Differential modulation of the default mode network via serotonin-1A receptors
Reflecting one's mental self is a fundamental process for evaluating the personal relevance of life events and for moral decision making and future envisioning. Although the corresponding network has been receiving growing attention, the driving neurochemical mechanisms of the default mode netw...
Saved in:
Published in | Proceedings of the National Academy of Sciences - PNAS Vol. 109; no. 7; pp. 2619 - 2624 |
---|---|
Main Authors | , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
National Academy of Sciences
14.02.2012
National Acad Sciences |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Reflecting one's mental self is a fundamental process for evaluating the personal relevance of life events and for moral decision making and future envisioning. Although the corresponding network has been receiving growing attention, the driving neurochemical mechanisms of the default mode network (DMN) remain unknown. Here we combined positron emission tomography and functional magnetic resonance imaging to investigate modulations of the DMN via serotonin-1A receptors (5-HT1A), separated for 5-HT autoinhibition (dorsal raphe nucleus) and local inhibition (heteroreceptors in projection areas). Using two independent approaches, regional 5-HT1A binding consistently predicted DMN activity in the retrosplenial cortex for resting-state functional magnetic resonance imaging and the Tower of London task. On the other hand, both local and autoinhibitory 5-HT1A binding inversely modulated the posterior cingulate cortex, the strongest hub in the resting human brain. In the frontal part of the DMN, a negative association was found between the dorsal medial prefrontal cortex and local 5-HT1A inhibition. Our results indicate a modulation of key areas involved in self-referential processing by serotonergic neurotransmission, whereas variations in 5-HT1A binding explained a considerable amount of the individual variability in the DMN. Moreover, the brain regions associated with distinct introspective functions seem to be specifically regulated by the different 5-HT1A binding sites. Together with previously reported modulations of dopamine and GABA, this regional specialization suggests complex interactions of several neurotransmitters driving the default mode network. |
---|---|
AbstractList | Reflecting one's mental self is a fundamental process for evaluating the personal relevance of life events and for moral decision making and future envisioning. Although the corresponding network has been receiving growing attention, the driving neurochemical mechanisms of the default mode network (DMN) remain unknown. Here we combined positron emission tomography and functional magnetic resonance imaging to investigate modulations of the DMN via serotonin-1A receptors (5-HT...), separated for 5-HT autoinhibition (dorsal raphe nucleus) and local inhibition (heteroreceptors in projection areas). Using two independent approaches, regional 5-HT... binding consistently predicted DMN activity in the retrosplenial cortex for resting-state functional magnetic resonance imaging and the Tower of London task. On the other hand, both local and autoinhibitory 5-HT... binding inversely modulated the posterior cingulate cortex, the strongest hub in the resting human brain. In the frontal part of the DMN, a negative association was found between the dorsal medial prefrontal cortex and local 5-HT... inhibition. Our results indicate a modulation of key areas involved in self-referential processing by serotonergic neurotransmission, whereas variations in 5-HT... binding explained a considerable amount of the individual variability in the DMN. Moreover, the brain regions associated with distinct introspective functions seem to be specifically regulated by the different 5-HT... binding sites. Together with previously reported modulations of dopamine and GABA, this regional specialization suggests complex interactions of several neurotransmitters driving the default mode network. (ProQuest: ... denotes formulae/symbols omitted.) Reflecting one's mental self is a fundamental process for evaluating the personal relevance of life events and for moral decision making and future envisioning. Although the corresponding network has been receiving growing attention, the driving neurochemical mechanisms of the default mode network (DMN) remain unknown. Here we combined positron emission tomography and functional magnetic resonance imaging to investigate modulations of the DMN via serotonin-1A receptors (5-HT 1A ), separated for 5-HT autoinhibition (dorsal raphe nucleus) and local inhibition (heteroreceptors in projection areas). Using two independent approaches, regional 5-HT 1A binding consistently predicted DMN activity in the retrosplenial cortex for resting-state functional magnetic resonance imaging and the Tower of London task. On the other hand, both local and autoinhibitory 5-HT 1A binding inversely modulated the posterior cingulate cortex, the strongest hub in the resting human brain. In the frontal part of the DMN, a negative association was found between the dorsal medial prefrontal cortex and local 5-HT 1A inhibition. Our results indicate a modulation of key areas involved in self-referential processing by serotonergic neurotransmission, whereas variations in 5-HT 1A binding explained a considerable amount of the individual variability in the DMN. Moreover, the brain regions associated with distinct introspective functions seem to be specifically regulated by the different 5-HT 1A binding sites. Together with previously reported modulations of dopamine and GABA, this regional specialization suggests complex interactions of several neurotransmitters driving the default mode network. Reflecting one's mental self is a fundamental process for evaluating the personal relevance of life events and for moral decision making and future envisioning. Although the corresponding network has been receiving growing attention, the driving neurochemical mechanisms of the default mode network (DMN) remain unknown. Here we combined positron emission tomography and functional magnetic resonance imaging to investigate modulations of the DMN via serotonin-1A receptors (5-HT(1A)), separated for 5-HT autoinhibition (dorsal raphe nucleus) and local inhibition (heteroreceptors in projection areas). Using two independent approaches, regional 5-HT(1A) binding consistently predicted DMN activity in the retrosplenial cortex for resting-state functional magnetic resonance imaging and the Tower of London task. On the other hand, both local and autoinhibitory 5-HT(1A) binding inversely modulated the posterior cingulate cortex, the strongest hub in the resting human brain. In the frontal part of the DMN, a negative association was found between the dorsal medial prefrontal cortex and local 5-HT(1A) inhibition. Our results indicate a modulation of key areas involved in self-referential processing by serotonergic neurotransmission, whereas variations in 5-HT(1A) binding explained a considerable amount of the individual variability in the DMN. Moreover, the brain regions associated with distinct introspective functions seem to be specifically regulated by the different 5-HT(1A) binding sites. Together with previously reported modulations of dopamine and GABA, this regional specialization suggests complex interactions of several neurotransmitters driving the default mode network.Reflecting one's mental self is a fundamental process for evaluating the personal relevance of life events and for moral decision making and future envisioning. Although the corresponding network has been receiving growing attention, the driving neurochemical mechanisms of the default mode network (DMN) remain unknown. Here we combined positron emission tomography and functional magnetic resonance imaging to investigate modulations of the DMN via serotonin-1A receptors (5-HT(1A)), separated for 5-HT autoinhibition (dorsal raphe nucleus) and local inhibition (heteroreceptors in projection areas). Using two independent approaches, regional 5-HT(1A) binding consistently predicted DMN activity in the retrosplenial cortex for resting-state functional magnetic resonance imaging and the Tower of London task. On the other hand, both local and autoinhibitory 5-HT(1A) binding inversely modulated the posterior cingulate cortex, the strongest hub in the resting human brain. In the frontal part of the DMN, a negative association was found between the dorsal medial prefrontal cortex and local 5-HT(1A) inhibition. Our results indicate a modulation of key areas involved in self-referential processing by serotonergic neurotransmission, whereas variations in 5-HT(1A) binding explained a considerable amount of the individual variability in the DMN. Moreover, the brain regions associated with distinct introspective functions seem to be specifically regulated by the different 5-HT(1A) binding sites. Together with previously reported modulations of dopamine and GABA, this regional specialization suggests complex interactions of several neurotransmitters driving the default mode network. Reflecting one's mental self is a fundamental process for evaluating the personal relevance of life events and for moral decision making and future envisioning. Although the corresponding network has been receiving growing attention, the driving neurochemical mechanisms of the default mode network (DMN) remain unknown. Here we combined positron emission tomography and functional magnetic resonance imaging to investigate modulations of the DMN via serotonin-1 A receptors (5-HT₁A ), separated for 5-HT autoinhibition (dorsal raphe nucleus) and local inhibition (heteroreceptors in projection areas). Using two independent approaches, regional 5-HT₁A binding consistently predicted DMN activity in the retrosplenial cortex for resting-state functional magnetic resonance imaging and the Tower of London task. On the other hand, both local and autoinhibitory 5-HT₁A binding inversely modulated the posterior cingulate cortex, the strongest hub in the resting human brain. In the frontal part of the DMN, a negative association was found between the dorsal medial prefrontal cortex and local 5-HT₁A inhibition. Our results indicate a modulation of key areas involved in self-referential processing by serotonergic neurotransmission, whereas variations in 5-HT₁A binding explained a considerable amount of the individual variability in the DMN. Moreover, the brain regions associated with distinct introspective functions seem to be specifically regulated by the different 5-HT₁A binding sites. Together with previously reported modulations of dopamine and GABA, this regional specialization suggests complex interactions of several neurotransmitters driving the default mode network. Reflecting one's mental self is a fundamental process for evaluating the personal relevance of life events and for moral decision making and future envisioning. Although the corresponding network has been receiving growing attention, the driving neurochemical mechanisms of the default mode network (DMN) remain unknown. Here we combined positron emission tomography and functional magnetic resonance imaging to investigate modulations of the DMN via serotonin-1A receptors (5-HT 1A ), separated for 5-HT autoinhibition (dorsal raphe nucleus) and local inhibition (heteroreceptors in projection areas). Using two independent approaches, regional 5-HT 1A binding consistently predicted DMN activity in the retrosplenial cortex for resting-state functional magnetic resonance imaging and the Tower of London task. On the other hand, both local and autoinhibitory 5-HT 1A binding inversely modulated the posterior cingulate cortex, the strongest hub in the resting human brain. In the frontal part of the DMN, a negative association was found between the dorsal medial prefrontal cortex and local 5-HT 1A inhibition. Our results indicate a modulation of key areas involved in self-referential processing by serotonergic neurotransmission, whereas variations in 5-HT 1A binding explained a considerable amount of the individual variability in the DMN. Moreover, the brain regions associated with distinct introspective functions seem to be specifically regulated by the different 5-HT 1A binding sites. Together with previously reported modulations of dopamine and GABA, this regional specialization suggests complex interactions of several neurotransmitters driving the default mode network. Reflecting one's mental self is a fundamental process for evaluating the personal relevance of life events and for moral decision making and future envisioning. Although the corresponding network has been receiving growing attention, the driving neurochemical mechanisms of the default mode network (DMN) remain unknown. Here we combined positron emission tomography and functional magnetic resonance imaging to investigate modulations of the DMN via serotonin-1A receptors (5-HT1A), separated for 5-HT autoinhibition (dorsal raphe nucleus) and local inhibition (heteroreceptors in projection areas). Using two independent approaches, regional 5-HT1A binding consistently predicted DMN activity in the retrosplenial cortex for resting-state functional magnetic resonance imaging and the Tower of London task. On the other hand, both local and autoinhibitory 5-HT1A binding inversely modulated the posterior cingulate cortex, the strongest hub in the resting human brain. In the frontal part of the DMN, a negative association was found between the dorsal medial prefrontal cortex and local 5-HT1A inhibition. Our results indicate a modulation of key areas involved in self-referential processing by serotonergic neurotransmission, whereas variations in 5-HT1A binding explained a considerable amount of the individual variability in the DMN. Moreover, the brain regions associated with distinct introspective functions seem to be specifically regulated by the different 5-HT1A binding sites. Together with previously reported modulations of dopamine and GABA, this regional specialization suggests complex interactions of several neurotransmitters driving the default mode network. |
Author | Hahn, Andreas Höflich, Anna S Philippe, Cécile Losak, Jan Wadsak, Wolfgang Baldinger, Pia Kranz, Georg S Windischberger, Christian Nics, Lukas Kasper, Siegfried Kraus, Christoph Lanzenberger, Rupert Karanikas, Georgios Mitterhauser, Markus |
Author_xml | – sequence: 1 fullname: Hahn, Andreas – sequence: 2 fullname: Wadsak, Wolfgang – sequence: 3 fullname: Windischberger, Christian – sequence: 4 fullname: Baldinger, Pia – sequence: 5 fullname: Höflich, Anna S – sequence: 6 fullname: Losak, Jan – sequence: 7 fullname: Nics, Lukas – sequence: 8 fullname: Philippe, Cécile – sequence: 9 fullname: Kranz, Georg S – sequence: 10 fullname: Kraus, Christoph – sequence: 11 fullname: Mitterhauser, Markus – sequence: 12 fullname: Karanikas, Georgios – sequence: 13 fullname: Kasper, Siegfried – sequence: 14 fullname: Lanzenberger, Rupert |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/22308408$$D View this record in MEDLINE/PubMed |
BookMark | eNp9ks1vFSEUxYmpsa_VtSt14kY30_I5DBuTpn4mjS60a8JjLi3PefAEpsb_XqavfdUuuoGQ87uXczkcoL0QAyD0nOAjgiU73gSTjwghkmBOsHqEFnUlbccV3kMLjKlse075PjrIeYUxVqLHT9A-pQz3HPcL9PW9dw4ShOLN2KzjMI2m-Bia6JpyCc0AzkxjmRVoApTfMf1srrxpMqRYYvChJSdNAgubElN-ih47M2Z4drMfovOPH36cfm7Pvn36cnpy1lrRy9IKhVXfqWGwtlegyNJKYqzAjBJmuOyE7Do8WOy4sUvRO1JPjkAHwIAvqWOH6N2272ZarmGw1X8yo94kvzbpj47G6_-V4C_1RbzSjPaKsa42eHPTIMVfE-Si1z5bGEcTIE5ZK0okrX5oJd8-SBLBFBccc1XR1_fQVZxSqA9R-1EsGJeyQi__tb7zfJtJBY63gE0x5wRuhxCs59T1nLq-S71WiHsV1pfrGOvsfnyg7tbKLNzdorTUtCMz8GILrHJNd0dwUgcR12_zaqs7E7W5SD7r8-8UE16_Wqd63rG_FE3N9A |
CitedBy_id | crossref_primary_10_1093_cercor_bhx097 crossref_primary_10_1093_braincomms_fcae263 crossref_primary_10_1002_hbm_22561 crossref_primary_10_1002_jnr_24010 crossref_primary_10_3389_fneur_2020_00933 crossref_primary_10_1002_hbm_22442 crossref_primary_10_1016_j_neuropharm_2019_01_006 crossref_primary_10_1016_j_jad_2024_10_109 crossref_primary_10_1097_MD_0000000000031808 crossref_primary_10_1038_s41380_024_02459_y crossref_primary_10_12677_bp_2024_143021 crossref_primary_10_1007_s00508_012_0300_4 crossref_primary_10_1038_s41598_018_26075_3 crossref_primary_10_1177_02698811231211154 crossref_primary_10_1016_j_jpsychires_2016_01_001 crossref_primary_10_1016_j_neuroimage_2018_06_079 crossref_primary_10_1016_j_neuroimage_2014_10_013 crossref_primary_10_1007_s00723_019_01137_5 crossref_primary_10_1016_j_neuroimage_2015_06_077 crossref_primary_10_1111_adb_13386 crossref_primary_10_1371_journal_pone_0092543 crossref_primary_10_1016_j_neuroimage_2015_04_065 crossref_primary_10_1093_ijnp_pyv094 crossref_primary_10_1016_j_neubiorev_2015_09_022 crossref_primary_10_1177_0271678X221076570 crossref_primary_10_3390_ijms24021200 crossref_primary_10_1038_s41380_019_0406_4 crossref_primary_10_1016_j_psyneuen_2014_04_008 crossref_primary_10_1038_s41398_021_01754_4 crossref_primary_10_1016_j_neuroimage_2012_07_001 crossref_primary_10_1016_j_euroneuro_2018_07_099 crossref_primary_10_3389_fnbeh_2016_00169 crossref_primary_10_1016_j_neuroimage_2017_12_092 crossref_primary_10_1371_journal_pone_0106609 crossref_primary_10_1016_j_neubiorev_2012_12_007 crossref_primary_10_1016_j_nicl_2022_103230 crossref_primary_10_1016_j_cobeha_2019_12_007 crossref_primary_10_1134_S0362119720010120 crossref_primary_10_1371_journal_pone_0064509 crossref_primary_10_1016_j_sleep_2016_05_007 crossref_primary_10_1523_JNEUROSCI_3762_13_2014 crossref_primary_10_1016_j_neubiorev_2016_08_040 crossref_primary_10_1007_s00429_012_0492_4 crossref_primary_10_1007_s00429_015_1087_7 crossref_primary_10_1016_j_neuroimage_2012_09_029 crossref_primary_10_1002_hbm_23475 crossref_primary_10_1016_j_msard_2021_103224 crossref_primary_10_1002_hbm_23595 crossref_primary_10_3758_s13415_017_0506_z crossref_primary_10_1038_s41380_024_02710_6 crossref_primary_10_1016_j_pnpbp_2017_06_017 crossref_primary_10_1016_j_pscychresns_2025_111957 crossref_primary_10_1186_s11689_016_9135_z crossref_primary_10_1002_hbm_23903 crossref_primary_10_1038_s41598_021_03576_2 crossref_primary_10_14293_S2199_1006_1_SOR_LIFE_AEKZPZ_v1 crossref_primary_10_1093_ijnp_pyy100 crossref_primary_10_1016_j_concog_2021_103194 crossref_primary_10_1097_JCP_0000000000001305 crossref_primary_10_1016_j_apradiso_2013_07_023 crossref_primary_10_1002_hbm_22732 crossref_primary_10_1007_s11434_014_0185_x crossref_primary_10_1073_pnas_2122552119 crossref_primary_10_1002_syn_21993 crossref_primary_10_3389_fnhum_2014_00185 crossref_primary_10_1016_j_neuroimage_2013_06_010 crossref_primary_10_1002_jimd_12049 crossref_primary_10_3389_fpsyt_2018_00125 crossref_primary_10_1017_S0033291719002204 crossref_primary_10_1017_S0033291722002628 crossref_primary_10_1136_jnnp_2014_309180 crossref_primary_10_3389_fneur_2024_1343093 crossref_primary_10_1016_j_jad_2022_04_123 crossref_primary_10_1016_j_ebiom_2016_06_018 crossref_primary_10_1038_s41598_017_12913_3 crossref_primary_10_1038_s41598_019_41175_4 crossref_primary_10_3389_fnins_2016_00299 crossref_primary_10_1177_2470547018808295 crossref_primary_10_1016_j_neuroimage_2014_03_077 crossref_primary_10_1016_j_sleep_2017_09_031 crossref_primary_10_1007_s00406_015_0614_0 crossref_primary_10_1016_j_neuroimage_2012_07_023 crossref_primary_10_1007_s00429_013_0621_8 crossref_primary_10_1017_S0033291714002232 crossref_primary_10_1016_j_neuroimage_2021_118501 crossref_primary_10_3389_fnhum_2019_00156 crossref_primary_10_3389_fnins_2018_00185 crossref_primary_10_1371_journal_pone_0180136 crossref_primary_10_1093_scan_nsv133 crossref_primary_10_1089_brain_2014_0306 crossref_primary_10_1016_j_nucmedbio_2012_12_011 crossref_primary_10_1038_s41398_018_0121_y crossref_primary_10_1186_s12888_022_04176_8 crossref_primary_10_1016_j_neuroimage_2014_08_012 |
Cites_doi | 10.1016/S0166-2236(02)02264-6 10.1073/pnas.0504136102 10.1016/j.bandc.2007.07.011 10.1016/j.biopsych.2006.05.022 10.1007/BF01245833 10.1038/jcbfm.1989.41 10.1016/j.biopsych.2010.03.023 10.1016/j.neuroimage.2006.01.014 10.1073/pnas.2235925100 10.1016/j.neuroimage.2006.09.011 10.1371/journal.pone.0016997 10.1016/j.neuroimage.2009.05.005 10.5194/we-8-35-2008 10.1016/j.neuroimage.2006.11.010 10.1073/pnas.1010459107 10.1002/(SICI)1097-0193(1997)5:4<317::AID-HBM19>3.0.CO;2-A 10.1016/S0301-0082(96)00033-0 10.1016/j.neuroimage.2008.11.033 10.1038/35094500 10.1523/JNEUROSCI.3408-06.2006 10.1038/mp.2011.30 10.1016/j.brainresrev.2007.01.002 10.1073/pnas.0902455106 10.1038/nature05758 10.1073/pnas.0812686106 10.1006/nimg.2001.0984 10.1016/S1569-7339(10)70074-6 10.1124/pr.59.07103 10.1016/j.neubiorev.2008.09.002 10.1016/j.biopsych.2005.02.021 10.1093/cercor/bhp022 10.1523/JNEUROSCI.3335-10.2011 10.1016/j.jad.2010.11.034 10.1524/ract.2007.95.7.417 10.1097/00004647-200202000-00012 10.1016/j.neuroimage.2010.11.052 10.1523/JNEUROSCI.3941-09.2010 10.1002/mrm.1910340409 10.1016/j.biopsych.2009.01.028 10.1016/j.ejphar.2008.06.014 10.1016/j.pscychresns.2010.02.003 10.1093/cercor/bhn059 10.1196/annals.1440.011 10.1002/hbm.20993 10.1016/j.neuroimage.2005.12.002 10.1016/S0006-8993(96)01131-6 10.1007/s00429-009-0208-6 10.1097/00004647-199609000-00008 10.1007/s00259-008-0850-x 10.1016/j.neuron.2010.02.005 10.1007/s00213-006-0329-z 10.1016/0028-3932(95)00133-6 10.1038/nn1463 10.1126/science.1131295 10.1073/pnas.0601417103 10.1038/npp.2010.210 10.1073/pnas.98.2.676 10.1523/JNEUROSCI.2409-10.2010 10.1016/j.neubiorev.2009.03.006 10.1038/sj.jcbfm.9600493 10.1016/j.biopsych.2007.06.025 10.1016/S0969-8051(00)00119-0 10.1080/00031305.1981.10479362 10.1038/mp.2008.35 10.1073/pnas.0911855107 10.1016/S1569-7339(10)70071-0 10.1073/pnas.0800376105 10.1016/j.neuroimage.2011.05.024 10.1038/nrn2733 10.1016/j.neuroimage.2010.05.010 10.1523/JNEUROSCI.4004-09.2009 10.1038/1099 10.1073/pnas.0308627101 10.1038/npp.2011.113 10.1016/j.neuroimage.2011.02.064 10.1016/j.neulet.2009.04.025 10.1371/journal.pone.0006102 10.1038/nn2001 10.1073/pnas.1017098108 10.1016/S0079-6123(08)00912-6 10.1017/S1461145707008140 10.1016/j.nucmedbio.2007.06.008 10.1073/pnas.72.9.3726 10.1073/pnas.0711791105 10.1093/cercor/bhl033 10.1016/j.neuroimage.2010.11.010 10.1016/j.neures.2010.11.005 |
ContentType | Journal Article |
Copyright | copyright © 1993-2008 National Academy of Sciences of the United States of America Copyright National Academy of Sciences Feb 14, 2012 |
Copyright_xml | – notice: copyright © 1993-2008 National Academy of Sciences of the United States of America – notice: Copyright National Academy of Sciences Feb 14, 2012 |
DBID | FBQ AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7S9 L.6 7X8 5PM |
DOI | 10.1073/pnas.1117104109 |
DatabaseName | AGRIS CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Immunology Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts AGRICOLA AGRICOLA - Academic MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Virology and AIDS Abstracts Oncogenes and Growth Factors Abstracts Technology Research Database Nucleic Acids Abstracts Ecology Abstracts Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Entomology Abstracts Genetics Abstracts Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Immunology Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts AGRICOLA AGRICOLA - Academic MEDLINE - Academic |
DatabaseTitleList | Virology and AIDS Abstracts MEDLINE - Academic AGRICOLA MEDLINE CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: FBQ name: AGRIS url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
EISSN | 1091-6490 |
EndPage | 2624 |
ExternalDocumentID | PMC3289336 2589239471 22308408 10_1073_pnas_1117104109 109_7_2619 41477522 US201400069846 |
Genre | Research Support, Non-U.S. Gov't Journal Article Feature |
GroupedDBID | --- -DZ -~X .55 .GJ 0R~ 123 29P 2AX 2FS 2WC 3O- 4.4 53G 5RE 5VS 692 6TJ 79B 85S AACGO AAFWJ AANCE AAYJJ ABBHK ABOCM ABPLY ABPPZ ABPTK ABTLG ABZEH ACGOD ACIWK ACKIV ACNCT ACPRK ADULT ADZLD AENEX AEUPB AEXZC AFDAS AFFNX AFOSN AFRAH ALMA_UNASSIGNED_HOLDINGS ASUFR AS~ BKOMP CS3 D0L DCCCD DIK DNJUQ DOOOF DU5 DWIUU E3Z EBS EJD F20 F5P FBQ FRP GX1 HGD HH5 HQ3 HTVGU HYE JAAYA JBMMH JENOY JHFFW JKQEH JLS JLXEF JPM JSG JSODD JST KQ8 L7B LU7 MVM N9A NEJ NHB N~3 O9- OK1 P-O PNE PQQKQ R.V RHF RHI RNA RNS RPM RXW SA0 SJN TAE TN5 UKR VOH VQA W8F WH7 WHG WOQ WOW X7M XFK XSW Y6R YBH YKV YSK ZA5 ZCA ZCG ~02 ~KM ABXSQ ACHIC ADQXQ ADXHL AQVQM H13 IPSME - 02 0R 1AW 55 AAPBV ABFLS ADACO AJYGW DZ KM PQEST X XHC AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7S9 L.6 7X8 5PM |
ID | FETCH-LOGICAL-c587t-5909869ddcc89e91bc71ac503213a47657660dc0f4acb58f160df1e6ee3e4b2f3 |
ISSN | 0027-8424 1091-6490 |
IngestDate | Thu Aug 21 18:19:54 EDT 2025 Fri Jul 11 11:50:44 EDT 2025 Fri Jul 11 05:26:46 EDT 2025 Mon Jun 30 08:26:15 EDT 2025 Thu Apr 03 07:01:02 EDT 2025 Thu Apr 24 23:08:14 EDT 2025 Tue Jul 01 03:39:11 EDT 2025 Wed Nov 11 00:29:44 EST 2020 Thu May 29 08:40:42 EDT 2025 Wed Dec 27 19:05:50 EST 2023 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c587t-5909869ddcc89e91bc71ac503213a47657660dc0f4acb58f160df1e6ee3e4b2f3 |
Notes | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 Edited by Marcus E. Raichle, Washington University in St. Louis, St. Louis, MO, and approved January 4, 2012 (received for review October 19, 2011) Author contributions: W.W., C.W., M.M., G.K., S.K., and R.L. designed research; A.H., W.W., C.W., P.B., A.S.H., J.L., L.N., C.P., C.K., M.M., G.K., S.K., and R.L. performed research; A.H., J.L., L.N., C.P., and G.S.K. analyzed data; and A.H., C.W., P.B., A.S.H., G.S.K., C.K., and R.L. wrote the paper. |
OpenAccessLink | https://www.pnas.org/content/pnas/109/7/2619.full.pdf |
PMID | 22308408 |
PQID | 922053477 |
PQPubID | 42026 |
PageCount | 6 |
ParticipantIDs | proquest_miscellaneous_921720322 pubmedcentral_primary_oai_pubmedcentral_nih_gov_3289336 pubmed_primary_22308408 proquest_miscellaneous_1539454049 proquest_journals_922053477 pnas_primary_109_7_2619 fao_agris_US201400069846 crossref_primary_10_1073_pnas_1117104109 jstor_primary_41477522 crossref_citationtrail_10_1073_pnas_1117104109 |
ProviderPackageCode | RNA PNE CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2012-02-14 |
PublicationDateYYYYMMDD | 2012-02-14 |
PublicationDate_xml | – month: 02 year: 2012 text: 2012-02-14 day: 14 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Washington |
PublicationTitle | Proceedings of the National Academy of Sciences - PNAS |
PublicationTitleAlternate | Proc Natl Acad Sci U S A |
PublicationYear | 2012 |
Publisher | National Academy of Sciences National Acad Sciences |
Publisher_xml | – name: National Academy of Sciences – name: National Acad Sciences |
References | e_1_3_3_50_2 e_1_3_3_75_2 e_1_3_3_71_2 e_1_3_3_77_2 e_1_3_3_79_2 e_1_3_3_16_2 e_1_3_3_18_2 e_1_3_3_12_2 e_1_3_3_37_2 e_1_3_3_58_2 e_1_3_3_90_2 e_1_3_3_14_2 e_1_3_3_35_2 e_1_3_3_56_2 e_1_3_3_33_2 e_1_3_3_54_2 e_1_3_3_10_2 e_1_3_3_31_2 e_1_3_3_52_2 e_1_3_3_73_2 e_1_3_3_40_2 e_1_3_3_61_2 e_1_3_3_86_2 e_1_3_3_88_2 e_1_3_3_5_2 e_1_3_3_7_2 e_1_3_3_9_2 e_1_3_3_27_2 e_1_3_3_29_2 e_1_3_3_23_2 Saulin A (e_1_3_3_32_2) 2011 e_1_3_3_48_2 e_1_3_3_69_2 e_1_3_3_25_2 e_1_3_3_46_2 e_1_3_3_67_2 e_1_3_3_80_2 e_1_3_3_1_2 e_1_3_3_44_2 e_1_3_3_65_2 e_1_3_3_82_2 e_1_3_3_3_2 e_1_3_3_21_2 e_1_3_3_42_2 e_1_3_3_63_2 e_1_3_3_84_2 e_1_3_3_51_2 e_1_3_3_74_2 e_1_3_3_76_2 Cole DM (e_1_3_3_39_2) 2010; 4 e_1_3_3_70_2 e_1_3_3_78_2 e_1_3_3_17_2 e_1_3_3_19_2 e_1_3_3_38_2 e_1_3_3_13_2 e_1_3_3_36_2 e_1_3_3_59_2 e_1_3_3_15_2 e_1_3_3_34_2 e_1_3_3_57_2 e_1_3_3_55_2 e_1_3_3_11_2 e_1_3_3_30_2 e_1_3_3_53_2 e_1_3_3_72_2 e_1_3_3_62_2 e_1_3_3_85_2 e_1_3_3_60_2 e_1_3_3_87_2 Di Simplicio M (e_1_3_3_64_2) 2011 e_1_3_3_6_2 e_1_3_3_8_2 e_1_3_3_28_2 Velleman P (e_1_3_3_89_2) 1981; 35 e_1_3_3_49_2 e_1_3_3_24_2 e_1_3_3_47_2 e_1_3_3_26_2 e_1_3_3_45_2 e_1_3_3_68_2 e_1_3_3_2_2 e_1_3_3_20_2 e_1_3_3_43_2 e_1_3_3_66_2 e_1_3_3_81_2 e_1_3_3_4_2 e_1_3_3_22_2 e_1_3_3_41_2 e_1_3_3_83_2 16513369 - Neuroimage. 2006 Jul 1;31(3):1188-96 8736565 - Neuropsychologia. 1996 Jun;34(6):515-26 19923283 - J Neurosci. 2009 Nov 18;29(46):14496-505 21347270 - PLoS One. 2011;6(2):e16997 21185083 - J Affect Disord. 2012 Jan;136(1-2):e1-e11 21078349 - Neurosci Res. 2011 Feb;69(2):129-34 18160701 - Pharmacol Rev. 2007 Dec;59(4):360-417 21430142 - J Neurosci. 2011 Mar 23;31(12):4407-20 18772036 - Prog Brain Res. 2008;172:233-64 20053888 - J Neurosci. 2010 Jan 6;30(1):64-9 9004349 - Prog Neurobiol. 1996 Nov;50(4):335-62 18621692 - Proc Natl Acad Sci U S A. 2008 Jul 15;105(28):9781-6 18824195 - Neurosci Biobehav Rev. 2009 Mar;33(3):279-96 20980606 - J Neurosci. 2010 Oct 27;30(43):14482-9 17888409 - Biol Psychiatry. 2008 Feb 1;63(3):332-7 21358707 - Mol Psychiatry. 2012 May;17(5):503-10 19428501 - Neurosci Biobehav Rev. 2009 Jun;33(6):926-52 11823722 - J Cereb Blood Flow Metab. 2002 Feb;22(2):240-4 15866546 - Biol Psychiatry. 2005 May 15;57(10):1079-88 21609769 - Neuroimage. 2011 Aug 1;57(3):908-17 18322013 - Proc Natl Acad Sci U S A. 2008 Mar 11;105(10):4028-32 17982452 - Nat Neurosci. 2007 Dec;10(12):1515-7 21750580 - Neuropsychopharmacology. 2011 Oct;36(11):2258-65 8524021 - Magn Reson Med. 1995 Oct;34(4):537-41 16945915 - Proc Natl Acad Sci U S A. 2006 Sep 12;103(37):13848-53 21483434 - Mol Psychiatry. 2011 Aug;16(8):818-25 19171889 - Proc Natl Acad Sci U S A. 2009 Feb 10;106(6):1942-7 19442867 - Neurosci Lett. 2009 Jul 10;458(1):1-5 21356318 - Neuroimage. 2011 Jun 1;56(3):881-9 15070770 - Proc Natl Acad Sci U S A. 2004 Mar 30;101(13):4637-42 17182784 - J Neurosci. 2006 Dec 20;26(51):13338-43 19103294 - Neuroimage. 2009 Apr 1;45(2):598-605 17316819 - Brain Res Rev. 2007 Oct;55(2):329-42 21947614 - Amino Acids. 2012 Jun;42(6):2039-57 19278673 - Biol Psychiatry. 2009 Aug 1;66(3):223-30 15976020 - Proc Natl Acad Sci U S A. 2005 Jul 5;102(27):9673-8 20188659 - Neuron. 2010 Feb 25;65(4):550-62 18577382 - Eur J Pharmacol. 2008 Aug 20;590(1-3):136-49 19321655 - Cereb Cortex. 2009 Nov;19(11):2499-507 16466680 - Neuroimage. 2006 May 15;31(1):440-57 17881109 - Brain Cogn. 2008 Mar;66(2):202-12 14608034 - Proc Natl Acad Sci U S A. 2003 Nov 25;100(24):14504-9 20225222 - Hum Brain Mapp. 2010 Dec;31(12):2003-14 19805061 - Proc Natl Acad Sci U S A. 2009 Oct 13;106(41):17558-63 10195161 - Nat Neurosci. 1998 Aug;1(4):286-9 2715200 - J Cereb Blood Flow Metab. 1989 Jun;9(3):251-5 20176931 - Proc Natl Acad Sci U S A. 2010 Mar 9;107(10):4734-9 21111830 - Neuroimage. 2011 Mar 15;55(2):681-7 11584306 - Nat Rev Neurosci. 2001 Oct;2(10):685-94 18400922 - Ann N Y Acad Sci. 2008 Mar;1124:1-38 17921037 - Nucl Med Biol. 2007 Oct;34(7):865-77 9037397 - Brain Res. 1997 Jan 16;745(1-2):96-108 11848705 - Neuroimage. 2002 Mar;15(3):620-32 19812579 - Nat Rev Neurosci. 2009 Nov;10(11):792-802 18403396 - Cereb Cortex. 2009 Jan;19(1):72-8 20407579 - Front Syst Neurosci. 2010 Apr 06;4:8 20497898 - Biol Psychiatry. 2010 Jul 15;68(2):170-8 11209064 - Proc Natl Acad Sci U S A. 2001 Jan 16;98(2):676-82 10962258 - Nucl Med Biol. 2000 Jul;27(5):499-507 16855008 - Cereb Cortex. 2007 May;17(5):1227-34 12446129 - Trends Neurosci. 2002 Dec;25(12):621-5 21078400 - Neuroimage. 2011 Mar 1;55(1):185-93 21282630 - Proc Natl Acad Sci U S A. 2011 Feb 15;108(7):3023-8 17476267 - Nature. 2007 May 3;447(7140):83-6 17971260 - Int J Neuropsychopharmacol. 2008 Jun;11(4):465-76 19564918 - PLoS One. 2009;4(6):e6102 19565262 - Brain Struct Funct. 2009 Oct;213(6):525-33 17234951 - Science. 2007 Jan 19;315(5810):393-5 17519979 - J Cereb Blood Flow Metab. 2007 Sep;27(9):1533-9 17070709 - Neuroimage. 2007 Jan 1;34(1):137-43 19442749 - Neuroimage. 2009 Oct 1;47(4):1408-16 16541245 - Psychopharmacology (Berl). 2006 Apr;185(3):389-94 18542956 - Eur J Nucl Med Mol Imaging. 2008 Dec;35(12):2159-68 20470894 - Neuroimage. 2010 Oct 1;52(4):1549-58 16979141 - Biol Psychiatry. 2007 May 1;61(9):1081-9 15880108 - Nat Neurosci. 2005 Jun;8(6):828-34 21150912 - Neuropsychopharmacology. 2011 Mar;36(4):763-71 17188903 - Neuroimage. 2007 Feb 15;34(4):1627-36 20837536 - Proc Natl Acad Sci U S A. 2010 Oct 12;107(41):17757-62 18362913 - Mol Psychiatry. 2009 Nov;14(11):1040-50 20408235 - Hum Brain Mapp. 1997;5(4):317-22 20418072 - Psychiatry Res. 2010 May 30;182(2):81-7 2141990 - J Neural Transm Gen Sect. 1990;81(2):131-45 810805 - Proc Natl Acad Sci U S A. 1975 Sep;72(9):3726-30 8784228 - J Cereb Blood Flow Metab. 1996 Sep;16(5):834-40 |
References_xml | – ident: e_1_3_3_28_2 doi: 10.1016/S0166-2236(02)02264-6 – ident: e_1_3_3_3_2 doi: 10.1073/pnas.0504136102 – ident: e_1_3_3_45_2 doi: 10.1016/j.bandc.2007.07.011 – ident: e_1_3_3_71_2 doi: 10.1016/j.biopsych.2006.05.022 – ident: e_1_3_3_33_2 doi: 10.1007/BF01245833 – ident: e_1_3_3_34_2 doi: 10.1038/jcbfm.1989.41 – ident: e_1_3_3_61_2 doi: 10.1016/j.biopsych.2010.03.023 – ident: e_1_3_3_46_2 doi: 10.1016/j.neuroimage.2006.01.014 – ident: e_1_3_3_21_2 doi: 10.1073/pnas.2235925100 – ident: e_1_3_3_85_2 doi: 10.1016/j.neuroimage.2006.09.011 – ident: e_1_3_3_43_2 doi: 10.1371/journal.pone.0016997 – ident: e_1_3_3_82_2 doi: 10.1016/j.neuroimage.2009.05.005 – ident: e_1_3_3_90_2 doi: 10.5194/we-8-35-2008 – ident: e_1_3_3_48_2 doi: 10.1016/j.neuroimage.2006.11.010 – ident: e_1_3_3_84_2 doi: 10.1073/pnas.1010459107 – year: 2011 ident: e_1_3_3_64_2 article-title: Short-term antidepressant administration reduces negative self-referential processing in the medial prefrontal cortex in subjects at risk for depression publication-title: Mol Psychiatry – ident: e_1_3_3_15_2 doi: 10.1002/(SICI)1097-0193(1997)5:4<317::AID-HBM19>3.0.CO;2-A – ident: e_1_3_3_31_2 doi: 10.1016/S0301-0082(96)00033-0 – ident: e_1_3_3_72_2 doi: 10.1016/j.neuroimage.2008.11.033 – ident: e_1_3_3_1_2 doi: 10.1038/35094500 – ident: e_1_3_3_17_2 doi: 10.1523/JNEUROSCI.3408-06.2006 – ident: e_1_3_3_19_2 doi: 10.1038/mp.2011.30 – ident: e_1_3_3_53_2 doi: 10.1016/j.brainresrev.2007.01.002 – ident: e_1_3_3_5_2 doi: 10.1073/pnas.0902455106 – ident: e_1_3_3_12_2 doi: 10.1038/nature05758 – ident: e_1_3_3_23_2 doi: 10.1073/pnas.0812686106 – ident: e_1_3_3_86_2 doi: 10.1006/nimg.2001.0984 – ident: e_1_3_3_37_2 doi: 10.1016/S1569-7339(10)70074-6 – ident: e_1_3_3_36_2 doi: 10.1124/pr.59.07103 – ident: e_1_3_3_6_2 doi: 10.1016/j.neubiorev.2008.09.002 – ident: e_1_3_3_22_2 doi: 10.1016/j.biopsych.2005.02.021 – ident: e_1_3_3_51_2 doi: 10.1093/cercor/bhp022 – ident: e_1_3_3_42_2 doi: 10.1523/JNEUROSCI.3335-10.2011 – ident: e_1_3_3_63_2 doi: 10.1016/j.jad.2010.11.034 – ident: e_1_3_3_74_2 doi: 10.1524/ract.2007.95.7.417 – ident: e_1_3_3_79_2 doi: 10.1097/00004647-200202000-00012 – ident: e_1_3_3_18_2 doi: 10.1016/j.neuroimage.2010.11.052 – ident: e_1_3_3_65_2 doi: 10.1523/JNEUROSCI.3941-09.2010 – ident: e_1_3_3_83_2 doi: 10.1002/mrm.1910340409 – ident: e_1_3_3_76_2 doi: 10.1016/j.biopsych.2009.01.028 – ident: e_1_3_3_35_2 doi: 10.1016/j.ejphar.2008.06.014 – ident: e_1_3_3_56_2 doi: 10.1016/j.pscychresns.2010.02.003 – ident: e_1_3_3_13_2 doi: 10.1093/cercor/bhn059 – ident: e_1_3_3_7_2 doi: 10.1196/annals.1440.011 – volume: 4 start-page: 8 year: 2010 ident: e_1_3_3_39_2 article-title: Advances and pitfalls in the analysis and interpretation of resting-state FMRI data publication-title: Front Syst Neurosci – ident: e_1_3_3_25_2 doi: 10.1002/hbm.20993 – ident: e_1_3_3_49_2 doi: 10.1016/j.neuroimage.2005.12.002 – ident: e_1_3_3_81_2 doi: 10.1016/S0006-8993(96)01131-6 – ident: e_1_3_3_14_2 doi: 10.1007/s00429-009-0208-6 – ident: e_1_3_3_80_2 doi: 10.1097/00004647-199609000-00008 – ident: e_1_3_3_70_2 doi: 10.1007/s00259-008-0850-x – ident: e_1_3_3_9_2 doi: 10.1016/j.neuron.2010.02.005 – ident: e_1_3_3_87_2 doi: 10.1007/s00213-006-0329-z – ident: e_1_3_3_38_2 doi: 10.1016/0028-3932(95)00133-6 – ident: e_1_3_3_52_2 doi: 10.1038/nn1463 – ident: e_1_3_3_10_2 doi: 10.1126/science.1131295 – ident: e_1_3_3_16_2 doi: 10.1073/pnas.0601417103 – year: 2011 ident: e_1_3_3_32_2 article-title: Serotonin and molecular neuroimaging in humans using PET publication-title: Amino Acids – ident: e_1_3_3_66_2 doi: 10.1038/npp.2010.210 – ident: e_1_3_3_2_2 doi: 10.1073/pnas.98.2.676 – ident: e_1_3_3_57_2 doi: 10.1523/JNEUROSCI.2409-10.2010 – ident: e_1_3_3_47_2 doi: 10.1016/j.neubiorev.2009.03.006 – ident: e_1_3_3_78_2 doi: 10.1038/sj.jcbfm.9600493 – ident: e_1_3_3_26_2 doi: 10.1016/j.biopsych.2007.06.025 – ident: e_1_3_3_60_2 doi: 10.1016/S0969-8051(00)00119-0 – volume: 35 start-page: 234 year: 1981 ident: e_1_3_3_89_2 article-title: Efficient computing of regression diagnostics publication-title: Am Stat doi: 10.1080/00031305.1981.10479362 – ident: e_1_3_3_75_2 doi: 10.1038/mp.2008.35 – ident: e_1_3_3_11_2 doi: 10.1073/pnas.0911855107 – ident: e_1_3_3_77_2 doi: 10.1016/S1569-7339(10)70071-0 – ident: e_1_3_3_20_2 doi: 10.1073/pnas.0800376105 – ident: e_1_3_3_54_2 doi: 10.1016/j.neuroimage.2011.05.024 – ident: e_1_3_3_41_2 doi: 10.1038/nrn2733 – ident: e_1_3_3_24_2 doi: 10.1016/j.neuroimage.2010.05.010 – ident: e_1_3_3_50_2 doi: 10.1523/JNEUROSCI.4004-09.2009 – ident: e_1_3_3_29_2 doi: 10.1038/1099 – ident: e_1_3_3_27_2 doi: 10.1073/pnas.0308627101 – ident: e_1_3_3_59_2 doi: 10.1038/npp.2011.113 – ident: e_1_3_3_73_2 doi: 10.1016/j.neuroimage.2011.02.064 – ident: e_1_3_3_67_2 doi: 10.1016/j.neulet.2009.04.025 – ident: e_1_3_3_68_2 doi: 10.1371/journal.pone.0006102 – ident: e_1_3_3_69_2 doi: 10.1038/nn2001 – ident: e_1_3_3_44_2 doi: 10.1073/pnas.1017098108 – ident: e_1_3_3_58_2 doi: 10.1016/S0079-6123(08)00912-6 – ident: e_1_3_3_62_2 doi: 10.1017/S1461145707008140 – ident: e_1_3_3_88_2 doi: 10.1016/j.nucmedbio.2007.06.008 – ident: e_1_3_3_30_2 doi: 10.1073/pnas.72.9.3726 – ident: e_1_3_3_8_2 doi: 10.1073/pnas.0711791105 – ident: e_1_3_3_4_2 doi: 10.1093/cercor/bhl033 – ident: e_1_3_3_40_2 doi: 10.1016/j.neuroimage.2010.11.010 – ident: e_1_3_3_55_2 doi: 10.1016/j.neures.2010.11.005 – reference: 16466680 - Neuroimage. 2006 May 15;31(1):440-57 – reference: 20980606 - J Neurosci. 2010 Oct 27;30(43):14482-9 – reference: 17476267 - Nature. 2007 May 3;447(7140):83-6 – reference: 20225222 - Hum Brain Mapp. 2010 Dec;31(12):2003-14 – reference: 10962258 - Nucl Med Biol. 2000 Jul;27(5):499-507 – reference: 16855008 - Cereb Cortex. 2007 May;17(5):1227-34 – reference: 15976020 - Proc Natl Acad Sci U S A. 2005 Jul 5;102(27):9673-8 – reference: 20837536 - Proc Natl Acad Sci U S A. 2010 Oct 12;107(41):17757-62 – reference: 19564918 - PLoS One. 2009;4(6):e6102 – reference: 20497898 - Biol Psychiatry. 2010 Jul 15;68(2):170-8 – reference: 20188659 - Neuron. 2010 Feb 25;65(4):550-62 – reference: 21483434 - Mol Psychiatry. 2011 Aug;16(8):818-25 – reference: 18772036 - Prog Brain Res. 2008;172:233-64 – reference: 16945915 - Proc Natl Acad Sci U S A. 2006 Sep 12;103(37):13848-53 – reference: 21750580 - Neuropsychopharmacology. 2011 Oct;36(11):2258-65 – reference: 18322013 - Proc Natl Acad Sci U S A. 2008 Mar 11;105(10):4028-32 – reference: 21282630 - Proc Natl Acad Sci U S A. 2011 Feb 15;108(7):3023-8 – reference: 9037397 - Brain Res. 1997 Jan 16;745(1-2):96-108 – reference: 8736565 - Neuropsychologia. 1996 Jun;34(6):515-26 – reference: 19805061 - Proc Natl Acad Sci U S A. 2009 Oct 13;106(41):17558-63 – reference: 19442749 - Neuroimage. 2009 Oct 1;47(4):1408-16 – reference: 17182784 - J Neurosci. 2006 Dec 20;26(51):13338-43 – reference: 20407579 - Front Syst Neurosci. 2010 Apr 06;4:8 – reference: 17070709 - Neuroimage. 2007 Jan 1;34(1):137-43 – reference: 11584306 - Nat Rev Neurosci. 2001 Oct;2(10):685-94 – reference: 2715200 - J Cereb Blood Flow Metab. 1989 Jun;9(3):251-5 – reference: 2141990 - J Neural Transm Gen Sect. 1990;81(2):131-45 – reference: 20053888 - J Neurosci. 2010 Jan 6;30(1):64-9 – reference: 18400922 - Ann N Y Acad Sci. 2008 Mar;1124:1-38 – reference: 20470894 - Neuroimage. 2010 Oct 1;52(4):1549-58 – reference: 14608034 - Proc Natl Acad Sci U S A. 2003 Nov 25;100(24):14504-9 – reference: 17888409 - Biol Psychiatry. 2008 Feb 1;63(3):332-7 – reference: 17971260 - Int J Neuropsychopharmacol. 2008 Jun;11(4):465-76 – reference: 17921037 - Nucl Med Biol. 2007 Oct;34(7):865-77 – reference: 16979141 - Biol Psychiatry. 2007 May 1;61(9):1081-9 – reference: 21609769 - Neuroimage. 2011 Aug 1;57(3):908-17 – reference: 18577382 - Eur J Pharmacol. 2008 Aug 20;590(1-3):136-49 – reference: 21150912 - Neuropsychopharmacology. 2011 Mar;36(4):763-71 – reference: 17316819 - Brain Res Rev. 2007 Oct;55(2):329-42 – reference: 19442867 - Neurosci Lett. 2009 Jul 10;458(1):1-5 – reference: 9004349 - Prog Neurobiol. 1996 Nov;50(4):335-62 – reference: 21947614 - Amino Acids. 2012 Jun;42(6):2039-57 – reference: 19812579 - Nat Rev Neurosci. 2009 Nov;10(11):792-802 – reference: 15880108 - Nat Neurosci. 2005 Jun;8(6):828-34 – reference: 17234951 - Science. 2007 Jan 19;315(5810):393-5 – reference: 8524021 - Magn Reson Med. 1995 Oct;34(4):537-41 – reference: 18362913 - Mol Psychiatry. 2009 Nov;14(11):1040-50 – reference: 20408235 - Hum Brain Mapp. 1997;5(4):317-22 – reference: 810805 - Proc Natl Acad Sci U S A. 1975 Sep;72(9):3726-30 – reference: 16541245 - Psychopharmacology (Berl). 2006 Apr;185(3):389-94 – reference: 21347270 - PLoS One. 2011;6(2):e16997 – reference: 19565262 - Brain Struct Funct. 2009 Oct;213(6):525-33 – reference: 21185083 - J Affect Disord. 2012 Jan;136(1-2):e1-e11 – reference: 10195161 - Nat Neurosci. 1998 Aug;1(4):286-9 – reference: 11848705 - Neuroimage. 2002 Mar;15(3):620-32 – reference: 21111830 - Neuroimage. 2011 Mar 15;55(2):681-7 – reference: 19321655 - Cereb Cortex. 2009 Nov;19(11):2499-507 – reference: 21356318 - Neuroimage. 2011 Jun 1;56(3):881-9 – reference: 20176931 - Proc Natl Acad Sci U S A. 2010 Mar 9;107(10):4734-9 – reference: 19103294 - Neuroimage. 2009 Apr 1;45(2):598-605 – reference: 18542956 - Eur J Nucl Med Mol Imaging. 2008 Dec;35(12):2159-68 – reference: 21078400 - Neuroimage. 2011 Mar 1;55(1):185-93 – reference: 19923283 - J Neurosci. 2009 Nov 18;29(46):14496-505 – reference: 16513369 - Neuroimage. 2006 Jul 1;31(3):1188-96 – reference: 15866546 - Biol Psychiatry. 2005 May 15;57(10):1079-88 – reference: 21078349 - Neurosci Res. 2011 Feb;69(2):129-34 – reference: 21430142 - J Neurosci. 2011 Mar 23;31(12):4407-20 – reference: 17519979 - J Cereb Blood Flow Metab. 2007 Sep;27(9):1533-9 – reference: 15070770 - Proc Natl Acad Sci U S A. 2004 Mar 30;101(13):4637-42 – reference: 18403396 - Cereb Cortex. 2009 Jan;19(1):72-8 – reference: 19278673 - Biol Psychiatry. 2009 Aug 1;66(3):223-30 – reference: 17188903 - Neuroimage. 2007 Feb 15;34(4):1627-36 – reference: 17881109 - Brain Cogn. 2008 Mar;66(2):202-12 – reference: 20418072 - Psychiatry Res. 2010 May 30;182(2):81-7 – reference: 18824195 - Neurosci Biobehav Rev. 2009 Mar;33(3):279-96 – reference: 19171889 - Proc Natl Acad Sci U S A. 2009 Feb 10;106(6):1942-7 – reference: 18621692 - Proc Natl Acad Sci U S A. 2008 Jul 15;105(28):9781-6 – reference: 17982452 - Nat Neurosci. 2007 Dec;10(12):1515-7 – reference: 12446129 - Trends Neurosci. 2002 Dec;25(12):621-5 – reference: 11209064 - Proc Natl Acad Sci U S A. 2001 Jan 16;98(2):676-82 – reference: 21358707 - Mol Psychiatry. 2012 May;17(5):503-10 – reference: 11823722 - J Cereb Blood Flow Metab. 2002 Feb;22(2):240-4 – reference: 8784228 - J Cereb Blood Flow Metab. 1996 Sep;16(5):834-40 – reference: 18160701 - Pharmacol Rev. 2007 Dec;59(4):360-417 – reference: 19428501 - Neurosci Biobehav Rev. 2009 Jun;33(6):926-52 |
SSID | ssj0009580 |
Score | 2.3881288 |
Snippet | Reflecting one's mental self is a fundamental process for evaluating the personal relevance of life events and for moral decision making and future... |
SourceID | pubmedcentral proquest pubmed crossref pnas jstor fao |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 2619 |
SubjectTerms | Behavioral neuroscience Binding sites Biological Sciences Brain Connectivity cortex decision making Depressive disorders Dopamine gamma-aminobutyric acid Humans image analysis life events Magnetic Resonance Imaging Neurochemistry Neurons Neurotransmitters Positron emission tomography Prefrontal cortex Receptor, Serotonin, 5-HT1A - physiology Receptors Serotonin Serotonin receptors |
Title | Differential modulation of the default mode network via serotonin-1A receptors |
URI | https://www.jstor.org/stable/41477522 http://www.pnas.org/content/109/7/2619.abstract https://www.ncbi.nlm.nih.gov/pubmed/22308408 https://www.proquest.com/docview/922053477 https://www.proquest.com/docview/1539454049 https://www.proquest.com/docview/921720322 https://pubmed.ncbi.nlm.nih.gov/PMC3289336 |
Volume | 109 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1fb9MwELe68cILYsBYGCAj8TAUZSSx48SP1QBVSKsqsWp7ixzHWSt1SUVTHviGfCvOjvOnY0Owl6qN7Yub--XufD7fIfSeBYoKESUe5SzQ24zSEwmn8LqDtUwDFTGpXQPnUzaZ069X0dVo9GsQtbSts1P5885zJQ_hKlwDvupTsv_B2Y4oXIDvwF_4BA7D5z_x-JOtblJrt_dNldtSXO2-f64KsV3VptqNWzbx3u6PpXBhclWt_bBeMHZB5Km1rrkztFNnnV7btNSmrdtw3B9CsZJh43rubNqXNJ6IRdlFS4rOar8U-UYY6XtZrYprYZWm8fqU-njwQgeb2ZOJCyt9eler2SZrWmdLMXRX6LiP0At6d-Xf5jqU0yHoTtqcrj5VjWgGy8ZjtCku2slunw9AGg8lMbOiWNmfDbE_NAaIOF3muBQbrT3A3qKW5gA_6xsDILCkfFgPJ73q7AIaZ-dnBJauhLA99CiEFUtodMQw_3PSnIayf6zNMhWTj7furdNT2xvt2Ep7hajaoFmdiRdG3bUquh3cO7CWLp6iJ3aZg8cNZg_QSJXP0EHLAnxis51_eI6mQxDjHsS4KjDADlsQ6xaFLYgxgBgPQYw7EL9A8y-fL84mni3y4ckoiWsv4j5PGM9zKROueJDJOBAy8kkYEEFjButh5ufSL6iQWZQUIEPyIlBMKaJoFhbkEO2XVamOEPYzmokgAo0d55RFIYfefpRLmviUEikddNo-zlTaDPi6EMsqNZEYMUn1Q017VjjopBuwbpK_3N_1CPiTimt4OdL5t1A7LnQWcDDvHXRomNaRoAGNY1j3OOilodKT5mmcauA66LhlbGrlzSbl-kw8gaEOete1gjLQO3yiVNUW5hMRrlNqUqCA7-nDdUk6eLzm9gYp3QRa3Dko3sFQ10Hnot9tKZcLk5Peov_Vg0ceo8e9uHiN9uvvW_UG7P06e2vepN_MKP6D |
linkProvider | ABC ChemistRy |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Differential+modulation+of+the+default+mode+network+via+serotonin-1A+receptors&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Hahn%2C+Andreas&rft.au=Wadsak%2C+Wolfgang&rft.au=Windischberger%2C+Christian&rft.au=Baldinger%2C+Pia&rft.date=2012-02-14&rft.pub=National+Academy+of+Sciences&rft.issn=0027-8424&rft.eissn=1091-6490&rft.volume=109&rft.issue=7&rft.spage=2619&rft.epage=2624&rft_id=info:doi/10.1073%2Fpnas.1117104109&rft_id=info%3Apmid%2F22308408&rft.externalDocID=PMC3289336 |
thumbnail_m | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F109%2F7.cover.gif |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F109%2F7.cover.gif |