The DNA methylation landscape of human early embryos

Base-resolution maps of DNA methylation in human gametes and early embryos offer novel insights into human methylation dynamics and the functional relationship between DNA methylation and gene expression. DNA methylation in the early embryo Global patterns of DNA methylation are drastically reprogra...

Full description

Saved in:
Bibliographic Details
Published inNature (London) Vol. 511; no. 7511; pp. 606 - 610
Main Authors Guo, Hongshan, Zhu, Ping, Yan, Liying, Li, Rong, Hu, Boqiang, Lian, Ying, Yan, Jie, Ren, Xiulian, Lin, Shengli, Li, Junsheng, Jin, Xiaohu, Shi, Xiaodan, Liu, Ping, Wang, Xiaoye, Wang, Wei, Wei, Yuan, Li, Xianlong, Guo, Fan, Wu, Xinglong, Fan, Xiaoying, Yong, Jun, Wen, Lu, Xie, Sunney X., Tang, Fuchou, Qiao, Jie
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 31.07.2014
Nature Publishing Group
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Base-resolution maps of DNA methylation in human gametes and early embryos offer novel insights into human methylation dynamics and the functional relationship between DNA methylation and gene expression. DNA methylation in the early embryo Global patterns of DNA methylation are drastically reprogrammed in primordial germ cells and early embryonic development in mammals. This reprogramming has been well characterized in mouse embryos, but a detailed understanding of DNA methylation dynamics in human embryos is lacking. Two papers published this week [in this issue of Nature ] reveal there is a massive loss of DNA methylation from most of the human genome immediately after fertilization, confirming that this epigenetic reprogramming is an evolutionarily conserved feature of development. Hongshan Guo et al . produced base-resolution maps of DNA methylation for human gametes and at several developmental stages of embryogenesis. Zachary Smith et al . obtained similar maps of DNA methylation at several developmental stages of early human embryogenesis and during derivation of human embryonic stem cell lines. The studies provide insights into differences between mouse and human methylation dynamics and the functional relationship between DNA methylation and the expression of genes and transposable elements. DNA methylation is a crucial element in the epigenetic regulation of mammalian embryonic development 1 , 2 , 3 , 4 , 5 . However, its dynamic patterns have not been analysed at the genome scale in human pre-implantation embryos due to technical difficulties and the scarcity of required materials. Here we systematically profile the methylome of human early embryos from the zygotic stage through to post-implantation by reduced representation bisulphite sequencing and whole-genome bisulphite sequencing. We show that the major wave of genome-wide demethylation is complete at the 2-cell stage, contrary to previous observations in mice. Moreover, the demethylation of the paternal genome is much faster than that of the maternal genome, and by the end of the zygotic stage the genome-wide methylation level in male pronuclei is already lower than that in female pronuclei. The inverse correlation between promoter methylation and gene expression gradually strengthens during early embryonic development, reaching its peak at the post-implantation stage. Furthermore, we show that active genes, with the trimethylation of histone H3 at lysine 4 (H3K4me3) mark at the promoter regions in pluripotent human embryonic stem cells, are essentially devoid of DNA methylation in both mature gametes and throughout pre-implantation development. Finally, we also show that long interspersed nuclear elements or short interspersed nuclear elements that are evolutionarily young are demethylated to a milder extent compared to older elements in the same family and have higher abundance of transcripts, indicating that early embryos tend to retain higher residual methylation at the evolutionarily younger and more active transposable elements. Our work provides insights into the critical features of the methylome of human early embryos, as well as its functional relation to the regulation of gene expression and the repression of transposable elements.
AbstractList DNA methylation is a crucial element in the epigenetic regulation of mammalian embryonic development. However, its dynamic patterns have not been analysed at the genome scale in human pre-implantation embryos due to technical difficulties and the scarcity of required materials. Here we systematically profile the methylome of human early embryos from the zygotic stage through to post-implantation by reduced representation bisulphite sequencing and whole-genome bisulphite sequencing. We show that the major wave of genome-wide demethylation is complete at the 2-cell stage, contrary to previous observations in mice. Moreover, the demethylation of the paternal genome is much faster than that of the maternal genome, and by the end of the zygotic stage the genome-wide methylation level in male pronuclei is already lower than that in female pronuclei. The inverse correlation between promoter methylation and gene expression gradually strengthens during early embryonic development, reaching its peak at the post-implantation stage. Furthermore, we show that active genes, with the trimethylation of histone H3 at lysine 4 (H3K4me3) mark at the promoter regions in pluripotent human embryonic stem cells, are essentially devoid of DNA methylation in both mature gametes and throughout pre-implantation development. Finally, we also show that long interspersed nuclear elements or short interspersed nuclear elements that are evolutionarily young are demethylated to a milder extent compared to older elements in the same family and have higher abundance of transcripts, indicating that early embryos tend to retain higher residual methylation at the evolutionarily younger and more active transposable elements. Our work provides insights into the critical features of the methylome of human early embryos, as well as its functional relation to the regulation of gene expression and the repression of transposable elements.DNA methylation is a crucial element in the epigenetic regulation of mammalian embryonic development. However, its dynamic patterns have not been analysed at the genome scale in human pre-implantation embryos due to technical difficulties and the scarcity of required materials. Here we systematically profile the methylome of human early embryos from the zygotic stage through to post-implantation by reduced representation bisulphite sequencing and whole-genome bisulphite sequencing. We show that the major wave of genome-wide demethylation is complete at the 2-cell stage, contrary to previous observations in mice. Moreover, the demethylation of the paternal genome is much faster than that of the maternal genome, and by the end of the zygotic stage the genome-wide methylation level in male pronuclei is already lower than that in female pronuclei. The inverse correlation between promoter methylation and gene expression gradually strengthens during early embryonic development, reaching its peak at the post-implantation stage. Furthermore, we show that active genes, with the trimethylation of histone H3 at lysine 4 (H3K4me3) mark at the promoter regions in pluripotent human embryonic stem cells, are essentially devoid of DNA methylation in both mature gametes and throughout pre-implantation development. Finally, we also show that long interspersed nuclear elements or short interspersed nuclear elements that are evolutionarily young are demethylated to a milder extent compared to older elements in the same family and have higher abundance of transcripts, indicating that early embryos tend to retain higher residual methylation at the evolutionarily younger and more active transposable elements. Our work provides insights into the critical features of the methylome of human early embryos, as well as its functional relation to the regulation of gene expression and the repression of transposable elements.
Base-resolution maps of DNA methylation in human gametes and early embryos offer novel insights into human methylation dynamics and the functional relationship between DNA methylation and gene expression. DNA methylation in the early embryo Global patterns of DNA methylation are drastically reprogrammed in primordial germ cells and early embryonic development in mammals. This reprogramming has been well characterized in mouse embryos, but a detailed understanding of DNA methylation dynamics in human embryos is lacking. Two papers published this week [in this issue of Nature ] reveal there is a massive loss of DNA methylation from most of the human genome immediately after fertilization, confirming that this epigenetic reprogramming is an evolutionarily conserved feature of development. Hongshan Guo et al . produced base-resolution maps of DNA methylation for human gametes and at several developmental stages of embryogenesis. Zachary Smith et al . obtained similar maps of DNA methylation at several developmental stages of early human embryogenesis and during derivation of human embryonic stem cell lines. The studies provide insights into differences between mouse and human methylation dynamics and the functional relationship between DNA methylation and the expression of genes and transposable elements. DNA methylation is a crucial element in the epigenetic regulation of mammalian embryonic development 1 , 2 , 3 , 4 , 5 . However, its dynamic patterns have not been analysed at the genome scale in human pre-implantation embryos due to technical difficulties and the scarcity of required materials. Here we systematically profile the methylome of human early embryos from the zygotic stage through to post-implantation by reduced representation bisulphite sequencing and whole-genome bisulphite sequencing. We show that the major wave of genome-wide demethylation is complete at the 2-cell stage, contrary to previous observations in mice. Moreover, the demethylation of the paternal genome is much faster than that of the maternal genome, and by the end of the zygotic stage the genome-wide methylation level in male pronuclei is already lower than that in female pronuclei. The inverse correlation between promoter methylation and gene expression gradually strengthens during early embryonic development, reaching its peak at the post-implantation stage. Furthermore, we show that active genes, with the trimethylation of histone H3 at lysine 4 (H3K4me3) mark at the promoter regions in pluripotent human embryonic stem cells, are essentially devoid of DNA methylation in both mature gametes and throughout pre-implantation development. Finally, we also show that long interspersed nuclear elements or short interspersed nuclear elements that are evolutionarily young are demethylated to a milder extent compared to older elements in the same family and have higher abundance of transcripts, indicating that early embryos tend to retain higher residual methylation at the evolutionarily younger and more active transposable elements. Our work provides insights into the critical features of the methylome of human early embryos, as well as its functional relation to the regulation of gene expression and the repression of transposable elements.
DNA methylation is a crucial element in the epigenetic regulation of mammalian embryonic development (1-5). However, its dynamic patterns have not been analysed at the genome scale in human pre-implantation embryos due to technical difficulties and the scarcity of required materials. Here we systematically profile the methylome of human early embryos from the zygotic stage through to post-implantation by reduced representation bisulphite sequencing and whole-genome bisulphite sequencing. We show that the major wave of genome-wide demethylation is complete at the 2-cell stage, contrary to previous observations in mice. Moreover, the demethylation of the paternal genome is much faster than that of the maternal genome, and by the end of the zygotic stage the genome-wide methylation level in male pronuclei is already lower than that in female pronuclei. The inverse correlation between promoter methylation and gene expression gradually strengthens during early embryonic development, reaching its peak at the post-implantation stage. Furthermore, we show that active genes, with the trimethylation of histone H3 at lysine 4 (H3K4me3) mark at the promoter regions in pluripotent human embryonic stem cells, are essentially devoid of DNA methylation in both mature gametes and throughout pre-implantation development. Finally, we also show that long interspersed nuclear elements or short interspersed nuclear elements that are evolutionarily young are demethylated to a milder extent compared to older elements in the same family and have higher abundance of transcripts, indicating that early embryos tend to retain higher residual methylation at the evolutionarily younger and more active transposable elements. Our work provides insights into the critical features of the methylome of human early embryos, as well as its functional relation to the regulation of gene expression and the repression of transposable elements.
DNA methylation is a crucial element in the epigenetic regulation of mammalian embryonic development. However, its dynamic patterns have not been analysed at the genome scale in human pre-implantation embryos due to technical difficulties and the scarcity of required materials. Here we systematically profile the methylome of human early embryos from the zygotic stage through to post-implantation by reduced representation bisulphite sequencing and whole-genome bisulphite sequencing. We show that the major wave of genome-wide demethylation is complete at the 2-cell stage, contrary to previous observations in mice. Moreover, the demethylation of the paternal genome is much faster than that of the maternal genome, and by the end of the zygotic stage the genome-wide methylation level in male pronuclei is already lower than that in female pronuclei. The inverse correlation between promoter methylation and gene expression gradually strengthens during early embryonic development, reaching its peak at the post-implantation stage. Furthermore, we show that active genes, with the trimethylation of histone H3 at lysine 4 (H3K4me3) mark at the promoter regions in pluripotent human embryonic stem cells, are essentially devoid of DNA methylation in both mature gametes and throughout pre-implantation development. Finally, we also show that long interspersed nuclear elements or short interspersed nuclear elements that are evolutionarily young are demethylated to a milder extent compared to older elements in the same family and have higher abundance of transcripts, indicating that early embryos tend to retain higher residual methylation at the evolutionarily younger and more active transposable elements. Our work provides insights into the critical features of the methylome of human early embryos, as well as its functional relation to the regulation of gene expression and the repression of transposable elements.
Audience Academic
Author Wu, Xinglong
Wang, Wei
Lian, Ying
Xie, Sunney X.
Yan, Liying
Hu, Boqiang
Shi, Xiaodan
Wei, Yuan
Ren, Xiulian
Jin, Xiaohu
Yan, Jie
Wang, Xiaoye
Liu, Ping
Li, Xianlong
Lin, Shengli
Li, Rong
Tang, Fuchou
Wen, Lu
Qiao, Jie
Fan, Xiaoying
Guo, Hongshan
Guo, Fan
Zhu, Ping
Li, Junsheng
Yong, Jun
Author_xml – sequence: 1
  givenname: Hongshan
  surname: Guo
  fullname: Guo, Hongshan
  organization: Biodynamic Optical Imaging Center & Center for Reproductive Medicine, College of Life Sciences, Third Hospital, Peking University
– sequence: 2
  givenname: Ping
  surname: Zhu
  fullname: Zhu, Ping
  organization: Biodynamic Optical Imaging Center & Center for Reproductive Medicine, College of Life Sciences, Third Hospital, Peking University, Peking-Tsinghua Center for Life Sciences, Peking University
– sequence: 3
  givenname: Liying
  surname: Yan
  fullname: Yan, Liying
  organization: Biodynamic Optical Imaging Center & Center for Reproductive Medicine, College of Life Sciences, Third Hospital, Peking University, Key Laboratory of Assisted Reproduction, Ministry of Education
– sequence: 4
  givenname: Rong
  surname: Li
  fullname: Li, Rong
  organization: Biodynamic Optical Imaging Center & Center for Reproductive Medicine, College of Life Sciences, Third Hospital, Peking University, Key Laboratory of Assisted Reproduction, Ministry of Education
– sequence: 5
  givenname: Boqiang
  surname: Hu
  fullname: Hu, Boqiang
  organization: Biodynamic Optical Imaging Center & Center for Reproductive Medicine, College of Life Sciences, Third Hospital, Peking University
– sequence: 6
  givenname: Ying
  surname: Lian
  fullname: Lian, Ying
  organization: Biodynamic Optical Imaging Center & Center for Reproductive Medicine, College of Life Sciences, Third Hospital, Peking University, Key Laboratory of Assisted Reproduction, Ministry of Education
– sequence: 7
  givenname: Jie
  surname: Yan
  fullname: Yan, Jie
  organization: Biodynamic Optical Imaging Center & Center for Reproductive Medicine, College of Life Sciences, Third Hospital, Peking University, Key Laboratory of Assisted Reproduction, Ministry of Education
– sequence: 8
  givenname: Xiulian
  surname: Ren
  fullname: Ren, Xiulian
  organization: Biodynamic Optical Imaging Center & Center for Reproductive Medicine, College of Life Sciences, Third Hospital, Peking University, Key Laboratory of Assisted Reproduction, Ministry of Education
– sequence: 9
  givenname: Shengli
  surname: Lin
  fullname: Lin, Shengli
  organization: Biodynamic Optical Imaging Center & Center for Reproductive Medicine, College of Life Sciences, Third Hospital, Peking University, Key Laboratory of Assisted Reproduction, Ministry of Education
– sequence: 10
  givenname: Junsheng
  surname: Li
  fullname: Li, Junsheng
  organization: Biodynamic Optical Imaging Center & Center for Reproductive Medicine, College of Life Sciences, Third Hospital, Peking University, Key Laboratory of Assisted Reproduction, Ministry of Education
– sequence: 11
  givenname: Xiaohu
  surname: Jin
  fullname: Jin, Xiaohu
  organization: Biodynamic Optical Imaging Center & Center for Reproductive Medicine, College of Life Sciences, Third Hospital, Peking University, Key Laboratory of Assisted Reproduction, Ministry of Education
– sequence: 12
  givenname: Xiaodan
  surname: Shi
  fullname: Shi, Xiaodan
  organization: Biodynamic Optical Imaging Center & Center for Reproductive Medicine, College of Life Sciences, Third Hospital, Peking University, Key Laboratory of Assisted Reproduction, Ministry of Education
– sequence: 13
  givenname: Ping
  surname: Liu
  fullname: Liu, Ping
  organization: Biodynamic Optical Imaging Center & Center for Reproductive Medicine, College of Life Sciences, Third Hospital, Peking University, Key Laboratory of Assisted Reproduction, Ministry of Education
– sequence: 14
  givenname: Xiaoye
  surname: Wang
  fullname: Wang, Xiaoye
  organization: Department of Obstetrics and Gynecology, Peking University Third Hospital
– sequence: 15
  givenname: Wei
  surname: Wang
  fullname: Wang, Wei
  organization: Department of Obstetrics and Gynecology, Peking University Third Hospital
– sequence: 16
  givenname: Yuan
  surname: Wei
  fullname: Wei, Yuan
  organization: Department of Obstetrics and Gynecology, Peking University Third Hospital
– sequence: 17
  givenname: Xianlong
  surname: Li
  fullname: Li, Xianlong
  organization: Biodynamic Optical Imaging Center & Center for Reproductive Medicine, College of Life Sciences, Third Hospital, Peking University
– sequence: 18
  givenname: Fan
  surname: Guo
  fullname: Guo, Fan
  organization: Biodynamic Optical Imaging Center & Center for Reproductive Medicine, College of Life Sciences, Third Hospital, Peking University
– sequence: 19
  givenname: Xinglong
  surname: Wu
  fullname: Wu, Xinglong
  organization: Biodynamic Optical Imaging Center & Center for Reproductive Medicine, College of Life Sciences, Third Hospital, Peking University
– sequence: 20
  givenname: Xiaoying
  surname: Fan
  fullname: Fan, Xiaoying
  organization: Biodynamic Optical Imaging Center & Center for Reproductive Medicine, College of Life Sciences, Third Hospital, Peking University
– sequence: 21
  givenname: Jun
  surname: Yong
  fullname: Yong, Jun
  organization: Biodynamic Optical Imaging Center & Center for Reproductive Medicine, College of Life Sciences, Third Hospital, Peking University, Department of Chemistry and Chemical Biology, Harvard University
– sequence: 22
  givenname: Lu
  surname: Wen
  fullname: Wen, Lu
  organization: Biodynamic Optical Imaging Center & Center for Reproductive Medicine, College of Life Sciences, Third Hospital, Peking University
– sequence: 23
  givenname: Sunney X.
  surname: Xie
  fullname: Xie, Sunney X.
  organization: Biodynamic Optical Imaging Center & Center for Reproductive Medicine, College of Life Sciences, Third Hospital, Peking University, Department of Chemistry and Chemical Biology, Harvard University
– sequence: 24
  givenname: Fuchou
  surname: Tang
  fullname: Tang, Fuchou
  email: tangfuchou@pku.edu.cn
  organization: Biodynamic Optical Imaging Center & Center for Reproductive Medicine, College of Life Sciences, Third Hospital, Peking University, Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, Beijing 100871, China
– sequence: 25
  givenname: Jie
  surname: Qiao
  fullname: Qiao, Jie
  email: jie.qiao@263.net
  organization: Biodynamic Optical Imaging Center & Center for Reproductive Medicine, College of Life Sciences, Third Hospital, Peking University, Key Laboratory of Assisted Reproduction, Ministry of Education
BackLink https://www.ncbi.nlm.nih.gov/pubmed/25079557$$D View this record in MEDLINE/PubMed
BookMark eNp10s9v0zAUB3ALDbFucOKOIrgMsQw78Y_4WG2DTZpAgnG2HOe59ZQ4nZ1I9L-fuw5opyAfLFmf99Wz_Y7Qge89IPSW4DOCy-qz18MYgJSM0hdoRqjgOeWVOEAzjIsqx1XJD9FRjHcYY0YEfYUOC4aFZEzMEL1dQnbxbZ51MCzXrR5c77NW-yYavYKst9ly7LTPQId2nUFXh3UfX6OXVrcR3jztx-jXl8vb86v85vvX6_P5TW5YxYccaC2gkIzippCUC6Z5jUsLshKEi6IRQgptbEKVtCBKLgAbaSUh0taaN-UxOtnmrkJ_P0IcVOeigTb1B_0YFWGMYFKlgkQ_PKN3_Rh86u5RyYoXgv5TC92Cct72Q9BmE6rmpeCypJRvsvIJtQAPQbfp7a1Lx3v-_YQ3K3evdtHZBEqrgc6ZydSPewXJDPB7WOgxRnX988e-ffd0-7HuoFGr4Dod1urPPyfwaQtM6GMMYP8SgtVmitTOFCVNnmnjhsfRSD279j81p9uamJL9AsLOB0zwB1Ge1Bw
CODEN NATUAS
CitedBy_id crossref_primary_10_1126_sciadv_1701256
crossref_primary_10_1007_s00335_017_9729_0
crossref_primary_10_1186_s13148_020_00911_8
crossref_primary_10_1038_s41467_020_16214_8
crossref_primary_10_1080_15592294_2019_1605816
crossref_primary_10_1146_annurev_genom_091416_035324
crossref_primary_10_1186_s12864_021_07675_2
crossref_primary_10_1016_j_biocel_2015_04_014
crossref_primary_10_1016_j_devcel_2015_12_027
crossref_primary_10_1038_nrg3980
crossref_primary_10_1016_j_stem_2019_09_004
crossref_primary_10_1186_s41935_018_0042_1
crossref_primary_10_1038_cr_2016_128
crossref_primary_10_1016_j_diabres_2018_03_026
crossref_primary_10_1016_j_rvsc_2021_09_002
crossref_primary_10_1093_nsr_nwz064
crossref_primary_10_3389_fcell_2020_570107
crossref_primary_10_1038_s41467_017_02107_w
crossref_primary_10_1071_RD15365
crossref_primary_10_1111_cei_13471
crossref_primary_10_3390_ijms18071430
crossref_primary_10_1016_j_gene_2023_147487
crossref_primary_10_3390_epigenomes5030016
crossref_primary_10_3390_ijms23158562
crossref_primary_10_1186_s13148_019_0679_0
crossref_primary_10_1002_bies_201700106
crossref_primary_10_3389_fgene_2022_1068408
crossref_primary_10_1371_journal_pbio_3000799
crossref_primary_10_1002_glia_23784
crossref_primary_10_1155_2016_6372171
crossref_primary_10_1093_humupd_dmz025
crossref_primary_10_1186_s12864_017_4068_9
crossref_primary_10_1534_g3_120_401511
crossref_primary_10_1155_2020_4854390
crossref_primary_10_1016_j_nbd_2019_104591
crossref_primary_10_1038_boneres_2016_33
crossref_primary_10_1152_physiol_00037_2014
crossref_primary_10_1371_journal_pgen_1005644
crossref_primary_10_1016_j_dnarep_2016_05_013
crossref_primary_10_1071_RD14167
crossref_primary_10_1089_ars_2017_7151
crossref_primary_10_3390_ijms241210130
crossref_primary_10_3892_etm_2019_7523
crossref_primary_10_3389_fgene_2022_1100016
crossref_primary_10_1016_j_ajhg_2016_08_021
crossref_primary_10_1038_s41556_024_01475_y
crossref_primary_10_1093_nar_gkab833
crossref_primary_10_3389_fgene_2022_987210
crossref_primary_10_7554_eLife_72031
crossref_primary_10_1016_j_theriogenology_2022_02_023
crossref_primary_10_1016_j_gpb_2022_05_007
crossref_primary_10_1186_s43043_019_0012_z
crossref_primary_10_1016_j_tiv_2021_105174
crossref_primary_10_7554_eLife_40757
crossref_primary_10_1038_s41586_023_06046_z
crossref_primary_10_1016_j_tig_2022_03_010
crossref_primary_10_1093_hmg_ddy021
crossref_primary_10_3390_genes8060148
crossref_primary_10_1038_s41588_017_0007_6
crossref_primary_10_1242_dev_202338
crossref_primary_10_1016_S0140_6736_20_32708_2
crossref_primary_10_1038_s41467_021_21409_8
crossref_primary_10_1186_s13059_018_1510_5
crossref_primary_10_1186_s13287_019_1274_1
crossref_primary_10_3390_ani14081222
crossref_primary_10_3390_cells10040876
crossref_primary_10_1126_science_aag3260
crossref_primary_10_1002_stem_2563
crossref_primary_10_1038_s41563_020_00829_9
crossref_primary_10_1186_s40246_023_00484_6
crossref_primary_10_1186_s13059_016_0991_3
crossref_primary_10_1186_s13072_023_00516_4
crossref_primary_10_1093_bib_bbab267
crossref_primary_10_1016_j_jmb_2021_167353
crossref_primary_10_1016_j_kint_2024_04_017
crossref_primary_10_1038_s41596_021_00571_9
crossref_primary_10_1186_1756_8935_8_1
crossref_primary_10_1016_j_theriogenology_2016_04_020
crossref_primary_10_1093_nar_gkx026
crossref_primary_10_1139_bcb_2017_0141
crossref_primary_10_1007_s10815_024_03271_x
crossref_primary_10_1242_dev_202344
crossref_primary_10_1007_s10815_020_02003_1
crossref_primary_10_1016_j_tcb_2021_12_001
crossref_primary_10_1016_j_stem_2015_01_005
crossref_primary_10_2217_epi_2023_0064
crossref_primary_10_7868_S0016675817100101
crossref_primary_10_1074_jbc_RA119_010496
crossref_primary_10_1093_nsr_nwad328
crossref_primary_10_1530_JOE_16_0302
crossref_primary_10_1093_humupd_dmz042
crossref_primary_10_1146_annurev_genom_090413_025437
crossref_primary_10_1186_s12864_017_3497_9
crossref_primary_10_1093_humrep_dez020
crossref_primary_10_1111_nph_19686
crossref_primary_10_1016_j_tranon_2024_102223
crossref_primary_10_1042_BST20230757
crossref_primary_10_1016_j_ijbiomac_2024_129715
crossref_primary_10_1016_j_gendis_2025_101555
crossref_primary_10_1016_j_stemcr_2019_10_009
crossref_primary_10_1134_S1022795417100106
crossref_primary_10_3389_fimmu_2020_00565
crossref_primary_10_1016_j_csbj_2022_08_051
crossref_primary_10_1093_bib_bbab208
crossref_primary_10_1172_JCI146051
crossref_primary_10_1016_j_envres_2016_06_043
crossref_primary_10_1186_s13148_017_0379_6
crossref_primary_10_3389_fcell_2018_00024
crossref_primary_10_1016_j_stemcr_2016_02_005
crossref_primary_10_1016_j_rvsc_2020_08_006
crossref_primary_10_1038_nbt_3711
crossref_primary_10_1371_journal_pgen_1006427
crossref_primary_10_1039_D2CC04383A
crossref_primary_10_1080_15592294_2019_1646572
crossref_primary_10_3389_fcell_2018_00027
crossref_primary_10_1038_nrn_2016_41
crossref_primary_10_1007_s00418_016_1466_z
crossref_primary_10_1016_j_gene_2016_06_036
crossref_primary_10_1186_s13148_014_0040_6
crossref_primary_10_3390_genes14061143
crossref_primary_10_1186_s12864_015_1604_3
crossref_primary_10_1093_humupd_dmad026
crossref_primary_10_1042_EBC20190039
crossref_primary_10_1146_annurev_genom_083118_015143
crossref_primary_10_1371_journal_pgen_1005442
crossref_primary_10_1016_j_omtn_2020_07_019
crossref_primary_10_1002_1873_3468_12245
crossref_primary_10_1016_j_isci_2021_103065
crossref_primary_10_1080_15592294_2020_1722922
crossref_primary_10_1186_s12916_022_02514_x
crossref_primary_10_1007_s00438_024_02113_w
crossref_primary_10_1007_s11596_015_1532_0
crossref_primary_10_1038_nrg3808
crossref_primary_10_1016_j_stemcr_2025_102419
crossref_primary_10_1186_s13148_017_0430_7
crossref_primary_10_1186_s13148_016_0242_1
crossref_primary_10_1042_EBC20190043
crossref_primary_10_1002_em_21966
crossref_primary_10_1007_s11434_014_0634_6
crossref_primary_10_1002_mrd_23162
crossref_primary_10_1159_000502889
crossref_primary_10_1016_j_molcel_2015_12_014
crossref_primary_10_1073_pnas_1814514115
crossref_primary_10_1111_acer_14972
crossref_primary_10_2217_epi_2018_0078
crossref_primary_10_1016_j_cbpa_2017_10_001
crossref_primary_10_1038_s41588_024_01788_6
crossref_primary_10_1071_RD14377
crossref_primary_10_1016_j_gde_2015_09_002
crossref_primary_10_3389_fcell_2021_637309
crossref_primary_10_1098_rstb_2014_0367
crossref_primary_10_1016_j_aca_2023_340996
crossref_primary_10_1093_eep_dvaa008
crossref_primary_10_3390_cells10082049
crossref_primary_10_1186_s13148_022_01348_x
crossref_primary_10_3389_fgene_2019_01263
crossref_primary_10_1038_s42003_022_04338_0
crossref_primary_10_1186_s10020_025_01143_3
crossref_primary_10_1371_journal_pbio_3001229
crossref_primary_10_1289_EHP181
crossref_primary_10_1111_joim_13611
crossref_primary_10_1590_1984_3143_ar2022_0076
crossref_primary_10_3389_fimmu_2021_738962
crossref_primary_10_1016_j_jgg_2014_09_005
crossref_primary_10_1146_annurev_animal_030424_074906
crossref_primary_10_1016_j_celrep_2014_12_049
crossref_primary_10_1016_j_stem_2017_12_011
crossref_primary_10_3390_ijerph18189874
crossref_primary_10_1016_j_celrep_2016_11_058
crossref_primary_10_1071_RD15353
crossref_primary_10_1016_j_celrep_2024_114077
crossref_primary_10_1126_sciadv_aat2624
crossref_primary_10_1371_journal_pone_0200028
crossref_primary_10_1530_REP_18_0009
crossref_primary_10_1038_s41467_020_17269_3
crossref_primary_10_1101_gr_183301_114
crossref_primary_10_1007_s00018_024_05306_z
crossref_primary_10_1002_1873_3468_12716
crossref_primary_10_1016_j_jmb_2019_11_003
crossref_primary_10_1073_pnas_2310367120
crossref_primary_10_1038_s41586_022_04625_0
crossref_primary_10_53394_akd_1095184
crossref_primary_10_1089_dna_2020_5829
crossref_primary_10_1038_s41574_020_0372_6
crossref_primary_10_1016_j_placenta_2019_02_013
crossref_primary_10_1016_j_stem_2014_09_002
crossref_primary_10_59717_j_xinn_med_2023_100041
crossref_primary_10_1038_srep15876
crossref_primary_10_1002_mrd_22656
crossref_primary_10_1080_15592294_2015_1075690
crossref_primary_10_1038_s41580_022_00518_2
crossref_primary_10_1016_j_fertnstert_2020_11_007
crossref_primary_10_1093_bib_bby053
crossref_primary_10_1186_s13072_018_0224_y
crossref_primary_10_1371_journal_pone_0201960
crossref_primary_10_2217_epi_15_46
crossref_primary_10_1098_rsob_180131
crossref_primary_10_3389_freae_2024_1409355
crossref_primary_10_1007_s10815_022_02669_9
crossref_primary_10_1155_2018_7602794
crossref_primary_10_1038_nprot_2015_041
crossref_primary_10_1530_REP_15_0180
crossref_primary_10_1016_j_stem_2014_09_015
crossref_primary_10_3390_ijms22073735
crossref_primary_10_1016_j_mrrev_2017_07_002
crossref_primary_10_1038_nprot_2015_039
crossref_primary_10_3389_fgene_2020_557846
crossref_primary_10_1186_s12864_016_2653_y
crossref_primary_10_1038_s41467_022_29540_w
crossref_primary_10_3389_fmars_2022_1022091
crossref_primary_10_1007_s11427_019_1572_7
crossref_primary_10_1007_s13562_024_00913_0
crossref_primary_10_1016_j_tree_2021_08_006
crossref_primary_10_1073_pnas_1921719117
crossref_primary_10_1016_j_scib_2017_12_007
crossref_primary_10_1016_j_tvjl_2017_11_007
crossref_primary_10_1155_2020_1807089
crossref_primary_10_1038_s41477_025_01924_y
crossref_primary_10_3349_ymj_2020_61_12_1013
crossref_primary_10_1007_s43032_022_00863_9
crossref_primary_10_1186_s13148_021_01144_z
crossref_primary_10_1097_HJH_0000000000003947
crossref_primary_10_3389_fgene_2015_00059
crossref_primary_10_1016_j_theriogenology_2020_07_008
crossref_primary_10_1242_dev_145177
crossref_primary_10_3389_fmolb_2022_908080
crossref_primary_10_1093_molehr_gau094
crossref_primary_10_1071_RD14333
crossref_primary_10_1093_biolre_ioaf045
crossref_primary_10_1371_journal_pone_0128250
crossref_primary_10_1186_s13059_021_02347_6
crossref_primary_10_3390_cells10113154
crossref_primary_10_1038_srep32207
crossref_primary_10_1002_bies_201500096
crossref_primary_10_1016_j_reprotox_2016_09_010
crossref_primary_10_1111_nyas_12713
crossref_primary_10_1007_s10815_024_03176_9
crossref_primary_10_1371_journal_pone_0140467
crossref_primary_10_1007_s00018_024_05339_4
crossref_primary_10_1016_j_beem_2019_101323
crossref_primary_10_1155_2016_6827135
crossref_primary_10_1007_s12038_021_00215_w
crossref_primary_10_1071_RD23164
crossref_primary_10_1242_dev_113027
crossref_primary_10_3390_genes12081214
crossref_primary_10_1016_j_gde_2017_02_003
crossref_primary_10_1016_j_jphotobiol_2021_112225
crossref_primary_10_1007_s10528_021_10155_7
crossref_primary_10_1038_srep22138
crossref_primary_10_1007_s43032_021_00461_1
crossref_primary_10_1242_bio_034884
crossref_primary_10_3389_fcell_2022_1024093
crossref_primary_10_1016_j_gpb_2020_10_004
crossref_primary_10_3390_jcm9082520
crossref_primary_10_1038_s41380_023_02067_2
crossref_primary_10_1371_journal_pone_0167912
crossref_primary_10_12688_f1000research_21809_1
crossref_primary_10_1038_s41586_019_1812_0
crossref_primary_10_1002_mnfr_201800034
crossref_primary_10_1242_dev_114249
crossref_primary_10_3892_ijmm_2015_2269
crossref_primary_10_1016_j_aquatox_2022_106283
crossref_primary_10_1093_bfgp_elw013
crossref_primary_10_1093_humrep_deaa292
crossref_primary_10_1126_sciadv_abk0013
crossref_primary_10_3390_cells9081881
crossref_primary_10_1016_j_devcel_2021_04_001
crossref_primary_10_1038_s41598_024_61148_6
crossref_primary_10_1007_s13238_020_00757_z
crossref_primary_10_1002_pd_5881
crossref_primary_10_3389_fgene_2022_902541
crossref_primary_10_1038_s41467_018_08244_0
crossref_primary_10_15302_J_QB_022_0289
crossref_primary_10_1038_s41435_020_00114_4
crossref_primary_10_1038_s41422_020_00401_9
crossref_primary_10_1096_fj_14_261131
crossref_primary_10_1016_j_celrep_2023_112100
crossref_primary_10_1016_j_stem_2014_08_003
crossref_primary_10_1111_age_13029
crossref_primary_10_1007_s00018_017_2703_x
crossref_primary_10_1016_j_stem_2024_12_007
crossref_primary_10_1093_humupd_dmy021
crossref_primary_10_1016_j_toxrep_2024_05_001
crossref_primary_10_1038_s41420_024_01935_2
crossref_primary_10_2217_epi_2017_0117
crossref_primary_10_1016_j_jevs_2016_03_019
crossref_primary_10_1016_j_cell_2018_02_028
crossref_primary_10_1038_ncomms10806
crossref_primary_10_1038_nrg3772
crossref_primary_10_3390_ijerph182312728
crossref_primary_10_1038_s41580_018_0074_2
crossref_primary_10_1074_jbc_M115_672931
crossref_primary_10_1139_cjas_2019_0071
crossref_primary_10_1186_s13148_024_01762_3
crossref_primary_10_1242_dev_161471
crossref_primary_10_3389_fcell_2020_610773
crossref_primary_10_1093_nar_gkad695
crossref_primary_10_1096_fj_201500083
crossref_primary_10_1002_mrd_23679
crossref_primary_10_1016_j_jaac_2023_02_018
crossref_primary_10_1038_s41586_022_04593_5
crossref_primary_10_1177_1933719117704906
crossref_primary_10_1371_journal_pgen_1004868
crossref_primary_10_1007_s12035_023_03816_8
crossref_primary_10_1016_j_devcel_2017_07_026
crossref_primary_10_1038_nprot_2016_016
crossref_primary_10_1126_science_aaw5118
crossref_primary_10_1016_j_celrep_2016_08_083
crossref_primary_10_1080_10643389_2021_1915052
crossref_primary_10_3389_fgene_2017_00115
crossref_primary_10_3389_fgene_2021_557934
crossref_primary_10_1002_ijc_31120
crossref_primary_10_1371_journal_pgen_1010181
crossref_primary_10_1016_j_molmed_2017_09_004
crossref_primary_10_1038_s41596_020_00417_w
crossref_primary_10_1371_journal_pgen_1006807
crossref_primary_10_1016_j_celrep_2017_09_055
crossref_primary_10_1186_s12864_019_6039_9
crossref_primary_10_1063_1_4929909
crossref_primary_10_3389_fcell_2020_00555
crossref_primary_10_7554_eLife_23670
crossref_primary_10_3389_fgene_2019_00694
crossref_primary_10_3390_genes15050620
crossref_primary_10_1016_j_archoralbio_2022_105603
crossref_primary_10_1016_j_stem_2024_12_010
crossref_primary_10_1038_s41585_022_00708_9
crossref_primary_10_2217_rme_2017_0052
crossref_primary_10_1093_humrep_deaa044
crossref_primary_10_2174_1574888X18666230417084518
crossref_primary_10_1093_bfgp_elw029
crossref_primary_10_1007_s00204_017_1971_4
crossref_primary_10_1016_j_stemcr_2018_03_018
crossref_primary_10_1016_j_stem_2017_02_014
crossref_primary_10_15252_embr_201642743
crossref_primary_10_1038_s41421_018_0039_9
crossref_primary_10_1186_s13059_016_0941_0
crossref_primary_10_1038_s41576_018_0092_0
crossref_primary_10_1016_j_stem_2017_09_003
crossref_primary_10_1186_s13073_019_0694_y
crossref_primary_10_15252_embj_201490649
crossref_primary_10_1016_j_molcel_2019_08_025
crossref_primary_10_1016_j_celrep_2021_109418
crossref_primary_10_1007_s43032_022_00988_x
crossref_primary_10_3109_19396368_2015_1073406
crossref_primary_10_1089_ars_2018_7555
crossref_primary_10_1038_s41588_018_0232_7
crossref_primary_10_1016_j_aninu_2022_07_002
crossref_primary_10_1177_1758835919838958
crossref_primary_10_1016_j_stemcr_2016_07_020
crossref_primary_10_1080_15592294_2024_2332819
crossref_primary_10_1002_art_39795
crossref_primary_10_3390_bioengineering10020237
crossref_primary_10_1093_nsr_nwv029
crossref_primary_10_1186_s13059_022_02827_3
crossref_primary_10_3390_cancers14051163
crossref_primary_10_1111_jcpp_12877
crossref_primary_10_1093_bioinformatics_btz125
crossref_primary_10_1038_s41467_023_37820_2
crossref_primary_10_1093_molehr_gaaa048
crossref_primary_10_1371_journal_pgen_1008236
crossref_primary_10_1111_rda_13053
crossref_primary_10_1002_jcp_26564
crossref_primary_10_1186_s13148_021_01003_x
crossref_primary_10_1016_j_biochi_2015_06_019
crossref_primary_10_1021_acs_jafc_9b08212
crossref_primary_10_1038_s41467_021_21532_6
crossref_primary_10_1080_21655979_2016_1218582
crossref_primary_10_1093_humrep_deab074
crossref_primary_10_2217_epi_2016_0056
crossref_primary_10_1073_pnas_1613300114
crossref_primary_10_1274_jmor_33_101
crossref_primary_10_1016_j_mam_2017_09_002
crossref_primary_10_1111_aji_12765
crossref_primary_10_3389_fcell_2021_618113
crossref_primary_10_3389_fendo_2023_1259903
crossref_primary_10_7888_juoeh_41_193
crossref_primary_10_1016_j_chemosphere_2020_127613
crossref_primary_10_1101_gr_198044_115
crossref_primary_10_1007_s12038_016_9650_9
crossref_primary_10_1016_j_tig_2015_07_003
crossref_primary_10_1093_jb_mvw044
crossref_primary_10_1016_j_celrep_2017_08_086
crossref_primary_10_1038_nature19360
crossref_primary_10_1111_mec_15216
crossref_primary_10_3389_fimmu_2021_686676
crossref_primary_10_3390_ijms22042034
crossref_primary_10_3390_ijms18020420
crossref_primary_10_1016_j_tcb_2023_03_015
crossref_primary_10_1016_j_stem_2019_06_010
crossref_primary_10_1016_j_ccm_2018_10_008
crossref_primary_10_3389_fchem_2017_00023
crossref_primary_10_1002_mnfr_202000734
crossref_primary_10_1002_wsbm_1411
crossref_primary_10_1002_jcp_29805
crossref_primary_10_1093_biolre_ioad038
crossref_primary_10_3390_ijms241310898
crossref_primary_10_3390_cells11192929
crossref_primary_10_1155_2016_1597489
crossref_primary_10_3390_biomedicines10071689
crossref_primary_10_17221_29_2016_CJAS
crossref_primary_10_1016_j_cell_2022_06_052
crossref_primary_10_1083_jcb_201807044
crossref_primary_10_1007_s00401_017_1673_2
crossref_primary_10_1016_j_stem_2021_04_012
crossref_primary_10_1016_j_cmet_2017_03_016
crossref_primary_10_1186_s12864_019_5558_8
crossref_primary_10_1016_j_devcel_2024_12_037
crossref_primary_10_1093_ije_dyv043
crossref_primary_10_1016_j_stemcr_2019_04_004
crossref_primary_10_1038_s41591_022_02098_2
crossref_primary_10_3389_fgene_2018_00036
crossref_primary_10_1016_j_cell_2015_05_012
crossref_primary_10_1016_j_cell_2015_05_015
crossref_primary_10_1038_s41584_023_01052_x
crossref_primary_10_1111_desc_12739
crossref_primary_10_1002_mrd_22970
crossref_primary_10_1016_j_ajog_2015_07_011
crossref_primary_10_1016_j_stemcr_2017_10_008
crossref_primary_10_1038_s41588_020_00755_1
crossref_primary_10_1186_s13148_021_01047_z
crossref_primary_10_1007_s00418_021_02008_6
crossref_primary_10_1017_thg_2019_38
crossref_primary_10_3390_ijms24087188
crossref_primary_10_2217_epi_2017_0087
crossref_primary_10_3390_v10080402
crossref_primary_10_1186_s13148_020_00866_w
crossref_primary_10_3390_ph15020192
crossref_primary_10_1016_j_bpj_2017_08_019
crossref_primary_10_1016_j_semcdb_2022_02_010
crossref_primary_10_1038_s41598_024_73845_3
crossref_primary_10_3390_ani12111399
crossref_primary_10_1186_s13148_020_00986_3
crossref_primary_10_1016_j_theriogenology_2020_02_036
crossref_primary_10_1016_j_plrev_2016_11_001
crossref_primary_10_1016_j_stemcr_2020_09_005
crossref_primary_10_1002_adma_201604580
crossref_primary_10_1534_g3_116_030379
crossref_primary_10_1002_jcb_29002
crossref_primary_10_1038_s41598_022_09765_x
crossref_primary_10_3389_fgene_2019_00512
crossref_primary_10_1021_acs_jcim_3c00688
crossref_primary_10_1002_oby_22322
crossref_primary_10_1111_acel_13922
crossref_primary_10_1371_journal_pone_0171442
crossref_primary_10_1111_raq_12994
crossref_primary_10_1292_jvms_19_0547
crossref_primary_10_1007_s10815_015_0568_1
crossref_primary_10_1051_medsci_20163201010
crossref_primary_10_1080_14647273_2023_2261628
crossref_primary_10_1038_cr_2017_82
crossref_primary_10_1038_nrg_2016_88
crossref_primary_10_1242_dev_146811
crossref_primary_10_1038_nrg_2017_57
crossref_primary_10_1016_j_cell_2022_06_028
crossref_primary_10_1053_j_gastro_2023_03_238
crossref_primary_10_1111_1753_0407_13403
crossref_primary_10_1186_s13059_020_02189_8
crossref_primary_10_1016_j_molcel_2016_04_025
crossref_primary_10_1192_bjp_2018_116
crossref_primary_10_3389_fcell_2016_00134
crossref_primary_10_1016_j_chemosphere_2022_133662
crossref_primary_10_1038_s12276_024_01359_z
crossref_primary_10_1038_s41380_022_01921_z
crossref_primary_10_3390_jcdd5040057
crossref_primary_10_1007_s10815_024_03287_3
crossref_primary_10_1016_j_mam_2017_08_004
crossref_primary_10_1002_bies_201700091
crossref_primary_10_1093_humrep_dew214
crossref_primary_10_1093_biolre_ioac091
crossref_primary_10_3390_genes10040258
crossref_primary_10_1167_iovs_19_27361
crossref_primary_10_1186_s12864_017_3566_0
crossref_primary_10_3389_fcell_2024_1358649
crossref_primary_10_1515_med_2022_0410
crossref_primary_10_1016_j_ajcnut_2024_04_020
crossref_primary_10_1038_s41467_020_19603_1
crossref_primary_10_1093_biolre_ioac096
crossref_primary_10_1146_annurev_genet_120417_031404
crossref_primary_10_1016_j_pharmthera_2024_108640
crossref_primary_10_26508_lsa_202302237
crossref_primary_10_3390_ijms21020637
crossref_primary_10_1016_j_tcb_2014_09_006
crossref_primary_10_1038_s41586_020_2119_x
crossref_primary_10_1016_j_isci_2022_103904
crossref_primary_10_1002_wsbm_1328
crossref_primary_10_1016_j_bbagrm_2015_03_006
crossref_primary_10_1093_molehr_gaaa064
crossref_primary_10_17816_ecogen631776
crossref_primary_10_1038_srep38192
crossref_primary_10_1080_17501911_2024_2384833
crossref_primary_10_1093_eep_dvw005
crossref_primary_10_1080_15592294_2022_2044126
crossref_primary_10_1371_journal_pone_0241698
crossref_primary_10_1071_RD19276
crossref_primary_10_1038_s41586_023_06424_7
crossref_primary_10_1016_j_xinn_2022_100342
crossref_primary_10_1051_jbio_2023032
crossref_primary_10_1016_j_plrev_2017_01_029
crossref_primary_10_1021_acs_analchem_6b02625
crossref_primary_10_1042_BCJ20190275
crossref_primary_10_18632_oncotarget_18072
crossref_primary_10_1101_gr_278146_123
crossref_primary_10_1016_j_cell_2015_04_053
crossref_primary_10_1016_j_scr_2017_11_017
crossref_primary_10_1093_humupd_dmac010
crossref_primary_10_1101_gr_196139_115
crossref_primary_10_1038_s41588_017_0003_x
crossref_primary_10_1242_dev_116061
crossref_primary_10_3389_fcell_2023_1212199
crossref_primary_10_1007_s10528_021_10128_w
crossref_primary_10_1073_pnas_1821435116
crossref_primary_10_1126_science_abj5089
crossref_primary_10_1016_j_intimp_2020_107334
crossref_primary_10_1002_rmb2_12347
crossref_primary_10_1016_j_jgg_2017_09_001
crossref_primary_10_1093_biolre_ioac122
crossref_primary_10_1039_D0CC08306B
crossref_primary_10_1042_BST20220763
crossref_primary_10_1152_physrev_00050_2021
crossref_primary_10_1080_15592294_2019_1615353
crossref_primary_10_1126_science_aao3791
crossref_primary_10_3389_fcell_2020_620089
crossref_primary_10_1016_j_chemosphere_2018_05_058
crossref_primary_10_1016_j_stem_2023_09_010
crossref_primary_10_1371_journal_pone_0126966
crossref_primary_10_17116_repro20243006145
crossref_primary_10_1289_EHP12013
crossref_primary_10_3389_fendo_2021_774260
crossref_primary_10_1038_s41421_021_00316_8
crossref_primary_10_1096_fj_202201564R
crossref_primary_10_1038_s41421_022_00491_2
crossref_primary_10_1016_j_cell_2016_05_043
crossref_primary_10_1093_nar_gkaa1135
crossref_primary_10_3390_ijms221910729
crossref_primary_10_1530_REP_14_0343
crossref_primary_10_1039_C7SC04813K
crossref_primary_10_3390_genes12071095
crossref_primary_10_3390_ijms22115579
crossref_primary_10_1093_jb_mvv113
crossref_primary_10_1001_jamanetworkopen_2021_47782
crossref_primary_10_1038_s41580_019_0159_6
crossref_primary_10_1038_s41556_023_01328_0
crossref_primary_10_1146_annurev_biochem_103019_102815
crossref_primary_10_1038_s41598_022_15656_y
crossref_primary_10_1038_s41421_022_00514_y
crossref_primary_10_1371_journal_pone_0159507
crossref_primary_10_1111_cge_13480
crossref_primary_10_3390_ijms21020671
crossref_primary_10_1038_s41556_018_0123_2
crossref_primary_10_1038_cr_2017_25
crossref_primary_10_1038_s42003_023_04584_w
crossref_primary_10_1038_srep28506
crossref_primary_10_1002_smtd_201900137
crossref_primary_10_1093_biolre_ioy138
crossref_primary_10_1016_j_cell_2022_12_047
crossref_primary_10_1093_humupd_dmad007
crossref_primary_10_1016_j_cell_2014_08_029
crossref_primary_10_1016_j_endonu_2015_03_009
crossref_primary_10_1038_ejhg_2017_91
crossref_primary_10_1371_journal_pgen_1005583
crossref_primary_10_1038_s41467_023_42558_y
crossref_primary_10_1186_s13148_020_00857_x
crossref_primary_10_1101_gr_273318_120
crossref_primary_10_1186_s12864_019_5803_1
crossref_primary_10_1016_j_autrev_2015_05_008
crossref_primary_10_1038_s41576_018_0087_x
crossref_primary_10_1021_acs_biochem_9b00815
crossref_primary_10_1021_acs_est_1c03746
crossref_primary_10_1038_nature13648
crossref_primary_10_1038_s41467_019_11312_8
crossref_primary_10_1038_srep28995
crossref_primary_10_1093_biolre_iox173
crossref_primary_10_1242_dev_158501
crossref_primary_10_1038_cr_2016_23
crossref_primary_10_1530_REP_14_0242
crossref_primary_10_1016_j_xfss_2023_05_005
crossref_primary_10_1186_s13148_019_0623_3
crossref_primary_10_1016_j_stem_2022_06_006
crossref_primary_10_1016_j_devcel_2016_08_004
crossref_primary_10_1016_j_stemcr_2015_04_014
crossref_primary_10_1016_j_devcel_2019_05_037
crossref_primary_10_1038_s41467_024_51614_0
crossref_primary_10_1186_s12864_019_6317_6
crossref_primary_10_1093_hmg_ddac207
crossref_primary_10_1093_biolre_ioy026
crossref_primary_10_1530_REP_16_0014
crossref_primary_10_1098_rsos_211749
crossref_primary_10_1016_j_stem_2021_04_001
crossref_primary_10_1016_j_dcmed_2022_10_011
crossref_primary_10_1080_15592294_2021_1921337
crossref_primary_10_1016_j_jcms_2017_02_004
crossref_primary_10_1016_j_fertnstert_2015_03_020
crossref_primary_10_1007_s11033_021_06258_4
crossref_primary_10_1186_s41021_020_00162_2
crossref_primary_10_18632_oncotarget_6607
crossref_primary_10_1016_j_semcdb_2020_12_007
crossref_primary_10_1016_j_xinn_2023_100434
crossref_primary_10_1007_s11427_019_9561_7
crossref_primary_10_1016_j_gde_2017_06_007
crossref_primary_10_1016_j_gde_2017_06_009
crossref_primary_10_3390_ijms25031459
crossref_primary_10_1080_15592294_2019_1695341
crossref_primary_10_1186_s12918_018_0638_y
crossref_primary_10_2196_17997
crossref_primary_10_1016_j_stem_2019_03_012
crossref_primary_10_1097_MOP_0000000000000365
crossref_primary_10_1002_ctm2_498
crossref_primary_10_1016_j_ijbiomac_2020_12_149
crossref_primary_10_1016_j_jacc_2017_05_067
crossref_primary_10_1016_j_endoen_2015_08_003
crossref_primary_10_1126_scitranslmed_adg1659
crossref_primary_10_1016_j_plrev_2017_01_003
crossref_primary_10_1016_j_gene_2022_146229
crossref_primary_10_3892_ijmm_2024_5443
crossref_primary_10_1093_biolre_ioac134
crossref_primary_10_1186_s13100_019_0151_x
crossref_primary_10_1093_biolre_iox077
crossref_primary_10_1007_s12015_023_10552_y
crossref_primary_10_1016_j_celrep_2021_109233
crossref_primary_10_1016_j_plrev_2017_01_007
crossref_primary_10_1155_2021_1624669
crossref_primary_10_1186_s12891_022_05730_x
crossref_primary_10_1016_j_jaci_2015_12_1341
crossref_primary_10_1007_s10815_016_0837_7
crossref_primary_10_1016_j_stem_2016_06_011
crossref_primary_10_1016_j_stem_2016_12_004
crossref_primary_10_1186_s12967_023_04610_9
crossref_primary_10_1038_s41588_017_0002_y
crossref_primary_10_1371_journal_pone_0146402
crossref_primary_10_1016_j_theriogenology_2022_08_016
crossref_primary_10_1021_jacs_9b12707
crossref_primary_10_15252_embr_202051644
crossref_primary_10_1186_s12575_017_0054_5
crossref_primary_10_1038_nature15515
crossref_primary_10_1038_ng_3522
crossref_primary_10_1016_j_tibtech_2018_04_002
crossref_primary_10_1074_jbc_R117_001561
crossref_primary_10_1007_s10815_018_1241_2
crossref_primary_10_1038_s41586_019_1500_0
crossref_primary_10_15252_embj_201796580
crossref_primary_10_2217_epi_2016_0022
crossref_primary_10_1093_biolre_ioy050
crossref_primary_10_1042_BCJ20230306
crossref_primary_10_3390_biom10091211
crossref_primary_10_1016_j_cell_2015_02_021
crossref_primary_10_1093_bib_bbac278
crossref_primary_10_1177_1933719118820474
crossref_primary_10_1242_dev_157404
crossref_primary_10_1002_rmb2_12521
crossref_primary_10_1186_s13148_019_0659_4
crossref_primary_10_3389_fgene_2021_675780
crossref_primary_10_1093_hropen_hoac055
crossref_primary_10_1016_j_devcel_2016_09_015
crossref_primary_10_1038_gene_2016_19
crossref_primary_10_1186_s40104_022_00764_6
crossref_primary_10_1016_j_celrep_2024_114232
crossref_primary_10_1016_j_stem_2024_01_009
Cites_doi 10.1038/nrg2640
10.1016/j.cell.2011.08.016
10.1038/35057062
10.1038/nbt.2135
10.1016/j.ejogrb.2012.11.018
10.1038/nature06008
10.1038/nrg3230
10.1016/j.cell.2013.04.037
10.1038/nmeth.1315
10.1016/j.cell.2013.04.022
10.1098/rstb.2011.0328
10.1242/dev.061416
10.1038/nrg2295
10.1038/ng.864
10.1038/cr.2011.189
10.1016/j.molcel.2012.11.001
10.1101/gad.1667008
10.1038/nprot.2010.190
10.1038/366362a0
10.1016/j.ydbio.2007.10.033
10.1186/gb-2012-13-7-r61
10.1016/j.stem.2012.04.012
10.1530/rep.1.00217
10.1038/nprot.2008.211
10.1016/S1472-6483(10)60475-0
10.1126/science.1190614
10.1093/bioinformatics/btr167
10.1371/journal.pgen.1003439
10.1101/gr.161679.113
10.1242/dev.060426
10.1101/gad.947102
10.1038/nature08514
10.1038/nature11247
10.1038/nsmb.2660
10.1002/mrd.20933
10.1038/nature10960
10.1126/science.1212483
10.1038/ng1089
10.1016/j.cell.2012.12.033
10.1038/nature10443
ContentType Journal Article
Copyright Springer Nature Limited 2014
COPYRIGHT 2014 Nature Publishing Group
Copyright Nature Publishing Group Jul 31, 2014
Copyright_xml – notice: Springer Nature Limited 2014
– notice: COPYRIGHT 2014 Nature Publishing Group
– notice: Copyright Nature Publishing Group Jul 31, 2014
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QG
7QL
7QP
7QR
7RV
7SN
7SS
7ST
7T5
7TG
7TK
7TM
7TO
7U9
7X2
7X7
7XB
88A
88E
88G
88I
8AF
8AO
8C1
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
8G5
ABJCF
ABUWG
AEUYN
AFKRA
ARAPS
ATCPS
AZQEC
BBNVY
BEC
BENPR
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
D1I
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
GUQSH
H94
HCIFZ
K9.
KB.
KB0
KL.
L6V
LK8
M0K
M0S
M1P
M2M
M2O
M2P
M7N
M7P
M7S
MBDVC
NAPCQ
P5Z
P62
P64
PATMY
PCBAR
PDBOC
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PSYQQ
PTHSS
PYCSY
Q9U
R05
RC3
S0X
SOI
7X8
DOI 10.1038/nature13544
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
ProQuest Nursing & Allied Health Database
Ecology Abstracts
Entomology Abstracts (Full archive)
Environment Abstracts
Immunology Abstracts
Meteorological & Geoastrophysical Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Agricultural Science Collection
ProQuest Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Psychology Database (Alumni)
Science Database (Alumni Edition)
STEM Database
ProQuest Pharma Collection
ProQuest Public Health Database
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Journals
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Research Library
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability (subscription)
ProQuest Central UK/Ireland
ProQuest Advanced Technologies & Aerospace Database
Agricultural & Environmental Science Collection
ProQuest Central Essentials
Biological Science Database
eLibrary
ProQuest Central
Technology collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Materials Science Collection
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
ProQuest Research Library
AIDS and Cancer Research Abstracts
ProQuest SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Materials Science Database
Nursing & Allied Health Database (Alumni Edition)
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest Engineering Collection
Biological Sciences
Agricultural Science Database
Health & Medical Collection (Alumni)
Proquest Medical Database
ProQuest Psychology Database
ProQuest Research Library
Science Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
ProQuest Biological Science Database
Engineering Database
Research Library (Corporate)
Nursing & Allied Health Premium
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Environmental Science Database
Earth, Atmospheric & Aquatic Science Database
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest One Psychology
Engineering Collection
Environmental Science Collection
ProQuest Central Basic
University of Michigan
Genetics Abstracts
SIRS Editorial
Environment Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Agricultural Science Database
ProQuest One Psychology
Research Library Prep
ProQuest Central Student
Oncogenes and Growth Factors Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
elibrary
ProQuest AP Science
SciTech Premium Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Meteorological & Geoastrophysical Abstracts
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
Chemoreception Abstracts
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
Virology and AIDS Abstracts
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
Agricultural Science Collection
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Environmental Science Collection
Entomology Abstracts
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Environmental Science Database
ProQuest Nursing & Allied Health Source (Alumni)
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest One Academic (New)
University of Michigan
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
SIRS Editorial
Materials Science Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
Research Library (Alumni Edition)
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
Earth, Atmospheric & Aquatic Science Collection
ProQuest Health & Medical Research Collection
Genetics Abstracts
ProQuest Engineering Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Agricultural & Environmental Science Collection
AIDS and Cancer Research Abstracts
Materials Science Database
ProQuest Research Library
ProQuest Materials Science Collection
ProQuest Public Health
ProQuest Central Basic
ProQuest Science Journals
ProQuest Nursing & Allied Health Source
ProQuest Psychology Journals (Alumni)
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
ProQuest Psychology Journals
Animal Behavior Abstracts
Materials Science & Engineering Collection
Immunology Abstracts
Environment Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic


MEDLINE
Agricultural Science Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Physics
EISSN 1476-4687
EndPage 610
ExternalDocumentID 3396333301
A376934461
25079557
10_1038_nature13544
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
--Z
-DZ
-ET
-~X
.55
.CO
.XZ
00M
07C
0R~
0WA
123
186
1OL
1VR
29M
2KS
2XV
39C
3V.
4.4
41X
53G
5RE
6TJ
70F
7RV
7X2
7X7
7XC
85S
88A
88E
88I
8AF
8AO
8C1
8CJ
8FE
8FG
8FH
8FI
8FJ
8G5
8R4
8R5
8WZ
97F
97L
A6W
A7Z
A8Z
AAEEF
AAHBH
AAHTB
AAIKC
AAKAB
AAKAS
AAMNW
AASDW
AAYEP
AAYZH
AAZLF
ABAWZ
ABDBF
ABDQB
ABFSI
ABIVO
ABJCF
ABJNI
ABLJU
ABOCM
ABPEJ
ABPPZ
ABUWG
ABWJO
ABZEH
ACBEA
ACBWK
ACGFO
ACGFS
ACGOD
ACIWK
ACKOT
ACMJI
ACNCT
ACPRK
ACUHS
ACWUS
ADBBV
ADFRT
ADUKH
ADYSU
ADZCM
AENEX
AEUYN
AFFNX
AFKRA
AFLOW
AFRAH
AFSHS
AGAYW
AGHSJ
AGHTU
AGNAY
AGSOS
AHMBA
AHSBF
AIDAL
AIDUJ
ALFFA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMTXH
APEBS
ARAPS
ARMCB
ARTTT
ASPBG
ATCPS
ATWCN
AVWKF
AXYYD
AZFZN
AZQEC
B0M
BBNVY
BCU
BDKGC
BEC
BENPR
BGLVJ
BHPHI
BIN
BKEYQ
BKKNO
BKSAR
BLC
BPHCQ
BVXVI
CCPQU
CJ0
CS3
D1I
D1J
D1K
DO4
DU5
DWQXO
E.-
E.L
EAD
EAP
EAS
EAZ
EBC
EBD
EBO
EBS
ECC
EE.
EJD
EMB
EMF
EMH
EMK
EMOBN
EPL
EPS
ESE
ESN
ESX
EX3
EXGXG
F5P
FEDTE
FQGFK
FSGXE
FYUFA
GNUQQ
GUQSH
HCIFZ
HMCUK
HVGLF
HZ~
I-F
IAO
ICQ
IEA
IEP
IGS
IH2
IHR
INH
INR
IOF
IPY
ISR
ITC
K6-
KB.
KOO
L6V
L7B
LK5
LK8
LSO
M0K
M0L
M1P
M2M
M2O
M2P
M7P
M7R
M7S
N9A
NAPCQ
NEJ
NEPJS
O9-
OBC
OES
OHH
OMK
OVD
P-O
P2P
P62
PATMY
PCBAR
PDBOC
PKN
PM3
PQQKQ
PROAC
PSQYO
PSYQQ
PTHSS
PYCSY
Q2X
R05
RND
RNS
RNT
RNTTT
RXW
S0X
SC5
SHXYY
SIXXV
SJFOW
SJN
SNYQT
SOJ
SV3
TAE
TAOOD
TBHMF
TDRGL
TEORI
TH9
TN5
TSG
TUS
TWZ
U5U
UIG
UKHRP
UKR
UMD
UQL
VQA
VVN
WH7
WOW
X7M
XIH
XKW
XZL
Y6R
YAE
YCJ
YFH
YIF
YIN
YNT
YOC
YQT
YR2
YR5
YXB
YZZ
Z5M
ZCA
ZE2
ZKB
~02
~7V
~88
~8M
~KM
AARCD
AAYXX
ABFSG
ACMFV
ACSTC
ADGHP
ADXHL
AETEA
AFANA
ALPWD
ATHPR
CITATION
PHGZM
PHGZT
CGR
CUY
CVF
ECM
EIF
NPM
PJZUB
PPXIY
PQGLB
AEIIB
PMFND
7QG
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7TG
7TK
7TM
7TO
7U9
7XB
8FD
8FK
C1K
FR3
H94
K9.
KL.
M7N
MBDVC
P64
PKEHL
PQEST
PQUKI
PRINS
Q9U
RC3
SOI
7X8
ID FETCH-LOGICAL-c586t-e4b7e29540d294675a6b03fe9871672d7797acfb7e89fe7367e0c9f9119fba6d3
IEDL.DBID 7X7
ISSN 0028-0836
1476-4687
IngestDate Thu Jul 10 22:36:24 EDT 2025
Fri Jul 25 09:02:10 EDT 2025
Tue Jun 17 21:13:55 EDT 2025
Thu Jun 12 23:37:21 EDT 2025
Tue Jun 10 15:32:33 EDT 2025
Tue Jun 10 20:30:58 EDT 2025
Fri Jun 27 04:50:39 EDT 2025
Mon Jul 21 06:07:09 EDT 2025
Tue Jul 01 03:21:21 EDT 2025
Thu Apr 24 23:03:33 EDT 2025
Fri Feb 21 02:38:03 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 7511
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c586t-e4b7e29540d294675a6b03fe9871672d7797acfb7e89fe7367e0c9f9119fba6d3
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
PMID 25079557
PQID 1551986274
PQPubID 40569
PageCount 5
ParticipantIDs proquest_miscellaneous_1551018911
proquest_journals_1551986274
gale_infotracmisc_A376934461
gale_infotracgeneralonefile_A376934461
gale_infotraccpiq_376934461
gale_infotracacademiconefile_A376934461
gale_incontextgauss_ISR_A376934461
pubmed_primary_25079557
crossref_primary_10_1038_nature13544
crossref_citationtrail_10_1038_nature13544
springer_journals_10_1038_nature13544
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20140731
PublicationDateYYYYMMDD 2014-07-31
PublicationDate_xml – month: 7
  year: 2014
  text: 20140731
  day: 31
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationSubtitle International weekly journal of science
PublicationTitle Nature (London)
PublicationTitleAbbrev Nature
PublicationTitleAlternate Nature
PublicationYear 2014
Publisher Nature Publishing Group UK
Nature Publishing Group
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
References Shirane (CR10) 2013; 9
Kurihara (CR35) 2008; 313
Bird (CR1) 2002; 16
Xie (CR20) 2013; 153
Hirasawa (CR34) 2008; 22
O'Leary (CR19) 2012; 30
Fulka, Mrazek, Tepla, Fulka (CR3) 2004; 128
Inoue, Zhang (CR30) 2011; 334
Guo (CR15) 2013; 23
Cordaux, Batzer (CR25) 2009; 10
Krueger, Andrews (CR37) 2011; 27
van der Heijden (CR32) 2009; 76
Wu, Zhang (CR7) 2012; 10
Smallwood (CR8) 2011; 43
Zhu (CR17) 2013; 152
The ENCODE Project Consortium (CR18) 2012; 489
Seisenberger (CR11) 2012; 48
Li, Qiao, Wang, Zhen, Lu (CR27) 2008; 16
Tomizawa (CR14) 2011; 138
Feng, Jacobsen, Reik (CR2) 2010; 330
Jaenisch, Bird (CR12) 2003; 33
Li, Beard, Jaenisch (CR4) 1993; 366
Lander (CR39) 2001; 409
Hackett, Surani (CR5) 2013; 368
Yan (CR23) 2013; 20
Mikkelsen (CR22) 2007; 448
Inoue, Shen, Dai, He, Zhang (CR31) 2011; 21
Huang da. W, Sherman, Lempicki (CR40) 2009; 4
Gifford (CR21) 2013; 153
Li (CR28) 2013; 167
Gu (CR33) 2011; 6
Sasaki, Matsui (CR13) 2008; 9
Lister (CR6) 2009; 462
Tang (CR36) 2009; 6
Niakan, Han, Pedersen, Simon, Pera (CR24) 2012; 139
Molaro (CR26) 2011; 146
Jones (CR16) 2012; 13
Gu (CR29) 2011; 477
Smith (CR9) 2012; 484
Liu, Siegmund, Laird, Berman (CR38) 2012; 13
JA Hackett (BFnature13544_CR5) 2013; 368
R Lister (BFnature13544_CR6) 2009; 462
S Tomizawa (BFnature13544_CR14) 2011; 138
W Xie (BFnature13544_CR20) 2013; 153
TS Mikkelsen (BFnature13544_CR22) 2007; 448
A Molaro (BFnature13544_CR26) 2011; 146
E Li (BFnature13544_CR4) 1993; 366
Huang da. W (BFnature13544_CR40) 2009; 4
K Shirane (BFnature13544_CR10) 2013; 9
R Li (BFnature13544_CR27) 2008; 16
A Inoue (BFnature13544_CR31) 2011; 21
H Wu (BFnature13544_CR7) 2012; 10
F Krueger (BFnature13544_CR37) 2011; 27
S Seisenberger (BFnature13544_CR11) 2012; 48
L Yan (BFnature13544_CR23) 2013; 20
ZD Smith (BFnature13544_CR9) 2012; 484
R Jaenisch (BFnature13544_CR12) 2003; 33
R Li (BFnature13544_CR28) 2013; 167
TP Gu (BFnature13544_CR29) 2011; 477
ES Lander (BFnature13544_CR39) 2001; 409
H Fulka (BFnature13544_CR3) 2004; 128
H Guo (BFnature13544_CR15) 2013; 23
R Hirasawa (BFnature13544_CR34) 2008; 22
H Gu (BFnature13544_CR33) 2011; 6
KK Niakan (BFnature13544_CR24) 2012; 139
CA Gifford (BFnature13544_CR21) 2013; 153
T O'Leary (BFnature13544_CR19) 2012; 30
J Zhu (BFnature13544_CR17) 2013; 152
Y Kurihara (BFnature13544_CR35) 2008; 313
Y Liu (BFnature13544_CR38) 2012; 13
H Sasaki (BFnature13544_CR13) 2008; 9
R Cordaux (BFnature13544_CR25) 2009; 10
GW van der Heijden (BFnature13544_CR32) 2009; 76
S Feng (BFnature13544_CR2) 2010; 330
SA Smallwood (BFnature13544_CR8) 2011; 43
A Inoue (BFnature13544_CR30) 2011; 334
PA Jones (BFnature13544_CR16) 2012; 13
A Bird (BFnature13544_CR1) 2002; 16
The ENCODE Project Consortium (BFnature13544_CR18) 2012; 489
F Tang (BFnature13544_CR36) 2009; 6
12610534 - Nat Genet. 2003 Mar;33 Suppl:245-54
8247133 - Nature. 1993 Nov 25;366(6453):362-5
23274040 - Eur J Obstet Gynecol Reprod Biol. 2013 Apr;167(2):146-8
21925323 - Cell. 2011 Sep 16;146(6):1029-41
22371082 - Nat Biotechnol. 2012 Feb 26;30(3):278-82
15579587 - Reproduction. 2004 Dec;128(6):703-8
23934149 - Nat Struct Mol Biol. 2013 Sep;20(9):1131-9
23166392 - Philos Trans R Soc Lond B Biol Sci. 2013 Jan 5;368(1609):20110328
22641018 - Nat Rev Genet. 2012 May 29;13(7):484-92
22318624 - Development. 2012 Mar;139(5):829-41
18492365 - Reprod Biomed Online. 2008 May;16(5):627-31
23664763 - Cell. 2013 May 23;153(5):1149-63
17603471 - Nature. 2007 Aug 2;448(7153):553-60
24179143 - Genome Res. 2013 Dec;23(12):2126-35
22456710 - Nature. 2012 Mar 28;484(7394):339-44
21493656 - Bioinformatics. 2011 Jun 1;27(11):1571-2
21940858 - Science. 2011 Oct 14;334(6053):194
18048024 - Dev Biol. 2008 Jan 1;313(1):335-46
23664764 - Cell. 2013 May 23;153(5):1134-48
21892189 - Nature. 2011 Sep 04;477(7366):606-10
11782440 - Genes Dev. 2002 Jan 1;16(1):6-21
18197165 - Nat Rev Genet. 2008 Feb;9(2):129-40
22784381 - Genome Biol. 2012 Jul 11;13(7):R61
18481364 - Mol Reprod Dev. 2009 Jan;76(1):101-8
18559477 - Genes Dev. 2008 Jun 15;22(12):1607-16
22124233 - Cell Res. 2011 Dec;21(12):1670-6
23637617 - PLoS Genet. 2013 Apr;9(4):e1003439
11237011 - Nature. 2001 Feb 15;409(6822):860-921
22955616 - Nature. 2012 Sep 6;489(7414):57-74
25112299 - Nat Rev Genet. 2014 Sep;15(9):571
21412275 - Nat Protoc. 2011 Apr;6(4):468-81
19349980 - Nat Methods. 2009 May;6(5):377-82
23219530 - Mol Cell. 2012 Dec 28;48(6):849-62
19763152 - Nat Rev Genet. 2009 Oct;10(10):691-703
23333102 - Cell. 2013 Jan 31;152(3):642-54
22560071 - Cell Stem Cell. 2012 May 4;10(5):487-9
19829295 - Nature. 2009 Nov 19;462(7271):315-22
21706000 - Nat Genet. 2011 Jun 26;43(8):811-4
21030646 - Science. 2010 Oct 29;330(6004):622-7
21247965 - Development. 2011 Mar;138(5):811-20
19131956 - Nat Protoc. 2009;4(1):44-57
References_xml – volume: 10
  start-page: 691
  year: 2009
  end-page: 703
  ident: CR25
  article-title: The impact of retrotransposons on human genome evolution
  publication-title: Nature Rev. Genet.
  doi: 10.1038/nrg2640
– volume: 146
  start-page: 1029
  year: 2011
  end-page: 1041
  ident: CR26
  article-title: Sperm methylation profiles reveal features of epigenetic inheritance and evolution in primates
  publication-title: Cell
  doi: 10.1016/j.cell.2011.08.016
– volume: 409
  start-page: 860
  year: 2001
  end-page: 921
  ident: CR39
  article-title: Initial sequencing and analysis of the human genome
  publication-title: Nature
  doi: 10.1038/35057062
– volume: 30
  start-page: 278
  year: 2012
  end-page: 282
  ident: CR19
  article-title: Tracking the progression of the human inner cell mass during embryonic stem cell derivation
  publication-title: Nature Biotechnol.
  doi: 10.1038/nbt.2135
– volume: 167
  start-page: 146
  year: 2013
  end-page: 148
  ident: CR28
  article-title: Retain singleton or twins? Multifetal pregnancy reduction strategies in triplet pregnancies with monochorionic twins
  publication-title: Eur. J. Obstet. Gynecol. Reprod. Biol.
  doi: 10.1016/j.ejogrb.2012.11.018
– volume: 448
  start-page: 553
  year: 2007
  end-page: 560
  ident: CR22
  article-title: Genome-wide maps of chromatin state in pluripotent and lineage-committed cells
  publication-title: Nature
  doi: 10.1038/nature06008
– volume: 13
  start-page: 484
  year: 2012
  end-page: 492
  ident: CR16
  article-title: Functions of DNA methylation: islands, start sites, gene bodies and beyond
  publication-title: Nature Rev. Genet.
  doi: 10.1038/nrg3230
– volume: 153
  start-page: 1149
  year: 2013
  end-page: 1163
  ident: CR21
  article-title: Transcriptional and epigenetic dynamics during specification of human embryonic stem cells
  publication-title: Cell
  doi: 10.1016/j.cell.2013.04.037
– volume: 6
  start-page: 377
  year: 2009
  end-page: 382
  ident: CR36
  article-title: mRNA-Seq whole-transcriptome analysis of a single cell
  publication-title: Nature Methods
  doi: 10.1038/nmeth.1315
– volume: 153
  start-page: 1134
  year: 2013
  end-page: 1148
  ident: CR20
  article-title: Epigenomic analysis of multilineage differentiation of human embryonic stem cells
  publication-title: Cell
  doi: 10.1016/j.cell.2013.04.022
– volume: 368
  start-page: 20110328
  year: 2013
  ident: CR5
  article-title: DNA methylation dynamics during the mammalian life cycle
  publication-title: Phil. Trans. R. Soc. B
  doi: 10.1098/rstb.2011.0328
– volume: 138
  start-page: 811
  year: 2011
  end-page: 820
  ident: CR14
  article-title: Dynamic stage-specific changes in imprinted differentially methylated regions during early mammalian development and prevalence of non-CpG methylation in oocytes
  publication-title: Development
  doi: 10.1242/dev.061416
– volume: 9
  start-page: 129
  year: 2008
  end-page: 140
  ident: CR13
  article-title: Epigenetic events in mammalian germ-cell development: reprogramming and beyond
  publication-title: Nature Rev. Genet.
  doi: 10.1038/nrg2295
– volume: 43
  start-page: 811
  year: 2011
  end-page: 814
  ident: CR8
  article-title: Dynamic CpG island methylation landscape in oocytes and preimplantation embryos
  publication-title: Nature Genet.
  doi: 10.1038/ng.864
– volume: 21
  start-page: 1670
  year: 2011
  end-page: 1676
  ident: CR31
  article-title: Generation and replication-dependent dilution of 5fC and 5caC during mouse preimplantation development
  publication-title: Cell Res.
  doi: 10.1038/cr.2011.189
– volume: 48
  start-page: 849
  year: 2012
  end-page: 862
  ident: CR11
  article-title: The dynamics of genome-wide DNA methylation reprogramming in mouse primordial germ cells
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2012.11.001
– volume: 22
  start-page: 1607
  year: 2008
  end-page: 1616
  ident: CR34
  article-title: Maternal and zygotic Dnmt1 are necessary and sufficient for the maintenance of DNA methylation imprints during preimplantation development
  publication-title: Genes Dev.
  doi: 10.1101/gad.1667008
– volume: 6
  start-page: 468
  year: 2011
  end-page: 481
  ident: CR33
  article-title: Preparation of reduced representation bisulfite sequencing libraries for genome-scale DNA methylation profiling
  publication-title: Nature Protocols
  doi: 10.1038/nprot.2010.190
– volume: 366
  start-page: 362
  year: 1993
  end-page: 365
  ident: CR4
  article-title: Role for DNA methylation in genomic imprinting
  publication-title: Nature
  doi: 10.1038/366362a0
– volume: 313
  start-page: 335
  year: 2008
  end-page: 346
  ident: CR35
  article-title: Maintenance of genomic methylation patterns during preimplantation development requires the somatic form of DNA methyltransferase 1
  publication-title: Dev. Biol.
  doi: 10.1016/j.ydbio.2007.10.033
– volume: 13
  start-page: R61
  year: 2012
  ident: CR38
  article-title: Bis-SNP: Combined DNA methylation and SNP calling for Bisulfite-seq data
  publication-title: Genome Biol.
  doi: 10.1186/gb-2012-13-7-r61
– volume: 10
  start-page: 487
  year: 2012
  end-page: 489
  ident: CR7
  article-title: Early embryos reprogram DNA methylation in two steps
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2012.04.012
– volume: 128
  start-page: 703
  year: 2004
  end-page: 708
  ident: CR3
  article-title: DNA methylation pattern in human zygotes and developing embryos
  publication-title: Reproduction
  doi: 10.1530/rep.1.00217
– volume: 4
  start-page: 44
  year: 2009
  end-page: 57
  ident: CR40
  article-title: Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources
  publication-title: Nature Protocols
  doi: 10.1038/nprot.2008.211
– volume: 16
  start-page: 627
  year: 2008
  end-page: 631
  ident: CR27
  article-title: Serum progesterone concentration on day of HCG administration and IVF outcome
  publication-title: Reprod. Biomed. Online
  doi: 10.1016/S1472-6483(10)60475-0
– volume: 330
  start-page: 622
  year: 2010
  end-page: 627
  ident: CR2
  article-title: Epigenetic reprogramming in plant and animal development
  publication-title: Science
  doi: 10.1126/science.1190614
– volume: 27
  start-page: 1571
  year: 2011
  end-page: 1572
  ident: CR37
  article-title: Bismark: a flexible aligner and methylation caller for Bisulfite-Seq applications
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btr167
– volume: 9
  start-page: e1003439
  year: 2013
  ident: CR10
  article-title: Mouse oocyte methylomes at base resolution reveal genome-wide accumulation of non-CpG methylation and role of DNA methyltransferases
  publication-title: PLoS Genet.
  doi: 10.1371/journal.pgen.1003439
– volume: 23
  start-page: 2126
  year: 2013
  end-page: 2135
  ident: CR15
  article-title: Single-cell methylome landscapes of mouse embryonic stem cells and early embryos analyzed using reduced representation bisulfite sequencing
  publication-title: Genome Res.
  doi: 10.1101/gr.161679.113
– volume: 139
  start-page: 829
  year: 2012
  end-page: 841
  ident: CR24
  article-title: Human pre-implantation embryo development
  publication-title: Development
  doi: 10.1242/dev.060426
– volume: 16
  start-page: 6
  year: 2002
  end-page: 21
  ident: CR1
  article-title: DNA methylation patterns and epigenetic memory
  publication-title: Genes Dev.
  doi: 10.1101/gad.947102
– volume: 462
  start-page: 315
  year: 2009
  end-page: 322
  ident: CR6
  article-title: Human DNA methylomes at base resolution show widespread epigenomic differences
  publication-title: Nature
  doi: 10.1038/nature08514
– volume: 489
  start-page: 57
  year: 2012
  end-page: 74
  ident: CR18
  article-title: An integrated encyclopedia of DNA elements in the human genome
  publication-title: Nature
  doi: 10.1038/nature11247
– volume: 20
  start-page: 1131
  year: 2013
  end-page: 1139
  ident: CR23
  article-title: Single-cell RNA-Seq profiling of human preimplantation embryos and embryonic stem cells
  publication-title: Nature Struct. Mol. Biol.
  doi: 10.1038/nsmb.2660
– volume: 477
  start-page: 606
  year: 2011
  end-page: 610
  ident: CR29
  article-title: The role of Tet3 DNA dioxygenase in epigenetic reprogramming by oocytes
  publication-title: Nature
– volume: 76
  start-page: 101
  year: 2009
  end-page: 108
  ident: CR32
  article-title: Parental origin of chromatin in human monopronuclear zygotes revealed by asymmetric histone methylation patterns, differs between IVF and ICSI
  publication-title: Mol. Reprod. Dev.
  doi: 10.1002/mrd.20933
– volume: 484
  start-page: 339
  year: 2012
  end-page: 344
  ident: CR9
  article-title: A unique regulatory phase of DNA methylation in the early mammalian embryo
  publication-title: Nature
  doi: 10.1038/nature10960
– volume: 334
  start-page: 194
  year: 2011
  ident: CR30
  article-title: Replication-dependent loss of 5-hydroxymethylcytosine in mouse preimplantation embryos
  publication-title: Science
  doi: 10.1126/science.1212483
– volume: 33
  start-page: 245
  year: 2003
  end-page: 254
  ident: CR12
  article-title: Epigenetic regulation of gene expression: how the genome integrates intrinsic and environmental signals
  publication-title: Nature Genet.
  doi: 10.1038/ng1089
– volume: 152
  start-page: 642
  year: 2013
  end-page: 654
  ident: CR17
  article-title: Genome-wide chromatin state transitions associated with developmental and environmental cues
  publication-title: Cell
  doi: 10.1016/j.cell.2012.12.033
– volume: 128
  start-page: 703
  year: 2004
  ident: BFnature13544_CR3
  publication-title: Reproduction
  doi: 10.1530/rep.1.00217
– volume: 48
  start-page: 849
  year: 2012
  ident: BFnature13544_CR11
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2012.11.001
– volume: 76
  start-page: 101
  year: 2009
  ident: BFnature13544_CR32
  publication-title: Mol. Reprod. Dev.
  doi: 10.1002/mrd.20933
– volume: 366
  start-page: 362
  year: 1993
  ident: BFnature13544_CR4
  publication-title: Nature
  doi: 10.1038/366362a0
– volume: 13
  start-page: R61
  year: 2012
  ident: BFnature13544_CR38
  publication-title: Genome Biol.
  doi: 10.1186/gb-2012-13-7-r61
– volume: 368
  start-page: 20110328
  year: 2013
  ident: BFnature13544_CR5
  publication-title: Phil. Trans. R. Soc. B
  doi: 10.1098/rstb.2011.0328
– volume: 6
  start-page: 468
  year: 2011
  ident: BFnature13544_CR33
  publication-title: Nature Protocols
  doi: 10.1038/nprot.2010.190
– volume: 33
  start-page: 245
  year: 2003
  ident: BFnature13544_CR12
  publication-title: Nature Genet.
  doi: 10.1038/ng1089
– volume: 152
  start-page: 642
  year: 2013
  ident: BFnature13544_CR17
  publication-title: Cell
  doi: 10.1016/j.cell.2012.12.033
– volume: 153
  start-page: 1149
  year: 2013
  ident: BFnature13544_CR21
  publication-title: Cell
  doi: 10.1016/j.cell.2013.04.037
– volume: 20
  start-page: 1131
  year: 2013
  ident: BFnature13544_CR23
  publication-title: Nature Struct. Mol. Biol.
  doi: 10.1038/nsmb.2660
– volume: 334
  start-page: 194
  year: 2011
  ident: BFnature13544_CR30
  publication-title: Science
  doi: 10.1126/science.1212483
– volume: 138
  start-page: 811
  year: 2011
  ident: BFnature13544_CR14
  publication-title: Development
  doi: 10.1242/dev.061416
– volume: 9
  start-page: e1003439
  year: 2013
  ident: BFnature13544_CR10
  publication-title: PLoS Genet.
  doi: 10.1371/journal.pgen.1003439
– volume: 10
  start-page: 487
  year: 2012
  ident: BFnature13544_CR7
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2012.04.012
– volume: 16
  start-page: 6
  year: 2002
  ident: BFnature13544_CR1
  publication-title: Genes Dev.
  doi: 10.1101/gad.947102
– volume: 477
  start-page: 606
  year: 2011
  ident: BFnature13544_CR29
  publication-title: Nature
  doi: 10.1038/nature10443
– volume: 330
  start-page: 622
  year: 2010
  ident: BFnature13544_CR2
  publication-title: Science
  doi: 10.1126/science.1190614
– volume: 146
  start-page: 1029
  year: 2011
  ident: BFnature13544_CR26
  publication-title: Cell
  doi: 10.1016/j.cell.2011.08.016
– volume: 6
  start-page: 377
  year: 2009
  ident: BFnature13544_CR36
  publication-title: Nature Methods
  doi: 10.1038/nmeth.1315
– volume: 139
  start-page: 829
  year: 2012
  ident: BFnature13544_CR24
  publication-title: Development
  doi: 10.1242/dev.060426
– volume: 153
  start-page: 1134
  year: 2013
  ident: BFnature13544_CR20
  publication-title: Cell
  doi: 10.1016/j.cell.2013.04.022
– volume: 27
  start-page: 1571
  year: 2011
  ident: BFnature13544_CR37
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btr167
– volume: 448
  start-page: 553
  year: 2007
  ident: BFnature13544_CR22
  publication-title: Nature
  doi: 10.1038/nature06008
– volume: 9
  start-page: 129
  year: 2008
  ident: BFnature13544_CR13
  publication-title: Nature Rev. Genet.
  doi: 10.1038/nrg2295
– volume: 462
  start-page: 315
  year: 2009
  ident: BFnature13544_CR6
  publication-title: Nature
  doi: 10.1038/nature08514
– volume: 16
  start-page: 627
  year: 2008
  ident: BFnature13544_CR27
  publication-title: Reprod. Biomed. Online
  doi: 10.1016/S1472-6483(10)60475-0
– volume: 21
  start-page: 1670
  year: 2011
  ident: BFnature13544_CR31
  publication-title: Cell Res.
  doi: 10.1038/cr.2011.189
– volume: 167
  start-page: 146
  year: 2013
  ident: BFnature13544_CR28
  publication-title: Eur. J. Obstet. Gynecol. Reprod. Biol.
  doi: 10.1016/j.ejogrb.2012.11.018
– volume: 313
  start-page: 335
  year: 2008
  ident: BFnature13544_CR35
  publication-title: Dev. Biol.
  doi: 10.1016/j.ydbio.2007.10.033
– volume: 43
  start-page: 811
  year: 2011
  ident: BFnature13544_CR8
  publication-title: Nature Genet.
  doi: 10.1038/ng.864
– volume: 484
  start-page: 339
  year: 2012
  ident: BFnature13544_CR9
  publication-title: Nature
  doi: 10.1038/nature10960
– volume: 489
  start-page: 57
  year: 2012
  ident: BFnature13544_CR18
  publication-title: Nature
  doi: 10.1038/nature11247
– volume: 13
  start-page: 484
  year: 2012
  ident: BFnature13544_CR16
  publication-title: Nature Rev. Genet.
  doi: 10.1038/nrg3230
– volume: 10
  start-page: 691
  year: 2009
  ident: BFnature13544_CR25
  publication-title: Nature Rev. Genet.
  doi: 10.1038/nrg2640
– volume: 30
  start-page: 278
  year: 2012
  ident: BFnature13544_CR19
  publication-title: Nature Biotechnol.
  doi: 10.1038/nbt.2135
– volume: 409
  start-page: 860
  year: 2001
  ident: BFnature13544_CR39
  publication-title: Nature
  doi: 10.1038/35057062
– volume: 4
  start-page: 44
  year: 2009
  ident: BFnature13544_CR40
  publication-title: Nature Protocols
  doi: 10.1038/nprot.2008.211
– volume: 22
  start-page: 1607
  year: 2008
  ident: BFnature13544_CR34
  publication-title: Genes Dev.
  doi: 10.1101/gad.1667008
– volume: 23
  start-page: 2126
  year: 2013
  ident: BFnature13544_CR15
  publication-title: Genome Res.
  doi: 10.1101/gr.161679.113
– reference: 21940858 - Science. 2011 Oct 14;334(6053):194
– reference: 21706000 - Nat Genet. 2011 Jun 26;43(8):811-4
– reference: 21412275 - Nat Protoc. 2011 Apr;6(4):468-81
– reference: 19763152 - Nat Rev Genet. 2009 Oct;10(10):691-703
– reference: 22371082 - Nat Biotechnol. 2012 Feb 26;30(3):278-82
– reference: 22641018 - Nat Rev Genet. 2012 May 29;13(7):484-92
– reference: 22124233 - Cell Res. 2011 Dec;21(12):1670-6
– reference: 23637617 - PLoS Genet. 2013 Apr;9(4):e1003439
– reference: 11237011 - Nature. 2001 Feb 15;409(6822):860-921
– reference: 12610534 - Nat Genet. 2003 Mar;33 Suppl:245-54
– reference: 21493656 - Bioinformatics. 2011 Jun 1;27(11):1571-2
– reference: 19131956 - Nat Protoc. 2009;4(1):44-57
– reference: 23934149 - Nat Struct Mol Biol. 2013 Sep;20(9):1131-9
– reference: 23219530 - Mol Cell. 2012 Dec 28;48(6):849-62
– reference: 11782440 - Genes Dev. 2002 Jan 1;16(1):6-21
– reference: 21247965 - Development. 2011 Mar;138(5):811-20
– reference: 18197165 - Nat Rev Genet. 2008 Feb;9(2):129-40
– reference: 21030646 - Science. 2010 Oct 29;330(6004):622-7
– reference: 24179143 - Genome Res. 2013 Dec;23(12):2126-35
– reference: 22560071 - Cell Stem Cell. 2012 May 4;10(5):487-9
– reference: 22784381 - Genome Biol. 2012 Jul 11;13(7):R61
– reference: 22318624 - Development. 2012 Mar;139(5):829-41
– reference: 22955616 - Nature. 2012 Sep 6;489(7414):57-74
– reference: 15579587 - Reproduction. 2004 Dec;128(6):703-8
– reference: 21925323 - Cell. 2011 Sep 16;146(6):1029-41
– reference: 19829295 - Nature. 2009 Nov 19;462(7271):315-22
– reference: 22456710 - Nature. 2012 Mar 28;484(7394):339-44
– reference: 17603471 - Nature. 2007 Aug 2;448(7153):553-60
– reference: 23166392 - Philos Trans R Soc Lond B Biol Sci. 2013 Jan 5;368(1609):20110328
– reference: 18559477 - Genes Dev. 2008 Jun 15;22(12):1607-16
– reference: 23274040 - Eur J Obstet Gynecol Reprod Biol. 2013 Apr;167(2):146-8
– reference: 25112299 - Nat Rev Genet. 2014 Sep;15(9):571
– reference: 23664763 - Cell. 2013 May 23;153(5):1149-63
– reference: 18481364 - Mol Reprod Dev. 2009 Jan;76(1):101-8
– reference: 19349980 - Nat Methods. 2009 May;6(5):377-82
– reference: 21892189 - Nature. 2011 Sep 04;477(7366):606-10
– reference: 18492365 - Reprod Biomed Online. 2008 May;16(5):627-31
– reference: 23333102 - Cell. 2013 Jan 31;152(3):642-54
– reference: 8247133 - Nature. 1993 Nov 25;366(6453):362-5
– reference: 18048024 - Dev Biol. 2008 Jan 1;313(1):335-46
– reference: 23664764 - Cell. 2013 May 23;153(5):1134-48
SSID ssj0005174
Score 2.632461
Snippet Base-resolution maps of DNA methylation in human gametes and early embryos offer novel insights into human methylation dynamics and the functional relationship...
DNA methylation is a crucial element in the epigenetic regulation of mammalian embryonic development. However, its dynamic patterns have not been analysed at...
DNA methylation is a crucial element in the epigenetic regulation of mammalian embryonic development (1-5). However, its dynamic patterns have not been...
SourceID proquest
gale
pubmed
crossref
springer
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 606
SubjectTerms 631/136/2086
631/136/2435
631/337/176/1988
Analysis
Animals
Deoxyribonucleic acid
DNA
DNA Methylation
DNA Transposable Elements - genetics
Embryo, Mammalian
Embryonic development
Embryonic growth stage
Embryonic Stem Cells - physiology
Embryos
Epigenesis, Genetic
Epigenetic inheritance
Female
Gene Expression Profiling
Gene Expression Regulation, Developmental
Genes
Genome-wide association studies
Genomes
Genomics
Germ Cells - metabolism
Histones - metabolism
Humanities and Social Sciences
Humans
letter
Long Interspersed Nucleotide Elements - genetics
Male
Methylation
Mice
multidisciplinary
Promoter Regions, Genetic - genetics
Science
Short Interspersed Nucleotide Elements - genetics
Stem cells
Title The DNA methylation landscape of human early embryos
URI https://link.springer.com/article/10.1038/nature13544
https://www.ncbi.nlm.nih.gov/pubmed/25079557
https://www.proquest.com/docview/1551986274
https://www.proquest.com/docview/1551018911
Volume 511
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwED_BJiReEBtf2cZk0PiaFM1pnNh-QmWsDCQqNJjUNyt27AmJJd3SPuy_x5e4XVMmXvzii2Od78P2nX8HcOAMy01mylhSqv0BhelY5nIQl9YZYbWhicYHzt_H-ek5-zbJJuHCrQlplQub2BrqsjZ4R36Erl0KrBTzcXoVY9UojK6GEhr3YROhyzCli0_4bYrHGgpzeJ9HU3HUwWYmacZYzyOt2-UVx7QWKW0d0OgxPAo7RzLslnoL7tlqGx60GZym2YatoKUNeR-gpD88AealgHweDwkWir7p0t5I-7oX855I7Uhbo49YhDkm9lJf39TNUzgfnfw6Po1DnYTYZCKfxZZpbjFeR8uB9IYvK3JNU2clHob4oORc8sI4TySkszzNuaVGOm_mpNNFXqbPYKOqK_sCiMCwmSwk49wwo3PtCl2KJCsS5tiAyggOF7xSJoCIYy2LP6oNZqdCrTA2goMl8bTDzrib7DUyXSEaRYXpLhfFvGnU159naphiqUZ_Yk0ieBeIXO1_aIrwesBPGwGsepS7PUoz_X2lVnrf9novuhW5a5i9HqHXOtPvXoiIClrfqFsZjeDVshu_xEy2ytbzjoYmwjM_guedaC2Z47ejXGYZj-DNQtZWBv-Xczv_n8QuPPTbO9bdRO_Bxux6bl_6LdRM77d64ltxnGA7-rIPm59Oxj_O_gKhhhrd
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFD4aQwheEBu3sAEGbTCQojmJE8cPCFWMqWVbH2CT-mZix56QoOmWVqh_it-ITy5dUybe9uwTxzo-F9vn8gHsWM0SHevcF5Qqd0FhyheJCP3cWJ0apWmgsMD5ZJj0z9iXUTxagz9tLQymVbY2sTLUeaHxjXwfXbtIESnm4-TCR9QojK62EBq1WByZ-W93ZSs_DA7c_u6G4eHn0099v0EV8HWcJlPfMMUNRrdoHiK-fJwlikbWCLw68DDnXPBMW0eUCmt4lHBDtbDOKAirsiSP3Ly34LZzvBQ1io_4VUrJStfnph6QRul-3aYziGLGOh5w1Q8sOcKVyGzl8A4fwP3mpEp6tWhtwJoZb8KdKmNUl5uw0ViFkuw1ravfPQTmpI4cDHsEganndZodqaqJMc-KFJZUmIDEYFtlYn6py3lRPoKzG-HgY1gfF2PzFEiKYTqRCca5ZlolymYqT4M4C5hlIRUevG95JXXTtByxM37KKngepXKJsR7sLIgnda-O68leI9Mldr8YY3rNeTYrSzn49lX2IoSGdDfkwIO3DZEt3A911lQruGVjw6wO5VaHUk9-XMil0Ted0fN6R66bZrtD6LRcd4dbEZGNlSnllU548GoxjF9i5tzYFLOahgapY74HT2rRWjDHHX-5iGPuwW4ra0uT_8u5Z_9fxEu42z89OZbHg-HRFtxzR0tWv4Jvw_r0cmaeu-PbVL2odIbA95tW0r-qYFRH
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFD4aQyBeEBuXhQ0waOMyKWouThw_IFRRqpVBhWCT-mZix56QIOmWVqh_jV-HTy5dUybe9uwTxzo-F9vn8gHsG0VjFanM5Z4n7QWFSpfHPHAzbVSipfJ8iQXOn8fx0Sn9OIkmG_CnrYXBtMrWJlaGOisUvpH30LXzBJFieqZJi_gyGL6bnruIIIWR1hZOoxaRY734ba9v5dvRwO71QRAMP5y8P3IbhAFXRUk8czWVTGOky8sCxJqP0lh6odEcrxEsyBjjLFXGEiXcaBbGTHuKG2sguJFpnIV23htwk4WRjzrGJuwyvWStA3RTG-iFSa9u2emHEaUdb7juE1ac4lqUtnJ-w3twtzm1kn4tZluwofNtuFVlj6pyG7YaC1GS100b6zf3gVoJJINxnyBI9aJOuSNVZTHmXJHCkAofkGhssUz0L3mxKMoHcHotHHwIm3mR6x0gCYbseMopY4oqGUuTyizxo9SnhgYed-Cw5ZVQTQNzxNH4KapAepiIFcY6sL8kntZ9O64me4FMF9gJI0eZOkvnZSlG376Kfogwkfa27DvwqiEyhf2hSpvKBbtsbJ7VodztUKrpj3OxMvqyM3pW78hV0-x1CK3Gq-5wKyKisTiluNQPB54vh_FLzKLLdTGvaTw_scx34FEtWkvm2KMw41HEHDhoZW1l8n859_j_i3gGt616ik-j8fEu3LGnTFo_iO_B5uxirp_Yk9xMPq1UhsD369bRv7bCWH0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+DNA+methylation+landscape+of+human+early+embryos&rft.jtitle=Nature+%28London%29&rft.au=Guo%2C+Hongshan&rft.au=Zhu%2C+Ping&rft.au=Yan%2C+Liying&rft.au=Li%2C+Rong&rft.date=2014-07-31&rft.pub=Nature+Publishing+Group&rft.issn=0028-0836&rft.eissn=1476-4687&rft.volume=511&rft.issue=7511&rft.spage=606&rft_id=info:doi/10.1038%2Fnature13544&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=3396333301
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0028-0836&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0028-0836&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0028-0836&client=summon