Establishment of an African green monkey model for COVID-19 and protection against re-infection
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is responsible for an unprecedented global pandemic of COVID-19. Animal models are urgently needed to study the pathogenesis of COVID-19 and to screen vaccines and treatments. We show that African green monkeys (AGMs) support robust SARS-C...
Saved in:
Published in | Nature immunology Vol. 22; no. 1; pp. 86 - 98 |
---|---|
Main Authors | , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
New York
Nature Publishing Group US
01.01.2021
Nature Publishing Group |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is responsible for an unprecedented global pandemic of COVID-19. Animal models are urgently needed to study the pathogenesis of COVID-19 and to screen vaccines and treatments. We show that African green monkeys (AGMs) support robust SARS-CoV-2 replication and develop pronounced respiratory disease, which may more accurately reflect human COVID-19 cases than other nonhuman primate species. SARS-CoV-2 was detected in mucosal samples, including rectal swabs, as late as 15 days after exposure. Marked inflammation and coagulopathy in blood and tissues were prominent features. Transcriptome analysis demonstrated stimulation of interferon and interleukin-6 pathways in bronchoalveolar lavage samples and repression of natural killer cell- and T cell–associated transcripts in peripheral blood. Despite a slight waning in antibody titers after primary challenge, enhanced antibody and cellular responses contributed to rapid clearance after re-challenge with an identical strain. These data support the utility of AGM for studying COVID-19 pathogenesis and testing medical countermeasures.
Geisbert and colleagues report that African green monkeys infected with the SARS-CoV-2 virus develop disease symptoms that closely resemble those seen in infected humans, making this animal model a useful surrogate to investigate immune responses to coronavirus infection. |
---|---|
AbstractList | Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is responsible for an unprecedented global pandemic of COVID-19. Animal models are urgently needed to study the pathogenesis of COVID-19 and to screen vaccines and treatments. We show that African green monkeys (AGMs) support robust SARS-CoV-2 replication and develop pronounced respiratory disease, which may more accurately reflect human COVID-19 cases than other nonhuman primate species. SARS-CoV-2 was detected in mucosal samples, including rectal swabs, as late as 15 days after exposure. Marked inflammation and coagulopathy in blood and tissues were prominent features. Transcriptome analysis demonstrated stimulation of interferon and interleukin-6 pathways in bronchoalveolar lavage samples and repression of natural killer cell- and T cell-associated transcripts in peripheral blood. Despite a slight waning in antibody titers after primary challenge, enhanced antibody and cellular responses contributed to rapid clearance after re-challenge with an identical strain. These data support the utility of AGM for studying COVID-19 pathogenesis and testing medical countermeasures. Geisbert and colleagues report that African green monkeys infected with the SARS-CoV-2 virus develop disease symptoms that closely resemble those seen in infected humans, making this animal model a useful surrogate to investigate immune responses to coronavirus infection. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is responsible for an unprecedented global pandemic of COVID-19. Animal models are urgently needed to study the pathogenesis of COVID-19 and to screen vaccines and treatments. We show that African green monkeys (AGMs) support robust SARS-CoV-2 replication and develop pronounced respiratory disease, which may more accurately reflect human COVID-19 cases than other nonhuman primate species. SARS-CoV-2 was detected in mucosal samples, including rectal swabs, as late as 15 days after exposure. Marked inflammation and coagulopathy in blood and tissues were prominent features. Transcriptome analysis demonstrated stimulation of interferon and interleukin-6 pathways in bronchoalveolar lavage samples and repression of natural killer cell- and T cell-associated transcripts in peripheral blood. Despite a slight waning in antibody titers after primary challenge, enhanced antibody and cellular responses contributed to rapid clearance after re-challenge with an identical strain. These data support the utility of AGM for studying COVID-19 pathogenesis and testing medical countermeasures.Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is responsible for an unprecedented global pandemic of COVID-19. Animal models are urgently needed to study the pathogenesis of COVID-19 and to screen vaccines and treatments. We show that African green monkeys (AGMs) support robust SARS-CoV-2 replication and develop pronounced respiratory disease, which may more accurately reflect human COVID-19 cases than other nonhuman primate species. SARS-CoV-2 was detected in mucosal samples, including rectal swabs, as late as 15 days after exposure. Marked inflammation and coagulopathy in blood and tissues were prominent features. Transcriptome analysis demonstrated stimulation of interferon and interleukin-6 pathways in bronchoalveolar lavage samples and repression of natural killer cell- and T cell-associated transcripts in peripheral blood. Despite a slight waning in antibody titers after primary challenge, enhanced antibody and cellular responses contributed to rapid clearance after re-challenge with an identical strain. These data support the utility of AGM for studying COVID-19 pathogenesis and testing medical countermeasures. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is responsible for an unprecedented global pandemic of COVID-19. Animal models are urgently needed to study the pathogenesis of COVID-19 and to screen vaccines and treatments. We show that African green monkeys (AGMs) support robust SARS-CoV-2 replication and develop pronounced respiratory disease, which may more accurately reflect human COVID-19 cases than other nonhuman primate species. SARS-CoV-2 was detected in mucosal samples, including rectal swabs, as late as 15 days after exposure. Marked inflammation and coagulopathy in blood and tissues were prominent features. Transcriptome analysis demonstrated stimulation of interferon and interleukin-6 pathways in bronchoalveolar lavage samples and repression of natural killer cell- and T cell–associated transcripts in peripheral blood. Despite a slight waning in antibody titers after primary challenge, enhanced antibody and cellular responses contributed to rapid clearance after re-challenge with an identical strain. These data support the utility of AGM for studying COVID-19 pathogenesis and testing medical countermeasures. Geisbert and colleagues report that African green monkeys infected with the SARS-CoV-2 virus develop disease symptoms that closely resemble those seen in infected humans, making this animal model a useful surrogate to investigate immune responses to coronavirus infection. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is responsible for an unprecedented global pandemic of COVID-19. Animal models are urgently needed to study the pathogenesis of COVID-19 and to screen vaccines and treatments. We show that African green monkeys (AGMs) support robust SARS-CoV-2 replication and develop pronounced respiratory disease, which may more accurately reflect human COVID-19 cases than other nonhuman primate species. SARS-CoV-2 was detected in mucosal samples, including rectal swabs, as late as 15 days after exposure. Marked inflammation and coagulopathy in blood and tissues were prominent features. Transcriptome analysis demonstrated stimulation of interferon and interleukin-6 pathways in bronchoalveolar lavage samples and repression of natural killer cell- and T cell-associated transcripts in peripheral blood. Despite a slight waning in antibody titers after primary challenge, enhanced antibody and cellular responses contributed to rapid clearance after re-challenge with an identical strain. These data support the utility of AGM for studying COVID-19 pathogenesis and testing medical countermeasures. |
Audience | Academic |
Author | Borisevich, Viktoriya Foster, Stephanie L. Melody, Kevin Fenton, Karla A. Medina, Liana Geisbert, Joan B. Prasad, Abhishek N. Deer, Daniel J. Agans, Krystle N. Woolsey, Courtney Levine, Corri B. Geisbert, Thomas W. Heymann, John C. Cross, Robert W. Dobias, Natalie S. |
Author_xml | – sequence: 1 givenname: Courtney orcidid: 0000-0003-3389-0137 surname: Woolsey fullname: Woolsey, Courtney organization: Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston National Laboratory, University of Texas Medical Branch – sequence: 2 givenname: Viktoriya surname: Borisevich fullname: Borisevich, Viktoriya organization: Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston National Laboratory, University of Texas Medical Branch – sequence: 3 givenname: Abhishek N. orcidid: 0000-0002-4147-2077 surname: Prasad fullname: Prasad, Abhishek N. organization: Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston National Laboratory, University of Texas Medical Branch – sequence: 4 givenname: Krystle N. surname: Agans fullname: Agans, Krystle N. organization: Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston National Laboratory, University of Texas Medical Branch – sequence: 5 givenname: Daniel J. surname: Deer fullname: Deer, Daniel J. organization: Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston National Laboratory, University of Texas Medical Branch – sequence: 6 givenname: Natalie S. surname: Dobias fullname: Dobias, Natalie S. organization: Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston National Laboratory, University of Texas Medical Branch – sequence: 7 givenname: John C. surname: Heymann fullname: Heymann, John C. organization: Department of Radiology, University of Texas Medical Branch – sequence: 8 givenname: Stephanie L. surname: Foster fullname: Foster, Stephanie L. organization: Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston National Laboratory, University of Texas Medical Branch – sequence: 9 givenname: Corri B. orcidid: 0000-0003-0405-5191 surname: Levine fullname: Levine, Corri B. organization: Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston National Laboratory, University of Texas Medical Branch – sequence: 10 givenname: Liana surname: Medina fullname: Medina, Liana organization: Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston National Laboratory, University of Texas Medical Branch – sequence: 11 givenname: Kevin orcidid: 0000-0003-2713-5338 surname: Melody fullname: Melody, Kevin organization: Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston National Laboratory, University of Texas Medical Branch – sequence: 12 givenname: Joan B. surname: Geisbert fullname: Geisbert, Joan B. organization: Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston National Laboratory, University of Texas Medical Branch – sequence: 13 givenname: Karla A. surname: Fenton fullname: Fenton, Karla A. organization: Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston National Laboratory, University of Texas Medical Branch – sequence: 14 givenname: Thomas W. orcidid: 0000-0003-0858-1877 surname: Geisbert fullname: Geisbert, Thomas W. email: twgeisbe@utmb.edu organization: Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston National Laboratory, University of Texas Medical Branch – sequence: 15 givenname: Robert W. orcidid: 0000-0001-7718-1522 surname: Cross fullname: Cross, Robert W. organization: Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston National Laboratory, University of Texas Medical Branch |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33235385$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kttq3DAQhkVJaQ7tC_SiGHrTXDjVwZKty2WbtAuBQE-3QpbHW6W2nEoyNG_f2Tpp2FCCEDMM3_8zGs0xOQhTAEJeM3rGqGjep4pJTUvK8dJGyLJ5Ro6Y5LrkmqmDfzltDslxSteUsqpW1QtyKAQXUjTyiJjzlG07-PRjhJCLqS9sKFZ99A7jNgKEYpzCT7jF0MFQ9FMs1lffNx9KphHtips4ZXDZT6GwW-tDykWE0od-Kb4kz3s7JHh1F0_It4vzr-tP5eXVx816dVk62ahcgoWeypZZpnndgcaUCVUxx1XbKpBQQ81bJzqQUlbSukZpoTvbd1BpC504Ie8WX-zn1wwpm9EnB8NgA0xzMrxCN81qpRB9-wi9nuYYsDukaiGo5A17oLZ2AIPvmXK0bmdqVqrSStSMS6TO_kPh6WD0Dr-r91jfE5zuCZDJ8Dtv7ZyS2Xz5vM--uWt0bkfozE30o4235v73EGgWwMUppQi9cT7b3dixCz8YRs1uUcyyKAYXxfxdFNOglD-S3rs_KRKLKCEcthAfJveE6g9apsxP |
CitedBy_id | crossref_primary_10_1128_jvi_01762_23 crossref_primary_10_3389_fimmu_2023_1197588 crossref_primary_10_1080_22221751_2021_1997074 crossref_primary_10_1371_journal_ppat_1010741 crossref_primary_10_1016_j_animal_2021_100272 crossref_primary_10_1007_s00430_022_00735_8 crossref_primary_10_3390_pathogens10020180 crossref_primary_10_1093_infdis_jiae018 crossref_primary_10_36233_0507_4088_293 crossref_primary_10_3389_fcimb_2022_906578 crossref_primary_10_3390_ani13071223 crossref_primary_10_1002_mco2_98 crossref_primary_10_1016_j_watres_2021_117438 crossref_primary_10_1177_11786302221107786 crossref_primary_10_3389_fimmu_2024_1345499 crossref_primary_10_1002_mco2_90 crossref_primary_10_3389_fpubh_2021_717941 crossref_primary_10_1002_rmv_2305 crossref_primary_10_1093_ilar_ilab007 crossref_primary_10_1111_jmp_12626 crossref_primary_10_30802_AALAS_CM_22_000089 crossref_primary_10_1371_journal_ppat_1010618 crossref_primary_10_1016_j_coviro_2021_03_009 crossref_primary_10_1038_s41423_023_01122_w crossref_primary_10_3390_microorganisms9040868 crossref_primary_10_1016_j_idnow_2021_02_007 crossref_primary_10_1126_scitranslmed_abl8282 crossref_primary_10_1371_journal_ppat_1009865 crossref_primary_10_1080_23144599_2023_2222981 crossref_primary_10_1016_j_soh_2023_100017 crossref_primary_10_3389_fimmu_2021_765349 crossref_primary_10_1016_j_molmed_2021_12_001 crossref_primary_10_3390_ani12030378 crossref_primary_10_1007_s00705_022_05609_1 crossref_primary_10_1073_pnas_2310421121 crossref_primary_10_1172_JCI148036 crossref_primary_10_1016_j_celrep_2021_108837 crossref_primary_10_1016_j_scitotenv_2022_160163 crossref_primary_10_1016_j_tmaid_2021_101980 crossref_primary_10_1016_j_heliyon_2021_e08496 crossref_primary_10_1016_j_xgen_2023_100440 crossref_primary_10_1038_s41385_021_00464_w crossref_primary_10_1371_journal_ppat_1011777 crossref_primary_10_3390_v13101993 crossref_primary_10_1002_jmv_29163 crossref_primary_10_30802_AALAS_CM_22_000095 crossref_primary_10_3390_pathogens12010020 crossref_primary_10_1080_22221751_2021_1976598 crossref_primary_10_1038_s41541_022_00509_6 crossref_primary_10_1093_biosci_biad102 crossref_primary_10_1093_cid_ciac278 crossref_primary_10_3390_v13010113 crossref_primary_10_3390_pathogens12121408 crossref_primary_10_1016_j_immuni_2024_05_010 crossref_primary_10_1038_s43856_021_00025_z crossref_primary_10_1080_22221751_2024_2353302 crossref_primary_10_1371_journal_ppat_1010162 crossref_primary_10_3390_vaccines12020132 crossref_primary_10_1128_spectrum_02263_22 crossref_primary_10_3389_fmicb_2021_626553 crossref_primary_10_1016_j_isci_2021_103530 crossref_primary_10_1016_j_isci_2022_104101 crossref_primary_10_1038_s42003_022_04310_y crossref_primary_10_1111_jmp_12689 crossref_primary_10_3390_v13081673 crossref_primary_10_1021_acsptsci_3c00127 crossref_primary_10_1038_s41467_023_40165_5 crossref_primary_10_1371_journal_pone_0293441 crossref_primary_10_1080_14760584_2022_2071264 crossref_primary_10_1038_s41397_020_00202_8 crossref_primary_10_1371_journal_ppat_1012171 crossref_primary_10_3389_fimmu_2024_1381026 crossref_primary_10_1093_cid_ciab691 crossref_primary_10_1002_jmv_27718 crossref_primary_10_3390_v17010098 crossref_primary_10_1146_annurev_pharmtox_121120_012309 crossref_primary_10_1007_s13205_022_03416_8 crossref_primary_10_2903_j_efsa_2023_7822 crossref_primary_10_3390_v15040862 crossref_primary_10_1093_nsr_nwaa291 crossref_primary_10_1080_01652176_2021_1921311 crossref_primary_10_3390_ani11072044 crossref_primary_10_30802_AALAS_CM_22_000073 crossref_primary_10_1016_j_peptides_2021_170583 crossref_primary_10_15212_AMM_2022_0016 crossref_primary_10_1126_scitranslmed_abe8146 crossref_primary_10_1002_jmv_70237 crossref_primary_10_3390_v17010100 crossref_primary_10_1038_s41392_024_01917_x crossref_primary_10_4103_ijmr_IJMR_3215_20 crossref_primary_10_4049_immunohorizons_2200065 crossref_primary_10_3389_fcell_2023_1238027 crossref_primary_10_3390_v16010081 crossref_primary_10_1016_j_ijmmb_2022_07_005 crossref_primary_10_3390_v14071507 crossref_primary_10_52538_iduhes_1162455 crossref_primary_10_1016_j_bcp_2021_114724 crossref_primary_10_1038_s41392_022_01087_8 crossref_primary_10_1016_j_heliyon_2024_e33040 crossref_primary_10_1177_03009858211067468 crossref_primary_10_1016_j_antiviral_2022_105329 crossref_primary_10_1038_s41598_024_80474_3 crossref_primary_10_3390_biology12040631 crossref_primary_10_2139_ssrn_4151032 crossref_primary_10_1016_j_coviro_2023_101375 crossref_primary_10_1080_22221751_2021_1913974 crossref_primary_10_1021_acsinfecdis_1c00600 crossref_primary_10_30802_AALAS_CM_21_000032 crossref_primary_10_1038_s41577_022_00762_9 crossref_primary_10_1126_sciadv_abj9815 crossref_primary_10_1186_s42522_021_00039_6 crossref_primary_10_3389_fimmu_2022_993754 crossref_primary_10_1016_j_heliyon_2024_e37128 crossref_primary_10_1093_femsmc_xtab007 crossref_primary_10_1152_physiol_00033_2021 crossref_primary_10_3389_fvets_2023_1111728 crossref_primary_10_3389_fimmu_2021_754642 crossref_primary_10_1093_ve_vead002 crossref_primary_10_3389_fcimb_2021_792584 crossref_primary_10_1038_s41579_022_00713_0 crossref_primary_10_1080_21505594_2024_2316438 crossref_primary_10_4110_in_2021_21_e12 crossref_primary_10_3390_vaccines9080886 crossref_primary_10_1016_j_biologicals_2021_08_001 crossref_primary_10_3389_fvets_2021_748635 crossref_primary_10_1177_03009858221092015 crossref_primary_10_1186_s12967_022_03751_7 crossref_primary_10_1016_j_isci_2022_105074 crossref_primary_10_3390_v13101923 crossref_primary_10_1038_s41541_022_00436_6 crossref_primary_10_1128_mBio_01517_21 crossref_primary_10_1038_s41467_021_23848_9 crossref_primary_10_1093_ilar_ilab010 crossref_primary_10_1093_cid_ciab374 crossref_primary_10_14348_molcells_2021_0094 crossref_primary_10_3390_jcm11092607 crossref_primary_10_3389_fgene_2022_801382 crossref_primary_10_1038_s41467_021_22926_2 crossref_primary_10_3389_fmicb_2022_907406 crossref_primary_10_1080_08830185_2022_2089666 crossref_primary_10_3389_fmicb_2021_770935 crossref_primary_10_1089_omi_2021_0058 crossref_primary_10_30802_AALAS_CM_20_000119 |
Cites_doi | 10.1016/j.chom.2020.04.017 10.1016/j.chom.2020.03.023 10.1371/journal.pone.0010690 10.1093/infdis/167.3.553 10.1016/j.virol.2004.09.030 10.1038/s41421-020-0168-9 10.1073/pnas.2003138117 10.1093/infdis/jiaa392 10.1016/S1046-2023(03)00124-5 10.1182/blood.2020006000 10.1111/jth.14854 10.1093/infdis/jiz613 10.1126/science.abc4776 10.1016/S0264-410X(99)00575-7 10.1016/j.jtho.2020.02.010 10.1126/science.abb7314 10.1128/JVI.06048-11 10.1371/journal.pone.0234765 10.1128/JVI.78.22.12672-12676.2004 10.1093/cid/ciaa325 10.1002/ame2.12108 10.1371/journal.pone.0035421 10.1148/radiol.2020201365 10.1126/science.abc5343 10.1038/s41564-020-0688-y 10.1016/j.cell.2020.05.015 10.1038/s41586-020-2324-7 10.1017/S0950268800048019 10.1073/pnas.2018975117 10.1016/j.ijid.2018.11.249 10.1038/s41586-020-2423-5 10.1016/j.cmi.2020.03.025 10.1101/2020.03.04.20031120 10.1101/2020.09.08.280818 10.1038/s41467-019-09234-665 10.1038/s41422-020-0364-z 10.1073/pnas.1922083117 10.1056/NEJMoa2015432 10.1093/cid/ciaa449 10.3201/eid2609.202095 10.1038/s41586-020-2312-y |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer Nature America, Inc. 2020 COPYRIGHT 2021 Nature Publishing Group The Author(s), under exclusive licence to Springer Nature America, Inc. 2020. |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Nature America, Inc. 2020 – notice: COPYRIGHT 2021 Nature Publishing Group – notice: The Author(s), under exclusive licence to Springer Nature America, Inc. 2020. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM ISR 3V. 7QP 7QR 7T5 7TK 7TM 7U9 7X7 7XB 88E 8AO 8C1 8FD 8FE 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. LK8 M0S M1P M7N M7P P64 PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS RC3 7X8 |
DOI | 10.1038/s41590-020-00835-8 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Gale In Context: Science ProQuest Central (Corporate) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Immunology Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Virology and AIDS Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Public Health Database Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Database ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Medical Database Algology Mycology and Protozoology Abstracts (Microbiology C) Biological Science Database Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Genetics Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest Central Student ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection ProQuest Central China ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection Chemoreception Abstracts ProQuest Central (New) ProQuest Medical Library (Alumni) Virology and AIDS Abstracts ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts ProQuest Public Health ProQuest SciTech Collection ProQuest Medical Library Immunology Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | ProQuest Central Student MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Biology |
EISSN | 1529-2916 |
EndPage | 98 |
ExternalDocumentID | A649637125 33235385 10_1038_s41590_020_00835_8 |
Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GeographicLocations | United States |
GeographicLocations_xml | – name: United States |
GrantInformation_xml | – fundername: U.S. Department of Health & Human Services | NIH | National Institute of Allergy and Infectious Diseases (NIAID) grantid: UC7AI094660 funderid: https://doi.org/10.13039/100000060 – fundername: U.S. Department of Health & Human Services | NIH | National Institute of Allergy and Infectious Diseases (NIAID) grantid: UC7AI094660 – fundername: NIAID NIH HHS grantid: UC7 AI094660 |
GroupedDBID | --- .55 0R~ 123 29M 2FS 36B 39C 3V. 4.4 53G 5BI 5RE 70F 7X7 88E 8AO 8C1 8FE 8FH 8FI 8FJ 8R4 8R5 AAEEF AAHBH AARCD AAYZH AAZLF ABAWZ ABDBF ABJNI ABLJU ABNNU ABOCM ABUWG ACBWK ACGFS ACIWK ACPRK ACRPL ACUHS ADBBV ADNMO AENEX AEUYN AFBBN AFKRA AFRAH AFSHS AGAYW AGGDT AGHTU AHBCP AHMBA AHOSX AHSBF AIBTJ AIYXT ALFFA ALIPV ALMA_UNASSIGNED_HOLDINGS ARMCB ASPBG AVWKF AXYYD AZFZN BBNVY BENPR BHPHI BKKNO BPHCQ BVXVI CCPQU CS3 DB5 DU5 EAD EAP EAS EBS EE. EJD EMB EMK EMOBN ESX EXGXG F5P FEDTE FQGFK FSGXE FYUFA HCIFZ HMCUK HVGLF HZ~ IAO IHR INH INR ISR ITC L-9 LK8 M1P M7P N9A NNMJJ O9- ODYON P2P PQQKQ PROAC PSQYO Q2X RNT RNTTT SHXYY SIXXV SNYQT SOJ SV3 TAOOD TBHMF TDRGL TSG TUS UKHRP WH7 X7M Y6R ZXP AAYXX ABFSG ACSTC AEZWR AFANA AFHIU AHWEU AIXLP ALPWD ATHPR CITATION PHGZM PHGZT AGQPQ CGR CUY CVF ECM EIF NFIDA NPM PJZUB PPXIY PQGLB AEIIB PMFND 7QP 7QR 7T5 7TK 7TM 7U9 7XB 8FD 8FK AZQEC DWQXO FR3 GNUQQ H94 K9. M7N P64 PKEHL PQEST PQUKI PRINS RC3 7X8 |
ID | FETCH-LOGICAL-c586t-eaef05b1a1927de95b113641c26bb6e5e7e72bc3de55545ac86939dafde49aed3 |
IEDL.DBID | 7X7 |
ISSN | 1529-2908 1529-2916 |
IngestDate | Thu Aug 07 14:56:05 EDT 2025 Sat Aug 23 12:50:15 EDT 2025 Tue Jun 17 21:40:24 EDT 2025 Tue Jun 10 20:50:37 EDT 2025 Fri Jun 27 05:11:34 EDT 2025 Mon Jul 21 05:51:01 EDT 2025 Thu Apr 24 23:08:31 EDT 2025 Tue Jul 01 01:02:32 EDT 2025 Fri Feb 21 02:39:03 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c586t-eaef05b1a1927de95b113641c26bb6e5e7e72bc3de55545ac86939dafde49aed3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-0858-1877 0000-0003-0405-5191 0000-0003-2713-5338 0000-0002-4147-2077 0000-0001-7718-1522 0000-0003-3389-0137 |
OpenAccessLink | https://www.nature.com/articles/s41590-020-00835-8.pdf |
PMID | 33235385 |
PQID | 2473305281 |
PQPubID | 45782 |
PageCount | 13 |
ParticipantIDs | proquest_miscellaneous_2464191766 proquest_journals_2473305281 gale_infotracmisc_A649637125 gale_infotracacademiconefile_A649637125 gale_incontextgauss_ISR_A649637125 pubmed_primary_33235385 crossref_citationtrail_10_1038_s41590_020_00835_8 crossref_primary_10_1038_s41590_020_00835_8 springer_journals_10_1038_s41590_020_00835_8 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-01-01 |
PublicationDateYYYYMMDD | 2021-01-01 |
PublicationDate_xml | – month: 01 year: 2021 text: 2021-01-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York – name: United States |
PublicationTitle | Nature immunology |
PublicationTitleAbbrev | Nat Immunol |
PublicationTitleAlternate | Nat Immunol |
PublicationYear | 2021 |
Publisher | Nature Publishing Group US Nature Publishing Group |
Publisher_xml | – name: Nature Publishing Group US – name: Nature Publishing Group |
References | ShanCInfection with novel coronavirus (SARS-CoV-2) causes pneumonia in rhesus macaquesCell Res.2020306706771:CAS:528:DC%2BB3cXhtlektb3O10.1038/s41422-020-0364-z DengWPrimary exposure to SARS-CoV-2 protects against reinfection in rhesus macaquesScience20203698188231:CAS:528:DC%2BB3cXhsF2qsrzO10.1126/science.abc5343 de WitEProphylactic and therapeutic remdesivir (GS-5734) treatment in the rhesus macaque model of MERS-CoV infectionProc. Natl Acad. Sci. USA20201176771677610.1073/pnas.1922083117 Caswell, J. L. & Williams K. in Jubb, Kennedy and Palmer’s Pathology of Domestic Animals 5th edn (eds Maxie M. G. et al.) 523–655 (Elsevier, 2007). NalcaAToturaALivingstonVFrickODyerDAfrican green monkey model of Middle East respiratory syndrome coronavirus (MERS-CoV) infectionInt. J. Infect. Dis.201979991001:CAS:528:DC%2BB3cXitlSgsbrE10.1016/j.ijid.2018.11.249 Galanti, M. & Shaman, J. Direct observation of repeated infections with endemic coronaviruses. J. Infect. Dis.https://doi.org/10.1093/infdis/jiaa392 (2020). Wen, W. et al. Immune cell profiling of COVID-19 patients in the recovery stage by single-cell sequencing. Cell Discov. https://doi.org/10.1038/s41421-020-0168-9 (2020). PrasadANResistance of cynomolgus monkeys to nipah and hendra virus disease is associated with cell-mediated and humoral immunityJ. Infect. Dis.2020221S436S4471:CAS:528:DC%2BB3cXhtFSiu7%2FN10.1093/infdis/jiz613 GrifoniATargets of T cell responses to SARS-CoV-2 coronavirus in humans with COVID-19 disease and unexposed individualsCell2020181148915011:CAS:528:DC%2BB3cXhtVOmu73N10.1016/j.cell.2020.05.015 Centers for Disease Control and Prevention. CDC 2019-nCoV Real-Time RT–PCR Diagnostic Panelhttps://www.cdc.gov/coronavirus/2019-ncov/downloads/List-of-Acceptable-Commercial-Primers-Probes.pdf (2020). RanucciMThe procoagulant pattern of patients with COVID-19 acute respiratory distress syndromeJ. Thromb. Haemost.202018174717511:CAS:528:DC%2BB3cXhtlehu7%2FF10.1111/jth.14854 Grant, M. C. et al. The prevalence of symptoms in 24,410 adults infected by the novel coronavirus (SARS-CoV-2; COVID-19): a systematic review and meta-analysis of 148 studies from 9 countries. PLoS ONEhttps://doi.org/10.1371/journal.pone.0234765 (2020). MunsterVJRespiratory disease in rhesus macaques inoculated with SARS-CoV-2Nature20205852682721:CAS:528:DC%2BB3cXhsVygtLvP10.1038/s41586-020-2324-7 DurbinAPElkinsWRMurphyBRAfrican green monkeys provide a useful nonhuman primate model for the study of human parainfluenza virus types-1, -2, and -3 infectionVaccine200018246224691:STN:280:DC%2BD3c3gsVertw%3D%3D10.1016/S0264-410X(99)00575-7 AckermannMPulmonary vascular endothelialitis, thrombosis, and angiogenesis in COVID-19N. Engl. J. Med.20203831201281:CAS:528:DC%2BB3cXhsVeis7jK10.1056/NEJMoa2015432 GeisbertTWDevelopment of an acute and highly pathogenic nonhuman primate model of nipah virus infectionPLoS ONE201051069010.1371/journal.pone.0010690 WilliamsonBNClinical benefit of remdesivir in rhesus macaques infected with SARS-CoV-2Nature20205852732761:CAS:528:DC%2BB3cXhslelu7rJ10.1038/s41586-020-2423-5 BollesMA double-inactivated severe acute respiratory syndrome coronavirus vaccine provides incomplete protection in mice and induces increased eosinophilic proinflammatory pulmonary response upon challengeJ. Virol.20118512201122151:CAS:528:DC%2BC3MXhsFaks7rK10.1128/JVI.06048-11 ChandrashekarASARS-CoV-2 infection protects against rechallenge in rhesus macaquesScience20203698128171:CAS:528:DC%2BB3cXhsF2qsrjK10.1126/science.abc4776 LetkoMMarziAMunsterVFunctional assessment of cell entry and receptor usage for SARS-CoV-2 and other lineage B betacoronavirusesNat. Microbiol.202055625691:CAS:528:DC%2BB3cXjvFyitL0%3D10.1038/s41564-020-0688-y ImaiMSyrian hamsters as a small animal model for SARS-CoV-2 infection and countermeasure developmentProc. Natl Acad. Sci. USA202011716587165951:CAS:528:DC%2BB3cXhsFahtrvI32571934 RubinGDThe role of chest imaging in patient management during the COVID-19 pandemic: a multinational consensus statement from the Fleischner SocietyRadiology202029617218010.1148/radiol.2020201365 YuPAge-related rhesus macaque models of COVID-19Anim. Model. Exp. Med.20203939710.1002/ame2.12108 TianSPulmonary pathology of early-phase 2019 novel coronavirus (COVID-19) pneumonia in two patients with lung cancerJ. Thorac. Oncol.2020157007041:CAS:528:DC%2BB3cXksVynsr0%3D10.1016/j.jtho.2020.02.010 MartinesRBPathology and pathogenesis of SARS-CoV-2 associated with fatal coronavirus disease, United StatesEmerg. Infect. Dis.202026200520151:CAS:528:DC%2BB3cXitlyltrjO10.3201/eid2609.202095 Bao, L. et al. The pathogenicity of SARS-CoV-2 in hACE2 transgenic mice. Naturehttps://doi.org/10.1038/s41586-020-2312-y (2020). Diao, B. et al. Human kidney is a target for novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Preprint at medRxivhttps://doi.org/10.1101/2020.03.04.20031120 (2020). Zhou, Y. et al. Metascape provides a biologist-oriented resource for the analysis of systems-level datasets. Nat. Commun. https://doi.org/10.1038/s41467-019-09234-665 (2019). TsengCTImmunization with SARS coronavirus vaccines leads to pulmonary immunopathology on challenge with the SARS virusPLoS ONE20127e354211:CAS:528:DC%2BC38XmslOksbs%3D10.1371/journal.pone.0035421 McAuliffeJReplication of SARS coronavirus administered into the respiratory tract of African green, rhesus and cynomolgus monkeysVirology20043308151:CAS:528:DC%2BD2cXpsFentb8%3D10.1016/j.virol.2004.09.030 ZhouZHeightened innate immune responses in the respiratory tract of COVID-19 patientsCell Host Microbe2020278838901:CAS:528:DC%2BB3cXpt1Gks74%3D10.1016/j.chom.2020.04.017 American College of Radiology. ACR Recommendations for the use of Chest Radiography and Computed Tomography (CT) for Suspected COVID-19 Infectionhttps://www.acr.org/Advocacy-and-Economics/ACR-Position-Statements/Recommendations-for-Chest-Radiography-and-CT-for-Suspected-COVID19-Infection (2020). WeingartlHImmunization with modified vaccinia virus Ankara-based recombinant vaccine against severe acute respiratory syndrome is associated with enhanced hepatitis in ferretsJ. Virol.20047812672126761:CAS:528:DC%2BD2cXhtVWhu7fL10.1128/JVI.78.22.12672-12676.2004 Chen, X. et al. Detectable serum SARS-CoV-2 viral load (RNAaemia) is closely correlated with drastically elevated interleukin 6 (IL-6) level in critically ill COVID-19 patients. Clin. Infect. Dis. https://doi.org/10.1093/cid/ciaa449 (2020). RockxBComparative pathogenesis of COVID-19, MERS, and SARS in a nonhuman primate modelScience2020368101210151:CAS:528:DC%2BB3cXhtVCnur3P10.1126/science.abb7314 WeinstockMEChest X-ray findings in 636 ambulatory patients with COVID-19 presenting to an urgent care center: a normal chest X-ray is no guaranteeJ. Urgent Care Med.2020141318 LetschAScheibenbogenCQuantification and characterization of specific T-cells by antigen-specific cytokine production using ELISPOT assay or intracellular cytokine stainingMethods2003311431491:CAS:528:DC%2BD3sXmvVOrtLw%3D10.1016/S1046-2023(03)00124-5 KakukTJA human respiratory syncytial virus (RSV) primate model of enhanced pulmonary pathology induced with a formalin-inactivated RSV vaccine but not a recombinant FG subunit vaccineJ. Infect. Dis.19931675535611:STN:280:DyaK3s7nvFOktA%3D%3D10.1093/infdis/167.3.553 Shang, J. et al. Cell entry mechanisms of SARS-CoV-2. Proc. Natl Acad. Sci. USAhttps://doi.org/10.1073/pnas.2003138117 (2020). World Health Organization. Coronavirus Disease (COVID-19) Situation Reporthttps://www.who.int/docs/default-source/coronaviruse/situation-reports/20201012-weekly-epi-update-9.pdf (2020). KimYILInfection and rapid transmission of SARS-CoV-2 in ferretsCell Host Microbe2020277047091:CAS:528:DC%2BB3cXmsl2qsLs%3D10.1016/j.chom.2020.03.023 Vogel, A. A prefusion SARS-CoV-2 spike RNA vaccine is highly immunogenic and prevents lung infection in non-human primates. Preprint at bioRxivhttps://doi.org/10.1101/2020.09.08.280818 (2020). CapobianchiMRMolecular characterization of SARS-CoV-2 from the first case of COVID-19 in ItalyClin. Microbiol. Infect.2020269549561:CAS:528:DC%2BB3cXmt1Snt7o%3D10.1016/j.cmi.2020.03.025 Chan, J. F. W. et al. Simulation of the clinical and pathological manifestations of coronavirus disease 2019 (COVID-19) in golden Syrian hamster model: implications for disease pathogenesis and transmissibility. Clin. Infect. Dis. https://doi.org/10.1093/cid/ciaa325 (2020). ConnorsJMLevyJHCOVID-19 and its implications for thrombosis and anticoagulationBlood2020135203320401:CAS:528:DC%2BB3cXhtlSjs7nJ10.1182/blood.2020006000 CallowKAParryHFSergeantMTyrrellDAJThe time course of the immune response to experimental coronavirus infection of manEpidemiol. Infect.19901054354461:STN:280:DyaK3M%2Fgs1CjsA%3D%3D10.1017/S0950268800048019 MR Capobianchi (835_CR43) 2020; 26 AN Prasad (835_CR29) 2020; 221 ME Weinstock (835_CR37) 2020; 14 835_CR1 BN Williamson (835_CR30) 2020; 585 Z Zhou (835_CR17) 2020; 27 TW Geisbert (835_CR44) 2010; 5 M Ackermann (835_CR34) 2020; 383 A Nalca (835_CR27) 2019; 79 CT Tseng (835_CR2) 2012; 7 835_CR42 835_CR21 YIL Kim (835_CR7) 2020; 27 M Letko (835_CR15) 2020; 5 JM Connors (835_CR24) 2020; 135 835_CR40 KA Callow (835_CR41) 1990; 105 A Letsch (835_CR23) 2003; 31 835_CR46 M Bolles (835_CR3) 2011; 85 H Weingartl (835_CR4) 2004; 78 835_CR45 J McAuliffe (835_CR14) 2004; 330 A Chandrashekar (835_CR13) 2020; 369 GD Rubin (835_CR38) 2020; 296 E de Wit (835_CR20) 2020; 117 W Deng (835_CR19) 2020; 369 P Yu (835_CR9) 2020; 3 A Grifoni (835_CR22) 2020; 181 835_CR39 835_CR18 VJ Munster (835_CR10) 2020; 585 RB Martines (835_CR35) 2020; 26 835_CR16 C Shan (835_CR11) 2020; 30 AP Durbin (835_CR28) 2000; 18 835_CR31 835_CR6 TJ Kakuk (835_CR26) 1993; 167 835_CR32 835_CR5 M Ranucci (835_CR25) 2020; 18 B Rockx (835_CR8) 2020; 368 835_CR36 S Tian (835_CR33) 2020; 15 M Imai (835_CR12) 2020; 117 32511377 - bioRxiv. 2020 May 17:2020.05.17.100289. doi: 10.1101/2020.05.17.100289 |
References_xml | – reference: TianSPulmonary pathology of early-phase 2019 novel coronavirus (COVID-19) pneumonia in two patients with lung cancerJ. Thorac. Oncol.2020157007041:CAS:528:DC%2BB3cXksVynsr0%3D10.1016/j.jtho.2020.02.010 – reference: WilliamsonBNClinical benefit of remdesivir in rhesus macaques infected with SARS-CoV-2Nature20205852732761:CAS:528:DC%2BB3cXhslelu7rJ10.1038/s41586-020-2423-5 – reference: ShanCInfection with novel coronavirus (SARS-CoV-2) causes pneumonia in rhesus macaquesCell Res.2020306706771:CAS:528:DC%2BB3cXhtlektb3O10.1038/s41422-020-0364-z – reference: YuPAge-related rhesus macaque models of COVID-19Anim. Model. Exp. Med.20203939710.1002/ame2.12108 – reference: ConnorsJMLevyJHCOVID-19 and its implications for thrombosis and anticoagulationBlood2020135203320401:CAS:528:DC%2BB3cXhtlSjs7nJ10.1182/blood.2020006000 – reference: DurbinAPElkinsWRMurphyBRAfrican green monkeys provide a useful nonhuman primate model for the study of human parainfluenza virus types-1, -2, and -3 infectionVaccine200018246224691:STN:280:DC%2BD3c3gsVertw%3D%3D10.1016/S0264-410X(99)00575-7 – reference: Chen, X. et al. Detectable serum SARS-CoV-2 viral load (RNAaemia) is closely correlated with drastically elevated interleukin 6 (IL-6) level in critically ill COVID-19 patients. Clin. Infect. Dis. https://doi.org/10.1093/cid/ciaa449 (2020). – reference: TsengCTImmunization with SARS coronavirus vaccines leads to pulmonary immunopathology on challenge with the SARS virusPLoS ONE20127e354211:CAS:528:DC%2BC38XmslOksbs%3D10.1371/journal.pone.0035421 – reference: Wen, W. et al. Immune cell profiling of COVID-19 patients in the recovery stage by single-cell sequencing. Cell Discov. https://doi.org/10.1038/s41421-020-0168-9 (2020). – reference: PrasadANResistance of cynomolgus monkeys to nipah and hendra virus disease is associated with cell-mediated and humoral immunityJ. Infect. Dis.2020221S436S4471:CAS:528:DC%2BB3cXhtFSiu7%2FN10.1093/infdis/jiz613 – reference: NalcaAToturaALivingstonVFrickODyerDAfrican green monkey model of Middle East respiratory syndrome coronavirus (MERS-CoV) infectionInt. J. Infect. Dis.201979991001:CAS:528:DC%2BB3cXitlSgsbrE10.1016/j.ijid.2018.11.249 – reference: GrifoniATargets of T cell responses to SARS-CoV-2 coronavirus in humans with COVID-19 disease and unexposed individualsCell2020181148915011:CAS:528:DC%2BB3cXhtVOmu73N10.1016/j.cell.2020.05.015 – reference: CapobianchiMRMolecular characterization of SARS-CoV-2 from the first case of COVID-19 in ItalyClin. Microbiol. Infect.2020269549561:CAS:528:DC%2BB3cXmt1Snt7o%3D10.1016/j.cmi.2020.03.025 – reference: ZhouZHeightened innate immune responses in the respiratory tract of COVID-19 patientsCell Host Microbe2020278838901:CAS:528:DC%2BB3cXpt1Gks74%3D10.1016/j.chom.2020.04.017 – reference: ChandrashekarASARS-CoV-2 infection protects against rechallenge in rhesus macaquesScience20203698128171:CAS:528:DC%2BB3cXhsF2qsrjK10.1126/science.abc4776 – reference: Centers for Disease Control and Prevention. CDC 2019-nCoV Real-Time RT–PCR Diagnostic Panelhttps://www.cdc.gov/coronavirus/2019-ncov/downloads/List-of-Acceptable-Commercial-Primers-Probes.pdf (2020). – reference: Zhou, Y. et al. Metascape provides a biologist-oriented resource for the analysis of systems-level datasets. Nat. Commun. https://doi.org/10.1038/s41467-019-09234-665 (2019). – reference: Caswell, J. L. & Williams K. in Jubb, Kennedy and Palmer’s Pathology of Domestic Animals 5th edn (eds Maxie M. G. et al.) 523–655 (Elsevier, 2007). – reference: WeingartlHImmunization with modified vaccinia virus Ankara-based recombinant vaccine against severe acute respiratory syndrome is associated with enhanced hepatitis in ferretsJ. Virol.20047812672126761:CAS:528:DC%2BD2cXhtVWhu7fL10.1128/JVI.78.22.12672-12676.2004 – reference: Vogel, A. A prefusion SARS-CoV-2 spike RNA vaccine is highly immunogenic and prevents lung infection in non-human primates. Preprint at bioRxivhttps://doi.org/10.1101/2020.09.08.280818 (2020). – reference: KimYILInfection and rapid transmission of SARS-CoV-2 in ferretsCell Host Microbe2020277047091:CAS:528:DC%2BB3cXmsl2qsLs%3D10.1016/j.chom.2020.03.023 – reference: RubinGDThe role of chest imaging in patient management during the COVID-19 pandemic: a multinational consensus statement from the Fleischner SocietyRadiology202029617218010.1148/radiol.2020201365 – reference: RanucciMThe procoagulant pattern of patients with COVID-19 acute respiratory distress syndromeJ. Thromb. Haemost.202018174717511:CAS:528:DC%2BB3cXhtlehu7%2FF10.1111/jth.14854 – reference: Grant, M. C. et al. The prevalence of symptoms in 24,410 adults infected by the novel coronavirus (SARS-CoV-2; COVID-19): a systematic review and meta-analysis of 148 studies from 9 countries. PLoS ONEhttps://doi.org/10.1371/journal.pone.0234765 (2020). – reference: Diao, B. et al. Human kidney is a target for novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Preprint at medRxivhttps://doi.org/10.1101/2020.03.04.20031120 (2020). – reference: CallowKAParryHFSergeantMTyrrellDAJThe time course of the immune response to experimental coronavirus infection of manEpidemiol. Infect.19901054354461:STN:280:DyaK3M%2Fgs1CjsA%3D%3D10.1017/S0950268800048019 – reference: Shang, J. et al. Cell entry mechanisms of SARS-CoV-2. Proc. Natl Acad. Sci. USAhttps://doi.org/10.1073/pnas.2003138117 (2020). – reference: Chan, J. F. W. et al. Simulation of the clinical and pathological manifestations of coronavirus disease 2019 (COVID-19) in golden Syrian hamster model: implications for disease pathogenesis and transmissibility. Clin. Infect. Dis. https://doi.org/10.1093/cid/ciaa325 (2020). – reference: RockxBComparative pathogenesis of COVID-19, MERS, and SARS in a nonhuman primate modelScience2020368101210151:CAS:528:DC%2BB3cXhtVCnur3P10.1126/science.abb7314 – reference: MartinesRBPathology and pathogenesis of SARS-CoV-2 associated with fatal coronavirus disease, United StatesEmerg. Infect. Dis.202026200520151:CAS:528:DC%2BB3cXitlyltrjO10.3201/eid2609.202095 – reference: LetkoMMarziAMunsterVFunctional assessment of cell entry and receptor usage for SARS-CoV-2 and other lineage B betacoronavirusesNat. Microbiol.202055625691:CAS:528:DC%2BB3cXjvFyitL0%3D10.1038/s41564-020-0688-y – reference: LetschAScheibenbogenCQuantification and characterization of specific T-cells by antigen-specific cytokine production using ELISPOT assay or intracellular cytokine stainingMethods2003311431491:CAS:528:DC%2BD3sXmvVOrtLw%3D10.1016/S1046-2023(03)00124-5 – reference: DengWPrimary exposure to SARS-CoV-2 protects against reinfection in rhesus macaquesScience20203698188231:CAS:528:DC%2BB3cXhsF2qsrzO10.1126/science.abc5343 – reference: Galanti, M. & Shaman, J. Direct observation of repeated infections with endemic coronaviruses. J. Infect. Dis.https://doi.org/10.1093/infdis/jiaa392 (2020). – reference: MunsterVJRespiratory disease in rhesus macaques inoculated with SARS-CoV-2Nature20205852682721:CAS:528:DC%2BB3cXhsVygtLvP10.1038/s41586-020-2324-7 – reference: McAuliffeJReplication of SARS coronavirus administered into the respiratory tract of African green, rhesus and cynomolgus monkeysVirology20043308151:CAS:528:DC%2BD2cXpsFentb8%3D10.1016/j.virol.2004.09.030 – reference: de WitEProphylactic and therapeutic remdesivir (GS-5734) treatment in the rhesus macaque model of MERS-CoV infectionProc. Natl Acad. Sci. USA20201176771677610.1073/pnas.1922083117 – reference: World Health Organization. Coronavirus Disease (COVID-19) Situation Reporthttps://www.who.int/docs/default-source/coronaviruse/situation-reports/20201012-weekly-epi-update-9.pdf (2020). – reference: AckermannMPulmonary vascular endothelialitis, thrombosis, and angiogenesis in COVID-19N. Engl. J. Med.20203831201281:CAS:528:DC%2BB3cXhsVeis7jK10.1056/NEJMoa2015432 – reference: GeisbertTWDevelopment of an acute and highly pathogenic nonhuman primate model of nipah virus infectionPLoS ONE201051069010.1371/journal.pone.0010690 – reference: Bao, L. et al. The pathogenicity of SARS-CoV-2 in hACE2 transgenic mice. Naturehttps://doi.org/10.1038/s41586-020-2312-y (2020). – reference: KakukTJA human respiratory syncytial virus (RSV) primate model of enhanced pulmonary pathology induced with a formalin-inactivated RSV vaccine but not a recombinant FG subunit vaccineJ. Infect. Dis.19931675535611:STN:280:DyaK3s7nvFOktA%3D%3D10.1093/infdis/167.3.553 – reference: WeinstockMEChest X-ray findings in 636 ambulatory patients with COVID-19 presenting to an urgent care center: a normal chest X-ray is no guaranteeJ. Urgent Care Med.2020141318 – reference: American College of Radiology. ACR Recommendations for the use of Chest Radiography and Computed Tomography (CT) for Suspected COVID-19 Infectionhttps://www.acr.org/Advocacy-and-Economics/ACR-Position-Statements/Recommendations-for-Chest-Radiography-and-CT-for-Suspected-COVID19-Infection (2020). – reference: BollesMA double-inactivated severe acute respiratory syndrome coronavirus vaccine provides incomplete protection in mice and induces increased eosinophilic proinflammatory pulmonary response upon challengeJ. Virol.20118512201122151:CAS:528:DC%2BC3MXhsFaks7rK10.1128/JVI.06048-11 – reference: ImaiMSyrian hamsters as a small animal model for SARS-CoV-2 infection and countermeasure developmentProc. Natl Acad. Sci. USA202011716587165951:CAS:528:DC%2BB3cXhsFahtrvI32571934 – volume: 27 start-page: 883 year: 2020 ident: 835_CR17 publication-title: Cell Host Microbe doi: 10.1016/j.chom.2020.04.017 – volume: 27 start-page: 704 year: 2020 ident: 835_CR7 publication-title: Cell Host Microbe doi: 10.1016/j.chom.2020.03.023 – volume: 5 start-page: 10690 year: 2010 ident: 835_CR44 publication-title: PLoS ONE doi: 10.1371/journal.pone.0010690 – volume: 167 start-page: 553 year: 1993 ident: 835_CR26 publication-title: J. Infect. Dis. doi: 10.1093/infdis/167.3.553 – volume: 330 start-page: 8 year: 2004 ident: 835_CR14 publication-title: Virology doi: 10.1016/j.virol.2004.09.030 – ident: 835_CR18 doi: 10.1038/s41421-020-0168-9 – ident: 835_CR16 doi: 10.1073/pnas.2003138117 – ident: 835_CR42 doi: 10.1093/infdis/jiaa392 – ident: 835_CR45 – volume: 31 start-page: 143 year: 2003 ident: 835_CR23 publication-title: Methods doi: 10.1016/S1046-2023(03)00124-5 – volume: 135 start-page: 2033 year: 2020 ident: 835_CR24 publication-title: Blood doi: 10.1182/blood.2020006000 – volume: 18 start-page: 1747 year: 2020 ident: 835_CR25 publication-title: J. Thromb. Haemost. doi: 10.1111/jth.14854 – volume: 221 start-page: S436 year: 2020 ident: 835_CR29 publication-title: J. Infect. Dis. doi: 10.1093/infdis/jiz613 – ident: 835_CR1 – volume: 369 start-page: 812 year: 2020 ident: 835_CR13 publication-title: Science doi: 10.1126/science.abc4776 – volume: 18 start-page: 2462 year: 2000 ident: 835_CR28 publication-title: Vaccine doi: 10.1016/S0264-410X(99)00575-7 – volume: 15 start-page: 700 year: 2020 ident: 835_CR33 publication-title: J. Thorac. Oncol. doi: 10.1016/j.jtho.2020.02.010 – volume: 368 start-page: 1012 year: 2020 ident: 835_CR8 publication-title: Science doi: 10.1126/science.abb7314 – volume: 85 start-page: 12201 year: 2011 ident: 835_CR3 publication-title: J. Virol. doi: 10.1128/JVI.06048-11 – ident: 835_CR32 doi: 10.1371/journal.pone.0234765 – volume: 78 start-page: 12672 year: 2004 ident: 835_CR4 publication-title: J. Virol. doi: 10.1128/JVI.78.22.12672-12676.2004 – ident: 835_CR6 doi: 10.1093/cid/ciaa325 – volume: 3 start-page: 93 year: 2020 ident: 835_CR9 publication-title: Anim. Model. Exp. Med. doi: 10.1002/ame2.12108 – volume: 7 start-page: e35421 year: 2012 ident: 835_CR2 publication-title: PLoS ONE doi: 10.1371/journal.pone.0035421 – volume: 296 start-page: 172 year: 2020 ident: 835_CR38 publication-title: Radiology doi: 10.1148/radiol.2020201365 – volume: 369 start-page: 818 year: 2020 ident: 835_CR19 publication-title: Science doi: 10.1126/science.abc5343 – volume: 5 start-page: 562 year: 2020 ident: 835_CR15 publication-title: Nat. Microbiol. doi: 10.1038/s41564-020-0688-y – volume: 181 start-page: 1489 year: 2020 ident: 835_CR22 publication-title: Cell doi: 10.1016/j.cell.2020.05.015 – volume: 585 start-page: 268 year: 2020 ident: 835_CR10 publication-title: Nature doi: 10.1038/s41586-020-2324-7 – volume: 105 start-page: 435 year: 1990 ident: 835_CR41 publication-title: Epidemiol. Infect. doi: 10.1017/S0950268800048019 – ident: 835_CR21 – volume: 117 start-page: 16587 year: 2020 ident: 835_CR12 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.2018975117 – volume: 14 start-page: 13 year: 2020 ident: 835_CR37 publication-title: J. Urgent Care Med. – volume: 79 start-page: 99 year: 2019 ident: 835_CR27 publication-title: Int. J. Infect. Dis. doi: 10.1016/j.ijid.2018.11.249 – volume: 585 start-page: 273 year: 2020 ident: 835_CR30 publication-title: Nature doi: 10.1038/s41586-020-2423-5 – volume: 26 start-page: 954 year: 2020 ident: 835_CR43 publication-title: Clin. Microbiol. Infect. doi: 10.1016/j.cmi.2020.03.025 – ident: 835_CR36 – ident: 835_CR39 doi: 10.1101/2020.03.04.20031120 – ident: 835_CR31 doi: 10.1101/2020.09.08.280818 – ident: 835_CR46 doi: 10.1038/s41467-019-09234-665 – volume: 30 start-page: 670 year: 2020 ident: 835_CR11 publication-title: Cell Res. doi: 10.1038/s41422-020-0364-z – volume: 117 start-page: 6771 year: 2020 ident: 835_CR20 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1922083117 – volume: 383 start-page: 120 year: 2020 ident: 835_CR34 publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa2015432 – ident: 835_CR40 doi: 10.1093/cid/ciaa449 – volume: 26 start-page: 2005 year: 2020 ident: 835_CR35 publication-title: Emerg. Infect. Dis. doi: 10.3201/eid2609.202095 – ident: 835_CR5 doi: 10.1038/s41586-020-2312-y – reference: 32511377 - bioRxiv. 2020 May 17:2020.05.17.100289. doi: 10.1101/2020.05.17.100289 |
SSID | ssj0014764 |
Score | 2.6451955 |
Snippet | Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is responsible for an unprecedented global pandemic of COVID-19. Animal models are urgently needed... |
SourceID | proquest gale pubmed crossref springer |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 86 |
SubjectTerms | 631/326/596/4130 692/420/254 Alveoli Animal models Animals Antibodies, Viral - immunology Biological markers Biomedical and Life Sciences Biomedicine Bronchus Chlorocebus aethiops Coronaviridae Coronaviruses COVID-19 COVID-19 - epidemiology COVID-19 - immunology COVID-19 - virology Disease Models, Animal Epidemics Epidemics - prevention & control Gene expression Gene Expression - genetics Gene Expression - immunology Gene Expression Profiling Humans Identification and classification Immune clearance Immune response Immunology Infectious Diseases Interferon Interferons - genetics Interferons - immunology Interferons - metabolism Interleukin 6 Killer Cells, Natural - immunology Killer Cells, Natural - metabolism Laboratory animals Lymphocytes T Mucosa Natural killer cells Pandemics Pathogenesis Peripheral blood Rectum Reinfection - immunology Reinfection - virology Respiratory diseases SARS-CoV-2 - immunology SARS-CoV-2 - physiology Severe acute respiratory syndrome coronavirus 2 T-Lymphocytes - immunology T-Lymphocytes - metabolism T-Lymphocytes - virology |
Title | Establishment of an African green monkey model for COVID-19 and protection against re-infection |
URI | https://link.springer.com/article/10.1038/s41590-020-00835-8 https://www.ncbi.nlm.nih.gov/pubmed/33235385 https://www.proquest.com/docview/2473305281 https://www.proquest.com/docview/2464191766 |
Volume | 22 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagFYgLgvIKlMogJA5gNXacxD6hsmzVIrWgQtHeLMexV0goKc3ugX_PjOPdspXoJYqUycOZsefzePwNIW8sFy4IJMNTwTNpQ2DKOwByZVWHKm-Ck7jf-eS0OjqXn2flLAXchpRWuRoT40Dd9g5j5PtC1jD1LoXiHy5-M6wahaurqYTGbbKN1GVo1fVsPeHiso70UeCiNBM6V2nTTF6o_QEcl84ZTp4iCmFqwzFdH57_8U_XFkyjHzp8QO4nAEkPRo0_JLd8t0PujCUl_-yQuydpsfwRMVNAfjHIhBFA2gdqOzrWBeroHPNtKDQKOjGN5XAowFc6-fLj-BPjGkRbmjgcQHPUzu1PAJL00rNV-lb3mJwfTr9Pjliqp8BcqaoF89aHvGy4BVRXt17DKS8qyZ2omqbypa99LRpXtL4EkFFapypd6NaG1kttfVs8IVtd3_lnhAaYV4a8dVyKIK2uGuGlC7wVjjeO8yYjfPUzjUtk41jz4peJi96FMqMCDCjARAUYlZF363suRqqNG6Vfo44Mclh0mCQzt8thMMffzsxBJWFYqQG6ZeRtEgo9vN7ZtOcAGoG0VxuSuxuS0Mnc5uWVKZjUyQdzZZIZebW-jHdi4lrn-yXKwA_WyMKZkaejCa0bVxSiAH8DD3-_sqmrh_-_5c9v_pYX5J7AvJsYJtolW4vLpX8JwGnR7MXeAUc14Xtk--P09OvZXzj3Erg |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFD4aQzBeEIzLAgMMAvEA1uJLbg8ITd2mlq1Dgg3tzTiOXSGhZKyt0P4Uv5FjJ-noJPa2t0o5cWqf22f7XABea8aN474YXu4sldo5mluDQC5JM5fGpTPS5zuPD9Phsfx0kpyswJ8-F8aHVfY2MRjqqjH-jHyLywy33gnP2cfTX9R3jfK3q30LjVYs9u35b9yyTT-MdpC_bzjf2z0aDGnXVYCaJE9n1Grr4qRkGrFNVtkCfzKRSmZ4WpapTWxmM14aUdkEXW2iTZ4Woqi0q6wstK0EjnsDbkqBqukz0weLkBIms1CuCl1iQXkR512STizyrSk6yiKmfrMWUA_NlxzhZXfwjz-8dEEb_N7ePbjbAVay3UrYfVix9TrcaltYnq_D7XF3Of8A1C4izXCo5U8cSeOIrknbh6gmEx_fQ3AR0WiQ0H6HIFwmg8_fRjuUFUhaka5mBEoK0RP9A4ErObO0DxerH8Lxtaz0I1itm9puAHG4j3VxZZjkTuoiLbmVxrGKG1YaxsoIWL-YynTFzX2PjZ8qXLKLXLUMUMgAFRig8gjeLd45bUt7XEn9yvNI-ZoZtQ_Kmej5dKpGX7-o7VSiGcsQKkbwtiNyDX7e6C7HASfhy2wtUW4uUaJSm-XHvSiozqhM1YUKRPBy8di_6QPlatvMPQ0ucOGrfkbwuBWhxeSE4AL9Gw7-vpepi8H_P_MnV_-XF7A2PBofqIPR4f5TuMN9zE84otqE1dnZ3D5D0DYrnwdNIfD9ulXzLy6oTrw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIiouCMorUMAgEAewNnYcxzkgVO121aW0IKBVb8Zx7BUSSkp3V6h_jV_HOI8tW4neeouUsRN7Xp_t8QzAS8O49Twkw1PeUWG8p8pZBHKpzLyMC29FuO-8fyB3D8WH4_R4Df70d2FCWGVvExtDXdY27JEPuMhw6Z1yxQa-C4v4PBq_P_lFQwWpcNLal9NoRWTPnf3G5dvs3WSEvH7F-Xjn23CXdhUGqE2VnFNnnI_TghnEOVnpcnxkiRTMclkU0qUucxkvbFK6FN1uaqySeZKXxpdO5MaVCfZ7Da5nSaaCjqnhMryEiaxJXYXuMac8j1V3YSdO1GCGTjOPaVi4NQiIqhWneNE1_OMbLxzWNj5wfBtudeCVbLfSdgfWXLUJN9pylmebsLHfHdTfBb2DqLPZ4Aq7j6T2xFSkrUlUkWmI9SE4iWhASFOKhyB0JsNPR5MRZTmSlqTLH4FSQ8zU_EAQS04d7UPHqntweCUzfR_Wq7pyD4F4XNP6uLRMcC9MLgvuhPWs5JYVlrEiAtZPprZdovNQb-Onbg7cE6VbBmhkgG4YoFUEb5ZtTto0H5dSvwg80iF_RhUkcWoWs5mefP2it6VAk5YhbIzgdUfka_y8Nd19BxxESLm1Qrm1QokKbldf96KgOwMz0-fqEMHz5evQMgTNVa5eBBqc4DxkAI3gQStCy8ElCU_Q12Hnb3uZOu_8_yN_dPm_PIMNVEr9cXKw9xhu8hD-0-xWbcH6_HThniB-mxdPG0Uh8P2qNfMvEQxS8g |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Establishment+of+an+African+green+monkey+model+for+COVID-19+and+protection+against+re-infection&rft.jtitle=Nature+immunology&rft.au=Woolsey%2C+Courtney&rft.au=Borisevich%2C+Viktoriya&rft.au=Prasad%2C+Abhishek+N&rft.au=Agans%2C+Krystle+N&rft.date=2021-01-01&rft.pub=Nature+Publishing+Group&rft.issn=1529-2908&rft.volume=22&rft.issue=1&rft.spage=86&rft_id=info:doi/10.1038%2Fs41590-020-00835-8&rft.externalDocID=A649637125 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1529-2908&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1529-2908&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1529-2908&client=summon |