Establishment of an African green monkey model for COVID-19 and protection against re-infection

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is responsible for an unprecedented global pandemic of COVID-19. Animal models are urgently needed to study the pathogenesis of COVID-19 and to screen vaccines and treatments. We show that African green monkeys (AGMs) support robust SARS-C...

Full description

Saved in:
Bibliographic Details
Published inNature immunology Vol. 22; no. 1; pp. 86 - 98
Main Authors Woolsey, Courtney, Borisevich, Viktoriya, Prasad, Abhishek N., Agans, Krystle N., Deer, Daniel J., Dobias, Natalie S., Heymann, John C., Foster, Stephanie L., Levine, Corri B., Medina, Liana, Melody, Kevin, Geisbert, Joan B., Fenton, Karla A., Geisbert, Thomas W., Cross, Robert W.
Format Journal Article
LanguageEnglish
Published New York Nature Publishing Group US 01.01.2021
Nature Publishing Group
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is responsible for an unprecedented global pandemic of COVID-19. Animal models are urgently needed to study the pathogenesis of COVID-19 and to screen vaccines and treatments. We show that African green monkeys (AGMs) support robust SARS-CoV-2 replication and develop pronounced respiratory disease, which may more accurately reflect human COVID-19 cases than other nonhuman primate species. SARS-CoV-2 was detected in mucosal samples, including rectal swabs, as late as 15 days after exposure. Marked inflammation and coagulopathy in blood and tissues were prominent features. Transcriptome analysis demonstrated stimulation of interferon and interleukin-6 pathways in bronchoalveolar lavage samples and repression of natural killer cell- and T cell–associated transcripts in peripheral blood. Despite a slight waning in antibody titers after primary challenge, enhanced antibody and cellular responses contributed to rapid clearance after re-challenge with an identical strain. These data support the utility of AGM for studying COVID-19 pathogenesis and testing medical countermeasures. Geisbert and colleagues report that African green monkeys infected with the SARS-CoV-2 virus develop disease symptoms that closely resemble those seen in infected humans, making this animal model a useful surrogate to investigate immune responses to coronavirus infection.
AbstractList Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is responsible for an unprecedented global pandemic of COVID-19. Animal models are urgently needed to study the pathogenesis of COVID-19 and to screen vaccines and treatments. We show that African green monkeys (AGMs) support robust SARS-CoV-2 replication and develop pronounced respiratory disease, which may more accurately reflect human COVID-19 cases than other nonhuman primate species. SARS-CoV-2 was detected in mucosal samples, including rectal swabs, as late as 15 days after exposure. Marked inflammation and coagulopathy in blood and tissues were prominent features. Transcriptome analysis demonstrated stimulation of interferon and interleukin-6 pathways in bronchoalveolar lavage samples and repression of natural killer cell- and T cell-associated transcripts in peripheral blood. Despite a slight waning in antibody titers after primary challenge, enhanced antibody and cellular responses contributed to rapid clearance after re-challenge with an identical strain. These data support the utility of AGM for studying COVID-19 pathogenesis and testing medical countermeasures. Geisbert and colleagues report that African green monkeys infected with the SARS-CoV-2 virus develop disease symptoms that closely resemble those seen in infected humans, making this animal model a useful surrogate to investigate immune responses to coronavirus infection.
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is responsible for an unprecedented global pandemic of COVID-19. Animal models are urgently needed to study the pathogenesis of COVID-19 and to screen vaccines and treatments. We show that African green monkeys (AGMs) support robust SARS-CoV-2 replication and develop pronounced respiratory disease, which may more accurately reflect human COVID-19 cases than other nonhuman primate species. SARS-CoV-2 was detected in mucosal samples, including rectal swabs, as late as 15 days after exposure. Marked inflammation and coagulopathy in blood and tissues were prominent features. Transcriptome analysis demonstrated stimulation of interferon and interleukin-6 pathways in bronchoalveolar lavage samples and repression of natural killer cell- and T cell-associated transcripts in peripheral blood. Despite a slight waning in antibody titers after primary challenge, enhanced antibody and cellular responses contributed to rapid clearance after re-challenge with an identical strain. These data support the utility of AGM for studying COVID-19 pathogenesis and testing medical countermeasures.Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is responsible for an unprecedented global pandemic of COVID-19. Animal models are urgently needed to study the pathogenesis of COVID-19 and to screen vaccines and treatments. We show that African green monkeys (AGMs) support robust SARS-CoV-2 replication and develop pronounced respiratory disease, which may more accurately reflect human COVID-19 cases than other nonhuman primate species. SARS-CoV-2 was detected in mucosal samples, including rectal swabs, as late as 15 days after exposure. Marked inflammation and coagulopathy in blood and tissues were prominent features. Transcriptome analysis demonstrated stimulation of interferon and interleukin-6 pathways in bronchoalveolar lavage samples and repression of natural killer cell- and T cell-associated transcripts in peripheral blood. Despite a slight waning in antibody titers after primary challenge, enhanced antibody and cellular responses contributed to rapid clearance after re-challenge with an identical strain. These data support the utility of AGM for studying COVID-19 pathogenesis and testing medical countermeasures.
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is responsible for an unprecedented global pandemic of COVID-19. Animal models are urgently needed to study the pathogenesis of COVID-19 and to screen vaccines and treatments. We show that African green monkeys (AGMs) support robust SARS-CoV-2 replication and develop pronounced respiratory disease, which may more accurately reflect human COVID-19 cases than other nonhuman primate species. SARS-CoV-2 was detected in mucosal samples, including rectal swabs, as late as 15 days after exposure. Marked inflammation and coagulopathy in blood and tissues were prominent features. Transcriptome analysis demonstrated stimulation of interferon and interleukin-6 pathways in bronchoalveolar lavage samples and repression of natural killer cell- and T cell–associated transcripts in peripheral blood. Despite a slight waning in antibody titers after primary challenge, enhanced antibody and cellular responses contributed to rapid clearance after re-challenge with an identical strain. These data support the utility of AGM for studying COVID-19 pathogenesis and testing medical countermeasures. Geisbert and colleagues report that African green monkeys infected with the SARS-CoV-2 virus develop disease symptoms that closely resemble those seen in infected humans, making this animal model a useful surrogate to investigate immune responses to coronavirus infection.
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is responsible for an unprecedented global pandemic of COVID-19. Animal models are urgently needed to study the pathogenesis of COVID-19 and to screen vaccines and treatments. We show that African green monkeys (AGMs) support robust SARS-CoV-2 replication and develop pronounced respiratory disease, which may more accurately reflect human COVID-19 cases than other nonhuman primate species. SARS-CoV-2 was detected in mucosal samples, including rectal swabs, as late as 15 days after exposure. Marked inflammation and coagulopathy in blood and tissues were prominent features. Transcriptome analysis demonstrated stimulation of interferon and interleukin-6 pathways in bronchoalveolar lavage samples and repression of natural killer cell- and T cell-associated transcripts in peripheral blood. Despite a slight waning in antibody titers after primary challenge, enhanced antibody and cellular responses contributed to rapid clearance after re-challenge with an identical strain. These data support the utility of AGM for studying COVID-19 pathogenesis and testing medical countermeasures.
Audience Academic
Author Borisevich, Viktoriya
Foster, Stephanie L.
Melody, Kevin
Fenton, Karla A.
Medina, Liana
Geisbert, Joan B.
Prasad, Abhishek N.
Deer, Daniel J.
Agans, Krystle N.
Woolsey, Courtney
Levine, Corri B.
Geisbert, Thomas W.
Heymann, John C.
Cross, Robert W.
Dobias, Natalie S.
Author_xml – sequence: 1
  givenname: Courtney
  orcidid: 0000-0003-3389-0137
  surname: Woolsey
  fullname: Woolsey, Courtney
  organization: Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston National Laboratory, University of Texas Medical Branch
– sequence: 2
  givenname: Viktoriya
  surname: Borisevich
  fullname: Borisevich, Viktoriya
  organization: Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston National Laboratory, University of Texas Medical Branch
– sequence: 3
  givenname: Abhishek N.
  orcidid: 0000-0002-4147-2077
  surname: Prasad
  fullname: Prasad, Abhishek N.
  organization: Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston National Laboratory, University of Texas Medical Branch
– sequence: 4
  givenname: Krystle N.
  surname: Agans
  fullname: Agans, Krystle N.
  organization: Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston National Laboratory, University of Texas Medical Branch
– sequence: 5
  givenname: Daniel J.
  surname: Deer
  fullname: Deer, Daniel J.
  organization: Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston National Laboratory, University of Texas Medical Branch
– sequence: 6
  givenname: Natalie S.
  surname: Dobias
  fullname: Dobias, Natalie S.
  organization: Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston National Laboratory, University of Texas Medical Branch
– sequence: 7
  givenname: John C.
  surname: Heymann
  fullname: Heymann, John C.
  organization: Department of Radiology, University of Texas Medical Branch
– sequence: 8
  givenname: Stephanie L.
  surname: Foster
  fullname: Foster, Stephanie L.
  organization: Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston National Laboratory, University of Texas Medical Branch
– sequence: 9
  givenname: Corri B.
  orcidid: 0000-0003-0405-5191
  surname: Levine
  fullname: Levine, Corri B.
  organization: Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston National Laboratory, University of Texas Medical Branch
– sequence: 10
  givenname: Liana
  surname: Medina
  fullname: Medina, Liana
  organization: Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston National Laboratory, University of Texas Medical Branch
– sequence: 11
  givenname: Kevin
  orcidid: 0000-0003-2713-5338
  surname: Melody
  fullname: Melody, Kevin
  organization: Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston National Laboratory, University of Texas Medical Branch
– sequence: 12
  givenname: Joan B.
  surname: Geisbert
  fullname: Geisbert, Joan B.
  organization: Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston National Laboratory, University of Texas Medical Branch
– sequence: 13
  givenname: Karla A.
  surname: Fenton
  fullname: Fenton, Karla A.
  organization: Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston National Laboratory, University of Texas Medical Branch
– sequence: 14
  givenname: Thomas W.
  orcidid: 0000-0003-0858-1877
  surname: Geisbert
  fullname: Geisbert, Thomas W.
  email: twgeisbe@utmb.edu
  organization: Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston National Laboratory, University of Texas Medical Branch
– sequence: 15
  givenname: Robert W.
  orcidid: 0000-0001-7718-1522
  surname: Cross
  fullname: Cross, Robert W.
  organization: Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston National Laboratory, University of Texas Medical Branch
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33235385$$D View this record in MEDLINE/PubMed
BookMark eNp9kttq3DAQhkVJaQ7tC_SiGHrTXDjVwZKty2WbtAuBQE-3QpbHW6W2nEoyNG_f2Tpp2FCCEDMM3_8zGs0xOQhTAEJeM3rGqGjep4pJTUvK8dJGyLJ5Ro6Y5LrkmqmDfzltDslxSteUsqpW1QtyKAQXUjTyiJjzlG07-PRjhJCLqS9sKFZ99A7jNgKEYpzCT7jF0MFQ9FMs1lffNx9KphHtips4ZXDZT6GwW-tDykWE0od-Kb4kz3s7JHh1F0_It4vzr-tP5eXVx816dVk62ahcgoWeypZZpnndgcaUCVUxx1XbKpBQQ81bJzqQUlbSukZpoTvbd1BpC504Ie8WX-zn1wwpm9EnB8NgA0xzMrxCN81qpRB9-wi9nuYYsDukaiGo5A17oLZ2AIPvmXK0bmdqVqrSStSMS6TO_kPh6WD0Dr-r91jfE5zuCZDJ8Dtv7ZyS2Xz5vM--uWt0bkfozE30o4235v73EGgWwMUppQi9cT7b3dixCz8YRs1uUcyyKAYXxfxdFNOglD-S3rs_KRKLKCEcthAfJveE6g9apsxP
CitedBy_id crossref_primary_10_1128_jvi_01762_23
crossref_primary_10_3389_fimmu_2023_1197588
crossref_primary_10_1080_22221751_2021_1997074
crossref_primary_10_1371_journal_ppat_1010741
crossref_primary_10_1016_j_animal_2021_100272
crossref_primary_10_1007_s00430_022_00735_8
crossref_primary_10_3390_pathogens10020180
crossref_primary_10_1093_infdis_jiae018
crossref_primary_10_36233_0507_4088_293
crossref_primary_10_3389_fcimb_2022_906578
crossref_primary_10_3390_ani13071223
crossref_primary_10_1002_mco2_98
crossref_primary_10_1016_j_watres_2021_117438
crossref_primary_10_1177_11786302221107786
crossref_primary_10_3389_fimmu_2024_1345499
crossref_primary_10_1002_mco2_90
crossref_primary_10_3389_fpubh_2021_717941
crossref_primary_10_1002_rmv_2305
crossref_primary_10_1093_ilar_ilab007
crossref_primary_10_1111_jmp_12626
crossref_primary_10_30802_AALAS_CM_22_000089
crossref_primary_10_1371_journal_ppat_1010618
crossref_primary_10_1016_j_coviro_2021_03_009
crossref_primary_10_1038_s41423_023_01122_w
crossref_primary_10_3390_microorganisms9040868
crossref_primary_10_1016_j_idnow_2021_02_007
crossref_primary_10_1126_scitranslmed_abl8282
crossref_primary_10_1371_journal_ppat_1009865
crossref_primary_10_1080_23144599_2023_2222981
crossref_primary_10_1016_j_soh_2023_100017
crossref_primary_10_3389_fimmu_2021_765349
crossref_primary_10_1016_j_molmed_2021_12_001
crossref_primary_10_3390_ani12030378
crossref_primary_10_1007_s00705_022_05609_1
crossref_primary_10_1073_pnas_2310421121
crossref_primary_10_1172_JCI148036
crossref_primary_10_1016_j_celrep_2021_108837
crossref_primary_10_1016_j_scitotenv_2022_160163
crossref_primary_10_1016_j_tmaid_2021_101980
crossref_primary_10_1016_j_heliyon_2021_e08496
crossref_primary_10_1016_j_xgen_2023_100440
crossref_primary_10_1038_s41385_021_00464_w
crossref_primary_10_1371_journal_ppat_1011777
crossref_primary_10_3390_v13101993
crossref_primary_10_1002_jmv_29163
crossref_primary_10_30802_AALAS_CM_22_000095
crossref_primary_10_3390_pathogens12010020
crossref_primary_10_1080_22221751_2021_1976598
crossref_primary_10_1038_s41541_022_00509_6
crossref_primary_10_1093_biosci_biad102
crossref_primary_10_1093_cid_ciac278
crossref_primary_10_3390_v13010113
crossref_primary_10_3390_pathogens12121408
crossref_primary_10_1016_j_immuni_2024_05_010
crossref_primary_10_1038_s43856_021_00025_z
crossref_primary_10_1080_22221751_2024_2353302
crossref_primary_10_1371_journal_ppat_1010162
crossref_primary_10_3390_vaccines12020132
crossref_primary_10_1128_spectrum_02263_22
crossref_primary_10_3389_fmicb_2021_626553
crossref_primary_10_1016_j_isci_2021_103530
crossref_primary_10_1016_j_isci_2022_104101
crossref_primary_10_1038_s42003_022_04310_y
crossref_primary_10_1111_jmp_12689
crossref_primary_10_3390_v13081673
crossref_primary_10_1021_acsptsci_3c00127
crossref_primary_10_1038_s41467_023_40165_5
crossref_primary_10_1371_journal_pone_0293441
crossref_primary_10_1080_14760584_2022_2071264
crossref_primary_10_1038_s41397_020_00202_8
crossref_primary_10_1371_journal_ppat_1012171
crossref_primary_10_3389_fimmu_2024_1381026
crossref_primary_10_1093_cid_ciab691
crossref_primary_10_1002_jmv_27718
crossref_primary_10_3390_v17010098
crossref_primary_10_1146_annurev_pharmtox_121120_012309
crossref_primary_10_1007_s13205_022_03416_8
crossref_primary_10_2903_j_efsa_2023_7822
crossref_primary_10_3390_v15040862
crossref_primary_10_1093_nsr_nwaa291
crossref_primary_10_1080_01652176_2021_1921311
crossref_primary_10_3390_ani11072044
crossref_primary_10_30802_AALAS_CM_22_000073
crossref_primary_10_1016_j_peptides_2021_170583
crossref_primary_10_15212_AMM_2022_0016
crossref_primary_10_1126_scitranslmed_abe8146
crossref_primary_10_1002_jmv_70237
crossref_primary_10_3390_v17010100
crossref_primary_10_1038_s41392_024_01917_x
crossref_primary_10_4103_ijmr_IJMR_3215_20
crossref_primary_10_4049_immunohorizons_2200065
crossref_primary_10_3389_fcell_2023_1238027
crossref_primary_10_3390_v16010081
crossref_primary_10_1016_j_ijmmb_2022_07_005
crossref_primary_10_3390_v14071507
crossref_primary_10_52538_iduhes_1162455
crossref_primary_10_1016_j_bcp_2021_114724
crossref_primary_10_1038_s41392_022_01087_8
crossref_primary_10_1016_j_heliyon_2024_e33040
crossref_primary_10_1177_03009858211067468
crossref_primary_10_1016_j_antiviral_2022_105329
crossref_primary_10_1038_s41598_024_80474_3
crossref_primary_10_3390_biology12040631
crossref_primary_10_2139_ssrn_4151032
crossref_primary_10_1016_j_coviro_2023_101375
crossref_primary_10_1080_22221751_2021_1913974
crossref_primary_10_1021_acsinfecdis_1c00600
crossref_primary_10_30802_AALAS_CM_21_000032
crossref_primary_10_1038_s41577_022_00762_9
crossref_primary_10_1126_sciadv_abj9815
crossref_primary_10_1186_s42522_021_00039_6
crossref_primary_10_3389_fimmu_2022_993754
crossref_primary_10_1016_j_heliyon_2024_e37128
crossref_primary_10_1093_femsmc_xtab007
crossref_primary_10_1152_physiol_00033_2021
crossref_primary_10_3389_fvets_2023_1111728
crossref_primary_10_3389_fimmu_2021_754642
crossref_primary_10_1093_ve_vead002
crossref_primary_10_3389_fcimb_2021_792584
crossref_primary_10_1038_s41579_022_00713_0
crossref_primary_10_1080_21505594_2024_2316438
crossref_primary_10_4110_in_2021_21_e12
crossref_primary_10_3390_vaccines9080886
crossref_primary_10_1016_j_biologicals_2021_08_001
crossref_primary_10_3389_fvets_2021_748635
crossref_primary_10_1177_03009858221092015
crossref_primary_10_1186_s12967_022_03751_7
crossref_primary_10_1016_j_isci_2022_105074
crossref_primary_10_3390_v13101923
crossref_primary_10_1038_s41541_022_00436_6
crossref_primary_10_1128_mBio_01517_21
crossref_primary_10_1038_s41467_021_23848_9
crossref_primary_10_1093_ilar_ilab010
crossref_primary_10_1093_cid_ciab374
crossref_primary_10_14348_molcells_2021_0094
crossref_primary_10_3390_jcm11092607
crossref_primary_10_3389_fgene_2022_801382
crossref_primary_10_1038_s41467_021_22926_2
crossref_primary_10_3389_fmicb_2022_907406
crossref_primary_10_1080_08830185_2022_2089666
crossref_primary_10_3389_fmicb_2021_770935
crossref_primary_10_1089_omi_2021_0058
crossref_primary_10_30802_AALAS_CM_20_000119
Cites_doi 10.1016/j.chom.2020.04.017
10.1016/j.chom.2020.03.023
10.1371/journal.pone.0010690
10.1093/infdis/167.3.553
10.1016/j.virol.2004.09.030
10.1038/s41421-020-0168-9
10.1073/pnas.2003138117
10.1093/infdis/jiaa392
10.1016/S1046-2023(03)00124-5
10.1182/blood.2020006000
10.1111/jth.14854
10.1093/infdis/jiz613
10.1126/science.abc4776
10.1016/S0264-410X(99)00575-7
10.1016/j.jtho.2020.02.010
10.1126/science.abb7314
10.1128/JVI.06048-11
10.1371/journal.pone.0234765
10.1128/JVI.78.22.12672-12676.2004
10.1093/cid/ciaa325
10.1002/ame2.12108
10.1371/journal.pone.0035421
10.1148/radiol.2020201365
10.1126/science.abc5343
10.1038/s41564-020-0688-y
10.1016/j.cell.2020.05.015
10.1038/s41586-020-2324-7
10.1017/S0950268800048019
10.1073/pnas.2018975117
10.1016/j.ijid.2018.11.249
10.1038/s41586-020-2423-5
10.1016/j.cmi.2020.03.025
10.1101/2020.03.04.20031120
10.1101/2020.09.08.280818
10.1038/s41467-019-09234-665
10.1038/s41422-020-0364-z
10.1073/pnas.1922083117
10.1056/NEJMoa2015432
10.1093/cid/ciaa449
10.3201/eid2609.202095
10.1038/s41586-020-2312-y
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Nature America, Inc. 2020
COPYRIGHT 2021 Nature Publishing Group
The Author(s), under exclusive licence to Springer Nature America, Inc. 2020.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Nature America, Inc. 2020
– notice: COPYRIGHT 2021 Nature Publishing Group
– notice: The Author(s), under exclusive licence to Springer Nature America, Inc. 2020.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
ISR
3V.
7QP
7QR
7T5
7TK
7TM
7U9
7X7
7XB
88E
8AO
8C1
8FD
8FE
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
LK8
M0S
M1P
M7N
M7P
P64
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
RC3
7X8
DOI 10.1038/s41590-020-00835-8
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Gale In Context: Science
ProQuest Central (Corporate)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Immunology Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Virology and AIDS Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Public Health Database
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Database
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
Medical Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biological Science Database
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Genetics Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Central Student
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
ProQuest Central China
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
Chemoreception Abstracts
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Virology and AIDS Abstracts
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
ProQuest Public Health
ProQuest SciTech Collection
ProQuest Medical Library
Immunology Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
ProQuest Central Student
MEDLINE - Academic


MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Biology
EISSN 1529-2916
EndPage 98
ExternalDocumentID A649637125
33235385
10_1038_s41590_020_00835_8
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GeographicLocations United States
GeographicLocations_xml – name: United States
GrantInformation_xml – fundername: U.S. Department of Health & Human Services | NIH | National Institute of Allergy and Infectious Diseases (NIAID)
  grantid: UC7AI094660
  funderid: https://doi.org/10.13039/100000060
– fundername: U.S. Department of Health & Human Services | NIH | National Institute of Allergy and Infectious Diseases (NIAID)
  grantid: UC7AI094660
– fundername: NIAID NIH HHS
  grantid: UC7 AI094660
GroupedDBID ---
.55
0R~
123
29M
2FS
36B
39C
3V.
4.4
53G
5BI
5RE
70F
7X7
88E
8AO
8C1
8FE
8FH
8FI
8FJ
8R4
8R5
AAEEF
AAHBH
AARCD
AAYZH
AAZLF
ABAWZ
ABDBF
ABJNI
ABLJU
ABNNU
ABOCM
ABUWG
ACBWK
ACGFS
ACIWK
ACPRK
ACRPL
ACUHS
ADBBV
ADNMO
AENEX
AEUYN
AFBBN
AFKRA
AFRAH
AFSHS
AGAYW
AGGDT
AGHTU
AHBCP
AHMBA
AHOSX
AHSBF
AIBTJ
AIYXT
ALFFA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ARMCB
ASPBG
AVWKF
AXYYD
AZFZN
BBNVY
BENPR
BHPHI
BKKNO
BPHCQ
BVXVI
CCPQU
CS3
DB5
DU5
EAD
EAP
EAS
EBS
EE.
EJD
EMB
EMK
EMOBN
ESX
EXGXG
F5P
FEDTE
FQGFK
FSGXE
FYUFA
HCIFZ
HMCUK
HVGLF
HZ~
IAO
IHR
INH
INR
ISR
ITC
L-9
LK8
M1P
M7P
N9A
NNMJJ
O9-
ODYON
P2P
PQQKQ
PROAC
PSQYO
Q2X
RNT
RNTTT
SHXYY
SIXXV
SNYQT
SOJ
SV3
TAOOD
TBHMF
TDRGL
TSG
TUS
UKHRP
WH7
X7M
Y6R
ZXP
AAYXX
ABFSG
ACSTC
AEZWR
AFANA
AFHIU
AHWEU
AIXLP
ALPWD
ATHPR
CITATION
PHGZM
PHGZT
AGQPQ
CGR
CUY
CVF
ECM
EIF
NFIDA
NPM
PJZUB
PPXIY
PQGLB
AEIIB
PMFND
7QP
7QR
7T5
7TK
7TM
7U9
7XB
8FD
8FK
AZQEC
DWQXO
FR3
GNUQQ
H94
K9.
M7N
P64
PKEHL
PQEST
PQUKI
PRINS
RC3
7X8
ID FETCH-LOGICAL-c586t-eaef05b1a1927de95b113641c26bb6e5e7e72bc3de55545ac86939dafde49aed3
IEDL.DBID 7X7
ISSN 1529-2908
1529-2916
IngestDate Thu Aug 07 14:56:05 EDT 2025
Sat Aug 23 12:50:15 EDT 2025
Tue Jun 17 21:40:24 EDT 2025
Tue Jun 10 20:50:37 EDT 2025
Fri Jun 27 05:11:34 EDT 2025
Mon Jul 21 05:51:01 EDT 2025
Thu Apr 24 23:08:31 EDT 2025
Tue Jul 01 01:02:32 EDT 2025
Fri Feb 21 02:39:03 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c586t-eaef05b1a1927de95b113641c26bb6e5e7e72bc3de55545ac86939dafde49aed3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-0858-1877
0000-0003-0405-5191
0000-0003-2713-5338
0000-0002-4147-2077
0000-0001-7718-1522
0000-0003-3389-0137
OpenAccessLink https://www.nature.com/articles/s41590-020-00835-8.pdf
PMID 33235385
PQID 2473305281
PQPubID 45782
PageCount 13
ParticipantIDs proquest_miscellaneous_2464191766
proquest_journals_2473305281
gale_infotracmisc_A649637125
gale_infotracacademiconefile_A649637125
gale_incontextgauss_ISR_A649637125
pubmed_primary_33235385
crossref_citationtrail_10_1038_s41590_020_00835_8
crossref_primary_10_1038_s41590_020_00835_8
springer_journals_10_1038_s41590_020_00835_8
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-01-01
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – month: 01
  year: 2021
  text: 2021-01-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: United States
PublicationTitle Nature immunology
PublicationTitleAbbrev Nat Immunol
PublicationTitleAlternate Nat Immunol
PublicationYear 2021
Publisher Nature Publishing Group US
Nature Publishing Group
Publisher_xml – name: Nature Publishing Group US
– name: Nature Publishing Group
References ShanCInfection with novel coronavirus (SARS-CoV-2) causes pneumonia in rhesus macaquesCell Res.2020306706771:CAS:528:DC%2BB3cXhtlektb3O10.1038/s41422-020-0364-z
DengWPrimary exposure to SARS-CoV-2 protects against reinfection in rhesus macaquesScience20203698188231:CAS:528:DC%2BB3cXhsF2qsrzO10.1126/science.abc5343
de WitEProphylactic and therapeutic remdesivir (GS-5734) treatment in the rhesus macaque model of MERS-CoV infectionProc. Natl Acad. Sci. USA20201176771677610.1073/pnas.1922083117
Caswell, J. L. & Williams K. in Jubb, Kennedy and Palmer’s Pathology of Domestic Animals 5th edn (eds Maxie M. G. et al.) 523–655 (Elsevier, 2007).
NalcaAToturaALivingstonVFrickODyerDAfrican green monkey model of Middle East respiratory syndrome coronavirus (MERS-CoV) infectionInt. J. Infect. Dis.201979991001:CAS:528:DC%2BB3cXitlSgsbrE10.1016/j.ijid.2018.11.249
Galanti, M. & Shaman, J. Direct observation of repeated infections with endemic coronaviruses. J. Infect. Dis.https://doi.org/10.1093/infdis/jiaa392 (2020).
Wen, W. et al. Immune cell profiling of COVID-19 patients in the recovery stage by single-cell sequencing. Cell Discov. https://doi.org/10.1038/s41421-020-0168-9 (2020).
PrasadANResistance of cynomolgus monkeys to nipah and hendra virus disease is associated with cell-mediated and humoral immunityJ. Infect. Dis.2020221S436S4471:CAS:528:DC%2BB3cXhtFSiu7%2FN10.1093/infdis/jiz613
GrifoniATargets of T cell responses to SARS-CoV-2 coronavirus in humans with COVID-19 disease and unexposed individualsCell2020181148915011:CAS:528:DC%2BB3cXhtVOmu73N10.1016/j.cell.2020.05.015
Centers for Disease Control and Prevention. CDC 2019-nCoV Real-Time RT–PCR Diagnostic Panelhttps://www.cdc.gov/coronavirus/2019-ncov/downloads/List-of-Acceptable-Commercial-Primers-Probes.pdf (2020).
RanucciMThe procoagulant pattern of patients with COVID-19 acute respiratory distress syndromeJ. Thromb. Haemost.202018174717511:CAS:528:DC%2BB3cXhtlehu7%2FF10.1111/jth.14854
Grant, M. C. et al. The prevalence of symptoms in 24,410 adults infected by the novel coronavirus (SARS-CoV-2; COVID-19): a systematic review and meta-analysis of 148 studies from 9 countries. PLoS ONEhttps://doi.org/10.1371/journal.pone.0234765 (2020).
MunsterVJRespiratory disease in rhesus macaques inoculated with SARS-CoV-2Nature20205852682721:CAS:528:DC%2BB3cXhsVygtLvP10.1038/s41586-020-2324-7
DurbinAPElkinsWRMurphyBRAfrican green monkeys provide a useful nonhuman primate model for the study of human parainfluenza virus types-1, -2, and -3 infectionVaccine200018246224691:STN:280:DC%2BD3c3gsVertw%3D%3D10.1016/S0264-410X(99)00575-7
AckermannMPulmonary vascular endothelialitis, thrombosis, and angiogenesis in COVID-19N. Engl. J. Med.20203831201281:CAS:528:DC%2BB3cXhsVeis7jK10.1056/NEJMoa2015432
GeisbertTWDevelopment of an acute and highly pathogenic nonhuman primate model of nipah virus infectionPLoS ONE201051069010.1371/journal.pone.0010690
WilliamsonBNClinical benefit of remdesivir in rhesus macaques infected with SARS-CoV-2Nature20205852732761:CAS:528:DC%2BB3cXhslelu7rJ10.1038/s41586-020-2423-5
BollesMA double-inactivated severe acute respiratory syndrome coronavirus vaccine provides incomplete protection in mice and induces increased eosinophilic proinflammatory pulmonary response upon challengeJ. Virol.20118512201122151:CAS:528:DC%2BC3MXhsFaks7rK10.1128/JVI.06048-11
ChandrashekarASARS-CoV-2 infection protects against rechallenge in rhesus macaquesScience20203698128171:CAS:528:DC%2BB3cXhsF2qsrjK10.1126/science.abc4776
LetkoMMarziAMunsterVFunctional assessment of cell entry and receptor usage for SARS-CoV-2 and other lineage B betacoronavirusesNat. Microbiol.202055625691:CAS:528:DC%2BB3cXjvFyitL0%3D10.1038/s41564-020-0688-y
ImaiMSyrian hamsters as a small animal model for SARS-CoV-2 infection and countermeasure developmentProc. Natl Acad. Sci. USA202011716587165951:CAS:528:DC%2BB3cXhsFahtrvI32571934
RubinGDThe role of chest imaging in patient management during the COVID-19 pandemic: a multinational consensus statement from the Fleischner SocietyRadiology202029617218010.1148/radiol.2020201365
YuPAge-related rhesus macaque models of COVID-19Anim. Model. Exp. Med.20203939710.1002/ame2.12108
TianSPulmonary pathology of early-phase 2019 novel coronavirus (COVID-19) pneumonia in two patients with lung cancerJ. Thorac. Oncol.2020157007041:CAS:528:DC%2BB3cXksVynsr0%3D10.1016/j.jtho.2020.02.010
MartinesRBPathology and pathogenesis of SARS-CoV-2 associated with fatal coronavirus disease, United StatesEmerg. Infect. Dis.202026200520151:CAS:528:DC%2BB3cXitlyltrjO10.3201/eid2609.202095
Bao, L. et al. The pathogenicity of SARS-CoV-2 in hACE2 transgenic mice. Naturehttps://doi.org/10.1038/s41586-020-2312-y (2020).
Diao, B. et al. Human kidney is a target for novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Preprint at medRxivhttps://doi.org/10.1101/2020.03.04.20031120 (2020).
Zhou, Y. et al. Metascape provides a biologist-oriented resource for the analysis of systems-level datasets. Nat. Commun. https://doi.org/10.1038/s41467-019-09234-665 (2019).
TsengCTImmunization with SARS coronavirus vaccines leads to pulmonary immunopathology on challenge with the SARS virusPLoS ONE20127e354211:CAS:528:DC%2BC38XmslOksbs%3D10.1371/journal.pone.0035421
McAuliffeJReplication of SARS coronavirus administered into the respiratory tract of African green, rhesus and cynomolgus monkeysVirology20043308151:CAS:528:DC%2BD2cXpsFentb8%3D10.1016/j.virol.2004.09.030
ZhouZHeightened innate immune responses in the respiratory tract of COVID-19 patientsCell Host Microbe2020278838901:CAS:528:DC%2BB3cXpt1Gks74%3D10.1016/j.chom.2020.04.017
American College of Radiology. ACR Recommendations for the use of Chest Radiography and Computed Tomography (CT) for Suspected COVID-19 Infectionhttps://www.acr.org/Advocacy-and-Economics/ACR-Position-Statements/Recommendations-for-Chest-Radiography-and-CT-for-Suspected-COVID19-Infection (2020).
WeingartlHImmunization with modified vaccinia virus Ankara-based recombinant vaccine against severe acute respiratory syndrome is associated with enhanced hepatitis in ferretsJ. Virol.20047812672126761:CAS:528:DC%2BD2cXhtVWhu7fL10.1128/JVI.78.22.12672-12676.2004
Chen, X. et al. Detectable serum SARS-CoV-2 viral load (RNAaemia) is closely correlated with drastically elevated interleukin 6 (IL-6) level in critically ill COVID-19 patients. Clin. Infect. Dis. https://doi.org/10.1093/cid/ciaa449 (2020).
RockxBComparative pathogenesis of COVID-19, MERS, and SARS in a nonhuman primate modelScience2020368101210151:CAS:528:DC%2BB3cXhtVCnur3P10.1126/science.abb7314
WeinstockMEChest X-ray findings in 636 ambulatory patients with COVID-19 presenting to an urgent care center: a normal chest X-ray is no guaranteeJ. Urgent Care Med.2020141318
LetschAScheibenbogenCQuantification and characterization of specific T-cells by antigen-specific cytokine production using ELISPOT assay or intracellular cytokine stainingMethods2003311431491:CAS:528:DC%2BD3sXmvVOrtLw%3D10.1016/S1046-2023(03)00124-5
KakukTJA human respiratory syncytial virus (RSV) primate model of enhanced pulmonary pathology induced with a formalin-inactivated RSV vaccine but not a recombinant FG subunit vaccineJ. Infect. Dis.19931675535611:STN:280:DyaK3s7nvFOktA%3D%3D10.1093/infdis/167.3.553
Shang, J. et al. Cell entry mechanisms of SARS-CoV-2. Proc. Natl Acad. Sci. USAhttps://doi.org/10.1073/pnas.2003138117 (2020).
World Health Organization. Coronavirus Disease (COVID-19) Situation Reporthttps://www.who.int/docs/default-source/coronaviruse/situation-reports/20201012-weekly-epi-update-9.pdf (2020).
KimYILInfection and rapid transmission of SARS-CoV-2 in ferretsCell Host Microbe2020277047091:CAS:528:DC%2BB3cXmsl2qsLs%3D10.1016/j.chom.2020.03.023
Vogel, A. A prefusion SARS-CoV-2 spike RNA vaccine is highly immunogenic and prevents lung infection in non-human primates. Preprint at bioRxivhttps://doi.org/10.1101/2020.09.08.280818 (2020).
CapobianchiMRMolecular characterization of SARS-CoV-2 from the first case of COVID-19 in ItalyClin. Microbiol. Infect.2020269549561:CAS:528:DC%2BB3cXmt1Snt7o%3D10.1016/j.cmi.2020.03.025
Chan, J. F. W. et al. Simulation of the clinical and pathological manifestations of coronavirus disease 2019 (COVID-19) in golden Syrian hamster model: implications for disease pathogenesis and transmissibility. Clin. Infect. Dis. https://doi.org/10.1093/cid/ciaa325 (2020).
ConnorsJMLevyJHCOVID-19 and its implications for thrombosis and anticoagulationBlood2020135203320401:CAS:528:DC%2BB3cXhtlSjs7nJ10.1182/blood.2020006000
CallowKAParryHFSergeantMTyrrellDAJThe time course of the immune response to experimental coronavirus infection of manEpidemiol. Infect.19901054354461:STN:280:DyaK3M%2Fgs1CjsA%3D%3D10.1017/S0950268800048019
MR Capobianchi (835_CR43) 2020; 26
AN Prasad (835_CR29) 2020; 221
ME Weinstock (835_CR37) 2020; 14
835_CR1
BN Williamson (835_CR30) 2020; 585
Z Zhou (835_CR17) 2020; 27
TW Geisbert (835_CR44) 2010; 5
M Ackermann (835_CR34) 2020; 383
A Nalca (835_CR27) 2019; 79
CT Tseng (835_CR2) 2012; 7
835_CR42
835_CR21
YIL Kim (835_CR7) 2020; 27
M Letko (835_CR15) 2020; 5
JM Connors (835_CR24) 2020; 135
835_CR40
KA Callow (835_CR41) 1990; 105
A Letsch (835_CR23) 2003; 31
835_CR46
M Bolles (835_CR3) 2011; 85
H Weingartl (835_CR4) 2004; 78
835_CR45
J McAuliffe (835_CR14) 2004; 330
A Chandrashekar (835_CR13) 2020; 369
GD Rubin (835_CR38) 2020; 296
E de Wit (835_CR20) 2020; 117
W Deng (835_CR19) 2020; 369
P Yu (835_CR9) 2020; 3
A Grifoni (835_CR22) 2020; 181
835_CR39
835_CR18
VJ Munster (835_CR10) 2020; 585
RB Martines (835_CR35) 2020; 26
835_CR16
C Shan (835_CR11) 2020; 30
AP Durbin (835_CR28) 2000; 18
835_CR31
835_CR6
TJ Kakuk (835_CR26) 1993; 167
835_CR32
835_CR5
M Ranucci (835_CR25) 2020; 18
B Rockx (835_CR8) 2020; 368
835_CR36
S Tian (835_CR33) 2020; 15
M Imai (835_CR12) 2020; 117
32511377 - bioRxiv. 2020 May 17:2020.05.17.100289. doi: 10.1101/2020.05.17.100289
References_xml – reference: TianSPulmonary pathology of early-phase 2019 novel coronavirus (COVID-19) pneumonia in two patients with lung cancerJ. Thorac. Oncol.2020157007041:CAS:528:DC%2BB3cXksVynsr0%3D10.1016/j.jtho.2020.02.010
– reference: WilliamsonBNClinical benefit of remdesivir in rhesus macaques infected with SARS-CoV-2Nature20205852732761:CAS:528:DC%2BB3cXhslelu7rJ10.1038/s41586-020-2423-5
– reference: ShanCInfection with novel coronavirus (SARS-CoV-2) causes pneumonia in rhesus macaquesCell Res.2020306706771:CAS:528:DC%2BB3cXhtlektb3O10.1038/s41422-020-0364-z
– reference: YuPAge-related rhesus macaque models of COVID-19Anim. Model. Exp. Med.20203939710.1002/ame2.12108
– reference: ConnorsJMLevyJHCOVID-19 and its implications for thrombosis and anticoagulationBlood2020135203320401:CAS:528:DC%2BB3cXhtlSjs7nJ10.1182/blood.2020006000
– reference: DurbinAPElkinsWRMurphyBRAfrican green monkeys provide a useful nonhuman primate model for the study of human parainfluenza virus types-1, -2, and -3 infectionVaccine200018246224691:STN:280:DC%2BD3c3gsVertw%3D%3D10.1016/S0264-410X(99)00575-7
– reference: Chen, X. et al. Detectable serum SARS-CoV-2 viral load (RNAaemia) is closely correlated with drastically elevated interleukin 6 (IL-6) level in critically ill COVID-19 patients. Clin. Infect. Dis. https://doi.org/10.1093/cid/ciaa449 (2020).
– reference: TsengCTImmunization with SARS coronavirus vaccines leads to pulmonary immunopathology on challenge with the SARS virusPLoS ONE20127e354211:CAS:528:DC%2BC38XmslOksbs%3D10.1371/journal.pone.0035421
– reference: Wen, W. et al. Immune cell profiling of COVID-19 patients in the recovery stage by single-cell sequencing. Cell Discov. https://doi.org/10.1038/s41421-020-0168-9 (2020).
– reference: PrasadANResistance of cynomolgus monkeys to nipah and hendra virus disease is associated with cell-mediated and humoral immunityJ. Infect. Dis.2020221S436S4471:CAS:528:DC%2BB3cXhtFSiu7%2FN10.1093/infdis/jiz613
– reference: NalcaAToturaALivingstonVFrickODyerDAfrican green monkey model of Middle East respiratory syndrome coronavirus (MERS-CoV) infectionInt. J. Infect. Dis.201979991001:CAS:528:DC%2BB3cXitlSgsbrE10.1016/j.ijid.2018.11.249
– reference: GrifoniATargets of T cell responses to SARS-CoV-2 coronavirus in humans with COVID-19 disease and unexposed individualsCell2020181148915011:CAS:528:DC%2BB3cXhtVOmu73N10.1016/j.cell.2020.05.015
– reference: CapobianchiMRMolecular characterization of SARS-CoV-2 from the first case of COVID-19 in ItalyClin. Microbiol. Infect.2020269549561:CAS:528:DC%2BB3cXmt1Snt7o%3D10.1016/j.cmi.2020.03.025
– reference: ZhouZHeightened innate immune responses in the respiratory tract of COVID-19 patientsCell Host Microbe2020278838901:CAS:528:DC%2BB3cXpt1Gks74%3D10.1016/j.chom.2020.04.017
– reference: ChandrashekarASARS-CoV-2 infection protects against rechallenge in rhesus macaquesScience20203698128171:CAS:528:DC%2BB3cXhsF2qsrjK10.1126/science.abc4776
– reference: Centers for Disease Control and Prevention. CDC 2019-nCoV Real-Time RT–PCR Diagnostic Panelhttps://www.cdc.gov/coronavirus/2019-ncov/downloads/List-of-Acceptable-Commercial-Primers-Probes.pdf (2020).
– reference: Zhou, Y. et al. Metascape provides a biologist-oriented resource for the analysis of systems-level datasets. Nat. Commun. https://doi.org/10.1038/s41467-019-09234-665 (2019).
– reference: Caswell, J. L. & Williams K. in Jubb, Kennedy and Palmer’s Pathology of Domestic Animals 5th edn (eds Maxie M. G. et al.) 523–655 (Elsevier, 2007).
– reference: WeingartlHImmunization with modified vaccinia virus Ankara-based recombinant vaccine against severe acute respiratory syndrome is associated with enhanced hepatitis in ferretsJ. Virol.20047812672126761:CAS:528:DC%2BD2cXhtVWhu7fL10.1128/JVI.78.22.12672-12676.2004
– reference: Vogel, A. A prefusion SARS-CoV-2 spike RNA vaccine is highly immunogenic and prevents lung infection in non-human primates. Preprint at bioRxivhttps://doi.org/10.1101/2020.09.08.280818 (2020).
– reference: KimYILInfection and rapid transmission of SARS-CoV-2 in ferretsCell Host Microbe2020277047091:CAS:528:DC%2BB3cXmsl2qsLs%3D10.1016/j.chom.2020.03.023
– reference: RubinGDThe role of chest imaging in patient management during the COVID-19 pandemic: a multinational consensus statement from the Fleischner SocietyRadiology202029617218010.1148/radiol.2020201365
– reference: RanucciMThe procoagulant pattern of patients with COVID-19 acute respiratory distress syndromeJ. Thromb. Haemost.202018174717511:CAS:528:DC%2BB3cXhtlehu7%2FF10.1111/jth.14854
– reference: Grant, M. C. et al. The prevalence of symptoms in 24,410 adults infected by the novel coronavirus (SARS-CoV-2; COVID-19): a systematic review and meta-analysis of 148 studies from 9 countries. PLoS ONEhttps://doi.org/10.1371/journal.pone.0234765 (2020).
– reference: Diao, B. et al. Human kidney is a target for novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Preprint at medRxivhttps://doi.org/10.1101/2020.03.04.20031120 (2020).
– reference: CallowKAParryHFSergeantMTyrrellDAJThe time course of the immune response to experimental coronavirus infection of manEpidemiol. Infect.19901054354461:STN:280:DyaK3M%2Fgs1CjsA%3D%3D10.1017/S0950268800048019
– reference: Shang, J. et al. Cell entry mechanisms of SARS-CoV-2. Proc. Natl Acad. Sci. USAhttps://doi.org/10.1073/pnas.2003138117 (2020).
– reference: Chan, J. F. W. et al. Simulation of the clinical and pathological manifestations of coronavirus disease 2019 (COVID-19) in golden Syrian hamster model: implications for disease pathogenesis and transmissibility. Clin. Infect. Dis. https://doi.org/10.1093/cid/ciaa325 (2020).
– reference: RockxBComparative pathogenesis of COVID-19, MERS, and SARS in a nonhuman primate modelScience2020368101210151:CAS:528:DC%2BB3cXhtVCnur3P10.1126/science.abb7314
– reference: MartinesRBPathology and pathogenesis of SARS-CoV-2 associated with fatal coronavirus disease, United StatesEmerg. Infect. Dis.202026200520151:CAS:528:DC%2BB3cXitlyltrjO10.3201/eid2609.202095
– reference: LetkoMMarziAMunsterVFunctional assessment of cell entry and receptor usage for SARS-CoV-2 and other lineage B betacoronavirusesNat. Microbiol.202055625691:CAS:528:DC%2BB3cXjvFyitL0%3D10.1038/s41564-020-0688-y
– reference: LetschAScheibenbogenCQuantification and characterization of specific T-cells by antigen-specific cytokine production using ELISPOT assay or intracellular cytokine stainingMethods2003311431491:CAS:528:DC%2BD3sXmvVOrtLw%3D10.1016/S1046-2023(03)00124-5
– reference: DengWPrimary exposure to SARS-CoV-2 protects against reinfection in rhesus macaquesScience20203698188231:CAS:528:DC%2BB3cXhsF2qsrzO10.1126/science.abc5343
– reference: Galanti, M. & Shaman, J. Direct observation of repeated infections with endemic coronaviruses. J. Infect. Dis.https://doi.org/10.1093/infdis/jiaa392 (2020).
– reference: MunsterVJRespiratory disease in rhesus macaques inoculated with SARS-CoV-2Nature20205852682721:CAS:528:DC%2BB3cXhsVygtLvP10.1038/s41586-020-2324-7
– reference: McAuliffeJReplication of SARS coronavirus administered into the respiratory tract of African green, rhesus and cynomolgus monkeysVirology20043308151:CAS:528:DC%2BD2cXpsFentb8%3D10.1016/j.virol.2004.09.030
– reference: de WitEProphylactic and therapeutic remdesivir (GS-5734) treatment in the rhesus macaque model of MERS-CoV infectionProc. Natl Acad. Sci. USA20201176771677610.1073/pnas.1922083117
– reference: World Health Organization. Coronavirus Disease (COVID-19) Situation Reporthttps://www.who.int/docs/default-source/coronaviruse/situation-reports/20201012-weekly-epi-update-9.pdf (2020).
– reference: AckermannMPulmonary vascular endothelialitis, thrombosis, and angiogenesis in COVID-19N. Engl. J. Med.20203831201281:CAS:528:DC%2BB3cXhsVeis7jK10.1056/NEJMoa2015432
– reference: GeisbertTWDevelopment of an acute and highly pathogenic nonhuman primate model of nipah virus infectionPLoS ONE201051069010.1371/journal.pone.0010690
– reference: Bao, L. et al. The pathogenicity of SARS-CoV-2 in hACE2 transgenic mice. Naturehttps://doi.org/10.1038/s41586-020-2312-y (2020).
– reference: KakukTJA human respiratory syncytial virus (RSV) primate model of enhanced pulmonary pathology induced with a formalin-inactivated RSV vaccine but not a recombinant FG subunit vaccineJ. Infect. Dis.19931675535611:STN:280:DyaK3s7nvFOktA%3D%3D10.1093/infdis/167.3.553
– reference: WeinstockMEChest X-ray findings in 636 ambulatory patients with COVID-19 presenting to an urgent care center: a normal chest X-ray is no guaranteeJ. Urgent Care Med.2020141318
– reference: American College of Radiology. ACR Recommendations for the use of Chest Radiography and Computed Tomography (CT) for Suspected COVID-19 Infectionhttps://www.acr.org/Advocacy-and-Economics/ACR-Position-Statements/Recommendations-for-Chest-Radiography-and-CT-for-Suspected-COVID19-Infection (2020).
– reference: BollesMA double-inactivated severe acute respiratory syndrome coronavirus vaccine provides incomplete protection in mice and induces increased eosinophilic proinflammatory pulmonary response upon challengeJ. Virol.20118512201122151:CAS:528:DC%2BC3MXhsFaks7rK10.1128/JVI.06048-11
– reference: ImaiMSyrian hamsters as a small animal model for SARS-CoV-2 infection and countermeasure developmentProc. Natl Acad. Sci. USA202011716587165951:CAS:528:DC%2BB3cXhsFahtrvI32571934
– volume: 27
  start-page: 883
  year: 2020
  ident: 835_CR17
  publication-title: Cell Host Microbe
  doi: 10.1016/j.chom.2020.04.017
– volume: 27
  start-page: 704
  year: 2020
  ident: 835_CR7
  publication-title: Cell Host Microbe
  doi: 10.1016/j.chom.2020.03.023
– volume: 5
  start-page: 10690
  year: 2010
  ident: 835_CR44
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0010690
– volume: 167
  start-page: 553
  year: 1993
  ident: 835_CR26
  publication-title: J. Infect. Dis.
  doi: 10.1093/infdis/167.3.553
– volume: 330
  start-page: 8
  year: 2004
  ident: 835_CR14
  publication-title: Virology
  doi: 10.1016/j.virol.2004.09.030
– ident: 835_CR18
  doi: 10.1038/s41421-020-0168-9
– ident: 835_CR16
  doi: 10.1073/pnas.2003138117
– ident: 835_CR42
  doi: 10.1093/infdis/jiaa392
– ident: 835_CR45
– volume: 31
  start-page: 143
  year: 2003
  ident: 835_CR23
  publication-title: Methods
  doi: 10.1016/S1046-2023(03)00124-5
– volume: 135
  start-page: 2033
  year: 2020
  ident: 835_CR24
  publication-title: Blood
  doi: 10.1182/blood.2020006000
– volume: 18
  start-page: 1747
  year: 2020
  ident: 835_CR25
  publication-title: J. Thromb. Haemost.
  doi: 10.1111/jth.14854
– volume: 221
  start-page: S436
  year: 2020
  ident: 835_CR29
  publication-title: J. Infect. Dis.
  doi: 10.1093/infdis/jiz613
– ident: 835_CR1
– volume: 369
  start-page: 812
  year: 2020
  ident: 835_CR13
  publication-title: Science
  doi: 10.1126/science.abc4776
– volume: 18
  start-page: 2462
  year: 2000
  ident: 835_CR28
  publication-title: Vaccine
  doi: 10.1016/S0264-410X(99)00575-7
– volume: 15
  start-page: 700
  year: 2020
  ident: 835_CR33
  publication-title: J. Thorac. Oncol.
  doi: 10.1016/j.jtho.2020.02.010
– volume: 368
  start-page: 1012
  year: 2020
  ident: 835_CR8
  publication-title: Science
  doi: 10.1126/science.abb7314
– volume: 85
  start-page: 12201
  year: 2011
  ident: 835_CR3
  publication-title: J. Virol.
  doi: 10.1128/JVI.06048-11
– ident: 835_CR32
  doi: 10.1371/journal.pone.0234765
– volume: 78
  start-page: 12672
  year: 2004
  ident: 835_CR4
  publication-title: J. Virol.
  doi: 10.1128/JVI.78.22.12672-12676.2004
– ident: 835_CR6
  doi: 10.1093/cid/ciaa325
– volume: 3
  start-page: 93
  year: 2020
  ident: 835_CR9
  publication-title: Anim. Model. Exp. Med.
  doi: 10.1002/ame2.12108
– volume: 7
  start-page: e35421
  year: 2012
  ident: 835_CR2
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0035421
– volume: 296
  start-page: 172
  year: 2020
  ident: 835_CR38
  publication-title: Radiology
  doi: 10.1148/radiol.2020201365
– volume: 369
  start-page: 818
  year: 2020
  ident: 835_CR19
  publication-title: Science
  doi: 10.1126/science.abc5343
– volume: 5
  start-page: 562
  year: 2020
  ident: 835_CR15
  publication-title: Nat. Microbiol.
  doi: 10.1038/s41564-020-0688-y
– volume: 181
  start-page: 1489
  year: 2020
  ident: 835_CR22
  publication-title: Cell
  doi: 10.1016/j.cell.2020.05.015
– volume: 585
  start-page: 268
  year: 2020
  ident: 835_CR10
  publication-title: Nature
  doi: 10.1038/s41586-020-2324-7
– volume: 105
  start-page: 435
  year: 1990
  ident: 835_CR41
  publication-title: Epidemiol. Infect.
  doi: 10.1017/S0950268800048019
– ident: 835_CR21
– volume: 117
  start-page: 16587
  year: 2020
  ident: 835_CR12
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.2018975117
– volume: 14
  start-page: 13
  year: 2020
  ident: 835_CR37
  publication-title: J. Urgent Care Med.
– volume: 79
  start-page: 99
  year: 2019
  ident: 835_CR27
  publication-title: Int. J. Infect. Dis.
  doi: 10.1016/j.ijid.2018.11.249
– volume: 585
  start-page: 273
  year: 2020
  ident: 835_CR30
  publication-title: Nature
  doi: 10.1038/s41586-020-2423-5
– volume: 26
  start-page: 954
  year: 2020
  ident: 835_CR43
  publication-title: Clin. Microbiol. Infect.
  doi: 10.1016/j.cmi.2020.03.025
– ident: 835_CR36
– ident: 835_CR39
  doi: 10.1101/2020.03.04.20031120
– ident: 835_CR31
  doi: 10.1101/2020.09.08.280818
– ident: 835_CR46
  doi: 10.1038/s41467-019-09234-665
– volume: 30
  start-page: 670
  year: 2020
  ident: 835_CR11
  publication-title: Cell Res.
  doi: 10.1038/s41422-020-0364-z
– volume: 117
  start-page: 6771
  year: 2020
  ident: 835_CR20
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1922083117
– volume: 383
  start-page: 120
  year: 2020
  ident: 835_CR34
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMoa2015432
– ident: 835_CR40
  doi: 10.1093/cid/ciaa449
– volume: 26
  start-page: 2005
  year: 2020
  ident: 835_CR35
  publication-title: Emerg. Infect. Dis.
  doi: 10.3201/eid2609.202095
– ident: 835_CR5
  doi: 10.1038/s41586-020-2312-y
– reference: 32511377 - bioRxiv. 2020 May 17:2020.05.17.100289. doi: 10.1101/2020.05.17.100289
SSID ssj0014764
Score 2.6451955
Snippet Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is responsible for an unprecedented global pandemic of COVID-19. Animal models are urgently needed...
SourceID proquest
gale
pubmed
crossref
springer
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 86
SubjectTerms 631/326/596/4130
692/420/254
Alveoli
Animal models
Animals
Antibodies, Viral - immunology
Biological markers
Biomedical and Life Sciences
Biomedicine
Bronchus
Chlorocebus aethiops
Coronaviridae
Coronaviruses
COVID-19
COVID-19 - epidemiology
COVID-19 - immunology
COVID-19 - virology
Disease Models, Animal
Epidemics
Epidemics - prevention & control
Gene expression
Gene Expression - genetics
Gene Expression - immunology
Gene Expression Profiling
Humans
Identification and classification
Immune clearance
Immune response
Immunology
Infectious Diseases
Interferon
Interferons - genetics
Interferons - immunology
Interferons - metabolism
Interleukin 6
Killer Cells, Natural - immunology
Killer Cells, Natural - metabolism
Laboratory animals
Lymphocytes T
Mucosa
Natural killer cells
Pandemics
Pathogenesis
Peripheral blood
Rectum
Reinfection - immunology
Reinfection - virology
Respiratory diseases
SARS-CoV-2 - immunology
SARS-CoV-2 - physiology
Severe acute respiratory syndrome coronavirus 2
T-Lymphocytes - immunology
T-Lymphocytes - metabolism
T-Lymphocytes - virology
Title Establishment of an African green monkey model for COVID-19 and protection against re-infection
URI https://link.springer.com/article/10.1038/s41590-020-00835-8
https://www.ncbi.nlm.nih.gov/pubmed/33235385
https://www.proquest.com/docview/2473305281
https://www.proquest.com/docview/2464191766
Volume 22
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagFYgLgvIKlMogJA5gNXacxD6hsmzVIrWgQtHeLMexV0goKc3ugX_PjOPdspXoJYqUycOZsefzePwNIW8sFy4IJMNTwTNpQ2DKOwByZVWHKm-Ck7jf-eS0OjqXn2flLAXchpRWuRoT40Dd9g5j5PtC1jD1LoXiHy5-M6wahaurqYTGbbKN1GVo1fVsPeHiso70UeCiNBM6V2nTTF6o_QEcl84ZTp4iCmFqwzFdH57_8U_XFkyjHzp8QO4nAEkPRo0_JLd8t0PujCUl_-yQuydpsfwRMVNAfjHIhBFA2gdqOzrWBeroHPNtKDQKOjGN5XAowFc6-fLj-BPjGkRbmjgcQHPUzu1PAJL00rNV-lb3mJwfTr9Pjliqp8BcqaoF89aHvGy4BVRXt17DKS8qyZ2omqbypa99LRpXtL4EkFFapypd6NaG1kttfVs8IVtd3_lnhAaYV4a8dVyKIK2uGuGlC7wVjjeO8yYjfPUzjUtk41jz4peJi96FMqMCDCjARAUYlZF363suRqqNG6Vfo44Mclh0mCQzt8thMMffzsxBJWFYqQG6ZeRtEgo9vN7ZtOcAGoG0VxuSuxuS0Mnc5uWVKZjUyQdzZZIZebW-jHdi4lrn-yXKwA_WyMKZkaejCa0bVxSiAH8DD3-_sqmrh_-_5c9v_pYX5J7AvJsYJtolW4vLpX8JwGnR7MXeAUc14Xtk--P09OvZXzj3Erg
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFD4aQzBeEIzLAgMMAvEA1uJLbg8ITd2mlq1Dgg3tzTiOXSGhZKyt0P4Uv5FjJ-noJPa2t0o5cWqf22f7XABea8aN474YXu4sldo5mluDQC5JM5fGpTPS5zuPD9Phsfx0kpyswJ8-F8aHVfY2MRjqqjH-jHyLywy33gnP2cfTX9R3jfK3q30LjVYs9u35b9yyTT-MdpC_bzjf2z0aDGnXVYCaJE9n1Grr4qRkGrFNVtkCfzKRSmZ4WpapTWxmM14aUdkEXW2iTZ4Woqi0q6wstK0EjnsDbkqBqukz0weLkBIms1CuCl1iQXkR512STizyrSk6yiKmfrMWUA_NlxzhZXfwjz-8dEEb_N7ePbjbAVay3UrYfVix9TrcaltYnq_D7XF3Of8A1C4izXCo5U8cSeOIrknbh6gmEx_fQ3AR0WiQ0H6HIFwmg8_fRjuUFUhaka5mBEoK0RP9A4ErObO0DxerH8Lxtaz0I1itm9puAHG4j3VxZZjkTuoiLbmVxrGKG1YaxsoIWL-YynTFzX2PjZ8qXLKLXLUMUMgAFRig8gjeLd45bUt7XEn9yvNI-ZoZtQ_Kmej5dKpGX7-o7VSiGcsQKkbwtiNyDX7e6C7HASfhy2wtUW4uUaJSm-XHvSiozqhM1YUKRPBy8di_6QPlatvMPQ0ucOGrfkbwuBWhxeSE4AL9Gw7-vpepi8H_P_MnV_-XF7A2PBofqIPR4f5TuMN9zE84otqE1dnZ3D5D0DYrnwdNIfD9ulXzLy6oTrw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIiouCMorUMAgEAewNnYcxzkgVO121aW0IKBVb8Zx7BUSSkp3V6h_jV_HOI8tW4neeouUsRN7Xp_t8QzAS8O49Twkw1PeUWG8p8pZBHKpzLyMC29FuO-8fyB3D8WH4_R4Df70d2FCWGVvExtDXdY27JEPuMhw6Z1yxQa-C4v4PBq_P_lFQwWpcNLal9NoRWTPnf3G5dvs3WSEvH7F-Xjn23CXdhUGqE2VnFNnnI_TghnEOVnpcnxkiRTMclkU0qUucxkvbFK6FN1uaqySeZKXxpdO5MaVCfZ7Da5nSaaCjqnhMryEiaxJXYXuMac8j1V3YSdO1GCGTjOPaVi4NQiIqhWneNE1_OMbLxzWNj5wfBtudeCVbLfSdgfWXLUJN9pylmebsLHfHdTfBb2DqLPZ4Aq7j6T2xFSkrUlUkWmI9SE4iWhASFOKhyB0JsNPR5MRZTmSlqTLH4FSQ8zU_EAQS04d7UPHqntweCUzfR_Wq7pyD4F4XNP6uLRMcC9MLgvuhPWs5JYVlrEiAtZPprZdovNQb-Onbg7cE6VbBmhkgG4YoFUEb5ZtTto0H5dSvwg80iF_RhUkcWoWs5mefP2it6VAk5YhbIzgdUfka_y8Nd19BxxESLm1Qrm1QokKbldf96KgOwMz0-fqEMHz5evQMgTNVa5eBBqc4DxkAI3gQStCy8ElCU_Q12Hnb3uZOu_8_yN_dPm_PIMNVEr9cXKw9xhu8hD-0-xWbcH6_HThniB-mxdPG0Uh8P2qNfMvEQxS8g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Establishment+of+an+African+green+monkey+model+for+COVID-19+and+protection+against+re-infection&rft.jtitle=Nature+immunology&rft.au=Woolsey%2C+Courtney&rft.au=Borisevich%2C+Viktoriya&rft.au=Prasad%2C+Abhishek+N&rft.au=Agans%2C+Krystle+N&rft.date=2021-01-01&rft.pub=Nature+Publishing+Group&rft.issn=1529-2908&rft.volume=22&rft.issue=1&rft.spage=86&rft_id=info:doi/10.1038%2Fs41590-020-00835-8&rft.externalDocID=A649637125
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1529-2908&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1529-2908&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1529-2908&client=summon