Tower of London task. On the other hand, both local and autoinhibitory 5-HT₁A binding inversely modulated the posterior cingulate cortex, the strongest hub in the resting human brain. In the frontal part of the DMN, a negative association was found between the dorsal medial prefrontal cortex and local 5-HT₁A inhibition. Our results indicate a modulation of key areas involved in self-referential processing by serotonergic neurotransmission, whereas variations in 5-HT₁A binding explained a considerable amount of the individual variability in the DMN. Moreover, the brain regions associated with distinct introspective functions seem to be specifically regulated by the different 5-HT₁A binding sites. Together with previously reported modulations of dopamine and GABA, this regional specialization suggests complex interactions of several neurotransmitters driving the default mode network.
Reflecting one's mental self is a fundamental process for evaluating the personal relevance of life events and for moral decision making and future envisioning. Although the corresponding network has been receiving growing attention, the driving neurochemical mechanisms of the default mode network (DMN) remain unknown. Here we combined positron emission tomography and functional magnetic resonance imaging to investigate modulations of the DMN via serotonin-1A receptors (5-HT 1A ), separated for 5-HT autoinhibition (dorsal raphe nucleus) and local inhibition (heteroreceptors in projection areas). Using two independent approaches, regional 5-HT 1A binding consistently predicted DMN activity in the retrosplenial cortex for resting-state functional magnetic resonance imaging and the Tower of London task. On the other hand, both local and autoinhibitory 5-HT 1A binding inversely modulated the posterior cingulate cortex, the strongest hub in the resting human brain. In the frontal part of the DMN, a negative association was found between the dorsal medial prefrontal cortex and local 5-HT 1A inhibition. Our results indicate a modulation of key areas involved in self-referential processing by serotonergic neurotransmission, whereas variations in 5-HT 1A binding explained a considerable amount of the individual variability in the DMN. Moreover, the brain regions associated with distinct introspective functions seem to be specifically regulated by the different 5-HT 1A binding sites. Together with previously reported modulations of dopamine and GABA, this regional specialization suggests complex interactions of several neurotransmitters driving the default mode network.
Reflecting one's mental self is a fundamental process for evaluating the personal relevance of life events and for moral decision making and future envisioning. Although the corresponding network has been receiving growing attention, the driving neurochemical mechanisms of the default mode network (DMN) remain unknown. Here we combined positron emission tomography and functional magnetic resonance imaging to investigate modulations of the DMN via serotonin-1A receptors (5-HT1A), separated for 5-HT autoinhibition (dorsal raphe nucleus) and local inhibition (heteroreceptors in projection areas). Using two independent approaches, regional 5-HT1A binding consistently predicted DMN activity in the retrosplenial cortex for resting-state functional magnetic resonance imaging and the Tower of London task. On the other hand, both local and autoinhibitory 5-HT1A binding inversely modulated the posterior cingulate cortex, the strongest hub in the resting human brain. In the frontal part of the DMN, a negative association was found between the dorsal medial prefrontal cortex and local 5-HT1A inhibition. Our results indicate a modulation of key areas involved in self-referential processing by serotonergic neurotransmission, whereas variations in 5-HT1A binding explained a considerable amount of the individual variability in the DMN. Moreover, the brain regions associated with distinct introspective functions seem to be specifically regulated by the different 5-HT1A binding sites. Together with previously reported modulations of dopamine and GABA, this regional specialization suggests complex interactions of several neurotransmitters driving the default mode network.
Author Hahn, Andreas
Höflich, Anna S
Philippe, Cécile
Losak, Jan
Wadsak, Wolfgang
Baldinger, Pia
Kranz, Georg S
Windischberger, Christian
Nics, Lukas
Kasper, Siegfried
Kraus, Christoph
Lanzenberger, Rupert
Karanikas, Georgios
Mitterhauser, Markus
Author_xml – sequence: 1
  fullname: Hahn, Andreas
– sequence: 2
  fullname: Wadsak, Wolfgang
– sequence: 3
  fullname: Windischberger, Christian
– sequence: 4
  fullname: Baldinger, Pia
– sequence: 5
  fullname: Höflich, Anna S
– sequence: 6
  fullname: Losak, Jan
– sequence: 7
  fullname: Nics, Lukas
– sequence: 8
  fullname: Philippe, Cécile
– sequence: 9
  fullname: Kranz, Georg S
– sequence: 10
  fullname: Kraus, Christoph
– sequence: 11
  fullname: Mitterhauser, Markus
– sequence: 12
  fullname: Karanikas, Georgios
– sequence: 13
  fullname: Kasper, Siegfried
– sequence: 14
  fullname: Lanzenberger, Rupert
BackLink https://www.ncbi.nlm.nih.gov/pubmed/22308408$$D View this record in MEDLINE/PubMed
BookMark eNp9ks1vFSEUxYmpsa_VtSt14kY30_I5DBuTpn4mjS60a8JjLi3PefAEpsb_XqavfdUuuoGQ87uXczkcoL0QAyD0nOAjgiU73gSTjwghkmBOsHqEFnUlbccV3kMLjKlse075PjrIeYUxVqLHT9A-pQz3HPcL9PW9dw4ShOLN2KzjMI2m-Bia6JpyCc0AzkxjmRVoApTfMf1srrxpMqRYYvChJSdNAgubElN-ih47M2Z4drMfovOPH36cfm7Pvn36cnpy1lrRy9IKhVXfqWGwtlegyNJKYqzAjBJmuOyE7Do8WOy4sUvRO1JPjkAHwIAvqWOH6N2272ZarmGw1X8yo94kvzbpj47G6_-V4C_1RbzSjPaKsa42eHPTIMVfE-Si1z5bGEcTIE5ZK0okrX5oJd8-SBLBFBccc1XR1_fQVZxSqA9R-1EsGJeyQi__tb7zfJtJBY63gE0x5wRuhxCs59T1nLq-S71WiHsV1pfrGOvsfnyg7tbKLNzdorTUtCMz8GILrHJNd0dwUgcR12_zaqs7E7W5SD7r8-8UE16_Wqd63rG_FE3N9A
CitedBy_id crossref_primary_10_1093_cercor_bhx097
crossref_primary_10_1093_braincomms_fcae263
crossref_primary_10_1002_hbm_22561
crossref_primary_10_1002_jnr_24010
crossref_primary_10_3389_fneur_2020_00933
crossref_primary_10_1002_hbm_22442
crossref_primary_10_1016_j_neuropharm_2019_01_006
crossref_primary_10_1016_j_jad_2024_10_109
crossref_primary_10_1097_MD_0000000000031808
crossref_primary_10_1038_s41380_024_02459_y
crossref_primary_10_12677_bp_2024_143021
crossref_primary_10_1007_s00508_012_0300_4
crossref_primary_10_1038_s41598_018_26075_3
crossref_primary_10_1177_02698811231211154
crossref_primary_10_1016_j_jpsychires_2016_01_001
crossref_primary_10_1016_j_neuroimage_2018_06_079
crossref_primary_10_1016_j_neuroimage_2014_10_013
crossref_primary_10_1007_s00723_019_01137_5
crossref_primary_10_1016_j_neuroimage_2015_06_077
crossref_primary_10_1111_adb_13386
crossref_primary_10_1371_journal_pone_0092543
crossref_primary_10_1016_j_neuroimage_2015_04_065
crossref_primary_10_1093_ijnp_pyv094
crossref_primary_10_1016_j_neubiorev_2015_09_022
crossref_primary_10_1177_0271678X221076570
crossref_primary_10_3390_ijms24021200
crossref_primary_10_1038_s41380_019_0406_4
crossref_primary_10_1016_j_psyneuen_2014_04_008
crossref_primary_10_1038_s41398_021_01754_4
crossref_primary_10_1016_j_neuroimage_2012_07_001
crossref_primary_10_1016_j_euroneuro_2018_07_099
crossref_primary_10_3389_fnbeh_2016_00169
crossref_primary_10_1016_j_neuroimage_2017_12_092
crossref_primary_10_1371_journal_pone_0106609
crossref_primary_10_1016_j_neubiorev_2012_12_007
crossref_primary_10_1016_j_nicl_2022_103230
crossref_primary_10_1016_j_cobeha_2019_12_007
crossref_primary_10_1134_S0362119720010120
crossref_primary_10_1371_journal_pone_0064509
crossref_primary_10_1016_j_sleep_2016_05_007
crossref_primary_10_1523_JNEUROSCI_3762_13_2014
crossref_primary_10_1016_j_neubiorev_2016_08_040
crossref_primary_10_1007_s00429_012_0492_4
crossref_primary_10_1007_s00429_015_1087_7
crossref_primary_10_1016_j_neuroimage_2012_09_029
crossref_primary_10_1002_hbm_23475
crossref_primary_10_1016_j_msard_2021_103224
crossref_primary_10_1002_hbm_23595
crossref_primary_10_3758_s13415_017_0506_z
crossref_primary_10_1038_s41380_024_02710_6
crossref_primary_10_1016_j_pnpbp_2017_06_017
crossref_primary_10_1016_j_pscychresns_2025_111957
crossref_primary_10_1186_s11689_016_9135_z
crossref_primary_10_1002_hbm_23903
crossref_primary_10_1038_s41598_021_03576_2
crossref_primary_10_14293_S2199_1006_1_SOR_LIFE_AEKZPZ_v1
crossref_primary_10_1093_ijnp_pyy100
crossref_primary_10_1016_j_concog_2021_103194
crossref_primary_10_1097_JCP_0000000000001305
crossref_primary_10_1016_j_apradiso_2013_07_023
crossref_primary_10_1002_hbm_22732
crossref_primary_10_1007_s11434_014_0185_x
crossref_primary_10_1073_pnas_2122552119
crossref_primary_10_1002_syn_21993
crossref_primary_10_3389_fnhum_2014_00185
crossref_primary_10_1016_j_neuroimage_2013_06_010
crossref_primary_10_1002_jimd_12049
crossref_primary_10_3389_fpsyt_2018_00125
crossref_primary_10_1017_S0033291719002204
crossref_primary_10_1017_S0033291722002628
crossref_primary_10_1136_jnnp_2014_309180
crossref_primary_10_3389_fneur_2024_1343093
crossref_primary_10_1016_j_jad_2022_04_123
crossref_primary_10_1016_j_ebiom_2016_06_018
crossref_primary_10_1038_s41598_017_12913_3
crossref_primary_10_1038_s41598_019_41175_4
crossref_primary_10_3389_fnins_2016_00299
crossref_primary_10_1177_2470547018808295
crossref_primary_10_1016_j_neuroimage_2014_03_077
crossref_primary_10_1016_j_sleep_2017_09_031
crossref_primary_10_1007_s00406_015_0614_0
crossref_primary_10_1016_j_neuroimage_2012_07_023
crossref_primary_10_1007_s00429_013_0621_8
crossref_primary_10_1017_S0033291714002232
crossref_primary_10_1016_j_neuroimage_2021_118501
crossref_primary_10_3389_fnhum_2019_00156
crossref_primary_10_3389_fnins_2018_00185
crossref_primary_10_1371_journal_pone_0180136
crossref_primary_10_1093_scan_nsv133
crossref_primary_10_1089_brain_2014_0306
crossref_primary_10_1016_j_nucmedbio_2012_12_011
crossref_primary_10_1038_s41398_018_0121_y
crossref_primary_10_1186_s12888_022_04176_8
crossref_primary_10_1016_j_neuroimage_2014_08_012
Cites_doi 10.1016/S0166-2236(02)02264-6
10.1073/pnas.0504136102
10.1016/j.bandc.2007.07.011
10.1016/j.biopsych.2006.05.022
10.1007/BF01245833
10.1038/jcbfm.1989.41
10.1016/j.biopsych.2010.03.023
10.1016/j.neuroimage.2006.01.014
10.1073/pnas.2235925100
10.1016/j.neuroimage.2006.09.011
10.1371/journal.pone.0016997
10.1016/j.neuroimage.2009.05.005
10.5194/we-8-35-2008
10.1016/j.neuroimage.2006.11.010
10.1073/pnas.1010459107
10.1002/(SICI)1097-0193(1997)5:4<317::AID-HBM19>3.0.CO;2-A
10.1016/S0301-0082(96)00033-0
10.1016/j.neuroimage.2008.11.033
10.1038/35094500
10.1523/JNEUROSCI.3408-06.2006
10.1038/mp.2011.30
10.1016/j.brainresrev.2007.01.002
10.1073/pnas.0902455106
10.1038/nature05758
10.1073/pnas.0812686106
10.1006/nimg.2001.0984
10.1016/S1569-7339(10)70074-6
10.1124/pr.59.07103
10.1016/j.neubiorev.2008.09.002
10.1016/j.biopsych.2005.02.021
10.1093/cercor/bhp022
10.1523/JNEUROSCI.3335-10.2011
10.1016/j.jad.2010.11.034
10.1524/ract.2007.95.7.417
10.1097/00004647-200202000-00012
10.1016/j.neuroimage.2010.11.052
10.1523/JNEUROSCI.3941-09.2010
10.1002/mrm.1910340409
10.1016/j.biopsych.2009.01.028
10.1016/j.ejphar.2008.06.014
10.1016/j.pscychresns.2010.02.003
10.1093/cercor/bhn059
10.1196/annals.1440.011
10.1002/hbm.20993
10.1016/j.neuroimage.2005.12.002
10.1016/S0006-8993(96)01131-6
10.1007/s00429-009-0208-6
10.1097/00004647-199609000-00008
10.1007/s00259-008-0850-x
10.1016/j.neuron.2010.02.005
10.1007/s00213-006-0329-z
10.1016/0028-3932(95)00133-6
10.1038/nn1463
10.1126/science.1131295
10.1073/pnas.0601417103
10.1038/npp.2010.210
10.1073/pnas.98.2.676
10.1523/JNEUROSCI.2409-10.2010
10.1016/j.neubiorev.2009.03.006
10.1038/sj.jcbfm.9600493
10.1016/j.biopsych.2007.06.025
10.1016/S0969-8051(00)00119-0
10.1080/00031305.1981.10479362
10.1038/mp.2008.35
10.1073/pnas.0911855107
10.1016/S1569-7339(10)70071-0
10.1073/pnas.0800376105
10.1016/j.neuroimage.2011.05.024
10.1038/nrn2733
10.1016/j.neuroimage.2010.05.010
10.1523/JNEUROSCI.4004-09.2009
10.1038/1099
10.1073/pnas.0308627101
10.1038/npp.2011.113
10.1016/j.neuroimage.2011.02.064
10.1016/j.neulet.2009.04.025
10.1371/journal.pone.0006102
10.1038/nn2001
10.1073/pnas.1017098108
10.1016/S0079-6123(08)00912-6
10.1017/S1461145707008140
10.1016/j.nucmedbio.2007.06.008
10.1073/pnas.72.9.3726
10.1073/pnas.0711791105
10.1093/cercor/bhl033
10.1016/j.neuroimage.2010.11.010
10.1016/j.neures.2010.11.005
ContentType Journal Article
Copyright copyright © 1993-2008 National Academy of Sciences of the United States of America
Copyright National Academy of Sciences Feb 14, 2012
Copyright_xml – notice: copyright © 1993-2008 National Academy of Sciences of the United States of America
– notice: Copyright National Academy of Sciences Feb 14, 2012
DBID FBQ
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7S9
L.6
7X8
5PM
DOI 10.1073/pnas.1117104109
DatabaseName AGRIS
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Virology and AIDS Abstracts
Oncogenes and Growth Factors Abstracts
Technology Research Database
Nucleic Acids Abstracts
Ecology Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Entomology Abstracts
Genetics Abstracts
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Immunology Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
DatabaseTitleList Virology and AIDS Abstracts

MEDLINE - Academic


AGRICOLA

MEDLINE
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: FBQ
  name: AGRIS
  url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 1091-6490
EndPage 2624
ExternalDocumentID PMC3289336
2589239471
22308408
10_1073_pnas_1117104109
109_7_2619
41477522
US201400069846
Genre Research Support, Non-U.S. Gov't
Journal Article
Feature
GroupedDBID ---
-DZ
-~X
.55
.GJ
0R~
123
29P
2AX
2FS
2WC
3O-
4.4
53G
5RE
5VS
692
6TJ
79B
85S
AACGO
AAFWJ
AANCE
AAYJJ
ABBHK
ABOCM
ABPLY
ABPPZ
ABPTK
ABTLG
ABZEH
ACGOD
ACIWK
ACKIV
ACNCT
ACPRK
ADULT
ADZLD
AENEX
AEUPB
AEXZC
AFDAS
AFFNX
AFOSN
AFRAH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
AS~
BKOMP
CS3
D0L
DCCCD
DIK
DNJUQ
DOOOF
DU5
DWIUU
E3Z
EBS
EJD
F20
F5P
FBQ
FRP
GX1
HGD
HH5
HQ3
HTVGU
HYE
JAAYA
JBMMH
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSG
JSODD
JST
KQ8
L7B
LU7
MVM
N9A
NEJ
NHB
N~3
O9-
OK1
P-O
PNE
PQQKQ
R.V
RHF
RHI
RNA
RNS
RPM
RXW
SA0
SJN
TAE
TN5
UKR
VOH
VQA
W8F
WH7
WHG
WOQ
WOW
X7M
XFK
XSW
Y6R
YBH
YKV
YSK
ZA5
ZCA
ZCG
~02
~KM
ABXSQ
ACHIC
ADQXQ
ADXHL
AQVQM
H13
IPSME
-
02
0R
1AW
55
AAPBV
ABFLS
ADACO
AJYGW
DZ
KM
PQEST
X
XHC
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7S9
L.6
7X8
5PM
ID FETCH-LOGICAL-c587t-5909869ddcc89e91bc71ac503213a47657660dc0f4acb58f160df1e6ee3e4b2f3
ISSN 0027-8424
1091-6490
IngestDate Thu Aug 21 18:19:54 EDT 2025
Fri Jul 11 11:50:44 EDT 2025
Fri Jul 11 05:26:46 EDT 2025
Mon Jun 30 08:26:15 EDT 2025
Thu Apr 03 07:01:02 EDT 2025
Thu Apr 24 23:08:14 EDT 2025
Tue Jul 01 03:39:11 EDT 2025
Wed Nov 11 00:29:44 EST 2020
Thu May 29 08:40:42 EDT 2025
Wed Dec 27 19:05:50 EST 2023
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c587t-5909869ddcc89e91bc71ac503213a47657660dc0f4acb58f160df1e6ee3e4b2f3
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
Edited by Marcus E. Raichle, Washington University in St. Louis, St. Louis, MO, and approved January 4, 2012 (received for review October 19, 2011)
Author contributions: W.W., C.W., M.M., G.K., S.K., and R.L. designed research; A.H., W.W., C.W., P.B., A.S.H., J.L., L.N., C.P., C.K., M.M., G.K., S.K., and R.L. performed research; A.H., J.L., L.N., C.P., and G.S.K. analyzed data; and A.H., C.W., P.B., A.S.H., G.S.K., C.K., and R.L. wrote the paper.
OpenAccessLink https://www.pnas.org/content/pnas/109/7/2619.full.pdf
PMID 22308408
PQID 922053477
PQPubID 42026
PageCount 6
ParticipantIDs proquest_miscellaneous_921720322
pubmedcentral_primary_oai_pubmedcentral_nih_gov_3289336
pubmed_primary_22308408
proquest_miscellaneous_1539454049
proquest_journals_922053477
pnas_primary_109_7_2619
fao_agris_US201400069846
crossref_primary_10_1073_pnas_1117104109
jstor_primary_41477522
crossref_citationtrail_10_1073_pnas_1117104109
ProviderPackageCode RNA
PNE
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2012-02-14
PublicationDateYYYYMMDD 2012-02-14
PublicationDate_xml – month: 02
  year: 2012
  text: 2012-02-14
  day: 14
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
PublicationTitle Proceedings of the National Academy of Sciences - PNAS
PublicationTitleAlternate Proc Natl Acad Sci U S A
PublicationYear 2012
Publisher National Academy of Sciences
National Acad Sciences
Publisher_xml – name: National Academy of Sciences
– name: National Acad Sciences
References e_1_3_3_50_2
e_1_3_3_75_2
e_1_3_3_71_2
e_1_3_3_77_2
e_1_3_3_79_2
e_1_3_3_16_2
e_1_3_3_18_2
e_1_3_3_12_2
e_1_3_3_37_2
e_1_3_3_58_2
e_1_3_3_90_2
e_1_3_3_14_2
e_1_3_3_35_2
e_1_3_3_56_2
e_1_3_3_33_2
e_1_3_3_54_2
e_1_3_3_10_2
e_1_3_3_31_2
e_1_3_3_52_2
e_1_3_3_73_2
e_1_3_3_40_2
e_1_3_3_61_2
e_1_3_3_86_2
e_1_3_3_88_2
e_1_3_3_5_2
e_1_3_3_7_2
e_1_3_3_9_2
e_1_3_3_27_2
e_1_3_3_29_2
e_1_3_3_23_2
Saulin A (e_1_3_3_32_2) 2011
e_1_3_3_48_2
e_1_3_3_69_2
e_1_3_3_25_2
e_1_3_3_46_2
e_1_3_3_67_2
e_1_3_3_80_2
e_1_3_3_1_2
e_1_3_3_44_2
e_1_3_3_65_2
e_1_3_3_82_2
e_1_3_3_3_2
e_1_3_3_21_2
e_1_3_3_42_2
e_1_3_3_63_2
e_1_3_3_84_2
e_1_3_3_51_2
e_1_3_3_74_2
e_1_3_3_76_2
Cole DM (e_1_3_3_39_2) 2010; 4
e_1_3_3_70_2
e_1_3_3_78_2
e_1_3_3_17_2
e_1_3_3_19_2
e_1_3_3_38_2
e_1_3_3_13_2
e_1_3_3_36_2
e_1_3_3_59_2
e_1_3_3_15_2
e_1_3_3_34_2
e_1_3_3_57_2
e_1_3_3_55_2
e_1_3_3_11_2
e_1_3_3_30_2
e_1_3_3_53_2
e_1_3_3_72_2
e_1_3_3_62_2
e_1_3_3_85_2
e_1_3_3_60_2
e_1_3_3_87_2
Di Simplicio M (e_1_3_3_64_2) 2011
e_1_3_3_6_2
e_1_3_3_8_2
e_1_3_3_28_2
Velleman P (e_1_3_3_89_2) 1981; 35
e_1_3_3_49_2
e_1_3_3_24_2
e_1_3_3_47_2
e_1_3_3_26_2
e_1_3_3_45_2
e_1_3_3_68_2
e_1_3_3_2_2
e_1_3_3_20_2
e_1_3_3_43_2
e_1_3_3_66_2
e_1_3_3_81_2
e_1_3_3_4_2
e_1_3_3_22_2
e_1_3_3_41_2
e_1_3_3_83_2
16513369 - Neuroimage. 2006 Jul 1;31(3):1188-96
8736565 - Neuropsychologia. 1996 Jun;34(6):515-26
19923283 - J Neurosci. 2009 Nov 18;29(46):14496-505
21347270 - PLoS One. 2011;6(2):e16997
21185083 - J Affect Disord. 2012 Jan;136(1-2):e1-e11
21078349 - Neurosci Res. 2011 Feb;69(2):129-34
18160701 - Pharmacol Rev. 2007 Dec;59(4):360-417
21430142 - J Neurosci. 2011 Mar 23;31(12):4407-20
18772036 - Prog Brain Res. 2008;172:233-64
20053888 - J Neurosci. 2010 Jan 6;30(1):64-9
9004349 - Prog Neurobiol. 1996 Nov;50(4):335-62
18621692 - Proc Natl Acad Sci U S A. 2008 Jul 15;105(28):9781-6
18824195 - Neurosci Biobehav Rev. 2009 Mar;33(3):279-96
20980606 - J Neurosci. 2010 Oct 27;30(43):14482-9
17888409 - Biol Psychiatry. 2008 Feb 1;63(3):332-7
21358707 - Mol Psychiatry. 2012 May;17(5):503-10
19428501 - Neurosci Biobehav Rev. 2009 Jun;33(6):926-52
11823722 - J Cereb Blood Flow Metab. 2002 Feb;22(2):240-4
15866546 - Biol Psychiatry. 2005 May 15;57(10):1079-88
21609769 - Neuroimage. 2011 Aug 1;57(3):908-17
18322013 - Proc Natl Acad Sci U S A. 2008 Mar 11;105(10):4028-32
17982452 - Nat Neurosci. 2007 Dec;10(12):1515-7
21750580 - Neuropsychopharmacology. 2011 Oct;36(11):2258-65
8524021 - Magn Reson Med. 1995 Oct;34(4):537-41
16945915 - Proc Natl Acad Sci U S A. 2006 Sep 12;103(37):13848-53
21483434 - Mol Psychiatry. 2011 Aug;16(8):818-25
19171889 - Proc Natl Acad Sci U S A. 2009 Feb 10;106(6):1942-7
19442867 - Neurosci Lett. 2009 Jul 10;458(1):1-5
21356318 - Neuroimage. 2011 Jun 1;56(3):881-9
15070770 - Proc Natl Acad Sci U S A. 2004 Mar 30;101(13):4637-42
17182784 - J Neurosci. 2006 Dec 20;26(51):13338-43
19103294 - Neuroimage. 2009 Apr 1;45(2):598-605
17316819 - Brain Res Rev. 2007 Oct;55(2):329-42
21947614 - Amino Acids. 2012 Jun;42(6):2039-57
19278673 - Biol Psychiatry. 2009 Aug 1;66(3):223-30
15976020 - Proc Natl Acad Sci U S A. 2005 Jul 5;102(27):9673-8
20188659 - Neuron. 2010 Feb 25;65(4):550-62
18577382 - Eur J Pharmacol. 2008 Aug 20;590(1-3):136-49
19321655 - Cereb Cortex. 2009 Nov;19(11):2499-507
16466680 - Neuroimage. 2006 May 15;31(1):440-57
17881109 - Brain Cogn. 2008 Mar;66(2):202-12
14608034 - Proc Natl Acad Sci U S A. 2003 Nov 25;100(24):14504-9
20225222 - Hum Brain Mapp. 2010 Dec;31(12):2003-14
19805061 - Proc Natl Acad Sci U S A. 2009 Oct 13;106(41):17558-63
10195161 - Nat Neurosci. 1998 Aug;1(4):286-9
2715200 - J Cereb Blood Flow Metab. 1989 Jun;9(3):251-5
20176931 - Proc Natl Acad Sci U S A. 2010 Mar 9;107(10):4734-9
21111830 - Neuroimage. 2011 Mar 15;55(2):681-7
11584306 - Nat Rev Neurosci. 2001 Oct;2(10):685-94
18400922 - Ann N Y Acad Sci. 2008 Mar;1124:1-38
17921037 - Nucl Med Biol. 2007 Oct;34(7):865-77
9037397 - Brain Res. 1997 Jan 16;745(1-2):96-108
11848705 - Neuroimage. 2002 Mar;15(3):620-32
19812579 - Nat Rev Neurosci. 2009 Nov;10(11):792-802
18403396 - Cereb Cortex. 2009 Jan;19(1):72-8
20407579 - Front Syst Neurosci. 2010 Apr 06;4:8
20497898 - Biol Psychiatry. 2010 Jul 15;68(2):170-8
11209064 - Proc Natl Acad Sci U S A. 2001 Jan 16;98(2):676-82
10962258 - Nucl Med Biol. 2000 Jul;27(5):499-507
16855008 - Cereb Cortex. 2007 May;17(5):1227-34
12446129 - Trends Neurosci. 2002 Dec;25(12):621-5
21078400 - Neuroimage. 2011 Mar 1;55(1):185-93
21282630 - Proc Natl Acad Sci U S A. 2011 Feb 15;108(7):3023-8
17476267 - Nature. 2007 May 3;447(7140):83-6
17971260 - Int J Neuropsychopharmacol. 2008 Jun;11(4):465-76
19564918 - PLoS One. 2009;4(6):e6102
19565262 - Brain Struct Funct. 2009 Oct;213(6):525-33
17234951 - Science. 2007 Jan 19;315(5810):393-5
17519979 - J Cereb Blood Flow Metab. 2007 Sep;27(9):1533-9
17070709 - Neuroimage. 2007 Jan 1;34(1):137-43
19442749 - Neuroimage. 2009 Oct 1;47(4):1408-16
16541245 - Psychopharmacology (Berl). 2006 Apr;185(3):389-94
18542956 - Eur J Nucl Med Mol Imaging. 2008 Dec;35(12):2159-68
20470894 - Neuroimage. 2010 Oct 1;52(4):1549-58
16979141 - Biol Psychiatry. 2007 May 1;61(9):1081-9
15880108 - Nat Neurosci. 2005 Jun;8(6):828-34
21150912 - Neuropsychopharmacology. 2011 Mar;36(4):763-71
17188903 - Neuroimage. 2007 Feb 15;34(4):1627-36
20837536 - Proc Natl Acad Sci U S A. 2010 Oct 12;107(41):17757-62
18362913 - Mol Psychiatry. 2009 Nov;14(11):1040-50
20408235 - Hum Brain Mapp. 1997;5(4):317-22
20418072 - Psychiatry Res. 2010 May 30;182(2):81-7
2141990 - J Neural Transm Gen Sect. 1990;81(2):131-45
810805 - Proc Natl Acad Sci U S A. 1975 Sep;72(9):3726-30
8784228 - J Cereb Blood Flow Metab. 1996 Sep;16(5):834-40
References_xml – ident: e_1_3_3_28_2
  doi: 10.1016/S0166-2236(02)02264-6
– ident: e_1_3_3_3_2
  doi: 10.1073/pnas.0504136102
– ident: e_1_3_3_45_2
  doi: 10.1016/j.bandc.2007.07.011
– ident: e_1_3_3_71_2
  doi: 10.1016/j.biopsych.2006.05.022
– ident: e_1_3_3_33_2
  doi: 10.1007/BF01245833
– ident: e_1_3_3_34_2
  doi: 10.1038/jcbfm.1989.41
– ident: e_1_3_3_61_2
  doi: 10.1016/j.biopsych.2010.03.023
– ident: e_1_3_3_46_2
  doi: 10.1016/j.neuroimage.2006.01.014
– ident: e_1_3_3_21_2
  doi: 10.1073/pnas.2235925100
– ident: e_1_3_3_85_2
  doi: 10.1016/j.neuroimage.2006.09.011
– ident: e_1_3_3_43_2
  doi: 10.1371/journal.pone.0016997
– ident: e_1_3_3_82_2
  doi: 10.1016/j.neuroimage.2009.05.005
– ident: e_1_3_3_90_2
  doi: 10.5194/we-8-35-2008
– ident: e_1_3_3_48_2
  doi: 10.1016/j.neuroimage.2006.11.010
– ident: e_1_3_3_84_2
  doi: 10.1073/pnas.1010459107
– year: 2011
  ident: e_1_3_3_64_2
  article-title: Short-term antidepressant administration reduces negative self-referential processing in the medial prefrontal cortex in subjects at risk for depression
  publication-title: Mol Psychiatry
– ident: e_1_3_3_15_2
  doi: 10.1002/(SICI)1097-0193(1997)5:4<317::AID-HBM19>3.0.CO;2-A
– ident: e_1_3_3_31_2
  doi: 10.1016/S0301-0082(96)00033-0
– ident: e_1_3_3_72_2
  doi: 10.1016/j.neuroimage.2008.11.033
– ident: e_1_3_3_1_2
  doi: 10.1038/35094500
– ident: e_1_3_3_17_2
  doi: 10.1523/JNEUROSCI.3408-06.2006
– ident: e_1_3_3_19_2
  doi: 10.1038/mp.2011.30
– ident: e_1_3_3_53_2
  doi: 10.1016/j.brainresrev.2007.01.002
– ident: e_1_3_3_5_2
  doi: 10.1073/pnas.0902455106
– ident: e_1_3_3_12_2
  doi: 10.1038/nature05758
– ident: e_1_3_3_23_2
  doi: 10.1073/pnas.0812686106
– ident: e_1_3_3_86_2
  doi: 10.1006/nimg.2001.0984
– ident: e_1_3_3_37_2
  doi: 10.1016/S1569-7339(10)70074-6
– ident: e_1_3_3_36_2
  doi: 10.1124/pr.59.07103
– ident: e_1_3_3_6_2
  doi: 10.1016/j.neubiorev.2008.09.002
– ident: e_1_3_3_22_2
  doi: 10.1016/j.biopsych.2005.02.021
– ident: e_1_3_3_51_2
  doi: 10.1093/cercor/bhp022
– ident: e_1_3_3_42_2
  doi: 10.1523/JNEUROSCI.3335-10.2011
– ident: e_1_3_3_63_2
  doi: 10.1016/j.jad.2010.11.034
– ident: e_1_3_3_74_2
  doi: 10.1524/ract.2007.95.7.417
– ident: e_1_3_3_79_2
  doi: 10.1097/00004647-200202000-00012
– ident: e_1_3_3_18_2
  doi: 10.1016/j.neuroimage.2010.11.052
– ident: e_1_3_3_65_2
  doi: 10.1523/JNEUROSCI.3941-09.2010
– ident: e_1_3_3_83_2
  doi: 10.1002/mrm.1910340409
– ident: e_1_3_3_76_2
  doi: 10.1016/j.biopsych.2009.01.028
– ident: e_1_3_3_35_2
  doi: 10.1016/j.ejphar.2008.06.014
– ident: e_1_3_3_56_2
  doi: 10.1016/j.pscychresns.2010.02.003
– ident: e_1_3_3_13_2
  doi: 10.1093/cercor/bhn059
– ident: e_1_3_3_7_2
  doi: 10.1196/annals.1440.011
– volume: 4
  start-page: 8
  year: 2010
  ident: e_1_3_3_39_2
  article-title: Advances and pitfalls in the analysis and interpretation of resting-state FMRI data
  publication-title: Front Syst Neurosci
– ident: e_1_3_3_25_2
  doi: 10.1002/hbm.20993
– ident: e_1_3_3_49_2
  doi: 10.1016/j.neuroimage.2005.12.002
– ident: e_1_3_3_81_2
  doi: 10.1016/S0006-8993(96)01131-6
– ident: e_1_3_3_14_2
  doi: 10.1007/s00429-009-0208-6
– ident: e_1_3_3_80_2
  doi: 10.1097/00004647-199609000-00008
– ident: e_1_3_3_70_2
  doi: 10.1007/s00259-008-0850-x
– ident: e_1_3_3_9_2
  doi: 10.1016/j.neuron.2010.02.005
– ident: e_1_3_3_87_2
  doi: 10.1007/s00213-006-0329-z
– ident: e_1_3_3_38_2
  doi: 10.1016/0028-3932(95)00133-6
– ident: e_1_3_3_52_2
  doi: 10.1038/nn1463
– ident: e_1_3_3_10_2
  doi: 10.1126/science.1131295
– ident: e_1_3_3_16_2
  doi: 10.1073/pnas.0601417103
– year: 2011
  ident: e_1_3_3_32_2
  article-title: Serotonin and molecular neuroimaging in humans using PET
  publication-title: Amino Acids
– ident: e_1_3_3_66_2
  doi: 10.1038/npp.2010.210
– ident: e_1_3_3_2_2
  doi: 10.1073/pnas.98.2.676
– ident: e_1_3_3_57_2
  doi: 10.1523/JNEUROSCI.2409-10.2010
– ident: e_1_3_3_47_2
  doi: 10.1016/j.neubiorev.2009.03.006
– ident: e_1_3_3_78_2
  doi: 10.1038/sj.jcbfm.9600493
– ident: e_1_3_3_26_2
  doi: 10.1016/j.biopsych.2007.06.025
– ident: e_1_3_3_60_2
  doi: 10.1016/S0969-8051(00)00119-0
– volume: 35
  start-page: 234
  year: 1981
  ident: e_1_3_3_89_2
  article-title: Efficient computing of regression diagnostics
  publication-title: Am Stat
  doi: 10.1080/00031305.1981.10479362
– ident: e_1_3_3_75_2
  doi: 10.1038/mp.2008.35
– ident: e_1_3_3_11_2
  doi: 10.1073/pnas.0911855107
– ident: e_1_3_3_77_2
  doi: 10.1016/S1569-7339(10)70071-0
– ident: e_1_3_3_20_2
  doi: 10.1073/pnas.0800376105
– ident: e_1_3_3_54_2
  doi: 10.1016/j.neuroimage.2011.05.024
– ident: e_1_3_3_41_2
  doi: 10.1038/nrn2733
– ident: e_1_3_3_24_2
  doi: 10.1016/j.neuroimage.2010.05.010
– ident: e_1_3_3_50_2
  doi: 10.1523/JNEUROSCI.4004-09.2009
– ident: e_1_3_3_29_2
  doi: 10.1038/1099
– ident: e_1_3_3_27_2
  doi: 10.1073/pnas.0308627101
– ident: e_1_3_3_59_2
  doi: 10.1038/npp.2011.113
– ident: e_1_3_3_73_2
  doi: 10.1016/j.neuroimage.2011.02.064
– ident: e_1_3_3_67_2
  doi: 10.1016/j.neulet.2009.04.025
– ident: e_1_3_3_68_2
  doi: 10.1371/journal.pone.0006102
– ident: e_1_3_3_69_2
  doi: 10.1038/nn2001
– ident: e_1_3_3_44_2
  doi: 10.1073/pnas.1017098108
– ident: e_1_3_3_58_2
  doi: 10.1016/S0079-6123(08)00912-6
– ident: e_1_3_3_62_2
  doi: 10.1017/S1461145707008140
– ident: e_1_3_3_88_2
  doi: 10.1016/j.nucmedbio.2007.06.008
– ident: e_1_3_3_30_2
  doi: 10.1073/pnas.72.9.3726
– ident: e_1_3_3_8_2
  doi: 10.1073/pnas.0711791105
– ident: e_1_3_3_4_2
  doi: 10.1093/cercor/bhl033
– ident: e_1_3_3_40_2
  doi: 10.1016/j.neuroimage.2010.11.010
– ident: e_1_3_3_55_2
  doi: 10.1016/j.neures.2010.11.005
– reference: 16466680 - Neuroimage. 2006 May 15;31(1):440-57
– reference: 20980606 - J Neurosci. 2010 Oct 27;30(43):14482-9
– reference: 17476267 - Nature. 2007 May 3;447(7140):83-6
– reference: 20225222 - Hum Brain Mapp. 2010 Dec;31(12):2003-14
– reference: 10962258 - Nucl Med Biol. 2000 Jul;27(5):499-507
– reference: 16855008 - Cereb Cortex. 2007 May;17(5):1227-34
– reference: 15976020 - Proc Natl Acad Sci U S A. 2005 Jul 5;102(27):9673-8
– reference: 20837536 - Proc Natl Acad Sci U S A. 2010 Oct 12;107(41):17757-62
– reference: 19564918 - PLoS One. 2009;4(6):e6102
– reference: 20497898 - Biol Psychiatry. 2010 Jul 15;68(2):170-8
– reference: 20188659 - Neuron. 2010 Feb 25;65(4):550-62
– reference: 21483434 - Mol Psychiatry. 2011 Aug;16(8):818-25
– reference: 18772036 - Prog Brain Res. 2008;172:233-64
– reference: 16945915 - Proc Natl Acad Sci U S A. 2006 Sep 12;103(37):13848-53
– reference: 21750580 - Neuropsychopharmacology. 2011 Oct;36(11):2258-65
– reference: 18322013 - Proc Natl Acad Sci U S A. 2008 Mar 11;105(10):4028-32
– reference: 21282630 - Proc Natl Acad Sci U S A. 2011 Feb 15;108(7):3023-8
– reference: 9037397 - Brain Res. 1997 Jan 16;745(1-2):96-108
– reference: 8736565 - Neuropsychologia. 1996 Jun;34(6):515-26
– reference: 19805061 - Proc Natl Acad Sci U S A. 2009 Oct 13;106(41):17558-63
– reference: 19442749 - Neuroimage. 2009 Oct 1;47(4):1408-16
– reference: 17182784 - J Neurosci. 2006 Dec 20;26(51):13338-43
– reference: 20407579 - Front Syst Neurosci. 2010 Apr 06;4:8
– reference: 17070709 - Neuroimage. 2007 Jan 1;34(1):137-43
– reference: 11584306 - Nat Rev Neurosci. 2001 Oct;2(10):685-94
– reference: 2715200 - J Cereb Blood Flow Metab. 1989 Jun;9(3):251-5
– reference: 2141990 - J Neural Transm Gen Sect. 1990;81(2):131-45
– reference: 20053888 - J Neurosci. 2010 Jan 6;30(1):64-9
– reference: 18400922 - Ann N Y Acad Sci. 2008 Mar;1124:1-38
– reference: 20470894 - Neuroimage. 2010 Oct 1;52(4):1549-58
– reference: 14608034 - Proc Natl Acad Sci U S A. 2003 Nov 25;100(24):14504-9
– reference: 17888409 - Biol Psychiatry. 2008 Feb 1;63(3):332-7
– reference: 17971260 - Int J Neuropsychopharmacol. 2008 Jun;11(4):465-76
– reference: 17921037 - Nucl Med Biol. 2007 Oct;34(7):865-77
– reference: 16979141 - Biol Psychiatry. 2007 May 1;61(9):1081-9
– reference: 21609769 - Neuroimage. 2011 Aug 1;57(3):908-17
– reference: 18577382 - Eur J Pharmacol. 2008 Aug 20;590(1-3):136-49
– reference: 21150912 - Neuropsychopharmacology. 2011 Mar;36(4):763-71
– reference: 17316819 - Brain Res Rev. 2007 Oct;55(2):329-42
– reference: 19442867 - Neurosci Lett. 2009 Jul 10;458(1):1-5
– reference: 9004349 - Prog Neurobiol. 1996 Nov;50(4):335-62
– reference: 21947614 - Amino Acids. 2012 Jun;42(6):2039-57
– reference: 19812579 - Nat Rev Neurosci. 2009 Nov;10(11):792-802
– reference: 15880108 - Nat Neurosci. 2005 Jun;8(6):828-34
– reference: 17234951 - Science. 2007 Jan 19;315(5810):393-5
– reference: 8524021 - Magn Reson Med. 1995 Oct;34(4):537-41
– reference: 18362913 - Mol Psychiatry. 2009 Nov;14(11):1040-50
– reference: 20408235 - Hum Brain Mapp. 1997;5(4):317-22
– reference: 810805 - Proc Natl Acad Sci U S A. 1975 Sep;72(9):3726-30
– reference: 16541245 - Psychopharmacology (Berl). 2006 Apr;185(3):389-94
– reference: 21347270 - PLoS One. 2011;6(2):e16997
– reference: 19565262 - Brain Struct Funct. 2009 Oct;213(6):525-33
– reference: 21185083 - J Affect Disord. 2012 Jan;136(1-2):e1-e11
– reference: 10195161 - Nat Neurosci. 1998 Aug;1(4):286-9
– reference: 11848705 - Neuroimage. 2002 Mar;15(3):620-32
– reference: 21111830 - Neuroimage. 2011 Mar 15;55(2):681-7
– reference: 19321655 - Cereb Cortex. 2009 Nov;19(11):2499-507
– reference: 21356318 - Neuroimage. 2011 Jun 1;56(3):881-9
– reference: 20176931 - Proc Natl Acad Sci U S A. 2010 Mar 9;107(10):4734-9
– reference: 19103294 - Neuroimage. 2009 Apr 1;45(2):598-605
– reference: 18542956 - Eur J Nucl Med Mol Imaging. 2008 Dec;35(12):2159-68
– reference: 21078400 - Neuroimage. 2011 Mar 1;55(1):185-93
– reference: 19923283 - J Neurosci. 2009 Nov 18;29(46):14496-505
– reference: 16513369 - Neuroimage. 2006 Jul 1;31(3):1188-96
– reference: 15866546 - Biol Psychiatry. 2005 May 15;57(10):1079-88
– reference: 21078349 - Neurosci Res. 2011 Feb;69(2):129-34
– reference: 21430142 - J Neurosci. 2011 Mar 23;31(12):4407-20
– reference: 17519979 - J Cereb Blood Flow Metab. 2007 Sep;27(9):1533-9
– reference: 15070770 - Proc Natl Acad Sci U S A. 2004 Mar 30;101(13):4637-42
– reference: 18403396 - Cereb Cortex. 2009 Jan;19(1):72-8
– reference: 19278673 - Biol Psychiatry. 2009 Aug 1;66(3):223-30
– reference: 17188903 - Neuroimage. 2007 Feb 15;34(4):1627-36
– reference: 17881109 - Brain Cogn. 2008 Mar;66(2):202-12
– reference: 20418072 - Psychiatry Res. 2010 May 30;182(2):81-7
– reference: 18824195 - Neurosci Biobehav Rev. 2009 Mar;33(3):279-96
– reference: 19171889 - Proc Natl Acad Sci U S A. 2009 Feb 10;106(6):1942-7
– reference: 18621692 - Proc Natl Acad Sci U S A. 2008 Jul 15;105(28):9781-6
– reference: 17982452 - Nat Neurosci. 2007 Dec;10(12):1515-7
– reference: 12446129 - Trends Neurosci. 2002 Dec;25(12):621-5
– reference: 11209064 - Proc Natl Acad Sci U S A. 2001 Jan 16;98(2):676-82
– reference: 21358707 - Mol Psychiatry. 2012 May;17(5):503-10
– reference: 11823722 - J Cereb Blood Flow Metab. 2002 Feb;22(2):240-4
– reference: 8784228 - J Cereb Blood Flow Metab. 1996 Sep;16(5):834-40
– reference: 18160701 - Pharmacol Rev. 2007 Dec;59(4):360-417
– reference: 19428501 - Neurosci Biobehav Rev. 2009 Jun;33(6):926-52
SSID ssj0009580
Score 2.3881288
Snippet Reflecting one's mental self is a fundamental process for evaluating the personal relevance of life events and for moral decision making and future...
SourceID pubmedcentral
proquest
pubmed
crossref
pnas
jstor
fao
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2619
SubjectTerms Behavioral neuroscience
Binding sites
Biological Sciences
Brain
Connectivity
cortex
decision making
Depressive disorders
Dopamine
gamma-aminobutyric acid
Humans
image analysis
life events
Magnetic Resonance Imaging
Neurochemistry
Neurons
Neurotransmitters
Positron emission tomography
Prefrontal cortex
Receptor, Serotonin, 5-HT1A - physiology
Receptors
Serotonin
Serotonin receptors
Title Differential modulation of the default mode network via serotonin-1A receptors
URI https://www.jstor.org/stable/41477522
http://www.pnas.org/content/109/7/2619.abstract
https://www.ncbi.nlm.nih.gov/pubmed/22308408
https://www.proquest.com/docview/922053477
https://www.proquest.com/docview/1539454049
https://www.proquest.com/docview/921720322
https://pubmed.ncbi.nlm.nih.gov/PMC3289336
Volume 109
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1fb9MwELe68cILYsBYGCAj8TAUZSSx48SP1QBVSKsqsWp7ixzHWSt1SUVTHviGfCvOjvOnY0Owl6qN7Yub--XufD7fIfSeBYoKESUe5SzQ24zSEwmn8LqDtUwDFTGpXQPnUzaZ069X0dVo9GsQtbSts1P5885zJQ_hKlwDvupTsv_B2Y4oXIDvwF_4BA7D5z_x-JOtblJrt_dNldtSXO2-f64KsV3VptqNWzbx3u6PpXBhclWt_bBeMHZB5Km1rrkztFNnnV7btNSmrdtw3B9CsZJh43rubNqXNJ6IRdlFS4rOar8U-UYY6XtZrYprYZWm8fqU-njwQgeb2ZOJCyt9eler2SZrWmdLMXRX6LiP0At6d-Xf5jqU0yHoTtqcrj5VjWgGy8ZjtCku2slunw9AGg8lMbOiWNmfDbE_NAaIOF3muBQbrT3A3qKW5gA_6xsDILCkfFgPJ73q7AIaZ-dnBJauhLA99CiEFUtodMQw_3PSnIayf6zNMhWTj7furdNT2xvt2Ep7hajaoFmdiRdG3bUquh3cO7CWLp6iJ3aZg8cNZg_QSJXP0EHLAnxis51_eI6mQxDjHsS4KjDADlsQ6xaFLYgxgBgPQYw7EL9A8y-fL84mni3y4ckoiWsv4j5PGM9zKROueJDJOBAy8kkYEEFjButh5ufSL6iQWZQUIEPyIlBMKaJoFhbkEO2XVamOEPYzmokgAo0d55RFIYfefpRLmviUEikddNo-zlTaDPi6EMsqNZEYMUn1Q017VjjopBuwbpK_3N_1CPiTimt4OdL5t1A7LnQWcDDvHXRomNaRoAGNY1j3OOilodKT5mmcauA66LhlbGrlzSbl-kw8gaEOete1gjLQO3yiVNUW5hMRrlNqUqCA7-nDdUk6eLzm9gYp3QRa3Dko3sFQ10Hnot9tKZcLk5Peov_Vg0ceo8e9uHiN9uvvW_UG7P06e2vepN_MKP6D
linkProvider ABC ChemistRy
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Differential+modulation+of+the+default+mode+network+via+serotonin-1A+receptors&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Hahn%2C+Andreas&rft.au=Wadsak%2C+Wolfgang&rft.au=Windischberger%2C+Christian&rft.au=Baldinger%2C+Pia&rft.date=2012-02-14&rft.pub=National+Academy+of+Sciences&rft.issn=0027-8424&rft.eissn=1091-6490&rft.volume=109&rft.issue=7&rft.spage=2619&rft.epage=2624&rft_id=info:doi/10.1073%2Fpnas.1117104109&rft_id=info%3Apmid%2F22308408&rft.externalDocID=PMC3289336
thumbnail_m http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F109%2F7.cover.gif
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F109%2F7.cover.gif