Residual force enhancement during multi-joint leg extensions at joint- angle configurations close to natural human motion

The isometric steady-state forces following lengthening are greater than those produced at the same muscle length and activation level but without prior lengthening. Although residual force enhancement (RFE) has been investigated across a range of conditions, its relevance for daily human movement i...

Full description

Saved in:
Bibliographic Details
Published inJournal of biomechanics Vol. 49; no. 5; pp. 773 - 779
Main Authors Paternoster, Florian Kurt, Seiberl, Wolfgang, Hahn, Daniel, Schwirtz, Ansgar
Format Journal Article
LanguageEnglish
Published United States Elsevier Ltd 21.03.2016
Elsevier Limited
Subjects
Online AccessGet full text
ISSN0021-9290
1873-2380
1873-2380
DOI10.1016/j.jbiomech.2016.02.015

Cover

Abstract The isometric steady-state forces following lengthening are greater than those produced at the same muscle length and activation level but without prior lengthening. Although residual force enhancement (RFE) has been investigated across a range of conditions, its relevance for daily human movement is still poorly understood. We aimed to study RFE in a setup imitating daily activity, i.e., submaximal activation of the lower extremity’s muscles with slightly flexed knee joints comparable to human walking. A motor-driven leg press dynamometer was used for randomly arranged purely isometric and isometric–eccentric–isometric contractions. Thirteen subjects performed multi-joint leg extensions, which were feedback-controlled at 30% of maximum voluntary vastus lateralis activation. Isometric–eccentric–isometric contractions incorporated a stretch from 30° to 50° knee flexion, while isometric contractions were performed at 50° knee flexion. Isometric contractions following stretch and purely isometric reference contractions were performed at 50° knee flexion. Kinematics, forces, and muscular activity were measured using 3D optical motion tracking, force plates, and surface EMG of 9 lower limb muscles of the right leg and joint torques were calculated by inverse dynamics. Variables of standardization (EMG, joint angles) showed no differences between contraction conditions. Eight of 13 subjects showed RFE of up to 24.8±32.5% for external forces and joint torques. Because the remaining 5 non-responders failed to produce enhanced forces during the stretch, we believe that RFE is functionally relevant for muscle function comparable to everyday human motion but only if there is enhanced force during stretch that sufficiently triggers mechanisms underlying RFE.
AbstractList Abstract The isometric steady-state forces following lengthening are greater than those produced at the same muscle length and activation level but without prior lengthening. Although residual force enhancement (RFE) has been investigated across a range of conditions, its relevance for daily human movement is still poorly understood. We aimed to study RFE in a setup imitating daily activity, i.e., submaximal activation of the lower extremity’s muscles with slightly flexed knee joints comparable to human walking. A motor-driven leg press dynamometer was used for randomly arranged purely isometric and isometric–eccentric–isometric contractions. Thirteen subjects performed multi-joint leg extensions, which were feedback-controlled at 30% of maximum voluntary vastus lateralis activation. Isometric–eccentric–isometric contractions incorporated a stretch from 30° to 50° knee flexion, while isometric contractions were performed at 50° knee flexion. Isometric contractions following stretch and purely isometric reference contractions were performed at 50° knee flexion. Kinematics, forces, and muscular activity were measured using 3D optical motion tracking, force plates, and surface EMG of 9 lower limb muscles of the right leg and joint torques were calculated by inverse dynamics. Variables of standardization (EMG, joint angles) showed no differences between contraction conditions. Eight of 13 subjects showed RFE of up to 24.8±32.5% for external forces and joint torques. Because the remaining 5 non-responders failed to produce enhanced forces during the stretch, we believe that RFE is functionally relevant for muscle function comparable to everyday human motion but only if there is enhanced force during stretch that sufficiently triggers mechanisms underlying RFE.
The isometric steady-state forces following lengthening are greater than those produced at the same muscle length and activation level but without prior lengthening. Although residual force enhancement (RFE) has been investigated across a range of conditions, its relevance for daily human movement is still poorly understood. We aimed to study RFE in a setup imitating daily activity, i.e., submaximal activation of the lower extremity's muscles with slightly flexed knee joints comparable to human walking. A motor-driven leg press dynamometer was used for randomly arranged purely isometric and isometric-eccentric-isometric contractions. Thirteen subjects performed multi-joint leg extensions, which were feedback-controlled at 30% of maximum voluntary vastus lateralis activation. Isometric-eccentric-isometric contractions incorporated a stretch from 30 degree to 50 degree knee flexion, while isometric contractions were performed at 50 degree knee flexion. Isometric contractions following stretch and purely isometric reference contractions were performed at 50 degree knee flexion. Kinematics, forces, and muscular activity were measured using 3D optical motion tracking, force plates, and surface EMG of 9 lower limb muscles of the right leg and joint torques were calculated by inverse dynamics. Variables of standardization (EMG, joint angles) showed no differences between contraction conditions. Eight of 13 subjects showed RFE of up to 24.8 plus or minus 32.5% for external forces and joint torques. Because the remaining 5 non-responders failed to produce enhanced forces during the stretch, we believe that RFE is functionally relevant for muscle function comparable to everyday human motion but only if there is enhanced force during stretch that sufficiently triggers mechanisms underlying RFE.
The isometric steady-state forces following lengthening are greater than those produced at the same muscle length and activation level but without prior lengthening. Although residual force enhancement (RFE) has been investigated across a range of conditions, its relevance for daily human movement is still poorly understood. We aimed to study RFE in a setup imitating daily activity, i.e., submaximal activation of the lower extremity’s muscles with slightly flexed knee joints comparable to human walking. A motor-driven leg press dynamometer was used for randomly arranged purely isometric and isometric–eccentric–isometric contractions. Thirteen subjects performed multi-joint leg extensions, which were feedback-controlled at 30% of maximum voluntary vastus lateralis activation. Isometric–eccentric–isometric contractions incorporated a stretch from 30° to 50° knee flexion, while isometric contractions were performed at 50° knee flexion. Isometric contractions following stretch and purely isometric reference contractions were performed at 50° knee flexion. Kinematics, forces, and muscular activity were measured using 3D optical motion tracking, force plates, and surface EMG of 9 lower limb muscles of the right leg and joint torques were calculated by inverse dynamics. Variables of standardization (EMG, joint angles) showed no differences between contraction conditions. Eight of 13 subjects showed RFE of up to 24.8±32.5% for external forces and joint torques. Because the remaining 5 non-responders failed to produce enhanced forces during the stretch, we believe that RFE is functionally relevant for muscle function comparable to everyday human motion but only if there is enhanced force during stretch that sufficiently triggers mechanisms underlying RFE.
The isometric steady-state forces following lengthening are greater than those produced at the same muscle length and activation level but without prior lengthening. Although residual force enhancement (RFE) has been investigated across a range of conditions, its relevance for daily human movement is still poorly understood. We aimed to study RFE in a setup imitating daily activity, i.e., submaximal activation of the lower extremity's muscles with slightly flexed knee joints comparable to human walking. A motor-driven leg press dynamometer was used for randomly arranged purely isometric and isometric-eccentric-isometric contractions. Thirteen subjects performed multi-joint leg extensions, which were feedback-controlled at 30% of maximum voluntary vastus lateralis activation. Isometric-eccentric-isometric contractions incorporated a stretch from 30° to 50° knee flexion, while isometric contractions were performed at 50° knee flexion. Isometric contractions following stretch and purely isometric reference contractions were performed at 50° knee flexion. Kinematics, forces, and muscular activity were measured using 3D optical motion tracking, force plates, and surface EMG of 9 lower limb muscles of the right leg and joint torques were calculated by inverse dynamics. Variables of standardization (EMG, joint angles) showed no differences between contraction conditions. Eight of 13 subjects showed RFE of up to 24.8±32.5% for external forces and joint torques. Because the remaining 5 non-responders failed to produce enhanced forces during the stretch, we believe that RFE is functionally relevant for muscle function comparable to everyday human motion but only if there is enhanced force during stretch that sufficiently triggers mechanisms underlying RFE.
The isometric steady-state forces following lengthening are greater than those produced at the same muscle length and activation level but without prior lengthening. Although residual force enhancement (RFE) has been investigated across a range of conditions, its relevance for daily human movement is still poorly understood. We aimed to study RFE in a setup imitating daily activity, i.e., submaximal activation of the lower extremity's muscles with slightly flexed knee joints comparable to human walking. A motor-driven leg press dynamometer was used for randomly arranged purely isometric and isometric-eccentric-isometric contractions. Thirteen subjects performed multi-joint leg extensions, which were feedback-controlled at 30% of maximum voluntary vastus lateralis activation. Isometric-eccentric-isometric contractions incorporated a stretch from 30° to 50° knee flexion, while isometric contractions were performed at 50° knee flexion. Isometric contractions following stretch and purely isometric reference contractions were performed at 50° knee flexion. Kinematics, forces, and muscular activity were measured using 3D optical motion tracking, force plates, and surface EMG of 9 lower limb muscles of the right leg and joint torques were calculated by inverse dynamics. Variables of standardization (EMG, joint angles) showed no differences between contraction conditions. Eight of 13 subjects showed RFE of up to 24.8±32.5% for external forces and joint torques. Because the remaining 5 non-responders failed to produce enhanced forces during the stretch, we believe that RFE is functionally relevant for muscle function comparable to everyday human motion but only if there is enhanced force during stretch that sufficiently triggers mechanisms underlying RFE.The isometric steady-state forces following lengthening are greater than those produced at the same muscle length and activation level but without prior lengthening. Although residual force enhancement (RFE) has been investigated across a range of conditions, its relevance for daily human movement is still poorly understood. We aimed to study RFE in a setup imitating daily activity, i.e., submaximal activation of the lower extremity's muscles with slightly flexed knee joints comparable to human walking. A motor-driven leg press dynamometer was used for randomly arranged purely isometric and isometric-eccentric-isometric contractions. Thirteen subjects performed multi-joint leg extensions, which were feedback-controlled at 30% of maximum voluntary vastus lateralis activation. Isometric-eccentric-isometric contractions incorporated a stretch from 30° to 50° knee flexion, while isometric contractions were performed at 50° knee flexion. Isometric contractions following stretch and purely isometric reference contractions were performed at 50° knee flexion. Kinematics, forces, and muscular activity were measured using 3D optical motion tracking, force plates, and surface EMG of 9 lower limb muscles of the right leg and joint torques were calculated by inverse dynamics. Variables of standardization (EMG, joint angles) showed no differences between contraction conditions. Eight of 13 subjects showed RFE of up to 24.8±32.5% for external forces and joint torques. Because the remaining 5 non-responders failed to produce enhanced forces during the stretch, we believe that RFE is functionally relevant for muscle function comparable to everyday human motion but only if there is enhanced force during stretch that sufficiently triggers mechanisms underlying RFE.
Author Hahn, Daniel
Seiberl, Wolfgang
Paternoster, Florian Kurt
Schwirtz, Ansgar
Author_xml – sequence: 1
  givenname: Florian Kurt
  surname: Paternoster
  fullname: Paternoster, Florian Kurt
  email: florian.paternoster@tum.de
  organization: Department of Biomechanics in Sports, Faculty of Sports and Health Sciences, Technische Universität München, Germany
– sequence: 2
  givenname: Wolfgang
  surname: Seiberl
  fullname: Seiberl, Wolfgang
  organization: Department of Biomechanics in Sports, Faculty of Sports and Health Sciences, Technische Universität München, Germany
– sequence: 3
  givenname: Daniel
  surname: Hahn
  fullname: Hahn, Daniel
  organization: Human Movement Science, Faculty of Sport Science, Ruhr-University Bochum, Germany
– sequence: 4
  givenname: Ansgar
  surname: Schwirtz
  fullname: Schwirtz, Ansgar
  organization: Department of Biomechanics in Sports, Faculty of Sports and Health Sciences, Technische Universität München, Germany
BackLink https://www.ncbi.nlm.nih.gov/pubmed/26903409$$D View this record in MEDLINE/PubMed
BookMark eNqNkk2LFDEQhoOsuLOrf2EJePHSY5KedCcg4rL4BQuCH-AtZNLVM2nTyZqkxfn3pmd2EPbgeAqpet5KVb25QGc-eEDoipIlJbR5OSyHtQ0jmO2SlfuSsCWh_BFaUNHWFasFOUMLQhitJJPkHF2kNBBC2lUrn6Bz1khSr4hcoN1nSLabtMN9iAYw-K32BkbwGXdTtH6Dx8llWw3BlpCDDYbfGXyywSesM97HK6z9xgE2wfd2M0Wd92njQgKcA_Y6l6DD22nUHo9hTj9Fj3vtEjy7Py_Rt3dvv958qG4_vf94c31bGS7aXFHJer3uGyJFo5uedJwxLVbGdFxwuqIUaLeW645p4ELXkpche9631LACi66-RC8Ode9i-DlBymq0yYBz2kOYkqKCEE6YkPVptG055Q2rZUGfP0CHMEVfBpmplZClO1Goq3tqWo_QqbtoRx136rj_Arw6ACaGlCL0yti8316O2jpFiZrtVoM62q1muxVhqthd5M0D-fGFk8I3ByGUzf-yEFUyForxnY1gsuqCPV3i9YMSxllvjXY_YAfp7zpUKgL1Zf6M81-kTV3k7Pu_C_xPB38AFq3zaA
CitedBy_id crossref_primary_10_1152_japplphysiol_00845_2023
crossref_primary_10_1016_j_jbiomech_2018_06_003
crossref_primary_10_1123_jab_2017_0234
crossref_primary_10_1038_s41598_017_04068_y
crossref_primary_10_3389_fphys_2017_00234
crossref_primary_10_1038_srep39052
crossref_primary_10_1016_j_jshs_2021_05_006
crossref_primary_10_3389_fphys_2021_648019
crossref_primary_10_14814_phy2_14944
crossref_primary_10_1016_j_jbiomech_2016_05_017
crossref_primary_10_1038_s41598_021_94046_2
crossref_primary_10_1016_j_jbiomech_2023_111579
crossref_primary_10_1519_JSC_0000000000003815
crossref_primary_10_1016_j_jshs_2018_06_001
crossref_primary_10_1139_apnm_2022_0257
crossref_primary_10_7717_peerj_12729
crossref_primary_10_1007_s00421_020_04488_1
Cites_doi 10.1113/jphysiol.1952.sp004733
10.1007/s00421-009-1006-9
10.1519/JSC.0b013e3181ddfce3
10.1016/0021-9290(95)00178-6
10.1002/phy2.4
10.1098/rspb.2008.0142
10.1016/j.jbiomech.2010.01.041
10.1371/journal.pone.0049907
10.1007/s00421-007-0462-3
10.1242/jeb.205.9.1275
10.1016/j.cmpb.2014.01.012
10.1016/j.jbiomech.2004.02.005
10.1016/j.jelekin.2011.10.010
10.1113/jphysiol.2011.222729
10.14814/phy2.12401
10.1123/jab.27.1.64
10.1097/00005768-200002000-00030
10.1113/jphysiol.1996.sp021135
10.1152/jappl.1968.24.1.21
10.3233/IES-2005-0185
10.1113/jphysiol.1978.sp012413
10.1152/japplphysiol.01217.2004
10.1113/expphysiol.1995.sp003862
10.1152/jappl.1998.85.2.398
10.1152/japplphysiol.00565.2006
10.1016/j.jelekin.2008.02.009
10.1016/S0021-9290(00)00064-6
10.1113/jphysiol.2005.095448
10.1016/0021-9290(92)90254-X
10.1016/j.jbiomech.2012.01.026
10.1016/0167-9457(84)90005-8
10.1152/japplphysiol.00069.2013
10.1113/jphysiol.2002.018010
10.1152/ajpcell.00208.2011
10.1111/j.1469-7793.2000.00671.x
10.1016/j.jbiomech.2006.06.014
10.2165/11315230-000000000-00000
10.1016/j.jbiomech.2013.06.014
10.1016/j.jelekin.2015.04.011
ContentType Journal Article
Copyright 2016 Elsevier Ltd
Elsevier Ltd
Copyright © 2016 Elsevier Ltd. All rights reserved.
Copyright Elsevier Limited 2016
Copyright_xml – notice: 2016 Elsevier Ltd
– notice: Elsevier Ltd
– notice: Copyright © 2016 Elsevier Ltd. All rights reserved.
– notice: Copyright Elsevier Limited 2016
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QP
7TB
7TS
7X7
7XB
88E
8AO
8FD
8FE
8FH
8FI
8FJ
8FK
8G5
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
GUQSH
HCIFZ
K9.
LK8
M0S
M1P
M2O
M7P
MBDVC
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
DOI 10.1016/j.jbiomech.2016.02.015
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Calcium & Calcified Tissue Abstracts
Mechanical & Transportation Engineering Abstracts
Physical Education Index
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Research Library
ProQuest Central
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central Database Suite (ProQuest)
Natural Science Collection
ProQuest One
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
ProQuest Research Library
SciTech Collection (ProQuest)
ProQuest Health & Medical Complete (Alumni)
ProQuest Biological Science Collection
ProQuest Health & Medical Collection
Medical Database
Research Library
Biological Science Database
Research Library (Corporate)
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Research Library Prep
ProQuest Central Student
Technology Research Database
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
Research Library (Alumni Edition)
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central China
Physical Education Index
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Research Library
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
Technology Research Database


Research Library Prep
MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Engineering
Anatomy & Physiology
EISSN 1873-2380
EndPage 779
ExternalDocumentID 3993198561
26903409
10_1016_j_jbiomech_2016_02_015
S002192901630152X
1_s2_0_S002192901630152X
Genre Journal Article
GroupedDBID ---
--K
--M
--Z
-~X
.1-
.55
.FO
.~1
0R~
1B1
1P~
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
7X7
88E
8AO
8FE
8FH
8FI
8FJ
8G5
8P~
9JM
9JN
AABNK
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATTM
AAXKI
AAXUO
AAYWO
ABBQC
ABFNM
ABJNI
ABMAC
ABMZM
ABUWG
ACDAQ
ACGFS
ACIEU
ACIUM
ACIWK
ACPRK
ACRLP
ACVFH
ADBBV
ADCNI
ADEZE
ADTZH
AEBSH
AECPX
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AFKRA
AFPUW
AFRHN
AFTJW
AFXIZ
AGCQF
AGUBO
AGYEJ
AHHHB
AHJVU
AHMBA
AIEXJ
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
AXJTR
AZQEC
BBNVY
BENPR
BHPHI
BJAXD
BKOJK
BLXMC
BNPGV
BPHCQ
BVXVI
CCPQU
CS3
DU5
DWQXO
EBS
EFJIC
EFKBS
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
FYUFA
G-Q
GBLVA
GNUQQ
GUQSH
HCIFZ
HMCUK
IHE
J1W
JJJVA
KOM
LK8
M1P
M29
M2O
M31
M41
M7P
MO0
N9A
O-L
O9-
OAUVE
OH.
OT.
OZT
P-8
P-9
P2P
PC.
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PUEGO
Q38
ROL
SCC
SDF
SDG
SDP
SEL
SES
SJN
SPC
SPCBC
SSH
SST
SSZ
T5K
UKHRP
UPT
X7M
YQT
Z5R
ZMT
~G-
.GJ
29J
3V.
53G
AACTN
AAQQT
AAQXK
ABWVN
ABXDB
ACNNM
ACRPL
ADMUD
ADNMO
AFCTW
AFFDN
AFJKZ
AFKWA
AGHFR
AI.
AJOXV
ALIPV
AMFUW
ASPBG
AVWKF
AZFZN
EBD
FEDTE
FGOYB
G-2
HEE
HMK
HMO
HVGLF
HZ~
H~9
I-F
ML~
MVM
OHT
PKN
R2-
RIG
RPZ
SAE
SEW
VH1
WUQ
XOL
XPP
YCJ
ZGI
AAIAV
ABLVK
ABYKQ
AJBFU
EFLBG
LCYCR
AAYXX
AGQPQ
AGRNS
AIGII
APXCP
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QP
7TB
7TS
7XB
8FD
8FK
FR3
K9.
MBDVC
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
ID FETCH-LOGICAL-c587t-192fabf60986a6f0d522a84ccd5851411e1db9bd2ae58a395007f5f71c2f0d8d3
IEDL.DBID 7X7
ISSN 0021-9290
1873-2380
IngestDate Thu Sep 04 21:00:58 EDT 2025
Fri Sep 05 02:45:36 EDT 2025
Wed Aug 13 11:38:23 EDT 2025
Wed Feb 19 02:43:38 EST 2025
Thu Apr 24 22:51:21 EDT 2025
Tue Jul 01 01:14:10 EDT 2025
Fri Feb 23 02:28:47 EST 2024
Tue Feb 25 20:13:39 EST 2025
Tue Aug 26 17:09:44 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords Submaximal muscle action
Feedback control
Multi-joint
Inverse dynamics
EMG
Language English
License Copyright © 2016 Elsevier Ltd. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c587t-192fabf60986a6f0d522a84ccd5851411e1db9bd2ae58a395007f5f71c2f0d8d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PMID 26903409
PQID 1774895858
PQPubID 1226346
PageCount 7
ParticipantIDs proquest_miscellaneous_1800502893
proquest_miscellaneous_1775156239
proquest_journals_1774895858
pubmed_primary_26903409
crossref_citationtrail_10_1016_j_jbiomech_2016_02_015
crossref_primary_10_1016_j_jbiomech_2016_02_015
elsevier_sciencedirect_doi_10_1016_j_jbiomech_2016_02_015
elsevier_clinicalkeyesjournals_1_s2_0_S002192901630152X
elsevier_clinicalkey_doi_10_1016_j_jbiomech_2016_02_015
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2016-03-21
PublicationDateYYYYMMDD 2016-03-21
PublicationDate_xml – month: 03
  year: 2016
  text: 2016-03-21
  day: 21
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Kidlington
PublicationTitle Journal of biomechanics
PublicationTitleAlternate J Biomech
PublicationYear 2016
Publisher Elsevier Ltd
Elsevier Limited
Publisher_xml – name: Elsevier Ltd
– name: Elsevier Limited
References Tilp, Steib, Schappacher-Tilp, Herzog (bib40) 2011; 27
Winter (bib41) 1984; 3
Hermens, A.J., Freriks, B., Merletti, R., Hägg, G., Stegeman, D.F., Blok, J., Rau, G., Disselhorst-Klug, C., 1999. SENIAM 8: European Recommondations for Surface ElectroMyoGraphy.
Abbott, Aubert (bib1) 1952; 117
Barre, Armand (bib3) 2014; 114
Pincivero, Salfetnikov, Campy, Coelho (bib26) 2004; 37
Edman (bib9) 2012; 590
Seiberl, Power, Herzog, Hahn (bib37) 2015; 3
Seiberl, Paternoster, Achatz, Schwirtz, Hahn (bib35) 2013; 46
Tilp, Steib, Herzog (bib39) 2009; 106
Kawakami, Ichinose, Fukunaga (bib19) 1998; 85
Ruiter, Didden, Jones, Haan (bib31) 2000; 526
Pinniger, Cresswell (bib27) 2007; 102
Alkner, Tesch, Berg (bib2) 2000; 32
Seiberl, Hahn, Herzog, Schwirtz (bib33) 2012; 22
Lafortune, Vavanagh, Sommer, Kalenak (bib21) 1992; 25
Herzog, Leonard (bib17) 2002; 205
Rassier, Pavlov (bib30) 2012; 302
Power, Makrakos, Rice, Vandervoort (bib29) 2013; 1
Lee, Herzog (bib22) 2002; 545
Salles, de, Simão, Miranda, Novaes, Lemos, Willardson (bib32) 2009; 39
Herzog (bib16) 2014; 116
Oskouei, Herzog (bib25) 2009; 19
Cook, McDonagh (bib6) 1995; 80
Hahn, Seiberl, Schmidt, Schweizer, Schwirtz (bib13) 2010; 43
Hahn, Schwirtz, Huber (bib12) 2005; 13
Leva (bib23) 1996; 29
Pinniger, Ranatunga, Offer (bib28) 2006; 573
Bullimore, Leonard, Rassier, Herzog (bib4) 2007; 40
Edman, Elzinga, Noble (bib7) 1978; 281
Edman, Tsuchiya (bib8) 1996; 490
Seiberl, Hahn, Kreuzpointner, Schwirtz, Gastmann (bib34) 2010; 26
Cavagna, Dusman, Margaria (bib5) 1968; 24
Oskouei, Herzog (bib24) 2005; 98
Zatsiorsky, Aruin, Selujanow, Friedrich (bib42) 1987
Hahn (bib10) 2011; 25
Joumaa, Leonard, Herzog (bib18) 2008; 275
Seiberl, Power, Hahn (bib36) 2015; 25
Shim, Garner (bib38) 2012; 45
Hahn, Hoffman, Carroll, Cresswell (bib11) 2012; 7
Hahn, Seiberl, Schwirtz (bib14) 2007; 100
Komi (bib20) 2000; 33
Abbott (10.1016/j.jbiomech.2016.02.015_bib1) 1952; 117
Pinniger (10.1016/j.jbiomech.2016.02.015_bib28) 2006; 573
Bullimore (10.1016/j.jbiomech.2016.02.015_bib4) 2007; 40
Oskouei (10.1016/j.jbiomech.2016.02.015_bib25) 2009; 19
Hahn (10.1016/j.jbiomech.2016.02.015_bib14) 2007; 100
Herzog (10.1016/j.jbiomech.2016.02.015_bib16) 2014; 116
Ruiter (10.1016/j.jbiomech.2016.02.015_bib31) 2000; 526
Tilp (10.1016/j.jbiomech.2016.02.015_bib39) 2009; 106
Kawakami (10.1016/j.jbiomech.2016.02.015_bib19) 1998; 85
10.1016/j.jbiomech.2016.02.015_bib15
Lee (10.1016/j.jbiomech.2016.02.015_bib22) 2002; 545
Tilp (10.1016/j.jbiomech.2016.02.015_bib40) 2011; 27
Hahn (10.1016/j.jbiomech.2016.02.015_bib12) 2005; 13
Leva (10.1016/j.jbiomech.2016.02.015_bib23) 1996; 29
Hahn (10.1016/j.jbiomech.2016.02.015_bib13) 2010; 43
Edman (10.1016/j.jbiomech.2016.02.015_bib8) 1996; 490
Lafortune (10.1016/j.jbiomech.2016.02.015_bib21) 1992; 25
Rassier (10.1016/j.jbiomech.2016.02.015_bib30) 2012; 302
Cavagna (10.1016/j.jbiomech.2016.02.015_bib5) 1968; 24
Edman (10.1016/j.jbiomech.2016.02.015_bib9) 2012; 590
Pincivero (10.1016/j.jbiomech.2016.02.015_bib26) 2004; 37
Alkner (10.1016/j.jbiomech.2016.02.015_bib2) 2000; 32
Oskouei (10.1016/j.jbiomech.2016.02.015_bib24) 2005; 98
Seiberl (10.1016/j.jbiomech.2016.02.015_bib37) 2015; 3
Komi (10.1016/j.jbiomech.2016.02.015_bib20) 2000; 33
Seiberl (10.1016/j.jbiomech.2016.02.015_bib36) 2015; 25
Shim (10.1016/j.jbiomech.2016.02.015_bib38) 2012; 45
Pinniger (10.1016/j.jbiomech.2016.02.015_bib27) 2007; 102
Joumaa (10.1016/j.jbiomech.2016.02.015_bib18) 2008; 275
Seiberl (10.1016/j.jbiomech.2016.02.015_bib35) 2013; 46
Herzog (10.1016/j.jbiomech.2016.02.015_bib17) 2002; 205
Winter (10.1016/j.jbiomech.2016.02.015_bib41) 1984; 3
Hahn (10.1016/j.jbiomech.2016.02.015_bib11) 2012; 7
Salles (10.1016/j.jbiomech.2016.02.015_bib32) 2009; 39
Cook (10.1016/j.jbiomech.2016.02.015_bib6) 1995; 80
Seiberl (10.1016/j.jbiomech.2016.02.015_bib33) 2012; 22
Zatsiorsky (10.1016/j.jbiomech.2016.02.015_bib42) 1987
Barre (10.1016/j.jbiomech.2016.02.015_bib3) 2014; 114
Hahn (10.1016/j.jbiomech.2016.02.015_bib10) 2011; 25
Power (10.1016/j.jbiomech.2016.02.015_bib29) 2013; 1
Seiberl (10.1016/j.jbiomech.2016.02.015_bib34) 2010; 26
Edman (10.1016/j.jbiomech.2016.02.015_bib7) 1978; 281
References_xml – volume: 19
  start-page: 821
  year: 2009
  end-page: 828
  ident: bib25
  article-title: Activation-induced force enhancement in human adductor pollicis
  publication-title: J. Electromyogr. Kinesiol.
– volume: 22
  start-page: 117
  year: 2012
  end-page: 123
  ident: bib33
  article-title: Feedback controlled force enhancement and activation reduction of voluntarily activated quadriceps femoris during sub-maximal muscle action
  publication-title: J. Electromyogr. Kinesiol.
– volume: 275
  start-page: 1411
  year: 2008
  end-page: 1419
  ident: bib18
  article-title: Residual force enhancement in myofibrils and sarcomeres
  publication-title: Proc. Biol. Sci.
– volume: 27
  start-page: 64
  year: 2011
  end-page: 73
  ident: bib40
  article-title: Changes in fascicle lengths and pennation angles do not contribute to residual force enhancement/depression in voluntary contractions
  publication-title: J. Appl. Biomech.
– volume: 25
  start-page: 1622
  year: 2011
  end-page: 1631
  ident: bib10
  article-title: Lower extremity extension force and electromyography properties as a function of knee angle and their relation to joint torques: implications for strength diagnostics
  publication-title: J. Strength Cond. Res.
– volume: 3
  start-page: 51
  year: 1984
  end-page: 76
  ident: bib41
  article-title: Kinematic and kinetic patterns in human gait: variability and compensating effects
  publication-title: Human. Mov. Sci.
– volume: 25
  start-page: 347
  year: 1992
  end-page: 357
  ident: bib21
  article-title: Three-dimensional kinematics of the human knee during walking
  publication-title: J. Biomech.
– volume: 302
  start-page: C240
  year: 2012
  end-page: C248
  ident: bib30
  article-title: Force produced by isolated sarcomeres and half-sarcomeres after an imposed stretch
  publication-title: Am. J. Physiol. Cell Physiol.
– volume: 7
  start-page: e49907
  year: 2012
  ident: bib11
  article-title: Cortical and spinal excitability during and after lengthening contractions of the human plantar flexor muscles performed with maximal voluntary effort
  publication-title: PLoS One
– volume: 25
  start-page: 571
  year: 2015
  end-page: 580
  ident: bib36
  article-title: Residual force enhancement in humans. Current evidence and unresolved issues
  publication-title: J. Electromyogr. Kinesiol.
– volume: 1
  start-page: e00004
  year: 2013
  ident: bib29
  article-title: Enhanced force production in old age is not a far stretch: an investigation of residual force enhancement and muscle architecture
  publication-title: Physiol. Rep.
– volume: 100
  start-page: 701
  year: 2007
  end-page: 709
  ident: bib14
  article-title: Force enhancement during and following muscle stretch of maximal voluntarily activated human quadriceps femoris
  publication-title: Eur. J. Appl. Physiol.
– volume: 116
  start-page: 1407
  year: 2014
  end-page: 1417
  ident: bib16
  article-title: Mechanisms of enhanced force production in lengthening (eccentric) muscle contractions
  publication-title: J. Appl. Physiol.
– volume: 29
  start-page: 1223
  year: 1996
  end-page: 1230
  ident: bib23
  article-title: Adjustments to Zatsiorsky-Seluyanov׳s segment inertia parameters
  publication-title: J. Biomech.
– volume: 573
  start-page: 627
  year: 2006
  end-page: 643
  ident: bib28
  article-title: Crossbridge and non-crossbridge contributions to tension in lengthening rat muscle: force-induced reversal of the power stroke
  publication-title: J. Physiol.
– volume: 39
  start-page: 765
  year: 2009
  end-page: 777
  ident: bib32
  article-title: Rest interval between sets in strength training
  publication-title: Sports Med.
– volume: 205
  start-page: 1275
  year: 2002
  end-page: 1283
  ident: bib17
  article-title: Force enhancement following stretching of skeletal muscle: a new mechanism
  publication-title: J. Exp. Biol.
– volume: 33
  start-page: 1197
  year: 2000
  end-page: 1206
  ident: bib20
  article-title: Stretch-shortening cycle: a powerful model to study normal and fatigued muscle
  publication-title: J. Biomech.
– volume: 102
  start-page: 18
  year: 2007
  end-page: 25
  ident: bib27
  article-title: Residual force enhancement after lengthening is present during submaximal plantar flexion and dorsiflexion actions in humans
  publication-title: J. Appl. Physiol.
– volume: 490
  start-page: 191
  year: 1996
  end-page: 205
  ident: bib8
  article-title: Strain of passive elements during force enhancement by stretch in frog muscle fibres
  publication-title: J. Physiol.
– volume: 3
  start-page: 1
  year: 2015
  end-page: 12
  ident: bib37
  article-title: The stretch-shortening cycle (SSC) revisited. Residual force enhancement contributes to increased performance during fast SSCs of human m. adductor pollicis
  publication-title: Physiol. Rep.
– volume: 13
  start-page: 95
  year: 2005
  end-page: 101
  ident: bib12
  article-title: Anthropometric standardisation of multiarticular leg extension movements: A theoretical study
  publication-title: Isokinet. Exerc. Sci.
– volume: 40
  start-page: 1518
  year: 2007
  end-page: 1524
  ident: bib4
  article-title: History-dependence of isometric muscle force: effect of prior stretch or shortening amplitude
  publication-title: J. Biomech.
– volume: 46
  start-page: 1996
  year: 2013
  end-page: 2001
  ident: bib35
  article-title: On the relevance of residual force enhancement for everyday human movement
  publication-title: J. Biomech.
– volume: 281
  start-page: 139
  year: 1978
  end-page: 155
  ident: bib7
  article-title: Enhancement of mechanical performance by stretch during tetanic contractions of vertebrate skeletal muscle fibres
  publication-title: J. Physiol.
– volume: 43
  start-page: 1503
  year: 2010
  end-page: 1508
  ident: bib13
  article-title: Evidence of residual force enhancement for multi-joint leg extension
  publication-title: J. Biomech.
– volume: 106
  start-page: 159
  year: 2009
  end-page: 166
  ident: bib39
  article-title: Force-time history effects in voluntary contractions of human tibialis anterior
  publication-title: Eur. J. Appl. Physiol.
– volume: 37
  start-page: 1689
  year: 2004
  end-page: 1697
  ident: bib26
  article-title: Angle- and gender-specific quadriceps femoris muscle recruitment and knee extensor torque
  publication-title: J. Biomech.
– volume: 45
  start-page: 913
  year: 2012
  end-page: 918
  ident: bib38
  article-title: Residual force enhancement during voluntary contractions of knee extensors and flexors at short and long muscle lengths
  publication-title: J. Biomech.
– volume: 590
  start-page: 1339
  year: 2012
  end-page: 1345
  ident: bib9
  article-title: Residual force enhancement after stretch in striated muscle. A consequence of increased myofilament overlap?
  publication-title: J. Physiol.
– volume: 545
  start-page: 321
  year: 2002
  end-page: 330
  ident: bib22
  article-title: Force enhancement following muscle stretch of electrically stimulated and voluntarily activated human adductor pollicis
  publication-title: J. Physiol.
– volume: 24
  start-page: 21
  year: 1968
  end-page: 32
  ident: bib5
  article-title: Positive work done by a previously stretched muscle
  publication-title: J. Appl. Physiol.
– volume: 85
  start-page: 398
  year: 1998
  end-page: 404
  ident: bib19
  article-title: Architectrual and functional features of human triceps surae muscles during contraction
  publication-title: J. Appl. Physiol.
– volume: 117
  start-page: 77
  year: 1952
  end-page: 86
  ident: bib1
  article-title: The force exerted by active striated muscle during and after change of length
  publication-title: J. Physiol.
– volume: 26
  start-page: 256
  year: 2010
  end-page: 264
  ident: bib34
  article-title: Force enhancement of quadriceps femoris in vivo and its dependence on stretch-induced muscle architectural changes
  publication-title: J. Biomech.
– volume: 526
  start-page: 671
  year: 2000
  end-page: 681
  ident: bib31
  article-title: The force-velocity relationship of human adductor pollicis muscle during stretch and the effects of fatigue
  publication-title: J. Physiol.
– reference: Hermens, A.J., Freriks, B., Merletti, R., Hägg, G., Stegeman, D.F., Blok, J., Rau, G., Disselhorst-Klug, C., 1999. SENIAM 8: European Recommondations for Surface ElectroMyoGraphy.
– volume: 98
  start-page: 2087
  year: 2005
  end-page: 2095
  ident: bib24
  article-title: Observations on force enhancement in submaximal voluntary contractions of human adductor pollicis muscle
  publication-title: J. Appl. Physiol.
– volume: 80
  start-page: 477
  year: 1995
  end-page: 490
  ident: bib6
  article-title: Force responses to controlled stretches of electrically stimulated human muscle-tendon complex
  publication-title: Exp. Physiol.
– volume: 32
  start-page: 459
  year: 2000
  end-page: 463
  ident: bib2
  article-title: Quadriceps EMG/force relationship in knee extension and leg press
  publication-title: Med. Sci. Sports Exerc.
– volume: 114
  start-page: 80
  year: 2014
  end-page: 87
  ident: bib3
  article-title: Biomechanical ToolKit: open-source framework to visualize and process biomechanical data
  publication-title: Comput. Methods Prog. Biomed.
– year: 1987
  ident: bib42
  article-title: Biomechanik des Menschlichen Bewegungsapparates
– volume: 117
  start-page: 77
  year: 1952
  ident: 10.1016/j.jbiomech.2016.02.015_bib1
  article-title: The force exerted by active striated muscle during and after change of length
  publication-title: J. Physiol.
  doi: 10.1113/jphysiol.1952.sp004733
– volume: 106
  start-page: 159
  year: 2009
  ident: 10.1016/j.jbiomech.2016.02.015_bib39
  article-title: Force-time history effects in voluntary contractions of human tibialis anterior
  publication-title: Eur. J. Appl. Physiol.
  doi: 10.1007/s00421-009-1006-9
– volume: 25
  start-page: 1622
  year: 2011
  ident: 10.1016/j.jbiomech.2016.02.015_bib10
  article-title: Lower extremity extension force and electromyography properties as a function of knee angle and their relation to joint torques: implications for strength diagnostics
  publication-title: J. Strength Cond. Res.
  doi: 10.1519/JSC.0b013e3181ddfce3
– volume: 29
  start-page: 1223
  year: 1996
  ident: 10.1016/j.jbiomech.2016.02.015_bib23
  article-title: Adjustments to Zatsiorsky-Seluyanov׳s segment inertia parameters
  publication-title: J. Biomech.
  doi: 10.1016/0021-9290(95)00178-6
– volume: 1
  start-page: e00004
  year: 2013
  ident: 10.1016/j.jbiomech.2016.02.015_bib29
  article-title: Enhanced force production in old age is not a far stretch: an investigation of residual force enhancement and muscle architecture
  publication-title: Physiol. Rep.
  doi: 10.1002/phy2.4
– volume: 275
  start-page: 1411
  year: 2008
  ident: 10.1016/j.jbiomech.2016.02.015_bib18
  article-title: Residual force enhancement in myofibrils and sarcomeres
  publication-title: Proc. Biol. Sci.
  doi: 10.1098/rspb.2008.0142
– year: 1987
  ident: 10.1016/j.jbiomech.2016.02.015_bib42
– volume: 43
  start-page: 1503
  year: 2010
  ident: 10.1016/j.jbiomech.2016.02.015_bib13
  article-title: Evidence of residual force enhancement for multi-joint leg extension
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2010.01.041
– volume: 7
  start-page: e49907
  year: 2012
  ident: 10.1016/j.jbiomech.2016.02.015_bib11
  article-title: Cortical and spinal excitability during and after lengthening contractions of the human plantar flexor muscles performed with maximal voluntary effort
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0049907
– volume: 100
  start-page: 701
  year: 2007
  ident: 10.1016/j.jbiomech.2016.02.015_bib14
  article-title: Force enhancement during and following muscle stretch of maximal voluntarily activated human quadriceps femoris
  publication-title: Eur. J. Appl. Physiol.
  doi: 10.1007/s00421-007-0462-3
– volume: 205
  start-page: 1275
  year: 2002
  ident: 10.1016/j.jbiomech.2016.02.015_bib17
  article-title: Force enhancement following stretching of skeletal muscle: a new mechanism
  publication-title: J. Exp. Biol.
  doi: 10.1242/jeb.205.9.1275
– volume: 114
  start-page: 80
  year: 2014
  ident: 10.1016/j.jbiomech.2016.02.015_bib3
  article-title: Biomechanical ToolKit: open-source framework to visualize and process biomechanical data
  publication-title: Comput. Methods Prog. Biomed.
  doi: 10.1016/j.cmpb.2014.01.012
– volume: 37
  start-page: 1689
  year: 2004
  ident: 10.1016/j.jbiomech.2016.02.015_bib26
  article-title: Angle- and gender-specific quadriceps femoris muscle recruitment and knee extensor torque
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2004.02.005
– volume: 22
  start-page: 117
  year: 2012
  ident: 10.1016/j.jbiomech.2016.02.015_bib33
  article-title: Feedback controlled force enhancement and activation reduction of voluntarily activated quadriceps femoris during sub-maximal muscle action
  publication-title: J. Electromyogr. Kinesiol.
  doi: 10.1016/j.jelekin.2011.10.010
– volume: 590
  start-page: 1339
  year: 2012
  ident: 10.1016/j.jbiomech.2016.02.015_bib9
  article-title: Residual force enhancement after stretch in striated muscle. A consequence of increased myofilament overlap?
  publication-title: J. Physiol.
  doi: 10.1113/jphysiol.2011.222729
– volume: 3
  start-page: 1
  year: 2015
  ident: 10.1016/j.jbiomech.2016.02.015_bib37
  article-title: The stretch-shortening cycle (SSC) revisited. Residual force enhancement contributes to increased performance during fast SSCs of human m. adductor pollicis
  publication-title: Physiol. Rep.
  doi: 10.14814/phy2.12401
– volume: 27
  start-page: 64
  year: 2011
  ident: 10.1016/j.jbiomech.2016.02.015_bib40
  article-title: Changes in fascicle lengths and pennation angles do not contribute to residual force enhancement/depression in voluntary contractions
  publication-title: J. Appl. Biomech.
  doi: 10.1123/jab.27.1.64
– volume: 32
  start-page: 459
  year: 2000
  ident: 10.1016/j.jbiomech.2016.02.015_bib2
  article-title: Quadriceps EMG/force relationship in knee extension and leg press
  publication-title: Med. Sci. Sports Exerc.
  doi: 10.1097/00005768-200002000-00030
– volume: 490
  start-page: 191
  year: 1996
  ident: 10.1016/j.jbiomech.2016.02.015_bib8
  article-title: Strain of passive elements during force enhancement by stretch in frog muscle fibres
  publication-title: J. Physiol.
  doi: 10.1113/jphysiol.1996.sp021135
– ident: 10.1016/j.jbiomech.2016.02.015_bib15
– volume: 24
  start-page: 21
  year: 1968
  ident: 10.1016/j.jbiomech.2016.02.015_bib5
  article-title: Positive work done by a previously stretched muscle
  publication-title: J. Appl. Physiol.
  doi: 10.1152/jappl.1968.24.1.21
– volume: 13
  start-page: 95
  year: 2005
  ident: 10.1016/j.jbiomech.2016.02.015_bib12
  article-title: Anthropometric standardisation of multiarticular leg extension movements: A theoretical study
  publication-title: Isokinet. Exerc. Sci.
  doi: 10.3233/IES-2005-0185
– volume: 281
  start-page: 139
  year: 1978
  ident: 10.1016/j.jbiomech.2016.02.015_bib7
  article-title: Enhancement of mechanical performance by stretch during tetanic contractions of vertebrate skeletal muscle fibres
  publication-title: J. Physiol.
  doi: 10.1113/jphysiol.1978.sp012413
– volume: 98
  start-page: 2087
  year: 2005
  ident: 10.1016/j.jbiomech.2016.02.015_bib24
  article-title: Observations on force enhancement in submaximal voluntary contractions of human adductor pollicis muscle
  publication-title: J. Appl. Physiol.
  doi: 10.1152/japplphysiol.01217.2004
– volume: 80
  start-page: 477
  year: 1995
  ident: 10.1016/j.jbiomech.2016.02.015_bib6
  article-title: Force responses to controlled stretches of electrically stimulated human muscle-tendon complex
  publication-title: Exp. Physiol.
  doi: 10.1113/expphysiol.1995.sp003862
– volume: 26
  start-page: 256
  year: 2010
  ident: 10.1016/j.jbiomech.2016.02.015_bib34
  article-title: Force enhancement of quadriceps femoris in vivo and its dependence on stretch-induced muscle architectural changes
  publication-title: J. Biomech.
– volume: 85
  start-page: 398
  year: 1998
  ident: 10.1016/j.jbiomech.2016.02.015_bib19
  article-title: Architectrual and functional features of human triceps surae muscles during contraction
  publication-title: J. Appl. Physiol.
  doi: 10.1152/jappl.1998.85.2.398
– volume: 102
  start-page: 18
  year: 2007
  ident: 10.1016/j.jbiomech.2016.02.015_bib27
  article-title: Residual force enhancement after lengthening is present during submaximal plantar flexion and dorsiflexion actions in humans
  publication-title: J. Appl. Physiol.
  doi: 10.1152/japplphysiol.00565.2006
– volume: 19
  start-page: 821
  year: 2009
  ident: 10.1016/j.jbiomech.2016.02.015_bib25
  article-title: Activation-induced force enhancement in human adductor pollicis
  publication-title: J. Electromyogr. Kinesiol.
  doi: 10.1016/j.jelekin.2008.02.009
– volume: 33
  start-page: 1197
  year: 2000
  ident: 10.1016/j.jbiomech.2016.02.015_bib20
  article-title: Stretch-shortening cycle: a powerful model to study normal and fatigued muscle
  publication-title: J. Biomech.
  doi: 10.1016/S0021-9290(00)00064-6
– volume: 573
  start-page: 627
  year: 2006
  ident: 10.1016/j.jbiomech.2016.02.015_bib28
  article-title: Crossbridge and non-crossbridge contributions to tension in lengthening rat muscle: force-induced reversal of the power stroke
  publication-title: J. Physiol.
  doi: 10.1113/jphysiol.2005.095448
– volume: 25
  start-page: 347
  year: 1992
  ident: 10.1016/j.jbiomech.2016.02.015_bib21
  article-title: Three-dimensional kinematics of the human knee during walking
  publication-title: J. Biomech.
  doi: 10.1016/0021-9290(92)90254-X
– volume: 45
  start-page: 913
  year: 2012
  ident: 10.1016/j.jbiomech.2016.02.015_bib38
  article-title: Residual force enhancement during voluntary contractions of knee extensors and flexors at short and long muscle lengths
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2012.01.026
– volume: 3
  start-page: 51
  year: 1984
  ident: 10.1016/j.jbiomech.2016.02.015_bib41
  article-title: Kinematic and kinetic patterns in human gait: variability and compensating effects
  publication-title: Human. Mov. Sci.
  doi: 10.1016/0167-9457(84)90005-8
– volume: 116
  start-page: 1407
  year: 2014
  ident: 10.1016/j.jbiomech.2016.02.015_bib16
  article-title: Mechanisms of enhanced force production in lengthening (eccentric) muscle contractions
  publication-title: J. Appl. Physiol.
  doi: 10.1152/japplphysiol.00069.2013
– volume: 545
  start-page: 321
  year: 2002
  ident: 10.1016/j.jbiomech.2016.02.015_bib22
  article-title: Force enhancement following muscle stretch of electrically stimulated and voluntarily activated human adductor pollicis
  publication-title: J. Physiol.
  doi: 10.1113/jphysiol.2002.018010
– volume: 302
  start-page: C240
  year: 2012
  ident: 10.1016/j.jbiomech.2016.02.015_bib30
  article-title: Force produced by isolated sarcomeres and half-sarcomeres after an imposed stretch
  publication-title: Am. J. Physiol. Cell Physiol.
  doi: 10.1152/ajpcell.00208.2011
– volume: 526
  start-page: 671
  year: 2000
  ident: 10.1016/j.jbiomech.2016.02.015_bib31
  article-title: The force-velocity relationship of human adductor pollicis muscle during stretch and the effects of fatigue
  publication-title: J. Physiol.
  doi: 10.1111/j.1469-7793.2000.00671.x
– volume: 40
  start-page: 1518
  year: 2007
  ident: 10.1016/j.jbiomech.2016.02.015_bib4
  article-title: History-dependence of isometric muscle force: effect of prior stretch or shortening amplitude
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2006.06.014
– volume: 39
  start-page: 765
  year: 2009
  ident: 10.1016/j.jbiomech.2016.02.015_bib32
  article-title: Rest interval between sets in strength training
  publication-title: Sports Med.
  doi: 10.2165/11315230-000000000-00000
– volume: 46
  start-page: 1996
  year: 2013
  ident: 10.1016/j.jbiomech.2016.02.015_bib35
  article-title: On the relevance of residual force enhancement for everyday human movement
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2013.06.014
– volume: 25
  start-page: 571
  year: 2015
  ident: 10.1016/j.jbiomech.2016.02.015_bib36
  article-title: Residual force enhancement in humans. Current evidence and unresolved issues
  publication-title: J. Electromyogr. Kinesiol.
  doi: 10.1016/j.jelekin.2015.04.011
SSID ssj0007479
Score 2.2663472
Snippet The isometric steady-state forces following lengthening are greater than those produced at the same muscle length and activation level but without prior...
Abstract The isometric steady-state forces following lengthening are greater than those produced at the same muscle length and activation level but without...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 773
SubjectTerms Activation
Biofeedback
Biomechanical Phenomena
Electromyography
EMG
Experiments
Feedback control
Female
Human motion
Humans
Inverse dynamics
Isometric Contraction - physiology
Joints - physiology
Kinematics
Knee
Knees
Leg - physiology
Legs
Male
Multi-joint
Muscle, Skeletal - physiology
Muscles
Physical Medicine and Rehabilitation
Standardization
Studies
Submaximal muscle action
Three dimensional
Torque
Tracking
Velocity
Walking
Walking - physiology
SummonAdditionalLinks – databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] - access via UTK
  dbid: AIKHN
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpR1db9Mw8DQ6CcEDgo6PwEBGQryZxkmcxI_VxFRA2wNiUt8sJzmXVl0ykfRh_56zk5QhPgWPcXyydXc-n-8T4FWUSYlVpngeY8YTxJQXYSW4MJhYDG0upEsUPjtPFxfJ-6VcHsDJmAvjwioH2d_LdC-th5HZgM3Z1XrtcnzptDk3YEpMKqPlLTiMYpXKCRzO331YnO8FMmnMQ6SH4A7gRqLw5s3Gp7l7v4RIfflO1yH353fUr3RQfxed3od7gxLJ5v0-H8AB1lM4mtf0gL68Zq-ZD-v09vIp3L1RcXAKt88GX_oRXH_E1mdiMdJbS2RYf3Yc4KyFrE9eZD7akG-aNQ1tccW8xdyZ11pmOubHOTP1aouMntV2vdr1_NSyctu0yLqG-cKhtIbvBcj6nkEP4eL07aeTBR8aMfBS5lnHCc3WFDYNVZ6a1IYVKW0mT8qyck7FRAgUVaGKKjIocxMrSTi30maijGhyXsWPYFI3NT4BZukFVMZhIWVUEWeIIisTa2MjDRojrQpAjqjX5VCl3DXL2OoxHG2jR5JpRzIdRppIFsBsD3fV1-n4I0Q2UlaPWagkNzVdJf8Gie1w_FstdEsz9Q8sGoDaQ37H5X-16vHIfvrbQpmrHkRUyAN4uf9NEsK5fUyNzc7PIaWV1Fz1mzm5KwREj-84gMc9a-_RGKUqjJNQPf2PzT-DO-7LBe9F4hgm3ZcdPidtriteDKf1KzD4Ss4
  priority: 102
  providerName: Elsevier
Title Residual force enhancement during multi-joint leg extensions at joint- angle configurations close to natural human motion
URI https://www.clinicalkey.com/#!/content/1-s2.0-S002192901630152X
https://www.clinicalkey.es/playcontent/1-s2.0-S002192901630152X
https://dx.doi.org/10.1016/j.jbiomech.2016.02.015
https://www.ncbi.nlm.nih.gov/pubmed/26903409
https://www.proquest.com/docview/1774895858
https://www.proquest.com/docview/1775156239
https://www.proquest.com/docview/1800502893
Volume 49
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB7RVkJwQLDlESgrIyFubuMkzuOEFtRqAXWFKirtzXIce9vVkhSSPfTCb2fsOKEHKIhTpMQjR56x_c0b4HWUca6rrKB5rDOaaJ3SMqwYZVInRocmZ9wmCp8u0vl58nHJl97g1vqwyuFMdAd11ShrIz9ima2TguA2f3v1jdquUda76lto7MCeK12G8pwtR4XL1ob3IR6MIgwIb2QIrw_XLr_dOSRY6up22ta4v7-c_gQ-3SV08hAeePRIZj27H8EdXU9gf1aj5vz1mrwhLp7TGconcP9GqcEJ3D31TvR9uD7TrUvBIghYlSa6vrCst2ZC0mctEhdmSNfNJb7a6BVxpnJrV2uJ7Ih7T4msVxtNUJ82l6ttL0gtUZum1aRriKsYinO4JoCkbxb0GM5Pjr-8n1PfgYEqnmcdRfhnZGnSsMhTmZqwQrQm80SpynoTE8Y0q8qirCKpeS7jguOaG24ypiIcnFfxE9itm1o_A2JQ9VFxWHIeVSgSrMxUYkwsudRSclMEwIelF8qXJ7ddMjZiiENbi4FlwrJMhJFAlgVwNNJd9QU6_kqRDZwVQ_opHpgC75D_o9St3_etYKLFkcK6wJmVOES7SBctAyhGSg9tesjyT7MeDOInfk00bocAXo2f8Wiw_h5Z62brxiBaRXxb3DImtxWAUOuOA3jai_a4jFFahDHq_89v_4EXcM_-rQ3Mi9gB7Hbft_olIrWunMLO4Q82dZtyCnuzD5_mC3y-O158PvsJWZxDOg
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrcTjgGALNFDASMDNNE7iPA4IFWi1pd0Vqlppb66T2NuulqSQrND-KX4jY-dBD1AQUq-JJ44yk_E3b4CXXsS5yqOExr6KaKBUSFM3Z5RJFWjl6phxUyg8noSjk-DTlE_X4EdXC2PSKjudaBV1XmbGR77NItMnBcFt_O7iKzVTo0x0tRuh0YjFgVp9R5Oterv_Efn7yvP2do8_jGg7VYBmPI5qipBGy1SHbhKHMtRujghExkGW5SZCFjCmWJ4mae5JxWPpJxxPUc11xDIPF8e5j8-9AeuBqWgdwPr73cnno173Izhvk0oYReDhXqpJnr-Z24p6GwJhoe0Uaobx_v44_BPctcfe3j242-JVstMI2H1YU8UQNnYKtNW_rMhrYjNIrWt-CHcuNTccws1xG7bfgNWRqmzRF0GInCmiijMjbMYxSZo6SWITG-m8PMdLCzUj1jlvPHkVkTWx1ymRxWyhCFrw-ny2bES3ItmirBSpS2J7lOIeduwgacYTPYCTa-HOQxgUZaE2gWg0tjLfTTn3chRClkZZoLUvuVRScp04wLtPL7K2IbqZy7EQXebbXHQsE4ZlwvUEssyB7Z7uomkJ8leKqOOs6ApeUUULPLX-j1JVraapBBMVrhQm6M6MxCG-Rjpv6kDSU7ZgqgFJ_7TrVid-4tdG_Q_owIv-NiojE2GShSqXdg3iY0TUyRVrYtNzCO1834FHjWj3n9ELE9cP3OTx1S_wHG6NjseH4nB_cvAEbps3N2mBHtuCQf1tqZ4iTqzTZ-3PSeD0uvXBT-1AfY0
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIlVwQLDlEShgJOBmNk7iPA4IVZRVS2mFEJX2ZpxkvHS1JIXsCu1f49cxdh70AAUh9Zr1rKPMePzNG-BpkEiJZZLxNMSER4gxz_1ScKExMuibVEhbKHx0HO-fRG-ncroBP_paGJtW2etEp6jLurA-8rFIbJ8UArfp2HRpEe_3Jq_OvnI7QcpGWvtxGq2IHOL6O5lvzcuDPeL1syCYvPn4ep93EwZ4IdNkyQneGJ2b2M_SWMfGLwmN6DQqitJGyyIhUJR5lpeBRpnqMJN0oxppElEEtDgtQ_rfK3A1CQlV0VlKpoOxZ_vSd-klghME8c9VJ89fzF1tvQuGiNj1DLVjeX9_Mf4J-LoLcHITbnTIle22onYLNrAawfZuRVb7lzV7zlwuqXPSj-D6uTaHI9g66gL427D-gI0r_2IElgtkWH22YmddlKytmGQuxZHP61N6tMAZc25669NrmF4y95wzXc0WyMiWN6ezVSvEDSsWdYNsWTPXrZT2cAMIWTuo6DacXApv7sBmVVd4D5ghs6sI_VzKoCRxFHlSRMaEWmrUWprMA9l_elV0rdHthI6F6nPg5qpnmbIsU36giGUejAe6s7Y5yF8pkp6zqi99JWWt6P76P0psOp3TKKEaWqls-F1YiSOkTXTB1INsoOxgVQuX_mnXnV781K-NhqPowZPhZ1JLNtakK6xXbg0hZcLW2QVrUtt9iCz-0IO7rWgPnzGIMz-M_Oz-xS_wGLZIC6h3B8eHD-CafXGbHxiIHdhcflvhQwKMy_yRO5kMPl22KvgJHJCAVA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Residual+force+enhancement+during+multi-joint+leg+extensions+at+joint-+angle+configurations+close+to+natural+human+motion&rft.jtitle=Journal+of+biomechanics&rft.au=Paternoster%2C+Florian+Kurt&rft.au=Seiberl%2C+Wolfgang&rft.au=Hahn%2C+Daniel&rft.au=Schwirtz%2C+Ansgar&rft.date=2016-03-21&rft.issn=1873-2380&rft.eissn=1873-2380&rft.volume=49&rft.issue=5&rft.spage=773&rft_id=info:doi/10.1016%2Fj.jbiomech.2016.02.015&rft.externalDBID=NO_FULL_TEXT
thumbnail_m http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F00219290%2FS0021929016X0005X%2Fcov150h.gif