The DNA methylation landscape of human early embryos
Base-resolution maps of DNA methylation in human gametes and early embryos offer novel insights into human methylation dynamics and the functional relationship between DNA methylation and gene expression. DNA methylation in the early embryo Global patterns of DNA methylation are drastically reprogra...
Saved in:
Published in | Nature (London) Vol. 511; no. 7511; pp. 606 - 610 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
31.07.2014
Nature Publishing Group |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Base-resolution maps of DNA methylation in human gametes and early embryos offer novel insights into human methylation dynamics and the functional relationship between DNA methylation and gene expression.
DNA methylation in the early embryo
Global patterns of DNA methylation are drastically reprogrammed in primordial germ cells and early embryonic development in mammals. This reprogramming has been well characterized in mouse embryos, but a detailed understanding of DNA methylation dynamics in human embryos is lacking. Two papers published this week [in this issue of
Nature
] reveal there is a massive loss of DNA methylation from most of the human genome immediately after fertilization, confirming that this epigenetic reprogramming is an evolutionarily conserved feature of development. Hongshan Guo
et al
. produced base-resolution maps of DNA methylation for human gametes and at several developmental stages of embryogenesis. Zachary Smith
et al
. obtained similar maps of DNA methylation at several developmental stages of early human embryogenesis and during derivation of human embryonic stem cell lines. The studies provide insights into differences between mouse and human methylation dynamics and the functional relationship between DNA methylation and the expression of genes and transposable elements.
DNA methylation is a crucial element in the epigenetic regulation of mammalian embryonic development
1
,
2
,
3
,
4
,
5
. However, its dynamic patterns have not been analysed at the genome scale in human pre-implantation embryos due to technical difficulties and the scarcity of required materials. Here we systematically profile the methylome of human early embryos from the zygotic stage through to post-implantation by reduced representation bisulphite sequencing and whole-genome bisulphite sequencing. We show that the major wave of genome-wide demethylation is complete at the 2-cell stage, contrary to previous observations in mice. Moreover, the demethylation of the paternal genome is much faster than that of the maternal genome, and by the end of the zygotic stage the genome-wide methylation level in male pronuclei is already lower than that in female pronuclei. The inverse correlation between promoter methylation and gene expression gradually strengthens during early embryonic development, reaching its peak at the post-implantation stage. Furthermore, we show that active genes, with the trimethylation of histone H3 at lysine 4 (H3K4me3) mark at the promoter regions in pluripotent human embryonic stem cells, are essentially devoid of DNA methylation in both mature gametes and throughout pre-implantation development. Finally, we also show that long interspersed nuclear elements or short interspersed nuclear elements that are evolutionarily young are demethylated to a milder extent compared to older elements in the same family and have higher abundance of transcripts, indicating that early embryos tend to retain higher residual methylation at the evolutionarily younger and more active transposable elements. Our work provides insights into the critical features of the methylome of human early embryos, as well as its functional relation to the regulation of gene expression and the repression of transposable elements. |
---|---|
AbstractList | DNA methylation is a crucial element in the epigenetic regulation of mammalian embryonic development. However, its dynamic patterns have not been analysed at the genome scale in human pre-implantation embryos due to technical difficulties and the scarcity of required materials. Here we systematically profile the methylome of human early embryos from the zygotic stage through to post-implantation by reduced representation bisulphite sequencing and whole-genome bisulphite sequencing. We show that the major wave of genome-wide demethylation is complete at the 2-cell stage, contrary to previous observations in mice. Moreover, the demethylation of the paternal genome is much faster than that of the maternal genome, and by the end of the zygotic stage the genome-wide methylation level in male pronuclei is already lower than that in female pronuclei. The inverse correlation between promoter methylation and gene expression gradually strengthens during early embryonic development, reaching its peak at the post-implantation stage. Furthermore, we show that active genes, with the trimethylation of histone H3 at lysine 4 (H3K4me3) mark at the promoter regions in pluripotent human embryonic stem cells, are essentially devoid of DNA methylation in both mature gametes and throughout pre-implantation development. Finally, we also show that long interspersed nuclear elements or short interspersed nuclear elements that are evolutionarily young are demethylated to a milder extent compared to older elements in the same family and have higher abundance of transcripts, indicating that early embryos tend to retain higher residual methylation at the evolutionarily younger and more active transposable elements. Our work provides insights into the critical features of the methylome of human early embryos, as well as its functional relation to the regulation of gene expression and the repression of transposable elements.DNA methylation is a crucial element in the epigenetic regulation of mammalian embryonic development. However, its dynamic patterns have not been analysed at the genome scale in human pre-implantation embryos due to technical difficulties and the scarcity of required materials. Here we systematically profile the methylome of human early embryos from the zygotic stage through to post-implantation by reduced representation bisulphite sequencing and whole-genome bisulphite sequencing. We show that the major wave of genome-wide demethylation is complete at the 2-cell stage, contrary to previous observations in mice. Moreover, the demethylation of the paternal genome is much faster than that of the maternal genome, and by the end of the zygotic stage the genome-wide methylation level in male pronuclei is already lower than that in female pronuclei. The inverse correlation between promoter methylation and gene expression gradually strengthens during early embryonic development, reaching its peak at the post-implantation stage. Furthermore, we show that active genes, with the trimethylation of histone H3 at lysine 4 (H3K4me3) mark at the promoter regions in pluripotent human embryonic stem cells, are essentially devoid of DNA methylation in both mature gametes and throughout pre-implantation development. Finally, we also show that long interspersed nuclear elements or short interspersed nuclear elements that are evolutionarily young are demethylated to a milder extent compared to older elements in the same family and have higher abundance of transcripts, indicating that early embryos tend to retain higher residual methylation at the evolutionarily younger and more active transposable elements. Our work provides insights into the critical features of the methylome of human early embryos, as well as its functional relation to the regulation of gene expression and the repression of transposable elements. Base-resolution maps of DNA methylation in human gametes and early embryos offer novel insights into human methylation dynamics and the functional relationship between DNA methylation and gene expression. DNA methylation in the early embryo Global patterns of DNA methylation are drastically reprogrammed in primordial germ cells and early embryonic development in mammals. This reprogramming has been well characterized in mouse embryos, but a detailed understanding of DNA methylation dynamics in human embryos is lacking. Two papers published this week [in this issue of Nature ] reveal there is a massive loss of DNA methylation from most of the human genome immediately after fertilization, confirming that this epigenetic reprogramming is an evolutionarily conserved feature of development. Hongshan Guo et al . produced base-resolution maps of DNA methylation for human gametes and at several developmental stages of embryogenesis. Zachary Smith et al . obtained similar maps of DNA methylation at several developmental stages of early human embryogenesis and during derivation of human embryonic stem cell lines. The studies provide insights into differences between mouse and human methylation dynamics and the functional relationship between DNA methylation and the expression of genes and transposable elements. DNA methylation is a crucial element in the epigenetic regulation of mammalian embryonic development 1 , 2 , 3 , 4 , 5 . However, its dynamic patterns have not been analysed at the genome scale in human pre-implantation embryos due to technical difficulties and the scarcity of required materials. Here we systematically profile the methylome of human early embryos from the zygotic stage through to post-implantation by reduced representation bisulphite sequencing and whole-genome bisulphite sequencing. We show that the major wave of genome-wide demethylation is complete at the 2-cell stage, contrary to previous observations in mice. Moreover, the demethylation of the paternal genome is much faster than that of the maternal genome, and by the end of the zygotic stage the genome-wide methylation level in male pronuclei is already lower than that in female pronuclei. The inverse correlation between promoter methylation and gene expression gradually strengthens during early embryonic development, reaching its peak at the post-implantation stage. Furthermore, we show that active genes, with the trimethylation of histone H3 at lysine 4 (H3K4me3) mark at the promoter regions in pluripotent human embryonic stem cells, are essentially devoid of DNA methylation in both mature gametes and throughout pre-implantation development. Finally, we also show that long interspersed nuclear elements or short interspersed nuclear elements that are evolutionarily young are demethylated to a milder extent compared to older elements in the same family and have higher abundance of transcripts, indicating that early embryos tend to retain higher residual methylation at the evolutionarily younger and more active transposable elements. Our work provides insights into the critical features of the methylome of human early embryos, as well as its functional relation to the regulation of gene expression and the repression of transposable elements. DNA methylation is a crucial element in the epigenetic regulation of mammalian embryonic development (1-5). However, its dynamic patterns have not been analysed at the genome scale in human pre-implantation embryos due to technical difficulties and the scarcity of required materials. Here we systematically profile the methylome of human early embryos from the zygotic stage through to post-implantation by reduced representation bisulphite sequencing and whole-genome bisulphite sequencing. We show that the major wave of genome-wide demethylation is complete at the 2-cell stage, contrary to previous observations in mice. Moreover, the demethylation of the paternal genome is much faster than that of the maternal genome, and by the end of the zygotic stage the genome-wide methylation level in male pronuclei is already lower than that in female pronuclei. The inverse correlation between promoter methylation and gene expression gradually strengthens during early embryonic development, reaching its peak at the post-implantation stage. Furthermore, we show that active genes, with the trimethylation of histone H3 at lysine 4 (H3K4me3) mark at the promoter regions in pluripotent human embryonic stem cells, are essentially devoid of DNA methylation in both mature gametes and throughout pre-implantation development. Finally, we also show that long interspersed nuclear elements or short interspersed nuclear elements that are evolutionarily young are demethylated to a milder extent compared to older elements in the same family and have higher abundance of transcripts, indicating that early embryos tend to retain higher residual methylation at the evolutionarily younger and more active transposable elements. Our work provides insights into the critical features of the methylome of human early embryos, as well as its functional relation to the regulation of gene expression and the repression of transposable elements. DNA methylation is a crucial element in the epigenetic regulation of mammalian embryonic development. However, its dynamic patterns have not been analysed at the genome scale in human pre-implantation embryos due to technical difficulties and the scarcity of required materials. Here we systematically profile the methylome of human early embryos from the zygotic stage through to post-implantation by reduced representation bisulphite sequencing and whole-genome bisulphite sequencing. We show that the major wave of genome-wide demethylation is complete at the 2-cell stage, contrary to previous observations in mice. Moreover, the demethylation of the paternal genome is much faster than that of the maternal genome, and by the end of the zygotic stage the genome-wide methylation level in male pronuclei is already lower than that in female pronuclei. The inverse correlation between promoter methylation and gene expression gradually strengthens during early embryonic development, reaching its peak at the post-implantation stage. Furthermore, we show that active genes, with the trimethylation of histone H3 at lysine 4 (H3K4me3) mark at the promoter regions in pluripotent human embryonic stem cells, are essentially devoid of DNA methylation in both mature gametes and throughout pre-implantation development. Finally, we also show that long interspersed nuclear elements or short interspersed nuclear elements that are evolutionarily young are demethylated to a milder extent compared to older elements in the same family and have higher abundance of transcripts, indicating that early embryos tend to retain higher residual methylation at the evolutionarily younger and more active transposable elements. Our work provides insights into the critical features of the methylome of human early embryos, as well as its functional relation to the regulation of gene expression and the repression of transposable elements. |
Audience | Academic |
Author | Wu, Xinglong Wang, Wei Lian, Ying Xie, Sunney X. Yan, Liying Hu, Boqiang Shi, Xiaodan Wei, Yuan Ren, Xiulian Jin, Xiaohu Yan, Jie Wang, Xiaoye Liu, Ping Li, Xianlong Lin, Shengli Li, Rong Tang, Fuchou Wen, Lu Qiao, Jie Fan, Xiaoying Guo, Hongshan Guo, Fan Zhu, Ping Li, Junsheng Yong, Jun |
Author_xml | – sequence: 1 givenname: Hongshan surname: Guo fullname: Guo, Hongshan organization: Biodynamic Optical Imaging Center & Center for Reproductive Medicine, College of Life Sciences, Third Hospital, Peking University – sequence: 2 givenname: Ping surname: Zhu fullname: Zhu, Ping organization: Biodynamic Optical Imaging Center & Center for Reproductive Medicine, College of Life Sciences, Third Hospital, Peking University, Peking-Tsinghua Center for Life Sciences, Peking University – sequence: 3 givenname: Liying surname: Yan fullname: Yan, Liying organization: Biodynamic Optical Imaging Center & Center for Reproductive Medicine, College of Life Sciences, Third Hospital, Peking University, Key Laboratory of Assisted Reproduction, Ministry of Education – sequence: 4 givenname: Rong surname: Li fullname: Li, Rong organization: Biodynamic Optical Imaging Center & Center for Reproductive Medicine, College of Life Sciences, Third Hospital, Peking University, Key Laboratory of Assisted Reproduction, Ministry of Education – sequence: 5 givenname: Boqiang surname: Hu fullname: Hu, Boqiang organization: Biodynamic Optical Imaging Center & Center for Reproductive Medicine, College of Life Sciences, Third Hospital, Peking University – sequence: 6 givenname: Ying surname: Lian fullname: Lian, Ying organization: Biodynamic Optical Imaging Center & Center for Reproductive Medicine, College of Life Sciences, Third Hospital, Peking University, Key Laboratory of Assisted Reproduction, Ministry of Education – sequence: 7 givenname: Jie surname: Yan fullname: Yan, Jie organization: Biodynamic Optical Imaging Center & Center for Reproductive Medicine, College of Life Sciences, Third Hospital, Peking University, Key Laboratory of Assisted Reproduction, Ministry of Education – sequence: 8 givenname: Xiulian surname: Ren fullname: Ren, Xiulian organization: Biodynamic Optical Imaging Center & Center for Reproductive Medicine, College of Life Sciences, Third Hospital, Peking University, Key Laboratory of Assisted Reproduction, Ministry of Education – sequence: 9 givenname: Shengli surname: Lin fullname: Lin, Shengli organization: Biodynamic Optical Imaging Center & Center for Reproductive Medicine, College of Life Sciences, Third Hospital, Peking University, Key Laboratory of Assisted Reproduction, Ministry of Education – sequence: 10 givenname: Junsheng surname: Li fullname: Li, Junsheng organization: Biodynamic Optical Imaging Center & Center for Reproductive Medicine, College of Life Sciences, Third Hospital, Peking University, Key Laboratory of Assisted Reproduction, Ministry of Education – sequence: 11 givenname: Xiaohu surname: Jin fullname: Jin, Xiaohu organization: Biodynamic Optical Imaging Center & Center for Reproductive Medicine, College of Life Sciences, Third Hospital, Peking University, Key Laboratory of Assisted Reproduction, Ministry of Education – sequence: 12 givenname: Xiaodan surname: Shi fullname: Shi, Xiaodan organization: Biodynamic Optical Imaging Center & Center for Reproductive Medicine, College of Life Sciences, Third Hospital, Peking University, Key Laboratory of Assisted Reproduction, Ministry of Education – sequence: 13 givenname: Ping surname: Liu fullname: Liu, Ping organization: Biodynamic Optical Imaging Center & Center for Reproductive Medicine, College of Life Sciences, Third Hospital, Peking University, Key Laboratory of Assisted Reproduction, Ministry of Education – sequence: 14 givenname: Xiaoye surname: Wang fullname: Wang, Xiaoye organization: Department of Obstetrics and Gynecology, Peking University Third Hospital – sequence: 15 givenname: Wei surname: Wang fullname: Wang, Wei organization: Department of Obstetrics and Gynecology, Peking University Third Hospital – sequence: 16 givenname: Yuan surname: Wei fullname: Wei, Yuan organization: Department of Obstetrics and Gynecology, Peking University Third Hospital – sequence: 17 givenname: Xianlong surname: Li fullname: Li, Xianlong organization: Biodynamic Optical Imaging Center & Center for Reproductive Medicine, College of Life Sciences, Third Hospital, Peking University – sequence: 18 givenname: Fan surname: Guo fullname: Guo, Fan organization: Biodynamic Optical Imaging Center & Center for Reproductive Medicine, College of Life Sciences, Third Hospital, Peking University – sequence: 19 givenname: Xinglong surname: Wu fullname: Wu, Xinglong organization: Biodynamic Optical Imaging Center & Center for Reproductive Medicine, College of Life Sciences, Third Hospital, Peking University – sequence: 20 givenname: Xiaoying surname: Fan fullname: Fan, Xiaoying organization: Biodynamic Optical Imaging Center & Center for Reproductive Medicine, College of Life Sciences, Third Hospital, Peking University – sequence: 21 givenname: Jun surname: Yong fullname: Yong, Jun organization: Biodynamic Optical Imaging Center & Center for Reproductive Medicine, College of Life Sciences, Third Hospital, Peking University, Department of Chemistry and Chemical Biology, Harvard University – sequence: 22 givenname: Lu surname: Wen fullname: Wen, Lu organization: Biodynamic Optical Imaging Center & Center for Reproductive Medicine, College of Life Sciences, Third Hospital, Peking University – sequence: 23 givenname: Sunney X. surname: Xie fullname: Xie, Sunney X. organization: Biodynamic Optical Imaging Center & Center for Reproductive Medicine, College of Life Sciences, Third Hospital, Peking University, Department of Chemistry and Chemical Biology, Harvard University – sequence: 24 givenname: Fuchou surname: Tang fullname: Tang, Fuchou email: tangfuchou@pku.edu.cn organization: Biodynamic Optical Imaging Center & Center for Reproductive Medicine, College of Life Sciences, Third Hospital, Peking University, Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, Beijing 100871, China – sequence: 25 givenname: Jie surname: Qiao fullname: Qiao, Jie email: jie.qiao@263.net organization: Biodynamic Optical Imaging Center & Center for Reproductive Medicine, College of Life Sciences, Third Hospital, Peking University, Key Laboratory of Assisted Reproduction, Ministry of Education |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/25079557$$D View this record in MEDLINE/PubMed |
BookMark | eNp10s9v0zAUB3ALDbFucOKOIrgMsQw78Y_4WG2DTZpAgnG2HOe59ZQ4nZ1I9L-fuw5opyAfLFmf99Wz_Y7Qge89IPSW4DOCy-qz18MYgJSM0hdoRqjgOeWVOEAzjIsqx1XJD9FRjHcYY0YEfYUOC4aFZEzMEL1dQnbxbZ51MCzXrR5c77NW-yYavYKst9ly7LTPQId2nUFXh3UfX6OXVrcR3jztx-jXl8vb86v85vvX6_P5TW5YxYccaC2gkIzippCUC6Z5jUsLshKEi6IRQgptbEKVtCBKLgAbaSUh0taaN-UxOtnmrkJ_P0IcVOeigTb1B_0YFWGMYFKlgkQ_PKN3_Rh86u5RyYoXgv5TC92Cct72Q9BmE6rmpeCypJRvsvIJtQAPQbfp7a1Lx3v-_YQ3K3evdtHZBEqrgc6ZydSPewXJDPB7WOgxRnX988e-ffd0-7HuoFGr4Dod1urPPyfwaQtM6GMMYP8SgtVmitTOFCVNnmnjhsfRSD279j81p9uamJL9AsLOB0zwB1Ge1Bw |
CODEN | NATUAS |
CitedBy_id | crossref_primary_10_1126_sciadv_1701256 crossref_primary_10_1007_s00335_017_9729_0 crossref_primary_10_1186_s13148_020_00911_8 crossref_primary_10_1038_s41467_020_16214_8 crossref_primary_10_1080_15592294_2019_1605816 crossref_primary_10_1146_annurev_genom_091416_035324 crossref_primary_10_1186_s12864_021_07675_2 crossref_primary_10_1016_j_biocel_2015_04_014 crossref_primary_10_1016_j_devcel_2015_12_027 crossref_primary_10_1038_nrg3980 crossref_primary_10_1016_j_stem_2019_09_004 crossref_primary_10_1186_s41935_018_0042_1 crossref_primary_10_1038_cr_2016_128 crossref_primary_10_1016_j_diabres_2018_03_026 crossref_primary_10_1016_j_rvsc_2021_09_002 crossref_primary_10_1093_nsr_nwz064 crossref_primary_10_3389_fcell_2020_570107 crossref_primary_10_1038_s41467_017_02107_w crossref_primary_10_1071_RD15365 crossref_primary_10_1111_cei_13471 crossref_primary_10_3390_ijms18071430 crossref_primary_10_1016_j_gene_2023_147487 crossref_primary_10_3390_epigenomes5030016 crossref_primary_10_3390_ijms23158562 crossref_primary_10_1186_s13148_019_0679_0 crossref_primary_10_1002_bies_201700106 crossref_primary_10_3389_fgene_2022_1068408 crossref_primary_10_1371_journal_pbio_3000799 crossref_primary_10_1002_glia_23784 crossref_primary_10_1155_2016_6372171 crossref_primary_10_1093_humupd_dmz025 crossref_primary_10_1186_s12864_017_4068_9 crossref_primary_10_1534_g3_120_401511 crossref_primary_10_1155_2020_4854390 crossref_primary_10_1016_j_nbd_2019_104591 crossref_primary_10_1038_boneres_2016_33 crossref_primary_10_1152_physiol_00037_2014 crossref_primary_10_1371_journal_pgen_1005644 crossref_primary_10_1016_j_dnarep_2016_05_013 crossref_primary_10_1071_RD14167 crossref_primary_10_1089_ars_2017_7151 crossref_primary_10_3390_ijms241210130 crossref_primary_10_3892_etm_2019_7523 crossref_primary_10_3389_fgene_2022_1100016 crossref_primary_10_1016_j_ajhg_2016_08_021 crossref_primary_10_1038_s41556_024_01475_y crossref_primary_10_1093_nar_gkab833 crossref_primary_10_3389_fgene_2022_987210 crossref_primary_10_7554_eLife_72031 crossref_primary_10_1016_j_theriogenology_2022_02_023 crossref_primary_10_1016_j_gpb_2022_05_007 crossref_primary_10_1186_s43043_019_0012_z crossref_primary_10_1016_j_tiv_2021_105174 crossref_primary_10_7554_eLife_40757 crossref_primary_10_1038_s41586_023_06046_z crossref_primary_10_1016_j_tig_2022_03_010 crossref_primary_10_1093_hmg_ddy021 crossref_primary_10_3390_genes8060148 crossref_primary_10_1038_s41588_017_0007_6 crossref_primary_10_1242_dev_202338 crossref_primary_10_1016_S0140_6736_20_32708_2 crossref_primary_10_1038_s41467_021_21409_8 crossref_primary_10_1186_s13059_018_1510_5 crossref_primary_10_1186_s13287_019_1274_1 crossref_primary_10_3390_ani14081222 crossref_primary_10_3390_cells10040876 crossref_primary_10_1126_science_aag3260 crossref_primary_10_1002_stem_2563 crossref_primary_10_1038_s41563_020_00829_9 crossref_primary_10_1186_s40246_023_00484_6 crossref_primary_10_1186_s13059_016_0991_3 crossref_primary_10_1186_s13072_023_00516_4 crossref_primary_10_1093_bib_bbab267 crossref_primary_10_1016_j_jmb_2021_167353 crossref_primary_10_1016_j_kint_2024_04_017 crossref_primary_10_1038_s41596_021_00571_9 crossref_primary_10_1186_1756_8935_8_1 crossref_primary_10_1016_j_theriogenology_2016_04_020 crossref_primary_10_1093_nar_gkx026 crossref_primary_10_1139_bcb_2017_0141 crossref_primary_10_1007_s10815_024_03271_x crossref_primary_10_1242_dev_202344 crossref_primary_10_1007_s10815_020_02003_1 crossref_primary_10_1016_j_tcb_2021_12_001 crossref_primary_10_1016_j_stem_2015_01_005 crossref_primary_10_2217_epi_2023_0064 crossref_primary_10_7868_S0016675817100101 crossref_primary_10_1074_jbc_RA119_010496 crossref_primary_10_1093_nsr_nwad328 crossref_primary_10_1530_JOE_16_0302 crossref_primary_10_1093_humupd_dmz042 crossref_primary_10_1146_annurev_genom_090413_025437 crossref_primary_10_1186_s12864_017_3497_9 crossref_primary_10_1093_humrep_dez020 crossref_primary_10_1111_nph_19686 crossref_primary_10_1016_j_tranon_2024_102223 crossref_primary_10_1042_BST20230757 crossref_primary_10_1016_j_ijbiomac_2024_129715 crossref_primary_10_1016_j_gendis_2025_101555 crossref_primary_10_1016_j_stemcr_2019_10_009 crossref_primary_10_1134_S1022795417100106 crossref_primary_10_3389_fimmu_2020_00565 crossref_primary_10_1016_j_csbj_2022_08_051 crossref_primary_10_1093_bib_bbab208 crossref_primary_10_1172_JCI146051 crossref_primary_10_1016_j_envres_2016_06_043 crossref_primary_10_1186_s13148_017_0379_6 crossref_primary_10_3389_fcell_2018_00024 crossref_primary_10_1016_j_stemcr_2016_02_005 crossref_primary_10_1016_j_rvsc_2020_08_006 crossref_primary_10_1038_nbt_3711 crossref_primary_10_1371_journal_pgen_1006427 crossref_primary_10_1039_D2CC04383A crossref_primary_10_1080_15592294_2019_1646572 crossref_primary_10_3389_fcell_2018_00027 crossref_primary_10_1038_nrn_2016_41 crossref_primary_10_1007_s00418_016_1466_z crossref_primary_10_1016_j_gene_2016_06_036 crossref_primary_10_1186_s13148_014_0040_6 crossref_primary_10_3390_genes14061143 crossref_primary_10_1186_s12864_015_1604_3 crossref_primary_10_1093_humupd_dmad026 crossref_primary_10_1042_EBC20190039 crossref_primary_10_1146_annurev_genom_083118_015143 crossref_primary_10_1371_journal_pgen_1005442 crossref_primary_10_1016_j_omtn_2020_07_019 crossref_primary_10_1002_1873_3468_12245 crossref_primary_10_1016_j_isci_2021_103065 crossref_primary_10_1080_15592294_2020_1722922 crossref_primary_10_1186_s12916_022_02514_x crossref_primary_10_1007_s00438_024_02113_w crossref_primary_10_1007_s11596_015_1532_0 crossref_primary_10_1038_nrg3808 crossref_primary_10_1016_j_stemcr_2025_102419 crossref_primary_10_1186_s13148_017_0430_7 crossref_primary_10_1186_s13148_016_0242_1 crossref_primary_10_1042_EBC20190043 crossref_primary_10_1002_em_21966 crossref_primary_10_1007_s11434_014_0634_6 crossref_primary_10_1002_mrd_23162 crossref_primary_10_1159_000502889 crossref_primary_10_1016_j_molcel_2015_12_014 crossref_primary_10_1073_pnas_1814514115 crossref_primary_10_1111_acer_14972 crossref_primary_10_2217_epi_2018_0078 crossref_primary_10_1016_j_cbpa_2017_10_001 crossref_primary_10_1038_s41588_024_01788_6 crossref_primary_10_1071_RD14377 crossref_primary_10_1016_j_gde_2015_09_002 crossref_primary_10_3389_fcell_2021_637309 crossref_primary_10_1098_rstb_2014_0367 crossref_primary_10_1016_j_aca_2023_340996 crossref_primary_10_1093_eep_dvaa008 crossref_primary_10_3390_cells10082049 crossref_primary_10_1186_s13148_022_01348_x crossref_primary_10_3389_fgene_2019_01263 crossref_primary_10_1038_s42003_022_04338_0 crossref_primary_10_1186_s10020_025_01143_3 crossref_primary_10_1371_journal_pbio_3001229 crossref_primary_10_1289_EHP181 crossref_primary_10_1111_joim_13611 crossref_primary_10_1590_1984_3143_ar2022_0076 crossref_primary_10_3389_fimmu_2021_738962 crossref_primary_10_1016_j_jgg_2014_09_005 crossref_primary_10_1146_annurev_animal_030424_074906 crossref_primary_10_1016_j_celrep_2014_12_049 crossref_primary_10_1016_j_stem_2017_12_011 crossref_primary_10_3390_ijerph18189874 crossref_primary_10_1016_j_celrep_2016_11_058 crossref_primary_10_1071_RD15353 crossref_primary_10_1016_j_celrep_2024_114077 crossref_primary_10_1126_sciadv_aat2624 crossref_primary_10_1371_journal_pone_0200028 crossref_primary_10_1530_REP_18_0009 crossref_primary_10_1038_s41467_020_17269_3 crossref_primary_10_1101_gr_183301_114 crossref_primary_10_1007_s00018_024_05306_z crossref_primary_10_1002_1873_3468_12716 crossref_primary_10_1016_j_jmb_2019_11_003 crossref_primary_10_1073_pnas_2310367120 crossref_primary_10_1038_s41586_022_04625_0 crossref_primary_10_53394_akd_1095184 crossref_primary_10_1089_dna_2020_5829 crossref_primary_10_1038_s41574_020_0372_6 crossref_primary_10_1016_j_placenta_2019_02_013 crossref_primary_10_1016_j_stem_2014_09_002 crossref_primary_10_59717_j_xinn_med_2023_100041 crossref_primary_10_1038_srep15876 crossref_primary_10_1002_mrd_22656 crossref_primary_10_1080_15592294_2015_1075690 crossref_primary_10_1038_s41580_022_00518_2 crossref_primary_10_1016_j_fertnstert_2020_11_007 crossref_primary_10_1093_bib_bby053 crossref_primary_10_1186_s13072_018_0224_y crossref_primary_10_1371_journal_pone_0201960 crossref_primary_10_2217_epi_15_46 crossref_primary_10_1098_rsob_180131 crossref_primary_10_3389_freae_2024_1409355 crossref_primary_10_1007_s10815_022_02669_9 crossref_primary_10_1155_2018_7602794 crossref_primary_10_1038_nprot_2015_041 crossref_primary_10_1530_REP_15_0180 crossref_primary_10_1016_j_stem_2014_09_015 crossref_primary_10_3390_ijms22073735 crossref_primary_10_1016_j_mrrev_2017_07_002 crossref_primary_10_1038_nprot_2015_039 crossref_primary_10_3389_fgene_2020_557846 crossref_primary_10_1186_s12864_016_2653_y crossref_primary_10_1038_s41467_022_29540_w crossref_primary_10_3389_fmars_2022_1022091 crossref_primary_10_1007_s11427_019_1572_7 crossref_primary_10_1007_s13562_024_00913_0 crossref_primary_10_1016_j_tree_2021_08_006 crossref_primary_10_1073_pnas_1921719117 crossref_primary_10_1016_j_scib_2017_12_007 crossref_primary_10_1016_j_tvjl_2017_11_007 crossref_primary_10_1155_2020_1807089 crossref_primary_10_1038_s41477_025_01924_y crossref_primary_10_3349_ymj_2020_61_12_1013 crossref_primary_10_1007_s43032_022_00863_9 crossref_primary_10_1186_s13148_021_01144_z crossref_primary_10_1097_HJH_0000000000003947 crossref_primary_10_3389_fgene_2015_00059 crossref_primary_10_1016_j_theriogenology_2020_07_008 crossref_primary_10_1242_dev_145177 crossref_primary_10_3389_fmolb_2022_908080 crossref_primary_10_1093_molehr_gau094 crossref_primary_10_1071_RD14333 crossref_primary_10_1093_biolre_ioaf045 crossref_primary_10_1371_journal_pone_0128250 crossref_primary_10_1186_s13059_021_02347_6 crossref_primary_10_3390_cells10113154 crossref_primary_10_1038_srep32207 crossref_primary_10_1002_bies_201500096 crossref_primary_10_1016_j_reprotox_2016_09_010 crossref_primary_10_1111_nyas_12713 crossref_primary_10_1007_s10815_024_03176_9 crossref_primary_10_1371_journal_pone_0140467 crossref_primary_10_1007_s00018_024_05339_4 crossref_primary_10_1016_j_beem_2019_101323 crossref_primary_10_1155_2016_6827135 crossref_primary_10_1007_s12038_021_00215_w crossref_primary_10_1071_RD23164 crossref_primary_10_1242_dev_113027 crossref_primary_10_3390_genes12081214 crossref_primary_10_1016_j_gde_2017_02_003 crossref_primary_10_1016_j_jphotobiol_2021_112225 crossref_primary_10_1007_s10528_021_10155_7 crossref_primary_10_1038_srep22138 crossref_primary_10_1007_s43032_021_00461_1 crossref_primary_10_1242_bio_034884 crossref_primary_10_3389_fcell_2022_1024093 crossref_primary_10_1016_j_gpb_2020_10_004 crossref_primary_10_3390_jcm9082520 crossref_primary_10_1038_s41380_023_02067_2 crossref_primary_10_1371_journal_pone_0167912 crossref_primary_10_12688_f1000research_21809_1 crossref_primary_10_1038_s41586_019_1812_0 crossref_primary_10_1002_mnfr_201800034 crossref_primary_10_1242_dev_114249 crossref_primary_10_3892_ijmm_2015_2269 crossref_primary_10_1016_j_aquatox_2022_106283 crossref_primary_10_1093_bfgp_elw013 crossref_primary_10_1093_humrep_deaa292 crossref_primary_10_1126_sciadv_abk0013 crossref_primary_10_3390_cells9081881 crossref_primary_10_1016_j_devcel_2021_04_001 crossref_primary_10_1038_s41598_024_61148_6 crossref_primary_10_1007_s13238_020_00757_z crossref_primary_10_1002_pd_5881 crossref_primary_10_3389_fgene_2022_902541 crossref_primary_10_1038_s41467_018_08244_0 crossref_primary_10_15302_J_QB_022_0289 crossref_primary_10_1038_s41435_020_00114_4 crossref_primary_10_1038_s41422_020_00401_9 crossref_primary_10_1096_fj_14_261131 crossref_primary_10_1016_j_celrep_2023_112100 crossref_primary_10_1016_j_stem_2014_08_003 crossref_primary_10_1111_age_13029 crossref_primary_10_1007_s00018_017_2703_x crossref_primary_10_1016_j_stem_2024_12_007 crossref_primary_10_1093_humupd_dmy021 crossref_primary_10_1016_j_toxrep_2024_05_001 crossref_primary_10_1038_s41420_024_01935_2 crossref_primary_10_2217_epi_2017_0117 crossref_primary_10_1016_j_jevs_2016_03_019 crossref_primary_10_1016_j_cell_2018_02_028 crossref_primary_10_1038_ncomms10806 crossref_primary_10_1038_nrg3772 crossref_primary_10_3390_ijerph182312728 crossref_primary_10_1038_s41580_018_0074_2 crossref_primary_10_1074_jbc_M115_672931 crossref_primary_10_1139_cjas_2019_0071 crossref_primary_10_1186_s13148_024_01762_3 crossref_primary_10_1242_dev_161471 crossref_primary_10_3389_fcell_2020_610773 crossref_primary_10_1093_nar_gkad695 crossref_primary_10_1096_fj_201500083 crossref_primary_10_1002_mrd_23679 crossref_primary_10_1016_j_jaac_2023_02_018 crossref_primary_10_1038_s41586_022_04593_5 crossref_primary_10_1177_1933719117704906 crossref_primary_10_1371_journal_pgen_1004868 crossref_primary_10_1007_s12035_023_03816_8 crossref_primary_10_1016_j_devcel_2017_07_026 crossref_primary_10_1038_nprot_2016_016 crossref_primary_10_1126_science_aaw5118 crossref_primary_10_1016_j_celrep_2016_08_083 crossref_primary_10_1080_10643389_2021_1915052 crossref_primary_10_3389_fgene_2017_00115 crossref_primary_10_3389_fgene_2021_557934 crossref_primary_10_1002_ijc_31120 crossref_primary_10_1371_journal_pgen_1010181 crossref_primary_10_1016_j_molmed_2017_09_004 crossref_primary_10_1038_s41596_020_00417_w crossref_primary_10_1371_journal_pgen_1006807 crossref_primary_10_1016_j_celrep_2017_09_055 crossref_primary_10_1186_s12864_019_6039_9 crossref_primary_10_1063_1_4929909 crossref_primary_10_3389_fcell_2020_00555 crossref_primary_10_7554_eLife_23670 crossref_primary_10_3389_fgene_2019_00694 crossref_primary_10_3390_genes15050620 crossref_primary_10_1016_j_archoralbio_2022_105603 crossref_primary_10_1016_j_stem_2024_12_010 crossref_primary_10_1038_s41585_022_00708_9 crossref_primary_10_2217_rme_2017_0052 crossref_primary_10_1093_humrep_deaa044 crossref_primary_10_2174_1574888X18666230417084518 crossref_primary_10_1093_bfgp_elw029 crossref_primary_10_1007_s00204_017_1971_4 crossref_primary_10_1016_j_stemcr_2018_03_018 crossref_primary_10_1016_j_stem_2017_02_014 crossref_primary_10_15252_embr_201642743 crossref_primary_10_1038_s41421_018_0039_9 crossref_primary_10_1186_s13059_016_0941_0 crossref_primary_10_1038_s41576_018_0092_0 crossref_primary_10_1016_j_stem_2017_09_003 crossref_primary_10_1186_s13073_019_0694_y crossref_primary_10_15252_embj_201490649 crossref_primary_10_1016_j_molcel_2019_08_025 crossref_primary_10_1016_j_celrep_2021_109418 crossref_primary_10_1007_s43032_022_00988_x crossref_primary_10_3109_19396368_2015_1073406 crossref_primary_10_1089_ars_2018_7555 crossref_primary_10_1038_s41588_018_0232_7 crossref_primary_10_1016_j_aninu_2022_07_002 crossref_primary_10_1177_1758835919838958 crossref_primary_10_1016_j_stemcr_2016_07_020 crossref_primary_10_1080_15592294_2024_2332819 crossref_primary_10_1002_art_39795 crossref_primary_10_3390_bioengineering10020237 crossref_primary_10_1093_nsr_nwv029 crossref_primary_10_1186_s13059_022_02827_3 crossref_primary_10_3390_cancers14051163 crossref_primary_10_1111_jcpp_12877 crossref_primary_10_1093_bioinformatics_btz125 crossref_primary_10_1038_s41467_023_37820_2 crossref_primary_10_1093_molehr_gaaa048 crossref_primary_10_1371_journal_pgen_1008236 crossref_primary_10_1111_rda_13053 crossref_primary_10_1002_jcp_26564 crossref_primary_10_1186_s13148_021_01003_x crossref_primary_10_1016_j_biochi_2015_06_019 crossref_primary_10_1021_acs_jafc_9b08212 crossref_primary_10_1038_s41467_021_21532_6 crossref_primary_10_1080_21655979_2016_1218582 crossref_primary_10_1093_humrep_deab074 crossref_primary_10_2217_epi_2016_0056 crossref_primary_10_1073_pnas_1613300114 crossref_primary_10_1274_jmor_33_101 crossref_primary_10_1016_j_mam_2017_09_002 crossref_primary_10_1111_aji_12765 crossref_primary_10_3389_fcell_2021_618113 crossref_primary_10_3389_fendo_2023_1259903 crossref_primary_10_7888_juoeh_41_193 crossref_primary_10_1016_j_chemosphere_2020_127613 crossref_primary_10_1101_gr_198044_115 crossref_primary_10_1007_s12038_016_9650_9 crossref_primary_10_1016_j_tig_2015_07_003 crossref_primary_10_1093_jb_mvw044 crossref_primary_10_1016_j_celrep_2017_08_086 crossref_primary_10_1038_nature19360 crossref_primary_10_1111_mec_15216 crossref_primary_10_3389_fimmu_2021_686676 crossref_primary_10_3390_ijms22042034 crossref_primary_10_3390_ijms18020420 crossref_primary_10_1016_j_tcb_2023_03_015 crossref_primary_10_1016_j_stem_2019_06_010 crossref_primary_10_1016_j_ccm_2018_10_008 crossref_primary_10_3389_fchem_2017_00023 crossref_primary_10_1002_mnfr_202000734 crossref_primary_10_1002_wsbm_1411 crossref_primary_10_1002_jcp_29805 crossref_primary_10_1093_biolre_ioad038 crossref_primary_10_3390_ijms241310898 crossref_primary_10_3390_cells11192929 crossref_primary_10_1155_2016_1597489 crossref_primary_10_3390_biomedicines10071689 crossref_primary_10_17221_29_2016_CJAS crossref_primary_10_1016_j_cell_2022_06_052 crossref_primary_10_1083_jcb_201807044 crossref_primary_10_1007_s00401_017_1673_2 crossref_primary_10_1016_j_stem_2021_04_012 crossref_primary_10_1016_j_cmet_2017_03_016 crossref_primary_10_1186_s12864_019_5558_8 crossref_primary_10_1016_j_devcel_2024_12_037 crossref_primary_10_1093_ije_dyv043 crossref_primary_10_1016_j_stemcr_2019_04_004 crossref_primary_10_1038_s41591_022_02098_2 crossref_primary_10_3389_fgene_2018_00036 crossref_primary_10_1016_j_cell_2015_05_012 crossref_primary_10_1016_j_cell_2015_05_015 crossref_primary_10_1038_s41584_023_01052_x crossref_primary_10_1111_desc_12739 crossref_primary_10_1002_mrd_22970 crossref_primary_10_1016_j_ajog_2015_07_011 crossref_primary_10_1016_j_stemcr_2017_10_008 crossref_primary_10_1038_s41588_020_00755_1 crossref_primary_10_1186_s13148_021_01047_z crossref_primary_10_1007_s00418_021_02008_6 crossref_primary_10_1017_thg_2019_38 crossref_primary_10_3390_ijms24087188 crossref_primary_10_2217_epi_2017_0087 crossref_primary_10_3390_v10080402 crossref_primary_10_1186_s13148_020_00866_w crossref_primary_10_3390_ph15020192 crossref_primary_10_1016_j_bpj_2017_08_019 crossref_primary_10_1016_j_semcdb_2022_02_010 crossref_primary_10_1038_s41598_024_73845_3 crossref_primary_10_3390_ani12111399 crossref_primary_10_1186_s13148_020_00986_3 crossref_primary_10_1016_j_theriogenology_2020_02_036 crossref_primary_10_1016_j_plrev_2016_11_001 crossref_primary_10_1016_j_stemcr_2020_09_005 crossref_primary_10_1002_adma_201604580 crossref_primary_10_1534_g3_116_030379 crossref_primary_10_1002_jcb_29002 crossref_primary_10_1038_s41598_022_09765_x crossref_primary_10_3389_fgene_2019_00512 crossref_primary_10_1021_acs_jcim_3c00688 crossref_primary_10_1002_oby_22322 crossref_primary_10_1111_acel_13922 crossref_primary_10_1371_journal_pone_0171442 crossref_primary_10_1111_raq_12994 crossref_primary_10_1292_jvms_19_0547 crossref_primary_10_1007_s10815_015_0568_1 crossref_primary_10_1051_medsci_20163201010 crossref_primary_10_1080_14647273_2023_2261628 crossref_primary_10_1038_cr_2017_82 crossref_primary_10_1038_nrg_2016_88 crossref_primary_10_1242_dev_146811 crossref_primary_10_1038_nrg_2017_57 crossref_primary_10_1016_j_cell_2022_06_028 crossref_primary_10_1053_j_gastro_2023_03_238 crossref_primary_10_1111_1753_0407_13403 crossref_primary_10_1186_s13059_020_02189_8 crossref_primary_10_1016_j_molcel_2016_04_025 crossref_primary_10_1192_bjp_2018_116 crossref_primary_10_3389_fcell_2016_00134 crossref_primary_10_1016_j_chemosphere_2022_133662 crossref_primary_10_1038_s12276_024_01359_z crossref_primary_10_1038_s41380_022_01921_z crossref_primary_10_3390_jcdd5040057 crossref_primary_10_1007_s10815_024_03287_3 crossref_primary_10_1016_j_mam_2017_08_004 crossref_primary_10_1002_bies_201700091 crossref_primary_10_1093_humrep_dew214 crossref_primary_10_1093_biolre_ioac091 crossref_primary_10_3390_genes10040258 crossref_primary_10_1167_iovs_19_27361 crossref_primary_10_1186_s12864_017_3566_0 crossref_primary_10_3389_fcell_2024_1358649 crossref_primary_10_1515_med_2022_0410 crossref_primary_10_1016_j_ajcnut_2024_04_020 crossref_primary_10_1038_s41467_020_19603_1 crossref_primary_10_1093_biolre_ioac096 crossref_primary_10_1146_annurev_genet_120417_031404 crossref_primary_10_1016_j_pharmthera_2024_108640 crossref_primary_10_26508_lsa_202302237 crossref_primary_10_3390_ijms21020637 crossref_primary_10_1016_j_tcb_2014_09_006 crossref_primary_10_1038_s41586_020_2119_x crossref_primary_10_1016_j_isci_2022_103904 crossref_primary_10_1002_wsbm_1328 crossref_primary_10_1016_j_bbagrm_2015_03_006 crossref_primary_10_1093_molehr_gaaa064 crossref_primary_10_17816_ecogen631776 crossref_primary_10_1038_srep38192 crossref_primary_10_1080_17501911_2024_2384833 crossref_primary_10_1093_eep_dvw005 crossref_primary_10_1080_15592294_2022_2044126 crossref_primary_10_1371_journal_pone_0241698 crossref_primary_10_1071_RD19276 crossref_primary_10_1038_s41586_023_06424_7 crossref_primary_10_1016_j_xinn_2022_100342 crossref_primary_10_1051_jbio_2023032 crossref_primary_10_1016_j_plrev_2017_01_029 crossref_primary_10_1021_acs_analchem_6b02625 crossref_primary_10_1042_BCJ20190275 crossref_primary_10_18632_oncotarget_18072 crossref_primary_10_1101_gr_278146_123 crossref_primary_10_1016_j_cell_2015_04_053 crossref_primary_10_1016_j_scr_2017_11_017 crossref_primary_10_1093_humupd_dmac010 crossref_primary_10_1101_gr_196139_115 crossref_primary_10_1038_s41588_017_0003_x crossref_primary_10_1242_dev_116061 crossref_primary_10_3389_fcell_2023_1212199 crossref_primary_10_1007_s10528_021_10128_w crossref_primary_10_1073_pnas_1821435116 crossref_primary_10_1126_science_abj5089 crossref_primary_10_1016_j_intimp_2020_107334 crossref_primary_10_1002_rmb2_12347 crossref_primary_10_1016_j_jgg_2017_09_001 crossref_primary_10_1093_biolre_ioac122 crossref_primary_10_1039_D0CC08306B crossref_primary_10_1042_BST20220763 crossref_primary_10_1152_physrev_00050_2021 crossref_primary_10_1080_15592294_2019_1615353 crossref_primary_10_1126_science_aao3791 crossref_primary_10_3389_fcell_2020_620089 crossref_primary_10_1016_j_chemosphere_2018_05_058 crossref_primary_10_1016_j_stem_2023_09_010 crossref_primary_10_1371_journal_pone_0126966 crossref_primary_10_17116_repro20243006145 crossref_primary_10_1289_EHP12013 crossref_primary_10_3389_fendo_2021_774260 crossref_primary_10_1038_s41421_021_00316_8 crossref_primary_10_1096_fj_202201564R crossref_primary_10_1038_s41421_022_00491_2 crossref_primary_10_1016_j_cell_2016_05_043 crossref_primary_10_1093_nar_gkaa1135 crossref_primary_10_3390_ijms221910729 crossref_primary_10_1530_REP_14_0343 crossref_primary_10_1039_C7SC04813K crossref_primary_10_3390_genes12071095 crossref_primary_10_3390_ijms22115579 crossref_primary_10_1093_jb_mvv113 crossref_primary_10_1001_jamanetworkopen_2021_47782 crossref_primary_10_1038_s41580_019_0159_6 crossref_primary_10_1038_s41556_023_01328_0 crossref_primary_10_1146_annurev_biochem_103019_102815 crossref_primary_10_1038_s41598_022_15656_y crossref_primary_10_1038_s41421_022_00514_y crossref_primary_10_1371_journal_pone_0159507 crossref_primary_10_1111_cge_13480 crossref_primary_10_3390_ijms21020671 crossref_primary_10_1038_s41556_018_0123_2 crossref_primary_10_1038_cr_2017_25 crossref_primary_10_1038_s42003_023_04584_w crossref_primary_10_1038_srep28506 crossref_primary_10_1002_smtd_201900137 crossref_primary_10_1093_biolre_ioy138 crossref_primary_10_1016_j_cell_2022_12_047 crossref_primary_10_1093_humupd_dmad007 crossref_primary_10_1016_j_cell_2014_08_029 crossref_primary_10_1016_j_endonu_2015_03_009 crossref_primary_10_1038_ejhg_2017_91 crossref_primary_10_1371_journal_pgen_1005583 crossref_primary_10_1038_s41467_023_42558_y crossref_primary_10_1186_s13148_020_00857_x crossref_primary_10_1101_gr_273318_120 crossref_primary_10_1186_s12864_019_5803_1 crossref_primary_10_1016_j_autrev_2015_05_008 crossref_primary_10_1038_s41576_018_0087_x crossref_primary_10_1021_acs_biochem_9b00815 crossref_primary_10_1021_acs_est_1c03746 crossref_primary_10_1038_nature13648 crossref_primary_10_1038_s41467_019_11312_8 crossref_primary_10_1038_srep28995 crossref_primary_10_1093_biolre_iox173 crossref_primary_10_1242_dev_158501 crossref_primary_10_1038_cr_2016_23 crossref_primary_10_1530_REP_14_0242 crossref_primary_10_1016_j_xfss_2023_05_005 crossref_primary_10_1186_s13148_019_0623_3 crossref_primary_10_1016_j_stem_2022_06_006 crossref_primary_10_1016_j_devcel_2016_08_004 crossref_primary_10_1016_j_stemcr_2015_04_014 crossref_primary_10_1016_j_devcel_2019_05_037 crossref_primary_10_1038_s41467_024_51614_0 crossref_primary_10_1186_s12864_019_6317_6 crossref_primary_10_1093_hmg_ddac207 crossref_primary_10_1093_biolre_ioy026 crossref_primary_10_1530_REP_16_0014 crossref_primary_10_1098_rsos_211749 crossref_primary_10_1016_j_stem_2021_04_001 crossref_primary_10_1016_j_dcmed_2022_10_011 crossref_primary_10_1080_15592294_2021_1921337 crossref_primary_10_1016_j_jcms_2017_02_004 crossref_primary_10_1016_j_fertnstert_2015_03_020 crossref_primary_10_1007_s11033_021_06258_4 crossref_primary_10_1186_s41021_020_00162_2 crossref_primary_10_18632_oncotarget_6607 crossref_primary_10_1016_j_semcdb_2020_12_007 crossref_primary_10_1016_j_xinn_2023_100434 crossref_primary_10_1007_s11427_019_9561_7 crossref_primary_10_1016_j_gde_2017_06_007 crossref_primary_10_1016_j_gde_2017_06_009 crossref_primary_10_3390_ijms25031459 crossref_primary_10_1080_15592294_2019_1695341 crossref_primary_10_1186_s12918_018_0638_y crossref_primary_10_2196_17997 crossref_primary_10_1016_j_stem_2019_03_012 crossref_primary_10_1097_MOP_0000000000000365 crossref_primary_10_1002_ctm2_498 crossref_primary_10_1016_j_ijbiomac_2020_12_149 crossref_primary_10_1016_j_jacc_2017_05_067 crossref_primary_10_1016_j_endoen_2015_08_003 crossref_primary_10_1126_scitranslmed_adg1659 crossref_primary_10_1016_j_plrev_2017_01_003 crossref_primary_10_1016_j_gene_2022_146229 crossref_primary_10_3892_ijmm_2024_5443 crossref_primary_10_1093_biolre_ioac134 crossref_primary_10_1186_s13100_019_0151_x crossref_primary_10_1093_biolre_iox077 crossref_primary_10_1007_s12015_023_10552_y crossref_primary_10_1016_j_celrep_2021_109233 crossref_primary_10_1016_j_plrev_2017_01_007 crossref_primary_10_1155_2021_1624669 crossref_primary_10_1186_s12891_022_05730_x crossref_primary_10_1016_j_jaci_2015_12_1341 crossref_primary_10_1007_s10815_016_0837_7 crossref_primary_10_1016_j_stem_2016_06_011 crossref_primary_10_1016_j_stem_2016_12_004 crossref_primary_10_1186_s12967_023_04610_9 crossref_primary_10_1038_s41588_017_0002_y crossref_primary_10_1371_journal_pone_0146402 crossref_primary_10_1016_j_theriogenology_2022_08_016 crossref_primary_10_1021_jacs_9b12707 crossref_primary_10_15252_embr_202051644 crossref_primary_10_1186_s12575_017_0054_5 crossref_primary_10_1038_nature15515 crossref_primary_10_1038_ng_3522 crossref_primary_10_1016_j_tibtech_2018_04_002 crossref_primary_10_1074_jbc_R117_001561 crossref_primary_10_1007_s10815_018_1241_2 crossref_primary_10_1038_s41586_019_1500_0 crossref_primary_10_15252_embj_201796580 crossref_primary_10_2217_epi_2016_0022 crossref_primary_10_1093_biolre_ioy050 crossref_primary_10_1042_BCJ20230306 crossref_primary_10_3390_biom10091211 crossref_primary_10_1016_j_cell_2015_02_021 crossref_primary_10_1093_bib_bbac278 crossref_primary_10_1177_1933719118820474 crossref_primary_10_1242_dev_157404 crossref_primary_10_1002_rmb2_12521 crossref_primary_10_1186_s13148_019_0659_4 crossref_primary_10_3389_fgene_2021_675780 crossref_primary_10_1093_hropen_hoac055 crossref_primary_10_1016_j_devcel_2016_09_015 crossref_primary_10_1038_gene_2016_19 crossref_primary_10_1186_s40104_022_00764_6 crossref_primary_10_1016_j_celrep_2024_114232 crossref_primary_10_1016_j_stem_2024_01_009 |
Cites_doi | 10.1038/nrg2640 10.1016/j.cell.2011.08.016 10.1038/35057062 10.1038/nbt.2135 10.1016/j.ejogrb.2012.11.018 10.1038/nature06008 10.1038/nrg3230 10.1016/j.cell.2013.04.037 10.1038/nmeth.1315 10.1016/j.cell.2013.04.022 10.1098/rstb.2011.0328 10.1242/dev.061416 10.1038/nrg2295 10.1038/ng.864 10.1038/cr.2011.189 10.1016/j.molcel.2012.11.001 10.1101/gad.1667008 10.1038/nprot.2010.190 10.1038/366362a0 10.1016/j.ydbio.2007.10.033 10.1186/gb-2012-13-7-r61 10.1016/j.stem.2012.04.012 10.1530/rep.1.00217 10.1038/nprot.2008.211 10.1016/S1472-6483(10)60475-0 10.1126/science.1190614 10.1093/bioinformatics/btr167 10.1371/journal.pgen.1003439 10.1101/gr.161679.113 10.1242/dev.060426 10.1101/gad.947102 10.1038/nature08514 10.1038/nature11247 10.1038/nsmb.2660 10.1002/mrd.20933 10.1038/nature10960 10.1126/science.1212483 10.1038/ng1089 10.1016/j.cell.2012.12.033 10.1038/nature10443 |
ContentType | Journal Article |
Copyright | Springer Nature Limited 2014 COPYRIGHT 2014 Nature Publishing Group Copyright Nature Publishing Group Jul 31, 2014 |
Copyright_xml | – notice: Springer Nature Limited 2014 – notice: COPYRIGHT 2014 Nature Publishing Group – notice: Copyright Nature Publishing Group Jul 31, 2014 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7QG 7QL 7QP 7QR 7RV 7SN 7SS 7ST 7T5 7TG 7TK 7TM 7TO 7U9 7X2 7X7 7XB 88A 88E 88G 88I 8AF 8AO 8C1 8FD 8FE 8FG 8FH 8FI 8FJ 8FK 8G5 ABJCF ABUWG AEUYN AFKRA ARAPS ATCPS AZQEC BBNVY BEC BENPR BGLVJ BHPHI BKSAR C1K CCPQU D1I DWQXO FR3 FYUFA GHDGH GNUQQ GUQSH H94 HCIFZ K9. KB. KB0 KL. L6V LK8 M0K M0S M1P M2M M2O M2P M7N M7P M7S MBDVC NAPCQ P5Z P62 P64 PATMY PCBAR PDBOC PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PSYQQ PTHSS PYCSY Q9U R05 RC3 S0X SOI 7X8 |
DOI | 10.1038/nature13544 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts ProQuest Nursing & Allied Health Database Ecology Abstracts Entomology Abstracts (Full archive) Environment Abstracts Immunology Abstracts Meteorological & Geoastrophysical Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts Agricultural Science Collection ProQuest Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Psychology Database (Alumni) Science Database (Alumni Edition) STEM Database ProQuest Pharma Collection ProQuest Public Health Database Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Journals Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Research Library Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability (subscription) ProQuest Central UK/Ireland ProQuest Advanced Technologies & Aerospace Database Agricultural & Environmental Science Collection ProQuest Central Essentials Biological Science Database eLibrary ProQuest Central Technology collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Materials Science Collection ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student ProQuest Research Library AIDS and Cancer Research Abstracts ProQuest SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Materials Science Database Nursing & Allied Health Database (Alumni Edition) Meteorological & Geoastrophysical Abstracts - Academic ProQuest Engineering Collection Biological Sciences Agricultural Science Database Health & Medical Collection (Alumni) Proquest Medical Database ProQuest Psychology Database ProQuest Research Library Science Database Algology Mycology and Protozoology Abstracts (Microbiology C) ProQuest Biological Science Database Engineering Database Research Library (Corporate) Nursing & Allied Health Premium Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Environmental Science Database Earth, Atmospheric & Aquatic Science Database Materials Science Collection ProQuest Central Premium ProQuest One Academic ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest One Psychology Engineering Collection Environmental Science Collection ProQuest Central Basic University of Michigan Genetics Abstracts SIRS Editorial Environment Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Agricultural Science Database ProQuest One Psychology Research Library Prep ProQuest Central Student Oncogenes and Growth Factors Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts elibrary ProQuest AP Science SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Meteorological & Geoastrophysical Abstracts Natural Science Collection Health & Medical Research Collection Biological Science Collection Chemoreception Abstracts ProQuest Central (New) ProQuest Medical Library (Alumni) Engineering Collection Advanced Technologies & Aerospace Collection Engineering Database Virology and AIDS Abstracts ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database Agricultural Science Collection ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Environmental Science Collection Entomology Abstracts Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Environmental Science Database ProQuest Nursing & Allied Health Source (Alumni) Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts Meteorological & Geoastrophysical Abstracts - Academic ProQuest One Academic (New) University of Michigan Technology Collection Technology Research Database ProQuest One Academic Middle East (New) SIRS Editorial Materials Science Collection ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing Research Library (Alumni Edition) ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Biology Journals (Alumni Edition) ProQuest Central Earth, Atmospheric & Aquatic Science Collection ProQuest Health & Medical Research Collection Genetics Abstracts ProQuest Engineering Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) Agricultural & Environmental Science Collection AIDS and Cancer Research Abstracts Materials Science Database ProQuest Research Library ProQuest Materials Science Collection ProQuest Public Health ProQuest Central Basic ProQuest Science Journals ProQuest Nursing & Allied Health Source ProQuest Psychology Journals (Alumni) ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library ProQuest Psychology Journals Animal Behavior Abstracts Materials Science & Engineering Collection Immunology Abstracts Environment Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE Agricultural Science Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) Physics |
EISSN | 1476-4687 |
EndPage | 610 |
ExternalDocumentID | 3396333301 A376934461 25079557 10_1038_nature13544 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- --Z -DZ -ET -~X .55 .CO .XZ 00M 07C 0R~ 0WA 123 186 1OL 1VR 29M 2KS 2XV 39C 3V. 4.4 41X 53G 5RE 6TJ 70F 7RV 7X2 7X7 7XC 85S 88A 88E 88I 8AF 8AO 8C1 8CJ 8FE 8FG 8FH 8FI 8FJ 8G5 8R4 8R5 8WZ 97F 97L A6W A7Z A8Z AAEEF AAHBH AAHTB AAIKC AAKAB AAKAS AAMNW AASDW AAYEP AAYZH AAZLF ABAWZ ABDBF ABDQB ABFSI ABIVO ABJCF ABJNI ABLJU ABOCM ABPEJ ABPPZ ABUWG ABWJO ABZEH ACBEA ACBWK ACGFO ACGFS ACGOD ACIWK ACKOT ACMJI ACNCT ACPRK ACUHS ACWUS ADBBV ADFRT ADUKH ADYSU ADZCM AENEX AEUYN AFFNX AFKRA AFLOW AFRAH AFSHS AGAYW AGHSJ AGHTU AGNAY AGSOS AHMBA AHSBF AIDAL AIDUJ ALFFA ALIPV ALMA_UNASSIGNED_HOLDINGS AMTXH APEBS ARAPS ARMCB ARTTT ASPBG ATCPS ATWCN AVWKF AXYYD AZFZN AZQEC B0M BBNVY BCU BDKGC BEC BENPR BGLVJ BHPHI BIN BKEYQ BKKNO BKSAR BLC BPHCQ BVXVI CCPQU CJ0 CS3 D1I D1J D1K DO4 DU5 DWQXO E.- E.L EAD EAP EAS EAZ EBC EBD EBO EBS ECC EE. EJD EMB EMF EMH EMK EMOBN EPL EPS ESE ESN ESX EX3 EXGXG F5P FEDTE FQGFK FSGXE FYUFA GNUQQ GUQSH HCIFZ HMCUK HVGLF HZ~ I-F IAO ICQ IEA IEP IGS IH2 IHR INH INR IOF IPY ISR ITC K6- KB. KOO L6V L7B LK5 LK8 LSO M0K M0L M1P M2M M2O M2P M7P M7R M7S N9A NAPCQ NEJ NEPJS O9- OBC OES OHH OMK OVD P-O P2P P62 PATMY PCBAR PDBOC PKN PM3 PQQKQ PROAC PSQYO PSYQQ PTHSS PYCSY Q2X R05 RND RNS RNT RNTTT RXW S0X SC5 SHXYY SIXXV SJFOW SJN SNYQT SOJ SV3 TAE TAOOD TBHMF TDRGL TEORI TH9 TN5 TSG TUS TWZ U5U UIG UKHRP UKR UMD UQL VQA VVN WH7 WOW X7M XIH XKW XZL Y6R YAE YCJ YFH YIF YIN YNT YOC YQT YR2 YR5 YXB YZZ Z5M ZCA ZE2 ZKB ~02 ~7V ~88 ~8M ~KM AARCD AAYXX ABFSG ACMFV ACSTC ADGHP ADXHL AETEA AFANA ALPWD ATHPR CITATION PHGZM PHGZT CGR CUY CVF ECM EIF NPM PJZUB PPXIY PQGLB AEIIB PMFND 7QG 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7TG 7TK 7TM 7TO 7U9 7XB 8FD 8FK C1K FR3 H94 K9. KL. M7N MBDVC P64 PKEHL PQEST PQUKI PRINS Q9U RC3 SOI 7X8 |
ID | FETCH-LOGICAL-c586t-e4b7e29540d294675a6b03fe9871672d7797acfb7e89fe7367e0c9f9119fba6d3 |
IEDL.DBID | 7X7 |
ISSN | 0028-0836 1476-4687 |
IngestDate | Thu Jul 10 22:36:24 EDT 2025 Fri Jul 25 09:02:10 EDT 2025 Tue Jun 17 21:13:55 EDT 2025 Thu Jun 12 23:37:21 EDT 2025 Tue Jun 10 15:32:33 EDT 2025 Tue Jun 10 20:30:58 EDT 2025 Fri Jun 27 04:50:39 EDT 2025 Mon Jul 21 06:07:09 EDT 2025 Tue Jul 01 03:21:21 EDT 2025 Thu Apr 24 23:03:33 EDT 2025 Fri Feb 21 02:38:03 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7511 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c586t-e4b7e29540d294675a6b03fe9871672d7797acfb7e89fe7367e0c9f9119fba6d3 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 |
PMID | 25079557 |
PQID | 1551986274 |
PQPubID | 40569 |
PageCount | 5 |
ParticipantIDs | proquest_miscellaneous_1551018911 proquest_journals_1551986274 gale_infotracmisc_A376934461 gale_infotracgeneralonefile_A376934461 gale_infotraccpiq_376934461 gale_infotracacademiconefile_A376934461 gale_incontextgauss_ISR_A376934461 pubmed_primary_25079557 crossref_primary_10_1038_nature13544 crossref_citationtrail_10_1038_nature13544 springer_journals_10_1038_nature13544 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20140731 |
PublicationDateYYYYMMDD | 2014-07-31 |
PublicationDate_xml | – month: 7 year: 2014 text: 20140731 day: 31 |
PublicationDecade | 2010 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationSubtitle | International weekly journal of science |
PublicationTitle | Nature (London) |
PublicationTitleAbbrev | Nature |
PublicationTitleAlternate | Nature |
PublicationYear | 2014 |
Publisher | Nature Publishing Group UK Nature Publishing Group |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group |
References | Shirane (CR10) 2013; 9 Kurihara (CR35) 2008; 313 Bird (CR1) 2002; 16 Xie (CR20) 2013; 153 Hirasawa (CR34) 2008; 22 O'Leary (CR19) 2012; 30 Fulka, Mrazek, Tepla, Fulka (CR3) 2004; 128 Inoue, Zhang (CR30) 2011; 334 Guo (CR15) 2013; 23 Cordaux, Batzer (CR25) 2009; 10 Krueger, Andrews (CR37) 2011; 27 van der Heijden (CR32) 2009; 76 Wu, Zhang (CR7) 2012; 10 Smallwood (CR8) 2011; 43 Zhu (CR17) 2013; 152 The ENCODE Project Consortium (CR18) 2012; 489 Seisenberger (CR11) 2012; 48 Li, Qiao, Wang, Zhen, Lu (CR27) 2008; 16 Tomizawa (CR14) 2011; 138 Feng, Jacobsen, Reik (CR2) 2010; 330 Jaenisch, Bird (CR12) 2003; 33 Li, Beard, Jaenisch (CR4) 1993; 366 Lander (CR39) 2001; 409 Hackett, Surani (CR5) 2013; 368 Yan (CR23) 2013; 20 Mikkelsen (CR22) 2007; 448 Inoue, Shen, Dai, He, Zhang (CR31) 2011; 21 Huang da. W, Sherman, Lempicki (CR40) 2009; 4 Gifford (CR21) 2013; 153 Li (CR28) 2013; 167 Gu (CR33) 2011; 6 Sasaki, Matsui (CR13) 2008; 9 Lister (CR6) 2009; 462 Tang (CR36) 2009; 6 Niakan, Han, Pedersen, Simon, Pera (CR24) 2012; 139 Molaro (CR26) 2011; 146 Jones (CR16) 2012; 13 Gu (CR29) 2011; 477 Smith (CR9) 2012; 484 Liu, Siegmund, Laird, Berman (CR38) 2012; 13 JA Hackett (BFnature13544_CR5) 2013; 368 R Lister (BFnature13544_CR6) 2009; 462 S Tomizawa (BFnature13544_CR14) 2011; 138 W Xie (BFnature13544_CR20) 2013; 153 TS Mikkelsen (BFnature13544_CR22) 2007; 448 A Molaro (BFnature13544_CR26) 2011; 146 E Li (BFnature13544_CR4) 1993; 366 Huang da. W (BFnature13544_CR40) 2009; 4 K Shirane (BFnature13544_CR10) 2013; 9 R Li (BFnature13544_CR27) 2008; 16 A Inoue (BFnature13544_CR31) 2011; 21 H Wu (BFnature13544_CR7) 2012; 10 F Krueger (BFnature13544_CR37) 2011; 27 S Seisenberger (BFnature13544_CR11) 2012; 48 L Yan (BFnature13544_CR23) 2013; 20 ZD Smith (BFnature13544_CR9) 2012; 484 R Jaenisch (BFnature13544_CR12) 2003; 33 R Li (BFnature13544_CR28) 2013; 167 TP Gu (BFnature13544_CR29) 2011; 477 ES Lander (BFnature13544_CR39) 2001; 409 H Fulka (BFnature13544_CR3) 2004; 128 H Guo (BFnature13544_CR15) 2013; 23 R Hirasawa (BFnature13544_CR34) 2008; 22 H Gu (BFnature13544_CR33) 2011; 6 KK Niakan (BFnature13544_CR24) 2012; 139 CA Gifford (BFnature13544_CR21) 2013; 153 T O'Leary (BFnature13544_CR19) 2012; 30 J Zhu (BFnature13544_CR17) 2013; 152 Y Kurihara (BFnature13544_CR35) 2008; 313 Y Liu (BFnature13544_CR38) 2012; 13 H Sasaki (BFnature13544_CR13) 2008; 9 R Cordaux (BFnature13544_CR25) 2009; 10 GW van der Heijden (BFnature13544_CR32) 2009; 76 S Feng (BFnature13544_CR2) 2010; 330 SA Smallwood (BFnature13544_CR8) 2011; 43 A Inoue (BFnature13544_CR30) 2011; 334 PA Jones (BFnature13544_CR16) 2012; 13 A Bird (BFnature13544_CR1) 2002; 16 The ENCODE Project Consortium (BFnature13544_CR18) 2012; 489 F Tang (BFnature13544_CR36) 2009; 6 12610534 - Nat Genet. 2003 Mar;33 Suppl:245-54 8247133 - Nature. 1993 Nov 25;366(6453):362-5 23274040 - Eur J Obstet Gynecol Reprod Biol. 2013 Apr;167(2):146-8 21925323 - Cell. 2011 Sep 16;146(6):1029-41 22371082 - Nat Biotechnol. 2012 Feb 26;30(3):278-82 15579587 - Reproduction. 2004 Dec;128(6):703-8 23934149 - Nat Struct Mol Biol. 2013 Sep;20(9):1131-9 23166392 - Philos Trans R Soc Lond B Biol Sci. 2013 Jan 5;368(1609):20110328 22641018 - Nat Rev Genet. 2012 May 29;13(7):484-92 22318624 - Development. 2012 Mar;139(5):829-41 18492365 - Reprod Biomed Online. 2008 May;16(5):627-31 23664763 - Cell. 2013 May 23;153(5):1149-63 17603471 - Nature. 2007 Aug 2;448(7153):553-60 24179143 - Genome Res. 2013 Dec;23(12):2126-35 22456710 - Nature. 2012 Mar 28;484(7394):339-44 21493656 - Bioinformatics. 2011 Jun 1;27(11):1571-2 21940858 - Science. 2011 Oct 14;334(6053):194 18048024 - Dev Biol. 2008 Jan 1;313(1):335-46 23664764 - Cell. 2013 May 23;153(5):1134-48 21892189 - Nature. 2011 Sep 04;477(7366):606-10 11782440 - Genes Dev. 2002 Jan 1;16(1):6-21 18197165 - Nat Rev Genet. 2008 Feb;9(2):129-40 22784381 - Genome Biol. 2012 Jul 11;13(7):R61 18481364 - Mol Reprod Dev. 2009 Jan;76(1):101-8 18559477 - Genes Dev. 2008 Jun 15;22(12):1607-16 22124233 - Cell Res. 2011 Dec;21(12):1670-6 23637617 - PLoS Genet. 2013 Apr;9(4):e1003439 11237011 - Nature. 2001 Feb 15;409(6822):860-921 22955616 - Nature. 2012 Sep 6;489(7414):57-74 25112299 - Nat Rev Genet. 2014 Sep;15(9):571 21412275 - Nat Protoc. 2011 Apr;6(4):468-81 19349980 - Nat Methods. 2009 May;6(5):377-82 23219530 - Mol Cell. 2012 Dec 28;48(6):849-62 19763152 - Nat Rev Genet. 2009 Oct;10(10):691-703 23333102 - Cell. 2013 Jan 31;152(3):642-54 22560071 - Cell Stem Cell. 2012 May 4;10(5):487-9 19829295 - Nature. 2009 Nov 19;462(7271):315-22 21706000 - Nat Genet. 2011 Jun 26;43(8):811-4 21030646 - Science. 2010 Oct 29;330(6004):622-7 21247965 - Development. 2011 Mar;138(5):811-20 19131956 - Nat Protoc. 2009;4(1):44-57 |
References_xml | – volume: 10 start-page: 691 year: 2009 end-page: 703 ident: CR25 article-title: The impact of retrotransposons on human genome evolution publication-title: Nature Rev. Genet. doi: 10.1038/nrg2640 – volume: 146 start-page: 1029 year: 2011 end-page: 1041 ident: CR26 article-title: Sperm methylation profiles reveal features of epigenetic inheritance and evolution in primates publication-title: Cell doi: 10.1016/j.cell.2011.08.016 – volume: 409 start-page: 860 year: 2001 end-page: 921 ident: CR39 article-title: Initial sequencing and analysis of the human genome publication-title: Nature doi: 10.1038/35057062 – volume: 30 start-page: 278 year: 2012 end-page: 282 ident: CR19 article-title: Tracking the progression of the human inner cell mass during embryonic stem cell derivation publication-title: Nature Biotechnol. doi: 10.1038/nbt.2135 – volume: 167 start-page: 146 year: 2013 end-page: 148 ident: CR28 article-title: Retain singleton or twins? Multifetal pregnancy reduction strategies in triplet pregnancies with monochorionic twins publication-title: Eur. J. Obstet. Gynecol. Reprod. Biol. doi: 10.1016/j.ejogrb.2012.11.018 – volume: 448 start-page: 553 year: 2007 end-page: 560 ident: CR22 article-title: Genome-wide maps of chromatin state in pluripotent and lineage-committed cells publication-title: Nature doi: 10.1038/nature06008 – volume: 13 start-page: 484 year: 2012 end-page: 492 ident: CR16 article-title: Functions of DNA methylation: islands, start sites, gene bodies and beyond publication-title: Nature Rev. Genet. doi: 10.1038/nrg3230 – volume: 153 start-page: 1149 year: 2013 end-page: 1163 ident: CR21 article-title: Transcriptional and epigenetic dynamics during specification of human embryonic stem cells publication-title: Cell doi: 10.1016/j.cell.2013.04.037 – volume: 6 start-page: 377 year: 2009 end-page: 382 ident: CR36 article-title: mRNA-Seq whole-transcriptome analysis of a single cell publication-title: Nature Methods doi: 10.1038/nmeth.1315 – volume: 153 start-page: 1134 year: 2013 end-page: 1148 ident: CR20 article-title: Epigenomic analysis of multilineage differentiation of human embryonic stem cells publication-title: Cell doi: 10.1016/j.cell.2013.04.022 – volume: 368 start-page: 20110328 year: 2013 ident: CR5 article-title: DNA methylation dynamics during the mammalian life cycle publication-title: Phil. Trans. R. Soc. B doi: 10.1098/rstb.2011.0328 – volume: 138 start-page: 811 year: 2011 end-page: 820 ident: CR14 article-title: Dynamic stage-specific changes in imprinted differentially methylated regions during early mammalian development and prevalence of non-CpG methylation in oocytes publication-title: Development doi: 10.1242/dev.061416 – volume: 9 start-page: 129 year: 2008 end-page: 140 ident: CR13 article-title: Epigenetic events in mammalian germ-cell development: reprogramming and beyond publication-title: Nature Rev. Genet. doi: 10.1038/nrg2295 – volume: 43 start-page: 811 year: 2011 end-page: 814 ident: CR8 article-title: Dynamic CpG island methylation landscape in oocytes and preimplantation embryos publication-title: Nature Genet. doi: 10.1038/ng.864 – volume: 21 start-page: 1670 year: 2011 end-page: 1676 ident: CR31 article-title: Generation and replication-dependent dilution of 5fC and 5caC during mouse preimplantation development publication-title: Cell Res. doi: 10.1038/cr.2011.189 – volume: 48 start-page: 849 year: 2012 end-page: 862 ident: CR11 article-title: The dynamics of genome-wide DNA methylation reprogramming in mouse primordial germ cells publication-title: Mol. Cell doi: 10.1016/j.molcel.2012.11.001 – volume: 22 start-page: 1607 year: 2008 end-page: 1616 ident: CR34 article-title: Maternal and zygotic Dnmt1 are necessary and sufficient for the maintenance of DNA methylation imprints during preimplantation development publication-title: Genes Dev. doi: 10.1101/gad.1667008 – volume: 6 start-page: 468 year: 2011 end-page: 481 ident: CR33 article-title: Preparation of reduced representation bisulfite sequencing libraries for genome-scale DNA methylation profiling publication-title: Nature Protocols doi: 10.1038/nprot.2010.190 – volume: 366 start-page: 362 year: 1993 end-page: 365 ident: CR4 article-title: Role for DNA methylation in genomic imprinting publication-title: Nature doi: 10.1038/366362a0 – volume: 313 start-page: 335 year: 2008 end-page: 346 ident: CR35 article-title: Maintenance of genomic methylation patterns during preimplantation development requires the somatic form of DNA methyltransferase 1 publication-title: Dev. Biol. doi: 10.1016/j.ydbio.2007.10.033 – volume: 13 start-page: R61 year: 2012 ident: CR38 article-title: Bis-SNP: Combined DNA methylation and SNP calling for Bisulfite-seq data publication-title: Genome Biol. doi: 10.1186/gb-2012-13-7-r61 – volume: 10 start-page: 487 year: 2012 end-page: 489 ident: CR7 article-title: Early embryos reprogram DNA methylation in two steps publication-title: Cell Stem Cell doi: 10.1016/j.stem.2012.04.012 – volume: 128 start-page: 703 year: 2004 end-page: 708 ident: CR3 article-title: DNA methylation pattern in human zygotes and developing embryos publication-title: Reproduction doi: 10.1530/rep.1.00217 – volume: 4 start-page: 44 year: 2009 end-page: 57 ident: CR40 article-title: Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources publication-title: Nature Protocols doi: 10.1038/nprot.2008.211 – volume: 16 start-page: 627 year: 2008 end-page: 631 ident: CR27 article-title: Serum progesterone concentration on day of HCG administration and IVF outcome publication-title: Reprod. Biomed. Online doi: 10.1016/S1472-6483(10)60475-0 – volume: 330 start-page: 622 year: 2010 end-page: 627 ident: CR2 article-title: Epigenetic reprogramming in plant and animal development publication-title: Science doi: 10.1126/science.1190614 – volume: 27 start-page: 1571 year: 2011 end-page: 1572 ident: CR37 article-title: Bismark: a flexible aligner and methylation caller for Bisulfite-Seq applications publication-title: Bioinformatics doi: 10.1093/bioinformatics/btr167 – volume: 9 start-page: e1003439 year: 2013 ident: CR10 article-title: Mouse oocyte methylomes at base resolution reveal genome-wide accumulation of non-CpG methylation and role of DNA methyltransferases publication-title: PLoS Genet. doi: 10.1371/journal.pgen.1003439 – volume: 23 start-page: 2126 year: 2013 end-page: 2135 ident: CR15 article-title: Single-cell methylome landscapes of mouse embryonic stem cells and early embryos analyzed using reduced representation bisulfite sequencing publication-title: Genome Res. doi: 10.1101/gr.161679.113 – volume: 139 start-page: 829 year: 2012 end-page: 841 ident: CR24 article-title: Human pre-implantation embryo development publication-title: Development doi: 10.1242/dev.060426 – volume: 16 start-page: 6 year: 2002 end-page: 21 ident: CR1 article-title: DNA methylation patterns and epigenetic memory publication-title: Genes Dev. doi: 10.1101/gad.947102 – volume: 462 start-page: 315 year: 2009 end-page: 322 ident: CR6 article-title: Human DNA methylomes at base resolution show widespread epigenomic differences publication-title: Nature doi: 10.1038/nature08514 – volume: 489 start-page: 57 year: 2012 end-page: 74 ident: CR18 article-title: An integrated encyclopedia of DNA elements in the human genome publication-title: Nature doi: 10.1038/nature11247 – volume: 20 start-page: 1131 year: 2013 end-page: 1139 ident: CR23 article-title: Single-cell RNA-Seq profiling of human preimplantation embryos and embryonic stem cells publication-title: Nature Struct. Mol. Biol. doi: 10.1038/nsmb.2660 – volume: 477 start-page: 606 year: 2011 end-page: 610 ident: CR29 article-title: The role of Tet3 DNA dioxygenase in epigenetic reprogramming by oocytes publication-title: Nature – volume: 76 start-page: 101 year: 2009 end-page: 108 ident: CR32 article-title: Parental origin of chromatin in human monopronuclear zygotes revealed by asymmetric histone methylation patterns, differs between IVF and ICSI publication-title: Mol. Reprod. Dev. doi: 10.1002/mrd.20933 – volume: 484 start-page: 339 year: 2012 end-page: 344 ident: CR9 article-title: A unique regulatory phase of DNA methylation in the early mammalian embryo publication-title: Nature doi: 10.1038/nature10960 – volume: 334 start-page: 194 year: 2011 ident: CR30 article-title: Replication-dependent loss of 5-hydroxymethylcytosine in mouse preimplantation embryos publication-title: Science doi: 10.1126/science.1212483 – volume: 33 start-page: 245 year: 2003 end-page: 254 ident: CR12 article-title: Epigenetic regulation of gene expression: how the genome integrates intrinsic and environmental signals publication-title: Nature Genet. doi: 10.1038/ng1089 – volume: 152 start-page: 642 year: 2013 end-page: 654 ident: CR17 article-title: Genome-wide chromatin state transitions associated with developmental and environmental cues publication-title: Cell doi: 10.1016/j.cell.2012.12.033 – volume: 128 start-page: 703 year: 2004 ident: BFnature13544_CR3 publication-title: Reproduction doi: 10.1530/rep.1.00217 – volume: 48 start-page: 849 year: 2012 ident: BFnature13544_CR11 publication-title: Mol. Cell doi: 10.1016/j.molcel.2012.11.001 – volume: 76 start-page: 101 year: 2009 ident: BFnature13544_CR32 publication-title: Mol. Reprod. Dev. doi: 10.1002/mrd.20933 – volume: 366 start-page: 362 year: 1993 ident: BFnature13544_CR4 publication-title: Nature doi: 10.1038/366362a0 – volume: 13 start-page: R61 year: 2012 ident: BFnature13544_CR38 publication-title: Genome Biol. doi: 10.1186/gb-2012-13-7-r61 – volume: 368 start-page: 20110328 year: 2013 ident: BFnature13544_CR5 publication-title: Phil. Trans. R. Soc. B doi: 10.1098/rstb.2011.0328 – volume: 6 start-page: 468 year: 2011 ident: BFnature13544_CR33 publication-title: Nature Protocols doi: 10.1038/nprot.2010.190 – volume: 33 start-page: 245 year: 2003 ident: BFnature13544_CR12 publication-title: Nature Genet. doi: 10.1038/ng1089 – volume: 152 start-page: 642 year: 2013 ident: BFnature13544_CR17 publication-title: Cell doi: 10.1016/j.cell.2012.12.033 – volume: 153 start-page: 1149 year: 2013 ident: BFnature13544_CR21 publication-title: Cell doi: 10.1016/j.cell.2013.04.037 – volume: 20 start-page: 1131 year: 2013 ident: BFnature13544_CR23 publication-title: Nature Struct. Mol. Biol. doi: 10.1038/nsmb.2660 – volume: 334 start-page: 194 year: 2011 ident: BFnature13544_CR30 publication-title: Science doi: 10.1126/science.1212483 – volume: 138 start-page: 811 year: 2011 ident: BFnature13544_CR14 publication-title: Development doi: 10.1242/dev.061416 – volume: 9 start-page: e1003439 year: 2013 ident: BFnature13544_CR10 publication-title: PLoS Genet. doi: 10.1371/journal.pgen.1003439 – volume: 10 start-page: 487 year: 2012 ident: BFnature13544_CR7 publication-title: Cell Stem Cell doi: 10.1016/j.stem.2012.04.012 – volume: 16 start-page: 6 year: 2002 ident: BFnature13544_CR1 publication-title: Genes Dev. doi: 10.1101/gad.947102 – volume: 477 start-page: 606 year: 2011 ident: BFnature13544_CR29 publication-title: Nature doi: 10.1038/nature10443 – volume: 330 start-page: 622 year: 2010 ident: BFnature13544_CR2 publication-title: Science doi: 10.1126/science.1190614 – volume: 146 start-page: 1029 year: 2011 ident: BFnature13544_CR26 publication-title: Cell doi: 10.1016/j.cell.2011.08.016 – volume: 6 start-page: 377 year: 2009 ident: BFnature13544_CR36 publication-title: Nature Methods doi: 10.1038/nmeth.1315 – volume: 139 start-page: 829 year: 2012 ident: BFnature13544_CR24 publication-title: Development doi: 10.1242/dev.060426 – volume: 153 start-page: 1134 year: 2013 ident: BFnature13544_CR20 publication-title: Cell doi: 10.1016/j.cell.2013.04.022 – volume: 27 start-page: 1571 year: 2011 ident: BFnature13544_CR37 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btr167 – volume: 448 start-page: 553 year: 2007 ident: BFnature13544_CR22 publication-title: Nature doi: 10.1038/nature06008 – volume: 9 start-page: 129 year: 2008 ident: BFnature13544_CR13 publication-title: Nature Rev. Genet. doi: 10.1038/nrg2295 – volume: 462 start-page: 315 year: 2009 ident: BFnature13544_CR6 publication-title: Nature doi: 10.1038/nature08514 – volume: 16 start-page: 627 year: 2008 ident: BFnature13544_CR27 publication-title: Reprod. Biomed. Online doi: 10.1016/S1472-6483(10)60475-0 – volume: 21 start-page: 1670 year: 2011 ident: BFnature13544_CR31 publication-title: Cell Res. doi: 10.1038/cr.2011.189 – volume: 167 start-page: 146 year: 2013 ident: BFnature13544_CR28 publication-title: Eur. J. Obstet. Gynecol. Reprod. Biol. doi: 10.1016/j.ejogrb.2012.11.018 – volume: 313 start-page: 335 year: 2008 ident: BFnature13544_CR35 publication-title: Dev. Biol. doi: 10.1016/j.ydbio.2007.10.033 – volume: 43 start-page: 811 year: 2011 ident: BFnature13544_CR8 publication-title: Nature Genet. doi: 10.1038/ng.864 – volume: 484 start-page: 339 year: 2012 ident: BFnature13544_CR9 publication-title: Nature doi: 10.1038/nature10960 – volume: 489 start-page: 57 year: 2012 ident: BFnature13544_CR18 publication-title: Nature doi: 10.1038/nature11247 – volume: 13 start-page: 484 year: 2012 ident: BFnature13544_CR16 publication-title: Nature Rev. Genet. doi: 10.1038/nrg3230 – volume: 10 start-page: 691 year: 2009 ident: BFnature13544_CR25 publication-title: Nature Rev. Genet. doi: 10.1038/nrg2640 – volume: 30 start-page: 278 year: 2012 ident: BFnature13544_CR19 publication-title: Nature Biotechnol. doi: 10.1038/nbt.2135 – volume: 409 start-page: 860 year: 2001 ident: BFnature13544_CR39 publication-title: Nature doi: 10.1038/35057062 – volume: 4 start-page: 44 year: 2009 ident: BFnature13544_CR40 publication-title: Nature Protocols doi: 10.1038/nprot.2008.211 – volume: 22 start-page: 1607 year: 2008 ident: BFnature13544_CR34 publication-title: Genes Dev. doi: 10.1101/gad.1667008 – volume: 23 start-page: 2126 year: 2013 ident: BFnature13544_CR15 publication-title: Genome Res. doi: 10.1101/gr.161679.113 – reference: 21940858 - Science. 2011 Oct 14;334(6053):194 – reference: 21706000 - Nat Genet. 2011 Jun 26;43(8):811-4 – reference: 21412275 - Nat Protoc. 2011 Apr;6(4):468-81 – reference: 19763152 - Nat Rev Genet. 2009 Oct;10(10):691-703 – reference: 22371082 - Nat Biotechnol. 2012 Feb 26;30(3):278-82 – reference: 22641018 - Nat Rev Genet. 2012 May 29;13(7):484-92 – reference: 22124233 - Cell Res. 2011 Dec;21(12):1670-6 – reference: 23637617 - PLoS Genet. 2013 Apr;9(4):e1003439 – reference: 11237011 - Nature. 2001 Feb 15;409(6822):860-921 – reference: 12610534 - Nat Genet. 2003 Mar;33 Suppl:245-54 – reference: 21493656 - Bioinformatics. 2011 Jun 1;27(11):1571-2 – reference: 19131956 - Nat Protoc. 2009;4(1):44-57 – reference: 23934149 - Nat Struct Mol Biol. 2013 Sep;20(9):1131-9 – reference: 23219530 - Mol Cell. 2012 Dec 28;48(6):849-62 – reference: 11782440 - Genes Dev. 2002 Jan 1;16(1):6-21 – reference: 21247965 - Development. 2011 Mar;138(5):811-20 – reference: 18197165 - Nat Rev Genet. 2008 Feb;9(2):129-40 – reference: 21030646 - Science. 2010 Oct 29;330(6004):622-7 – reference: 24179143 - Genome Res. 2013 Dec;23(12):2126-35 – reference: 22560071 - Cell Stem Cell. 2012 May 4;10(5):487-9 – reference: 22784381 - Genome Biol. 2012 Jul 11;13(7):R61 – reference: 22318624 - Development. 2012 Mar;139(5):829-41 – reference: 22955616 - Nature. 2012 Sep 6;489(7414):57-74 – reference: 15579587 - Reproduction. 2004 Dec;128(6):703-8 – reference: 21925323 - Cell. 2011 Sep 16;146(6):1029-41 – reference: 19829295 - Nature. 2009 Nov 19;462(7271):315-22 – reference: 22456710 - Nature. 2012 Mar 28;484(7394):339-44 – reference: 17603471 - Nature. 2007 Aug 2;448(7153):553-60 – reference: 23166392 - Philos Trans R Soc Lond B Biol Sci. 2013 Jan 5;368(1609):20110328 – reference: 18559477 - Genes Dev. 2008 Jun 15;22(12):1607-16 – reference: 23274040 - Eur J Obstet Gynecol Reprod Biol. 2013 Apr;167(2):146-8 – reference: 25112299 - Nat Rev Genet. 2014 Sep;15(9):571 – reference: 23664763 - Cell. 2013 May 23;153(5):1149-63 – reference: 18481364 - Mol Reprod Dev. 2009 Jan;76(1):101-8 – reference: 19349980 - Nat Methods. 2009 May;6(5):377-82 – reference: 21892189 - Nature. 2011 Sep 04;477(7366):606-10 – reference: 18492365 - Reprod Biomed Online. 2008 May;16(5):627-31 – reference: 23333102 - Cell. 2013 Jan 31;152(3):642-54 – reference: 8247133 - Nature. 1993 Nov 25;366(6453):362-5 – reference: 18048024 - Dev Biol. 2008 Jan 1;313(1):335-46 – reference: 23664764 - Cell. 2013 May 23;153(5):1134-48 |
SSID | ssj0005174 |
Score | 2.632461 |
Snippet | Base-resolution maps of DNA methylation in human gametes and early embryos offer novel insights into human methylation dynamics and the functional relationship... DNA methylation is a crucial element in the epigenetic regulation of mammalian embryonic development. However, its dynamic patterns have not been analysed at... DNA methylation is a crucial element in the epigenetic regulation of mammalian embryonic development (1-5). However, its dynamic patterns have not been... |
SourceID | proquest gale pubmed crossref springer |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 606 |
SubjectTerms | 631/136/2086 631/136/2435 631/337/176/1988 Analysis Animals Deoxyribonucleic acid DNA DNA Methylation DNA Transposable Elements - genetics Embryo, Mammalian Embryonic development Embryonic growth stage Embryonic Stem Cells - physiology Embryos Epigenesis, Genetic Epigenetic inheritance Female Gene Expression Profiling Gene Expression Regulation, Developmental Genes Genome-wide association studies Genomes Genomics Germ Cells - metabolism Histones - metabolism Humanities and Social Sciences Humans letter Long Interspersed Nucleotide Elements - genetics Male Methylation Mice multidisciplinary Promoter Regions, Genetic - genetics Science Short Interspersed Nucleotide Elements - genetics Stem cells |
Title | The DNA methylation landscape of human early embryos |
URI | https://link.springer.com/article/10.1038/nature13544 https://www.ncbi.nlm.nih.gov/pubmed/25079557 https://www.proquest.com/docview/1551986274 https://www.proquest.com/docview/1551018911 |
Volume | 511 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwED_BJiReEBtf2cZk0PiaFM1pnNh-QmWsDCQqNJjUNyt27AmJJd3SPuy_x5e4XVMmXvzii2Od78P2nX8HcOAMy01mylhSqv0BhelY5nIQl9YZYbWhicYHzt_H-ek5-zbJJuHCrQlplQub2BrqsjZ4R36Erl0KrBTzcXoVY9UojK6GEhr3YROhyzCli0_4bYrHGgpzeJ9HU3HUwWYmacZYzyOt2-UVx7QWKW0d0OgxPAo7RzLslnoL7tlqGx60GZym2YatoKUNeR-gpD88AealgHweDwkWir7p0t5I-7oX855I7Uhbo49YhDkm9lJf39TNUzgfnfw6Po1DnYTYZCKfxZZpbjFeR8uB9IYvK3JNU2clHob4oORc8sI4TySkszzNuaVGOm_mpNNFXqbPYKOqK_sCiMCwmSwk49wwo3PtCl2KJCsS5tiAyggOF7xSJoCIYy2LP6oNZqdCrTA2goMl8bTDzrib7DUyXSEaRYXpLhfFvGnU159naphiqUZ_Yk0ieBeIXO1_aIrwesBPGwGsepS7PUoz_X2lVnrf9novuhW5a5i9HqHXOtPvXoiIClrfqFsZjeDVshu_xEy2ytbzjoYmwjM_guedaC2Z47ejXGYZj-DNQtZWBv-Xczv_n8QuPPTbO9bdRO_Bxux6bl_6LdRM77d64ltxnGA7-rIPm59Oxj_O_gKhhhrd |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFD4aQwheEBu3sAEGbTCQojmJE8cPCFWMqWVbH2CT-mZix56QoOmWVqh_it-ITy5dUybe9uwTxzo-F9vn8gHsWM0SHevcF5Qqd0FhyheJCP3cWJ0apWmgsMD5ZJj0z9iXUTxagz9tLQymVbY2sTLUeaHxjXwfXbtIESnm4-TCR9QojK62EBq1WByZ-W93ZSs_DA7c_u6G4eHn0099v0EV8HWcJlPfMMUNRrdoHiK-fJwlikbWCLw68DDnXPBMW0eUCmt4lHBDtbDOKAirsiSP3Ly34LZzvBQ1io_4VUrJStfnph6QRul-3aYziGLGOh5w1Q8sOcKVyGzl8A4fwP3mpEp6tWhtwJoZb8KdKmNUl5uw0ViFkuw1ravfPQTmpI4cDHsEganndZodqaqJMc-KFJZUmIDEYFtlYn6py3lRPoKzG-HgY1gfF2PzFEiKYTqRCca5ZlolymYqT4M4C5hlIRUevG95JXXTtByxM37KKngepXKJsR7sLIgnda-O68leI9Mldr8YY3rNeTYrSzn49lX2IoSGdDfkwIO3DZEt3A911lQruGVjw6wO5VaHUk9-XMil0Ted0fN6R66bZrtD6LRcd4dbEZGNlSnllU548GoxjF9i5tzYFLOahgapY74HT2rRWjDHHX-5iGPuwW4ra0uT_8u5Z_9fxEu42z89OZbHg-HRFtxzR0tWv4Jvw_r0cmaeu-PbVL2odIbA95tW0r-qYFRH |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFD4aQyBeEBuXhQ0waOMyKWouThw_IFRRqpVBhWCT-mZix56QIOmWVqh_jV-HTy5dUybe9uwTxzo-F9vn8gHsG0VjFanM5Z4n7QWFSpfHPHAzbVSipfJ8iQXOn8fx0Sn9OIkmG_CnrYXBtMrWJlaGOisUvpH30LXzBJFieqZJi_gyGL6bnruIIIWR1hZOoxaRY734ba9v5dvRwO71QRAMP5y8P3IbhAFXRUk8czWVTGOky8sCxJqP0lh6odEcrxEsyBjjLFXGEiXcaBbGTHuKG2sguJFpnIV23htwk4WRjzrGJuwyvWStA3RTG-iFSa9u2emHEaUdb7juE1ac4lqUtnJ-w3twtzm1kn4tZluwofNtuFVlj6pyG7YaC1GS100b6zf3gVoJJINxnyBI9aJOuSNVZTHmXJHCkAofkGhssUz0L3mxKMoHcHotHHwIm3mR6x0gCYbseMopY4oqGUuTyizxo9SnhgYed-Cw5ZVQTQNzxNH4KapAepiIFcY6sL8kntZ9O64me4FMF9gJI0eZOkvnZSlG376Kfogwkfa27DvwqiEyhf2hSpvKBbtsbJ7VodztUKrpj3OxMvqyM3pW78hV0-x1CK3Gq-5wKyKisTiluNQPB54vh_FLzKLLdTGvaTw_scx34FEtWkvm2KMw41HEHDhoZW1l8n859_j_i3gGt616ik-j8fEu3LGnTFo_iO_B5uxirp_Yk9xMPq1UhsD369bRv7bCWH0 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+DNA+methylation+landscape+of+human+early+embryos&rft.jtitle=Nature+%28London%29&rft.au=Guo%2C+Hongshan&rft.au=Zhu%2C+Ping&rft.au=Yan%2C+Liying&rft.au=Li%2C+Rong&rft.date=2014-07-31&rft.pub=Nature+Publishing+Group&rft.issn=0028-0836&rft.eissn=1476-4687&rft.volume=511&rft.issue=7511&rft.spage=606&rft_id=info:doi/10.1038%2Fnature13544&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=3396333301 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0028-0836&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0028-0836&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0028-0836&client=summon |