Tuning Electrostatic Gating of Semiconducting Carbon Nanotubes by Controlling Protein Orientation in Biosensing Devices

The ability to detect proteins through gating conductance by their unique surface electrostatic signature holds great potential for improving biosensing sensitivity and precision. Two challenges are: (1) defining the electrostatic surface of the incoming ligand protein presented to the conductive su...

Full description

Saved in:
Bibliographic Details
Published inAngewandte Chemie International Edition Vol. 60; no. 37; pp. 20184 - 20189
Main Authors Xu, Xinzhao, Bowen, Benjamin J., Gwyther, Rebecca E. A., Freeley, Mark, Grigorenko, Bella, Nemukhin, Alexander V., Eklöf‐Österberg, Johnas, Moth‐Poulsen, Kasper, Jones, D. Dafydd, Palma, Matteo
Format Journal Article
LanguageEnglish
Published Weinheim Wiley Subscription Services, Inc 06.09.2021
John Wiley and Sons Inc
EditionInternational ed. in English
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The ability to detect proteins through gating conductance by their unique surface electrostatic signature holds great potential for improving biosensing sensitivity and precision. Two challenges are: (1) defining the electrostatic surface of the incoming ligand protein presented to the conductive surface; (2) bridging the Debye gap to generate a measurable response. Herein, we report the construction of nanoscale protein‐based sensing devices designed to present proteins in defined orientations; this allowed us to control the local electrostatic surface presented within the Debye length, and thus modulate the conductance gating effect upon binding incoming protein targets. Using a β‐lactamase binding protein (BLIP2) as the capture protein attached to carbon nanotube field effect transistors in different defined orientations. Device conductance had influence on binding TEM‐1, an important β‐lactamase involved in antimicrobial resistance (AMR). Conductance increased or decreased depending on TEM‐1 presenting either negative or positive local charge patches, demonstrating that local electrostatic properties, as opposed to protein net charge, act as the key driving force for electrostatic gating. This, in turn can, improve our ability to tune the gating of electrical biosensors toward optimized detection, including for AMR as outlined herein. Nanoscale protein‐based sensing devices designed to present proteins in defined orientations allowed the control of local electrostatic surface presented within the Debye length, and thus modulation of the conductance gating effect upon sensing protein targets.
AbstractList The ability to detect proteins through gating conductance by their unique surface electrostatic signature holds great potential for improving biosensing sensitivity and precision. Two challenges are: (1) defining the electrostatic surface of the incoming ligand protein presented to the conductive surface; (2) bridging the Debye gap to generate a measurable response. Herein, we report the construction of nanoscale protein‐based sensing devices designed to present proteins in defined orientations; this allowed us to control the local electrostatic surface presented within the Debye length, and thus modulate the conductance gating effect upon binding incoming protein targets. Using a β‐lactamase binding protein (BLIP2) as the capture protein attached to carbon nanotube field effect transistors in different defined orientations. Device conductance had influence on binding TEM‐1, an important β‐lactamase involved in antimicrobial resistance (AMR). Conductance increased or decreased depending on TEM‐1 presenting either negative or positive local charge patches, demonstrating that local electrostatic properties, as opposed to protein net charge, act as the key driving force for electrostatic gating. This, in turn can, improve our ability to tune the gating of electrical biosensors toward optimized detection, including for AMR as outlined herein.
The ability to detect proteins through gating conductance by their unique surface electrostatic signature holds great potential for improving biosensing sensitivity and precision. Two challenges are: (1) defining the electrostatic surface of the incoming ligand protein presented to the conductive surface; (2) bridging the Debye gap to generate a measurable response. Herein, we report the construction of nanoscale protein‐based sensing devices designed to present proteins in defined orientations; this allowed us to control the local electrostatic surface presented within the Debye length, and thus modulate the conductance gating effect upon binding incoming protein targets. Using a β‐lactamase binding protein (BLIP2) as the capture protein attached to carbon nanotube field effect transistors in different defined orientations. Device conductance had influence on binding TEM‐1, an important β‐lactamase involved in antimicrobial resistance (AMR). Conductance increased or decreased depending on TEM‐1 presenting either negative or positive local charge patches, demonstrating that local electrostatic properties, as opposed to protein net charge, act as the key driving force for electrostatic gating. This, in turn can, improve our ability to tune the gating of electrical biosensors toward optimized detection, including for AMR as outlined herein. Nanoscale protein‐based sensing devices designed to present proteins in defined orientations allowed the control of local electrostatic surface presented within the Debye length, and thus modulation of the conductance gating effect upon sensing protein targets.
The ability to detect proteins through gating conductance by their unique surface electrostatic signature holds great potential for improving biosensing sensitivity and precision. Two challenges are: (1) defining the electrostatic surface of the incoming ligand protein presented to the conductive surface; (2) bridging the Debye gap to generate a measurable response. Herein, we report the construction of nanoscale protein-based sensing devices designed to present proteins in defined orientations; this allowed us to control the local electrostatic surface presented within the Debye length, and thus modulate the conductance gating effect upon binding incoming protein targets. Using a β-lactamase binding protein (BLIP2) as the capture protein attached to carbon nanotube field effect transistors in different defined orientations. Device conductance had influence on binding TEM-1, an important β-lactamase involved in antimicrobial resistance (AMR). Conductance increased or decreased depending on TEM-1 presenting either negative or positive local charge patches, demonstrating that local electrostatic properties, as opposed to protein net charge, act as the key driving force for electrostatic gating. This, in turn can, improve our ability to tune the gating of electrical biosensors toward optimized detection, including for AMR as outlined herein.The ability to detect proteins through gating conductance by their unique surface electrostatic signature holds great potential for improving biosensing sensitivity and precision. Two challenges are: (1) defining the electrostatic surface of the incoming ligand protein presented to the conductive surface; (2) bridging the Debye gap to generate a measurable response. Herein, we report the construction of nanoscale protein-based sensing devices designed to present proteins in defined orientations; this allowed us to control the local electrostatic surface presented within the Debye length, and thus modulate the conductance gating effect upon binding incoming protein targets. Using a β-lactamase binding protein (BLIP2) as the capture protein attached to carbon nanotube field effect transistors in different defined orientations. Device conductance had influence on binding TEM-1, an important β-lactamase involved in antimicrobial resistance (AMR). Conductance increased or decreased depending on TEM-1 presenting either negative or positive local charge patches, demonstrating that local electrostatic properties, as opposed to protein net charge, act as the key driving force for electrostatic gating. This, in turn can, improve our ability to tune the gating of electrical biosensors toward optimized detection, including for AMR as outlined herein.
Author Freeley, Mark
Eklöf‐Österberg, Johnas
Moth‐Poulsen, Kasper
Nemukhin, Alexander V.
Xu, Xinzhao
Gwyther, Rebecca E. A.
Jones, D. Dafydd
Palma, Matteo
Grigorenko, Bella
Bowen, Benjamin J.
AuthorAffiliation 5 Department of Chemistry and Chemical Engineering Chalmers University of Technology 41296 Gothenburg Sweden
3 Department of Chemistry Lomonosov Moscow State University Moscow 119991 Russian Federation
4 Emanuel Institute of Biochemical Physics Russian Academy of Sciences Moscow 119991 Russian Federation
2 Molecular Biosciences Division School of Biosciences Sir Martin Evans Building Cardiff University Cardiff CF10 3AX UK
1 Department of Chemistry and Materials Research Institute Queen Mary University of London London E1 4NS UK
AuthorAffiliation_xml – name: 4 Emanuel Institute of Biochemical Physics Russian Academy of Sciences Moscow 119991 Russian Federation
– name: 5 Department of Chemistry and Chemical Engineering Chalmers University of Technology 41296 Gothenburg Sweden
– name: 3 Department of Chemistry Lomonosov Moscow State University Moscow 119991 Russian Federation
– name: 1 Department of Chemistry and Materials Research Institute Queen Mary University of London London E1 4NS UK
– name: 2 Molecular Biosciences Division School of Biosciences Sir Martin Evans Building Cardiff University Cardiff CF10 3AX UK
Author_xml – sequence: 1
  givenname: Xinzhao
  surname: Xu
  fullname: Xu, Xinzhao
  organization: Queen Mary University of London
– sequence: 2
  givenname: Benjamin J.
  surname: Bowen
  fullname: Bowen, Benjamin J.
  organization: Cardiff University
– sequence: 3
  givenname: Rebecca E. A.
  surname: Gwyther
  fullname: Gwyther, Rebecca E. A.
  organization: Cardiff University
– sequence: 4
  givenname: Mark
  surname: Freeley
  fullname: Freeley, Mark
  organization: Queen Mary University of London
– sequence: 5
  givenname: Bella
  surname: Grigorenko
  fullname: Grigorenko, Bella
  organization: Russian Academy of Sciences
– sequence: 6
  givenname: Alexander V.
  surname: Nemukhin
  fullname: Nemukhin, Alexander V.
  organization: Russian Academy of Sciences
– sequence: 7
  givenname: Johnas
  surname: Eklöf‐Österberg
  fullname: Eklöf‐Österberg, Johnas
  organization: Chalmers University of Technology
– sequence: 8
  givenname: Kasper
  surname: Moth‐Poulsen
  fullname: Moth‐Poulsen, Kasper
  organization: Chalmers University of Technology
– sequence: 9
  givenname: D. Dafydd
  surname: Jones
  fullname: Jones, D. Dafydd
  email: jonesdd@cardiff.ac.uk
  organization: Cardiff University
– sequence: 10
  givenname: Matteo
  orcidid: 0000-0001-8715-4034
  surname: Palma
  fullname: Palma, Matteo
  email: m.palma@qmul.ac.uk
  organization: Queen Mary University of London
BackLink https://research.chalmers.se/publication/525373$$DView record from Swedish Publication Index
BookMark eNqFUk1v3CAQRVWqJtn22rOlXnrZLRgwcKmUbrZppCiplL0jjMdZIhtSsLPaf19cR6kSqeqFj5n3Ho-ZOUVHPnhA6CPBK4Jx-cV4B6sSlwQzzNgbdEJ4SZZUCHqUz4zSpZCcHKPTlO4zXkpcvUPHlJUCEy5O0H47eufvik0HdoghDWZwtrjIaw6GtriF3tngm9H-iaxNrIMvro0Pw1hDKupDsQ4-M7tuyv-MYQDni5vowE9aGZyv31xI4NOEOIdHZyG9R29b0yX48LQv0Pb7Zrv-sby6ubhcn10tLZeCZfNGSaAc15ZyUFWDibLG1pZUYJlseW24ratKNqWF0lRA2spUlImWU2WALtDtLJv28DDW-iG63sSDDsbpCAlMtDttd6brISadQDOljM1MzXijNKO21oaRWqvGqIqLXFgis-rXWTVL9tDY_NVouhfiLzPe7fRdeNSScVHmrizQ5yeBGH6NkAbdu2Sh64yHMCZdcl6q3DiMM_TTK-h9GKPPNcuoiishpJwcrWaUzT1MEdpnMwTraVD0NCj6eVAygb0iWDf3Kxt23b9paqbtXQeH_zyiz64vN3-5vwEOXtbx
CitedBy_id crossref_primary_10_3390_molecules28052161
crossref_primary_10_1002_advs_202401877
crossref_primary_10_1021_acs_jpclett_3c00358
crossref_primary_10_1021_jacs_3c03336
crossref_primary_10_1021_acs_analchem_4c04178
crossref_primary_10_1002_slct_202302340
crossref_primary_10_1021_jacs_2c13655
crossref_primary_10_1016_j_xcrp_2022_100962
crossref_primary_10_1039_D1CP04626H
crossref_primary_10_1016_j_jcis_2023_06_171
crossref_primary_10_1016_j_mtphys_2023_101090
crossref_primary_10_1002_adma_202311541
crossref_primary_10_1021_acs_nanolett_3c03877
crossref_primary_10_1002_chem_202301704
crossref_primary_10_1021_acssensors_2c00229
crossref_primary_10_1039_D2MA00714B
crossref_primary_10_1016_j_xcrp_2024_101919
crossref_primary_10_1002_INMD_20240032
crossref_primary_10_1039_D2NA00092J
Cites_doi 10.1002/anie.202003825
10.1042/BST20130094
10.1002/pro.2505
10.1039/C9CC09498A
10.1039/C6SC00944A
10.1016/S0966-842X(98)01317-1
10.1021/ja053094r
10.1126/science.1214824
10.1002/pro.3280
10.1021/ar300347d
10.1126/science.aba5980
10.1021/acs.bioconjchem.9b00719
10.1074/jbc.M111.265058
10.1021/nl072996i
10.1016/j.bios.2009.04.048
10.1002/adma.200700665
10.1016/j.nantod.2009.04.005
10.1021/acs.nanolett.8b00856
10.1021/acs.chemmater.0c02051
10.1021/acsami.7b00810
10.1021/cr040409x
10.1021/acs.chemrev.9b00437
10.1021/acs.chemrev.5b00608
10.1021/ac501441d
10.1039/c3cs60077g
10.1126/science.aao6750
10.1021/ja053862e
10.1002/anie.201505308
10.1002/prot.340160406
10.1063/1.5036538
10.1038/s42004-019-0185-5
10.1039/c2cs15334c
10.1021/ja205684a
10.1021/cr050569o
10.1021/ja109180d
10.1021/nl304209p
10.1021/ja311604j
10.1021/ja100014q
10.1021/acsnano.0c02823
10.1021/cm102406h
10.1039/C5NR08117C
10.1021/nn200489j
10.1002/ange.201505308
10.1038/nsb1001-848
10.1039/C4SC03900A
10.1038/nnano.2010.275
10.1021/cr400355w
10.1016/j.jmb.2009.03.058
10.1021/ja211540z
10.1039/b709567h
10.1021/jacs.7b07362
10.1126/science.1062711
10.1126/science.aaz7440
10.1016/j.ccr.2009.11.007
10.1039/C2CS35335K
10.1016/0008-6223(95)00017-8
10.1002/ange.202003825
10.1021/nl071792z
10.1042/bj3300581
ContentType Journal Article
Copyright 2021 The Authors. Angewandte Chemie International Edition published by Wiley-VCH GmbH
2021. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2021 The Authors. Angewandte Chemie International Edition published by Wiley-VCH GmbH.
Copyright_xml – notice: 2021 The Authors. Angewandte Chemie International Edition published by Wiley-VCH GmbH
– notice: 2021. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2021 The Authors. Angewandte Chemie International Edition published by Wiley-VCH GmbH.
DBID 24P
AAYXX
CITATION
7TM
K9.
7X8
5PM
ABBSD
ADTPV
AOWAS
D8T
F1S
ZZAVC
DOI 10.1002/anie.202104044
DatabaseName Wiley Online Library Open Access
CrossRef
Nucleic Acids Abstracts
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
PubMed Central (Full Participant titles)
SWEPUB Chalmers tekniska högskola full text
SwePub
SwePub Articles
SWEPUB Freely available online
SWEPUB Chalmers tekniska högskola
SwePub Articles full text
DatabaseTitle CrossRef
ProQuest Health & Medical Complete (Alumni)
Nucleic Acids Abstracts
MEDLINE - Academic
DatabaseTitleList CrossRef
ProQuest Health & Medical Complete (Alumni)

MEDLINE - Academic


Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1521-3773
Edition International ed. in English
EndPage 20189
ExternalDocumentID oai_research_chalmers_se_499ac9ae_45d9_43cb_a41b_9da965737718
PMC8457214
10_1002_anie_202104044
ANIE202104044
Genre shortCommunication
GrantInformation_xml – fundername: Air Force Office of Scientific Research
  funderid: FA9550-16-1- 0345; FA8655-21-1-7003
– fundername: Biotechnology and Biological Sciences Research Council
  funderid: BB/H003746/1; BB/M000249/1
– fundername: Engineering and Physical Sciences Research Council
  funderid: EP/J015318/1
– fundername: ;
  grantid: FA9550-16-1- 0345; FA8655-21-1-7003
– fundername: ;
  grantid: BB/H003746/1; BB/M000249/1
– fundername: ;
  grantid: EP/J015318/1
GroupedDBID ---
-DZ
-~X
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
24P
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5RE
5VS
66C
6TJ
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABLJU
ABPPZ
ABPVW
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACNCT
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BTSUX
BY8
CS3
D-E
D-F
D0L
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
M53
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
TN5
UB1
UPT
UQL
V2E
VQA
W8V
W99
WBFHL
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XSW
XV2
YZZ
ZZTAW
~IA
~KM
~WT
AAYXX
ABDBF
ABJNI
AEYWJ
AGHNM
AGYGG
CITATION
7TM
K9.
7X8
5PM
.GJ
.HR
.Y3
186
31~
9M8
AAMMB
AANHP
AASGY
AAYJJ
ABBSD
ABDPE
ABEFU
ACBWZ
ACRPL
ACYXJ
ADNMO
ADTPV
ADXHL
AEFGJ
AETEA
AGCDD
AGQPQ
AGXDD
AI.
AIDQK
AIDYY
AOWAS
ASPBG
AVWKF
AZFZN
D8T
EJD
F1S
FEDTE
HF~
HVGLF
H~9
LW6
MVM
NHB
OHT
PALCI
RIWAO
RJQFR
RWH
S10
SAMSI
VH1
WHG
XOL
YYP
ZCG
ZE2
ZGI
ZXP
ZY4
ZZAVC
ID FETCH-LOGICAL-c5874-78a98e350bc35e96d019cacbc16ec48f5ba5cb668d2ce2a6e1f6a6347f539ae3
IEDL.DBID DR2
ISSN 1433-7851
1521-3773
IngestDate Thu Aug 21 06:56:54 EDT 2025
Thu Aug 21 14:13:01 EDT 2025
Thu Jul 10 17:14:05 EDT 2025
Sun Jul 13 05:34:59 EDT 2025
Tue Jul 01 01:18:05 EDT 2025
Thu Apr 24 22:56:43 EDT 2025
Wed Jan 22 16:28:00 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 37
Language English
License Attribution
This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5874-78a98e350bc35e96d019cacbc16ec48f5ba5cb668d2ce2a6e1f6a6347f539ae3
Notes These authors contributed equally to this work.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-8715-4034
OpenAccessLink https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.202104044
PMID 34270157
PQID 2565977888
PQPubID 946352
PageCount 6
ParticipantIDs swepub_primary_oai_research_chalmers_se_499ac9ae_45d9_43cb_a41b_9da965737718
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8457214
proquest_miscellaneous_2552978500
proquest_journals_2565977888
crossref_primary_10_1002_anie_202104044
crossref_citationtrail_10_1002_anie_202104044
wiley_primary_10_1002_anie_202104044_ANIE202104044
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate September 6, 2021
PublicationDateYYYYMMDD 2021-09-06
PublicationDate_xml – month: 09
  year: 2021
  text: September 6, 2021
  day: 06
PublicationDecade 2020
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
– name: Hoboken
PublicationTitle Angewandte Chemie International Edition
PublicationYear 2021
Publisher Wiley Subscription Services, Inc
John Wiley and Sons Inc
Publisher_xml – name: Wiley Subscription Services, Inc
– name: John Wiley and Sons Inc
References 2018; 362
2018; 124
1995; 33
2020 2020; 59 132
2008; 37
2008; 108
2020; 368
2020; 14
2008; 8
2020; 56
2017; 9
2014; 23
2001; 293
2012; 134
2013; 13
2020; 2003167
2007; 7
2019; 119
2016; 116
2011; 23
2012; 335
2011; 286
2007; 19
2009; 24
2015; 6
2013; 46
2019; 2
2013; 42
2013; 41
2020; 32
1998; 330
2011; 6
2011; 5
2014; 114
2018; 27
2011; 133
2017; 139
2014; 86
2018; 18
2016; 7
2016 2016; 55 128
1993; 16
2020; 31
2005; 127
2001; 8
2010; 132
2010; 254
2013; 135
2009; 4
1998; 6
2006; 106
2016; 8
2009; 389
2012; 41
e_1_2_2_24_2
e_1_2_2_4_2
e_1_2_2_49_2
e_1_2_2_6_2
e_1_2_2_22_1
e_1_2_2_20_2
e_1_2_2_2_2
e_1_2_2_62_2
e_1_2_2_41_2
e_1_2_2_43_1
e_1_2_2_64_1
e_1_2_2_8_2
e_1_2_2_28_2
e_1_2_2_66_1
e_1_2_2_45_2
e_1_2_2_26_1
e_1_2_2_47_1
e_1_2_2_68_1
e_1_2_2_60_1
e_1_2_2_36_2
e_1_2_2_59_2
e_1_2_2_13_1
e_1_2_2_11_2
e_1_2_2_38_2
e_1_2_2_51_2
e_1_2_2_19_2
e_1_2_2_30_2
e_1_2_2_53_2
e_1_2_2_17_2
e_1_2_2_32_2
e_1_2_2_55_1
e_1_2_2_15_2
e_1_2_2_34_2
e_1_2_2_57_2
Pope J. R. (e_1_2_2_63_2) 2020; 2003167
e_1_2_2_70_2
e_1_2_2_3_2
e_1_2_2_23_2
e_1_2_2_48_2
e_1_2_2_69_2
e_1_2_2_5_2
e_1_2_2_21_2
e_1_2_2_21_1
e_1_2_2_1_1
e_1_2_2_40_1
e_1_2_2_61_2
e_1_2_2_65_1
e_1_2_2_29_2
e_1_2_2_42_2
e_1_2_2_7_2
e_1_2_2_9_1
e_1_2_2_67_1
e_1_2_2_7_3
e_1_2_2_27_2
e_1_2_2_44_2
e_1_2_2_46_1
e_1_2_2_25_2
e_1_2_2_12_2
e_1_2_2_37_2
e_1_2_2_58_2
e_1_2_2_10_2
e_1_2_2_39_2
e_1_2_2_52_1
e_1_2_2_50_2
e_1_2_2_18_2
e_1_2_2_31_2
e_1_2_2_56_1
e_1_2_2_16_2
e_1_2_2_33_2
e_1_2_2_54_2
e_1_2_2_35_1
e_1_2_2_14_2
e_1_2_2_71_1
References_xml – volume: 13
  start-page: 625
  year: 2013
  end-page: 631
  publication-title: Nano Lett.
– volume: 41
  start-page: 4409
  year: 2012
  end-page: 4429
  publication-title: Chem. Soc. Rev.
– volume: 9
  start-page: 11321
  year: 2017
  end-page: 11331
  publication-title: ACS Appl. Mater. Interfaces
– volume: 42
  start-page: 5944
  year: 2013
  publication-title: Chem. Soc. Rev.
– volume: 362
  start-page: 319
  year: 2018
  end-page: 324
  publication-title: Science
– volume: 37
  start-page: 1197
  year: 2008
  end-page: 1206
  publication-title: Chem. Soc. Rev.
– volume: 368
  start-page: 874
  year: 2020
  end-page: 877
  publication-title: Science
– volume: 7
  start-page: 3405
  year: 2007
  end-page: 3409
  publication-title: Nano Lett.
– volume: 42
  start-page: 2824
  year: 2013
  end-page: 2860
  publication-title: Chem. Soc. Rev.
– volume: 293
  start-page: 1289
  year: 2001
  end-page: 1292
  publication-title: Science
– volume: 55 128
  start-page: 1266 1286
  year: 2016 2016
  end-page: 1281 1302
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 31
  start-page: 584
  year: 2020
  end-page: 594
  publication-title: Bioconjugate Chem.
– volume: 330
  start-page: 581
  year: 1998
  end-page: 598
  publication-title: Biochem. J.
– volume: 23
  start-page: 646
  year: 2011
  end-page: 657
  publication-title: Chem. Mater.
– volume: 14
  start-page: 5135
  year: 2020
  end-page: 5142
  publication-title: ACS Nano
– volume: 59 132
  start-page: 17732 17885
  year: 2020 2020
  end-page: 17738 17891
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 116
  start-page: 215
  year: 2016
  end-page: 257
  publication-title: Chem. Rev.
– volume: 24
  start-page: 3372
  year: 2009
  end-page: 3378
  publication-title: Biosens. Bioelectron.
– volume: 114
  start-page: 4764
  year: 2014
  end-page: 4806
  publication-title: Chem. Rev.
– volume: 5
  start-page: 5408
  year: 2011
  end-page: 5416
  publication-title: ACS Nano
– volume: 41
  start-page: 1177
  year: 2013
  end-page: 1182
  publication-title: Biochem. Soc. Trans.
– volume: 135
  start-page: 7861
  year: 2013
  end-page: 7868
  publication-title: J. Am. Chem. Soc.
– volume: 8
  start-page: 848
  year: 2001
  end-page: 852
  publication-title: Nat. Struct. Biol.
– volume: 127
  start-page: 11906
  year: 2005
  end-page: 11907
  publication-title: J. Am. Chem. Soc.
– volume: 8
  start-page: 13659
  year: 2016
  end-page: 13668
  publication-title: Nanoscale
– volume: 32
  start-page: 8798
  year: 2020
  end-page: 8807
  publication-title: Chem. Mater.
– volume: 132
  start-page: 3688
  year: 2010
  end-page: 3690
  publication-title: J. Am. Chem. Soc.
– volume: 6
  start-page: 126
  year: 2011
  end-page: 132
  publication-title: Nat. Nanotechnol.
– volume: 106
  start-page: 1105
  year: 2006
  end-page: 1136
  publication-title: Chem. Rev.
– volume: 86
  start-page: 8628
  year: 2014
  end-page: 8633
  publication-title: Anal. Chem.
– volume: 134
  start-page: 2032
  year: 2012
  end-page: 2035
  publication-title: J. Am. Chem. Soc.
– volume: 16
  start-page: 364
  year: 1993
  end-page: 383
  publication-title: Proteins Struct. Funct. Genet.
– volume: 8
  start-page: 591
  year: 2008
  end-page: 595
  publication-title: Nano Lett.
– volume: 19
  start-page: 3214
  year: 2007
  end-page: 3228
  publication-title: Adv. Mater.
– volume: 6
  start-page: 323
  year: 1998
  end-page: 327
  publication-title: Trends Microbiol.
– volume: 133
  start-page: 13886
  year: 2011
  end-page: 13889
  publication-title: J. Am. Chem. Soc.
– volume: 389
  start-page: 289
  year: 2009
  end-page: 305
  publication-title: J. Mol. Biol.
– volume: 46
  start-page: 2454
  year: 2013
  end-page: 2463
  publication-title: Acc. Chem. Res.
– volume: 2003167
  start-page: 1
  year: 2020
  end-page: 11
  publication-title: Adv. Sci.
– volume: 127
  start-page: 11946
  year: 2005
  end-page: 11947
  publication-title: J. Am. Chem. Soc.
– volume: 124
  year: 2018
  publication-title: J. Appl. Phys.
– volume: 23
  start-page: 1235
  year: 2014
  end-page: 1246
  publication-title: Protein Sci.
– volume: 368
  start-page: 850
  year: 2020
  end-page: 856
  publication-title: Science
– volume: 133
  start-page: 3238
  year: 2011
  end-page: 3241
  publication-title: J. Am. Chem. Soc.
– volume: 119
  start-page: 11761
  year: 2019
  end-page: 11817
  publication-title: Chem. Rev.
– volume: 2
  start-page: 83
  year: 2019
  publication-title: Commun. Chem.
– volume: 33
  start-page: 883
  year: 1995
  end-page: 891
  publication-title: Carbon
– volume: 254
  start-page: 1101
  year: 2010
  end-page: 1116
  publication-title: Coord. Chem. Rev.
– volume: 18
  start-page: 4130
  year: 2018
  end-page: 4135
  publication-title: Nano Lett.
– volume: 27
  start-page: 112
  year: 2018
  end-page: 128
  publication-title: Protein Sci.
– volume: 4
  start-page: 235
  year: 2009
  end-page: 243
  publication-title: Nano Today
– volume: 56
  start-page: 3516
  year: 2020
  end-page: 3519
  publication-title: Chem. Commun.
– volume: 335
  start-page: 319
  year: 2012
  end-page: 325
  publication-title: Science
– volume: 7
  start-page: 6484
  year: 2016
  end-page: 6491
  publication-title: Chem. Sci.
– volume: 108
  start-page: 1225
  year: 2008
  end-page: 1244
  publication-title: Chem. Rev.
– volume: 286
  start-page: 32723
  year: 2011
  end-page: 32735
  publication-title: J. Biol. Chem.
– volume: 139
  start-page: 17834
  year: 2017
  end-page: 17840
  publication-title: J. Am. Chem. Soc.
– volume: 6
  start-page: 3712
  year: 2015
  end-page: 3717
  publication-title: Chem. Sci.
– ident: e_1_2_2_21_1
  doi: 10.1002/anie.202003825
– ident: e_1_2_2_54_2
  doi: 10.1042/BST20130094
– ident: e_1_2_2_40_1
– ident: e_1_2_2_48_2
  doi: 10.1002/pro.2505
– ident: e_1_2_2_71_1
  doi: 10.1039/C9CC09498A
– ident: e_1_2_2_62_2
  doi: 10.1039/C6SC00944A
– ident: e_1_2_2_57_2
  doi: 10.1016/S0966-842X(98)01317-1
– ident: e_1_2_2_24_2
  doi: 10.1021/ja053094r
– ident: e_1_2_2_33_2
  doi: 10.1126/science.1214824
– ident: e_1_2_2_64_1
  doi: 10.1002/pro.3280
– ident: e_1_2_2_27_2
  doi: 10.1021/ar300347d
– ident: e_1_2_2_19_2
  doi: 10.1126/science.aba5980
– ident: e_1_2_2_28_2
  doi: 10.1021/acs.bioconjchem.9b00719
– ident: e_1_2_2_50_2
  doi: 10.1074/jbc.M111.265058
– ident: e_1_2_2_68_1
– ident: e_1_2_2_69_2
  doi: 10.1021/nl072996i
– ident: e_1_2_2_65_1
  doi: 10.1016/j.bios.2009.04.048
– ident: e_1_2_2_16_2
  doi: 10.1002/adma.200700665
– ident: e_1_2_2_67_1
  doi: 10.1016/j.nantod.2009.04.005
– ident: e_1_2_2_23_2
  doi: 10.1021/acs.nanolett.8b00856
– ident: e_1_2_2_34_2
  doi: 10.1021/acs.chemmater.0c02051
– ident: e_1_2_2_32_2
  doi: 10.1021/acsami.7b00810
– ident: e_1_2_2_12_2
  doi: 10.1021/cr040409x
– ident: e_1_2_2_10_2
  doi: 10.1021/acs.chemrev.9b00437
– ident: e_1_2_2_6_2
  doi: 10.1021/acs.chemrev.5b00608
– ident: e_1_2_2_39_2
  doi: 10.1021/ac501441d
– ident: e_1_2_2_22_1
– ident: e_1_2_2_2_2
  doi: 10.1039/c3cs60077g
– ident: e_1_2_2_4_2
  doi: 10.1126/science.aao6750
– ident: e_1_2_2_36_2
  doi: 10.1021/ja053862e
– ident: e_1_2_2_7_2
  doi: 10.1002/anie.201505308
– ident: e_1_2_2_52_1
– volume: 2003167
  start-page: 1
  year: 2020
  ident: e_1_2_2_63_2
  publication-title: Adv. Sci.
– ident: e_1_2_2_59_2
  doi: 10.1002/prot.340160406
– ident: e_1_2_2_60_1
– ident: e_1_2_2_9_1
– ident: e_1_2_2_46_1
  doi: 10.1063/1.5036538
– ident: e_1_2_2_47_1
– ident: e_1_2_2_61_2
  doi: 10.1038/s42004-019-0185-5
– ident: e_1_2_2_18_2
  doi: 10.1039/c2cs15334c
– ident: e_1_2_2_42_2
  doi: 10.1021/ja205684a
– ident: e_1_2_2_43_1
– ident: e_1_2_2_1_1
– ident: e_1_2_2_15_2
  doi: 10.1021/cr050569o
– ident: e_1_2_2_38_2
  doi: 10.1021/ja109180d
– ident: e_1_2_2_35_1
– ident: e_1_2_2_44_2
  doi: 10.1021/nl304209p
– ident: e_1_2_2_45_2
  doi: 10.1021/ja311604j
– ident: e_1_2_2_66_1
  doi: 10.1021/ja100014q
– ident: e_1_2_2_8_2
  doi: 10.1021/acsnano.0c02823
– ident: e_1_2_2_17_2
  doi: 10.1021/cm102406h
– ident: e_1_2_2_37_2
  doi: 10.1039/C5NR08117C
– ident: e_1_2_2_30_2
  doi: 10.1021/nn200489j
– ident: e_1_2_2_7_3
  doi: 10.1002/ange.201505308
– ident: e_1_2_2_51_2
  doi: 10.1038/nsb1001-848
– ident: e_1_2_2_55_1
  doi: 10.1039/C4SC03900A
– ident: e_1_2_2_26_1
– ident: e_1_2_2_25_2
  doi: 10.1038/nnano.2010.275
– ident: e_1_2_2_56_1
– ident: e_1_2_2_53_2
  doi: 10.1021/cr400355w
– ident: e_1_2_2_49_2
  doi: 10.1016/j.jmb.2009.03.058
– ident: e_1_2_2_31_2
  doi: 10.1021/ja211540z
– ident: e_1_2_2_5_2
  doi: 10.1039/b709567h
– ident: e_1_2_2_29_2
  doi: 10.1021/jacs.7b07362
– ident: e_1_2_2_3_2
  doi: 10.1126/science.1062711
– ident: e_1_2_2_13_1
– ident: e_1_2_2_20_2
  doi: 10.1126/science.aaz7440
– ident: e_1_2_2_70_2
  doi: 10.1016/j.ccr.2009.11.007
– ident: e_1_2_2_11_2
  doi: 10.1039/C2CS35335K
– ident: e_1_2_2_14_2
  doi: 10.1016/0008-6223(95)00017-8
– ident: e_1_2_2_21_2
  doi: 10.1002/ange.202003825
– ident: e_1_2_2_41_2
  doi: 10.1021/nl071792z
– ident: e_1_2_2_58_2
  doi: 10.1042/bj3300581
SSID ssj0028806
Score 2.486838
Snippet The ability to detect proteins through gating conductance by their unique surface electrostatic signature holds great potential for improving biosensing...
SourceID swepub
pubmedcentral
proquest
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 20184
SubjectTerms Antimicrobial agents
Antimicrobial resistance
Biosensors
Carbon nanotubes
Communication
Communications
Conductance
Debye length
Electrostatic properties
Field effect transistors
Gating
Nanotechnology
Nanotubes
protein engineering
protein orientation
Proteins
Semiconductor devices
Title Tuning Electrostatic Gating of Semiconducting Carbon Nanotubes by Controlling Protein Orientation in Biosensing Devices
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.202104044
https://www.proquest.com/docview/2565977888
https://www.proquest.com/docview/2552978500
https://pubmed.ncbi.nlm.nih.gov/PMC8457214
https://research.chalmers.se/publication/525373
Volume 60
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELagF7jwRgRKZSQkTmmzfiU5lmVLQVAqWKTeLNuxtREoQZuNEPx6ZvIqqYSQ4JaHrcTOePJN8s03hDyXLPMpUyZWGTexCC6JTeKz2BvPFza4lCvMRn5_pk4_i7cX8uK3LP5eH2L64IYro_PXuMCNbY4uRUMxAxviOwhZRCJQEBQJW4iKPk76UQyMs08v4jzGKvSjamPCjubd52-lS6h5lSg5yInOkWz3Kjq5Tcw4iJ6B8uWw3dlD9_OKvuP_jPIOuTXgVHrcG9Zdcs1X98iN5Vge7j75vm7xkwpd9XV0MDGpdPS1QRo1rQP9hKz7ukI5WTyyNFtbVxSceb1rrW-o_UGXPU0eE-LpOepFlBX9sC2HbKiKwu7Lsm6QYg8tXvnOqT0g65PVenkaD1UcYiczJHtmJs88l4l1XPpcFQAqnXHWLZR3IgvSGumsUlnBsDiZ8ougjOIiDZLnYDEPyV5VV_4RoSGk1gflAdHmwhpufMEMRPDgkiy4kTQi8fgQtRsUzrHQxlfdazMzjbOpp9mMyIup_bde2-OPLfdHm9DDGm80gEUU74MbiMiz6TQ8BfzlYipft9hGMojTZZJEJJ3Z0nRF1Peen6nKTafznQkJ8Tlc_F1vdbMugxbURrtNV2in0Y3XEL4aB5OmhSxyLbiz2oiF1XlhciVTngISiQjrDO4vQ9bHZ29W097jf-n0hNzE7Y6Rp_bJ3m7b-qcA4Xb2gFxn4vygW6y_AEjsQ9c
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELagHMqF8hRpCxgJiVPabPxIcizbLVvYLggWiZtlO442AiXVZqOq_Hpm8qpSCSHB0bEtx854PON88w0hb0QYuyiU2pcx0z7PbODrwMW-045NTGYjJjEa-WIp59_4h--iRxNiLEzLDzFcuOHOaPQ1bnC8kD6-YQ3FEGxw8MBn4QHnd8k9TOuN9PmnXwYGqRDEsw0wYszHPPQ9b2MQHo_7j8-lG2PzNlSyIxQd27LNYXS2R0w_jRaD8uOo3poj--sWw-N_zfMhedCZqvSkla1H5I4rHpPdaZ8h7gm5WtV4q0JnbSodjE3KLX2vEUlNy4x-ReB9WSCjLD6Z6o0pCwr6vNzWxlXUXNNpi5THmHj6GSkj8oJ-2uRdQFRBofguLytE2UOLU9fotadkdTZbTed-l8jBtyJGvGesk9gxERjLhEtkCnal1dbYiXSWx5kwWlgjZZyGmJ9MukkmtWQ8ygRLQGiekZ2iLNxzQrMsMi6TDozahBvNtEtDDU48aCUDmiTyiN9_RWU7knPMtfFTtfTMocLVVMNqeuTt0P6ypff4Y8vDXihUt80rBfYi8vfBC3jk9VANXwH_uujClTW2ESG46iIIPBKNhGkYESm-xzVFvm6ovmMuwEWHwRet2I26dHRQa2XXTa6dSlVOgQerLSya4iJNFGfWKM0nRiWpTqSIWATGiEfCRuL-MmV1sjyfDaX9f-n0iuzOVxcLtThffjwg9_F5A9CTh2Rnu6ndC7DotuZls2d_A7keRxw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3di9QwEA96gvoifnLVUyMIPpXrNh9NH8-9Xe_0XBdc4d5CkiZsQdpju4vcf38zbbdnBRF8TDIhbSaTzCQzvyHkvUiVz1JpYqmYiXlwSWwSr2JvPJvY4DImMRr560Ke_eCfL8Xlb1H8HT7EcOGGktHu1yjgV0U4vgUNxQhssO_AZOEJ53fJPXzxQ6eulC8HkwtWZxdfxFiMaej3sI1JejzuPz6WbnXNPz0lezzRsSrbnkXzx-RRr0TSk47rT8gdXz0lD6b73G3PyK_VDu876KxLcoNRQ6Wjnwz6ONM60O_oEl9XiPWKNVOzsXVFYaettzvrG2qv6bTzYcdodbpEMIeyot82ZR-qVFEofizrBv3fgeLUtzvOc7Kaz1bTs7hPsRA7odATU5lceSYS65jwuSxA43PGWTeR3nEVhDXCWSlVkWLmMOknQRrJeBYEy4GdL8hBVVf-kNAQMuuD9KBu5twaZnyRGjCvYb-wIONZROL9BGvXw49jFoyfugNOTjUyRA8MiciHgf6qA974K-XRnl-6F8BGgyaHyHrwARF5NzQDF_A9xFS-3iGNSMGIFkkSkWzE52FEBN8et1TlugXhVlyA8QyDX3QrYtSlB2paa7dus-A0uvEabEvjYNI0F0WuOXNWGz6xOi9MLkXGMlATIpK26-ofv6xPFuezofTyfzq9JfeXp3N9cb748oo8xOrWc04ekYPtZudfg6q1tW9aaboBLQYkdw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Tuning+Electrostatic+Gating+of+Semiconducting+Carbon+Nanotubes+by+Controlling+Protein+Orientation+in+Biosensing+Devices&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Xu%2C+Xinzhao&rft.au=Bowen%2C+Benjamin+J&rft.au=Gwyther%2C+Rebecca+E+A&rft.au=Freeley%2C+Mark&rft.date=2021-09-06&rft.issn=1521-3773&rft.eissn=1521-3773&rft.volume=60&rft.issue=37&rft.spage=20184&rft_id=info:doi/10.1002%2Fanie.202104044&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon