Molecular mechanisms of mitochondrial DNA release and activation of the cGAS-STING pathway

In addition to constituting the genetic material of an organism, DNA is a tracer for the recognition of foreign pathogens and a trigger of the innate immune system. cGAS functions as a sensor of double-stranded DNA fragments and initiates an immune response via the adaptor protein STING. The cGAS-ST...

Full description

Saved in:
Bibliographic Details
Published inExperimental & molecular medicine Vol. 55; no. 3; pp. 510 - 519
Main Authors Kim, Jeonghan, Kim, Ho-Shik, Chung, Jay H.
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 01.03.2023
Springer Nature B.V
Nature Publishing Group
생화학분자생물학회
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In addition to constituting the genetic material of an organism, DNA is a tracer for the recognition of foreign pathogens and a trigger of the innate immune system. cGAS functions as a sensor of double-stranded DNA fragments and initiates an immune response via the adaptor protein STING. The cGAS-STING pathway not only defends cells against various DNA-containing pathogens but also modulates many pathological processes caused by the immune response to the ectopic localization of self-DNA, such as cytosolic mitochondrial DNA (mtDNA) and extranuclear chromatin. In addition, macrophages can cause inflammation by forming a class of protein complexes called inflammasomes, and the activation of the NLRP3 inflammasome requires the release of oxidized mtDNA. In innate immunity related to inflammasomes, mtDNA release is mediated by macropores that are formed on the outer membrane of mitochondria via VDAC oligomerization. These macropores are specifically formed in response to mitochondrial stress and tissue damage, and the inhibition of VDAC oligomerization mitigates this inflammatory response. The rapidly expanding area of research on the mechanisms by which mtDNA is released and triggers inflammation has revealed new treatment strategies not only for inflammation but also, surprisingly, for neurodegenerative diseases such as amyotrophic lateral sclerosis. Inflammatory diseases: Understanding mitochondrial DNA release Cytosolic DNA activates the cGAS-STING pathway which mediates inflammation and antiviral response. One source of cytosolic DNA is ‘self ‘ DNA, such as mitochondrial DNA. Studies of how mitochondria can release DNA and trigger dangerous immune responses are revealing potential treatments for inflammatory diseases. Cells isolate DNA in their nuclei and mitochondria, but if this ‘self-DNA’ leaks out, it triggers the same immune responses that the body uses to fight DNA from viruses or bacteria. Jeonghan Kim at The Catholic University of Korea College of Medicine in Seoul, South Korea, and co-workers reviewed research into the mechanism causing mitochondrial DNA release, and the resulting inflammatory pathways. Although cGAS-STING is the central driver of such inflammation, treatments targeting it may also suppress the body’s antimicrobial immunity. A safer alternative maybe to inhibit mitochondrial VDAC oligomerization, which releases mitochondrial DNA.
AbstractList In addition to constituting the genetic material of an organism, DNA is a tracer for the recognition of foreign pathogens and a trigger of the innate immune system. cGAS functions as a sensor of double-stranded DNA fragments and initiates an immune response via the adaptor protein STING. The cGAS-STING pathway not only defends cells against various DNA-containing pathogens but also modulates many pathological processes caused by the immune response to the ectopic localization of self-DNA, such as cytosolic mitochondrial DNA (mtDNA) and extranuclear chromatin. In addition, macrophages can cause inflammation by forming a class of protein complexes called inflammasomes, and the activation of the NLRP3 inflammasome requires the release of oxidized mtDNA. In innate immunity related to inflammasomes, mtDNA release is mediated by macropores that are formed on the outer membrane of mitochondria via VDAC oligomerization. These macropores are specifically formed in response to mitochondrial stress and tissue damage, and the inhibition of VDAC oligomerization mitigates this inflammatory response. The rapidly expanding area of research on the mechanisms by which mtDNA is released and triggers inflammation has revealed new treatment strategies not only for inflammation but also, surprisingly, for neurodegenerative diseases such as amyotrophic lateral sclerosis.Inflammatory diseases: Understanding mitochondrial DNA releaseCytosolic DNA activates the cGAS-STING pathway which mediates inflammation and antiviral response. One source of cytosolic DNA is ‘self ‘ DNA, such as mitochondrial DNA. Studies of how mitochondria can release DNA and trigger dangerous immune responses are revealing potential treatments for inflammatory diseases. Cells isolate DNA in their nuclei and mitochondria, but if this ‘self-DNA’ leaks out, it triggers the same immune responses that the body uses to fight DNA from viruses or bacteria. Jeonghan Kim at The Catholic University of Korea College of Medicine in Seoul, South Korea, and co-workers reviewed research into the mechanism causing mitochondrial DNA release, and the resulting inflammatory pathways. Although cGAS-STING is the central driver of such inflammation, treatments targeting it may also suppress the body’s antimicrobial immunity. A safer alternative maybe to inhibit mitochondrial VDAC oligomerization, which releases mitochondrial DNA.
In addition to constituting the genetic material of an organism, DNA is a tracer for the recognition of foreign pathogens and a trigger of the innate immune system. cGAS functions as a sensor of double-stranded DNA fragments and initiates an immune response via the adaptor protein STING. The cGAS-STING pathway not only defends cells against various DNA-containing pathogens but also modulates many pathological processes caused by the immune response to the ectopic localization of self-DNA, such as cytosolic mitochondrial DNA (mtDNA) and extranuclear chromatin. In addition, macrophages can cause inflammation by forming a class of protein complexes called inflammasomes, and the activation of the NLRP3 inflammasome requires the release of oxidized mtDNA. In innate immunity related to inflammasomes, mtDNA release is mediated by macropores that are formed on the outer membrane of mitochondria via VDAC oligomerization. These macropores are specifically formed in response to mitochondrial stress and tissue damage, and the inhibition of VDAC oligomerization mitigates this inflammatory response. The rapidly expanding area of research on the mechanisms by which mtDNA is released and triggers inflammation has revealed new treatment strategies not only for inflammation but also, surprisingly, for neurodegenerative diseases such as amyotrophic lateral sclerosis.In addition to constituting the genetic material of an organism, DNA is a tracer for the recognition of foreign pathogens and a trigger of the innate immune system. cGAS functions as a sensor of double-stranded DNA fragments and initiates an immune response via the adaptor protein STING. The cGAS-STING pathway not only defends cells against various DNA-containing pathogens but also modulates many pathological processes caused by the immune response to the ectopic localization of self-DNA, such as cytosolic mitochondrial DNA (mtDNA) and extranuclear chromatin. In addition, macrophages can cause inflammation by forming a class of protein complexes called inflammasomes, and the activation of the NLRP3 inflammasome requires the release of oxidized mtDNA. In innate immunity related to inflammasomes, mtDNA release is mediated by macropores that are formed on the outer membrane of mitochondria via VDAC oligomerization. These macropores are specifically formed in response to mitochondrial stress and tissue damage, and the inhibition of VDAC oligomerization mitigates this inflammatory response. The rapidly expanding area of research on the mechanisms by which mtDNA is released and triggers inflammation has revealed new treatment strategies not only for inflammation but also, surprisingly, for neurodegenerative diseases such as amyotrophic lateral sclerosis.
In addition to constituting the genetic material of an organism, DNA is a tracer for the recognition of foreign pathogens and a trigger of the innate immune system. cGAS functions as a sensor of double-stranded DNA fragments and initiates an immune response via the adaptor protein STING. The cGAS-STING pathway not only defends cells against various DNA-containing pathogens but also modulates many pathological processes caused by the immune response to the ectopic localization of self-DNA, such as cytosolic mitochondrial DNA (mtDNA) and extranuclear chromatin. In addition, macrophages can cause inflammation by forming a class of protein complexes called inflammasomes, and the activation of the NLRP3 inflammasome requires the release of oxidized mtDNA. In innate immunity related to inflammasomes, mtDNA release is mediated by macropores that are formed on the outer membrane of mitochondria via VDAC oligomerization. These macropores are specifically formed in response to mitochondrial stress and tissue damage, and the inhibition of VDAC oligomerization mitigates this inflammatory response. The rapidly expanding area of research on the mechanisms by which mtDNA is released and triggers inflammation has revealed new treatment strategies not only for inflammation but also, surprisingly, for neurodegenerative diseases such as amyotrophic lateral sclerosis.
In addition to constituting the genetic material of an organism, DNA is a tracer for the recognition of foreign pathogens and a trigger of the innate immune system. cGAS functions as a sensor of double-stranded DNA fragments and initiates an immune response via the adaptor protein STING. The cGAS-STING pathway not only defends cells against various DNA-containing pathogens but also modulates many pathological processes caused by the immune response to the ectopic localization of self-DNA, such as cytosolic mitochondrial DNA (mtDNA) and extranuclear chromatin. In addition, macrophages can cause inflammation by forming a class of protein complexes called inflammasomes, and the activation of the NLRP3 inflammasome requires the release of oxidized mtDNA. In innate immunity related to inflammasomes, mtDNA release is mediated by macropores that are formed on the outer membrane of mitochondria via VDAC oligomerization. These macropores are specifically formed in response to mitochondrial stress and tissue damage, and the inhibition of VDAC oligomerization mitigates this inflammatory response. The rapidly expanding area of research on the mechanisms by which mtDNA is released and triggers inflammation has revealed new treatment strategies not only for inflammation but also, surprisingly, for neurodegenerative diseases such as amyotrophic lateral sclerosis. KCI Citation Count: 0
Inflammatory diseases: Understanding mitochondrial DNA release Cytosolic DNA activates the cGAS-STING pathway which mediates inflammation and antiviral response. One source of cytosolic DNA is ‘self ‘ DNA, such as mitochondrial DNA. Studies of how mitochondria can release DNA and trigger dangerous immune responses are revealing potential treatments for inflammatory diseases. Cells isolate DNA in their nuclei and mitochondria, but if this ‘self-DNA’ leaks out, it triggers the same immune responses that the body uses to fight DNA from viruses or bacteria. Jeonghan Kim at The Catholic University of Korea College of Medicine in Seoul, South Korea, and co-workers reviewed research into the mechanism causing mitochondrial DNA release, and the resulting inflammatory pathways. Although cGAS-STING is the central driver of such inflammation, treatments targeting it may also suppress the body’s antimicrobial immunity. A safer alternative maybe to inhibit mitochondrial VDAC oligomerization, which releases mitochondrial DNA.
In addition to constituting the genetic material of an organism, DNA is a tracer for the recognition of foreign pathogens and a trigger of the innate immune system. cGAS functions as a sensor of double-stranded DNA fragments and initiates an immune response via the adaptor protein STING. The cGAS-STING pathway not only defends cells against various DNA-containing pathogens but also modulates many pathological processes caused by the immune response to the ectopic localization of self-DNA, such as cytosolic mitochondrial DNA (mtDNA) and extranuclear chromatin. In addition, macrophages can cause inflammation by forming a class of protein complexes called inflammasomes, and the activation of the NLRP3 inflammasome requires the release of oxidized mtDNA. In innate immunity related to inflammasomes, mtDNA release is mediated by macropores that are formed on the outer membrane of mitochondria via VDAC oligomerization. These macropores are specifically formed in response to mitochondrial stress and tissue damage, and the inhibition of VDAC oligomerization mitigates this inflammatory response. The rapidly expanding area of research on the mechanisms by which mtDNA is released and triggers inflammation has revealed new treatment strategies not only for inflammation but also, surprisingly, for neurodegenerative diseases such as amyotrophic lateral sclerosis. Inflammatory diseases: Understanding mitochondrial DNA release Cytosolic DNA activates the cGAS-STING pathway which mediates inflammation and antiviral response. One source of cytosolic DNA is ‘self ‘ DNA, such as mitochondrial DNA. Studies of how mitochondria can release DNA and trigger dangerous immune responses are revealing potential treatments for inflammatory diseases. Cells isolate DNA in their nuclei and mitochondria, but if this ‘self-DNA’ leaks out, it triggers the same immune responses that the body uses to fight DNA from viruses or bacteria. Jeonghan Kim at The Catholic University of Korea College of Medicine in Seoul, South Korea, and co-workers reviewed research into the mechanism causing mitochondrial DNA release, and the resulting inflammatory pathways. Although cGAS-STING is the central driver of such inflammation, treatments targeting it may also suppress the body’s antimicrobial immunity. A safer alternative maybe to inhibit mitochondrial VDAC oligomerization, which releases mitochondrial DNA.
Author Kim, Ho-Shik
Kim, Jeonghan
Chung, Jay H.
Author_xml – sequence: 1
  givenname: Jeonghan
  orcidid: 0000-0003-1695-9630
  surname: Kim
  fullname: Kim, Jeonghan
  email: jhk@catholic.ac.kr
  organization: Department of Biochemistry, The Catholic University of Korea College of Medicine
– sequence: 2
  givenname: Ho-Shik
  orcidid: 0000-0003-2121-6655
  surname: Kim
  fullname: Kim, Ho-Shik
  organization: Department of Biochemistry, The Catholic University of Korea College of Medicine
– sequence: 3
  givenname: Jay H.
  surname: Chung
  fullname: Chung, Jay H.
  email: chungj@nhlbi.nih.gov
  organization: Laboratory of Obesity and Aging Research, Cardiovascular Branch, National Heart Lung and Blood Institute, National Institutes of Health
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36964253$$D View this record in MEDLINE/PubMed
https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002947633$$DAccess content in National Research Foundation of Korea (NRF)
BookMark eNp9kktv1DAUhSNURB_wB1igSGwQUsDP2F6OCgwjlSLRYcPGunHsGU-TeLAzrfrvyaMU1EVX17K-c-7Vvec0O-pCZ7PsNUYfMKLyY8KEiLJAhBYIqZIX4ll2QpAiRckwPfrvfZydprRDiHAm2IvsmJaqZITTk-zXt9BYc2gg5q01W-h8alMeXN76Ppht6Oroock_XS7yaBsLyebQ1TmY3t9A70M3sv3W5ma5uCqu1qvLZb6HfnsLdy-z5w6aZF_d17Ps55fP6_OvxcX35ep8cVEYLsu-qCpTSYmo5cTa2kmDBThGK0VLCYgqV5VGUaEAalSyGjlKnGGWVwzXjBpCz7L3s28Xnb42XgfwU90EfR314sd6pTEimAgmB3g1w3WAnd5H30K8mxTTR4gbDbH3prHaOMwFJZUCCkxwJhXmBAxRTFTUcRi83s1e-xh-H2zqdeuTsU0DnQ2HpIlQmAqO1Nj27SN0Fw6xG9YyUhwJoqQYqDf31KFqbf0w3t9zDQCZARNDStG6BwQjPWZCz5nQQyb0lAk9uspHIuP76XZ9BN88LaWzNA19uo2N_8Z-QvUHWO3Hzw
CitedBy_id crossref_primary_10_1038_s41392_024_02044_3
crossref_primary_10_1111_jcmm_70371
crossref_primary_10_1016_j_nbd_2024_106687
crossref_primary_10_1038_s42255_023_00930_8
crossref_primary_10_1016_j_phymed_2025_156620
crossref_primary_10_2147_JIR_S499473
crossref_primary_10_1186_s12967_024_05739_x
crossref_primary_10_1016_j_celrep_2024_115094
crossref_primary_10_1073_pnas_2404644121
crossref_primary_10_1093_neuonc_noae034
crossref_primary_10_3389_fimmu_2024_1403070
crossref_primary_10_1007_s12035_024_04412_0
crossref_primary_10_1016_j_ajt_2024_08_005
crossref_primary_10_1039_D4BM01532K
crossref_primary_10_1007_s00011_024_01860_1
crossref_primary_10_1016_j_cyto_2025_156873
crossref_primary_10_1016_j_intimp_2024_113447
crossref_primary_10_3390_antiox13070833
crossref_primary_10_1016_j_bioactmat_2025_02_040
crossref_primary_10_15252_emmm_202318028
crossref_primary_10_3389_fonc_2024_1394699
crossref_primary_10_1016_j_tube_2025_102611
crossref_primary_10_1073_pnas_2406954122
crossref_primary_10_1007_s11010_024_04964_8
crossref_primary_10_1038_s12276_024_01250_x
crossref_primary_10_1016_j_arr_2023_102145
crossref_primary_10_1038_s41586_023_06866_z
crossref_primary_10_1080_00207454_2024_2352025
crossref_primary_10_1002_adhm_202403309
crossref_primary_10_3389_fendo_2025_1488489
crossref_primary_10_1016_j_intimp_2024_113711
crossref_primary_10_1016_j_xcrm_2025_101968
crossref_primary_10_3390_cells13171420
crossref_primary_10_1186_s12964_024_01677_9
crossref_primary_10_1002_advs_202410550
crossref_primary_10_1002_smll_202408139
crossref_primary_10_3390_cells12192345
crossref_primary_10_3389_fcell_2024_1287447
crossref_primary_10_4103_ijot_ijot_56_23
crossref_primary_10_1016_j_jchemneu_2023_102362
crossref_primary_10_1016_j_neuroscience_2024_04_009
crossref_primary_10_3389_fphys_2024_1443604
crossref_primary_10_1186_s12974_025_03396_5
crossref_primary_10_3389_fnagi_2024_1507035
crossref_primary_10_1128_msphere_00537_24
crossref_primary_10_1186_s13024_025_00815_2
crossref_primary_10_7717_peerj_18559
crossref_primary_10_1186_s40035_023_00380_y
crossref_primary_10_1016_j_intimp_2024_113424
crossref_primary_10_1016_j_jbc_2025_108421
crossref_primary_10_1016_j_nantod_2024_102231
crossref_primary_10_1111_acer_70019
crossref_primary_10_3389_fmed_2024_1436091
crossref_primary_10_1038_s41388_024_03272_1
crossref_primary_10_1016_j_radmp_2023_10_005
crossref_primary_10_1159_000541908
crossref_primary_10_1016_j_arr_2024_102549
crossref_primary_10_1111_ene_70014
crossref_primary_10_1016_j_jdermsci_2024_12_002
crossref_primary_10_2147_JEP_S433181
crossref_primary_10_1097_HEP_0000000000000638
crossref_primary_10_3390_antiox13020240
crossref_primary_10_1096_fj_202400463R
crossref_primary_10_1016_j_reprotox_2023_108441
crossref_primary_10_26508_lsa_202302424
crossref_primary_10_1002_anie_202411498
crossref_primary_10_3390_ijms25147943
crossref_primary_10_1007_s11064_024_04151_7
crossref_primary_10_1016_j_intimp_2025_114464
crossref_primary_10_3390_ijms26010063
crossref_primary_10_1016_j_neuropharm_2024_110217
crossref_primary_10_1186_s13578_024_01242_4
crossref_primary_10_3389_fimmu_2024_1338096
crossref_primary_10_1016_j_nantod_2023_102033
crossref_primary_10_1016_j_cclet_2025_110990
crossref_primary_10_1097_RHU_0000000000002209
crossref_primary_10_1186_s11658_024_00669_4
crossref_primary_10_1016_j_bbadis_2025_167803
crossref_primary_10_1016_j_biopha_2024_116656
crossref_primary_10_3390_genes14081534
crossref_primary_10_1111_jcmm_70285
crossref_primary_10_3389_fnagi_2024_1503336
crossref_primary_10_1016_j_canlet_2025_217544
crossref_primary_10_1021_acsptsci_4c00457
crossref_primary_10_1016_j_ijbiomac_2024_134210
crossref_primary_10_15252_embj_2022113118
crossref_primary_10_3390_antiox14020125
crossref_primary_10_1080_15548627_2023_2276639
crossref_primary_10_1002_ctm2_70180
crossref_primary_10_3389_fpsyt_2024_1480438
crossref_primary_10_1007_s12035_024_04234_0
crossref_primary_10_1128_mbio_02506_23
crossref_primary_10_3389_fnins_2024_1500647
crossref_primary_10_1111_aos_16646
crossref_primary_10_1002_iub_70009
crossref_primary_10_1016_j_mad_2025_112044
crossref_primary_10_1016_j_mitoco_2024_07_002
crossref_primary_10_1124_dmd_123_001279
crossref_primary_10_1186_s12933_024_02566_8
crossref_primary_10_1016_j_mucimm_2025_01_013
crossref_primary_10_1016_j_canlet_2025_217599
crossref_primary_10_3389_fimmu_2023_1273248
crossref_primary_10_3390_ijms25126585
crossref_primary_10_1016_j_molcel_2023_12_005
crossref_primary_10_1002_ange_202411498
crossref_primary_10_1038_s41577_024_01112_7
crossref_primary_10_3389_fphys_2023_1217815
crossref_primary_10_1016_j_tice_2024_102596
crossref_primary_10_1096_fj_202402479RRR
crossref_primary_10_3390_antiox13111421
crossref_primary_10_1002_jmv_70062
crossref_primary_10_1016_j_dnarep_2025_103814
crossref_primary_10_3390_biom14040402
crossref_primary_10_3390_biom14101215
crossref_primary_10_1093_schbul_sbae196
crossref_primary_10_1002_mco2_511
crossref_primary_10_3389_fimmu_2025_1526390
crossref_primary_10_1097_HC9_0000000000000534
Cites_doi 10.1007/s13238-020-00729-3
10.1038/s41467-020-19318-3
10.1371/journal.ppat.1008387
10.1038/nature12305
10.1186/s13027-021-00346-7
10.1073/pnas.1603269113
10.1073/pnas.1905013116
10.4049/jimmunol.1700699
10.1016/j.molcel.2016.08.025
10.1016/0092-8674(90)90738-Z
10.1038/nsmb.2333
10.1038/s41586-022-04421-w
10.1016/j.celrep.2019.03.098
10.1016/0005-2736(86)90568-7
10.1016/j.devcel.2006.04.008
10.1038/s41586-019-0998-5
10.1016/j.immuni.2020.01.014
10.1038/ni.3356
10.1128/JVI.00037-14
10.1038/ncb1575
10.1038/nature23890
10.1016/j.immuni.2022.06.007
10.1016/j.cell.2013.04.046
10.1016/j.cell.2019.01.049
10.1007/s00262-017-1975-1
10.1016/j.immuni.2020.03.016
10.1016/j.cell.2019.05.036
10.1016/j.cell.2010.01.022
10.1038/s41586-019-1000-2
10.1038/s41467-018-06922-7
10.1016/j.immuni.2012.01.009
10.1016/j.immuni.2018.07.008
10.1016/j.immuni.2014.11.011
10.1038/nature12306
10.1016/j.celrep.2020.02.105
10.1038/srep19049
10.1016/j.cell.2014.11.037
10.1128/MCB.15.8.4208
10.1126/science.1232458
10.1038/nri3581
10.1146/annurev.neuro.20.1.245
10.15252/embj.201488726
10.1038/s41467-018-04759-8
10.1016/j.immuni.2013.08.004
10.1016/j.immuni.2010.10.013
10.1016/0092-8674(94)90154-6
10.1016/j.cell.2008.06.032
10.1073/pnas.0900850106
10.15252/embr.201744017
10.1371/journal.ppat.1006264
10.1016/j.cell.2018.08.062
10.4049/jimmunol.1600722
10.15252/embj.201899238
10.1038/s41586-018-0372-z
10.1073/pnas.1419338111
10.1038/s41467-020-19941-0
10.1126/science.aaa2630
10.1038/nm.4027
10.1172/JCI133264
10.1016/j.celrep.2013.05.008
10.1126/sciimmunol.aah7119
10.1126/sciadv.abh0496
10.1038/nature09907
10.1016/j.bbabio.2010.03.003
10.1038/s41586-019-1553-0
10.1038/nature07317
10.1073/pnas.2119189119
10.1038/s41598-020-71887-x
10.1126/science.abc5386
10.1038/20959
10.1016/j.molcel.2019.02.013
10.1038/nature14156
10.1016/j.molcel.2019.02.038
10.1016/j.immuni.2008.09.003
10.1074/jbc.M112.362608
10.1038/s41418-017-0017-z
10.1016/j.immuni.2016.08.014
10.1038/s41421-018-0010-9
10.1084/jem.20151876
10.1016/j.molcel.2018.07.009
10.1126/science.1189801
10.1126/science.aab3632
10.1371/journal.ppat.1004358
10.1038/nature12640
10.1038/nature09663
10.1016/j.celrep.2015.09.007
10.1126/science.aao6047
10.15252/embr.201846293
10.1172/JCI144339
10.1016/j.chom.2015.07.001
10.1038/s41586-019-1228-x
10.1038/nature25432
10.1038/s42255-021-00385-9
10.1126/science.aat1022
10.1016/j.ceca.2017.06.007
10.1038/s41586-021-03214-x
10.1016/j.immuni.2012.03.019
10.1016/j.immuni.2017.02.011
10.1042/BJ20041356
10.1084/jem.20161674
10.1016/j.cell.2020.09.020
10.1016/j.cell.2014.11.036
10.1038/nsmb.2332
10.1016/j.immuni.2013.10.019
10.1038/s43018-020-0028-4
10.1371/journal.ppat.1005012
10.1172/JCI148852
10.1126/science.aav4011
10.1016/j.molcel.2019.05.006
10.1038/nri2975
10.1016/j.immuni.2009.01.008
10.1016/j.molcel.2012.05.029
10.1016/j.celrep.2020.03.056
10.1126/science.1244040
10.1038/ni.3267
ContentType Journal Article
Copyright This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply 2023
2023. This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply.
This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply 2023
– notice: 2023. This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply.
– notice: This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
88E
8FE
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
COVID
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
DOA
ACYCR
DOI 10.1038/s12276-023-00965-7
DatabaseName SpringerOpen Free (Free internet resource, activated by CARLI)
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
ProQuest Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials - QC
Biological Science Collection
ProQuest Central
ProQuest Natural Science Collection
ProQuest One
Coronavirus Research Database
ProQuest Central Korea
ProQuest Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
Health & Medical Collection (Alumni)
Medical Database
Biological Science Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
Directory of Open Access Journals
Korean Citation Index
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Coronavirus Research Database
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList Publicly Available Content Database
MEDLINE - Academic
MEDLINE
CrossRef



Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 5
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Anatomy & Physiology
EISSN 2092-6413
EndPage 519
ExternalDocumentID oai_kci_go_kr_ARTI_10212748
oai_doaj_org_article_cf15732b9a3a475489152ac2947b3f5a
36964253
10_1038_s12276_023_00965_7
Genre Research Support, N.I.H., Intramural
Review
Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
0R~
29G
2WC
3V.
5-W
53G
5GY
7X7
87B
88E
8FE
8FH
8FI
8FJ
8JR
9ZL
AAJSJ
ABUWG
ACGFO
ACGFS
ACPRK
ACSMW
ACYCR
ADBBV
AENEX
AFKRA
AHMBA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
BBNVY
BENPR
BHPHI
BPHCQ
BVXVI
C1A
C6C
CCPQU
DIK
DU5
E3Z
EBLON
EBS
EF.
EJD
EMOBN
F5P
FYUFA
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
LK8
M1P
M7P
M~E
NAO
OK1
PIMPY
PQQKQ
PROAC
PSQYO
RNS
RNT
RNTTT
RPM
SNYQT
TR2
UKHRP
W2D
XSB
AASML
AAYXX
CITATION
OVT
PHGZM
PHGZT
CGR
CUY
CVF
ECM
EIF
NPM
7XB
8FK
AARCD
AZQEC
COVID
DWQXO
GNUQQ
K9.
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
PRINS
7X8
PUEGO
AAADF
AFGXO
ID FETCH-LOGICAL-c586t-bbcb8803e52eedf8c17af43b9368a039fb6c9379aad064d0f32fc4e5b41d43c23
IEDL.DBID C6C
ISSN 2092-6413
1226-3613
IngestDate Thu Mar 07 06:17:14 EST 2024
Wed Aug 27 01:29:19 EDT 2025
Tue Aug 05 10:13:09 EDT 2025
Wed Aug 13 05:28:33 EDT 2025
Thu Jan 02 22:53:03 EST 2025
Thu Apr 24 22:52:18 EDT 2025
Tue Jul 01 04:10:32 EDT 2025
Fri Feb 21 02:40:07 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License 2023. This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c586t-bbcb8803e52eedf8c17af43b9368a039fb6c9379aad064d0f32fc4e5b41d43c23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0003-2121-6655
0000-0003-1695-9630
OpenAccessLink https://www.nature.com/articles/s12276-023-00965-7
PMID 36964253
PQID 2795072987
PQPubID 2041975
PageCount 10
ParticipantIDs nrf_kci_oai_kci_go_kr_ARTI_10212748
doaj_primary_oai_doaj_org_article_cf15732b9a3a475489152ac2947b3f5a
proquest_miscellaneous_2791375098
proquest_journals_2795072987
pubmed_primary_36964253
crossref_primary_10_1038_s12276_023_00965_7
crossref_citationtrail_10_1038_s12276_023_00965_7
springer_journals_10_1038_s12276_023_00965_7
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-03-01
PublicationDateYYYYMMDD 2023-03-01
PublicationDate_xml – month: 03
  year: 2023
  text: 2023-03-01
  day: 01
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: United States
– name: Seoul
PublicationTitle Experimental & molecular medicine
PublicationTitleAbbrev Exp Mol Med
PublicationTitleAlternate Exp Mol Med
PublicationYear 2023
Publisher Nature Publishing Group UK
Springer Nature B.V
Nature Publishing Group
생화학분자생물학회
Publisher_xml – name: Nature Publishing Group UK
– name: Springer Nature B.V
– name: Nature Publishing Group
– name: 생화학분자생물학회
References Zhou, Yazdi, Menu, Tschopp (CR8) 2011; 469
White (CR108) 2014; 159
Domizio (CR114) 2022; 603
de Oliveira Mann (CR74) 2019; 27
Luteijn (CR46) 2019; 573
Baines, Kaiser, Sheiko, Craigen, Molkentin (CR99) 2007; 9
Xian (CR95) 2022; 55
Zhao (CR64) 2016; 113
Kranzusch, Lee, Berger, Doudna (CR24) 2013; 3
Shoshan-Barmatz, Krelin, Shteinfer-Kuzmine (CR111) 2018; 69
Dorostkar (CR41) 2021; 16
Drill (CR48) 2020; 10
Xie (CR29) 2019; 116
Kato (CR43) 2018; 9
Woodward, Iavarone, Portnoy (CR20) 2010; 328
Xie (CR50) 2020; 130
Yin (CR57) 2012; 46
Riley (CR110) 2018; 37
Ning (CR6) 2019; 74
Novick, Cohen, Rubinstein (CR66) 1994; 77
Kraus, Roy, Pucadyil, Ryan (CR89) 2021; 590
Shoshan-Barmatz, Keinan, Abu-Hamad, Tyomkin, Aram (CR16) 2010; 1797
Carozza (CR42) 2020; 1
Merry, Korsmeyer (CR103) 1997; 20
West, Shadel, Ghosh (CR4) 2011; 11
Hu (CR36) 2016; 45
Wang (CR82) 2014; 41
Sun (CR18) 2009; 106
Ivashkiv, Donlin (CR68) 2014; 14
Li (CR51) 2022; 132
Shimizu, Narita, Tsujimoto (CR104) 1999; 399
Liu (CR55) 2019; 20
Caielli (CR93) 2016; 213
Luecke (CR28) 2017; 18
Civril (CR3) 2013; 498
Aarreberg (CR97) 2019; 74
Li (CR40) 2016; 6
Sprenger (CR100) 2021; 3
Yu (CR115) 2020; 183
Schoggins (CR69) 2011; 472
Zhong (CR80) 2009; 30
Li, Shu (CR34) 2020; 11
West (CR17) 2015; 520
Uzé, Lutfalla, Gresser (CR65) 1990; 60
Qin (CR84) 2014; 10
Liu (CR7) 2015; 347
Wang (CR9) 2017; 46
Zhao (CR63) 2019; 569
Zalk, Israelson, Garty, Azoulay-Zohar, Shoshan-Barmatz (CR113) 2005; 386
Tsuchida (CR77) 2010; 33
Zhou (CR47) 2020; 52
Takeuchi, Akira (CR5) 2010; 140
Sun, Wu, Du, Chen, Chen (CR15) 2013; 339
Hou (CR70) 2018; 49
Ishikawa, Barber (CR1) 2008; 455
Seo (CR31) 2015; 13
Dobbs (CR62) 2015; 18
Yang (CR79) 2020; 16
Bridgeman (CR54) 2015; 349
Wang (CR37) 2017; 13
Chen (CR38) 2016; 64
Cerboni (CR75) 2017; 214
Li (CR87) 2018; 4
Stetson, Ko, Heidmann, Medzhitov (CR91) 2008; 134
Huang, Liu, Du, Jiang, Su (CR59) 2012; 19
Balka (CR73) 2020; 31
Shimada (CR10) 2012; 36
Li (CR106) 2020; 30
Li (CR21) 2013; 341
Yang (CR78) 2018; 9
Rongvaux (CR102) 2014; 159
Gehrke (CR90) 2013; 39
Huang (CR101) 2022; 132
Zhang (CR14) 2019; 567
Herzner (CR13) 2015; 16
Shang, Zhang, Chen, Bai, Zhang (CR56) 2019; 567
Bakhoum (CR76) 2018; 553
Abe, Barber (CR72) 2014; 88
Mankan (CR27) 2014; 33
Ohkuri (CR39) 2017; 66
Orzalli (CR96) 2018; 71
Zhang (CR83) 2020; 11
Ablasser (CR52) 2013; 503
Schafer, Kornbluth (CR105) 2006; 10
Zhou (CR49) 2020; 52
Zhang, Hu, Wang, Shu (CR81) 2012; 287
Lahaye (CR25) 2018; 175
Carozza (CR44) 2022; 119
Li (CR88) 2022; 8
Krause, Hay, Kowollik, Brdiczka (CR112) 1986; 860
Kalamvoki, Du, Roizman (CR53) 2014; 111
Barnett (CR26) 2019; 176
Ergun, Fernandez, Weiss, Li (CR61) 2019; 178
Li (CR33) 2021; 371
Peschke (CR92) 2016; 197
Cohen, Novick, Barak, Rubinstein (CR67) 1995; 15
Zhong (CR19) 2008; 29
Ni, Konno, Barber (CR85) 2017; 2
Shang (CR60) 2012; 19
Xia (CR35) 2016; 17
Fang (CR71) 2017; 199
Zhong (CR11) 2018; 560
Ritchie, Cordova, Hess, Bassik, Li (CR45) 2019; 75
Gao (CR12) 2013; 153
Wang (CR86) 2015; 11
Lindqvist (CR107) 2018; 25
Li (CR22) 2013; 39
Ablasser (CR23) 2013; 498
Andreeva (CR2) 2017; 549
Lood (CR94) 2016; 22
Du, Chen (CR30) 2018; 361
Kim (CR98) 2019; 366
McArthur (CR109) 2018; 359
Ouyang (CR58) 2012; 36
Sun (CR32) 2020; 11
G Shang (965_CR56) 2019; 567
D Novick (965_CR66) 1994; 77
AP West (965_CR4) 2011; 11
R Fang (965_CR71) 2017; 199
F Civril (965_CR3) 2013; 498
M Drill (965_CR48) 2020; 10
Y Qin (965_CR84) 2014; 10
Y Xie (965_CR50) 2020; 130
V Shoshan-Barmatz (965_CR16) 2010; 1797
J Krause (965_CR112) 1986; 860
XD Li (965_CR21) 2013; 341
DE Merry (965_CR103) 1997; 20
Q Yin (965_CR57) 2012; 46
S Luecke (965_CR28) 2017; 18
V Shoshan-Barmatz (965_CR111) 2018; 69
X Li (965_CR51) 2022; 132
O Takeuchi (965_CR5) 2010; 140
HG Sprenger (965_CR100) 2021; 3
X Li (965_CR88) 2022; 8
JS Riley (965_CR110) 2018; 37
R Zalk (965_CR113) 2005; 386
J Zhang (965_CR81) 2012; 287
Z Zhong (965_CR11) 2018; 560
LM Lindqvist (965_CR107) 2018; 25
A Rongvaux (965_CR102) 2014; 159
B Zhong (965_CR80) 2009; 30
S Ouyang (965_CR58) 2012; 36
ZT Schafer (965_CR105) 2006; 10
M Li (965_CR34) 2020; 11
A Ablasser (965_CR52) 2013; 503
N Gehrke (965_CR90) 2013; 39
L Andreeva (965_CR2) 2017; 549
T Li (965_CR40) 2016; 6
K Shimada (965_CR10) 2012; 36
W Xie (965_CR29) 2019; 116
P Xia (965_CR35) 2016; 17
H Liu (965_CR55) 2019; 20
MM Hu (965_CR36) 2016; 45
CP Baines (965_CR99) 2007; 9
DB Stetson (965_CR91) 2008; 134
C Ritchie (965_CR45) 2019; 75
Y Wang (965_CR86) 2015; 11
M Du (965_CR30) 2018; 361
CC de Oliveira Mann (965_CR74) 2019; 27
R Zhou (965_CR8) 2011; 469
Q Li (965_CR87) 2018; 4
P Gao (965_CR12) 2013; 153
K Kato (965_CR43) 2018; 9
GJ Seo (965_CR31) 2015; 13
H Ishikawa (965_CR1) 2008; 455
L Sun (965_CR15) 2013; 339
S Cerboni (965_CR75) 2017; 214
ZD Zhang (965_CR83) 2020; 11
M Kalamvoki (965_CR53) 2014; 111
AP West (965_CR17) 2015; 520
MJ White (965_CR108) 2014; 159
Y Wang (965_CR9) 2017; 46
L Yang (965_CR78) 2018; 9
X Sun (965_CR32) 2020; 11
B Zhao (965_CR64) 2016; 113
K Peschke (965_CR92) 2016; 197
G Uzé (965_CR65) 1990; 60
J Kim (965_CR98) 2019; 366
C Zhou (965_CR49) 2020; 52
Y Hou (965_CR70) 2018; 49
JW Schoggins (965_CR69) 2011; 472
AK Mankan (965_CR27) 2014; 33
X Ning (965_CR6) 2019; 74
A Ablasser (965_CR23) 2013; 498
C Zhang (965_CR14) 2019; 567
F Dorostkar (965_CR41) 2021; 16
B Yang (965_CR79) 2020; 16
S Liu (965_CR7) 2015; 347
W Sun (965_CR18) 2009; 106
X Li (965_CR22) 2013; 39
S Shimizu (965_CR104) 1999; 399
MH Orzalli (965_CR96) 2018; 71
G Shang (965_CR60) 2012; 19
T Abe (965_CR72) 2014; 88
X Lahaye (965_CR25) 2018; 175
K McArthur (965_CR109) 2018; 359
F Kraus (965_CR89) 2021; 590
PJ Kranzusch (965_CR24) 2013; 3
T Ohkuri (965_CR39) 2017; 66
S Li (965_CR106) 2020; 30
H Xian (965_CR95) 2022; 55
JJ Woodward (965_CR20) 2010; 328
JA Carozza (965_CR44) 2022; 119
B Zhao (965_CR63) 2019; 569
YH Huang (965_CR59) 2012; 19
T Li (965_CR33) 2021; 371
Y Zhou (965_CR47) 2020; 52
SF Bakhoum (965_CR76) 2018; 553
T Tsuchida (965_CR77) 2010; 33
B Zhong (965_CR19) 2008; 29
JD Domizio (965_CR114) 2022; 603
CH Yu (965_CR115) 2020; 183
JA Carozza (965_CR42) 2020; 1
N Dobbs (965_CR62) 2015; 18
RD Luteijn (965_CR46) 2019; 573
S Caielli (965_CR93) 2016; 213
Q Wang (965_CR37) 2017; 13
A Bridgeman (965_CR54) 2015; 349
Q Wang (965_CR82) 2014; 41
KC Barnett (965_CR26) 2019; 176
LB Ivashkiv (965_CR68) 2014; 14
Y Huang (965_CR101) 2022; 132
LD Aarreberg (965_CR97) 2019; 74
B Cohen (965_CR67) 1995; 15
G Ni (965_CR85) 2017; 2
M Chen (965_CR38) 2016; 64
AM Herzner (965_CR13) 2015; 16
SL Ergun (965_CR61) 2019; 178
KR Balka (965_CR73) 2020; 31
C Lood (965_CR94) 2016; 22
References_xml – volume: 11
  start-page: 584
  year: 2020
  end-page: 599
  ident: CR34
  article-title: Dephosphorylation of cGAS by PPP6C impairs its substrate binding activity and innate antiviral response
  publication-title: Protein Cell
  doi: 10.1007/s13238-020-00729-3
– volume: 11
  year: 2020
  ident: CR83
  article-title: RNF115 plays dual roles in innate antiviral responses by catalyzing distinct ubiquitination of MAVS and MITA
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-19318-3
– volume: 16
  start-page: e1008387
  year: 2020
  ident: CR79
  article-title: RNF90 negatively regulates cellular antiviral responses by targeting MITA for degradation
  publication-title: PLoS Pathog.
  doi: 10.1371/journal.ppat.1008387
– volume: 498
  start-page: 332
  year: 2013
  end-page: 337
  ident: CR3
  article-title: Structural mechanism of cytosolic DNA sensing by cGAS
  publication-title: Nature
  doi: 10.1038/nature12305
– volume: 16
  year: 2021
  ident: CR41
  article-title: Co-administration of 2'3’-cGAMP STING activator and CpG-C adjuvants with a mutated form of HPV 16 E7 protein leads to tumor growth inhibition in the mouse model
  publication-title: Infect. Agent. Cancer
  doi: 10.1186/s13027-021-00346-7
– volume: 113
  start-page: E3403
  year: 2016
  end-page: E3412
  ident: CR64
  article-title: Structural basis for concerted recruitment and activation of IRF-3 by innate immune adaptor proteins
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1603269113
– volume: 116
  start-page: 11946
  year: 2019
  end-page: 11955
  ident: CR29
  article-title: Human cGAS catalytic domain has an additional DNA-binding interface that enhances enzymatic activity and liquid-phase condensation
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1905013116
– volume: 199
  start-page: 3222
  year: 2017
  end-page: 3233
  ident: CR71
  article-title: NEMO-IKKβ are essential for IRF3 and NF-κB activation in the cGAS-STING pathway
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.1700699
– volume: 64
  start-page: 105
  year: 2016
  end-page: 119
  ident: CR38
  article-title: TRIM14 inhibits cGAS degradation mediated by selective autophagy receptor p62 to promote innate immune responses
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2016.08.025
– volume: 60
  start-page: 225
  year: 1990
  end-page: 234
  ident: CR65
  article-title: Genetic transfer of a functional human interferon alpha receptor into mouse cells: cloning and expression of its cDNA
  publication-title: Cell
  doi: 10.1016/0092-8674(90)90738-Z
– volume: 19
  start-page: 728
  year: 2012
  end-page: 730
  ident: CR59
  article-title: The structural basis for the sensing and binding of cyclic di-GMP by STING
  publication-title: Nat. Struct. Mol. Biol.
  doi: 10.1038/nsmb.2333
– volume: 603
  start-page: 145
  year: 2022
  end-page: 151
  ident: CR114
  article-title: The cGAS-STING pathway drives type I IFN immunopathology in COVID-19
  publication-title: Nature
  doi: 10.1038/s41586-022-04421-w
– volume: 27
  start-page: 1165
  year: 2019
  end-page: 1175.e1165
  ident: CR74
  article-title: Modular architecture of the STING C-terminal tail allows interferon and NF-κB signaling adaptation
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2019.03.098
– volume: 860
  start-page: 690
  year: 1986
  end-page: 698
  ident: CR112
  article-title: Cross-linking analysis of yeast mitochondrial outer membrane
  publication-title: Biochim. Biophys. Acta
  doi: 10.1016/0005-2736(86)90568-7
– volume: 10
  start-page: 549
  year: 2006
  end-page: 561
  ident: CR105
  article-title: The apoptosome: physiological, developmental, and pathological modes of regulation
  publication-title: Dev. Cell
  doi: 10.1016/j.devcel.2006.04.008
– volume: 567
  start-page: 389
  year: 2019
  end-page: 393
  ident: CR56
  article-title: Cryo-EM structures of STING reveal its mechanism of activation by cyclic GMP-AMP
  publication-title: Nature
  doi: 10.1038/s41586-019-0998-5
– volume: 52
  start-page: 357
  year: 2020
  end-page: 373.e359
  ident: CR47
  article-title: Blockade of the phagocytic receptor MerTK on tumor-associated macrophages enhances P2X7R-dependent STING activation by tumor-derived cGAMP
  publication-title: Immunity
  doi: 10.1016/j.immuni.2020.01.014
– volume: 17
  start-page: 369
  year: 2016
  end-page: 378
  ident: CR35
  article-title: Glutamylation of the DNA sensor cGAS regulates its binding and synthase activity in antiviral immunity
  publication-title: Nat. Immunol.
  doi: 10.1038/ni.3356
– volume: 88
  start-page: 5328
  year: 2014
  end-page: 5341
  ident: CR72
  article-title: Cytosolic-DNA-mediated, STING-dependent proinflammatory gene induction necessitates canonical NF-kappaB activation through TBK1
  publication-title: J. Virol.
  doi: 10.1128/JVI.00037-14
– volume: 9
  start-page: 550
  year: 2007
  end-page: 555
  ident: CR99
  article-title: Voltage-dependent anion channels are dispensable for mitochondrial-dependent cell death
  publication-title: Nat. Cell Biol.
  doi: 10.1038/ncb1575
– volume: 549
  start-page: 394
  year: 2017
  end-page: 398
  ident: CR2
  article-title: cGAS senses long and HMGB/TFAM-bound U-turn DNA by forming protein-DNA ladders
  publication-title: Nature
  doi: 10.1038/nature23890
– volume: 55
  start-page: 1370
  year: 2022
  end-page: 1385.e8
  ident: CR95
  article-title: Oxidized DNA fragments exit mitochondria via mPTP- and VDAC-dependent channels to activate NLRP3 inflammasome and interferon signaling
  publication-title: Immunity
  doi: 10.1016/j.immuni.2022.06.007
– volume: 153
  start-page: 1094
  year: 2013
  end-page: 1107
  ident: CR12
  article-title: Cyclic [G(2’,5’)pA(3’,5’)p] is the metazoan second messenger produced by DNA-activated cyclic GMP-AMP synthase
  publication-title: Cell
  doi: 10.1016/j.cell.2013.04.046
– volume: 176
  start-page: 1432
  year: 2019
  end-page: 1446.e1411
  ident: CR26
  article-title: Phosphoinositide interactions position cGAS at the plasma membrane to ensure efficient distinction between self- and viral DNA
  publication-title: Cell
  doi: 10.1016/j.cell.2019.01.049
– volume: 66
  start-page: 705
  year: 2017
  end-page: 716
  ident: CR39
  article-title: Intratumoral administration of cGAMP transiently accumulates potent macrophages for anti-tumor immunity at a mouse tumor site
  publication-title: Cancer Immunol. Immunother.
  doi: 10.1007/s00262-017-1975-1
– volume: 52
  start-page: 767
  year: 2020
  end-page: 781.e766
  ident: CR49
  article-title: Transfer of cGAMP into bystander cells via LRRC8 volume-regulated anion channels augments STING-mediated interferon responses and anti-viral immunity
  publication-title: Immunity
  doi: 10.1016/j.immuni.2020.03.016
– volume: 178
  start-page: 290
  year: 2019
  end-page: 301.e210
  ident: CR61
  article-title: STING polymer structure reveals mechanisms for activation, hyperactivation, and inhibition
  publication-title: Cell
  doi: 10.1016/j.cell.2019.05.036
– volume: 140
  start-page: 805
  year: 2010
  end-page: 820
  ident: CR5
  article-title: Pattern recognition receptors and inflammation
  publication-title: Cell
  doi: 10.1016/j.cell.2010.01.022
– volume: 567
  start-page: 394
  year: 2019
  end-page: 398
  ident: CR14
  article-title: Structural basis of STING binding with and phosphorylation by TBK1
  publication-title: Nature
  doi: 10.1038/s41586-019-1000-2
– volume: 9
  year: 2018
  ident: CR43
  article-title: Structural insights into cGAMP degradation by Ecto-nucleotide pyrophosphatase phosphodiesterase 1
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-06922-7
– volume: 36
  start-page: 401
  year: 2012
  end-page: 414
  ident: CR10
  article-title: Oxidized mitochondrial DNA activates the NLRP3 inflammasome during apoptosis
  publication-title: Immunity
  doi: 10.1016/j.immuni.2012.01.009
– volume: 49
  start-page: 490
  year: 2018
  end-page: 503.e494
  ident: CR70
  article-title: Non-canonical NF-κB antagonizes STING sensor-mediated DNA sensing in radiotherapy
  publication-title: Immunity
  doi: 10.1016/j.immuni.2018.07.008
– volume: 41
  start-page: 919
  year: 2014
  end-page: 933
  ident: CR82
  article-title: The E3 ubiquitin ligase AMFR and INSIG1 bridge the activation of TBK1 kinase by modifying the adaptor STING
  publication-title: Immunity
  doi: 10.1016/j.immuni.2014.11.011
– volume: 498
  start-page: 380
  year: 2013
  end-page: 384
  ident: CR23
  article-title: cGAS produces a 2’-5’-linked cyclic dinucleotide second messenger that activates STING
  publication-title: Nature
  doi: 10.1038/nature12306
– volume: 30
  start-page: 4370
  year: 2020
  end-page: 4385.e4377
  ident: CR106
  article-title: SFTSV infection induces BAK/BAX-dependent mitochondrial DNA release to trigger NLRP3 inflammasome activation
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2020.02.105
– volume: 6
  year: 2016
  ident: CR40
  article-title: Antitumor activity of cGAMP via stimulation of cGAS-cGAMP-STING-IRF3 mediated innate immune response
  publication-title: Sci. Rep.
  doi: 10.1038/srep19049
– volume: 159
  start-page: 1563
  year: 2014
  end-page: 1577
  ident: CR102
  article-title: Apoptotic caspases prevent the induction of type I interferons by mitochondrial DNA
  publication-title: Cell
  doi: 10.1016/j.cell.2014.11.037
– volume: 15
  start-page: 4208
  year: 1995
  end-page: 4214
  ident: CR67
  article-title: Ligand-induced association of the type I interferon receptor components
  publication-title: Mol. Cell. Biol.
  doi: 10.1128/MCB.15.8.4208
– volume: 339
  start-page: 786
  year: 2013
  end-page: 791
  ident: CR15
  article-title: Cyclic GMP-AMP synthase is a cytosolic DNA sensor that activates the type I interferon pathway
  publication-title: Science
  doi: 10.1126/science.1232458
– volume: 14
  start-page: 36
  year: 2014
  end-page: 49
  ident: CR68
  article-title: Regulation of type I interferon responses
  publication-title: Nat. Rev. Immunol.
  doi: 10.1038/nri3581
– volume: 20
  start-page: 245
  year: 1997
  end-page: 267
  ident: CR103
  article-title: Bcl-2 gene family in the nervous system
  publication-title: Annu. Rev. Neurosci.
  doi: 10.1146/annurev.neuro.20.1.245
– volume: 33
  start-page: 2937
  year: 2014
  end-page: 2946
  ident: CR27
  article-title: Cytosolic RNA:DNA hybrids activate the cGAS-STING axis
  publication-title: EMBO J.
  doi: 10.15252/embj.201488726
– volume: 9
  year: 2018
  ident: CR78
  article-title: UBXN3B positively regulates STING-mediated antiviral immune responses
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-04759-8
– volume: 39
  start-page: 482
  year: 2013
  end-page: 495
  ident: CR90
  article-title: Oxidative damage of DNA confers resistance to cytosolic nuclease TREX1 degradation and potentiates STING-dependent immune sensing
  publication-title: Immunity
  doi: 10.1016/j.immuni.2013.08.004
– volume: 33
  start-page: 765
  year: 2010
  end-page: 776
  ident: CR77
  article-title: The ubiquitin ligase TRIM56 regulates innate immune responses to intracellular double- stranded DNA
  publication-title: Immunity
  doi: 10.1016/j.immuni.2010.10.013
– volume: 77
  start-page: 391
  year: 1994
  end-page: 400
  ident: CR66
  article-title: The human interferon alpha/beta receptor: characterization and molecular cloning
  publication-title: Cell
  doi: 10.1016/0092-8674(94)90154-6
– volume: 134
  start-page: 587
  year: 2008
  end-page: 598
  ident: CR91
  article-title: Trex1 prevents cell-intrinsic initiation of autoimmunity
  publication-title: Cell
  doi: 10.1016/j.cell.2008.06.032
– volume: 106
  start-page: 8653
  year: 2009
  end-page: 8658
  ident: CR18
  article-title: ERIS, an endoplasmic reticulum IFN stimulator, activates innate immune signaling through dimerization
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.0900850106
– volume: 18
  start-page: 1707
  year: 2017
  end-page: 1715
  ident: CR28
  article-title: cGAS is activated by DNA in a length-dependent manner
  publication-title: EMBO Rep.
  doi: 10.15252/embr.201744017
– volume: 13
  start-page: e1006264
  year: 2017
  ident: CR37
  article-title: The E3 ubiquitin ligase RNF185 facilitates the cGAS-mediated innate immune response
  publication-title: PLoS Pathog.
  doi: 10.1371/journal.ppat.1006264
– volume: 175
  start-page: 488
  year: 2018
  end-page: 501.e422
  ident: CR25
  article-title: NONO detects the nuclear HIV capsid to promote cGAS-mediated innate immune activation
  publication-title: Cell
  doi: 10.1016/j.cell.2018.08.062
– volume: 197
  start-page: 2157
  year: 2016
  end-page: 2166
  ident: CR92
  article-title: Loss of Trex1 in dendritic cells is sufficient to trigger systemic autoimmunity
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.1600722
– volume: 37
  start-page: e99238
  year: 2018
  ident: CR110
  article-title: Mitochondrial inner membrane permeabilisation enables mtDNA release during apoptosis
  publication-title: EMBO J.
  doi: 10.15252/embj.201899238
– volume: 560
  start-page: 198
  year: 2018
  end-page: 203
  ident: CR11
  article-title: New mitochondrial DNA synthesis enables NLRP3 inflammasome activation
  publication-title: Nature
  doi: 10.1038/s41586-018-0372-z
– volume: 111
  start-page: E4991
  year: 2014
  end-page: E4996
  ident: CR53
  article-title: Cells infected with herpes simplex virus 1 export to uninfected cells exosomes containing STING, viral mRNAs, and microRNAs
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1419338111
– volume: 11
  year: 2020
  ident: CR32
  article-title: DNA-PK deficiency potentiates cGAS-mediated antiviral innate immunity
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-19941-0
– volume: 347
  start-page: aaa2630
  year: 2015
  ident: CR7
  article-title: Phosphorylation of innate immune adaptor proteins MAVS, STING, and TRIF induces IRF3 activation
  publication-title: Science
  doi: 10.1126/science.aaa2630
– volume: 22
  start-page: 146
  year: 2016
  end-page: 153
  ident: CR94
  article-title: Neutrophil extracellular traps enriched in oxidized mitochondrial DNA are interferogenic and contribute to lupus-like disease
  publication-title: Nat. Med.
  doi: 10.1038/nm.4027
– volume: 130
  start-page: 2111
  year: 2020
  end-page: 2128
  ident: CR50
  article-title: Gut epithelial TSC1/mTOR controls RIPK3-dependent necroptosis in intestinal inflammation and cancer
  publication-title: J. Clin. Invest
  doi: 10.1172/JCI133264
– volume: 3
  start-page: 1362
  year: 2013
  end-page: 1368
  ident: CR24
  article-title: Structure of human cGAS reveals a conserved family of second-messenger enzymes in innate immunity
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2013.05.008
– volume: 2
  start-page: eaah7119
  year: 2017
  ident: CR85
  article-title: Ubiquitination of STING at lysine 224 controls IRF3 activation
  publication-title: Sci. Immunol.
  doi: 10.1126/sciimmunol.aah7119
– volume: 8
  start-page: eabh0496
  year: 2022
  ident: CR88
  article-title: The transmembrane endoplasmic reticulum-associated E3 ubiquitin ligase TRIM13 restrains the pathogenic-DNA-triggered inflammatory response
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.abh0496
– volume: 472
  start-page: 481
  year: 2011
  end-page: 485
  ident: CR69
  article-title: A diverse range of gene products are effectors of the type I interferon antiviral response
  publication-title: Nature
  doi: 10.1038/nature09907
– volume: 1797
  start-page: 1281
  year: 2010
  end-page: 1291
  ident: CR16
  article-title: Apoptosis is regulated by the VDAC1 N-terminal region and by VDAC oligomerization: release of cytochrome c, AIF and Smac/Diablo
  publication-title: Biochim. Biophys. Acta
  doi: 10.1016/j.bbabio.2010.03.003
– volume: 573
  start-page: 434
  year: 2019
  end-page: 438
  ident: CR46
  article-title: SLC19A1 transports immunoreactive cyclic dinucleotides
  publication-title: Nature
  doi: 10.1038/s41586-019-1553-0
– volume: 455
  start-page: 674
  year: 2008
  end-page: 678
  ident: CR1
  article-title: STING is an endoplasmic reticulum adaptor that facilitates innate immune signalling
  publication-title: Nature
  doi: 10.1038/nature07317
– volume: 119
  start-page: e2119189119
  year: 2022
  ident: CR44
  article-title: ENPP1’s regulation of extracellular cGAMP is a ubiquitous mechanism of attenuating STING signaling
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.2119189119
– volume: 10
  year: 2020
  ident: CR48
  article-title: Inhibition of purinergic P2X receptor 7 (P2X7R) decreases granulocyte-macrophage colony- stimulating factor (GM-CSF) expression in U251 glioblastoma cells
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-020-71887-x
– volume: 371
  start-page: eabc5386
  year: 2021
  ident: CR33
  article-title: Phosphorylation and chromatin tethering prevent cGAS activation during mitosis
  publication-title: Science
  doi: 10.1126/science.abc5386
– volume: 399
  start-page: 483
  year: 1999
  end-page: 487
  ident: CR104
  article-title: Bcl-2 family proteins regulate the release of apoptogenic cytochrome c by the mitochondrial channel VDAC
  publication-title: Nature
  doi: 10.1038/20959
– volume: 74
  start-page: 19
  year: 2019
  end-page: 31.e17
  ident: CR6
  article-title: Apoptotic caspases suppress type I interferon production via the cleavage of cGAS, MAVS, and IRF3
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2019.02.013
– volume: 520
  start-page: 553
  year: 2015
  end-page: 557
  ident: CR17
  article-title: Mitochondrial DNA stress primes the antiviral innate immune response
  publication-title: Nature
  doi: 10.1038/nature14156
– volume: 74
  start-page: 801
  year: 2019
  end-page: 815.e806
  ident: CR97
  article-title: Interleukin-1β Induces mtDNA release to activate innate immune signaling via cGAS-STING
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2019.02.038
– volume: 29
  start-page: 538
  year: 2008
  end-page: 550
  ident: CR19
  article-title: The adaptor protein MITA links virus-sensing receptors to IRF3 transcription factor activation
  publication-title: Immunity
  doi: 10.1016/j.immuni.2008.09.003
– volume: 287
  start-page: 28646
  year: 2012
  end-page: 28655
  ident: CR81
  article-title: TRIM32 protein modulates type I interferon induction and cellular antiviral response by targeting MITA/STING protein for K63-linked ubiquitination
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M112.362608
– volume: 25
  start-page: 784
  year: 2018
  end-page: 796
  ident: CR107
  article-title: Autophagy induced during apoptosis degrades mitochondria and inhibits type I interferon secretion
  publication-title: Cell Death Differ.
  doi: 10.1038/s41418-017-0017-z
– volume: 45
  start-page: 555
  year: 2016
  end-page: 569
  ident: CR36
  article-title: Sumoylation promotes the stability of the DNA sensor cGAS and the adaptor STING to regulate the kinetics of response to DNA virus
  publication-title: Immunity
  doi: 10.1016/j.immuni.2016.08.014
– volume: 4
  start-page: 13
  year: 2018
  ident: CR87
  article-title: TRIM29 negatively controls antiviral immune response through targeting STING for degradation
  publication-title: Cell Disco.
  doi: 10.1038/s41421-018-0010-9
– volume: 213
  start-page: 697
  year: 2016
  end-page: 713
  ident: CR93
  article-title: Oxidized mitochondrial nucleoids released by neutrophils drive type I interferon production in human lupus
  publication-title: J. Exp. Med
  doi: 10.1084/jem.20151876
– volume: 71
  start-page: 825
  year: 2018
  end-page: 840.e826
  ident: CR96
  article-title: An antiviral branch of the IL-1 signaling pathway restricts immune-evasive virus replication
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2018.07.009
– volume: 328
  start-page: 1703
  year: 2010
  end-page: 1705
  ident: CR20
  article-title: c-di-AMP secreted by intracellular Listeria monocytogenes activates a host type I interferon response
  publication-title: Science
  doi: 10.1126/science.1189801
– volume: 349
  start-page: 1228
  year: 2015
  end-page: 1232
  ident: CR54
  article-title: Viruses transfer the antiviral second messenger cGAMP between cells
  publication-title: Science
  doi: 10.1126/science.aab3632
– volume: 10
  start-page: e1004358
  year: 2014
  ident: CR84
  article-title: RNF26 temporally regulates virus-triggered type I interferon induction by two distinct mechanisms
  publication-title: PLoS Pathog.
  doi: 10.1371/journal.ppat.1004358
– volume: 503
  start-page: 530
  year: 2013
  end-page: 534
  ident: CR52
  article-title: Cell intrinsic immunity spreads to bystander cells via the intercellular transfer of cGAMP
  publication-title: Nature
  doi: 10.1038/nature12640
– volume: 469
  start-page: 221
  year: 2011
  end-page: 225
  ident: CR8
  article-title: A role for mitochondria in NLRP3 inflammasome activation
  publication-title: Nature
  doi: 10.1038/nature09663
– volume: 13
  start-page: 440
  year: 2015
  end-page: 449
  ident: CR31
  article-title: Akt kinase-mediated checkpoint of cGAS DNA sensing pathway
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2015.09.007
– volume: 359
  start-page: eaao6047
  year: 2018
  ident: CR109
  article-title: BAK/BAX macropores facilitate mitochondrial herniation and mtDNA efflux during apoptosis
  publication-title: Science
  doi: 10.1126/science.aao6047
– volume: 20
  start-page: e46293
  year: 2019
  ident: CR55
  article-title: cGAS facilitates sensing of extracellular cyclic dinucleotides to activate innate immunity
  publication-title: EMBO Rep.
  doi: 10.15252/embr.201846293
– volume: 132
  start-page: e144339
  year: 2022
  ident: CR51
  article-title: An alternatively spliced STING isoform localizes in the cytoplasmic membrane and directly senses extracellular cGAMP
  publication-title: J. Clin. Invest
  doi: 10.1172/JCI144339
– volume: 18
  start-page: 157
  year: 2015
  end-page: 168
  ident: CR62
  article-title: STING activation by translocation from the ER is associated with infection and autoinflammatory disease
  publication-title: Cell Host Microbe
  doi: 10.1016/j.chom.2015.07.001
– volume: 569
  start-page: 718
  year: 2019
  end-page: 722
  ident: CR63
  article-title: A conserved PLPLRT/SD motif of STING mediates the recruitment and activation of TBK1
  publication-title: Nature
  doi: 10.1038/s41586-019-1228-x
– volume: 553
  start-page: 467
  year: 2018
  end-page: 472
  ident: CR76
  article-title: Chromosomal instability drives metastasis through a cytosolic DNA response
  publication-title: Nature
  doi: 10.1038/nature25432
– volume: 3
  start-page: 636
  year: 2021
  end-page: 650
  ident: CR100
  article-title: Cellular pyrimidine imbalance triggers mitochondrial DNA-dependent innate immunity
  publication-title: Nat. Metab.
  doi: 10.1038/s42255-021-00385-9
– volume: 361
  start-page: 704
  year: 2018
  end-page: 709
  ident: CR30
  article-title: DNA-induced liquid phase condensation of cGAS activates innate immune signaling
  publication-title: Science
  doi: 10.1126/science.aat1022
– volume: 69
  start-page: 81
  year: 2018
  end-page: 100
  ident: CR111
  article-title: VDAC1 functions in Ca(2+) homeostasis and cell life and death in health and disease
  publication-title: Cell Calcium
  doi: 10.1016/j.ceca.2017.06.007
– volume: 590
  start-page: 57
  year: 2021
  end-page: 66
  ident: CR89
  article-title: Function and regulation of the divisome for mitochondrial fission
  publication-title: Nature
  doi: 10.1038/s41586-021-03214-x
– volume: 36
  start-page: 1073
  year: 2012
  end-page: 1086
  ident: CR58
  article-title: Structural analysis of the STING adaptor protein reveals a hydrophobic dimer interface and mode of cyclic di-GMP binding
  publication-title: Immunity
  doi: 10.1016/j.immuni.2012.03.019
– volume: 46
  start-page: 393
  year: 2017
  end-page: 404
  ident: CR9
  article-title: Inflammasome activation triggers caspase-1-mediated cleavage of cGAS to regulate responses to DNA virus infection
  publication-title: Immunity
  doi: 10.1016/j.immuni.2017.02.011
– volume: 386
  start-page: 73
  year: 2005
  end-page: 83
  ident: CR113
  article-title: Oligomeric states of the voltage-dependent anion channel and cytochrome c release from mitochondria
  publication-title: Biochem. J.
  doi: 10.1042/BJ20041356
– volume: 214
  start-page: 1769
  year: 2017
  end-page: 1785
  ident: CR75
  article-title: Intrinsic antiproliferative activity of the innate sensor STING in T lymphocytes
  publication-title: J. Exp. Med
  doi: 10.1084/jem.20161674
– volume: 183
  start-page: 636
  year: 2020
  end-page: 649 e618
  ident: CR115
  article-title: TDP-43 Triggers Mitochondrial DNA Release via mPTP to Activate cGAS/STING in ALS
  publication-title: Cell
  doi: 10.1016/j.cell.2020.09.020
– volume: 159
  start-page: 1549
  year: 2014
  end-page: 1562
  ident: CR108
  article-title: Apoptotic caspases suppress mtDNA-induced STING-mediated type I IFN production
  publication-title: Cell
  doi: 10.1016/j.cell.2014.11.036
– volume: 19
  start-page: 725
  year: 2012
  end-page: 727
  ident: CR60
  article-title: Crystal structures of STING protein reveal basis for recognition of cyclic di-GMP
  publication-title: Nat. Struct. Mol. Biol.
  doi: 10.1038/nsmb.2332
– volume: 39
  start-page: 1019
  year: 2013
  end-page: 1031
  ident: CR22
  article-title: Cyclic GMP-AMP synthase is activated by double-stranded DNA-induced ligomerization
  publication-title: Immunity
  doi: 10.1016/j.immuni.2013.10.019
– volume: 1
  start-page: 184
  year: 2020
  end-page: 196
  ident: CR42
  article-title: Extracellular cGAMP is a cancer cell-produced immunotransmitter involved in radiation-induced anti-cancer immunity
  publication-title: Nat. Cancer
  doi: 10.1038/s43018-020-0028-4
– volume: 11
  start-page: e1005012
  year: 2015
  ident: CR86
  article-title: TRIM30α is a negative-feedback regulator of the intracellular DNA and DNA virus- triggered response by targeting STING
  publication-title: PLoS Pathog.
  doi: 10.1371/journal.ppat.1005012
– volume: 132
  start-page: e148852
  year: 2022
  ident: CR101
  article-title: Brown adipose TRX2 deficiency activates mtDNA-NLRP3 to impair thermogenesis and protect against diet-induced insulin resistance
  publication-title: J. Clin. Invest
  doi: 10.1172/JCI148852
– volume: 366
  start-page: 1531
  year: 2019
  end-page: 1536
  ident: CR98
  article-title: VDAC oligomers form mitochondrial pores to release mtDNA fragments and promote lupus- like disease
  publication-title: Science
  doi: 10.1126/science.aav4011
– volume: 75
  start-page: 372
  year: 2019
  end-page: 381.e375
  ident: CR45
  article-title: SLC19A1 is an importer of the immunotransmitter cGAMP
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2019.05.006
– volume: 11
  start-page: 389
  year: 2011
  end-page: 402
  ident: CR4
  article-title: Mitochondria in innate immune responses
  publication-title: Nat. Rev. Immunol.
  doi: 10.1038/nri2975
– volume: 30
  start-page: 397
  year: 2009
  end-page: 407
  ident: CR80
  article-title: The ubiquitin ligase RNF5 regulates antiviral responses by mediating degradation of the adaptor protein MITA
  publication-title: Immunity
  doi: 10.1016/j.immuni.2009.01.008
– volume: 46
  start-page: 735
  year: 2012
  end-page: 745
  ident: CR57
  article-title: Cyclic di-GMP sensing via the innate immune signaling protein STING
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2012.05.029
– volume: 31
  start-page: 107492
  year: 2020
  ident: CR73
  article-title: TBK1 and IKKε act redundantly to mediate STING-induced NF-κB responses in myeloid cells
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2020.03.056
– volume: 341
  start-page: 1390
  year: 2013
  end-page: 1394
  ident: CR21
  article-title: Pivotal roles of cGAS-cGAMP signaling in antiviral defense and immune adjuvant effects
  publication-title: Science
  doi: 10.1126/science.1244040
– volume: 16
  start-page: 1025
  year: 2015
  end-page: 1033
  ident: CR13
  article-title: Sequence-specific activation of the DNA sensor cGAS by Y-form DNA structures as found in primary HIV-1 cDNA
  publication-title: Nat. Immunol.
  doi: 10.1038/ni.3267
– volume: 11
  year: 2020
  ident: 965_CR32
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-19941-0
– volume: 386
  start-page: 73
  year: 2005
  ident: 965_CR113
  publication-title: Biochem. J.
  doi: 10.1042/BJ20041356
– volume: 60
  start-page: 225
  year: 1990
  ident: 965_CR65
  publication-title: Cell
  doi: 10.1016/0092-8674(90)90738-Z
– volume: 213
  start-page: 697
  year: 2016
  ident: 965_CR93
  publication-title: J. Exp. Med
  doi: 10.1084/jem.20151876
– volume: 567
  start-page: 394
  year: 2019
  ident: 965_CR14
  publication-title: Nature
  doi: 10.1038/s41586-019-1000-2
– volume: 33
  start-page: 2937
  year: 2014
  ident: 965_CR27
  publication-title: EMBO J.
  doi: 10.15252/embj.201488726
– volume: 132
  start-page: e144339
  year: 2022
  ident: 965_CR51
  publication-title: J. Clin. Invest
  doi: 10.1172/JCI144339
– volume: 33
  start-page: 765
  year: 2010
  ident: 965_CR77
  publication-title: Immunity
  doi: 10.1016/j.immuni.2010.10.013
– volume: 159
  start-page: 1563
  year: 2014
  ident: 965_CR102
  publication-title: Cell
  doi: 10.1016/j.cell.2014.11.037
– volume: 77
  start-page: 391
  year: 1994
  ident: 965_CR66
  publication-title: Cell
  doi: 10.1016/0092-8674(94)90154-6
– volume: 31
  start-page: 107492
  year: 2020
  ident: 965_CR73
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2020.03.056
– volume: 11
  year: 2020
  ident: 965_CR83
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-19318-3
– volume: 132
  start-page: e148852
  year: 2022
  ident: 965_CR101
  publication-title: J. Clin. Invest
  doi: 10.1172/JCI148852
– volume: 472
  start-page: 481
  year: 2011
  ident: 965_CR69
  publication-title: Nature
  doi: 10.1038/nature09907
– volume: 287
  start-page: 28646
  year: 2012
  ident: 965_CR81
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M112.362608
– volume: 14
  start-page: 36
  year: 2014
  ident: 965_CR68
  publication-title: Nat. Rev. Immunol.
  doi: 10.1038/nri3581
– volume: 6
  year: 2016
  ident: 965_CR40
  publication-title: Sci. Rep.
  doi: 10.1038/srep19049
– volume: 113
  start-page: E3403
  year: 2016
  ident: 965_CR64
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1603269113
– volume: 2
  start-page: eaah7119
  year: 2017
  ident: 965_CR85
  publication-title: Sci. Immunol.
  doi: 10.1126/sciimmunol.aah7119
– volume: 11
  start-page: e1005012
  year: 2015
  ident: 965_CR86
  publication-title: PLoS Pathog.
  doi: 10.1371/journal.ppat.1005012
– volume: 55
  start-page: 1370
  year: 2022
  ident: 965_CR95
  publication-title: Immunity
  doi: 10.1016/j.immuni.2022.06.007
– volume: 130
  start-page: 2111
  year: 2020
  ident: 965_CR50
  publication-title: J. Clin. Invest
  doi: 10.1172/JCI133264
– volume: 455
  start-page: 674
  year: 2008
  ident: 965_CR1
  publication-title: Nature
  doi: 10.1038/nature07317
– volume: 569
  start-page: 718
  year: 2019
  ident: 965_CR63
  publication-title: Nature
  doi: 10.1038/s41586-019-1228-x
– volume: 520
  start-page: 553
  year: 2015
  ident: 965_CR17
  publication-title: Nature
  doi: 10.1038/nature14156
– volume: 560
  start-page: 198
  year: 2018
  ident: 965_CR11
  publication-title: Nature
  doi: 10.1038/s41586-018-0372-z
– volume: 9
  year: 2018
  ident: 965_CR43
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-06922-7
– volume: 347
  start-page: aaa2630
  year: 2015
  ident: 965_CR7
  publication-title: Science
  doi: 10.1126/science.aaa2630
– volume: 17
  start-page: 369
  year: 2016
  ident: 965_CR35
  publication-title: Nat. Immunol.
  doi: 10.1038/ni.3356
– volume: 27
  start-page: 1165
  year: 2019
  ident: 965_CR74
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2019.03.098
– volume: 39
  start-page: 482
  year: 2013
  ident: 965_CR90
  publication-title: Immunity
  doi: 10.1016/j.immuni.2013.08.004
– volume: 399
  start-page: 483
  year: 1999
  ident: 965_CR104
  publication-title: Nature
  doi: 10.1038/20959
– volume: 116
  start-page: 11946
  year: 2019
  ident: 965_CR29
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1905013116
– volume: 371
  start-page: eabc5386
  year: 2021
  ident: 965_CR33
  publication-title: Science
  doi: 10.1126/science.abc5386
– volume: 88
  start-page: 5328
  year: 2014
  ident: 965_CR72
  publication-title: J. Virol.
  doi: 10.1128/JVI.00037-14
– volume: 13
  start-page: e1006264
  year: 2017
  ident: 965_CR37
  publication-title: PLoS Pathog.
  doi: 10.1371/journal.ppat.1006264
– volume: 603
  start-page: 145
  year: 2022
  ident: 965_CR114
  publication-title: Nature
  doi: 10.1038/s41586-022-04421-w
– volume: 64
  start-page: 105
  year: 2016
  ident: 965_CR38
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2016.08.025
– volume: 366
  start-page: 1531
  year: 2019
  ident: 965_CR98
  publication-title: Science
  doi: 10.1126/science.aav4011
– volume: 20
  start-page: e46293
  year: 2019
  ident: 965_CR55
  publication-title: EMBO Rep.
  doi: 10.15252/embr.201846293
– volume: 183
  start-page: 636
  year: 2020
  ident: 965_CR115
  publication-title: Cell
  doi: 10.1016/j.cell.2020.09.020
– volume: 106
  start-page: 8653
  year: 2009
  ident: 965_CR18
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.0900850106
– volume: 361
  start-page: 704
  year: 2018
  ident: 965_CR30
  publication-title: Science
  doi: 10.1126/science.aat1022
– volume: 573
  start-page: 434
  year: 2019
  ident: 965_CR46
  publication-title: Nature
  doi: 10.1038/s41586-019-1553-0
– volume: 10
  start-page: e1004358
  year: 2014
  ident: 965_CR84
  publication-title: PLoS Pathog.
  doi: 10.1371/journal.ppat.1004358
– volume: 11
  start-page: 584
  year: 2020
  ident: 965_CR34
  publication-title: Protein Cell
  doi: 10.1007/s13238-020-00729-3
– volume: 13
  start-page: 440
  year: 2015
  ident: 965_CR31
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2015.09.007
– volume: 3
  start-page: 636
  year: 2021
  ident: 965_CR100
  publication-title: Nat. Metab.
  doi: 10.1038/s42255-021-00385-9
– volume: 860
  start-page: 690
  year: 1986
  ident: 965_CR112
  publication-title: Biochim. Biophys. Acta
  doi: 10.1016/0005-2736(86)90568-7
– volume: 140
  start-page: 805
  year: 2010
  ident: 965_CR5
  publication-title: Cell
  doi: 10.1016/j.cell.2010.01.022
– volume: 498
  start-page: 332
  year: 2013
  ident: 965_CR3
  publication-title: Nature
  doi: 10.1038/nature12305
– volume: 19
  start-page: 728
  year: 2012
  ident: 965_CR59
  publication-title: Nat. Struct. Mol. Biol.
  doi: 10.1038/nsmb.2333
– volume: 159
  start-page: 1549
  year: 2014
  ident: 965_CR108
  publication-title: Cell
  doi: 10.1016/j.cell.2014.11.036
– volume: 39
  start-page: 1019
  year: 2013
  ident: 965_CR22
  publication-title: Immunity
  doi: 10.1016/j.immuni.2013.10.019
– volume: 9
  year: 2018
  ident: 965_CR78
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-04759-8
– volume: 8
  start-page: eabh0496
  year: 2022
  ident: 965_CR88
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.abh0496
– volume: 46
  start-page: 735
  year: 2012
  ident: 965_CR57
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2012.05.029
– volume: 74
  start-page: 19
  year: 2019
  ident: 965_CR6
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2019.02.013
– volume: 469
  start-page: 221
  year: 2011
  ident: 965_CR8
  publication-title: Nature
  doi: 10.1038/nature09663
– volume: 590
  start-page: 57
  year: 2021
  ident: 965_CR89
  publication-title: Nature
  doi: 10.1038/s41586-021-03214-x
– volume: 498
  start-page: 380
  year: 2013
  ident: 965_CR23
  publication-title: Nature
  doi: 10.1038/nature12306
– volume: 74
  start-page: 801
  year: 2019
  ident: 965_CR97
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2019.02.038
– volume: 175
  start-page: 488
  year: 2018
  ident: 965_CR25
  publication-title: Cell
  doi: 10.1016/j.cell.2018.08.062
– volume: 4
  start-page: 13
  year: 2018
  ident: 965_CR87
  publication-title: Cell Disco.
  doi: 10.1038/s41421-018-0010-9
– volume: 134
  start-page: 587
  year: 2008
  ident: 965_CR91
  publication-title: Cell
  doi: 10.1016/j.cell.2008.06.032
– volume: 52
  start-page: 767
  year: 2020
  ident: 965_CR49
  publication-title: Immunity
  doi: 10.1016/j.immuni.2020.03.016
– volume: 29
  start-page: 538
  year: 2008
  ident: 965_CR19
  publication-title: Immunity
  doi: 10.1016/j.immuni.2008.09.003
– volume: 178
  start-page: 290
  year: 2019
  ident: 965_CR61
  publication-title: Cell
  doi: 10.1016/j.cell.2019.05.036
– volume: 10
  year: 2020
  ident: 965_CR48
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-020-71887-x
– volume: 16
  start-page: 1025
  year: 2015
  ident: 965_CR13
  publication-title: Nat. Immunol.
  doi: 10.1038/ni.3267
– volume: 503
  start-page: 530
  year: 2013
  ident: 965_CR52
  publication-title: Nature
  doi: 10.1038/nature12640
– volume: 25
  start-page: 784
  year: 2018
  ident: 965_CR107
  publication-title: Cell Death Differ.
  doi: 10.1038/s41418-017-0017-z
– volume: 111
  start-page: E4991
  year: 2014
  ident: 965_CR53
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1419338111
– volume: 328
  start-page: 1703
  year: 2010
  ident: 965_CR20
  publication-title: Science
  doi: 10.1126/science.1189801
– volume: 341
  start-page: 1390
  year: 2013
  ident: 965_CR21
  publication-title: Science
  doi: 10.1126/science.1244040
– volume: 36
  start-page: 401
  year: 2012
  ident: 965_CR10
  publication-title: Immunity
  doi: 10.1016/j.immuni.2012.01.009
– volume: 10
  start-page: 549
  year: 2006
  ident: 965_CR105
  publication-title: Dev. Cell
  doi: 10.1016/j.devcel.2006.04.008
– volume: 1
  start-page: 184
  year: 2020
  ident: 965_CR42
  publication-title: Nat. Cancer
  doi: 10.1038/s43018-020-0028-4
– volume: 45
  start-page: 555
  year: 2016
  ident: 965_CR36
  publication-title: Immunity
  doi: 10.1016/j.immuni.2016.08.014
– volume: 69
  start-page: 81
  year: 2018
  ident: 965_CR111
  publication-title: Cell Calcium
  doi: 10.1016/j.ceca.2017.06.007
– volume: 549
  start-page: 394
  year: 2017
  ident: 965_CR2
  publication-title: Nature
  doi: 10.1038/nature23890
– volume: 9
  start-page: 550
  year: 2007
  ident: 965_CR99
  publication-title: Nat. Cell Biol.
  doi: 10.1038/ncb1575
– volume: 339
  start-page: 786
  year: 2013
  ident: 965_CR15
  publication-title: Science
  doi: 10.1126/science.1232458
– volume: 197
  start-page: 2157
  year: 2016
  ident: 965_CR92
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.1600722
– volume: 22
  start-page: 146
  year: 2016
  ident: 965_CR94
  publication-title: Nat. Med.
  doi: 10.1038/nm.4027
– volume: 553
  start-page: 467
  year: 2018
  ident: 965_CR76
  publication-title: Nature
  doi: 10.1038/nature25432
– volume: 46
  start-page: 393
  year: 2017
  ident: 965_CR9
  publication-title: Immunity
  doi: 10.1016/j.immuni.2017.02.011
– volume: 11
  start-page: 389
  year: 2011
  ident: 965_CR4
  publication-title: Nat. Rev. Immunol.
  doi: 10.1038/nri2975
– volume: 18
  start-page: 1707
  year: 2017
  ident: 965_CR28
  publication-title: EMBO Rep.
  doi: 10.15252/embr.201744017
– volume: 66
  start-page: 705
  year: 2017
  ident: 965_CR39
  publication-title: Cancer Immunol. Immunother.
  doi: 10.1007/s00262-017-1975-1
– volume: 20
  start-page: 245
  year: 1997
  ident: 965_CR103
  publication-title: Annu. Rev. Neurosci.
  doi: 10.1146/annurev.neuro.20.1.245
– volume: 15
  start-page: 4208
  year: 1995
  ident: 965_CR67
  publication-title: Mol. Cell. Biol.
  doi: 10.1128/MCB.15.8.4208
– volume: 119
  start-page: e2119189119
  year: 2022
  ident: 965_CR44
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.2119189119
– volume: 349
  start-page: 1228
  year: 2015
  ident: 965_CR54
  publication-title: Science
  doi: 10.1126/science.aab3632
– volume: 16
  start-page: e1008387
  year: 2020
  ident: 965_CR79
  publication-title: PLoS Pathog.
  doi: 10.1371/journal.ppat.1008387
– volume: 71
  start-page: 825
  year: 2018
  ident: 965_CR96
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2018.07.009
– volume: 199
  start-page: 3222
  year: 2017
  ident: 965_CR71
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.1700699
– volume: 567
  start-page: 389
  year: 2019
  ident: 965_CR56
  publication-title: Nature
  doi: 10.1038/s41586-019-0998-5
– volume: 153
  start-page: 1094
  year: 2013
  ident: 965_CR12
  publication-title: Cell
  doi: 10.1016/j.cell.2013.04.046
– volume: 3
  start-page: 1362
  year: 2013
  ident: 965_CR24
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2013.05.008
– volume: 30
  start-page: 4370
  year: 2020
  ident: 965_CR106
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2020.02.105
– volume: 214
  start-page: 1769
  year: 2017
  ident: 965_CR75
  publication-title: J. Exp. Med
  doi: 10.1084/jem.20161674
– volume: 176
  start-page: 1432
  year: 2019
  ident: 965_CR26
  publication-title: Cell
  doi: 10.1016/j.cell.2019.01.049
– volume: 1797
  start-page: 1281
  year: 2010
  ident: 965_CR16
  publication-title: Biochim. Biophys. Acta
  doi: 10.1016/j.bbabio.2010.03.003
– volume: 52
  start-page: 357
  year: 2020
  ident: 965_CR47
  publication-title: Immunity
  doi: 10.1016/j.immuni.2020.01.014
– volume: 37
  start-page: e99238
  year: 2018
  ident: 965_CR110
  publication-title: EMBO J.
  doi: 10.15252/embj.201899238
– volume: 75
  start-page: 372
  year: 2019
  ident: 965_CR45
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2019.05.006
– volume: 16
  year: 2021
  ident: 965_CR41
  publication-title: Infect. Agent. Cancer
  doi: 10.1186/s13027-021-00346-7
– volume: 49
  start-page: 490
  year: 2018
  ident: 965_CR70
  publication-title: Immunity
  doi: 10.1016/j.immuni.2018.07.008
– volume: 41
  start-page: 919
  year: 2014
  ident: 965_CR82
  publication-title: Immunity
  doi: 10.1016/j.immuni.2014.11.011
– volume: 36
  start-page: 1073
  year: 2012
  ident: 965_CR58
  publication-title: Immunity
  doi: 10.1016/j.immuni.2012.03.019
– volume: 18
  start-page: 157
  year: 2015
  ident: 965_CR62
  publication-title: Cell Host Microbe
  doi: 10.1016/j.chom.2015.07.001
– volume: 359
  start-page: eaao6047
  year: 2018
  ident: 965_CR109
  publication-title: Science
  doi: 10.1126/science.aao6047
– volume: 19
  start-page: 725
  year: 2012
  ident: 965_CR60
  publication-title: Nat. Struct. Mol. Biol.
  doi: 10.1038/nsmb.2332
– volume: 30
  start-page: 397
  year: 2009
  ident: 965_CR80
  publication-title: Immunity
  doi: 10.1016/j.immuni.2009.01.008
SSID ssj0025474
Score 2.6586313
SecondaryResourceType review_article
Snippet In addition to constituting the genetic material of an organism, DNA is a tracer for the recognition of foreign pathogens and a trigger of the innate immune...
Inflammatory diseases: Understanding mitochondrial DNA release Cytosolic DNA activates the cGAS-STING pathway which mediates inflammation and antiviral...
SourceID nrf
doaj
proquest
pubmed
crossref
springer
SourceType Open Website
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 510
SubjectTerms Amyotrophic lateral sclerosis
Antiviral drugs
Biomedical and Life Sciences
Biomedicine
Chromatin
DNA viruses
DNA, Mitochondrial - genetics
DNA, Mitochondrial - metabolism
Humans
Immune response
Immunity, Innate
Inflammasomes
Inflammasomes - metabolism
Inflammation
Inflammation - metabolism
Inflammatory diseases
Innate immunity
Localization
Macrophages
Medical Biochemistry
Membrane Proteins - metabolism
Mitochondria
Mitochondria - metabolism
Mitochondrial DNA
Molecular Medicine
Molecular modelling
Neurodegenerative diseases
Nucleotidyltransferases - genetics
Oligomerization
Pathogens
Review Article
Signal Transduction
Stem Cells
생화학
SummonAdditionalLinks – databaseName: Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQD4gLgpZHoCBXIC5gdf2KneNC6QNp99JWqrhYthOjqmwW7W5V9d93xkmWIh69cIqUjC3bM5P5xmPPEPIW3B4vvCqZ0jEyZfWIBZ004yAdPIKK-AovCk-m5eGp-nKmz26V-sIzYV164G7hdmOCZlKEykuvDODrCiyOj6JSJsikMzQCmzc4U72rpZVR_RWZkbS7Sy6EwcO2kiFm18z8YoZytn4wLu0i_Qlo_hYkzbZn_xF52INGOu4G-5jca9pNsjVuwWGeXdN3NB_jzPvjm-T-pI-Wb5Gvk6H2LZ01eMP3fDlb0nmiM1Bj-O21NUof3ZuOKZZOAXtGfVtTvOrQbdQiLQBEGg_Gx-z45Gh6QLGC8ZW_fkJO9z-ffDpkfS0FFrUtVyyEGEBVZaMFWMVkIzc-KRkqWVo_klUKZQSkUnlfA0ipR0mKFFWjg-K1klHIp2SjnbfNc0JjAxzxwQcJHq0MNmAkT1pteDIR8F9B-LC0LvaJxrHexXeXA97Suo4dDtjhMjucKcj7dZsfXZqNf1J_RI6tKTFFdn4BguN6wXF3CU5B3gC_3UU8z-3x-W3uLhYOHIkjx3Pqe2ULsj3Ig-u1e-mEqTRmXLcwkp31Z9BLDLb4tplfZhouEY5BF886OVqPF2so4poV5MMgWD87__u0X_yPab8kD0TWAzxGt002VovL5hXgqlV4nVXoBuFeF6s
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwELdgSIgXBBuwwEBGIF7AWhPbtfOEysc-kNqXbVLFi2U78TSNJqPphPbfc-c4rRCwp0iOHTm-O9_vfOc7Qt6C2WMLK8ZMSO-Z0HLEnAyS5cAduQcRsSVeFJ7Oxkdn4ttcztOBW5fCKoc9MW7UVevxjHy_UKXELNdafbz6ybBqFHpXUwmNu-Qepi7DkC413xhcUsQszDlADMZBb6VLMyOu9ztoVBh-yxmieMnUH4op5u8HddMsw7-g519u06iNDh6RhwlG0klP98fkTt1sk51JAyb04oa-ozGwM56Yb5P70-Q_3yHfp0M1XLqo8c7vRbfoaBvoAgQbNsKmQn6kX2YTisVUQMNR21QULz_0R7fYFyAj9YeTE3Zyejw7pFjT-Je9eULODr6efj5iqboC81KPV8w570B4eS0L0JNB-1zZILgr-VjbES-DG3vALqW1FcCWahR4EbyopRN5Jbgv-FOy1bRNvUuor4G01lnHwcblTjv07XEtVR6UB0SYkXxYWuNT6nGsgPHDRBc416YnhwFymEgOozLyfj3mqk-8cWvvT0ixdU9Mmh0b2uW5STJofIBp8sKVlluhwFQrAbxYX5RCOR6kzcgboLe59BdxPD7PW3O5NGBaHJs8JsMXOiN7Az-YJO-d2XBnRl6vX4OkovvFNnV7HfvkHAEafOJZz0fr-WJVRVyzjHwYGGvz8f__9vPb5_KCPCgih2PI3B7ZWi2v65eAoVbuVRSU34tJEcQ
  priority: 102
  providerName: ProQuest
Title Molecular mechanisms of mitochondrial DNA release and activation of the cGAS-STING pathway
URI https://link.springer.com/article/10.1038/s12276-023-00965-7
https://www.ncbi.nlm.nih.gov/pubmed/36964253
https://www.proquest.com/docview/2795072987
https://www.proquest.com/docview/2791375098
https://doaj.org/article/cf15732b9a3a475489152ac2947b3f5a
https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002947633
Volume 55
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX Experimental and Molecular Medicine, 2023, 55(0), , pp.510-519
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3di9NAEF_uA8QX0Tv1omdZUXzRYLMf2eQxV--r0CL2Doovy-4mexxnE2l7yP33zmySingKPgXa2TDJzGR-u_NFyFvY9hhmRBoL6VwsMjmMrfQyTkA7EgcmYnIsFJ5M07NLMZ7L-RZhfS1MSNoPLS3DZ7rPDvu4ShhTmC7LY0TdMlbbZBdbt6NWj9LRZpMlhRJdccyQZ_es-80BhT794Fbqpb8PYv4RHg1e5-QxedTBRVq0DD4hW1W9R_YL4L1Z3NF3NCRwhpPxPfJg0sXJ98nXST_1li4qrO29Xi1WtPF0AQYMH7y6RL2jn6YFxaEp4MmoqUuKRQ7tES3SAjSk7rSYxbOL8-kpxdnFP8zdU3J5cnwxOou7KQqxk1m6jq11FoyUV5KBP_SZS5Txgtucp5kZ8tzb1AFGyY0pAZ6UQ8-Zd6KSViSl4I7xZ2SnburqgFBXgQiNNZbDXpbbzGIMj2dSJV45QH4RSfpXq13XYhwnXXzTIdTNM92KQ4M4dBCHVhF5v1nzvW2w8U_qI5TYhhKbY4cfmuWV7pRFOw9scmZzw41QsCXLAaQYx3KhLPfSROQNyFvfuOuwHq9Xjb5ZathCnOskNL0XWUQOe33QnV2vNFO5xF7rGXDyevM3WCSGWUxdNbeBJuEIxOAWz1s92vCL0xPxnUXkQ69Yv27-98d-8X_kL8lDFjQeU-UOyc56eVu9Auy0tgOyreZqQHaLYjwbw_XoePr5yyCY0CCcR_wEpLoSmg
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaqrQRcELQ8AgWMeFzA6ia28zggtKWPXdpdIbqVKi7GduKqKpuU3a2q_VP8RmacZCsE9NZTpMSJHM83L49nhpDX4PboSIuYCWktE6nsMiOdZCGgI7TAIjrDROHhKO4fic_H8niF_GpzYfBYZSsTvaDOK4t75JtRkkmscp0mH89_MuwahdHVtoVGDYv9YnEJLtvsw2Ab6PsminZ3xp_6rOkqwKxM4zkzxhoALS9kBPrBpTZMtBPcZDxOdZdnzsQWdHamdQ7qOu86HjkrCmlEmAtusdABiPxVwcGV6ZDVrZ3Rl69LF08KX_c5BKOGcdCUTZpOl6ebM7iZ4IFfztBvkCz5QxX6jgGg4Mqp-5ex-1eg1uu_3XvkbmO40l6NtPtkpSjXyHqvBKd9sqBvqT9K6vfo18itYROxXyffhm3_XTopMMv4dDaZ0crRCYgSEL1ljhxAt0c9iu1bQKdSXeYU0y3qzWIcC0YqtXu9Q3Y4Hoz2KHZRvtSLB-ToRlb-IemUVVk8JtQWACZttOHgVXOTGowm8lQmoUss2KABCdulVbYpdo49N34oH3TnqarJoYAcypNDJQF5t3znvC71ce3oLaTYciSW6fY3qumJarheWQfT5JHJNNciAecwA3NJ2ygTieFO6oC8AnqrM3vq38frSaXOpgqcmYEKffl9kQZko8WDaiTMTF3xQ0BeLh-DbMCAjy6L6sKPCTmahPCJRzWOlvPFPo64ZgF53wLr6uP__-0n18_lBbndHw8P1MFgtP-U3Ik82vHA3gbpzKcXxTOw4ObmecM2lHy_aU79DVnaUU0
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3bbtMw1JqGNPGCYOMSGGDE5QWsNrFdJw8IFUq3MlohbZOqvRjbiadpNB1tp6m_xtdxjpO0QsDe9hTJsSPH5-5zI-QVmD0mMaLDhHSOiVS2mZVeshiwI3ZAIibDROHhqLN_LL6M5XiD_GpyYTCssuGJgVHnU4d35K1EZRKrXKeq5euwiG-9_oeLnww7SKGntWmnUaHIQbG8AvNt_n7QA1i_TpL-56NP-6zuMMCcTDsLZq2zgMC8kAnICp-6WBkvuM14JzVtnnnbcSC_M2NyEN152_PEO1FIK-JccIdFD4D931Jcxkhjarw29qQIFaBjUG8YB5lZJ-y0edqaw6DC0F_O0IKQTP0hFEPvABB15cz_S-39y2UbJGH_LrlTq7C0W-HcPbJRlNtkp1uC-T5Z0jc0BJWG2_ptsjWsffc75GTYdOKlkwLzjc_mkzmdejoBpgJMuMyRFmhv1KXYyAWkKzVlTjHxoro2xrmgrlK31z1kh0eD0R7FfspXZnmfHN_IuT8gm-W0LB4R6gpAK2ON5WBfc5ta9CvyVKrYKwfaaETi5mi1q8ueY_eNHzq433mqK3BoAIcO4NAqIm9Xay6qoh_Xzv6IEFvNxILdYWA6O9U1_WvnYZs8sZnhRigwEzNQnIxLMqEs99JE5CXAW5-7s7Aen6dTfT7TYNYMdBwK8Ys0IrsNPuia18z1mjIi8mL1GrgEun5MWUwvw5yYo3IIn3hY4dFqv9jREc8sIu8axFp__P-__fj6vTwnW0Cf-utgdPCE3E4CsmPk3i7ZXMwui6egyi3ss0AzlHy_aSL9DZ9SVB0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Molecular+mechanisms+of+mitochondrial+DNA+release+and+activation+of+the+cGAS-STING+pathway&rft.jtitle=Experimental+%26+molecular+medicine&rft.au=Kim%2C+Jeonghan&rft.au=Kim%2C+Ho-Shik&rft.au=Chung%2C+Jay+H.&rft.date=2023-03-01&rft.pub=Nature+Publishing+Group+UK&rft.eissn=2092-6413&rft.volume=55&rft.issue=3&rft.spage=510&rft.epage=519&rft_id=info:doi/10.1038%2Fs12276-023-00965-7&rft.externalDocID=10_1038_s12276_023_00965_7
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2092-6413&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2092-6413&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2092-6413&client=summon