Target capture and genome skimming for plant diversity studies
Recent technological advances in long‐read high‐throughput sequencing and assembly methods have facilitated the generation of annotated chromosome‐scale whole‐genome sequence data for evolutionary studies; however, generating such data can still be difficult for many plant species. For example, obta...
Saved in:
Published in | Applications in plant sciences Vol. 11; no. 4; pp. e11537 - n/a |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
John Wiley & Sons, Inc
01.07.2023
John Wiley and Sons Inc Wiley |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Recent technological advances in long‐read high‐throughput sequencing and assembly methods have facilitated the generation of annotated chromosome‐scale whole‐genome sequence data for evolutionary studies; however, generating such data can still be difficult for many plant species. For example, obtaining high‐molecular‐weight DNA is typically impossible for samples in historical herbarium collections, which often have degraded DNA. The need to fast‐freeze newly collected living samples to conserve high‐quality DNA can be complicated when plants are only found in remote areas. Therefore, short‐read reduced‐genome representations, such as target capture and genome skimming, remain important for evolutionary studies. Here, we review the pros and cons of each technique for non‐model plant taxa. We provide guidance related to logistics, budget, the genomic resources previously available for the target clade, and the nature of the study. Furthermore, we assess the available bioinformatic analyses, detailing best practices and pitfalls, and suggest pathways to combine newly generated data with legacy data. Finally, we explore the possible downstream analyses allowed by the type of data generated using each technique. We provide a practical guide to help researchers make the best‐informed choice regarding reduced genome representation for evolutionary studies of non‐model plants in cases where whole‐genome sequencing remains impractical. |
---|---|
AbstractList | Recent technological advances in long‐read high‐throughput sequencing and assembly methods have facilitated the generation of annotated chromosome‐scale whole‐genome sequence data for evolutionary studies; however, generating such data can still be difficult for many plant species. For example, obtaining high‐molecular‐weight DNA is typically impossible for samples in historical herbarium collections, which often have degraded DNA. The need to fast‐freeze newly collected living samples to conserve high‐quality DNA can be complicated when plants are only found in remote areas. Therefore, short‐read reduced‐genome representations, such as target capture and genome skimming, remain important for evolutionary studies. Here, we review the pros and cons of each technique for non‐model plant taxa. We provide guidance related to logistics, budget, the genomic resources previously available for the target clade, and the nature of the study. Furthermore, we assess the available bioinformatic analyses, detailing best practices and pitfalls, and suggest pathways to combine newly generated data with legacy data. Finally, we explore the possible downstream analyses allowed by the type of data generated using each technique. We provide a practical guide to help researchers make the best‐informed choice regarding reduced genome representation for evolutionary studies of non‐model plants in cases where whole‐genome sequencing remains impractical. Recent technological advances in long-read high-throughput sequencing and assembly methods have facilitated the generation of annotated chromosome-scale whole-genome sequence data for evolutionary studies; however, generating such data can still be difficult for many plant species. For example, obtaining high-molecular-weight DNA is typically impossible for samples in historical herbarium collections, which often have degraded DNA. The need to fast-freeze newly collected living samples to conserve high-quality DNA can be complicated when plants are only found in remote areas. Therefore, short-read reduced-genome representations, such as target capture and genome skimming, remain important for evolutionary studies. Here, we review the pros and cons of each technique for non-model plant taxa. We provide guidance related to logistics, budget, the genomic resources previously available for the target clade, and the nature of the study. Furthermore, we assess the available bioinformatic analyses, detailing best practices and pitfalls, and suggest pathways to combine newly generated data with legacy data. Finally, we explore the possible downstream analyses allowed by the type of data generated using each technique. We provide a practical guide to help researchers make the best-informed choice regarding reduced genome representation for evolutionary studies of non-model plants in cases where whole-genome sequencing remains impractical.Recent technological advances in long-read high-throughput sequencing and assembly methods have facilitated the generation of annotated chromosome-scale whole-genome sequence data for evolutionary studies; however, generating such data can still be difficult for many plant species. For example, obtaining high-molecular-weight DNA is typically impossible for samples in historical herbarium collections, which often have degraded DNA. The need to fast-freeze newly collected living samples to conserve high-quality DNA can be complicated when plants are only found in remote areas. Therefore, short-read reduced-genome representations, such as target capture and genome skimming, remain important for evolutionary studies. Here, we review the pros and cons of each technique for non-model plant taxa. We provide guidance related to logistics, budget, the genomic resources previously available for the target clade, and the nature of the study. Furthermore, we assess the available bioinformatic analyses, detailing best practices and pitfalls, and suggest pathways to combine newly generated data with legacy data. Finally, we explore the possible downstream analyses allowed by the type of data generated using each technique. We provide a practical guide to help researchers make the best-informed choice regarding reduced genome representation for evolutionary studies of non-model plants in cases where whole-genome sequencing remains impractical. Abstract Recent technological advances in long‐read high‐throughput sequencing and assembly methods have facilitated the generation of annotated chromosome‐scale whole‐genome sequence data for evolutionary studies; however, generating such data can still be difficult for many plant species. For example, obtaining high‐molecular‐weight DNA is typically impossible for samples in historical herbarium collections, which often have degraded DNA. The need to fast‐freeze newly collected living samples to conserve high‐quality DNA can be complicated when plants are only found in remote areas. Therefore, short‐read reduced‐genome representations, such as target capture and genome skimming, remain important for evolutionary studies. Here, we review the pros and cons of each technique for non‐model plant taxa. We provide guidance related to logistics, budget, the genomic resources previously available for the target clade, and the nature of the study. Furthermore, we assess the available bioinformatic analyses, detailing best practices and pitfalls, and suggest pathways to combine newly generated data with legacy data. Finally, we explore the possible downstream analyses allowed by the type of data generated using each technique. We provide a practical guide to help researchers make the best‐informed choice regarding reduced genome representation for evolutionary studies of non‐model plants in cases where whole‐genome sequencing remains impractical. |
Author | Pezzini, Flávia Fonseca Kidner, Catherine A. Nishii, Kanae Forrest, Laura L. Ferrari, Giada Hart, Michelle L. |
AuthorAffiliation | 2 School of Biological Sciences University of Edinburgh Edinburgh United Kingdom 1 Royal Botanic Garden Edinburgh Edinburgh United Kingdom |
AuthorAffiliation_xml | – name: 2 School of Biological Sciences University of Edinburgh Edinburgh United Kingdom – name: 1 Royal Botanic Garden Edinburgh Edinburgh United Kingdom |
Author_xml | – sequence: 1 givenname: Flávia Fonseca orcidid: 0000-0001-5988-7361 surname: Pezzini fullname: Pezzini, Flávia Fonseca email: fpezzini@rbge.org.uk organization: Royal Botanic Garden Edinburgh – sequence: 2 givenname: Giada orcidid: 0000-0002-0850-1518 surname: Ferrari fullname: Ferrari, Giada organization: Royal Botanic Garden Edinburgh – sequence: 3 givenname: Laura L. surname: Forrest fullname: Forrest, Laura L. organization: Royal Botanic Garden Edinburgh – sequence: 4 givenname: Michelle L. surname: Hart fullname: Hart, Michelle L. organization: Royal Botanic Garden Edinburgh – sequence: 5 givenname: Kanae surname: Nishii fullname: Nishii, Kanae organization: Royal Botanic Garden Edinburgh – sequence: 6 givenname: Catherine A. surname: Kidner fullname: Kidner, Catherine A. organization: University of Edinburgh |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37601316$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkl1r1jAUgItM3Jy78QdIwRsZvDOfbXqjjDF1MFBwXod8nNa8tk1N0sn7703XObYhYm4STp7zcHJynhd7ox-hKF5idIIRIm_VFOkJxpzWT4oDgiuxQYyjvXvn_eIoxi3KS-RQw54V-7SuEKa4OijeXanQQSqNmtIcoFSjLTsY_QBl_OGGwY1d2fpQTr0aU2ndNYTo0q6MabYO4oviaav6CEe3-2Hx7cP51dmnzeXnjxdnp5cbw0Vdb1hLGAeiMCBrlG2IaSrUKGoFAt7oWpMKa9wiWmHStEC4EJZD29qGKUa5oYfFxeq1Xm3lFNygwk565eRNwIdOqpCc6UEqSzTWWumKVKzCQkNLiTYaDIAyNcuu96trmvUA1sCYguofSB_ejO677Py1xIjRRhCeDW9uDcH_nCEmObhooM89Aj9HSYTIDW4Yr_4D5fmBCLOlrteP0K2fw5jbulAU1RRhnKlX96u_K_vPl2bgeAVM8DEGaO8QjOQyMnIZGXkzMhlGj2DjkkrOLy93_d9T8Jryy_Ww-4dcnn75Stec3_sr0iA |
CitedBy_id | crossref_primary_10_1002_aps3_11538 crossref_primary_10_1002_ajb2_70016 crossref_primary_10_1111_1755_0998_14095 crossref_primary_10_1038_s41598_024_83292_9 crossref_primary_10_1016_j_sajb_2024_07_055 crossref_primary_10_3390_app14041415 crossref_primary_10_1002_tax_13308 crossref_primary_10_1002_aps3_11532 crossref_primary_10_1007_s40415_024_01051_6 crossref_primary_10_1111_jse_13127 crossref_primary_10_3389_ffgc_2024_1425492 |
Cites_doi | 10.1002/aps3.11442 10.1093/bioinformatics/btv646 10.3390/genes13040707 10.1073/pnas.1011841108 10.1089/cmb.2012.0021 10.1111/mec.15909 10.1093/gigascience/giz126 10.1002/ajb2.1568 10.2307/2992015 10.1093/bioinformatics/btp698 10.1093/sysbio/syy015 10.1186/1471-2148-12-100 10.1002/aps3.11345 10.1016/j.ympev.2019.02.020 10.1016/j.ympev.2014.10.004 10.1111/jipb.13415 10.24823/ejb.2022.409 10.1098/rsos.160239 10.1111/1755-0998.13527 10.1371/journal.pone.0251655 10.1093/aob/mct174 10.1002/ece3.8816 10.3389/fpls.2019.00937 10.1111/mec.16077 10.1093/gigascience/giy013 10.1101/2022.09.07.506990 10.1016/j.ympev.2021.107123 10.1177/1176934317742613 10.1098/rstb.2015.0338 10.1093/sysbio/syy054 10.3389/fpls.2019.01655 10.3390/plants10081702 10.1093/nar/gkw955 10.1002/aps3.11438 10.1371/journal.pone.0028448 10.3389/fgene.2022.1085692 10.1098/rstb.2021.0244 10.1111/nph.15099 10.1016/j.ympev.2005.04.008 10.1002/ajb2.1563 10.1126/science.1061421 10.1111/1755-0998.13472 10.1007/s11295-010-0349-z 10.1093/sysbio/syab053 10.1186/s13059-019-1632-4 10.1093/sysbio/syaa068 10.1002/aps3.11419 10.1111/j.1558-5646.2008.00549.x 10.1038/s41467-022-31280-w 10.7717/peerj.8995 10.3389/fpls.2021.669064 10.1002/aps3.1032 10.1038/nprot.2014.063 10.3389/fpls.2019.01102 10.1007/s00035-021-00268-5 10.1002/aps3.11337 10.1111/mec.13549 10.1186/s13007-018-0300-0 10.1126/sciadv.ade4954 10.1016/j.ympev.2020.106766 10.1002/aps3.11416 10.1016/j.ympev.2019.05.002 10.1111/1755-0998.13523 10.1007/s11105-022-01342-w 10.1016/j.tree.2009.01.009 10.1016/j.tplants.2015.06.012 10.1093/sysbio/46.3.523 10.3389/fpls.2018.00996 10.3732/ajb.1100335 10.7717/peerj.5175 10.1016/j.ab.2022.115001 10.1002/aps3.11422 10.1093/bioinformatics/bty648 10.3390/genes9020088 10.11646/bde.43.1.9 10.1111/jse.12806 10.1093/bioinformatics/btx204 10.1093/sysbio/syaa008 10.1016/j.ympev.2011.12.007 10.1111/nph.16290 10.1093/botlinnean/boab070 10.3389/fevo.2019.00439 10.1038/nmeth.1923 10.3389/fpls.2015.00710 10.3389/fgene.2019.01407 10.1093/sysbio/syab035 10.3732/apps.1500039 10.1093/molbev/msu245 10.3732/apps.1600016 10.1111/1755-0998.13479 10.1093/aob/mcac114 10.1016/j.tig.2019.11.006 10.1111/1755-0998.12626 10.1111/1755-0998.13598 10.1186/gb-2008-9-10-235 10.1093/molbev/msx235 10.1109/TCBB.2022.3170386 10.1016/j.ympev.2020.106903 10.3389/fpls.2018.00486 10.1002/j.1537-2197.1996.tb12718.x 10.1111/mec.15507 10.1186/s13059-020-02154-5 10.1002/aps3.11254 10.3732/apps.1400042 10.12705/655.9 10.1002/tax.12652 10.3732/ajb.1500026 10.1073/pnas.2115640118 10.1093/sysbio/syu080 10.1016/j.ygeno.2017.03.001 10.3390/plants9040432 10.3389/fpls.2016.00484 10.1002/tax.12117 10.1093/botlinnean/boz102 10.1093/aob/mcab063 10.3389/fevo.2021.668281 10.1080/00837792.2017.1313383 10.3732/apps.1700042 10.3389/fpls.2022.832034 10.1111/cla.12491 10.1093/sysbio/syy086 10.1111/1755-0998.13559 10.1016/j.ympev.2021.107068 10.1186/1471-2105-14-184 10.1002/aps3.1038 10.1002/aps3.11406 10.1371/journal.pgen.1005896 10.1002/aps3.1036 10.1093/sysbio/syab044 10.1111/nyas.12747 10.24823/ejb.2022.1928 10.1111/1755-0998.13683 10.1093/sysbio/syaa066 10.1002/aps3.11532 10.1016/j.ympev.2019.05.022 10.1093/gigascience/giab008 10.1111/jbi.14324 10.21425/F5FBG49226 10.1186/s12859-018-2128-z 10.1111/1755-0998.12945 10.1007/s10265-009-0291-z 10.1080/23818107.2018.1469429 10.1016/j.ympev.2018.07.012 10.3389/fpls.2021.765719 10.1002/aps3.1243 10.1111/nph.17675 10.1093/sysbio/syaa074 10.1111/jse.12167 10.1093/sysbio/syz073 10.3732/apps.1200497 10.1038/s41477-020-0733-0 10.2741/4531 10.1038/s41586-019-1693-2 |
ContentType | Journal Article |
Copyright | 2023 The Authors. published by Wiley Periodicals LLC on behalf of Botanical Society of America. 2023 The Authors. Applications in Plant Sciences published by Wiley Periodicals LLC on behalf of Botanical Society of America. 2023. This work is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2023 The Authors. published by Wiley Periodicals LLC on behalf of Botanical Society of America. – notice: 2023 The Authors. Applications in Plant Sciences published by Wiley Periodicals LLC on behalf of Botanical Society of America. – notice: 2023. This work is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | 24P AAYXX CITATION NPM 8FE 8FH ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO GNUQQ HCIFZ LK8 M7P PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 7X8 7S9 L.6 5PM DOA |
DOI | 10.1002/aps3.11537 |
DatabaseName | Wiley Online Library Open Access CrossRef PubMed ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection (ProQuest) ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central ProQuest Central Student ProQuest SciTech Premium Collection Biological Sciences Biological Science Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic AGRICOLA AGRICOLA - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Biological Science Collection ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection Biological Science Database ProQuest SciTech Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition Natural Science Collection ProQuest Central Korea Biological Science Collection ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | CrossRef MEDLINE - Academic Publicly Available Content Database AGRICOLA PubMed |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ: Directory of Open Access Journal (DOAJ) url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: BENPR name: ProQuest Central Database Suite (ProQuest) url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Botany |
DocumentTitleAlternate | SEQUENCING NON‐MODEL PLANTS FOR EVOLUTIONARY STUDIES |
EISSN | 2168-0450 |
EndPage | n/a |
ExternalDocumentID | oai_doaj_org_article_ad2b1bbab6264618bef32bcbeceeac74 PMC10439825 37601316 10_1002_aps3_11537 APS311537 |
Genre | article Journal Article |
GeographicLocations | United States--US |
GeographicLocations_xml | – name: United States--US |
GroupedDBID | 0R~ 1OC 24P 5VS 8FE 8FH AAEFD AAHBH AAHHS AAPSS ABDBF ACCFJ ACCMX ACGFO ACGFS ACUHS ACXQS ADBBV ADEHT ADHSS ADKYN ADRAZ ADRYA ADZMN ADZOD AEEZP AEGXH AENEX AEPYG AEQDE AFKRA AFNWH AIAGR AIWBW AJBDE AKPMI ALMA_UNASSIGNED_HOLDINGS ALUQN AOIJS AVUZU BBNVY BCNDV BENPR BHPHI CCPQU EBS EJD GROUPED_DOAJ GX1 H13 HCIFZ HYE IAO IGS IPNFZ ITC KQ8 LK8 M48 M7P M~E O9- OK1 PIMPY PQ0 PROAC RBO RIG RNS ROL RPM RZN TBO WIN AAYXX CITATION PHGZM PHGZT AAMMB AEFGJ AGXDD AIDQK AIDYY NPM PQGLB ABUWG AZQEC DWQXO GNUQQ PKEHL PQEST PQQKQ PQUKI PRINS 7X8 7S9 L.6 5PM PUEGO |
ID | FETCH-LOGICAL-c5877-4f245e2a1e0dcad92c9609a3d80e59b7b261b1f036129fe2588d5effd94a435c3 |
IEDL.DBID | M48 |
ISSN | 2168-0450 |
IngestDate | Wed Aug 27 01:03:29 EDT 2025 Thu Aug 21 18:40:18 EDT 2025 Fri Jul 11 18:31:10 EDT 2025 Thu Jul 10 19:23:39 EDT 2025 Wed Aug 13 09:56:29 EDT 2025 Mon Jul 21 06:01:52 EDT 2025 Tue Jul 01 00:20:11 EDT 2025 Thu Apr 24 22:59:36 EDT 2025 Wed Jan 22 16:16:21 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | barcoding short‐read sequencing herbaria non‐model plants coalescent analysis |
Language | English |
License | Attribution-NonCommercial 2023 The Authors. Applications in Plant Sciences published by Wiley Periodicals LLC on behalf of Botanical Society of America. This is an open access article under the terms of the http://creativecommons.org/licenses/by-nc/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5877-4f245e2a1e0dcad92c9609a3d80e59b7b261b1f036129fe2588d5effd94a435c3 |
Notes | This article is part of the special issue “Bioinformatics for Plant Biology.” ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-5988-7361 0000-0002-0850-1518 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1002/aps3.11537 |
PMID | 37601316 |
PQID | 2853073011 |
PQPubID | 4368373 |
PageCount | 13 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_ad2b1bbab6264618bef32bcbeceeac74 pubmedcentral_primary_oai_pubmedcentral_nih_gov_10439825 proquest_miscellaneous_2887609456 proquest_miscellaneous_2854350144 proquest_journals_2853073011 pubmed_primary_37601316 crossref_primary_10_1002_aps3_11537 crossref_citationtrail_10_1002_aps3_11537 wiley_primary_10_1002_aps3_11537_APS311537 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | July-August 2023 |
PublicationDateYYYYMMDD | 2023-07-01 |
PublicationDate_xml | – month: 07 year: 2023 text: July-August 2023 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Hoboken |
PublicationTitle | Applications in plant sciences |
PublicationTitleAlternate | Appl Plant Sci |
PublicationYear | 2023 |
Publisher | John Wiley & Sons, Inc John Wiley and Sons Inc Wiley |
Publisher_xml | – name: John Wiley & Sons, Inc – name: John Wiley and Sons Inc – name: Wiley |
References | 2018; 165 2013; 1 2010; 107 2013; 66 2019; 11 2019; 10 1997; 46 2021; 160 2016; 32 2019; 19 2012; 19 2022; 20 2020; 10 2022; 22 1998; 85 2012; 12 2012; 99 2021; 70 2018; 7 2018; 6 2017; 72 2023; 65 2018; 9 2010; 26 2015; 82 2021; 157 2019; 20 2018; 218 2022; 40 2013; 112 2022; 38 2016; 45 1989 2019; 8 2022; 199 2019; 7 2021; 43 2009; 63 2017; 66 2019; 35 2015; 53 2020; 36 2020; 147 2022; 119 2011; 6 2011; 7 2016; 12 2016; 4 2018; 19 2021; 59 2016; 7 2016; 3 2020; 151 2015; 64 2022; 9 2022; 12 1996; 83 2022; 13 2020; 21 2016; 25 2019; 574 2018; 14 2020; 29 2014; 31 2017; 5 2022; 132 2022; 130 2018; 128 2022; 71 2015; 102 2021; 128 2023; 662 2008; 9 2021; 30 2022; 377 2020; 8 2020; 6 2013; 14 2001; 293 2014; 2 2017; 33 2019; 68 2020; 9 2017; 34 2022; 79 2020b; 225 2021; 232 2014; 9 2005; 36 2021; 9 2009; 24 2023; 13 2015; 6 2023; 11 2015; 3 2017; 22 2010; 123 2020; 107 2018; 67 2022; 49 2021; 13 2017; 109 2021; 16 2021; 10 2021; 12 2023 2022 2020a; 107 2017; 17 2015; 20 2020; 71 2020; 192 2016; 65 2019; 137 2019; 138 2019 2019; 135 2020; 69 2015; 1360 2016; 371 2012; 9 e_1_2_9_75_1 e_1_2_9_98_1 e_1_2_9_52_1 e_1_2_9_79_1 e_1_2_9_94_1 e_1_2_9_10_1 e_1_2_9_56_1 e_1_2_9_33_1 e_1_2_9_90_1 Sambrook J. (e_1_2_9_121_1) 1989 e_1_2_9_71_1 e_1_2_9_103_1 e_1_2_9_126_1 e_1_2_9_149_1 e_1_2_9_107_1 e_1_2_9_122_1 e_1_2_9_145_1 e_1_2_9_14_1 e_1_2_9_141_1 e_1_2_9_37_1 e_1_2_9_18_1 e_1_2_9_160_1 e_1_2_9_41_1 e_1_2_9_64_1 e_1_2_9_87_1 e_1_2_9_22_1 e_1_2_9_45_1 e_1_2_9_68_1 e_1_2_9_83_1 e_1_2_9_6_1 e_1_2_9_119_1 e_1_2_9_60_1 e_1_2_9_138_1 e_1_2_9_111_1 e_1_2_9_134_1 e_1_2_9_115_1 e_1_2_9_157_1 e_1_2_9_26_1 e_1_2_9_49_1 e_1_2_9_130_1 e_1_2_9_153_1 Wang W. (e_1_2_9_146_1) 2019; 11 e_1_2_9_30_1 e_1_2_9_53_1 e_1_2_9_99_1 e_1_2_9_72_1 e_1_2_9_11_1 e_1_2_9_34_1 e_1_2_9_57_1 e_1_2_9_95_1 e_1_2_9_76_1 e_1_2_9_91_1 e_1_2_9_102_1 e_1_2_9_148_1 e_1_2_9_129_1 e_1_2_9_144_1 e_1_2_9_106_1 e_1_2_9_125_1 e_1_2_9_15_1 e_1_2_9_38_1 e_1_2_9_140_1 Allen J. M. (e_1_2_9_2_1) 2017; 66 e_1_2_9_19_1 e_1_2_9_42_1 e_1_2_9_88_1 e_1_2_9_61_1 e_1_2_9_46_1 e_1_2_9_84_1 e_1_2_9_23_1 e_1_2_9_65_1 e_1_2_9_80_1 e_1_2_9_5_1 e_1_2_9_114_1 e_1_2_9_137_1 e_1_2_9_118_1 e_1_2_9_133_1 e_1_2_9_156_1 e_1_2_9_9_1 e_1_2_9_152_1 e_1_2_9_27_1 e_1_2_9_69_1 e_1_2_9_110_1 e_1_2_9_31_1 e_1_2_9_50_1 e_1_2_9_73_1 e_1_2_9_35_1 e_1_2_9_77_1 e_1_2_9_96_1 e_1_2_9_12_1 e_1_2_9_54_1 e_1_2_9_92_1 e_1_2_9_109_1 e_1_2_9_101_1 e_1_2_9_128_1 e_1_2_9_105_1 e_1_2_9_124_1 e_1_2_9_147_1 e_1_2_9_39_1 e_1_2_9_120_1 e_1_2_9_16_1 e_1_2_9_58_1 e_1_2_9_143_1 e_1_2_9_20_1 e_1_2_9_62_1 e_1_2_9_89_1 e_1_2_9_24_1 e_1_2_9_43_1 e_1_2_9_66_1 e_1_2_9_85_1 e_1_2_9_8_1 e_1_2_9_81_1 e_1_2_9_4_1 e_1_2_9_113_1 e_1_2_9_159_1 e_1_2_9_117_1 e_1_2_9_155_1 e_1_2_9_136_1 e_1_2_9_151_1 e_1_2_9_28_1 e_1_2_9_47_1 e_1_2_9_132_1 e_1_2_9_74_1 e_1_2_9_51_1 e_1_2_9_78_1 e_1_2_9_13_1 e_1_2_9_32_1 e_1_2_9_55_1 e_1_2_9_97_1 e_1_2_9_93_1 e_1_2_9_108_1 e_1_2_9_70_1 e_1_2_9_127_1 e_1_2_9_100_1 e_1_2_9_123_1 e_1_2_9_104_1 e_1_2_9_17_1 e_1_2_9_36_1 e_1_2_9_59_1 e_1_2_9_142_1 e_1_2_9_63_1 e_1_2_9_40_1 e_1_2_9_21_1 e_1_2_9_67_1 e_1_2_9_44_1 e_1_2_9_86_1 e_1_2_9_7_1 e_1_2_9_82_1 e_1_2_9_3_1 e_1_2_9_112_1 e_1_2_9_139_1 e_1_2_9_116_1 e_1_2_9_135_1 e_1_2_9_158_1 e_1_2_9_25_1 e_1_2_9_131_1 e_1_2_9_154_1 e_1_2_9_48_1 e_1_2_9_29_1 e_1_2_9_150_1 |
References_xml | – volume: 71 start-page: 301 year: 2022 end-page: 319 article-title: A comprehensive phylogenomic platform for exploring the angiosperm tree of life publication-title: Systematic Biology – volume: 14 year: 2018 article-title: HybPhyloMaker: Target enrichment data analysis from raw reads to species trees publication-title: Evolutionary Bioinformatics – volume: 128 start-page: 69 year: 2018 end-page: 87 article-title: Exploring data processing strategies in NGS target enrichment to disentangle radiations in the tribe Cardueae (Compositae) publication-title: Molecular Phylogenetics and Evolution – volume: 38 start-page: 187 year: 2022 end-page: 203 article-title: Seeing through the hedge: Phylogenomics of (Cupressaceae) reveals prominent incomplete lineage sorting and ancient introgression for Tertiary relict flora publication-title: Cladistics – volume: 68 start-page: 365 year: 2019 end-page: 369 article-title: EPA‐ng: Massively parallel evolutionary placement of genetic sequences publication-title: Systematic Biology – volume: 12 year: 2022 article-title: A targeted capture approach to generating reference sequence databases for chloroplast gene regions publication-title: Ecology and Evolution – year: 2022 article-title: Distinguishing between histories of speciation and introgression using genomic data – year: 1989 – volume: 24 start-page: 332 year: 2009 end-page: 340 article-title: Gene tree discordance, phylogenetic inference and the multispecies coalescent publication-title: Trends in Ecology & Evolution – volume: 1 year: 2013 article-title: A targeted enrichment strategy for massively parallel sequencing of angiosperm plastid genomes publication-title: Applications in Plant Sciences – volume: 151 year: 2020 article-title: Under the rug: Abandoning persistent misconceptions that obfuscate organelle evolution publication-title: Molecular Phylogenetics and Evolution – volume: 12 year: 2021 article-title: The effects of herbarium specimen characteristics on short‐read NGS sequencing success in nearly 8000 specimens: Old, degraded samples have lower DNA yields but consistent sequencing success publication-title: Frontiers in Plant Science – volume: 147 year: 2020 article-title: Reconstructing phylogenetic relationships based on repeat sequence similarities publication-title: Molecular Phylogenetics and Evolution – volume: 107 start-page: 22169 year: 2010 end-page: 22171 article-title: Herbaria are a major frontier for species discovery publication-title: Proceedings of the National Academy of Sciences, USA – volume: 112 start-page: 1057 year: 2013 end-page: 1066 article-title: Phylogenomics and taxonomy of Lecomtelleae (Poaceae), an isolated panicoid lineage from Madagascar publication-title: Annals of Botany – volume: 66 start-page: 526 year: 2013 end-page: 538 article-title: Applications of next‐generation sequencing to phylogeography and phylogenetics publication-title: Molecular Phylogenetics and Evolution – volume: 70 start-page: 1 year: 2021 end-page: 13 article-title: The origins of Coca: Museum genomics reveals multiple independent domestications from progenitor publication-title: Systematic Biology – volume: 109 start-page: 186 year: 2017 end-page: 191 article-title: Evaluation and assessment of read‐mapping by multiple next‐generation sequencing aligners based on genome‐wide characteristics publication-title: Genomics – volume: 225 start-page: 1355 year: 2020b end-page: 1369 article-title: Large‐scale genomic sequence data resolve the deepest divergences in the legume phylogeny and support a near‐simultaneous evolutionary origin of all six subfamilies publication-title: New Phytologist – volume: 85 start-page: 531 year: 1998 end-page: 553 article-title: An ordinal classification for the families of flowering plants publication-title: Annals of the Missouri Botanical Garden – volume: 192 start-page: 656 year: 2020 end-page: 674 article-title: Systematics of (Bromeliaceae): Phylogenetic relationships based on nuclear gene and partial plastome sequences publication-title: Botanical Journal of the Linnean Society – volume: 99 start-page: 349 year: 2012 end-page: 364 article-title: Navigating the tip of the genomic iceberg: Next‐generation sequencing for plant systematics publication-title: American Journal of Botany – volume: 9 year: 2022 article-title: Precipitation is the main axis of tropical phylogenetic turnover across space and time publication-title: Science Advances – volume: 13 year: 2022 article-title: Genome skimming contributes to clarifying species limits in Section (Melanthiaceae) publication-title: Frontiers in Plant Science – volume: 69 start-page: 795 year: 2020 end-page: 812 article-title: The multispecies coalescent model outperforms concatenation across diverse phylogenomic data sets publication-title: Systematic Biology – volume: 157 year: 2021 article-title: Phylogenomics of Gesneriaceae using targeted capture of nuclear genes publication-title: Molecular Phylogenetics and Evolution – volume: 20 start-page: 34 year: 2019 article-title: Skmer: assembly‐free and alignment‐free sample identification using genome skims publication-title: Genome Biology – volume: 34 start-page: 3292 year: 2017 end-page: 3298 article-title: PhyloNetworks: A package for phylogenetic networks publication-title: Molecular Biology and Evolution – volume: 22 start-page: 927 year: 2022 end-page: 945 article-title: Taxon‐specific or universal? Using target capture to study the evolutionary history of rapid radiations publication-title: Molecular Ecology Resources – volume: 9 start-page: 996 year: 2018 article-title: Development of target sequence capture and estimation of genomic relatedness in a mixed oak stand publication-title: Frontiers in Plant Science – volume: 25 start-page: 1423 year: 2016 end-page: 1428 article-title: From barcodes to genomes: Extending the concept of DNA barcoding publication-title: Molecular Ecology – volume: 107 start-page: 1577 year: 2020 end-page: 1587 article-title: Small herbaria contribute unique biogeographic records to county, locality, and temporal scales publication-title: American Journal of Botany – volume: 218 start-page: 1668 year: 2018 end-page: 1684 article-title: Phylogenomic analyses reveal a deep history of hybridization and polyploidy in the Neotropical genus (Rosaceae) publication-title: New Phytologist – volume: 83 start-page: 383 year: 1996 end-page: 404 article-title: The hows and whys of cytoplasmic inheritance in seed plants publication-title: American Journal of Botany – volume: 102 start-page: 544 year: 2015 end-page: 554 article-title: Comparison of nuclear, plastid, and mitochondrial phylogenies and the origin of wild octoploid strawberry species publication-title: American Journal of Botany – volume: 45 year: 2016 article-title: NOVOPlasty: assembly of organelle genomes from whole genome data publication-title: Nucleic Acids Research – volume: 66 start-page: 786 year: 2017 end-page: 798 article-title: Phylogenomics from whole genome sequences using aTRAM publication-title: Systematic Biology – volume: 11 issue: 4 year: 2023 article-title: hybpiper‐nf and paragone‐nf: Containerization and additional options for target capture assembly and paralog resolution publication-title: Applications in Plant Sciences – volume: 20 start-page: 525 year: 2015 end-page: 527 article-title: Genome skimming for next‐generation biodiversity analysis publication-title: Trends in Plant Science – volume: 59 start-page: 1124 year: 2021 end-page: 1138 article-title: Capturing single‐copy nuclear genes, organellar genomes, and nuclear ribosomal DNA from deep genome skimming data for plant phylogenetics: A case study in Vitaceae publication-title: Journal of Systematics and Evolution – volume: 8 year: 2019 article-title: Access to RNA‐sequencing data from 1,173 plant species: The 1000 Plant transcriptomes initiative (1KP) publication-title: GigaScience – volume: 3 year: 2016 article-title: Temporal patterns of damage and decay kinetics of DNA retrieved from plant herbarium specimens publication-title: Royal Society Open Science – volume: 165 start-page: 419 year: 2018 end-page: 433 article-title: Herbarium genomics retraces the origins of C ‐specific carbonic anhydrase in Andropogoneae (Poaceae) publication-title: Botany Letters – volume: 574 start-page: 679 year: 2019 end-page: 685 article-title: One thousand plant transcriptomes and the phylogenomics of green plants publication-title: Nature – volume: 9 start-page: 88 year: 2018 article-title: Genome size diversity and its impact on the evolution of land plants publication-title: Genes – volume: 11 start-page: 3372 year: 2019 end-page: 3381 article-title: Long‐reads reveal that the chloroplast genome exists in two distinct versions in most plants publication-title: Genome Biology and Evolution – volume: 160 year: 2021 article-title: New genetic markers for Sapotaceae phylogenomics: More than 600 nuclear genes applicable from family to population levels publication-title: Molecular Phylogenetics and Evolution – volume: 79 start-page: 409 year: 2022 article-title: A hybrid capture bait set for publication-title: Edinburgh Journal of Botany – volume: 22 start-page: 1678 year: 2022 end-page: 1692 article-title: Batch effects in population genomic studies with low‐coverage whole genome sequencing data: Causes, detection and mitigation publication-title: Molecular Ecology Resources – volume: 35 start-page: 421 year: 2019 end-page: 432 article-title: Scaling read aligners to hundreds of threads on general‐purpose processors publication-title: Bioinformatics – volume: 14 start-page: 43 year: 2018 article-title: Genome skimming herbarium specimens for DNA barcoding and phylogenomics publication-title: Plant Methods – volume: 10 start-page: 1655 year: 2020 article-title: Tackling rapid radiations with targeted sequencing publication-title: Frontiers in Plant Science – volume: 71 start-page: 921 year: 2020 end-page: 928 article-title: An evolving view of phylogenetic support publication-title: Systematic Biology – volume: 22 start-page: 2105 year: 2022 end-page: 2119 article-title: Fishing for DNA? Designing baits for population genetics in target enrichment experiments: Guidelines, considerations and the new tool supeRbaits publication-title: Molecular Ecology Resources – volume: 9 year: 2021 article-title: On the potential of Angiosperms353 for population genomic studies publication-title: Applications in Plant Sciences – volume: 40 start-page: 628 year: 2022 end-page: 645 article-title: Transposable elements in plants: Recent advancements, tools and prospects publication-title: Plant Molecular Biology Reporter – volume: 65 start-page: 299 year: 2023 end-page: 323 article-title: Phylogenomics and the flowering plant tree of life publication-title: Journal of Integrative Plant Biology – volume: 49 start-page: 523 issue: 3 year: 2022 end-page: 536 article-title: Diversification of the orchid genus : Origin of endemism on the oceanic islands of São Tomé & Príncipe in the Gulf of Guinea publication-title: Journal of Biogeography – volume: 36 start-page: 132 year: 2020 end-page: 145 article-title: Pangenomics comes of age: From bacteria to plant and animal applications publication-title: Trends in Genetics – volume: 9 year: 2021 article-title: The best of both worlds: Combining lineage‐specific and universal bait sets in target‐enrichment hybridization reactions publication-title: Applications in Plant Sciences – volume: 71 start-page: 476 year: 2022 end-page: 489 article-title: Defining coalescent genes: Theory meets practice in organelle phylogenomics publication-title: Systematic Biology – volume: 82 start-page: 146 year: 2015 end-page: 155 article-title: When do species‐tree and concatenated estimates disagree? An empirical analysis with higher‐level scincid lizard phylogeny publication-title: Molecular Phylogenetics and Evolution – volume: 7 year: 2019 article-title: A customized nuclear target enrichment approach for developing a phylogenomic baseline for yams (Dioscoreaceae) publication-title: Applications in Plant Sciences – volume: 6 year: 2011 article-title: DNA damage in plant herbarium tissue publication-title: PLoS ONE – volume: 22 start-page: 3161 issue: 8 year: 2022 end-page: 3175 article-title: Species discrimination in (Theaceae): Next‐generation super‐barcodes meet evolutionary complexity publication-title: Molecular Ecology Resources – volume: 22 start-page: 1213 year: 2022 end-page: 1227 article-title: Fast and accurate distance‐based phylogenetic placement using divide and conquer publication-title: Molecular Ecology Resources – volume: 199 start-page: 331 year: 2022 end-page: 356 article-title: Hybridization: A ‘double‐edged sword’ for Neotropical plant diversity publication-title: Botanical Journal of the Linnean Society – volume: 6 year: 2018 article-title: SECAPR—A bioinformatics pipeline for the rapid and user‐friendly processing of targeted enriched Illumina sequences, from raw reads to alignments publication-title: PeerJ – volume: 33 start-page: 2575 year: 2017 end-page: 2576 article-title: ploidyNGS: Visually exploring ploidy with next generation sequencing data publication-title: Bioinformatics – volume: 6 start-page: 914 year: 2020 end-page: 920 article-title: Plant pan‐genomes are the new reference publication-title: Nature Plants – volume: 9 year: 2021 article-title: A target enrichment probe set for resolving the flagellate land plant tree of life publication-title: Applications in Plant Sciences – volume: 9 start-page: 432 year: 2020 article-title: The treasure vault can be opened: Large‐scale genome skimming works well using herbarium and silica gel dried material publication-title: Plants – volume: 6 year: 2018 article-title: Practical considerations for plant phylogenomics publication-title: Applications in Plant Sciences – volume: 13 start-page: 3729 year: 2022 article-title: The genomic basis of the plant island syndrome in Darwin's giant daisies publication-title: Nature Communications – volume: 31 start-page: 3081 year: 2014 end-page: 3092 article-title: Orthology inference in nonmodel organisms using transcriptomes and low‐coverage genomes: Improving accuracy and matrix occupancy for phylogenomics publication-title: Molecular Biology and Evolution – volume: 662 year: 2023 article-title: Innovations in double digest restriction‐site associated DNA sequencing (ddRAD‐Seq) method for more efficient SNP identification publication-title: Analytical Biochemistry – volume: 29 start-page: 2521 year: 2020 end-page: 2534 article-title: Beyond DNA barcoding: The unrealized potential of genome skim data in sample identification publication-title: Molecular Ecology – volume: 67 start-page: 735 year: 2018 end-page: 740 article-title: Inferring phylogenetic networks using PhyloNet publication-title: Systematic Biology – volume: 22 start-page: 1023 year: 2017 end-page: 1032 article-title: Plant mitochondrial DNA publication-title: Frontiers in Bioscience – volume: 71 start-page: 154 year: 2022 end-page: 167 article-title: A plea to DNA barcode type specimens: An example from (Sapotaceae) publication-title: TAXON – volume: 135 start-page: 98 year: 2019 end-page: 104 article-title: Target sequence capture in the Brazil nut family (Lecythidaceae): Marker selection and in silico capture from genome skimming data publication-title: Molecular Phylogenetics and Evolution – volume: 10 start-page: 1047 year: 2020 article-title: A guide to carrying out a phylogenomic target sequence capture project publication-title: Frontiers in Genetics – volume: 20 start-page: 1417 issue: 2 year: 2022 end-page: 1430 article-title: SCAMPP: Scaling alignment‐based phylogenetic placement to large trees publication-title: IEEE/ACM Transactions on Computational Biology and Bioinformatics – volume: 9 start-page: 235 year: 2008 article-title: Large‐scale assignment of orthology: Back to phylogenetics? publication-title: Genome Biology – volume: 107 start-page: 1710 year: 2020a end-page: 1735 article-title: Hybrid capture of 964 nuclear genes resolves evolutionary relationships in the mimosoid legumes and reveals the polytomous origins of a large pantropical radiation publication-title: American Journal of Botany – volume: 79 start-page: 1928 year: 2022 article-title: Resolving phylogenetic and taxonomic conflict in – volume: 26 start-page: 589 year: 2010 end-page: 595 article-title: Fast and accurate long‐read alignment with Burrows–Wheeler transform publication-title: Bioinformatics – volume: 68 start-page: 594 year: 2019 end-page: 606 article-title: A universal probe set for targeted sequencing of 353 nuclear genes from any flowering plant designed using k‐medoids clustering publication-title: Systematic Biology – volume: 65 start-page: 1081 year: 2016 end-page: 1092 article-title: Retrieval of hundreds of nuclear loci from herbarium specimens publication-title: Taxon – volume: 6 year: 2018 article-title: Targeting legume loci: A comparison of three methods for target enrichment bait design in Leguminosae phylogenomics publication-title: Applications in Plant Sciences – volume: 6 year: 2018 article-title: Comparison of taxon‐specific versus general locus sets for targeted sequence capture in plant phylogenomics publication-title: Applications in Plant Sciences – volume: 377 year: 2022 article-title: Recent progress on methods for estimating and updating large phylogenies publication-title: Philosophical Transactions of the Royal Society B: Biological Sciences – volume: 8 year: 2020 article-title: The mitochondrial phylogeny of land plants shows support for Setaphyta under composition‐heterogeneous substitution models publication-title: PeerJ – volume: 32 start-page: 786 year: 2016 end-page: 788 article-title: PHYLUCE is a software package for the analysis of conserved genomic loci publication-title: Bioinformatics – volume: 293 start-page: 2242 year: 2001 end-page: 2245 article-title: Rapid diversification of a species‐rich genus of Neotropical Rain Forest trees publication-title: Science – volume: 10 start-page: 1702 year: 2021 article-title: Species delimitation and conservation in taxonomically challenging lineages: The case of two clades of (Sapotaceae) in Madagascar publication-title: Plants – volume: 10 start-page: 1102 year: 2019 article-title: Factors affecting targeted sequencing of 353 nuclear genes from herbarium specimens spanning the diversity of angiosperms publication-title: Frontiers in Plant Science – volume: 7 start-page: 469 year: 2011 end-page: 484 article-title: Discordant mtDNA and cpDNA phylogenies indicate geographic speciation and reticulation as driving factors for the diversification of the genus publication-title: Tree Genetics & Genomes – volume: 19 start-page: 221 year: 2019 end-page: 234 article-title: A dedicated target capture approach reveals variable genetic markers across micro‐ and macro‐evolutionary time scales in palms publication-title: Molecular Ecology Resources – volume: 64 start-page: 112 year: 2015 end-page: 126 article-title: Genomic repeat abundances contain phylogenetic signal publication-title: Systematic Biology – volume: 68 start-page: 661 year: 2019 end-page: 672 article-title: Phylogeny of the Neotropical legume genera and and close relatives publication-title: Taxon – volume: 3 year: 2015 article-title: A protocol for targeted enrichment of intron‐containing sequence markers for recent radiations: A phylogenomic example from (Saxifragaceae) publication-title: Applications in Plant Sciences – volume: 7 start-page: 439 year: 2019 article-title: The limits of Hyb‐Seq for herbarium specimens: Impact of preservation techniques publication-title: Frontiers in Ecology and Evolution – volume: 19 start-page: 455 year: 2012 end-page: 477 article-title: SPAdes: A new genome assembly algorithm and its applications to single‐cell sequencing publication-title: Journal of Computational Biology – volume: 4 year: 2016 article-title: HybPiper: Extracting coding sequence and introns for phylogenetics from high‐throughput sequencing reads using target enrichment publication-title: Applications in Plant Sciences – volume: 21 start-page: 241 year: 2020 article-title: GetOrganelle: A fast and versatile toolkit for accurate de novo assembly of organelle genomes publication-title: Genome Biology – volume: 12 year: 2022 article-title: How to tackle phylogenetic discordance in recent and rapidly radiating groups? Developing a workflow using (Asteraceae) as an example publication-title: Frontiers in Plant Science – volume: 9 start-page: 486 year: 2018 article-title: Organelle genome inheritance in ferns (Athyriaceae, Aspleniineae, Polypodiales) publication-title: Frontiers in Plant Science – volume: 9 start-page: 357 year: 2012 end-page: 359 article-title: Fast gapped‐read alignment with Bowtie 2 publication-title: Nature Methods – volume: 70 start-page: 219 year: 2021 end-page: 235 article-title: Disentangling sources of gene tree discordance in phylogenomic data sets: Testing ancient hybridizations in Amaranthaceae s.l publication-title: Systematic Biology – volume: 22 start-page: 212 year: 2022 end-page: 224 article-title: Using target capture to address conservation challenges: Population‐level tracking of a globally‐traded herbal medicine publication-title: Molecular Ecology Resources – volume: 8 year: 2020 article-title: A two‐tier bioinformatic pipeline to develop probes for target capture of nuclear loci with applications in Melastomataceae publication-title: Applications in Plant Sciences – volume: 72 start-page: 35 year: 2017 end-page: 45 article-title: Herbarium genomics: skimming and plastomics from archival specimens publication-title: Webbia – volume: 43 start-page: 112 year: 2021 end-page: 126 article-title: The mitochondrial genomes of bryophytes publication-title: Bryophyte Diversity and Evolution – volume: 13 start-page: 707 year: 2022 article-title: A target capture probe set useful for deep‐ and shallow‐level phylogenetic studies in Cactaceae publication-title: Genes – volume: 9 year: 2021 article-title: Lineage‐specific vs. universal: A comparison of the Compositae1061 and Angiosperms353 enrichment panels in the sunflower family publication-title: Applications in Plant Sciences – volume: 8 year: 2020 article-title: Strategies for reducing per‐sample costs in target capture sequencing for phylogenomics and population genomics in plants publication-title: Applications in Plant Sciences – volume: 7 year: 2018 article-title: 10KP: A phylodiverse genome sequencing plan publication-title: GigaScience – volume: 130 start-page: 687 issue: 5 year: 2022 end-page: 701 article-title: Resolution, conflict and rate shifts: insights from a densely sampled plastome phylogeny for (Ericaceae) – volume: 36 start-page: 484 year: 2005 end-page: 493 article-title: Incongruence between primary sequence data and the distribution of a mitochondrial atp1 group II intron among ferns and horsetails publication-title: Molecular Phylogenetics and Evolution – volume: 63 start-page: 1 year: 2009 end-page: 19 article-title: Is a new and general theory of molecular systematics emerging? publication-title: Evolution – volume: 371 year: 2016 article-title: Telling plant species apart with DNA: From barcodes to genomes publication-title: Philosophical Transactions of the Royal Society B: Biological Sciences – volume: 5 year: 2017 article-title: The unexpected depths of genome‐skimming data: A case study examining Goodeniaceae floral symmetry genes publication-title: Applications in Plant Sciences – volume: 13 year: 2021 article-title: Phylogeny and biogeography of Mill. (Malvaceae, Bombacoideae) publication-title: Frontiers of Biogeography – volume: 71 start-page: 410 issue: 2 year: 2022 end-page: 425 article-title: A new pipeline for removing paralogs in target enrichment data publication-title: Systematic Biology – volume: 12 year: 2016 article-title: Inferring phylogenetic networks with maximum pseudolikelihood under incomplete lineage sorting publication-title: PLoS Genetics – volume: 13 year: 2023 article-title: A nuclear target sequence capture probe set for phylogeny reconstruction of the charismatic plant family Bignoniaceae publication-title: Frontiers in Genetics – volume: 9 year: 2021 article-title: Relative performance of customized and universal probe sets in target enrichment: A case study in subtribe Malinae publication-title: Applications in Plant Sciences – volume: 9 year: 2021 article-title: Target sequence capture in orchids: Developing a kit to sequence hundreds of single‐copy loci publication-title: Applications in Plant Sciences – volume: 19 start-page: 122 year: 2018 article-title: nQuire: a statistical framework for ploidy estimation using next generation sequencing publication-title: BMC Bioinformatics – volume: 119 issue: 4 year: 2022 article-title: Green plant genomes: What we know in an era of rapidly expanding opportunities publication-title: Proceedings of the National Academy of Sciences, USA – volume: 53 start-page: 391 year: 2015 end-page: 402 article-title: Using phylogenomics to resolve mega‐families: An example from Compositae: Phylogenomics and mega‐families publication-title: Journal of Systematics and Evolution – volume: 10 year: 2021 article-title: Twelve years of SAMtools and BCFtools publication-title: GigaScience – volume: 137 start-page: 156 year: 2019 end-page: 167 article-title: Phylogenomic analyses reveal an exceptionally high number of evolutionary shifts in a florally diverse clade of African legumes publication-title: Molecular Phylogenetics and Evolution – volume: 30 start-page: 5935 year: 2021 end-page: 5948 article-title: Opportunities and challenges for high‐quality biodiversity tissue archives in the age of long‐read sequencing publication-title: Molecular Ecology – volume: 14 start-page: 184 year: 2013 article-title: Benchmarking short sequence mapping tools publication-title: BMC Bioinformatics – volume: 69 start-page: 462 year: 2020 end-page: 478 article-title: Reticulate evolution helps explain apparent homoplasy in floral biology and pollination in baobabs ( ; Bombacoideae; Malvaceae) publication-title: Systematic Biology – volume: 12 start-page: 100 year: 2012 article-title: Separating the wheat from the chaff: mitigating the effects of noise in a plastome phylogenomic data set from L. (Pinaceae) publication-title: BMC Evolutionary Biology – volume: 232 start-page: 2520 year: 2021 end-page: 2534 article-title: Admixture may be extensive among hyperdominant Amazon rainforest tree species publication-title: New Phytologist – volume: 7 start-page: 484 year: 2016 article-title: Targeted capture sequencing in whitebark pine reveals range‐wide demographic and adaptive patterns despite challenges of a large, repetitive genome publication-title: Frontiers in Plant Science – volume: 138 start-page: 219 year: 2019 end-page: 232 article-title: Incongruence between gene trees and species trees and phylogenetic signal variation in plastid genes publication-title: Molecular Phylogenetics and Evolution – volume: 30 start-page: 5966 year: 2021 end-page: 5993 article-title: A beginner's guide to low‐coverage whole genome sequencing for population genomics publication-title: Molecular Ecology – volume: 46 start-page: 523 year: 1997 end-page: 536 article-title: Gene trees in species trees publication-title: Systematic Biology – volume: 1360 start-page: 36 year: 2015 end-page: 53 article-title: Estimating phylogenetic trees from genome‐scale data publication-title: Annals of the New York Academy of Sciences – volume: 9 start-page: 1056 year: 2014 end-page: 1082 article-title: Characterization of ancient and modern genomes by SNP detection and phylogenomic and metagenomic analysis using PALEOMIX publication-title: Nature Protocols – volume: 10 start-page: 937 year: 2019 article-title: A target capture‐based method to estimate ploidy from herbarium specimens publication-title: Frontiers in Plant Science – volume: 132 start-page: 89 year: 2022 end-page: 105 article-title: Afro‐alpine flagships revisited II: elucidating the evolutionary relationships and species boundaries in the giant senecios ( , Asteraceae) publication-title: Alpine Botany – volume: 7 year: 2019 article-title: Long‐fragment targeted capture for long‐read sequencing of plastomes publication-title: Applications in Plant Sciences – year: 2023 – volume: 17 start-page: 858 year: 2017 end-page: 868 article-title: Strategies for complete plastid genome sequencing publication-title: Molecular Ecology Resources – volume: 22 start-page: 404 year: 2022 end-page: 414 article-title: Testing genome skimming for species discrimination in the large and taxonomically difficult genus publication-title: Molecular Ecology Resources – volume: 16 year: 2021 article-title: Genome skimming reveals novel plastid markers for the molecular identification of illegally logged African timber species publication-title: PLoS ONE – volume: 2 year: 2014 article-title: Hyb‐Seq: Combining target enrichment and genome skimming for plant phylogenomics publication-title: Applications in Plant Sciences – volume: 9 year: 2021 article-title: Genome skimming reveals widespread hybridization in a neotropical flowering plant radiation publication-title: Frontiers in Ecology and Evolution – volume: 6 year: 2015 article-title: Using targeted enrichment of nuclear genes to increase phylogenetic resolution in the neotropical rain forest genus (Leguminosae: Mimosoideae) publication-title: Frontiers in Plant Science – year: 2019 article-title: P – volume: 123 start-page: 201 year: 2010 end-page: 206 article-title: Why does biparental plastid inheritance revive in angiosperms? publication-title: Journal of Plant Research – volume: 128 start-page: 835 year: 2021 end-page: 848 article-title: Aiming off the target: recycling target capture sequencing reads for investigating repetitive DNA publication-title: Annals of Botany – ident: e_1_2_9_141_1 doi: 10.1002/aps3.11442 – ident: e_1_2_9_138_1 – ident: e_1_2_9_44_1 doi: 10.1093/bioinformatics/btv646 – ident: e_1_2_9_120_1 doi: 10.3390/genes13040707 – ident: e_1_2_9_14_1 doi: 10.1073/pnas.1011841108 – ident: e_1_2_9_11_1 doi: 10.1089/cmb.2012.0021 – ident: e_1_2_9_20_1 doi: 10.1111/mec.15909 – ident: e_1_2_9_26_1 doi: 10.1093/gigascience/giz126 – ident: e_1_2_9_77_1 doi: 10.1002/ajb2.1568 – ident: e_1_2_9_6_1 doi: 10.2307/2992015 – ident: e_1_2_9_87_1 doi: 10.1093/bioinformatics/btp698 – ident: e_1_2_9_151_1 doi: 10.1093/sysbio/syy015 – ident: e_1_2_9_113_1 doi: 10.1186/1471-2148-12-100 – ident: e_1_2_9_67_1 doi: 10.1002/aps3.11345 – volume-title: Molecular Cloning: A Laboratory Manual year: 1989 ident: e_1_2_9_121_1 – ident: e_1_2_9_142_1 doi: 10.1016/j.ympev.2019.02.020 – ident: e_1_2_9_81_1 doi: 10.1016/j.ympev.2014.10.004 – ident: e_1_2_9_58_1 doi: 10.1111/jipb.13415 – ident: e_1_2_9_103_1 doi: 10.24823/ejb.2022.409 – ident: e_1_2_9_148_1 doi: 10.1098/rsos.160239 – ident: e_1_2_9_10_1 doi: 10.1111/1755-0998.13527 – ident: e_1_2_9_100_1 doi: 10.1371/journal.pone.0251655 – ident: e_1_2_9_17_1 doi: 10.1093/aob/mct174 – ident: e_1_2_9_50_1 doi: 10.1002/ece3.8816 – ident: e_1_2_9_144_1 doi: 10.3389/fpls.2019.00937 – ident: e_1_2_9_92_1 doi: 10.1111/mec.16077 – ident: e_1_2_9_29_1 doi: 10.1093/gigascience/giy013 – ident: e_1_2_9_64_1 doi: 10.1101/2022.09.07.506990 – ident: e_1_2_9_30_1 doi: 10.1016/j.ympev.2021.107123 – ident: e_1_2_9_45_1 doi: 10.1177/1176934317742613 – ident: e_1_2_9_65_1 doi: 10.1098/rstb.2015.0338 – ident: e_1_2_9_12_1 doi: 10.1093/sysbio/syy054 – ident: e_1_2_9_84_1 doi: 10.3389/fpls.2019.01655 – ident: e_1_2_9_22_1 doi: 10.3390/plants10081702 – ident: e_1_2_9_37_1 doi: 10.1093/nar/gkw955 – ident: e_1_2_9_62_1 doi: 10.1002/aps3.11438 – ident: e_1_2_9_133_1 doi: 10.1371/journal.pone.0028448 – ident: e_1_2_9_48_1 doi: 10.3389/fgene.2022.1085692 – ident: e_1_2_9_157_1 doi: 10.1098/rstb.2021.0244 – ident: e_1_2_9_106_1 doi: 10.1111/nph.15099 – ident: e_1_2_9_153_1 doi: 10.1016/j.ympev.2005.04.008 – ident: e_1_2_9_99_1 doi: 10.1002/ajb2.1563 – ident: e_1_2_9_118_1 doi: 10.1126/science.1061421 – ident: e_1_2_9_98_1 doi: 10.1111/1755-0998.13472 – ident: e_1_2_9_23_1 doi: 10.1007/s11295-010-0349-z – ident: e_1_2_9_41_1 doi: 10.1093/sysbio/syab053 – ident: e_1_2_9_123_1 doi: 10.1186/s13059-019-1632-4 – ident: e_1_2_9_126_1 doi: 10.1093/sysbio/syaa068 – ident: e_1_2_9_128_1 doi: 10.1002/aps3.11419 – ident: e_1_2_9_42_1 doi: 10.1111/j.1558-5646.2008.00549.x – ident: e_1_2_9_27_1 doi: 10.1038/s41467-022-31280-w – ident: e_1_2_9_132_1 doi: 10.7717/peerj.8995 – ident: e_1_2_9_76_1 doi: 10.3389/fpls.2021.669064 – ident: e_1_2_9_28_1 doi: 10.1002/aps3.1032 – ident: e_1_2_9_125_1 doi: 10.1038/nprot.2014.063 – ident: e_1_2_9_25_1 doi: 10.3389/fpls.2019.01102 – ident: e_1_2_9_53_1 doi: 10.1007/s00035-021-00268-5 – ident: e_1_2_9_59_1 doi: 10.1002/aps3.11337 – ident: e_1_2_9_31_1 doi: 10.1111/mec.13549 – ident: e_1_2_9_158_1 doi: 10.1186/s13007-018-0300-0 – ident: e_1_2_9_119_1 doi: 10.1126/sciadv.ade4954 – ident: e_1_2_9_145_1 doi: 10.1016/j.ympev.2020.106766 – ident: e_1_2_9_43_1 doi: 10.1002/aps3.11416 – ident: e_1_2_9_111_1 doi: 10.1016/j.ympev.2019.05.002 – ident: e_1_2_9_155_1 doi: 10.1111/1755-0998.13523 – ident: e_1_2_9_117_1 doi: 10.1007/s11105-022-01342-w – ident: e_1_2_9_35_1 doi: 10.1016/j.tree.2009.01.009 – ident: e_1_2_9_38_1 doi: 10.1016/j.tplants.2015.06.012 – ident: e_1_2_9_95_1 doi: 10.1093/sysbio/46.3.523 – ident: e_1_2_9_86_1 doi: 10.3389/fpls.2018.00996 – ident: e_1_2_9_134_1 doi: 10.3732/ajb.1100335 – ident: e_1_2_9_4_1 doi: 10.7717/peerj.5175 – volume: 66 start-page: 786 year: 2017 ident: e_1_2_9_2_1 article-title: Phylogenomics from whole genome sequences using aTRAM publication-title: Systematic Biology – ident: e_1_2_9_96_1 doi: 10.1016/j.ab.2022.115001 – ident: e_1_2_9_127_1 doi: 10.1002/aps3.11422 – ident: e_1_2_9_83_1 doi: 10.1093/bioinformatics/bty648 – ident: e_1_2_9_114_1 doi: 10.3390/genes9020088 – ident: e_1_2_9_40_1 doi: 10.11646/bde.43.1.9 – ident: e_1_2_9_90_1 doi: 10.1111/jse.12806 – ident: e_1_2_9_7_1 doi: 10.1093/bioinformatics/btx204 – ident: e_1_2_9_69_1 doi: 10.1093/sysbio/syaa008 – ident: e_1_2_9_101_1 doi: 10.1016/j.ympev.2011.12.007 – ident: e_1_2_9_78_1 doi: 10.1111/nph.16290 – ident: e_1_2_9_124_1 doi: 10.1093/botlinnean/boab070 – ident: e_1_2_9_49_1 doi: 10.3389/fevo.2019.00439 – ident: e_1_2_9_82_1 doi: 10.1038/nmeth.1923 – ident: e_1_2_9_109_1 doi: 10.3389/fpls.2015.00710 – ident: e_1_2_9_5_1 doi: 10.3389/fgene.2019.01407 – ident: e_1_2_9_115_1 – ident: e_1_2_9_8_1 doi: 10.1093/sysbio/syab035 – ident: e_1_2_9_47_1 doi: 10.3732/apps.1500039 – ident: e_1_2_9_154_1 doi: 10.1093/molbev/msu245 – ident: e_1_2_9_72_1 doi: 10.3732/apps.1600016 – ident: e_1_2_9_51_1 doi: 10.1111/1755-0998.13479 – ident: e_1_2_9_104_1 doi: 10.1093/aob/mcac114 – ident: e_1_2_9_54_1 doi: 10.1016/j.tig.2019.11.006 – ident: e_1_2_9_140_1 doi: 10.1111/1755-0998.12626 – ident: e_1_2_9_70_1 doi: 10.1111/1755-0998.13598 – ident: e_1_2_9_52_1 doi: 10.1186/gb-2008-9-10-235 – ident: e_1_2_9_130_1 doi: 10.1093/molbev/msx235 – ident: e_1_2_9_147_1 doi: 10.1109/TCBB.2022.3170386 – ident: e_1_2_9_56_1 doi: 10.1016/j.ympev.2020.106903 – ident: e_1_2_9_80_1 doi: 10.3389/fpls.2018.00486 – ident: e_1_2_9_105_1 doi: 10.1002/j.1537-2197.1996.tb12718.x – ident: e_1_2_9_21_1 doi: 10.1111/mec.15507 – ident: e_1_2_9_71_1 doi: 10.1186/s13059-020-02154-5 – ident: e_1_2_9_131_1 doi: 10.1002/aps3.11254 – ident: e_1_2_9_150_1 doi: 10.3732/apps.1400042 – ident: e_1_2_9_60_1 doi: 10.12705/655.9 – ident: e_1_2_9_122_1 doi: 10.1002/tax.12652 – ident: e_1_2_9_57_1 doi: 10.3732/ajb.1500026 – ident: e_1_2_9_79_1 doi: 10.1073/pnas.2115640118 – ident: e_1_2_9_39_1 doi: 10.1093/sysbio/syu080 – ident: e_1_2_9_137_1 doi: 10.1016/j.ygeno.2017.03.001 – ident: e_1_2_9_3_1 doi: 10.3390/plants9040432 – ident: e_1_2_9_136_1 doi: 10.3389/fpls.2016.00484 – ident: e_1_2_9_46_1 doi: 10.1002/tax.12117 – ident: e_1_2_9_94_1 doi: 10.1093/botlinnean/boz102 – ident: e_1_2_9_32_1 doi: 10.1093/aob/mcab063 – ident: e_1_2_9_91_1 doi: 10.3389/fevo.2021.668281 – ident: e_1_2_9_9_1 doi: 10.1080/00837792.2017.1313383 – ident: e_1_2_9_16_1 doi: 10.3732/apps.1700042 – ident: e_1_2_9_68_1 doi: 10.3389/fpls.2022.832034 – ident: e_1_2_9_88_1 doi: 10.1111/cla.12491 – ident: e_1_2_9_73_1 doi: 10.1093/sysbio/syy086 – ident: e_1_2_9_93_1 doi: 10.1111/1755-0998.13559 – ident: e_1_2_9_110_1 doi: 10.1016/j.ympev.2021.107068 – ident: e_1_2_9_61_1 doi: 10.1186/1471-2105-14-184 – ident: e_1_2_9_102_1 doi: 10.1002/aps3.1038 – ident: e_1_2_9_24_1 doi: 10.1002/aps3.11406 – ident: e_1_2_9_129_1 doi: 10.1371/journal.pgen.1005896 – ident: e_1_2_9_143_1 doi: 10.1002/aps3.1036 – ident: e_1_2_9_160_1 doi: 10.1093/sysbio/syab044 – ident: e_1_2_9_89_1 doi: 10.1111/nyas.12747 – ident: e_1_2_9_15_1 doi: 10.24823/ejb.2022.1928 – ident: e_1_2_9_156_1 doi: 10.1111/1755-0998.13683 – ident: e_1_2_9_107_1 doi: 10.1093/sysbio/syaa066 – ident: e_1_2_9_66_1 doi: 10.1002/aps3.11532 – volume: 11 start-page: 3372 year: 2019 ident: e_1_2_9_146_1 article-title: Long‐reads reveal that the chloroplast genome exists in two distinct versions in most plants publication-title: Genome Biology and Evolution – ident: e_1_2_9_55_1 doi: 10.1016/j.ympev.2019.05.022 – ident: e_1_2_9_139_1 – ident: e_1_2_9_33_1 doi: 10.1093/gigascience/giab008 – ident: e_1_2_9_36_1 doi: 10.1111/jbi.14324 – ident: e_1_2_9_116_1 doi: 10.21425/F5FBG49226 – ident: e_1_2_9_149_1 doi: 10.1186/s12859-018-2128-z – ident: e_1_2_9_34_1 doi: 10.1111/1755-0998.12945 – ident: e_1_2_9_159_1 doi: 10.1007/s10265-009-0291-z – ident: e_1_2_9_18_1 doi: 10.1080/23818107.2018.1469429 – ident: e_1_2_9_63_1 doi: 10.1016/j.ympev.2018.07.012 – ident: e_1_2_9_74_1 doi: 10.3389/fpls.2021.765719 – ident: e_1_2_9_19_1 doi: 10.1002/aps3.1243 – ident: e_1_2_9_85_1 doi: 10.1111/nph.17675 – ident: e_1_2_9_152_1 doi: 10.1093/sysbio/syaa074 – ident: e_1_2_9_97_1 doi: 10.1111/jse.12167 – ident: e_1_2_9_75_1 doi: 10.1093/sysbio/syz073 – ident: e_1_2_9_135_1 doi: 10.3732/apps.1200497 – ident: e_1_2_9_13_1 doi: 10.1038/s41477-020-0733-0 – ident: e_1_2_9_108_1 doi: 10.2741/4531 – ident: e_1_2_9_112_1 doi: 10.1038/s41586-019-1693-2 |
SSID | ssj0000816894 |
Score | 2.341249 |
Snippet | Recent technological advances in long‐read high‐throughput sequencing and assembly methods have facilitated the generation of annotated chromosome‐scale... Recent technological advances in long-read high-throughput sequencing and assembly methods have facilitated the generation of annotated chromosome-scale... Abstract Recent technological advances in long‐read high‐throughput sequencing and assembly methods have facilitated the generation of annotated... |
SourceID | doaj pubmedcentral proquest pubmed crossref wiley |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | e11537 |
SubjectTerms | barcoding bioinformatics Chromosomes coalescent analysis Deoxyribonucleic acid Design DNA Evolution Flowers & plants genome Genomes Genomics herbaria Next-generation sequencing non‐model plants Nucleotide sequence Plant mitochondria Plant sciences Review Ribosomal DNA short‐read sequencing species diversity Whole genome sequencing |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3dSxwxEA9F-tAXqd9rtUTsi8Kim4_d3EvhThQptBSq4FvIxwSl3t7R0wf_-06SveUORV98WzYDm53JZH5DJr8h5BsAZhXBmZKzxpbCWHQpF2RZBy45NJiA8Hgb-eev-vJa_LiRNwutvmJNWKYHzoo7MZ7ZylpjEXmLulIWAmfW4acB94wmMYFizFtIptIeHNtJDETPR8pOzHTGcX-QseH5QgRKRP0vocvnRZKL4DVFn4vPZLWDjXSYp7tGPkC7Tj6OJgjtnjbI96tUz02dmcYDAWpaTyP56hjo7O_deIzhiSI4pdN71CP181IMOstFhJvk-uL86uyy7BojlE6qpilFYEICMxWcemf8gLnIG2e4V6cgB7axmBbZKmBwwmgegEmlvIQQ_EAYhEeOb5GVdtLCDqEVDwoxErhaxdTKKhH5bBDneXCW-7ogR3NladexhsfmFfc68x0zHRWrk2ILctjLTjNXxotSo6jzXiLyW6cXaHXdWV2_ZfWC7M0tpjunm2mG0CPvWAU56IfRXeIZiGlh8phkRDpLFa_JYIjAtFfi32_nRdDPNtUQ8QpH1NLyWPqd5ZH27jbRdlfxFjIm5AU5TivpFR3p4e8_PD3tvoe2vpBPDLFZrjLeIysP_x5hH7HUg_2a3OY_or0esg priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELag5cAF8SZQkBFcQIra-JF4L6AualUhUVXQSr1ZfoxLRTcJTXvg3zN2vKErqr1F8Rzi8YznG3vyDSHvATCrCM6UnDW2FMaiS7kgyzpwyaHBBITHv5G_HdYHJ-LrqTzNB25DLqtc7olpo_adi2fk2wzjymiOn_vfZewaFW9XcwuNu2QTt2CFydfmfO_w6Pt0ypLaSszExEvKtk0_cNwnZGx8fiMSJcL-21Dm_8WSN0FsikL7D8mDDB_p7rjej8gdaB-Te_MOId6fJ-TTcarrps708WKAmtbTSMK6ADr8Ol8sMExRBKm0v0B9Ur8syaDDWEz4lJzs7x1_OShzg4TSSdU0pQhMSGCmgh3vjJ8xF_njDPdqB-TMNhbTI1sFDFIY1QMwqZSXEIKfCYMwyfFnZKPtWnhBaMWDQqwErlYxxbJKRF4bxHsenOW-LsiHpbK0y-zhsYnFhR55j5mOitVJsQV5N8n2I2fGrVLzqPNJIvJcpxfd5ZnObqONZ7ay1ljMu0RdKQuBM-vQ8AAjRiMKsrVcMZ2db9D_TKUgb6dhdJt4F2Ja6K6TjEh3qmKdDIYKTH8lzv75aATT16ZaIl7hiFoxj5XprI605z8TfXcV_0bGxLwgH5MlrdGR3j36wdPTy_UTfUXuM0RfYx3xFtm4uryG14iWruyb7BJ_AahhFPM priority: 102 providerName: ProQuest – databaseName: Wiley Online Library Open Access dbid: 24P link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1La9wwEB7StIdeSt9xmxaV9tKCyVoPWwshkJSGUGgJNIHchB6jNiTrXeLkkH-fkex1ujQEejPWGKyRRvONNPMJ4BMiRRXR21LwxpXSOjIpH1VZR6EENhSAiFSN_ONnfXAsv5-okzXYXtbC9PwQ44Zbsoy8XicDt67buiUNtYtOkMEr0TyAh6m2NjHnc3k47rDkKyXyTYicHkrCLpORn5Rv3X6-4pEycf9daPPfpMm_wWz2RvtP4ckAI9luP-7PYA3b5_Bob05Q7_oF7Bzl_G7m7SIdEDDbBpbIWGfIurPT2YzcFSOwyhbnpFcWlqkZrOuTCl_C8f63o68H5XBRQumVbppSRi4VclvhJHgbptwnHjkrgp6gmrrGUZjkqkjOirx7RK60DgpjDFNpCS558QrW23mLG8AqETVhJvS1TqGW0zLx25DuAnonQl3A56WyjB9YxNNlFuem5z_mJinWZMUW8HGUXfTcGXdK7SWdjxKJ7zq_mF_8NoP5GBu4q5yzjuIvWVfaYRTceZqASJ6jkQVsLkfMDEbYGU5QpF_BCvgwNpP5pDMR2-L8KsvIfLYq75Mhl0FhsKLev-4nwfi3OadIVNSiV6bHSndWW9rTP5nGu0pVyRSgF_Alz6R7dGR2D3-J_PTmf4TfwmNOmKzPLt6E9cuLK3xHGOrSvc-mcgMa8xYu priority: 102 providerName: Wiley-Blackwell |
Title | Target capture and genome skimming for plant diversity studies |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Faps3.11537 https://www.ncbi.nlm.nih.gov/pubmed/37601316 https://www.proquest.com/docview/2853073011 https://www.proquest.com/docview/2854350144 https://www.proquest.com/docview/2887609456 https://pubmed.ncbi.nlm.nih.gov/PMC10439825 https://doaj.org/article/ad2b1bbab6264618bef32bcbeceeac74 |
Volume | 11 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1La9tAEB7y6KGXkL6VpmZLe2lBrbUPaX1IS1wSQiHBtDHkJvbZhtqyayeQ_PvMrh7E1ITehHYM0ucZzTfa0TcA753DqsIblTJa6JQrjSFlvEhzzwRzBRYgLHyNfHqWn4z59wtxsQHt_M4GwOXa0i7MkxovJp9u_t5-xYA_aAREP6v5kmHoC1ZswjZmpCIE6GlD8-MTOQyXiDMRKR6kyGL6nVLp_Z-v5KYo4b-Od_7bPnmf1sa8dLwLOw2hJIe1BzyBDVc9hUfDGZK-22fw5Tx2ehOj5mGrgKjKkiDLOnVk-edyOsXERZC2kvkEESa2bdIgy7q98DmMj4_Ov52kzciE1AhZFCn3lAtHVeb61ig7oCYoyilmZd-JgS40Fkw685i2MM97R4WUVjjv7YArJE6GvYCtala5V0Ay5iWyJ2dyGYouLXlQukHsrDOa2TyBDy1YpWn0xMNYi0lZKyHTMgBbRmATeNfZzmsVjbVWw4B5ZxGUr-OJ2eJX2QRSqSzVmdZKYyXG80xq5xnVBl3RYQ4peAL77T9Wtt5UUiQl9bMsgbfdMgZS2B1RlZtdRxsed1n5QzaYPLAgFnj3L2sn6K42dhexDFfkinus3M7qSnX5Owp6Z-H7ZCzVE_gYPekBjMrD0U8Wj_b-C9PX8JgiLasbjPdh62px7d4gjbrSPdikfNSD7eHR2ehHL76M6MW4uQNBuB0G |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3dT9RAEJ_gYaIvxm-rqGvUB00a6H60vQc1nEIOgQvRI-Gt7leByLWVQgz_lH-js9sPuUjujbfmdnLpzs7s_KY7-xuAN9ZiVpFrGTKaqJBLhS6lcxHGORPMJpiAMHcbeXcSj_f51wNxsAR_urswrqyy2xP9Rm1K7b6Rr1KMK405fqp-ha5rlDtd7VpoNGaxbS9-Y8pWf9j6guv7ltLNjenncdh2FQi1SJMk5DnlwlIZ2TWjpRlS7UjXJDPpmhVDlSjMKVSU486OoTC3VKSpETbPzZBLxBaa4f_egGXOMJUZwPJoY7L3rf-q49tYDHnPg0pXZVUz3JeEa7R-KfL5BgFXodr_izMvg2Yf9Tbvwp0WrpL1xr7uwZIt7sPNUYmQ8uIBfJz6OnKiZeUOIogsDHGkrzNL6p_HsxmGRYKgmFQnuH7EdCUgpG6KFx_C_rWo7hEMirKwT4BELE8Rm1kdpy6lUyl3PDqIL43Vipk4gHedsjLdspW7phknWcOzTDOn2MwrNoDXvWzVcHRcKTVyOu8lHK-2_6E8PcxaN82koSpSSirM83gcpcrmjCqNhm4xQiU8gJVuxbLW2evsn2kG8KofRjd1Zy-ysOW5l-H-DJcvksHQhOm2wNk_boygf1tfu8QiHEnnzGNuOvMjxfGRpwuP3O3nlIoA3ntLWqCjbH3vO_NPTxdP9CXcGk93d7Kdrcn2M7hNEfk1NcwrMDg7PbfPEamdqRetexD4cd0e-RfAOVGQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VFKFeEG8CBRYBB5CsxPuwnQOghjZqKUQRtFJv7j5LRWOHphXqX-PXMbt-0Igqt96s7Cjyzs7sfOOd_QbgtbWYVTgtI0ZTFXGp0KW0E1HimGA2xQSE-dvIX8fJ9j7_fCAOVuBPcxfGl1U2e2LYqE2p_TfyHsW4Upljz9VlEZPN0cfZr8h3kPInrU07jcpEdu3Fb0zf5u93NnGt31A62tr7tB3VHQYiLbI0jbijXFgqY9s3WpoB1Z6ATTKT9a0YqFRhfqFih7s8hkVnqcgyI6xzZsAl4gzN8H9vwGqKWVG_A6vDrfHkW_uFJ7S0GPCWE5X25GzOcI8Svun6pSgYmgVchXD_L9S8DKBDBBzdgds1dCUbla3dhRVb3IObwxLh5cV9-LAXasqJljN_KEFkYYgngJ1aMv95PJ1iiCQIkMnsBNeSmKYchMyrQsYHsH8tqnsInaIs7GMgMXMZ4jSrk8yndyrjnlMHsaaxWjGTdOFto6xc18zlvoHGSV5xLtPcKzYPiu3Cq1Z2VvF1XCk19DpvJTzHdvihPD3Ka5fNpaEqVkoqzPl4EmfKOkaVRqO3GK1S3oX1ZsXy2vHn-T8z7cLLdhhd1p_DyMKW50GGh_NcvkwGwxSm3gJn_6gygvZtQx0Ti3EkWzCPheksjhTHPwJ1eOxvQmdUdOFdsKQlOso3Jt9ZeHqyfKIv4BZ6Yv5lZ7z7FNYogsCqnHkdOmen5_YZgrYz9bz2DgKH1-2QfwFtaFXF |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Target+capture+and+genome+skimming+for+plant+diversity+studies&rft.jtitle=Applications+in+plant+sciences&rft.au=Pezzini%2C+Fl%C3%A1via+Fonseca&rft.au=Ferrari%2C+Giada&rft.au=Forrest%2C+Laura+L.&rft.au=Hart%2C+Michelle+L.&rft.date=2023-07-01&rft.issn=2168-0450&rft.eissn=2168-0450&rft.volume=11&rft.issue=4&rft_id=info:doi/10.1002%2Faps3.11537&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_aps3_11537 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2168-0450&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2168-0450&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2168-0450&client=summon |