Target capture and genome skimming for plant diversity studies

Recent technological advances in long‐read high‐throughput sequencing and assembly methods have facilitated the generation of annotated chromosome‐scale whole‐genome sequence data for evolutionary studies; however, generating such data can still be difficult for many plant species. For example, obta...

Full description

Saved in:
Bibliographic Details
Published inApplications in plant sciences Vol. 11; no. 4; pp. e11537 - n/a
Main Authors Pezzini, Flávia Fonseca, Ferrari, Giada, Forrest, Laura L., Hart, Michelle L., Nishii, Kanae, Kidner, Catherine A.
Format Journal Article
LanguageEnglish
Published United States John Wiley & Sons, Inc 01.07.2023
John Wiley and Sons Inc
Wiley
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Recent technological advances in long‐read high‐throughput sequencing and assembly methods have facilitated the generation of annotated chromosome‐scale whole‐genome sequence data for evolutionary studies; however, generating such data can still be difficult for many plant species. For example, obtaining high‐molecular‐weight DNA is typically impossible for samples in historical herbarium collections, which often have degraded DNA. The need to fast‐freeze newly collected living samples to conserve high‐quality DNA can be complicated when plants are only found in remote areas. Therefore, short‐read reduced‐genome representations, such as target capture and genome skimming, remain important for evolutionary studies. Here, we review the pros and cons of each technique for non‐model plant taxa. We provide guidance related to logistics, budget, the genomic resources previously available for the target clade, and the nature of the study. Furthermore, we assess the available bioinformatic analyses, detailing best practices and pitfalls, and suggest pathways to combine newly generated data with legacy data. Finally, we explore the possible downstream analyses allowed by the type of data generated using each technique. We provide a practical guide to help researchers make the best‐informed choice regarding reduced genome representation for evolutionary studies of non‐model plants in cases where whole‐genome sequencing remains impractical.
AbstractList Recent technological advances in long‐read high‐throughput sequencing and assembly methods have facilitated the generation of annotated chromosome‐scale whole‐genome sequence data for evolutionary studies; however, generating such data can still be difficult for many plant species. For example, obtaining high‐molecular‐weight DNA is typically impossible for samples in historical herbarium collections, which often have degraded DNA. The need to fast‐freeze newly collected living samples to conserve high‐quality DNA can be complicated when plants are only found in remote areas. Therefore, short‐read reduced‐genome representations, such as target capture and genome skimming, remain important for evolutionary studies. Here, we review the pros and cons of each technique for non‐model plant taxa. We provide guidance related to logistics, budget, the genomic resources previously available for the target clade, and the nature of the study. Furthermore, we assess the available bioinformatic analyses, detailing best practices and pitfalls, and suggest pathways to combine newly generated data with legacy data. Finally, we explore the possible downstream analyses allowed by the type of data generated using each technique. We provide a practical guide to help researchers make the best‐informed choice regarding reduced genome representation for evolutionary studies of non‐model plants in cases where whole‐genome sequencing remains impractical.
Recent technological advances in long-read high-throughput sequencing and assembly methods have facilitated the generation of annotated chromosome-scale whole-genome sequence data for evolutionary studies; however, generating such data can still be difficult for many plant species. For example, obtaining high-molecular-weight DNA is typically impossible for samples in historical herbarium collections, which often have degraded DNA. The need to fast-freeze newly collected living samples to conserve high-quality DNA can be complicated when plants are only found in remote areas. Therefore, short-read reduced-genome representations, such as target capture and genome skimming, remain important for evolutionary studies. Here, we review the pros and cons of each technique for non-model plant taxa. We provide guidance related to logistics, budget, the genomic resources previously available for the target clade, and the nature of the study. Furthermore, we assess the available bioinformatic analyses, detailing best practices and pitfalls, and suggest pathways to combine newly generated data with legacy data. Finally, we explore the possible downstream analyses allowed by the type of data generated using each technique. We provide a practical guide to help researchers make the best-informed choice regarding reduced genome representation for evolutionary studies of non-model plants in cases where whole-genome sequencing remains impractical.Recent technological advances in long-read high-throughput sequencing and assembly methods have facilitated the generation of annotated chromosome-scale whole-genome sequence data for evolutionary studies; however, generating such data can still be difficult for many plant species. For example, obtaining high-molecular-weight DNA is typically impossible for samples in historical herbarium collections, which often have degraded DNA. The need to fast-freeze newly collected living samples to conserve high-quality DNA can be complicated when plants are only found in remote areas. Therefore, short-read reduced-genome representations, such as target capture and genome skimming, remain important for evolutionary studies. Here, we review the pros and cons of each technique for non-model plant taxa. We provide guidance related to logistics, budget, the genomic resources previously available for the target clade, and the nature of the study. Furthermore, we assess the available bioinformatic analyses, detailing best practices and pitfalls, and suggest pathways to combine newly generated data with legacy data. Finally, we explore the possible downstream analyses allowed by the type of data generated using each technique. We provide a practical guide to help researchers make the best-informed choice regarding reduced genome representation for evolutionary studies of non-model plants in cases where whole-genome sequencing remains impractical.
Abstract Recent technological advances in long‐read high‐throughput sequencing and assembly methods have facilitated the generation of annotated chromosome‐scale whole‐genome sequence data for evolutionary studies; however, generating such data can still be difficult for many plant species. For example, obtaining high‐molecular‐weight DNA is typically impossible for samples in historical herbarium collections, which often have degraded DNA. The need to fast‐freeze newly collected living samples to conserve high‐quality DNA can be complicated when plants are only found in remote areas. Therefore, short‐read reduced‐genome representations, such as target capture and genome skimming, remain important for evolutionary studies. Here, we review the pros and cons of each technique for non‐model plant taxa. We provide guidance related to logistics, budget, the genomic resources previously available for the target clade, and the nature of the study. Furthermore, we assess the available bioinformatic analyses, detailing best practices and pitfalls, and suggest pathways to combine newly generated data with legacy data. Finally, we explore the possible downstream analyses allowed by the type of data generated using each technique. We provide a practical guide to help researchers make the best‐informed choice regarding reduced genome representation for evolutionary studies of non‐model plants in cases where whole‐genome sequencing remains impractical.
Author Pezzini, Flávia Fonseca
Kidner, Catherine A.
Nishii, Kanae
Forrest, Laura L.
Ferrari, Giada
Hart, Michelle L.
AuthorAffiliation 2 School of Biological Sciences University of Edinburgh Edinburgh United Kingdom
1 Royal Botanic Garden Edinburgh Edinburgh United Kingdom
AuthorAffiliation_xml – name: 2 School of Biological Sciences University of Edinburgh Edinburgh United Kingdom
– name: 1 Royal Botanic Garden Edinburgh Edinburgh United Kingdom
Author_xml – sequence: 1
  givenname: Flávia Fonseca
  orcidid: 0000-0001-5988-7361
  surname: Pezzini
  fullname: Pezzini, Flávia Fonseca
  email: fpezzini@rbge.org.uk
  organization: Royal Botanic Garden Edinburgh
– sequence: 2
  givenname: Giada
  orcidid: 0000-0002-0850-1518
  surname: Ferrari
  fullname: Ferrari, Giada
  organization: Royal Botanic Garden Edinburgh
– sequence: 3
  givenname: Laura L.
  surname: Forrest
  fullname: Forrest, Laura L.
  organization: Royal Botanic Garden Edinburgh
– sequence: 4
  givenname: Michelle L.
  surname: Hart
  fullname: Hart, Michelle L.
  organization: Royal Botanic Garden Edinburgh
– sequence: 5
  givenname: Kanae
  surname: Nishii
  fullname: Nishii, Kanae
  organization: Royal Botanic Garden Edinburgh
– sequence: 6
  givenname: Catherine A.
  surname: Kidner
  fullname: Kidner, Catherine A.
  organization: University of Edinburgh
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37601316$$D View this record in MEDLINE/PubMed
BookMark eNqNkl1r1jAUgItM3Jy78QdIwRsZvDOfbXqjjDF1MFBwXod8nNa8tk1N0sn7703XObYhYm4STp7zcHJynhd7ox-hKF5idIIRIm_VFOkJxpzWT4oDgiuxQYyjvXvn_eIoxi3KS-RQw54V-7SuEKa4OijeXanQQSqNmtIcoFSjLTsY_QBl_OGGwY1d2fpQTr0aU2ndNYTo0q6MabYO4oviaav6CEe3-2Hx7cP51dmnzeXnjxdnp5cbw0Vdb1hLGAeiMCBrlG2IaSrUKGoFAt7oWpMKa9wiWmHStEC4EJZD29qGKUa5oYfFxeq1Xm3lFNygwk565eRNwIdOqpCc6UEqSzTWWumKVKzCQkNLiTYaDIAyNcuu96trmvUA1sCYguofSB_ejO677Py1xIjRRhCeDW9uDcH_nCEmObhooM89Aj9HSYTIDW4Yr_4D5fmBCLOlrteP0K2fw5jbulAU1RRhnKlX96u_K_vPl2bgeAVM8DEGaO8QjOQyMnIZGXkzMhlGj2DjkkrOLy93_d9T8Jryy_Ww-4dcnn75Stec3_sr0iA
CitedBy_id crossref_primary_10_1002_aps3_11538
crossref_primary_10_1002_ajb2_70016
crossref_primary_10_1111_1755_0998_14095
crossref_primary_10_1038_s41598_024_83292_9
crossref_primary_10_1016_j_sajb_2024_07_055
crossref_primary_10_3390_app14041415
crossref_primary_10_1002_tax_13308
crossref_primary_10_1002_aps3_11532
crossref_primary_10_1007_s40415_024_01051_6
crossref_primary_10_1111_jse_13127
crossref_primary_10_3389_ffgc_2024_1425492
Cites_doi 10.1002/aps3.11442
10.1093/bioinformatics/btv646
10.3390/genes13040707
10.1073/pnas.1011841108
10.1089/cmb.2012.0021
10.1111/mec.15909
10.1093/gigascience/giz126
10.1002/ajb2.1568
10.2307/2992015
10.1093/bioinformatics/btp698
10.1093/sysbio/syy015
10.1186/1471-2148-12-100
10.1002/aps3.11345
10.1016/j.ympev.2019.02.020
10.1016/j.ympev.2014.10.004
10.1111/jipb.13415
10.24823/ejb.2022.409
10.1098/rsos.160239
10.1111/1755-0998.13527
10.1371/journal.pone.0251655
10.1093/aob/mct174
10.1002/ece3.8816
10.3389/fpls.2019.00937
10.1111/mec.16077
10.1093/gigascience/giy013
10.1101/2022.09.07.506990
10.1016/j.ympev.2021.107123
10.1177/1176934317742613
10.1098/rstb.2015.0338
10.1093/sysbio/syy054
10.3389/fpls.2019.01655
10.3390/plants10081702
10.1093/nar/gkw955
10.1002/aps3.11438
10.1371/journal.pone.0028448
10.3389/fgene.2022.1085692
10.1098/rstb.2021.0244
10.1111/nph.15099
10.1016/j.ympev.2005.04.008
10.1002/ajb2.1563
10.1126/science.1061421
10.1111/1755-0998.13472
10.1007/s11295-010-0349-z
10.1093/sysbio/syab053
10.1186/s13059-019-1632-4
10.1093/sysbio/syaa068
10.1002/aps3.11419
10.1111/j.1558-5646.2008.00549.x
10.1038/s41467-022-31280-w
10.7717/peerj.8995
10.3389/fpls.2021.669064
10.1002/aps3.1032
10.1038/nprot.2014.063
10.3389/fpls.2019.01102
10.1007/s00035-021-00268-5
10.1002/aps3.11337
10.1111/mec.13549
10.1186/s13007-018-0300-0
10.1126/sciadv.ade4954
10.1016/j.ympev.2020.106766
10.1002/aps3.11416
10.1016/j.ympev.2019.05.002
10.1111/1755-0998.13523
10.1007/s11105-022-01342-w
10.1016/j.tree.2009.01.009
10.1016/j.tplants.2015.06.012
10.1093/sysbio/46.3.523
10.3389/fpls.2018.00996
10.3732/ajb.1100335
10.7717/peerj.5175
10.1016/j.ab.2022.115001
10.1002/aps3.11422
10.1093/bioinformatics/bty648
10.3390/genes9020088
10.11646/bde.43.1.9
10.1111/jse.12806
10.1093/bioinformatics/btx204
10.1093/sysbio/syaa008
10.1016/j.ympev.2011.12.007
10.1111/nph.16290
10.1093/botlinnean/boab070
10.3389/fevo.2019.00439
10.1038/nmeth.1923
10.3389/fpls.2015.00710
10.3389/fgene.2019.01407
10.1093/sysbio/syab035
10.3732/apps.1500039
10.1093/molbev/msu245
10.3732/apps.1600016
10.1111/1755-0998.13479
10.1093/aob/mcac114
10.1016/j.tig.2019.11.006
10.1111/1755-0998.12626
10.1111/1755-0998.13598
10.1186/gb-2008-9-10-235
10.1093/molbev/msx235
10.1109/TCBB.2022.3170386
10.1016/j.ympev.2020.106903
10.3389/fpls.2018.00486
10.1002/j.1537-2197.1996.tb12718.x
10.1111/mec.15507
10.1186/s13059-020-02154-5
10.1002/aps3.11254
10.3732/apps.1400042
10.12705/655.9
10.1002/tax.12652
10.3732/ajb.1500026
10.1073/pnas.2115640118
10.1093/sysbio/syu080
10.1016/j.ygeno.2017.03.001
10.3390/plants9040432
10.3389/fpls.2016.00484
10.1002/tax.12117
10.1093/botlinnean/boz102
10.1093/aob/mcab063
10.3389/fevo.2021.668281
10.1080/00837792.2017.1313383
10.3732/apps.1700042
10.3389/fpls.2022.832034
10.1111/cla.12491
10.1093/sysbio/syy086
10.1111/1755-0998.13559
10.1016/j.ympev.2021.107068
10.1186/1471-2105-14-184
10.1002/aps3.1038
10.1002/aps3.11406
10.1371/journal.pgen.1005896
10.1002/aps3.1036
10.1093/sysbio/syab044
10.1111/nyas.12747
10.24823/ejb.2022.1928
10.1111/1755-0998.13683
10.1093/sysbio/syaa066
10.1002/aps3.11532
10.1016/j.ympev.2019.05.022
10.1093/gigascience/giab008
10.1111/jbi.14324
10.21425/F5FBG49226
10.1186/s12859-018-2128-z
10.1111/1755-0998.12945
10.1007/s10265-009-0291-z
10.1080/23818107.2018.1469429
10.1016/j.ympev.2018.07.012
10.3389/fpls.2021.765719
10.1002/aps3.1243
10.1111/nph.17675
10.1093/sysbio/syaa074
10.1111/jse.12167
10.1093/sysbio/syz073
10.3732/apps.1200497
10.1038/s41477-020-0733-0
10.2741/4531
10.1038/s41586-019-1693-2
ContentType Journal Article
Copyright 2023 The Authors. published by Wiley Periodicals LLC on behalf of Botanical Society of America.
2023 The Authors. Applications in Plant Sciences published by Wiley Periodicals LLC on behalf of Botanical Society of America.
2023. This work is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2023 The Authors. published by Wiley Periodicals LLC on behalf of Botanical Society of America.
– notice: 2023 The Authors. Applications in Plant Sciences published by Wiley Periodicals LLC on behalf of Botanical Society of America.
– notice: 2023. This work is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
NPM
8FE
8FH
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
GNUQQ
HCIFZ
LK8
M7P
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
7S9
L.6
5PM
DOA
DOI 10.1002/aps3.11537
DatabaseName Wiley Online Library Open Access
CrossRef
PubMed
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection (ProQuest)
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central
ProQuest Central Student
ProQuest SciTech Premium Collection
Biological Sciences
Biological Science Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Biological Science Collection
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
Biological Science Database
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList

CrossRef
MEDLINE - Academic
Publicly Available Content Database

AGRICOLA
PubMed
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ: Directory of Open Access Journal (DOAJ)
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: BENPR
  name: ProQuest Central Database Suite (ProQuest)
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Botany
DocumentTitleAlternate SEQUENCING NON‐MODEL PLANTS FOR EVOLUTIONARY STUDIES
EISSN 2168-0450
EndPage n/a
ExternalDocumentID oai_doaj_org_article_ad2b1bbab6264618bef32bcbeceeac74
PMC10439825
37601316
10_1002_aps3_11537
APS311537
Genre article
Journal Article
GeographicLocations United States--US
GeographicLocations_xml – name: United States--US
GroupedDBID 0R~
1OC
24P
5VS
8FE
8FH
AAEFD
AAHBH
AAHHS
AAPSS
ABDBF
ACCFJ
ACCMX
ACGFO
ACGFS
ACUHS
ACXQS
ADBBV
ADEHT
ADHSS
ADKYN
ADRAZ
ADRYA
ADZMN
ADZOD
AEEZP
AEGXH
AENEX
AEPYG
AEQDE
AFKRA
AFNWH
AIAGR
AIWBW
AJBDE
AKPMI
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AOIJS
AVUZU
BBNVY
BCNDV
BENPR
BHPHI
CCPQU
EBS
EJD
GROUPED_DOAJ
GX1
H13
HCIFZ
HYE
IAO
IGS
IPNFZ
ITC
KQ8
LK8
M48
M7P
M~E
O9-
OK1
PIMPY
PQ0
PROAC
RBO
RIG
RNS
ROL
RPM
RZN
TBO
WIN
AAYXX
CITATION
PHGZM
PHGZT
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
NPM
PQGLB
ABUWG
AZQEC
DWQXO
GNUQQ
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
7X8
7S9
L.6
5PM
PUEGO
ID FETCH-LOGICAL-c5877-4f245e2a1e0dcad92c9609a3d80e59b7b261b1f036129fe2588d5effd94a435c3
IEDL.DBID M48
ISSN 2168-0450
IngestDate Wed Aug 27 01:03:29 EDT 2025
Thu Aug 21 18:40:18 EDT 2025
Fri Jul 11 18:31:10 EDT 2025
Thu Jul 10 19:23:39 EDT 2025
Wed Aug 13 09:56:29 EDT 2025
Mon Jul 21 06:01:52 EDT 2025
Tue Jul 01 00:20:11 EDT 2025
Thu Apr 24 22:59:36 EDT 2025
Wed Jan 22 16:16:21 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords barcoding
short‐read sequencing
herbaria
non‐model plants
coalescent analysis
Language English
License Attribution-NonCommercial
2023 The Authors. Applications in Plant Sciences published by Wiley Periodicals LLC on behalf of Botanical Society of America.
This is an open access article under the terms of the http://creativecommons.org/licenses/by-nc/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5877-4f245e2a1e0dcad92c9609a3d80e59b7b261b1f036129fe2588d5effd94a435c3
Notes This article is part of the special issue “Bioinformatics for Plant Biology.”
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-5988-7361
0000-0002-0850-1518
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1002/aps3.11537
PMID 37601316
PQID 2853073011
PQPubID 4368373
PageCount 13
ParticipantIDs doaj_primary_oai_doaj_org_article_ad2b1bbab6264618bef32bcbeceeac74
pubmedcentral_primary_oai_pubmedcentral_nih_gov_10439825
proquest_miscellaneous_2887609456
proquest_miscellaneous_2854350144
proquest_journals_2853073011
pubmed_primary_37601316
crossref_primary_10_1002_aps3_11537
crossref_citationtrail_10_1002_aps3_11537
wiley_primary_10_1002_aps3_11537_APS311537
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate July-August 2023
PublicationDateYYYYMMDD 2023-07-01
PublicationDate_xml – month: 07
  year: 2023
  text: July-August 2023
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Hoboken
PublicationTitle Applications in plant sciences
PublicationTitleAlternate Appl Plant Sci
PublicationYear 2023
Publisher John Wiley & Sons, Inc
John Wiley and Sons Inc
Wiley
Publisher_xml – name: John Wiley & Sons, Inc
– name: John Wiley and Sons Inc
– name: Wiley
References 2018; 165
2013; 1
2010; 107
2013; 66
2019; 11
2019; 10
1997; 46
2021; 160
2016; 32
2019; 19
2012; 19
2022; 20
2020; 10
2022; 22
1998; 85
2012; 12
2012; 99
2021; 70
2018; 7
2018; 6
2017; 72
2023; 65
2018; 9
2010; 26
2015; 82
2021; 157
2019; 20
2018; 218
2022; 40
2013; 112
2022; 38
2016; 45
1989
2019; 8
2022; 199
2019; 7
2021; 43
2009; 63
2017; 66
2019; 35
2015; 53
2020; 36
2020; 147
2022; 119
2011; 6
2011; 7
2016; 12
2016; 4
2018; 19
2021; 59
2016; 7
2016; 3
2020; 151
2015; 64
2022; 9
2022; 12
1996; 83
2022; 13
2020; 21
2016; 25
2019; 574
2018; 14
2020; 29
2014; 31
2017; 5
2022; 132
2022; 130
2018; 128
2022; 71
2015; 102
2021; 128
2023; 662
2008; 9
2021; 30
2022; 377
2020; 8
2020; 6
2013; 14
2001; 293
2014; 2
2017; 33
2019; 68
2020; 9
2017; 34
2022; 79
2020b; 225
2021; 232
2014; 9
2005; 36
2021; 9
2009; 24
2023; 13
2015; 6
2023; 11
2015; 3
2017; 22
2010; 123
2020; 107
2018; 67
2022; 49
2021; 13
2017; 109
2021; 16
2021; 10
2021; 12
2023
2022
2020a; 107
2017; 17
2015; 20
2020; 71
2020; 192
2016; 65
2019; 137
2019; 138
2019
2019; 135
2020; 69
2015; 1360
2016; 371
2012; 9
e_1_2_9_75_1
e_1_2_9_98_1
e_1_2_9_52_1
e_1_2_9_79_1
e_1_2_9_94_1
e_1_2_9_10_1
e_1_2_9_56_1
e_1_2_9_33_1
e_1_2_9_90_1
Sambrook J. (e_1_2_9_121_1) 1989
e_1_2_9_71_1
e_1_2_9_103_1
e_1_2_9_126_1
e_1_2_9_149_1
e_1_2_9_107_1
e_1_2_9_122_1
e_1_2_9_145_1
e_1_2_9_14_1
e_1_2_9_141_1
e_1_2_9_37_1
e_1_2_9_18_1
e_1_2_9_160_1
e_1_2_9_41_1
e_1_2_9_64_1
e_1_2_9_87_1
e_1_2_9_22_1
e_1_2_9_45_1
e_1_2_9_68_1
e_1_2_9_83_1
e_1_2_9_6_1
e_1_2_9_119_1
e_1_2_9_60_1
e_1_2_9_138_1
e_1_2_9_111_1
e_1_2_9_134_1
e_1_2_9_115_1
e_1_2_9_157_1
e_1_2_9_26_1
e_1_2_9_49_1
e_1_2_9_130_1
e_1_2_9_153_1
Wang W. (e_1_2_9_146_1) 2019; 11
e_1_2_9_30_1
e_1_2_9_53_1
e_1_2_9_99_1
e_1_2_9_72_1
e_1_2_9_11_1
e_1_2_9_34_1
e_1_2_9_57_1
e_1_2_9_95_1
e_1_2_9_76_1
e_1_2_9_91_1
e_1_2_9_102_1
e_1_2_9_148_1
e_1_2_9_129_1
e_1_2_9_144_1
e_1_2_9_106_1
e_1_2_9_125_1
e_1_2_9_15_1
e_1_2_9_38_1
e_1_2_9_140_1
Allen J. M. (e_1_2_9_2_1) 2017; 66
e_1_2_9_19_1
e_1_2_9_42_1
e_1_2_9_88_1
e_1_2_9_61_1
e_1_2_9_46_1
e_1_2_9_84_1
e_1_2_9_23_1
e_1_2_9_65_1
e_1_2_9_80_1
e_1_2_9_5_1
e_1_2_9_114_1
e_1_2_9_137_1
e_1_2_9_118_1
e_1_2_9_133_1
e_1_2_9_156_1
e_1_2_9_9_1
e_1_2_9_152_1
e_1_2_9_27_1
e_1_2_9_69_1
e_1_2_9_110_1
e_1_2_9_31_1
e_1_2_9_50_1
e_1_2_9_73_1
e_1_2_9_35_1
e_1_2_9_77_1
e_1_2_9_96_1
e_1_2_9_12_1
e_1_2_9_54_1
e_1_2_9_92_1
e_1_2_9_109_1
e_1_2_9_101_1
e_1_2_9_128_1
e_1_2_9_105_1
e_1_2_9_124_1
e_1_2_9_147_1
e_1_2_9_39_1
e_1_2_9_120_1
e_1_2_9_16_1
e_1_2_9_58_1
e_1_2_9_143_1
e_1_2_9_20_1
e_1_2_9_62_1
e_1_2_9_89_1
e_1_2_9_24_1
e_1_2_9_43_1
e_1_2_9_66_1
e_1_2_9_85_1
e_1_2_9_8_1
e_1_2_9_81_1
e_1_2_9_4_1
e_1_2_9_113_1
e_1_2_9_159_1
e_1_2_9_117_1
e_1_2_9_155_1
e_1_2_9_136_1
e_1_2_9_151_1
e_1_2_9_28_1
e_1_2_9_47_1
e_1_2_9_132_1
e_1_2_9_74_1
e_1_2_9_51_1
e_1_2_9_78_1
e_1_2_9_13_1
e_1_2_9_32_1
e_1_2_9_55_1
e_1_2_9_97_1
e_1_2_9_93_1
e_1_2_9_108_1
e_1_2_9_70_1
e_1_2_9_127_1
e_1_2_9_100_1
e_1_2_9_123_1
e_1_2_9_104_1
e_1_2_9_17_1
e_1_2_9_36_1
e_1_2_9_59_1
e_1_2_9_142_1
e_1_2_9_63_1
e_1_2_9_40_1
e_1_2_9_21_1
e_1_2_9_67_1
e_1_2_9_44_1
e_1_2_9_86_1
e_1_2_9_7_1
e_1_2_9_82_1
e_1_2_9_3_1
e_1_2_9_112_1
e_1_2_9_139_1
e_1_2_9_116_1
e_1_2_9_135_1
e_1_2_9_158_1
e_1_2_9_25_1
e_1_2_9_131_1
e_1_2_9_154_1
e_1_2_9_48_1
e_1_2_9_29_1
e_1_2_9_150_1
References_xml – volume: 71
  start-page: 301
  year: 2022
  end-page: 319
  article-title: A comprehensive phylogenomic platform for exploring the angiosperm tree of life
  publication-title: Systematic Biology
– volume: 14
  year: 2018
  article-title: HybPhyloMaker: Target enrichment data analysis from raw reads to species trees
  publication-title: Evolutionary Bioinformatics
– volume: 128
  start-page: 69
  year: 2018
  end-page: 87
  article-title: Exploring data processing strategies in NGS target enrichment to disentangle radiations in the tribe Cardueae (Compositae)
  publication-title: Molecular Phylogenetics and Evolution
– volume: 38
  start-page: 187
  year: 2022
  end-page: 203
  article-title: Seeing through the hedge: Phylogenomics of (Cupressaceae) reveals prominent incomplete lineage sorting and ancient introgression for Tertiary relict flora
  publication-title: Cladistics
– volume: 68
  start-page: 365
  year: 2019
  end-page: 369
  article-title: EPA‐ng: Massively parallel evolutionary placement of genetic sequences
  publication-title: Systematic Biology
– volume: 12
  year: 2022
  article-title: A targeted capture approach to generating reference sequence databases for chloroplast gene regions
  publication-title: Ecology and Evolution
– year: 2022
  article-title: Distinguishing between histories of speciation and introgression using genomic data
– year: 1989
– volume: 24
  start-page: 332
  year: 2009
  end-page: 340
  article-title: Gene tree discordance, phylogenetic inference and the multispecies coalescent
  publication-title: Trends in Ecology & Evolution
– volume: 1
  year: 2013
  article-title: A targeted enrichment strategy for massively parallel sequencing of angiosperm plastid genomes
  publication-title: Applications in Plant Sciences
– volume: 151
  year: 2020
  article-title: Under the rug: Abandoning persistent misconceptions that obfuscate organelle evolution
  publication-title: Molecular Phylogenetics and Evolution
– volume: 12
  year: 2021
  article-title: The effects of herbarium specimen characteristics on short‐read NGS sequencing success in nearly 8000 specimens: Old, degraded samples have lower DNA yields but consistent sequencing success
  publication-title: Frontiers in Plant Science
– volume: 147
  year: 2020
  article-title: Reconstructing phylogenetic relationships based on repeat sequence similarities
  publication-title: Molecular Phylogenetics and Evolution
– volume: 107
  start-page: 22169
  year: 2010
  end-page: 22171
  article-title: Herbaria are a major frontier for species discovery
  publication-title: Proceedings of the National Academy of Sciences, USA
– volume: 112
  start-page: 1057
  year: 2013
  end-page: 1066
  article-title: Phylogenomics and taxonomy of Lecomtelleae (Poaceae), an isolated panicoid lineage from Madagascar
  publication-title: Annals of Botany
– volume: 66
  start-page: 526
  year: 2013
  end-page: 538
  article-title: Applications of next‐generation sequencing to phylogeography and phylogenetics
  publication-title: Molecular Phylogenetics and Evolution
– volume: 70
  start-page: 1
  year: 2021
  end-page: 13
  article-title: The origins of Coca: Museum genomics reveals multiple independent domestications from progenitor
  publication-title: Systematic Biology
– volume: 109
  start-page: 186
  year: 2017
  end-page: 191
  article-title: Evaluation and assessment of read‐mapping by multiple next‐generation sequencing aligners based on genome‐wide characteristics
  publication-title: Genomics
– volume: 225
  start-page: 1355
  year: 2020b
  end-page: 1369
  article-title: Large‐scale genomic sequence data resolve the deepest divergences in the legume phylogeny and support a near‐simultaneous evolutionary origin of all six subfamilies
  publication-title: New Phytologist
– volume: 85
  start-page: 531
  year: 1998
  end-page: 553
  article-title: An ordinal classification for the families of flowering plants
  publication-title: Annals of the Missouri Botanical Garden
– volume: 192
  start-page: 656
  year: 2020
  end-page: 674
  article-title: Systematics of (Bromeliaceae): Phylogenetic relationships based on nuclear gene and partial plastome sequences
  publication-title: Botanical Journal of the Linnean Society
– volume: 99
  start-page: 349
  year: 2012
  end-page: 364
  article-title: Navigating the tip of the genomic iceberg: Next‐generation sequencing for plant systematics
  publication-title: American Journal of Botany
– volume: 9
  year: 2022
  article-title: Precipitation is the main axis of tropical phylogenetic turnover across space and time
  publication-title: Science Advances
– volume: 13
  year: 2022
  article-title: Genome skimming contributes to clarifying species limits in Section (Melanthiaceae)
  publication-title: Frontiers in Plant Science
– volume: 69
  start-page: 795
  year: 2020
  end-page: 812
  article-title: The multispecies coalescent model outperforms concatenation across diverse phylogenomic data sets
  publication-title: Systematic Biology
– volume: 157
  year: 2021
  article-title: Phylogenomics of Gesneriaceae using targeted capture of nuclear genes
  publication-title: Molecular Phylogenetics and Evolution
– volume: 20
  start-page: 34
  year: 2019
  article-title: Skmer: assembly‐free and alignment‐free sample identification using genome skims
  publication-title: Genome Biology
– volume: 34
  start-page: 3292
  year: 2017
  end-page: 3298
  article-title: PhyloNetworks: A package for phylogenetic networks
  publication-title: Molecular Biology and Evolution
– volume: 22
  start-page: 927
  year: 2022
  end-page: 945
  article-title: Taxon‐specific or universal? Using target capture to study the evolutionary history of rapid radiations
  publication-title: Molecular Ecology Resources
– volume: 9
  start-page: 996
  year: 2018
  article-title: Development of target sequence capture and estimation of genomic relatedness in a mixed oak stand
  publication-title: Frontiers in Plant Science
– volume: 25
  start-page: 1423
  year: 2016
  end-page: 1428
  article-title: From barcodes to genomes: Extending the concept of DNA barcoding
  publication-title: Molecular Ecology
– volume: 107
  start-page: 1577
  year: 2020
  end-page: 1587
  article-title: Small herbaria contribute unique biogeographic records to county, locality, and temporal scales
  publication-title: American Journal of Botany
– volume: 218
  start-page: 1668
  year: 2018
  end-page: 1684
  article-title: Phylogenomic analyses reveal a deep history of hybridization and polyploidy in the Neotropical genus (Rosaceae)
  publication-title: New Phytologist
– volume: 83
  start-page: 383
  year: 1996
  end-page: 404
  article-title: The hows and whys of cytoplasmic inheritance in seed plants
  publication-title: American Journal of Botany
– volume: 102
  start-page: 544
  year: 2015
  end-page: 554
  article-title: Comparison of nuclear, plastid, and mitochondrial phylogenies and the origin of wild octoploid strawberry species
  publication-title: American Journal of Botany
– volume: 45
  year: 2016
  article-title: NOVOPlasty: assembly of organelle genomes from whole genome data
  publication-title: Nucleic Acids Research
– volume: 66
  start-page: 786
  year: 2017
  end-page: 798
  article-title: Phylogenomics from whole genome sequences using aTRAM
  publication-title: Systematic Biology
– volume: 11
  issue: 4
  year: 2023
  article-title: hybpiper‐nf and paragone‐nf: Containerization and additional options for target capture assembly and paralog resolution
  publication-title: Applications in Plant Sciences
– volume: 20
  start-page: 525
  year: 2015
  end-page: 527
  article-title: Genome skimming for next‐generation biodiversity analysis
  publication-title: Trends in Plant Science
– volume: 59
  start-page: 1124
  year: 2021
  end-page: 1138
  article-title: Capturing single‐copy nuclear genes, organellar genomes, and nuclear ribosomal DNA from deep genome skimming data for plant phylogenetics: A case study in Vitaceae
  publication-title: Journal of Systematics and Evolution
– volume: 8
  year: 2019
  article-title: Access to RNA‐sequencing data from 1,173 plant species: The 1000 Plant transcriptomes initiative (1KP)
  publication-title: GigaScience
– volume: 3
  year: 2016
  article-title: Temporal patterns of damage and decay kinetics of DNA retrieved from plant herbarium specimens
  publication-title: Royal Society Open Science
– volume: 165
  start-page: 419
  year: 2018
  end-page: 433
  article-title: Herbarium genomics retraces the origins of C ‐specific carbonic anhydrase in Andropogoneae (Poaceae)
  publication-title: Botany Letters
– volume: 574
  start-page: 679
  year: 2019
  end-page: 685
  article-title: One thousand plant transcriptomes and the phylogenomics of green plants
  publication-title: Nature
– volume: 9
  start-page: 88
  year: 2018
  article-title: Genome size diversity and its impact on the evolution of land plants
  publication-title: Genes
– volume: 11
  start-page: 3372
  year: 2019
  end-page: 3381
  article-title: Long‐reads reveal that the chloroplast genome exists in two distinct versions in most plants
  publication-title: Genome Biology and Evolution
– volume: 160
  year: 2021
  article-title: New genetic markers for Sapotaceae phylogenomics: More than 600 nuclear genes applicable from family to population levels
  publication-title: Molecular Phylogenetics and Evolution
– volume: 79
  start-page: 409
  year: 2022
  article-title: A hybrid capture bait set for
  publication-title: Edinburgh Journal of Botany
– volume: 22
  start-page: 1678
  year: 2022
  end-page: 1692
  article-title: Batch effects in population genomic studies with low‐coverage whole genome sequencing data: Causes, detection and mitigation
  publication-title: Molecular Ecology Resources
– volume: 35
  start-page: 421
  year: 2019
  end-page: 432
  article-title: Scaling read aligners to hundreds of threads on general‐purpose processors
  publication-title: Bioinformatics
– volume: 14
  start-page: 43
  year: 2018
  article-title: Genome skimming herbarium specimens for DNA barcoding and phylogenomics
  publication-title: Plant Methods
– volume: 10
  start-page: 1655
  year: 2020
  article-title: Tackling rapid radiations with targeted sequencing
  publication-title: Frontiers in Plant Science
– volume: 71
  start-page: 921
  year: 2020
  end-page: 928
  article-title: An evolving view of phylogenetic support
  publication-title: Systematic Biology
– volume: 22
  start-page: 2105
  year: 2022
  end-page: 2119
  article-title: Fishing for DNA? Designing baits for population genetics in target enrichment experiments: Guidelines, considerations and the new tool supeRbaits
  publication-title: Molecular Ecology Resources
– volume: 9
  year: 2021
  article-title: On the potential of Angiosperms353 for population genomic studies
  publication-title: Applications in Plant Sciences
– volume: 40
  start-page: 628
  year: 2022
  end-page: 645
  article-title: Transposable elements in plants: Recent advancements, tools and prospects
  publication-title: Plant Molecular Biology Reporter
– volume: 65
  start-page: 299
  year: 2023
  end-page: 323
  article-title: Phylogenomics and the flowering plant tree of life
  publication-title: Journal of Integrative Plant Biology
– volume: 49
  start-page: 523
  issue: 3
  year: 2022
  end-page: 536
  article-title: Diversification of the orchid genus : Origin of endemism on the oceanic islands of São Tomé & Príncipe in the Gulf of Guinea
  publication-title: Journal of Biogeography
– volume: 36
  start-page: 132
  year: 2020
  end-page: 145
  article-title: Pangenomics comes of age: From bacteria to plant and animal applications
  publication-title: Trends in Genetics
– volume: 9
  year: 2021
  article-title: The best of both worlds: Combining lineage‐specific and universal bait sets in target‐enrichment hybridization reactions
  publication-title: Applications in Plant Sciences
– volume: 71
  start-page: 476
  year: 2022
  end-page: 489
  article-title: Defining coalescent genes: Theory meets practice in organelle phylogenomics
  publication-title: Systematic Biology
– volume: 82
  start-page: 146
  year: 2015
  end-page: 155
  article-title: When do species‐tree and concatenated estimates disagree? An empirical analysis with higher‐level scincid lizard phylogeny
  publication-title: Molecular Phylogenetics and Evolution
– volume: 7
  year: 2019
  article-title: A customized nuclear target enrichment approach for developing a phylogenomic baseline for yams (Dioscoreaceae)
  publication-title: Applications in Plant Sciences
– volume: 6
  year: 2011
  article-title: DNA damage in plant herbarium tissue
  publication-title: PLoS ONE
– volume: 22
  start-page: 3161
  issue: 8
  year: 2022
  end-page: 3175
  article-title: Species discrimination in (Theaceae): Next‐generation super‐barcodes meet evolutionary complexity
  publication-title: Molecular Ecology Resources
– volume: 22
  start-page: 1213
  year: 2022
  end-page: 1227
  article-title: Fast and accurate distance‐based phylogenetic placement using divide and conquer
  publication-title: Molecular Ecology Resources
– volume: 199
  start-page: 331
  year: 2022
  end-page: 356
  article-title: Hybridization: A ‘double‐edged sword’ for Neotropical plant diversity
  publication-title: Botanical Journal of the Linnean Society
– volume: 6
  year: 2018
  article-title: SECAPR—A bioinformatics pipeline for the rapid and user‐friendly processing of targeted enriched Illumina sequences, from raw reads to alignments
  publication-title: PeerJ
– volume: 33
  start-page: 2575
  year: 2017
  end-page: 2576
  article-title: ploidyNGS: Visually exploring ploidy with next generation sequencing data
  publication-title: Bioinformatics
– volume: 6
  start-page: 914
  year: 2020
  end-page: 920
  article-title: Plant pan‐genomes are the new reference
  publication-title: Nature Plants
– volume: 9
  year: 2021
  article-title: A target enrichment probe set for resolving the flagellate land plant tree of life
  publication-title: Applications in Plant Sciences
– volume: 9
  start-page: 432
  year: 2020
  article-title: The treasure vault can be opened: Large‐scale genome skimming works well using herbarium and silica gel dried material
  publication-title: Plants
– volume: 6
  year: 2018
  article-title: Practical considerations for plant phylogenomics
  publication-title: Applications in Plant Sciences
– volume: 13
  start-page: 3729
  year: 2022
  article-title: The genomic basis of the plant island syndrome in Darwin's giant daisies
  publication-title: Nature Communications
– volume: 31
  start-page: 3081
  year: 2014
  end-page: 3092
  article-title: Orthology inference in nonmodel organisms using transcriptomes and low‐coverage genomes: Improving accuracy and matrix occupancy for phylogenomics
  publication-title: Molecular Biology and Evolution
– volume: 662
  year: 2023
  article-title: Innovations in double digest restriction‐site associated DNA sequencing (ddRAD‐Seq) method for more efficient SNP identification
  publication-title: Analytical Biochemistry
– volume: 29
  start-page: 2521
  year: 2020
  end-page: 2534
  article-title: Beyond DNA barcoding: The unrealized potential of genome skim data in sample identification
  publication-title: Molecular Ecology
– volume: 67
  start-page: 735
  year: 2018
  end-page: 740
  article-title: Inferring phylogenetic networks using PhyloNet
  publication-title: Systematic Biology
– volume: 22
  start-page: 1023
  year: 2017
  end-page: 1032
  article-title: Plant mitochondrial DNA
  publication-title: Frontiers in Bioscience
– volume: 71
  start-page: 154
  year: 2022
  end-page: 167
  article-title: A plea to DNA barcode type specimens: An example from (Sapotaceae)
  publication-title: TAXON
– volume: 135
  start-page: 98
  year: 2019
  end-page: 104
  article-title: Target sequence capture in the Brazil nut family (Lecythidaceae): Marker selection and in silico capture from genome skimming data
  publication-title: Molecular Phylogenetics and Evolution
– volume: 10
  start-page: 1047
  year: 2020
  article-title: A guide to carrying out a phylogenomic target sequence capture project
  publication-title: Frontiers in Genetics
– volume: 20
  start-page: 1417
  issue: 2
  year: 2022
  end-page: 1430
  article-title: SCAMPP: Scaling alignment‐based phylogenetic placement to large trees
  publication-title: IEEE/ACM Transactions on Computational Biology and Bioinformatics
– volume: 9
  start-page: 235
  year: 2008
  article-title: Large‐scale assignment of orthology: Back to phylogenetics?
  publication-title: Genome Biology
– volume: 107
  start-page: 1710
  year: 2020a
  end-page: 1735
  article-title: Hybrid capture of 964 nuclear genes resolves evolutionary relationships in the mimosoid legumes and reveals the polytomous origins of a large pantropical radiation
  publication-title: American Journal of Botany
– volume: 79
  start-page: 1928
  year: 2022
  article-title: Resolving phylogenetic and taxonomic conflict in
– volume: 26
  start-page: 589
  year: 2010
  end-page: 595
  article-title: Fast and accurate long‐read alignment with Burrows–Wheeler transform
  publication-title: Bioinformatics
– volume: 68
  start-page: 594
  year: 2019
  end-page: 606
  article-title: A universal probe set for targeted sequencing of 353 nuclear genes from any flowering plant designed using k‐medoids clustering
  publication-title: Systematic Biology
– volume: 65
  start-page: 1081
  year: 2016
  end-page: 1092
  article-title: Retrieval of hundreds of nuclear loci from herbarium specimens
  publication-title: Taxon
– volume: 6
  year: 2018
  article-title: Targeting legume loci: A comparison of three methods for target enrichment bait design in Leguminosae phylogenomics
  publication-title: Applications in Plant Sciences
– volume: 6
  year: 2018
  article-title: Comparison of taxon‐specific versus general locus sets for targeted sequence capture in plant phylogenomics
  publication-title: Applications in Plant Sciences
– volume: 377
  year: 2022
  article-title: Recent progress on methods for estimating and updating large phylogenies
  publication-title: Philosophical Transactions of the Royal Society B: Biological Sciences
– volume: 8
  year: 2020
  article-title: The mitochondrial phylogeny of land plants shows support for Setaphyta under composition‐heterogeneous substitution models
  publication-title: PeerJ
– volume: 32
  start-page: 786
  year: 2016
  end-page: 788
  article-title: PHYLUCE is a software package for the analysis of conserved genomic loci
  publication-title: Bioinformatics
– volume: 293
  start-page: 2242
  year: 2001
  end-page: 2245
  article-title: Rapid diversification of a species‐rich genus of Neotropical Rain Forest trees
  publication-title: Science
– volume: 10
  start-page: 1702
  year: 2021
  article-title: Species delimitation and conservation in taxonomically challenging lineages: The case of two clades of (Sapotaceae) in Madagascar
  publication-title: Plants
– volume: 10
  start-page: 1102
  year: 2019
  article-title: Factors affecting targeted sequencing of 353 nuclear genes from herbarium specimens spanning the diversity of angiosperms
  publication-title: Frontiers in Plant Science
– volume: 7
  start-page: 469
  year: 2011
  end-page: 484
  article-title: Discordant mtDNA and cpDNA phylogenies indicate geographic speciation and reticulation as driving factors for the diversification of the genus
  publication-title: Tree Genetics & Genomes
– volume: 19
  start-page: 221
  year: 2019
  end-page: 234
  article-title: A dedicated target capture approach reveals variable genetic markers across micro‐ and macro‐evolutionary time scales in palms
  publication-title: Molecular Ecology Resources
– volume: 64
  start-page: 112
  year: 2015
  end-page: 126
  article-title: Genomic repeat abundances contain phylogenetic signal
  publication-title: Systematic Biology
– volume: 68
  start-page: 661
  year: 2019
  end-page: 672
  article-title: Phylogeny of the Neotropical legume genera and and close relatives
  publication-title: Taxon
– volume: 3
  year: 2015
  article-title: A protocol for targeted enrichment of intron‐containing sequence markers for recent radiations: A phylogenomic example from (Saxifragaceae)
  publication-title: Applications in Plant Sciences
– volume: 7
  start-page: 439
  year: 2019
  article-title: The limits of Hyb‐Seq for herbarium specimens: Impact of preservation techniques
  publication-title: Frontiers in Ecology and Evolution
– volume: 19
  start-page: 455
  year: 2012
  end-page: 477
  article-title: SPAdes: A new genome assembly algorithm and its applications to single‐cell sequencing
  publication-title: Journal of Computational Biology
– volume: 4
  year: 2016
  article-title: HybPiper: Extracting coding sequence and introns for phylogenetics from high‐throughput sequencing reads using target enrichment
  publication-title: Applications in Plant Sciences
– volume: 21
  start-page: 241
  year: 2020
  article-title: GetOrganelle: A fast and versatile toolkit for accurate de novo assembly of organelle genomes
  publication-title: Genome Biology
– volume: 12
  year: 2022
  article-title: How to tackle phylogenetic discordance in recent and rapidly radiating groups? Developing a workflow using (Asteraceae) as an example
  publication-title: Frontiers in Plant Science
– volume: 9
  start-page: 486
  year: 2018
  article-title: Organelle genome inheritance in ferns (Athyriaceae, Aspleniineae, Polypodiales)
  publication-title: Frontiers in Plant Science
– volume: 9
  start-page: 357
  year: 2012
  end-page: 359
  article-title: Fast gapped‐read alignment with Bowtie 2
  publication-title: Nature Methods
– volume: 70
  start-page: 219
  year: 2021
  end-page: 235
  article-title: Disentangling sources of gene tree discordance in phylogenomic data sets: Testing ancient hybridizations in Amaranthaceae s.l
  publication-title: Systematic Biology
– volume: 22
  start-page: 212
  year: 2022
  end-page: 224
  article-title: Using target capture to address conservation challenges: Population‐level tracking of a globally‐traded herbal medicine
  publication-title: Molecular Ecology Resources
– volume: 8
  year: 2020
  article-title: A two‐tier bioinformatic pipeline to develop probes for target capture of nuclear loci with applications in Melastomataceae
  publication-title: Applications in Plant Sciences
– volume: 72
  start-page: 35
  year: 2017
  end-page: 45
  article-title: Herbarium genomics: skimming and plastomics from archival specimens
  publication-title: Webbia
– volume: 43
  start-page: 112
  year: 2021
  end-page: 126
  article-title: The mitochondrial genomes of bryophytes
  publication-title: Bryophyte Diversity and Evolution
– volume: 13
  start-page: 707
  year: 2022
  article-title: A target capture probe set useful for deep‐ and shallow‐level phylogenetic studies in Cactaceae
  publication-title: Genes
– volume: 9
  year: 2021
  article-title: Lineage‐specific vs. universal: A comparison of the Compositae1061 and Angiosperms353 enrichment panels in the sunflower family
  publication-title: Applications in Plant Sciences
– volume: 8
  year: 2020
  article-title: Strategies for reducing per‐sample costs in target capture sequencing for phylogenomics and population genomics in plants
  publication-title: Applications in Plant Sciences
– volume: 7
  year: 2018
  article-title: 10KP: A phylodiverse genome sequencing plan
  publication-title: GigaScience
– volume: 130
  start-page: 687
  issue: 5
  year: 2022
  end-page: 701
  article-title: Resolution, conflict and rate shifts: insights from a densely sampled plastome phylogeny for (Ericaceae)
– volume: 36
  start-page: 484
  year: 2005
  end-page: 493
  article-title: Incongruence between primary sequence data and the distribution of a mitochondrial atp1 group II intron among ferns and horsetails
  publication-title: Molecular Phylogenetics and Evolution
– volume: 63
  start-page: 1
  year: 2009
  end-page: 19
  article-title: Is a new and general theory of molecular systematics emerging?
  publication-title: Evolution
– volume: 371
  year: 2016
  article-title: Telling plant species apart with DNA: From barcodes to genomes
  publication-title: Philosophical Transactions of the Royal Society B: Biological Sciences
– volume: 5
  year: 2017
  article-title: The unexpected depths of genome‐skimming data: A case study examining Goodeniaceae floral symmetry genes
  publication-title: Applications in Plant Sciences
– volume: 13
  year: 2021
  article-title: Phylogeny and biogeography of Mill. (Malvaceae, Bombacoideae)
  publication-title: Frontiers of Biogeography
– volume: 71
  start-page: 410
  issue: 2
  year: 2022
  end-page: 425
  article-title: A new pipeline for removing paralogs in target enrichment data
  publication-title: Systematic Biology
– volume: 12
  year: 2016
  article-title: Inferring phylogenetic networks with maximum pseudolikelihood under incomplete lineage sorting
  publication-title: PLoS Genetics
– volume: 13
  year: 2023
  article-title: A nuclear target sequence capture probe set for phylogeny reconstruction of the charismatic plant family Bignoniaceae
  publication-title: Frontiers in Genetics
– volume: 9
  year: 2021
  article-title: Relative performance of customized and universal probe sets in target enrichment: A case study in subtribe Malinae
  publication-title: Applications in Plant Sciences
– volume: 9
  year: 2021
  article-title: Target sequence capture in orchids: Developing a kit to sequence hundreds of single‐copy loci
  publication-title: Applications in Plant Sciences
– volume: 19
  start-page: 122
  year: 2018
  article-title: nQuire: a statistical framework for ploidy estimation using next generation sequencing
  publication-title: BMC Bioinformatics
– volume: 119
  issue: 4
  year: 2022
  article-title: Green plant genomes: What we know in an era of rapidly expanding opportunities
  publication-title: Proceedings of the National Academy of Sciences, USA
– volume: 53
  start-page: 391
  year: 2015
  end-page: 402
  article-title: Using phylogenomics to resolve mega‐families: An example from Compositae: Phylogenomics and mega‐families
  publication-title: Journal of Systematics and Evolution
– volume: 10
  year: 2021
  article-title: Twelve years of SAMtools and BCFtools
  publication-title: GigaScience
– volume: 137
  start-page: 156
  year: 2019
  end-page: 167
  article-title: Phylogenomic analyses reveal an exceptionally high number of evolutionary shifts in a florally diverse clade of African legumes
  publication-title: Molecular Phylogenetics and Evolution
– volume: 30
  start-page: 5935
  year: 2021
  end-page: 5948
  article-title: Opportunities and challenges for high‐quality biodiversity tissue archives in the age of long‐read sequencing
  publication-title: Molecular Ecology
– volume: 14
  start-page: 184
  year: 2013
  article-title: Benchmarking short sequence mapping tools
  publication-title: BMC Bioinformatics
– volume: 69
  start-page: 462
  year: 2020
  end-page: 478
  article-title: Reticulate evolution helps explain apparent homoplasy in floral biology and pollination in baobabs ( ; Bombacoideae; Malvaceae)
  publication-title: Systematic Biology
– volume: 12
  start-page: 100
  year: 2012
  article-title: Separating the wheat from the chaff: mitigating the effects of noise in a plastome phylogenomic data set from L. (Pinaceae)
  publication-title: BMC Evolutionary Biology
– volume: 232
  start-page: 2520
  year: 2021
  end-page: 2534
  article-title: Admixture may be extensive among hyperdominant Amazon rainforest tree species
  publication-title: New Phytologist
– volume: 7
  start-page: 484
  year: 2016
  article-title: Targeted capture sequencing in whitebark pine reveals range‐wide demographic and adaptive patterns despite challenges of a large, repetitive genome
  publication-title: Frontiers in Plant Science
– volume: 138
  start-page: 219
  year: 2019
  end-page: 232
  article-title: Incongruence between gene trees and species trees and phylogenetic signal variation in plastid genes
  publication-title: Molecular Phylogenetics and Evolution
– volume: 30
  start-page: 5966
  year: 2021
  end-page: 5993
  article-title: A beginner's guide to low‐coverage whole genome sequencing for population genomics
  publication-title: Molecular Ecology
– volume: 46
  start-page: 523
  year: 1997
  end-page: 536
  article-title: Gene trees in species trees
  publication-title: Systematic Biology
– volume: 1360
  start-page: 36
  year: 2015
  end-page: 53
  article-title: Estimating phylogenetic trees from genome‐scale data
  publication-title: Annals of the New York Academy of Sciences
– volume: 9
  start-page: 1056
  year: 2014
  end-page: 1082
  article-title: Characterization of ancient and modern genomes by SNP detection and phylogenomic and metagenomic analysis using PALEOMIX
  publication-title: Nature Protocols
– volume: 10
  start-page: 937
  year: 2019
  article-title: A target capture‐based method to estimate ploidy from herbarium specimens
  publication-title: Frontiers in Plant Science
– volume: 132
  start-page: 89
  year: 2022
  end-page: 105
  article-title: Afro‐alpine flagships revisited II: elucidating the evolutionary relationships and species boundaries in the giant senecios ( , Asteraceae)
  publication-title: Alpine Botany
– volume: 7
  year: 2019
  article-title: Long‐fragment targeted capture for long‐read sequencing of plastomes
  publication-title: Applications in Plant Sciences
– year: 2023
– volume: 17
  start-page: 858
  year: 2017
  end-page: 868
  article-title: Strategies for complete plastid genome sequencing
  publication-title: Molecular Ecology Resources
– volume: 22
  start-page: 404
  year: 2022
  end-page: 414
  article-title: Testing genome skimming for species discrimination in the large and taxonomically difficult genus
  publication-title: Molecular Ecology Resources
– volume: 16
  year: 2021
  article-title: Genome skimming reveals novel plastid markers for the molecular identification of illegally logged African timber species
  publication-title: PLoS ONE
– volume: 2
  year: 2014
  article-title: Hyb‐Seq: Combining target enrichment and genome skimming for plant phylogenomics
  publication-title: Applications in Plant Sciences
– volume: 9
  year: 2021
  article-title: Genome skimming reveals widespread hybridization in a neotropical flowering plant radiation
  publication-title: Frontiers in Ecology and Evolution
– volume: 6
  year: 2015
  article-title: Using targeted enrichment of nuclear genes to increase phylogenetic resolution in the neotropical rain forest genus (Leguminosae: Mimosoideae)
  publication-title: Frontiers in Plant Science
– year: 2019
  article-title: P
– volume: 123
  start-page: 201
  year: 2010
  end-page: 206
  article-title: Why does biparental plastid inheritance revive in angiosperms?
  publication-title: Journal of Plant Research
– volume: 128
  start-page: 835
  year: 2021
  end-page: 848
  article-title: Aiming off the target: recycling target capture sequencing reads for investigating repetitive DNA
  publication-title: Annals of Botany
– ident: e_1_2_9_141_1
  doi: 10.1002/aps3.11442
– ident: e_1_2_9_138_1
– ident: e_1_2_9_44_1
  doi: 10.1093/bioinformatics/btv646
– ident: e_1_2_9_120_1
  doi: 10.3390/genes13040707
– ident: e_1_2_9_14_1
  doi: 10.1073/pnas.1011841108
– ident: e_1_2_9_11_1
  doi: 10.1089/cmb.2012.0021
– ident: e_1_2_9_20_1
  doi: 10.1111/mec.15909
– ident: e_1_2_9_26_1
  doi: 10.1093/gigascience/giz126
– ident: e_1_2_9_77_1
  doi: 10.1002/ajb2.1568
– ident: e_1_2_9_6_1
  doi: 10.2307/2992015
– ident: e_1_2_9_87_1
  doi: 10.1093/bioinformatics/btp698
– ident: e_1_2_9_151_1
  doi: 10.1093/sysbio/syy015
– ident: e_1_2_9_113_1
  doi: 10.1186/1471-2148-12-100
– ident: e_1_2_9_67_1
  doi: 10.1002/aps3.11345
– volume-title: Molecular Cloning: A Laboratory Manual
  year: 1989
  ident: e_1_2_9_121_1
– ident: e_1_2_9_142_1
  doi: 10.1016/j.ympev.2019.02.020
– ident: e_1_2_9_81_1
  doi: 10.1016/j.ympev.2014.10.004
– ident: e_1_2_9_58_1
  doi: 10.1111/jipb.13415
– ident: e_1_2_9_103_1
  doi: 10.24823/ejb.2022.409
– ident: e_1_2_9_148_1
  doi: 10.1098/rsos.160239
– ident: e_1_2_9_10_1
  doi: 10.1111/1755-0998.13527
– ident: e_1_2_9_100_1
  doi: 10.1371/journal.pone.0251655
– ident: e_1_2_9_17_1
  doi: 10.1093/aob/mct174
– ident: e_1_2_9_50_1
  doi: 10.1002/ece3.8816
– ident: e_1_2_9_144_1
  doi: 10.3389/fpls.2019.00937
– ident: e_1_2_9_92_1
  doi: 10.1111/mec.16077
– ident: e_1_2_9_29_1
  doi: 10.1093/gigascience/giy013
– ident: e_1_2_9_64_1
  doi: 10.1101/2022.09.07.506990
– ident: e_1_2_9_30_1
  doi: 10.1016/j.ympev.2021.107123
– ident: e_1_2_9_45_1
  doi: 10.1177/1176934317742613
– ident: e_1_2_9_65_1
  doi: 10.1098/rstb.2015.0338
– ident: e_1_2_9_12_1
  doi: 10.1093/sysbio/syy054
– ident: e_1_2_9_84_1
  doi: 10.3389/fpls.2019.01655
– ident: e_1_2_9_22_1
  doi: 10.3390/plants10081702
– ident: e_1_2_9_37_1
  doi: 10.1093/nar/gkw955
– ident: e_1_2_9_62_1
  doi: 10.1002/aps3.11438
– ident: e_1_2_9_133_1
  doi: 10.1371/journal.pone.0028448
– ident: e_1_2_9_48_1
  doi: 10.3389/fgene.2022.1085692
– ident: e_1_2_9_157_1
  doi: 10.1098/rstb.2021.0244
– ident: e_1_2_9_106_1
  doi: 10.1111/nph.15099
– ident: e_1_2_9_153_1
  doi: 10.1016/j.ympev.2005.04.008
– ident: e_1_2_9_99_1
  doi: 10.1002/ajb2.1563
– ident: e_1_2_9_118_1
  doi: 10.1126/science.1061421
– ident: e_1_2_9_98_1
  doi: 10.1111/1755-0998.13472
– ident: e_1_2_9_23_1
  doi: 10.1007/s11295-010-0349-z
– ident: e_1_2_9_41_1
  doi: 10.1093/sysbio/syab053
– ident: e_1_2_9_123_1
  doi: 10.1186/s13059-019-1632-4
– ident: e_1_2_9_126_1
  doi: 10.1093/sysbio/syaa068
– ident: e_1_2_9_128_1
  doi: 10.1002/aps3.11419
– ident: e_1_2_9_42_1
  doi: 10.1111/j.1558-5646.2008.00549.x
– ident: e_1_2_9_27_1
  doi: 10.1038/s41467-022-31280-w
– ident: e_1_2_9_132_1
  doi: 10.7717/peerj.8995
– ident: e_1_2_9_76_1
  doi: 10.3389/fpls.2021.669064
– ident: e_1_2_9_28_1
  doi: 10.1002/aps3.1032
– ident: e_1_2_9_125_1
  doi: 10.1038/nprot.2014.063
– ident: e_1_2_9_25_1
  doi: 10.3389/fpls.2019.01102
– ident: e_1_2_9_53_1
  doi: 10.1007/s00035-021-00268-5
– ident: e_1_2_9_59_1
  doi: 10.1002/aps3.11337
– ident: e_1_2_9_31_1
  doi: 10.1111/mec.13549
– ident: e_1_2_9_158_1
  doi: 10.1186/s13007-018-0300-0
– ident: e_1_2_9_119_1
  doi: 10.1126/sciadv.ade4954
– ident: e_1_2_9_145_1
  doi: 10.1016/j.ympev.2020.106766
– ident: e_1_2_9_43_1
  doi: 10.1002/aps3.11416
– ident: e_1_2_9_111_1
  doi: 10.1016/j.ympev.2019.05.002
– ident: e_1_2_9_155_1
  doi: 10.1111/1755-0998.13523
– ident: e_1_2_9_117_1
  doi: 10.1007/s11105-022-01342-w
– ident: e_1_2_9_35_1
  doi: 10.1016/j.tree.2009.01.009
– ident: e_1_2_9_38_1
  doi: 10.1016/j.tplants.2015.06.012
– ident: e_1_2_9_95_1
  doi: 10.1093/sysbio/46.3.523
– ident: e_1_2_9_86_1
  doi: 10.3389/fpls.2018.00996
– ident: e_1_2_9_134_1
  doi: 10.3732/ajb.1100335
– ident: e_1_2_9_4_1
  doi: 10.7717/peerj.5175
– volume: 66
  start-page: 786
  year: 2017
  ident: e_1_2_9_2_1
  article-title: Phylogenomics from whole genome sequences using aTRAM
  publication-title: Systematic Biology
– ident: e_1_2_9_96_1
  doi: 10.1016/j.ab.2022.115001
– ident: e_1_2_9_127_1
  doi: 10.1002/aps3.11422
– ident: e_1_2_9_83_1
  doi: 10.1093/bioinformatics/bty648
– ident: e_1_2_9_114_1
  doi: 10.3390/genes9020088
– ident: e_1_2_9_40_1
  doi: 10.11646/bde.43.1.9
– ident: e_1_2_9_90_1
  doi: 10.1111/jse.12806
– ident: e_1_2_9_7_1
  doi: 10.1093/bioinformatics/btx204
– ident: e_1_2_9_69_1
  doi: 10.1093/sysbio/syaa008
– ident: e_1_2_9_101_1
  doi: 10.1016/j.ympev.2011.12.007
– ident: e_1_2_9_78_1
  doi: 10.1111/nph.16290
– ident: e_1_2_9_124_1
  doi: 10.1093/botlinnean/boab070
– ident: e_1_2_9_49_1
  doi: 10.3389/fevo.2019.00439
– ident: e_1_2_9_82_1
  doi: 10.1038/nmeth.1923
– ident: e_1_2_9_109_1
  doi: 10.3389/fpls.2015.00710
– ident: e_1_2_9_5_1
  doi: 10.3389/fgene.2019.01407
– ident: e_1_2_9_115_1
– ident: e_1_2_9_8_1
  doi: 10.1093/sysbio/syab035
– ident: e_1_2_9_47_1
  doi: 10.3732/apps.1500039
– ident: e_1_2_9_154_1
  doi: 10.1093/molbev/msu245
– ident: e_1_2_9_72_1
  doi: 10.3732/apps.1600016
– ident: e_1_2_9_51_1
  doi: 10.1111/1755-0998.13479
– ident: e_1_2_9_104_1
  doi: 10.1093/aob/mcac114
– ident: e_1_2_9_54_1
  doi: 10.1016/j.tig.2019.11.006
– ident: e_1_2_9_140_1
  doi: 10.1111/1755-0998.12626
– ident: e_1_2_9_70_1
  doi: 10.1111/1755-0998.13598
– ident: e_1_2_9_52_1
  doi: 10.1186/gb-2008-9-10-235
– ident: e_1_2_9_130_1
  doi: 10.1093/molbev/msx235
– ident: e_1_2_9_147_1
  doi: 10.1109/TCBB.2022.3170386
– ident: e_1_2_9_56_1
  doi: 10.1016/j.ympev.2020.106903
– ident: e_1_2_9_80_1
  doi: 10.3389/fpls.2018.00486
– ident: e_1_2_9_105_1
  doi: 10.1002/j.1537-2197.1996.tb12718.x
– ident: e_1_2_9_21_1
  doi: 10.1111/mec.15507
– ident: e_1_2_9_71_1
  doi: 10.1186/s13059-020-02154-5
– ident: e_1_2_9_131_1
  doi: 10.1002/aps3.11254
– ident: e_1_2_9_150_1
  doi: 10.3732/apps.1400042
– ident: e_1_2_9_60_1
  doi: 10.12705/655.9
– ident: e_1_2_9_122_1
  doi: 10.1002/tax.12652
– ident: e_1_2_9_57_1
  doi: 10.3732/ajb.1500026
– ident: e_1_2_9_79_1
  doi: 10.1073/pnas.2115640118
– ident: e_1_2_9_39_1
  doi: 10.1093/sysbio/syu080
– ident: e_1_2_9_137_1
  doi: 10.1016/j.ygeno.2017.03.001
– ident: e_1_2_9_3_1
  doi: 10.3390/plants9040432
– ident: e_1_2_9_136_1
  doi: 10.3389/fpls.2016.00484
– ident: e_1_2_9_46_1
  doi: 10.1002/tax.12117
– ident: e_1_2_9_94_1
  doi: 10.1093/botlinnean/boz102
– ident: e_1_2_9_32_1
  doi: 10.1093/aob/mcab063
– ident: e_1_2_9_91_1
  doi: 10.3389/fevo.2021.668281
– ident: e_1_2_9_9_1
  doi: 10.1080/00837792.2017.1313383
– ident: e_1_2_9_16_1
  doi: 10.3732/apps.1700042
– ident: e_1_2_9_68_1
  doi: 10.3389/fpls.2022.832034
– ident: e_1_2_9_88_1
  doi: 10.1111/cla.12491
– ident: e_1_2_9_73_1
  doi: 10.1093/sysbio/syy086
– ident: e_1_2_9_93_1
  doi: 10.1111/1755-0998.13559
– ident: e_1_2_9_110_1
  doi: 10.1016/j.ympev.2021.107068
– ident: e_1_2_9_61_1
  doi: 10.1186/1471-2105-14-184
– ident: e_1_2_9_102_1
  doi: 10.1002/aps3.1038
– ident: e_1_2_9_24_1
  doi: 10.1002/aps3.11406
– ident: e_1_2_9_129_1
  doi: 10.1371/journal.pgen.1005896
– ident: e_1_2_9_143_1
  doi: 10.1002/aps3.1036
– ident: e_1_2_9_160_1
  doi: 10.1093/sysbio/syab044
– ident: e_1_2_9_89_1
  doi: 10.1111/nyas.12747
– ident: e_1_2_9_15_1
  doi: 10.24823/ejb.2022.1928
– ident: e_1_2_9_156_1
  doi: 10.1111/1755-0998.13683
– ident: e_1_2_9_107_1
  doi: 10.1093/sysbio/syaa066
– ident: e_1_2_9_66_1
  doi: 10.1002/aps3.11532
– volume: 11
  start-page: 3372
  year: 2019
  ident: e_1_2_9_146_1
  article-title: Long‐reads reveal that the chloroplast genome exists in two distinct versions in most plants
  publication-title: Genome Biology and Evolution
– ident: e_1_2_9_55_1
  doi: 10.1016/j.ympev.2019.05.022
– ident: e_1_2_9_139_1
– ident: e_1_2_9_33_1
  doi: 10.1093/gigascience/giab008
– ident: e_1_2_9_36_1
  doi: 10.1111/jbi.14324
– ident: e_1_2_9_116_1
  doi: 10.21425/F5FBG49226
– ident: e_1_2_9_149_1
  doi: 10.1186/s12859-018-2128-z
– ident: e_1_2_9_34_1
  doi: 10.1111/1755-0998.12945
– ident: e_1_2_9_159_1
  doi: 10.1007/s10265-009-0291-z
– ident: e_1_2_9_18_1
  doi: 10.1080/23818107.2018.1469429
– ident: e_1_2_9_63_1
  doi: 10.1016/j.ympev.2018.07.012
– ident: e_1_2_9_74_1
  doi: 10.3389/fpls.2021.765719
– ident: e_1_2_9_19_1
  doi: 10.1002/aps3.1243
– ident: e_1_2_9_85_1
  doi: 10.1111/nph.17675
– ident: e_1_2_9_152_1
  doi: 10.1093/sysbio/syaa074
– ident: e_1_2_9_97_1
  doi: 10.1111/jse.12167
– ident: e_1_2_9_75_1
  doi: 10.1093/sysbio/syz073
– ident: e_1_2_9_135_1
  doi: 10.3732/apps.1200497
– ident: e_1_2_9_13_1
  doi: 10.1038/s41477-020-0733-0
– ident: e_1_2_9_108_1
  doi: 10.2741/4531
– ident: e_1_2_9_112_1
  doi: 10.1038/s41586-019-1693-2
SSID ssj0000816894
Score 2.341249
Snippet Recent technological advances in long‐read high‐throughput sequencing and assembly methods have facilitated the generation of annotated chromosome‐scale...
Recent technological advances in long-read high-throughput sequencing and assembly methods have facilitated the generation of annotated chromosome-scale...
Abstract Recent technological advances in long‐read high‐throughput sequencing and assembly methods have facilitated the generation of annotated...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
wiley
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e11537
SubjectTerms barcoding
bioinformatics
Chromosomes
coalescent analysis
Deoxyribonucleic acid
Design
DNA
Evolution
Flowers & plants
genome
Genomes
Genomics
herbaria
Next-generation sequencing
non‐model plants
Nucleotide sequence
Plant mitochondria
Plant sciences
Review
Ribosomal DNA
short‐read sequencing
species diversity
Whole genome sequencing
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3dSxwxEA9F-tAXqd9rtUTsi8Kim4_d3EvhThQptBSq4FvIxwSl3t7R0wf_-06SveUORV98WzYDm53JZH5DJr8h5BsAZhXBmZKzxpbCWHQpF2RZBy45NJiA8Hgb-eev-vJa_LiRNwutvmJNWKYHzoo7MZ7ZylpjEXmLulIWAmfW4acB94wmMYFizFtIptIeHNtJDETPR8pOzHTGcX-QseH5QgRKRP0vocvnRZKL4DVFn4vPZLWDjXSYp7tGPkC7Tj6OJgjtnjbI96tUz02dmcYDAWpaTyP56hjo7O_deIzhiSI4pdN71CP181IMOstFhJvk-uL86uyy7BojlE6qpilFYEICMxWcemf8gLnIG2e4V6cgB7axmBbZKmBwwmgegEmlvIQQ_EAYhEeOb5GVdtLCDqEVDwoxErhaxdTKKhH5bBDneXCW-7ogR3NladexhsfmFfc68x0zHRWrk2ILctjLTjNXxotSo6jzXiLyW6cXaHXdWV2_ZfWC7M0tpjunm2mG0CPvWAU56IfRXeIZiGlh8phkRDpLFa_JYIjAtFfi32_nRdDPNtUQ8QpH1NLyWPqd5ZH27jbRdlfxFjIm5AU5TivpFR3p4e8_PD3tvoe2vpBPDLFZrjLeIysP_x5hH7HUg_2a3OY_or0esg
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELag5cAF8SZQkBFcQIra-JF4L6AualUhUVXQSr1ZfoxLRTcJTXvg3zN2vKErqr1F8Rzi8YznG3vyDSHvATCrCM6UnDW2FMaiS7kgyzpwyaHBBITHv5G_HdYHJ-LrqTzNB25DLqtc7olpo_adi2fk2wzjymiOn_vfZewaFW9XcwuNu2QTt2CFydfmfO_w6Pt0ypLaSszExEvKtk0_cNwnZGx8fiMSJcL-21Dm_8WSN0FsikL7D8mDDB_p7rjej8gdaB-Te_MOId6fJ-TTcarrps708WKAmtbTSMK6ADr8Ol8sMExRBKm0v0B9Ur8syaDDWEz4lJzs7x1_OShzg4TSSdU0pQhMSGCmgh3vjJ8xF_njDPdqB-TMNhbTI1sFDFIY1QMwqZSXEIKfCYMwyfFnZKPtWnhBaMWDQqwErlYxxbJKRF4bxHsenOW-LsiHpbK0y-zhsYnFhR55j5mOitVJsQV5N8n2I2fGrVLzqPNJIvJcpxfd5ZnObqONZ7ay1ljMu0RdKQuBM-vQ8AAjRiMKsrVcMZ2db9D_TKUgb6dhdJt4F2Ja6K6TjEh3qmKdDIYKTH8lzv75aATT16ZaIl7hiFoxj5XprI605z8TfXcV_0bGxLwgH5MlrdGR3j36wdPTy_UTfUXuM0RfYx3xFtm4uryG14iWruyb7BJ_AahhFPM
  priority: 102
  providerName: ProQuest
– databaseName: Wiley Online Library Open Access
  dbid: 24P
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1La9wwEB7StIdeSt9xmxaV9tKCyVoPWwshkJSGUGgJNIHchB6jNiTrXeLkkH-fkex1ujQEejPWGKyRRvONNPMJ4BMiRRXR21LwxpXSOjIpH1VZR6EENhSAiFSN_ONnfXAsv5-okzXYXtbC9PwQ44Zbsoy8XicDt67buiUNtYtOkMEr0TyAh6m2NjHnc3k47rDkKyXyTYicHkrCLpORn5Rv3X6-4pEycf9daPPfpMm_wWz2RvtP4ckAI9luP-7PYA3b5_Bob05Q7_oF7Bzl_G7m7SIdEDDbBpbIWGfIurPT2YzcFSOwyhbnpFcWlqkZrOuTCl_C8f63o68H5XBRQumVbppSRi4VclvhJHgbptwnHjkrgp6gmrrGUZjkqkjOirx7RK60DgpjDFNpCS558QrW23mLG8AqETVhJvS1TqGW0zLx25DuAnonQl3A56WyjB9YxNNlFuem5z_mJinWZMUW8HGUXfTcGXdK7SWdjxKJ7zq_mF_8NoP5GBu4q5yzjuIvWVfaYRTceZqASJ6jkQVsLkfMDEbYGU5QpF_BCvgwNpP5pDMR2-L8KsvIfLYq75Mhl0FhsKLev-4nwfi3OadIVNSiV6bHSndWW9rTP5nGu0pVyRSgF_Alz6R7dGR2D3-J_PTmf4TfwmNOmKzPLt6E9cuLK3xHGOrSvc-mcgMa8xYu
  priority: 102
  providerName: Wiley-Blackwell
Title Target capture and genome skimming for plant diversity studies
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Faps3.11537
https://www.ncbi.nlm.nih.gov/pubmed/37601316
https://www.proquest.com/docview/2853073011
https://www.proquest.com/docview/2854350144
https://www.proquest.com/docview/2887609456
https://pubmed.ncbi.nlm.nih.gov/PMC10439825
https://doaj.org/article/ad2b1bbab6264618bef32bcbeceeac74
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1La9tAEB7y6KGXkL6VpmZLe2lBrbUPaX1IS1wSQiHBtDHkJvbZhtqyayeQ_PvMrh7E1ITehHYM0ucZzTfa0TcA753DqsIblTJa6JQrjSFlvEhzzwRzBRYgLHyNfHqWn4z59wtxsQHt_M4GwOXa0i7MkxovJp9u_t5-xYA_aAREP6v5kmHoC1ZswjZmpCIE6GlD8-MTOQyXiDMRKR6kyGL6nVLp_Z-v5KYo4b-Od_7bPnmf1sa8dLwLOw2hJIe1BzyBDVc9hUfDGZK-22fw5Tx2ehOj5mGrgKjKkiDLOnVk-edyOsXERZC2kvkEESa2bdIgy7q98DmMj4_Ov52kzciE1AhZFCn3lAtHVeb61ig7oCYoyilmZd-JgS40Fkw685i2MM97R4WUVjjv7YArJE6GvYCtala5V0Ay5iWyJ2dyGYouLXlQukHsrDOa2TyBDy1YpWn0xMNYi0lZKyHTMgBbRmATeNfZzmsVjbVWw4B5ZxGUr-OJ2eJX2QRSqSzVmdZKYyXG80xq5xnVBl3RYQ4peAL77T9Wtt5UUiQl9bMsgbfdMgZS2B1RlZtdRxsed1n5QzaYPLAgFnj3L2sn6K42dhexDFfkinus3M7qSnX5Owp6Z-H7ZCzVE_gYPekBjMrD0U8Wj_b-C9PX8JgiLasbjPdh62px7d4gjbrSPdikfNSD7eHR2ehHL76M6MW4uQNBuB0G
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3dT9RAEJ_gYaIvxm-rqGvUB00a6H60vQc1nEIOgQvRI-Gt7leByLWVQgz_lH-js9sPuUjujbfmdnLpzs7s_KY7-xuAN9ZiVpFrGTKaqJBLhS6lcxHGORPMJpiAMHcbeXcSj_f51wNxsAR_urswrqyy2xP9Rm1K7b6Rr1KMK405fqp-ha5rlDtd7VpoNGaxbS9-Y8pWf9j6guv7ltLNjenncdh2FQi1SJMk5DnlwlIZ2TWjpRlS7UjXJDPpmhVDlSjMKVSU486OoTC3VKSpETbPzZBLxBaa4f_egGXOMJUZwPJoY7L3rf-q49tYDHnPg0pXZVUz3JeEa7R-KfL5BgFXodr_izMvg2Yf9Tbvwp0WrpL1xr7uwZIt7sPNUYmQ8uIBfJz6OnKiZeUOIogsDHGkrzNL6p_HsxmGRYKgmFQnuH7EdCUgpG6KFx_C_rWo7hEMirKwT4BELE8Rm1kdpy6lUyl3PDqIL43Vipk4gHedsjLdspW7phknWcOzTDOn2MwrNoDXvWzVcHRcKTVyOu8lHK-2_6E8PcxaN82koSpSSirM83gcpcrmjCqNhm4xQiU8gJVuxbLW2evsn2kG8KofRjd1Zy-ysOW5l-H-DJcvksHQhOm2wNk_boygf1tfu8QiHEnnzGNuOvMjxfGRpwuP3O3nlIoA3ntLWqCjbH3vO_NPTxdP9CXcGk93d7Kdrcn2M7hNEfk1NcwrMDg7PbfPEamdqRetexD4cd0e-RfAOVGQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VFKFeEG8CBRYBB5CsxPuwnQOghjZqKUQRtFJv7j5LRWOHphXqX-PXMbt-0Igqt96s7Cjyzs7sfOOd_QbgtbWYVTgtI0ZTFXGp0KW0E1HimGA2xQSE-dvIX8fJ9j7_fCAOVuBPcxfGl1U2e2LYqE2p_TfyHsW4Upljz9VlEZPN0cfZr8h3kPInrU07jcpEdu3Fb0zf5u93NnGt31A62tr7tB3VHQYiLbI0jbijXFgqY9s3WpoB1Z6ATTKT9a0YqFRhfqFih7s8hkVnqcgyI6xzZsAl4gzN8H9vwGqKWVG_A6vDrfHkW_uFJ7S0GPCWE5X25GzOcI8Svun6pSgYmgVchXD_L9S8DKBDBBzdgds1dCUbla3dhRVb3IObwxLh5cV9-LAXasqJljN_KEFkYYgngJ1aMv95PJ1iiCQIkMnsBNeSmKYchMyrQsYHsH8tqnsInaIs7GMgMXMZ4jSrk8yndyrjnlMHsaaxWjGTdOFto6xc18zlvoHGSV5xLtPcKzYPiu3Cq1Z2VvF1XCk19DpvJTzHdvihPD3Ka5fNpaEqVkoqzPl4EmfKOkaVRqO3GK1S3oX1ZsXy2vHn-T8z7cLLdhhd1p_DyMKW50GGh_NcvkwGwxSm3gJn_6gygvZtQx0Ti3EkWzCPheksjhTHPwJ1eOxvQmdUdOFdsKQlOso3Jt9ZeHqyfKIv4BZ6Yv5lZ7z7FNYogsCqnHkdOmen5_YZgrYz9bz2DgKH1-2QfwFtaFXF
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Target+capture+and+genome+skimming+for+plant+diversity+studies&rft.jtitle=Applications+in+plant+sciences&rft.au=Pezzini%2C+Fl%C3%A1via+Fonseca&rft.au=Ferrari%2C+Giada&rft.au=Forrest%2C+Laura+L.&rft.au=Hart%2C+Michelle+L.&rft.date=2023-07-01&rft.issn=2168-0450&rft.eissn=2168-0450&rft.volume=11&rft.issue=4&rft_id=info:doi/10.1002%2Faps3.11537&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_aps3_11537
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2168-0450&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2168-0450&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2168-0450&client=summon