Tuning Electrostatic Gating of Semiconducting Carbon Nanotubes by Controlling Protein Orientation in Biosensing Devices
The ability to detect proteins through gating conductance by their unique surface electrostatic signature holds great potential for improving biosensing sensitivity and precision. Two challenges are: (1) defining the electrostatic surface of the incoming ligand protein presented to the conductive su...
Saved in:
Published in | Angewandte Chemie International Edition Vol. 60; no. 37; pp. 20184 - 20189 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Weinheim
Wiley Subscription Services, Inc
06.09.2021
John Wiley and Sons Inc |
Edition | International ed. in English |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The ability to detect proteins through gating conductance by their unique surface electrostatic signature holds great potential for improving biosensing sensitivity and precision. Two challenges are: (1) defining the electrostatic surface of the incoming ligand protein presented to the conductive surface; (2) bridging the Debye gap to generate a measurable response. Herein, we report the construction of nanoscale protein‐based sensing devices designed to present proteins in defined orientations; this allowed us to control the local electrostatic surface presented within the Debye length, and thus modulate the conductance gating effect upon binding incoming protein targets. Using a β‐lactamase binding protein (BLIP2) as the capture protein attached to carbon nanotube field effect transistors in different defined orientations. Device conductance had influence on binding TEM‐1, an important β‐lactamase involved in antimicrobial resistance (AMR). Conductance increased or decreased depending on TEM‐1 presenting either negative or positive local charge patches, demonstrating that local electrostatic properties, as opposed to protein net charge, act as the key driving force for electrostatic gating. This, in turn can, improve our ability to tune the gating of electrical biosensors toward optimized detection, including for AMR as outlined herein.
Nanoscale protein‐based sensing devices designed to present proteins in defined orientations allowed the control of local electrostatic surface presented within the Debye length, and thus modulation of the conductance gating effect upon sensing protein targets. |
---|---|
AbstractList | The ability to detect proteins through gating conductance by their unique surface electrostatic signature holds great potential for improving biosensing sensitivity and precision. Two challenges are: (1) defining the electrostatic surface of the incoming ligand protein presented to the conductive surface; (2) bridging the Debye gap to generate a measurable response. Herein, we report the construction of nanoscale protein‐based sensing devices designed to present proteins in defined orientations; this allowed us to control the local electrostatic surface presented within the Debye length, and thus modulate the conductance gating effect upon binding incoming protein targets. Using a β‐lactamase binding protein (BLIP2) as the capture protein attached to carbon nanotube field effect transistors in different defined orientations. Device conductance had influence on binding TEM‐1, an important β‐lactamase involved in antimicrobial resistance (AMR). Conductance increased or decreased depending on TEM‐1 presenting either negative or positive local charge patches, demonstrating that local electrostatic properties, as opposed to protein net charge, act as the key driving force for electrostatic gating. This, in turn can, improve our ability to tune the gating of electrical biosensors toward optimized detection, including for AMR as outlined herein. The ability to detect proteins through gating conductance by their unique surface electrostatic signature holds great potential for improving biosensing sensitivity and precision. Two challenges are: (1) defining the electrostatic surface of the incoming ligand protein presented to the conductive surface; (2) bridging the Debye gap to generate a measurable response. Herein, we report the construction of nanoscale protein‐based sensing devices designed to present proteins in defined orientations; this allowed us to control the local electrostatic surface presented within the Debye length, and thus modulate the conductance gating effect upon binding incoming protein targets. Using a β‐lactamase binding protein (BLIP2) as the capture protein attached to carbon nanotube field effect transistors in different defined orientations. Device conductance had influence on binding TEM‐1, an important β‐lactamase involved in antimicrobial resistance (AMR). Conductance increased or decreased depending on TEM‐1 presenting either negative or positive local charge patches, demonstrating that local electrostatic properties, as opposed to protein net charge, act as the key driving force for electrostatic gating. This, in turn can, improve our ability to tune the gating of electrical biosensors toward optimized detection, including for AMR as outlined herein. Nanoscale protein‐based sensing devices designed to present proteins in defined orientations allowed the control of local electrostatic surface presented within the Debye length, and thus modulation of the conductance gating effect upon sensing protein targets. The ability to detect proteins through gating conductance by their unique surface electrostatic signature holds great potential for improving biosensing sensitivity and precision. Two challenges are: (1) defining the electrostatic surface of the incoming ligand protein presented to the conductive surface; (2) bridging the Debye gap to generate a measurable response. Herein, we report the construction of nanoscale protein-based sensing devices designed to present proteins in defined orientations; this allowed us to control the local electrostatic surface presented within the Debye length, and thus modulate the conductance gating effect upon binding incoming protein targets. Using a β-lactamase binding protein (BLIP2) as the capture protein attached to carbon nanotube field effect transistors in different defined orientations. Device conductance had influence on binding TEM-1, an important β-lactamase involved in antimicrobial resistance (AMR). Conductance increased or decreased depending on TEM-1 presenting either negative or positive local charge patches, demonstrating that local electrostatic properties, as opposed to protein net charge, act as the key driving force for electrostatic gating. This, in turn can, improve our ability to tune the gating of electrical biosensors toward optimized detection, including for AMR as outlined herein.The ability to detect proteins through gating conductance by their unique surface electrostatic signature holds great potential for improving biosensing sensitivity and precision. Two challenges are: (1) defining the electrostatic surface of the incoming ligand protein presented to the conductive surface; (2) bridging the Debye gap to generate a measurable response. Herein, we report the construction of nanoscale protein-based sensing devices designed to present proteins in defined orientations; this allowed us to control the local electrostatic surface presented within the Debye length, and thus modulate the conductance gating effect upon binding incoming protein targets. Using a β-lactamase binding protein (BLIP2) as the capture protein attached to carbon nanotube field effect transistors in different defined orientations. Device conductance had influence on binding TEM-1, an important β-lactamase involved in antimicrobial resistance (AMR). Conductance increased or decreased depending on TEM-1 presenting either negative or positive local charge patches, demonstrating that local electrostatic properties, as opposed to protein net charge, act as the key driving force for electrostatic gating. This, in turn can, improve our ability to tune the gating of electrical biosensors toward optimized detection, including for AMR as outlined herein. |
Author | Freeley, Mark Eklöf‐Österberg, Johnas Moth‐Poulsen, Kasper Nemukhin, Alexander V. Xu, Xinzhao Gwyther, Rebecca E. A. Jones, D. Dafydd Palma, Matteo Grigorenko, Bella Bowen, Benjamin J. |
AuthorAffiliation | 5 Department of Chemistry and Chemical Engineering Chalmers University of Technology 41296 Gothenburg Sweden 3 Department of Chemistry Lomonosov Moscow State University Moscow 119991 Russian Federation 4 Emanuel Institute of Biochemical Physics Russian Academy of Sciences Moscow 119991 Russian Federation 2 Molecular Biosciences Division School of Biosciences Sir Martin Evans Building Cardiff University Cardiff CF10 3AX UK 1 Department of Chemistry and Materials Research Institute Queen Mary University of London London E1 4NS UK |
AuthorAffiliation_xml | – name: 4 Emanuel Institute of Biochemical Physics Russian Academy of Sciences Moscow 119991 Russian Federation – name: 5 Department of Chemistry and Chemical Engineering Chalmers University of Technology 41296 Gothenburg Sweden – name: 3 Department of Chemistry Lomonosov Moscow State University Moscow 119991 Russian Federation – name: 1 Department of Chemistry and Materials Research Institute Queen Mary University of London London E1 4NS UK – name: 2 Molecular Biosciences Division School of Biosciences Sir Martin Evans Building Cardiff University Cardiff CF10 3AX UK |
Author_xml | – sequence: 1 givenname: Xinzhao surname: Xu fullname: Xu, Xinzhao organization: Queen Mary University of London – sequence: 2 givenname: Benjamin J. surname: Bowen fullname: Bowen, Benjamin J. organization: Cardiff University – sequence: 3 givenname: Rebecca E. A. surname: Gwyther fullname: Gwyther, Rebecca E. A. organization: Cardiff University – sequence: 4 givenname: Mark surname: Freeley fullname: Freeley, Mark organization: Queen Mary University of London – sequence: 5 givenname: Bella surname: Grigorenko fullname: Grigorenko, Bella organization: Russian Academy of Sciences – sequence: 6 givenname: Alexander V. surname: Nemukhin fullname: Nemukhin, Alexander V. organization: Russian Academy of Sciences – sequence: 7 givenname: Johnas surname: Eklöf‐Österberg fullname: Eklöf‐Österberg, Johnas organization: Chalmers University of Technology – sequence: 8 givenname: Kasper surname: Moth‐Poulsen fullname: Moth‐Poulsen, Kasper organization: Chalmers University of Technology – sequence: 9 givenname: D. Dafydd surname: Jones fullname: Jones, D. Dafydd email: jonesdd@cardiff.ac.uk organization: Cardiff University – sequence: 10 givenname: Matteo orcidid: 0000-0001-8715-4034 surname: Palma fullname: Palma, Matteo email: m.palma@qmul.ac.uk organization: Queen Mary University of London |
BackLink | https://research.chalmers.se/publication/525373$$DView record from Swedish Publication Index |
BookMark | eNqFUk1v3CAQRVWqJtn22rOlXnrZLRgwcKmUbrZppCiplL0jjMdZIhtSsLPaf19cR6kSqeqFj5n3Ho-ZOUVHPnhA6CPBK4Jx-cV4B6sSlwQzzNgbdEJ4SZZUCHqUz4zSpZCcHKPTlO4zXkpcvUPHlJUCEy5O0H47eufvik0HdoghDWZwtrjIaw6GtriF3tngm9H-iaxNrIMvro0Pw1hDKupDsQ4-M7tuyv-MYQDni5vowE9aGZyv31xI4NOEOIdHZyG9R29b0yX48LQv0Pb7Zrv-sby6ubhcn10tLZeCZfNGSaAc15ZyUFWDibLG1pZUYJlseW24ratKNqWF0lRA2spUlImWU2WALtDtLJv28DDW-iG63sSDDsbpCAlMtDttd6brISadQDOljM1MzXijNKO21oaRWqvGqIqLXFgis-rXWTVL9tDY_NVouhfiLzPe7fRdeNSScVHmrizQ5yeBGH6NkAbdu2Sh64yHMCZdcl6q3DiMM_TTK-h9GKPPNcuoiishpJwcrWaUzT1MEdpnMwTraVD0NCj6eVAygb0iWDf3Kxt23b9paqbtXQeH_zyiz64vN3-5vwEOXtbx |
CitedBy_id | crossref_primary_10_3390_molecules28052161 crossref_primary_10_1002_advs_202401877 crossref_primary_10_1021_acs_jpclett_3c00358 crossref_primary_10_1021_jacs_3c03336 crossref_primary_10_1021_acs_analchem_4c04178 crossref_primary_10_1002_slct_202302340 crossref_primary_10_1021_jacs_2c13655 crossref_primary_10_1016_j_xcrp_2022_100962 crossref_primary_10_1039_D1CP04626H crossref_primary_10_1016_j_jcis_2023_06_171 crossref_primary_10_1016_j_mtphys_2023_101090 crossref_primary_10_1002_adma_202311541 crossref_primary_10_1021_acs_nanolett_3c03877 crossref_primary_10_1002_chem_202301704 crossref_primary_10_1021_acssensors_2c00229 crossref_primary_10_1039_D2MA00714B crossref_primary_10_1016_j_xcrp_2024_101919 crossref_primary_10_1002_INMD_20240032 crossref_primary_10_1039_D2NA00092J |
Cites_doi | 10.1002/anie.202003825 10.1042/BST20130094 10.1002/pro.2505 10.1039/C9CC09498A 10.1039/C6SC00944A 10.1016/S0966-842X(98)01317-1 10.1021/ja053094r 10.1126/science.1214824 10.1002/pro.3280 10.1021/ar300347d 10.1126/science.aba5980 10.1021/acs.bioconjchem.9b00719 10.1074/jbc.M111.265058 10.1021/nl072996i 10.1016/j.bios.2009.04.048 10.1002/adma.200700665 10.1016/j.nantod.2009.04.005 10.1021/acs.nanolett.8b00856 10.1021/acs.chemmater.0c02051 10.1021/acsami.7b00810 10.1021/cr040409x 10.1021/acs.chemrev.9b00437 10.1021/acs.chemrev.5b00608 10.1021/ac501441d 10.1039/c3cs60077g 10.1126/science.aao6750 10.1021/ja053862e 10.1002/anie.201505308 10.1002/prot.340160406 10.1063/1.5036538 10.1038/s42004-019-0185-5 10.1039/c2cs15334c 10.1021/ja205684a 10.1021/cr050569o 10.1021/ja109180d 10.1021/nl304209p 10.1021/ja311604j 10.1021/ja100014q 10.1021/acsnano.0c02823 10.1021/cm102406h 10.1039/C5NR08117C 10.1021/nn200489j 10.1002/ange.201505308 10.1038/nsb1001-848 10.1039/C4SC03900A 10.1038/nnano.2010.275 10.1021/cr400355w 10.1016/j.jmb.2009.03.058 10.1021/ja211540z 10.1039/b709567h 10.1021/jacs.7b07362 10.1126/science.1062711 10.1126/science.aaz7440 10.1016/j.ccr.2009.11.007 10.1039/C2CS35335K 10.1016/0008-6223(95)00017-8 10.1002/ange.202003825 10.1021/nl071792z 10.1042/bj3300581 |
ContentType | Journal Article |
Copyright | 2021 The Authors. Angewandte Chemie International Edition published by Wiley-VCH GmbH 2021. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2021 The Authors. Angewandte Chemie International Edition published by Wiley-VCH GmbH. |
Copyright_xml | – notice: 2021 The Authors. Angewandte Chemie International Edition published by Wiley-VCH GmbH – notice: 2021. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2021 The Authors. Angewandte Chemie International Edition published by Wiley-VCH GmbH. |
DBID | 24P AAYXX CITATION 7TM K9. 7X8 5PM ABBSD ADTPV AOWAS D8T F1S ZZAVC |
DOI | 10.1002/anie.202104044 |
DatabaseName | Wiley Online Library Open Access CrossRef Nucleic Acids Abstracts ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic PubMed Central (Full Participant titles) SWEPUB Chalmers tekniska högskola full text SwePub SwePub Articles SWEPUB Freely available online SWEPUB Chalmers tekniska högskola SwePub Articles full text |
DatabaseTitle | CrossRef ProQuest Health & Medical Complete (Alumni) Nucleic Acids Abstracts MEDLINE - Academic |
DatabaseTitleList | CrossRef ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1521-3773 |
Edition | International ed. in English |
EndPage | 20189 |
ExternalDocumentID | oai_research_chalmers_se_499ac9ae_45d9_43cb_a41b_9da965737718 PMC8457214 10_1002_anie_202104044 ANIE202104044 |
Genre | shortCommunication |
GrantInformation_xml | – fundername: Air Force Office of Scientific Research funderid: FA9550-16-1- 0345; FA8655-21-1-7003 – fundername: Biotechnology and Biological Sciences Research Council funderid: BB/H003746/1; BB/M000249/1 – fundername: Engineering and Physical Sciences Research Council funderid: EP/J015318/1 – fundername: ; grantid: FA9550-16-1- 0345; FA8655-21-1-7003 – fundername: ; grantid: BB/H003746/1; BB/M000249/1 – fundername: ; grantid: EP/J015318/1 |
GroupedDBID | --- -DZ -~X .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 24P 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5RE 5VS 66C 6TJ 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABLJU ABPPZ ABPVW ACAHQ ACCFJ ACCZN ACFBH ACGFS ACIWK ACNCT ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AHMBA AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BTSUX BY8 CS3 D-E D-F D0L DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES M53 MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K RNS ROL RWI RX1 RYL SUPJJ TN5 UB1 UPT UQL V2E VQA W8V W99 WBFHL WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XSW XV2 YZZ ZZTAW ~IA ~KM ~WT AAYXX ABDBF ABJNI AEYWJ AGHNM AGYGG CITATION 7TM K9. 7X8 5PM .GJ .HR .Y3 186 31~ 9M8 AAMMB AANHP AASGY AAYJJ ABBSD ABDPE ABEFU ACBWZ ACRPL ACYXJ ADNMO ADTPV ADXHL AEFGJ AETEA AGCDD AGQPQ AGXDD AI. AIDQK AIDYY AOWAS ASPBG AVWKF AZFZN D8T EJD F1S FEDTE HF~ HVGLF H~9 LW6 MVM NHB OHT PALCI RIWAO RJQFR RWH S10 SAMSI VH1 WHG XOL YYP ZCG ZE2 ZGI ZXP ZY4 ZZAVC |
ID | FETCH-LOGICAL-c5874-78a98e350bc35e96d019cacbc16ec48f5ba5cb668d2ce2a6e1f6a6347f539ae3 |
IEDL.DBID | DR2 |
ISSN | 1433-7851 1521-3773 |
IngestDate | Thu Aug 21 06:56:54 EDT 2025 Thu Aug 21 14:13:01 EDT 2025 Thu Jul 10 17:14:05 EDT 2025 Sun Jul 13 05:34:59 EDT 2025 Tue Jul 01 01:18:05 EDT 2025 Thu Apr 24 22:56:43 EDT 2025 Wed Jan 22 16:28:00 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 37 |
Language | English |
License | Attribution This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5874-78a98e350bc35e96d019cacbc16ec48f5ba5cb668d2ce2a6e1f6a6347f539ae3 |
Notes | These authors contributed equally to this work. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-8715-4034 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.202104044 |
PMID | 34270157 |
PQID | 2565977888 |
PQPubID | 946352 |
PageCount | 6 |
ParticipantIDs | swepub_primary_oai_research_chalmers_se_499ac9ae_45d9_43cb_a41b_9da965737718 pubmedcentral_primary_oai_pubmedcentral_nih_gov_8457214 proquest_miscellaneous_2552978500 proquest_journals_2565977888 crossref_primary_10_1002_anie_202104044 crossref_citationtrail_10_1002_anie_202104044 wiley_primary_10_1002_anie_202104044_ANIE202104044 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | September 6, 2021 |
PublicationDateYYYYMMDD | 2021-09-06 |
PublicationDate_xml | – month: 09 year: 2021 text: September 6, 2021 day: 06 |
PublicationDecade | 2020 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim – name: Hoboken |
PublicationTitle | Angewandte Chemie International Edition |
PublicationYear | 2021 |
Publisher | Wiley Subscription Services, Inc John Wiley and Sons Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc – name: John Wiley and Sons Inc |
References | 2018; 362 2018; 124 1995; 33 2020 2020; 59 132 2008; 37 2008; 108 2020; 368 2020; 14 2008; 8 2020; 56 2017; 9 2014; 23 2001; 293 2012; 134 2013; 13 2020; 2003167 2007; 7 2019; 119 2016; 116 2011; 23 2012; 335 2011; 286 2007; 19 2009; 24 2015; 6 2013; 46 2019; 2 2013; 42 2013; 41 2020; 32 1998; 330 2011; 6 2011; 5 2014; 114 2018; 27 2011; 133 2017; 139 2014; 86 2018; 18 2016; 7 2016 2016; 55 128 1993; 16 2020; 31 2005; 127 2001; 8 2010; 132 2010; 254 2013; 135 2009; 4 1998; 6 2006; 106 2016; 8 2009; 389 2012; 41 e_1_2_2_24_2 e_1_2_2_4_2 e_1_2_2_49_2 e_1_2_2_6_2 e_1_2_2_22_1 e_1_2_2_20_2 e_1_2_2_2_2 e_1_2_2_62_2 e_1_2_2_41_2 e_1_2_2_43_1 e_1_2_2_64_1 e_1_2_2_8_2 e_1_2_2_28_2 e_1_2_2_66_1 e_1_2_2_45_2 e_1_2_2_26_1 e_1_2_2_47_1 e_1_2_2_68_1 e_1_2_2_60_1 e_1_2_2_36_2 e_1_2_2_59_2 e_1_2_2_13_1 e_1_2_2_11_2 e_1_2_2_38_2 e_1_2_2_51_2 e_1_2_2_19_2 e_1_2_2_30_2 e_1_2_2_53_2 e_1_2_2_17_2 e_1_2_2_32_2 e_1_2_2_55_1 e_1_2_2_15_2 e_1_2_2_34_2 e_1_2_2_57_2 Pope J. R. (e_1_2_2_63_2) 2020; 2003167 e_1_2_2_70_2 e_1_2_2_3_2 e_1_2_2_23_2 e_1_2_2_48_2 e_1_2_2_69_2 e_1_2_2_5_2 e_1_2_2_21_2 e_1_2_2_21_1 e_1_2_2_1_1 e_1_2_2_40_1 e_1_2_2_61_2 e_1_2_2_65_1 e_1_2_2_29_2 e_1_2_2_42_2 e_1_2_2_7_2 e_1_2_2_9_1 e_1_2_2_67_1 e_1_2_2_7_3 e_1_2_2_27_2 e_1_2_2_44_2 e_1_2_2_46_1 e_1_2_2_25_2 e_1_2_2_12_2 e_1_2_2_37_2 e_1_2_2_58_2 e_1_2_2_10_2 e_1_2_2_39_2 e_1_2_2_52_1 e_1_2_2_50_2 e_1_2_2_18_2 e_1_2_2_31_2 e_1_2_2_56_1 e_1_2_2_16_2 e_1_2_2_33_2 e_1_2_2_54_2 e_1_2_2_35_1 e_1_2_2_14_2 e_1_2_2_71_1 |
References_xml | – volume: 13 start-page: 625 year: 2013 end-page: 631 publication-title: Nano Lett. – volume: 41 start-page: 4409 year: 2012 end-page: 4429 publication-title: Chem. Soc. Rev. – volume: 9 start-page: 11321 year: 2017 end-page: 11331 publication-title: ACS Appl. Mater. Interfaces – volume: 42 start-page: 5944 year: 2013 publication-title: Chem. Soc. Rev. – volume: 362 start-page: 319 year: 2018 end-page: 324 publication-title: Science – volume: 37 start-page: 1197 year: 2008 end-page: 1206 publication-title: Chem. Soc. Rev. – volume: 368 start-page: 874 year: 2020 end-page: 877 publication-title: Science – volume: 7 start-page: 3405 year: 2007 end-page: 3409 publication-title: Nano Lett. – volume: 42 start-page: 2824 year: 2013 end-page: 2860 publication-title: Chem. Soc. Rev. – volume: 293 start-page: 1289 year: 2001 end-page: 1292 publication-title: Science – volume: 55 128 start-page: 1266 1286 year: 2016 2016 end-page: 1281 1302 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 31 start-page: 584 year: 2020 end-page: 594 publication-title: Bioconjugate Chem. – volume: 330 start-page: 581 year: 1998 end-page: 598 publication-title: Biochem. J. – volume: 23 start-page: 646 year: 2011 end-page: 657 publication-title: Chem. Mater. – volume: 14 start-page: 5135 year: 2020 end-page: 5142 publication-title: ACS Nano – volume: 59 132 start-page: 17732 17885 year: 2020 2020 end-page: 17738 17891 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 116 start-page: 215 year: 2016 end-page: 257 publication-title: Chem. Rev. – volume: 24 start-page: 3372 year: 2009 end-page: 3378 publication-title: Biosens. Bioelectron. – volume: 114 start-page: 4764 year: 2014 end-page: 4806 publication-title: Chem. Rev. – volume: 5 start-page: 5408 year: 2011 end-page: 5416 publication-title: ACS Nano – volume: 41 start-page: 1177 year: 2013 end-page: 1182 publication-title: Biochem. Soc. Trans. – volume: 135 start-page: 7861 year: 2013 end-page: 7868 publication-title: J. Am. Chem. Soc. – volume: 8 start-page: 848 year: 2001 end-page: 852 publication-title: Nat. Struct. Biol. – volume: 127 start-page: 11906 year: 2005 end-page: 11907 publication-title: J. Am. Chem. Soc. – volume: 8 start-page: 13659 year: 2016 end-page: 13668 publication-title: Nanoscale – volume: 32 start-page: 8798 year: 2020 end-page: 8807 publication-title: Chem. Mater. – volume: 132 start-page: 3688 year: 2010 end-page: 3690 publication-title: J. Am. Chem. Soc. – volume: 6 start-page: 126 year: 2011 end-page: 132 publication-title: Nat. Nanotechnol. – volume: 106 start-page: 1105 year: 2006 end-page: 1136 publication-title: Chem. Rev. – volume: 86 start-page: 8628 year: 2014 end-page: 8633 publication-title: Anal. Chem. – volume: 134 start-page: 2032 year: 2012 end-page: 2035 publication-title: J. Am. Chem. Soc. – volume: 16 start-page: 364 year: 1993 end-page: 383 publication-title: Proteins Struct. Funct. Genet. – volume: 8 start-page: 591 year: 2008 end-page: 595 publication-title: Nano Lett. – volume: 19 start-page: 3214 year: 2007 end-page: 3228 publication-title: Adv. Mater. – volume: 6 start-page: 323 year: 1998 end-page: 327 publication-title: Trends Microbiol. – volume: 133 start-page: 13886 year: 2011 end-page: 13889 publication-title: J. Am. Chem. Soc. – volume: 389 start-page: 289 year: 2009 end-page: 305 publication-title: J. Mol. Biol. – volume: 46 start-page: 2454 year: 2013 end-page: 2463 publication-title: Acc. Chem. Res. – volume: 2003167 start-page: 1 year: 2020 end-page: 11 publication-title: Adv. Sci. – volume: 127 start-page: 11946 year: 2005 end-page: 11947 publication-title: J. Am. Chem. Soc. – volume: 124 year: 2018 publication-title: J. Appl. Phys. – volume: 23 start-page: 1235 year: 2014 end-page: 1246 publication-title: Protein Sci. – volume: 368 start-page: 850 year: 2020 end-page: 856 publication-title: Science – volume: 133 start-page: 3238 year: 2011 end-page: 3241 publication-title: J. Am. Chem. Soc. – volume: 119 start-page: 11761 year: 2019 end-page: 11817 publication-title: Chem. Rev. – volume: 2 start-page: 83 year: 2019 publication-title: Commun. Chem. – volume: 33 start-page: 883 year: 1995 end-page: 891 publication-title: Carbon – volume: 254 start-page: 1101 year: 2010 end-page: 1116 publication-title: Coord. Chem. Rev. – volume: 18 start-page: 4130 year: 2018 end-page: 4135 publication-title: Nano Lett. – volume: 27 start-page: 112 year: 2018 end-page: 128 publication-title: Protein Sci. – volume: 4 start-page: 235 year: 2009 end-page: 243 publication-title: Nano Today – volume: 56 start-page: 3516 year: 2020 end-page: 3519 publication-title: Chem. Commun. – volume: 335 start-page: 319 year: 2012 end-page: 325 publication-title: Science – volume: 7 start-page: 6484 year: 2016 end-page: 6491 publication-title: Chem. Sci. – volume: 108 start-page: 1225 year: 2008 end-page: 1244 publication-title: Chem. Rev. – volume: 286 start-page: 32723 year: 2011 end-page: 32735 publication-title: J. Biol. Chem. – volume: 139 start-page: 17834 year: 2017 end-page: 17840 publication-title: J. Am. Chem. Soc. – volume: 6 start-page: 3712 year: 2015 end-page: 3717 publication-title: Chem. Sci. – ident: e_1_2_2_21_1 doi: 10.1002/anie.202003825 – ident: e_1_2_2_54_2 doi: 10.1042/BST20130094 – ident: e_1_2_2_40_1 – ident: e_1_2_2_48_2 doi: 10.1002/pro.2505 – ident: e_1_2_2_71_1 doi: 10.1039/C9CC09498A – ident: e_1_2_2_62_2 doi: 10.1039/C6SC00944A – ident: e_1_2_2_57_2 doi: 10.1016/S0966-842X(98)01317-1 – ident: e_1_2_2_24_2 doi: 10.1021/ja053094r – ident: e_1_2_2_33_2 doi: 10.1126/science.1214824 – ident: e_1_2_2_64_1 doi: 10.1002/pro.3280 – ident: e_1_2_2_27_2 doi: 10.1021/ar300347d – ident: e_1_2_2_19_2 doi: 10.1126/science.aba5980 – ident: e_1_2_2_28_2 doi: 10.1021/acs.bioconjchem.9b00719 – ident: e_1_2_2_50_2 doi: 10.1074/jbc.M111.265058 – ident: e_1_2_2_68_1 – ident: e_1_2_2_69_2 doi: 10.1021/nl072996i – ident: e_1_2_2_65_1 doi: 10.1016/j.bios.2009.04.048 – ident: e_1_2_2_16_2 doi: 10.1002/adma.200700665 – ident: e_1_2_2_67_1 doi: 10.1016/j.nantod.2009.04.005 – ident: e_1_2_2_23_2 doi: 10.1021/acs.nanolett.8b00856 – ident: e_1_2_2_34_2 doi: 10.1021/acs.chemmater.0c02051 – ident: e_1_2_2_32_2 doi: 10.1021/acsami.7b00810 – ident: e_1_2_2_12_2 doi: 10.1021/cr040409x – ident: e_1_2_2_10_2 doi: 10.1021/acs.chemrev.9b00437 – ident: e_1_2_2_6_2 doi: 10.1021/acs.chemrev.5b00608 – ident: e_1_2_2_39_2 doi: 10.1021/ac501441d – ident: e_1_2_2_22_1 – ident: e_1_2_2_2_2 doi: 10.1039/c3cs60077g – ident: e_1_2_2_4_2 doi: 10.1126/science.aao6750 – ident: e_1_2_2_36_2 doi: 10.1021/ja053862e – ident: e_1_2_2_7_2 doi: 10.1002/anie.201505308 – ident: e_1_2_2_52_1 – volume: 2003167 start-page: 1 year: 2020 ident: e_1_2_2_63_2 publication-title: Adv. Sci. – ident: e_1_2_2_59_2 doi: 10.1002/prot.340160406 – ident: e_1_2_2_60_1 – ident: e_1_2_2_9_1 – ident: e_1_2_2_46_1 doi: 10.1063/1.5036538 – ident: e_1_2_2_47_1 – ident: e_1_2_2_61_2 doi: 10.1038/s42004-019-0185-5 – ident: e_1_2_2_18_2 doi: 10.1039/c2cs15334c – ident: e_1_2_2_42_2 doi: 10.1021/ja205684a – ident: e_1_2_2_43_1 – ident: e_1_2_2_1_1 – ident: e_1_2_2_15_2 doi: 10.1021/cr050569o – ident: e_1_2_2_38_2 doi: 10.1021/ja109180d – ident: e_1_2_2_35_1 – ident: e_1_2_2_44_2 doi: 10.1021/nl304209p – ident: e_1_2_2_45_2 doi: 10.1021/ja311604j – ident: e_1_2_2_66_1 doi: 10.1021/ja100014q – ident: e_1_2_2_8_2 doi: 10.1021/acsnano.0c02823 – ident: e_1_2_2_17_2 doi: 10.1021/cm102406h – ident: e_1_2_2_37_2 doi: 10.1039/C5NR08117C – ident: e_1_2_2_30_2 doi: 10.1021/nn200489j – ident: e_1_2_2_7_3 doi: 10.1002/ange.201505308 – ident: e_1_2_2_51_2 doi: 10.1038/nsb1001-848 – ident: e_1_2_2_55_1 doi: 10.1039/C4SC03900A – ident: e_1_2_2_26_1 – ident: e_1_2_2_25_2 doi: 10.1038/nnano.2010.275 – ident: e_1_2_2_56_1 – ident: e_1_2_2_53_2 doi: 10.1021/cr400355w – ident: e_1_2_2_49_2 doi: 10.1016/j.jmb.2009.03.058 – ident: e_1_2_2_31_2 doi: 10.1021/ja211540z – ident: e_1_2_2_5_2 doi: 10.1039/b709567h – ident: e_1_2_2_29_2 doi: 10.1021/jacs.7b07362 – ident: e_1_2_2_3_2 doi: 10.1126/science.1062711 – ident: e_1_2_2_13_1 – ident: e_1_2_2_20_2 doi: 10.1126/science.aaz7440 – ident: e_1_2_2_70_2 doi: 10.1016/j.ccr.2009.11.007 – ident: e_1_2_2_11_2 doi: 10.1039/C2CS35335K – ident: e_1_2_2_14_2 doi: 10.1016/0008-6223(95)00017-8 – ident: e_1_2_2_21_2 doi: 10.1002/ange.202003825 – ident: e_1_2_2_41_2 doi: 10.1021/nl071792z – ident: e_1_2_2_58_2 doi: 10.1042/bj3300581 |
SSID | ssj0028806 |
Score | 2.486838 |
Snippet | The ability to detect proteins through gating conductance by their unique surface electrostatic signature holds great potential for improving biosensing... |
SourceID | swepub pubmedcentral proquest crossref wiley |
SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 20184 |
SubjectTerms | Antimicrobial agents Antimicrobial resistance Biosensors Carbon nanotubes Communication Communications Conductance Debye length Electrostatic properties Field effect transistors Gating Nanotechnology Nanotubes protein engineering protein orientation Proteins Semiconductor devices |
Title | Tuning Electrostatic Gating of Semiconducting Carbon Nanotubes by Controlling Protein Orientation in Biosensing Devices |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.202104044 https://www.proquest.com/docview/2565977888 https://www.proquest.com/docview/2552978500 https://pubmed.ncbi.nlm.nih.gov/PMC8457214 https://research.chalmers.se/publication/525373 |
Volume | 60 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELagF7jwRgRKZSQkTmmzfiU5lmVLQVAqWKTeLNuxtREoQZuNEPx6ZvIqqYSQ4JaHrcTOePJN8s03hDyXLPMpUyZWGTexCC6JTeKz2BvPFza4lCvMRn5_pk4_i7cX8uK3LP5eH2L64IYro_PXuMCNbY4uRUMxAxviOwhZRCJQEBQJW4iKPk76UQyMs08v4jzGKvSjamPCjubd52-lS6h5lSg5yInOkWz3Kjq5Tcw4iJ6B8uWw3dlD9_OKvuP_jPIOuTXgVHrcG9Zdcs1X98iN5Vge7j75vm7xkwpd9XV0MDGpdPS1QRo1rQP9hKz7ukI5WTyyNFtbVxSceb1rrW-o_UGXPU0eE-LpOepFlBX9sC2HbKiKwu7Lsm6QYg8tXvnOqT0g65PVenkaD1UcYiczJHtmJs88l4l1XPpcFQAqnXHWLZR3IgvSGumsUlnBsDiZ8ougjOIiDZLnYDEPyV5VV_4RoSGk1gflAdHmwhpufMEMRPDgkiy4kTQi8fgQtRsUzrHQxlfdazMzjbOpp9mMyIup_bde2-OPLfdHm9DDGm80gEUU74MbiMiz6TQ8BfzlYipft9hGMojTZZJEJJ3Z0nRF1Peen6nKTafznQkJ8Tlc_F1vdbMugxbURrtNV2in0Y3XEL4aB5OmhSxyLbiz2oiF1XlhciVTngISiQjrDO4vQ9bHZ29W097jf-n0hNzE7Y6Rp_bJ3m7b-qcA4Xb2gFxn4vygW6y_AEjsQ9c |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELagHMqF8hRpCxgJiVPabPxIcizbLVvYLggWiZtlO442AiXVZqOq_Hpm8qpSCSHB0bEtx854PON88w0hb0QYuyiU2pcx0z7PbODrwMW-045NTGYjJjEa-WIp59_4h--iRxNiLEzLDzFcuOHOaPQ1bnC8kD6-YQ3FEGxw8MBn4QHnd8k9TOuN9PmnXwYGqRDEsw0wYszHPPQ9b2MQHo_7j8-lG2PzNlSyIxQd27LNYXS2R0w_jRaD8uOo3poj--sWw-N_zfMhedCZqvSkla1H5I4rHpPdaZ8h7gm5WtV4q0JnbSodjE3KLX2vEUlNy4x-ReB9WSCjLD6Z6o0pCwr6vNzWxlXUXNNpi5THmHj6GSkj8oJ-2uRdQFRBofguLytE2UOLU9fotadkdTZbTed-l8jBtyJGvGesk9gxERjLhEtkCnal1dbYiXSWx5kwWlgjZZyGmJ9MukkmtWQ8ygRLQGiekZ2iLNxzQrMsMi6TDozahBvNtEtDDU48aCUDmiTyiN9_RWU7knPMtfFTtfTMocLVVMNqeuTt0P6ypff4Y8vDXihUt80rBfYi8vfBC3jk9VANXwH_uujClTW2ESG46iIIPBKNhGkYESm-xzVFvm6ovmMuwEWHwRet2I26dHRQa2XXTa6dSlVOgQerLSya4iJNFGfWKM0nRiWpTqSIWATGiEfCRuL-MmV1sjyfDaX9f-n0iuzOVxcLtThffjwg9_F5A9CTh2Rnu6ndC7DotuZls2d_A7keRxw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3di9QwEA96gvoifnLVUyMIPpXrNh9NH8-9Xe_0XBdc4d5CkiZsQdpju4vcf38zbbdnBRF8TDIhbSaTzCQzvyHkvUiVz1JpYqmYiXlwSWwSr2JvPJvY4DImMRr560Ke_eCfL8Xlb1H8HT7EcOGGktHu1yjgV0U4vgUNxQhssO_AZOEJ53fJPXzxQ6eulC8HkwtWZxdfxFiMaej3sI1JejzuPz6WbnXNPz0lezzRsSrbnkXzx-RRr0TSk47rT8gdXz0lD6b73G3PyK_VDu876KxLcoNRQ6Wjnwz6ONM60O_oEl9XiPWKNVOzsXVFYaettzvrG2qv6bTzYcdodbpEMIeyot82ZR-qVFEofizrBv3fgeLUtzvOc7Kaz1bTs7hPsRA7odATU5lceSYS65jwuSxA43PGWTeR3nEVhDXCWSlVkWLmMOknQRrJeBYEy4GdL8hBVVf-kNAQMuuD9KBu5twaZnyRGjCvYb-wIONZROL9BGvXw49jFoyfugNOTjUyRA8MiciHgf6qA974K-XRnl-6F8BGgyaHyHrwARF5NzQDF_A9xFS-3iGNSMGIFkkSkWzE52FEBN8et1TlugXhVlyA8QyDX3QrYtSlB2paa7dus-A0uvEabEvjYNI0F0WuOXNWGz6xOi9MLkXGMlATIpK26-ofv6xPFuezofTyfzq9JfeXp3N9cb748oo8xOrWc04ekYPtZudfg6q1tW9aaboBLQYkdw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Tuning+Electrostatic+Gating+of+Semiconducting+Carbon+Nanotubes+by+Controlling+Protein+Orientation+in+Biosensing+Devices&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Xu%2C+Xinzhao&rft.au=Bowen%2C+Benjamin+J&rft.au=Gwyther%2C+Rebecca+E+A&rft.au=Freeley%2C+Mark&rft.date=2021-09-06&rft.issn=1521-3773&rft.eissn=1521-3773&rft.volume=60&rft.issue=37&rft.spage=20184&rft_id=info:doi/10.1002%2Fanie.202104044&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon |