Both introns and long 3'-UTRs operate as cis-acting elements to trigger nonsense-mediated decay in plants

Nonsense-mediated mRNA decay (NMD) is a eukaryotic quality control mechanism that identifies and eliminates aberrant mRNAs containing a premature termination codon (PTC). Although, key trans-acting NMD factors, UPF1, UPF2 and UPF3 are conserved in yeast and mammals, the cis-acting NMD elements are d...

Full description

Saved in:
Bibliographic Details
Published inNucleic acids research Vol. 34; no. 21; pp. 6147 - 6157
Main Authors Kertész, Sándor, Kerényi, Zoltán, Mérai, Zsuzsanna, Bartos, Imre, Pálfy, Tamás, Barta, Endre, Silhavy, Dániel
Format Journal Article
LanguageEnglish
Published England Oxford Publishing Limited (England) 01.12.2006
Oxford University Press
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Nonsense-mediated mRNA decay (NMD) is a eukaryotic quality control mechanism that identifies and eliminates aberrant mRNAs containing a premature termination codon (PTC). Although, key trans-acting NMD factors, UPF1, UPF2 and UPF3 are conserved in yeast and mammals, the cis-acting NMD elements are different. In yeast, short specific sequences or long 3'-untranslated regions (3'-UTRs) render an mRNA subject to NMD, while in mammals' 3'-UTR located introns trigger NMD. Plants also possess an NMD system, although little is known about how it functions. We have elaborated an agroinfiltration-based transient NMD assay system and defined the cis-acting elements that mediate plant NMD. We show that unusually long 3'-UTRs or the presence of introns in the 3'-UTR can subject mRNAs to NMD. These data suggest that both long 3'-UTR-based and intron-based PTC definition operated in the common ancestors of extant eukaryotes (stem eukaryotes) and support the theory that intron-based NMD facilitated the spreading of introns in stem eukaryotes. We have also identified plant UPF1 and showed that tethering of UPF1 to either the 5'- or 3'-UTR of an mRNA results in reduced transcript accumulation. Thus, plant UPF1 might bind to mRNA in a late, irreversible phase of NMD.
Bibliography:http://www.nar.oupjournals.org/
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
The authors wish it to be known that, in their opinion, the first two authors should be regarded as joint First Authors
ISSN:0305-1048
1362-4962
1362-4962
DOI:10.1093/nar/gkl737