Molecular mechanisms of mitochondrial DNA release and activation of the cGAS-STING pathway
In addition to constituting the genetic material of an organism, DNA is a tracer for the recognition of foreign pathogens and a trigger of the innate immune system. cGAS functions as a sensor of double-stranded DNA fragments and initiates an immune response via the adaptor protein STING. The cGAS-ST...
Saved in:
Published in | Experimental & molecular medicine Vol. 55; no. 3; pp. 510 - 519 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
01.03.2023
Springer Nature B.V Nature Publishing Group 생화학분자생물학회 |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In addition to constituting the genetic material of an organism, DNA is a tracer for the recognition of foreign pathogens and a trigger of the innate immune system. cGAS functions as a sensor of double-stranded DNA fragments and initiates an immune response via the adaptor protein STING. The cGAS-STING pathway not only defends cells against various DNA-containing pathogens but also modulates many pathological processes caused by the immune response to the ectopic localization of self-DNA, such as cytosolic mitochondrial DNA (mtDNA) and extranuclear chromatin. In addition, macrophages can cause inflammation by forming a class of protein complexes called inflammasomes, and the activation of the NLRP3 inflammasome requires the release of oxidized mtDNA. In innate immunity related to inflammasomes, mtDNA release is mediated by macropores that are formed on the outer membrane of mitochondria via VDAC oligomerization. These macropores are specifically formed in response to mitochondrial stress and tissue damage, and the inhibition of VDAC oligomerization mitigates this inflammatory response. The rapidly expanding area of research on the mechanisms by which mtDNA is released and triggers inflammation has revealed new treatment strategies not only for inflammation but also, surprisingly, for neurodegenerative diseases such as amyotrophic lateral sclerosis.
Inflammatory diseases: Understanding mitochondrial DNA release
Cytosolic DNA activates the cGAS-STING pathway which mediates inflammation and antiviral response. One source of cytosolic DNA is ‘self ‘ DNA, such as mitochondrial DNA. Studies of how mitochondria can release DNA and trigger dangerous immune responses are revealing potential treatments for inflammatory diseases. Cells isolate DNA in their nuclei and mitochondria, but if this ‘self-DNA’ leaks out, it triggers the same immune responses that the body uses to fight DNA from viruses or bacteria. Jeonghan Kim at The Catholic University of Korea College of Medicine in Seoul, South Korea, and co-workers reviewed research into the mechanism causing mitochondrial DNA release, and the resulting inflammatory pathways. Although cGAS-STING is the central driver of such inflammation, treatments targeting it may also suppress the body’s antimicrobial immunity. A safer alternative maybe to inhibit mitochondrial VDAC oligomerization, which releases mitochondrial DNA. |
---|---|
AbstractList | In addition to constituting the genetic material of an organism, DNA is a tracer for the recognition of foreign pathogens and a trigger of the innate immune system. cGAS functions as a sensor of double-stranded DNA fragments and initiates an immune response via the adaptor protein STING. The cGAS-STING pathway not only defends cells against various DNA-containing pathogens but also modulates many pathological processes caused by the immune response to the ectopic localization of self-DNA, such as cytosolic mitochondrial DNA (mtDNA) and extranuclear chromatin. In addition, macrophages can cause inflammation by forming a class of protein complexes called inflammasomes, and the activation of the NLRP3 inflammasome requires the release of oxidized mtDNA. In innate immunity related to inflammasomes, mtDNA release is mediated by macropores that are formed on the outer membrane of mitochondria via VDAC oligomerization. These macropores are specifically formed in response to mitochondrial stress and tissue damage, and the inhibition of VDAC oligomerization mitigates this inflammatory response. The rapidly expanding area of research on the mechanisms by which mtDNA is released and triggers inflammation has revealed new treatment strategies not only for inflammation but also, surprisingly, for neurodegenerative diseases such as amyotrophic lateral sclerosis.Inflammatory diseases: Understanding mitochondrial DNA releaseCytosolic DNA activates the cGAS-STING pathway which mediates inflammation and antiviral response. One source of cytosolic DNA is ‘self ‘ DNA, such as mitochondrial DNA. Studies of how mitochondria can release DNA and trigger dangerous immune responses are revealing potential treatments for inflammatory diseases. Cells isolate DNA in their nuclei and mitochondria, but if this ‘self-DNA’ leaks out, it triggers the same immune responses that the body uses to fight DNA from viruses or bacteria. Jeonghan Kim at The Catholic University of Korea College of Medicine in Seoul, South Korea, and co-workers reviewed research into the mechanism causing mitochondrial DNA release, and the resulting inflammatory pathways. Although cGAS-STING is the central driver of such inflammation, treatments targeting it may also suppress the body’s antimicrobial immunity. A safer alternative maybe to inhibit mitochondrial VDAC oligomerization, which releases mitochondrial DNA. In addition to constituting the genetic material of an organism, DNA is a tracer for the recognition of foreign pathogens and a trigger of the innate immune system. cGAS functions as a sensor of double-stranded DNA fragments and initiates an immune response via the adaptor protein STING. The cGAS-STING pathway not only defends cells against various DNA-containing pathogens but also modulates many pathological processes caused by the immune response to the ectopic localization of self-DNA, such as cytosolic mitochondrial DNA (mtDNA) and extranuclear chromatin. In addition, macrophages can cause inflammation by forming a class of protein complexes called inflammasomes, and the activation of the NLRP3 inflammasome requires the release of oxidized mtDNA. In innate immunity related to inflammasomes, mtDNA release is mediated by macropores that are formed on the outer membrane of mitochondria via VDAC oligomerization. These macropores are specifically formed in response to mitochondrial stress and tissue damage, and the inhibition of VDAC oligomerization mitigates this inflammatory response. The rapidly expanding area of research on the mechanisms by which mtDNA is released and triggers inflammation has revealed new treatment strategies not only for inflammation but also, surprisingly, for neurodegenerative diseases such as amyotrophic lateral sclerosis.In addition to constituting the genetic material of an organism, DNA is a tracer for the recognition of foreign pathogens and a trigger of the innate immune system. cGAS functions as a sensor of double-stranded DNA fragments and initiates an immune response via the adaptor protein STING. The cGAS-STING pathway not only defends cells against various DNA-containing pathogens but also modulates many pathological processes caused by the immune response to the ectopic localization of self-DNA, such as cytosolic mitochondrial DNA (mtDNA) and extranuclear chromatin. In addition, macrophages can cause inflammation by forming a class of protein complexes called inflammasomes, and the activation of the NLRP3 inflammasome requires the release of oxidized mtDNA. In innate immunity related to inflammasomes, mtDNA release is mediated by macropores that are formed on the outer membrane of mitochondria via VDAC oligomerization. These macropores are specifically formed in response to mitochondrial stress and tissue damage, and the inhibition of VDAC oligomerization mitigates this inflammatory response. The rapidly expanding area of research on the mechanisms by which mtDNA is released and triggers inflammation has revealed new treatment strategies not only for inflammation but also, surprisingly, for neurodegenerative diseases such as amyotrophic lateral sclerosis. In addition to constituting the genetic material of an organism, DNA is a tracer for the recognition of foreign pathogens and a trigger of the innate immune system. cGAS functions as a sensor of double-stranded DNA fragments and initiates an immune response via the adaptor protein STING. The cGAS-STING pathway not only defends cells against various DNA-containing pathogens but also modulates many pathological processes caused by the immune response to the ectopic localization of self-DNA, such as cytosolic mitochondrial DNA (mtDNA) and extranuclear chromatin. In addition, macrophages can cause inflammation by forming a class of protein complexes called inflammasomes, and the activation of the NLRP3 inflammasome requires the release of oxidized mtDNA. In innate immunity related to inflammasomes, mtDNA release is mediated by macropores that are formed on the outer membrane of mitochondria via VDAC oligomerization. These macropores are specifically formed in response to mitochondrial stress and tissue damage, and the inhibition of VDAC oligomerization mitigates this inflammatory response. The rapidly expanding area of research on the mechanisms by which mtDNA is released and triggers inflammation has revealed new treatment strategies not only for inflammation but also, surprisingly, for neurodegenerative diseases such as amyotrophic lateral sclerosis. In addition to constituting the genetic material of an organism, DNA is a tracer for the recognition of foreign pathogens and a trigger of the innate immune system. cGAS functions as a sensor of double-stranded DNA fragments and initiates an immune response via the adaptor protein STING. The cGAS-STING pathway not only defends cells against various DNA-containing pathogens but also modulates many pathological processes caused by the immune response to the ectopic localization of self-DNA, such as cytosolic mitochondrial DNA (mtDNA) and extranuclear chromatin. In addition, macrophages can cause inflammation by forming a class of protein complexes called inflammasomes, and the activation of the NLRP3 inflammasome requires the release of oxidized mtDNA. In innate immunity related to inflammasomes, mtDNA release is mediated by macropores that are formed on the outer membrane of mitochondria via VDAC oligomerization. These macropores are specifically formed in response to mitochondrial stress and tissue damage, and the inhibition of VDAC oligomerization mitigates this inflammatory response. The rapidly expanding area of research on the mechanisms by which mtDNA is released and triggers inflammation has revealed new treatment strategies not only for inflammation but also, surprisingly, for neurodegenerative diseases such as amyotrophic lateral sclerosis. KCI Citation Count: 0 Inflammatory diseases: Understanding mitochondrial DNA release Cytosolic DNA activates the cGAS-STING pathway which mediates inflammation and antiviral response. One source of cytosolic DNA is ‘self ‘ DNA, such as mitochondrial DNA. Studies of how mitochondria can release DNA and trigger dangerous immune responses are revealing potential treatments for inflammatory diseases. Cells isolate DNA in their nuclei and mitochondria, but if this ‘self-DNA’ leaks out, it triggers the same immune responses that the body uses to fight DNA from viruses or bacteria. Jeonghan Kim at The Catholic University of Korea College of Medicine in Seoul, South Korea, and co-workers reviewed research into the mechanism causing mitochondrial DNA release, and the resulting inflammatory pathways. Although cGAS-STING is the central driver of such inflammation, treatments targeting it may also suppress the body’s antimicrobial immunity. A safer alternative maybe to inhibit mitochondrial VDAC oligomerization, which releases mitochondrial DNA. In addition to constituting the genetic material of an organism, DNA is a tracer for the recognition of foreign pathogens and a trigger of the innate immune system. cGAS functions as a sensor of double-stranded DNA fragments and initiates an immune response via the adaptor protein STING. The cGAS-STING pathway not only defends cells against various DNA-containing pathogens but also modulates many pathological processes caused by the immune response to the ectopic localization of self-DNA, such as cytosolic mitochondrial DNA (mtDNA) and extranuclear chromatin. In addition, macrophages can cause inflammation by forming a class of protein complexes called inflammasomes, and the activation of the NLRP3 inflammasome requires the release of oxidized mtDNA. In innate immunity related to inflammasomes, mtDNA release is mediated by macropores that are formed on the outer membrane of mitochondria via VDAC oligomerization. These macropores are specifically formed in response to mitochondrial stress and tissue damage, and the inhibition of VDAC oligomerization mitigates this inflammatory response. The rapidly expanding area of research on the mechanisms by which mtDNA is released and triggers inflammation has revealed new treatment strategies not only for inflammation but also, surprisingly, for neurodegenerative diseases such as amyotrophic lateral sclerosis. Inflammatory diseases: Understanding mitochondrial DNA release Cytosolic DNA activates the cGAS-STING pathway which mediates inflammation and antiviral response. One source of cytosolic DNA is ‘self ‘ DNA, such as mitochondrial DNA. Studies of how mitochondria can release DNA and trigger dangerous immune responses are revealing potential treatments for inflammatory diseases. Cells isolate DNA in their nuclei and mitochondria, but if this ‘self-DNA’ leaks out, it triggers the same immune responses that the body uses to fight DNA from viruses or bacteria. Jeonghan Kim at The Catholic University of Korea College of Medicine in Seoul, South Korea, and co-workers reviewed research into the mechanism causing mitochondrial DNA release, and the resulting inflammatory pathways. Although cGAS-STING is the central driver of such inflammation, treatments targeting it may also suppress the body’s antimicrobial immunity. A safer alternative maybe to inhibit mitochondrial VDAC oligomerization, which releases mitochondrial DNA. |
Author | Kim, Ho-Shik Kim, Jeonghan Chung, Jay H. |
Author_xml | – sequence: 1 givenname: Jeonghan orcidid: 0000-0003-1695-9630 surname: Kim fullname: Kim, Jeonghan email: jhk@catholic.ac.kr organization: Department of Biochemistry, The Catholic University of Korea College of Medicine – sequence: 2 givenname: Ho-Shik orcidid: 0000-0003-2121-6655 surname: Kim fullname: Kim, Ho-Shik organization: Department of Biochemistry, The Catholic University of Korea College of Medicine – sequence: 3 givenname: Jay H. surname: Chung fullname: Chung, Jay H. email: chungj@nhlbi.nih.gov organization: Laboratory of Obesity and Aging Research, Cardiovascular Branch, National Heart Lung and Blood Institute, National Institutes of Health |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36964253$$D View this record in MEDLINE/PubMed https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002947633$$DAccess content in National Research Foundation of Korea (NRF) |
BookMark | eNp9kktv1DAUhSNURB_wB1igSGwQUsDP2F6OCgwjlSLRYcPGunHsGU-TeLAzrfrvyaMU1EVX17K-c-7Vvec0O-pCZ7PsNUYfMKLyY8KEiLJAhBYIqZIX4ll2QpAiRckwPfrvfZydprRDiHAm2IvsmJaqZITTk-zXt9BYc2gg5q01W-h8alMeXN76Ppht6Oroock_XS7yaBsLyebQ1TmY3t9A70M3sv3W5ma5uCqu1qvLZb6HfnsLdy-z5w6aZF_d17Ps55fP6_OvxcX35ep8cVEYLsu-qCpTSYmo5cTa2kmDBThGK0VLCYgqV5VGUaEAalSyGjlKnGGWVwzXjBpCz7L3s28Xnb42XgfwU90EfR314sd6pTEimAgmB3g1w3WAnd5H30K8mxTTR4gbDbH3prHaOMwFJZUCCkxwJhXmBAxRTFTUcRi83s1e-xh-H2zqdeuTsU0DnQ2HpIlQmAqO1Nj27SN0Fw6xG9YyUhwJoqQYqDf31KFqbf0w3t9zDQCZARNDStG6BwQjPWZCz5nQQyb0lAk9uspHIuP76XZ9BN88LaWzNA19uo2N_8Z-QvUHWO3Hzw |
CitedBy_id | crossref_primary_10_1038_s41392_024_02044_3 crossref_primary_10_1111_jcmm_70371 crossref_primary_10_1016_j_nbd_2024_106687 crossref_primary_10_1038_s42255_023_00930_8 crossref_primary_10_1016_j_phymed_2025_156620 crossref_primary_10_2147_JIR_S499473 crossref_primary_10_1186_s12967_024_05739_x crossref_primary_10_1016_j_celrep_2024_115094 crossref_primary_10_1073_pnas_2404644121 crossref_primary_10_1093_neuonc_noae034 crossref_primary_10_3389_fimmu_2024_1403070 crossref_primary_10_1007_s12035_024_04412_0 crossref_primary_10_1016_j_ajt_2024_08_005 crossref_primary_10_1039_D4BM01532K crossref_primary_10_1007_s00011_024_01860_1 crossref_primary_10_1016_j_cyto_2025_156873 crossref_primary_10_1016_j_intimp_2024_113447 crossref_primary_10_3390_antiox13070833 crossref_primary_10_1016_j_bioactmat_2025_02_040 crossref_primary_10_15252_emmm_202318028 crossref_primary_10_3389_fonc_2024_1394699 crossref_primary_10_1016_j_tube_2025_102611 crossref_primary_10_1073_pnas_2406954122 crossref_primary_10_1007_s11010_024_04964_8 crossref_primary_10_1038_s12276_024_01250_x crossref_primary_10_1016_j_arr_2023_102145 crossref_primary_10_1038_s41586_023_06866_z crossref_primary_10_1080_00207454_2024_2352025 crossref_primary_10_1002_adhm_202403309 crossref_primary_10_3389_fendo_2025_1488489 crossref_primary_10_1016_j_intimp_2024_113711 crossref_primary_10_1016_j_xcrm_2025_101968 crossref_primary_10_3390_cells13171420 crossref_primary_10_1186_s12964_024_01677_9 crossref_primary_10_1002_advs_202410550 crossref_primary_10_1002_smll_202408139 crossref_primary_10_3390_cells12192345 crossref_primary_10_3389_fcell_2024_1287447 crossref_primary_10_4103_ijot_ijot_56_23 crossref_primary_10_1016_j_jchemneu_2023_102362 crossref_primary_10_1016_j_neuroscience_2024_04_009 crossref_primary_10_3389_fphys_2024_1443604 crossref_primary_10_1186_s12974_025_03396_5 crossref_primary_10_3389_fnagi_2024_1507035 crossref_primary_10_1128_msphere_00537_24 crossref_primary_10_1186_s13024_025_00815_2 crossref_primary_10_7717_peerj_18559 crossref_primary_10_1186_s40035_023_00380_y crossref_primary_10_1016_j_intimp_2024_113424 crossref_primary_10_1016_j_jbc_2025_108421 crossref_primary_10_1016_j_nantod_2024_102231 crossref_primary_10_1111_acer_70019 crossref_primary_10_3389_fmed_2024_1436091 crossref_primary_10_1038_s41388_024_03272_1 crossref_primary_10_1016_j_radmp_2023_10_005 crossref_primary_10_1159_000541908 crossref_primary_10_1016_j_arr_2024_102549 crossref_primary_10_1111_ene_70014 crossref_primary_10_1016_j_jdermsci_2024_12_002 crossref_primary_10_2147_JEP_S433181 crossref_primary_10_1097_HEP_0000000000000638 crossref_primary_10_3390_antiox13020240 crossref_primary_10_1096_fj_202400463R crossref_primary_10_1016_j_reprotox_2023_108441 crossref_primary_10_26508_lsa_202302424 crossref_primary_10_1002_anie_202411498 crossref_primary_10_3390_ijms25147943 crossref_primary_10_1007_s11064_024_04151_7 crossref_primary_10_1016_j_intimp_2025_114464 crossref_primary_10_3390_ijms26010063 crossref_primary_10_1016_j_neuropharm_2024_110217 crossref_primary_10_1186_s13578_024_01242_4 crossref_primary_10_3389_fimmu_2024_1338096 crossref_primary_10_1016_j_nantod_2023_102033 crossref_primary_10_1016_j_cclet_2025_110990 crossref_primary_10_1097_RHU_0000000000002209 crossref_primary_10_1186_s11658_024_00669_4 crossref_primary_10_1016_j_bbadis_2025_167803 crossref_primary_10_1016_j_biopha_2024_116656 crossref_primary_10_3390_genes14081534 crossref_primary_10_1111_jcmm_70285 crossref_primary_10_3389_fnagi_2024_1503336 crossref_primary_10_1016_j_canlet_2025_217544 crossref_primary_10_1021_acsptsci_4c00457 crossref_primary_10_1016_j_ijbiomac_2024_134210 crossref_primary_10_15252_embj_2022113118 crossref_primary_10_3390_antiox14020125 crossref_primary_10_1080_15548627_2023_2276639 crossref_primary_10_1002_ctm2_70180 crossref_primary_10_3389_fpsyt_2024_1480438 crossref_primary_10_1007_s12035_024_04234_0 crossref_primary_10_1128_mbio_02506_23 crossref_primary_10_3389_fnins_2024_1500647 crossref_primary_10_1111_aos_16646 crossref_primary_10_1002_iub_70009 crossref_primary_10_1016_j_mad_2025_112044 crossref_primary_10_1016_j_mitoco_2024_07_002 crossref_primary_10_1124_dmd_123_001279 crossref_primary_10_1186_s12933_024_02566_8 crossref_primary_10_1016_j_mucimm_2025_01_013 crossref_primary_10_1016_j_canlet_2025_217599 crossref_primary_10_3389_fimmu_2023_1273248 crossref_primary_10_3390_ijms25126585 crossref_primary_10_1016_j_molcel_2023_12_005 crossref_primary_10_1002_ange_202411498 crossref_primary_10_1038_s41577_024_01112_7 crossref_primary_10_3389_fphys_2023_1217815 crossref_primary_10_1016_j_tice_2024_102596 crossref_primary_10_1096_fj_202402479RRR crossref_primary_10_3390_antiox13111421 crossref_primary_10_1002_jmv_70062 crossref_primary_10_1016_j_dnarep_2025_103814 crossref_primary_10_3390_biom14040402 crossref_primary_10_3390_biom14101215 crossref_primary_10_1093_schbul_sbae196 crossref_primary_10_1002_mco2_511 crossref_primary_10_3389_fimmu_2025_1526390 crossref_primary_10_1097_HC9_0000000000000534 |
Cites_doi | 10.1007/s13238-020-00729-3 10.1038/s41467-020-19318-3 10.1371/journal.ppat.1008387 10.1038/nature12305 10.1186/s13027-021-00346-7 10.1073/pnas.1603269113 10.1073/pnas.1905013116 10.4049/jimmunol.1700699 10.1016/j.molcel.2016.08.025 10.1016/0092-8674(90)90738-Z 10.1038/nsmb.2333 10.1038/s41586-022-04421-w 10.1016/j.celrep.2019.03.098 10.1016/0005-2736(86)90568-7 10.1016/j.devcel.2006.04.008 10.1038/s41586-019-0998-5 10.1016/j.immuni.2020.01.014 10.1038/ni.3356 10.1128/JVI.00037-14 10.1038/ncb1575 10.1038/nature23890 10.1016/j.immuni.2022.06.007 10.1016/j.cell.2013.04.046 10.1016/j.cell.2019.01.049 10.1007/s00262-017-1975-1 10.1016/j.immuni.2020.03.016 10.1016/j.cell.2019.05.036 10.1016/j.cell.2010.01.022 10.1038/s41586-019-1000-2 10.1038/s41467-018-06922-7 10.1016/j.immuni.2012.01.009 10.1016/j.immuni.2018.07.008 10.1016/j.immuni.2014.11.011 10.1038/nature12306 10.1016/j.celrep.2020.02.105 10.1038/srep19049 10.1016/j.cell.2014.11.037 10.1128/MCB.15.8.4208 10.1126/science.1232458 10.1038/nri3581 10.1146/annurev.neuro.20.1.245 10.15252/embj.201488726 10.1038/s41467-018-04759-8 10.1016/j.immuni.2013.08.004 10.1016/j.immuni.2010.10.013 10.1016/0092-8674(94)90154-6 10.1016/j.cell.2008.06.032 10.1073/pnas.0900850106 10.15252/embr.201744017 10.1371/journal.ppat.1006264 10.1016/j.cell.2018.08.062 10.4049/jimmunol.1600722 10.15252/embj.201899238 10.1038/s41586-018-0372-z 10.1073/pnas.1419338111 10.1038/s41467-020-19941-0 10.1126/science.aaa2630 10.1038/nm.4027 10.1172/JCI133264 10.1016/j.celrep.2013.05.008 10.1126/sciimmunol.aah7119 10.1126/sciadv.abh0496 10.1038/nature09907 10.1016/j.bbabio.2010.03.003 10.1038/s41586-019-1553-0 10.1038/nature07317 10.1073/pnas.2119189119 10.1038/s41598-020-71887-x 10.1126/science.abc5386 10.1038/20959 10.1016/j.molcel.2019.02.013 10.1038/nature14156 10.1016/j.molcel.2019.02.038 10.1016/j.immuni.2008.09.003 10.1074/jbc.M112.362608 10.1038/s41418-017-0017-z 10.1016/j.immuni.2016.08.014 10.1038/s41421-018-0010-9 10.1084/jem.20151876 10.1016/j.molcel.2018.07.009 10.1126/science.1189801 10.1126/science.aab3632 10.1371/journal.ppat.1004358 10.1038/nature12640 10.1038/nature09663 10.1016/j.celrep.2015.09.007 10.1126/science.aao6047 10.15252/embr.201846293 10.1172/JCI144339 10.1016/j.chom.2015.07.001 10.1038/s41586-019-1228-x 10.1038/nature25432 10.1038/s42255-021-00385-9 10.1126/science.aat1022 10.1016/j.ceca.2017.06.007 10.1038/s41586-021-03214-x 10.1016/j.immuni.2012.03.019 10.1016/j.immuni.2017.02.011 10.1042/BJ20041356 10.1084/jem.20161674 10.1016/j.cell.2020.09.020 10.1016/j.cell.2014.11.036 10.1038/nsmb.2332 10.1016/j.immuni.2013.10.019 10.1038/s43018-020-0028-4 10.1371/journal.ppat.1005012 10.1172/JCI148852 10.1126/science.aav4011 10.1016/j.molcel.2019.05.006 10.1038/nri2975 10.1016/j.immuni.2009.01.008 10.1016/j.molcel.2012.05.029 10.1016/j.celrep.2020.03.056 10.1126/science.1244040 10.1038/ni.3267 |
ContentType | Journal Article |
Copyright | This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply 2023 2023. This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply. This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply 2023 – notice: 2023. This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply. – notice: This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7X7 7XB 88E 8FE 8FH 8FI 8FJ 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU COVID DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M7P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS 7X8 DOA ACYCR |
DOI | 10.1038/s12276-023-00965-7 |
DatabaseName | SpringerOpen Free (Free internet resource, activated by CARLI) CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) ProQuest Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials - QC Biological Science Collection ProQuest Central ProQuest Natural Science Collection ProQuest One Coronavirus Research Database ProQuest Central Korea ProQuest Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences Health & Medical Collection (Alumni) Medical Database Biological Science Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic Directory of Open Access Journals Korean Citation Index |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Coronavirus Research Database ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | Publicly Available Content Database MEDLINE - Academic MEDLINE CrossRef |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 5 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Anatomy & Physiology |
EISSN | 2092-6413 |
EndPage | 519 |
ExternalDocumentID | oai_kci_go_kr_ARTI_10212748 oai_doaj_org_article_cf15732b9a3a475489152ac2947b3f5a 36964253 10_1038_s12276_023_00965_7 |
Genre | Research Support, N.I.H., Intramural Review Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- 0R~ 29G 2WC 3V. 5-W 53G 5GY 7X7 87B 88E 8FE 8FH 8FI 8FJ 8JR 9ZL AAJSJ ABUWG ACGFO ACGFS ACPRK ACSMW ACYCR ADBBV AENEX AFKRA AHMBA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS BAWUL BBNVY BENPR BHPHI BPHCQ BVXVI C1A C6C CCPQU DIK DU5 E3Z EBLON EBS EF. EJD EMOBN F5P FYUFA GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE LK8 M1P M7P M~E NAO OK1 PIMPY PQQKQ PROAC PSQYO RNS RNT RNTTT RPM SNYQT TR2 UKHRP W2D XSB AASML AAYXX CITATION OVT PHGZM PHGZT CGR CUY CVF ECM EIF NPM 7XB 8FK AARCD AZQEC COVID DWQXO GNUQQ K9. PJZUB PKEHL PPXIY PQEST PQGLB PQUKI PRINS 7X8 PUEGO AAADF AFGXO |
ID | FETCH-LOGICAL-c586t-bbcb8803e52eedf8c17af43b9368a039fb6c9379aad064d0f32fc4e5b41d43c23 |
IEDL.DBID | C6C |
ISSN | 2092-6413 1226-3613 |
IngestDate | Thu Mar 07 06:17:14 EST 2024 Wed Aug 27 01:29:19 EDT 2025 Tue Aug 05 10:13:09 EDT 2025 Wed Aug 13 05:28:33 EDT 2025 Thu Jan 02 22:53:03 EST 2025 Thu Apr 24 22:52:18 EDT 2025 Tue Jul 01 04:10:32 EDT 2025 Fri Feb 21 02:40:07 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
License | 2023. This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c586t-bbcb8803e52eedf8c17af43b9368a039fb6c9379aad064d0f32fc4e5b41d43c23 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0003-2121-6655 0000-0003-1695-9630 |
OpenAccessLink | https://www.nature.com/articles/s12276-023-00965-7 |
PMID | 36964253 |
PQID | 2795072987 |
PQPubID | 2041975 |
PageCount | 10 |
ParticipantIDs | nrf_kci_oai_kci_go_kr_ARTI_10212748 doaj_primary_oai_doaj_org_article_cf15732b9a3a475489152ac2947b3f5a proquest_miscellaneous_2791375098 proquest_journals_2795072987 pubmed_primary_36964253 crossref_primary_10_1038_s12276_023_00965_7 crossref_citationtrail_10_1038_s12276_023_00965_7 springer_journals_10_1038_s12276_023_00965_7 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-03-01 |
PublicationDateYYYYMMDD | 2023-03-01 |
PublicationDate_xml | – month: 03 year: 2023 text: 2023-03-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: United States – name: Seoul |
PublicationTitle | Experimental & molecular medicine |
PublicationTitleAbbrev | Exp Mol Med |
PublicationTitleAlternate | Exp Mol Med |
PublicationYear | 2023 |
Publisher | Nature Publishing Group UK Springer Nature B.V Nature Publishing Group 생화학분자생물학회 |
Publisher_xml | – name: Nature Publishing Group UK – name: Springer Nature B.V – name: Nature Publishing Group – name: 생화학분자생물학회 |
References | Zhou, Yazdi, Menu, Tschopp (CR8) 2011; 469 White (CR108) 2014; 159 Domizio (CR114) 2022; 603 de Oliveira Mann (CR74) 2019; 27 Luteijn (CR46) 2019; 573 Baines, Kaiser, Sheiko, Craigen, Molkentin (CR99) 2007; 9 Xian (CR95) 2022; 55 Zhao (CR64) 2016; 113 Kranzusch, Lee, Berger, Doudna (CR24) 2013; 3 Shoshan-Barmatz, Krelin, Shteinfer-Kuzmine (CR111) 2018; 69 Dorostkar (CR41) 2021; 16 Drill (CR48) 2020; 10 Xie (CR29) 2019; 116 Kato (CR43) 2018; 9 Woodward, Iavarone, Portnoy (CR20) 2010; 328 Xie (CR50) 2020; 130 Yin (CR57) 2012; 46 Riley (CR110) 2018; 37 Ning (CR6) 2019; 74 Novick, Cohen, Rubinstein (CR66) 1994; 77 Kraus, Roy, Pucadyil, Ryan (CR89) 2021; 590 Shoshan-Barmatz, Keinan, Abu-Hamad, Tyomkin, Aram (CR16) 2010; 1797 Carozza (CR42) 2020; 1 Merry, Korsmeyer (CR103) 1997; 20 West, Shadel, Ghosh (CR4) 2011; 11 Hu (CR36) 2016; 45 Wang (CR82) 2014; 41 Sun (CR18) 2009; 106 Ivashkiv, Donlin (CR68) 2014; 14 Li (CR51) 2022; 132 Shimizu, Narita, Tsujimoto (CR104) 1999; 399 Liu (CR55) 2019; 20 Caielli (CR93) 2016; 213 Luecke (CR28) 2017; 18 Civril (CR3) 2013; 498 Aarreberg (CR97) 2019; 74 Li (CR40) 2016; 6 Sprenger (CR100) 2021; 3 Yu (CR115) 2020; 183 Schoggins (CR69) 2011; 472 Zhong (CR80) 2009; 30 Li, Shu (CR34) 2020; 11 West (CR17) 2015; 520 Uzé, Lutfalla, Gresser (CR65) 1990; 60 Qin (CR84) 2014; 10 Liu (CR7) 2015; 347 Wang (CR9) 2017; 46 Zhao (CR63) 2019; 569 Zalk, Israelson, Garty, Azoulay-Zohar, Shoshan-Barmatz (CR113) 2005; 386 Tsuchida (CR77) 2010; 33 Zhou (CR47) 2020; 52 Takeuchi, Akira (CR5) 2010; 140 Sun, Wu, Du, Chen, Chen (CR15) 2013; 339 Hou (CR70) 2018; 49 Ishikawa, Barber (CR1) 2008; 455 Seo (CR31) 2015; 13 Dobbs (CR62) 2015; 18 Yang (CR79) 2020; 16 Bridgeman (CR54) 2015; 349 Wang (CR37) 2017; 13 Chen (CR38) 2016; 64 Cerboni (CR75) 2017; 214 Li (CR87) 2018; 4 Stetson, Ko, Heidmann, Medzhitov (CR91) 2008; 134 Huang, Liu, Du, Jiang, Su (CR59) 2012; 19 Balka (CR73) 2020; 31 Shimada (CR10) 2012; 36 Li (CR106) 2020; 30 Li (CR21) 2013; 341 Yang (CR78) 2018; 9 Rongvaux (CR102) 2014; 159 Gehrke (CR90) 2013; 39 Huang (CR101) 2022; 132 Zhang (CR14) 2019; 567 Herzner (CR13) 2015; 16 Shang, Zhang, Chen, Bai, Zhang (CR56) 2019; 567 Bakhoum (CR76) 2018; 553 Abe, Barber (CR72) 2014; 88 Mankan (CR27) 2014; 33 Ohkuri (CR39) 2017; 66 Orzalli (CR96) 2018; 71 Zhang (CR83) 2020; 11 Ablasser (CR52) 2013; 503 Schafer, Kornbluth (CR105) 2006; 10 Zhou (CR49) 2020; 52 Zhang, Hu, Wang, Shu (CR81) 2012; 287 Lahaye (CR25) 2018; 175 Carozza (CR44) 2022; 119 Li (CR88) 2022; 8 Krause, Hay, Kowollik, Brdiczka (CR112) 1986; 860 Kalamvoki, Du, Roizman (CR53) 2014; 111 Barnett (CR26) 2019; 176 Ergun, Fernandez, Weiss, Li (CR61) 2019; 178 Li (CR33) 2021; 371 Peschke (CR92) 2016; 197 Cohen, Novick, Barak, Rubinstein (CR67) 1995; 15 Zhong (CR19) 2008; 29 Ni, Konno, Barber (CR85) 2017; 2 Shang (CR60) 2012; 19 Xia (CR35) 2016; 17 Fang (CR71) 2017; 199 Zhong (CR11) 2018; 560 Ritchie, Cordova, Hess, Bassik, Li (CR45) 2019; 75 Gao (CR12) 2013; 153 Wang (CR86) 2015; 11 Lindqvist (CR107) 2018; 25 Li (CR22) 2013; 39 Ablasser (CR23) 2013; 498 Andreeva (CR2) 2017; 549 Lood (CR94) 2016; 22 Du, Chen (CR30) 2018; 361 Kim (CR98) 2019; 366 McArthur (CR109) 2018; 359 Ouyang (CR58) 2012; 36 Sun (CR32) 2020; 11 G Shang (965_CR56) 2019; 567 D Novick (965_CR66) 1994; 77 AP West (965_CR4) 2011; 11 R Fang (965_CR71) 2017; 199 F Civril (965_CR3) 2013; 498 M Drill (965_CR48) 2020; 10 Y Qin (965_CR84) 2014; 10 Y Xie (965_CR50) 2020; 130 V Shoshan-Barmatz (965_CR16) 2010; 1797 J Krause (965_CR112) 1986; 860 XD Li (965_CR21) 2013; 341 DE Merry (965_CR103) 1997; 20 Q Yin (965_CR57) 2012; 46 S Luecke (965_CR28) 2017; 18 V Shoshan-Barmatz (965_CR111) 2018; 69 X Li (965_CR51) 2022; 132 O Takeuchi (965_CR5) 2010; 140 HG Sprenger (965_CR100) 2021; 3 X Li (965_CR88) 2022; 8 JS Riley (965_CR110) 2018; 37 R Zalk (965_CR113) 2005; 386 J Zhang (965_CR81) 2012; 287 Z Zhong (965_CR11) 2018; 560 LM Lindqvist (965_CR107) 2018; 25 A Rongvaux (965_CR102) 2014; 159 B Zhong (965_CR80) 2009; 30 S Ouyang (965_CR58) 2012; 36 ZT Schafer (965_CR105) 2006; 10 M Li (965_CR34) 2020; 11 A Ablasser (965_CR52) 2013; 503 N Gehrke (965_CR90) 2013; 39 L Andreeva (965_CR2) 2017; 549 T Li (965_CR40) 2016; 6 K Shimada (965_CR10) 2012; 36 W Xie (965_CR29) 2019; 116 P Xia (965_CR35) 2016; 17 H Liu (965_CR55) 2019; 20 MM Hu (965_CR36) 2016; 45 CP Baines (965_CR99) 2007; 9 DB Stetson (965_CR91) 2008; 134 C Ritchie (965_CR45) 2019; 75 Y Wang (965_CR86) 2015; 11 M Du (965_CR30) 2018; 361 CC de Oliveira Mann (965_CR74) 2019; 27 R Zhou (965_CR8) 2011; 469 Q Li (965_CR87) 2018; 4 P Gao (965_CR12) 2013; 153 K Kato (965_CR43) 2018; 9 GJ Seo (965_CR31) 2015; 13 H Ishikawa (965_CR1) 2008; 455 L Sun (965_CR15) 2013; 339 S Cerboni (965_CR75) 2017; 214 ZD Zhang (965_CR83) 2020; 11 M Kalamvoki (965_CR53) 2014; 111 AP West (965_CR17) 2015; 520 MJ White (965_CR108) 2014; 159 Y Wang (965_CR9) 2017; 46 L Yang (965_CR78) 2018; 9 X Sun (965_CR32) 2020; 11 B Zhao (965_CR64) 2016; 113 K Peschke (965_CR92) 2016; 197 G Uzé (965_CR65) 1990; 60 J Kim (965_CR98) 2019; 366 C Zhou (965_CR49) 2020; 52 Y Hou (965_CR70) 2018; 49 JW Schoggins (965_CR69) 2011; 472 AK Mankan (965_CR27) 2014; 33 X Ning (965_CR6) 2019; 74 A Ablasser (965_CR23) 2013; 498 C Zhang (965_CR14) 2019; 567 F Dorostkar (965_CR41) 2021; 16 B Yang (965_CR79) 2020; 16 S Liu (965_CR7) 2015; 347 W Sun (965_CR18) 2009; 106 X Li (965_CR22) 2013; 39 S Shimizu (965_CR104) 1999; 399 MH Orzalli (965_CR96) 2018; 71 G Shang (965_CR60) 2012; 19 T Abe (965_CR72) 2014; 88 X Lahaye (965_CR25) 2018; 175 K McArthur (965_CR109) 2018; 359 F Kraus (965_CR89) 2021; 590 PJ Kranzusch (965_CR24) 2013; 3 T Ohkuri (965_CR39) 2017; 66 S Li (965_CR106) 2020; 30 H Xian (965_CR95) 2022; 55 JJ Woodward (965_CR20) 2010; 328 JA Carozza (965_CR44) 2022; 119 B Zhao (965_CR63) 2019; 569 YH Huang (965_CR59) 2012; 19 T Li (965_CR33) 2021; 371 Y Zhou (965_CR47) 2020; 52 SF Bakhoum (965_CR76) 2018; 553 T Tsuchida (965_CR77) 2010; 33 B Zhong (965_CR19) 2008; 29 JD Domizio (965_CR114) 2022; 603 CH Yu (965_CR115) 2020; 183 JA Carozza (965_CR42) 2020; 1 N Dobbs (965_CR62) 2015; 18 RD Luteijn (965_CR46) 2019; 573 S Caielli (965_CR93) 2016; 213 Q Wang (965_CR37) 2017; 13 A Bridgeman (965_CR54) 2015; 349 Q Wang (965_CR82) 2014; 41 KC Barnett (965_CR26) 2019; 176 LB Ivashkiv (965_CR68) 2014; 14 Y Huang (965_CR101) 2022; 132 LD Aarreberg (965_CR97) 2019; 74 B Cohen (965_CR67) 1995; 15 G Ni (965_CR85) 2017; 2 M Chen (965_CR38) 2016; 64 AM Herzner (965_CR13) 2015; 16 SL Ergun (965_CR61) 2019; 178 KR Balka (965_CR73) 2020; 31 C Lood (965_CR94) 2016; 22 |
References_xml | – volume: 11 start-page: 584 year: 2020 end-page: 599 ident: CR34 article-title: Dephosphorylation of cGAS by PPP6C impairs its substrate binding activity and innate antiviral response publication-title: Protein Cell doi: 10.1007/s13238-020-00729-3 – volume: 11 year: 2020 ident: CR83 article-title: RNF115 plays dual roles in innate antiviral responses by catalyzing distinct ubiquitination of MAVS and MITA publication-title: Nat. Commun. doi: 10.1038/s41467-020-19318-3 – volume: 16 start-page: e1008387 year: 2020 ident: CR79 article-title: RNF90 negatively regulates cellular antiviral responses by targeting MITA for degradation publication-title: PLoS Pathog. doi: 10.1371/journal.ppat.1008387 – volume: 498 start-page: 332 year: 2013 end-page: 337 ident: CR3 article-title: Structural mechanism of cytosolic DNA sensing by cGAS publication-title: Nature doi: 10.1038/nature12305 – volume: 16 year: 2021 ident: CR41 article-title: Co-administration of 2'3’-cGAMP STING activator and CpG-C adjuvants with a mutated form of HPV 16 E7 protein leads to tumor growth inhibition in the mouse model publication-title: Infect. Agent. Cancer doi: 10.1186/s13027-021-00346-7 – volume: 113 start-page: E3403 year: 2016 end-page: E3412 ident: CR64 article-title: Structural basis for concerted recruitment and activation of IRF-3 by innate immune adaptor proteins publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1603269113 – volume: 116 start-page: 11946 year: 2019 end-page: 11955 ident: CR29 article-title: Human cGAS catalytic domain has an additional DNA-binding interface that enhances enzymatic activity and liquid-phase condensation publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1905013116 – volume: 199 start-page: 3222 year: 2017 end-page: 3233 ident: CR71 article-title: NEMO-IKKβ are essential for IRF3 and NF-κB activation in the cGAS-STING pathway publication-title: J. Immunol. doi: 10.4049/jimmunol.1700699 – volume: 64 start-page: 105 year: 2016 end-page: 119 ident: CR38 article-title: TRIM14 inhibits cGAS degradation mediated by selective autophagy receptor p62 to promote innate immune responses publication-title: Mol. Cell doi: 10.1016/j.molcel.2016.08.025 – volume: 60 start-page: 225 year: 1990 end-page: 234 ident: CR65 article-title: Genetic transfer of a functional human interferon alpha receptor into mouse cells: cloning and expression of its cDNA publication-title: Cell doi: 10.1016/0092-8674(90)90738-Z – volume: 19 start-page: 728 year: 2012 end-page: 730 ident: CR59 article-title: The structural basis for the sensing and binding of cyclic di-GMP by STING publication-title: Nat. Struct. Mol. Biol. doi: 10.1038/nsmb.2333 – volume: 603 start-page: 145 year: 2022 end-page: 151 ident: CR114 article-title: The cGAS-STING pathway drives type I IFN immunopathology in COVID-19 publication-title: Nature doi: 10.1038/s41586-022-04421-w – volume: 27 start-page: 1165 year: 2019 end-page: 1175.e1165 ident: CR74 article-title: Modular architecture of the STING C-terminal tail allows interferon and NF-κB signaling adaptation publication-title: Cell Rep. doi: 10.1016/j.celrep.2019.03.098 – volume: 860 start-page: 690 year: 1986 end-page: 698 ident: CR112 article-title: Cross-linking analysis of yeast mitochondrial outer membrane publication-title: Biochim. Biophys. Acta doi: 10.1016/0005-2736(86)90568-7 – volume: 10 start-page: 549 year: 2006 end-page: 561 ident: CR105 article-title: The apoptosome: physiological, developmental, and pathological modes of regulation publication-title: Dev. Cell doi: 10.1016/j.devcel.2006.04.008 – volume: 567 start-page: 389 year: 2019 end-page: 393 ident: CR56 article-title: Cryo-EM structures of STING reveal its mechanism of activation by cyclic GMP-AMP publication-title: Nature doi: 10.1038/s41586-019-0998-5 – volume: 52 start-page: 357 year: 2020 end-page: 373.e359 ident: CR47 article-title: Blockade of the phagocytic receptor MerTK on tumor-associated macrophages enhances P2X7R-dependent STING activation by tumor-derived cGAMP publication-title: Immunity doi: 10.1016/j.immuni.2020.01.014 – volume: 17 start-page: 369 year: 2016 end-page: 378 ident: CR35 article-title: Glutamylation of the DNA sensor cGAS regulates its binding and synthase activity in antiviral immunity publication-title: Nat. Immunol. doi: 10.1038/ni.3356 – volume: 88 start-page: 5328 year: 2014 end-page: 5341 ident: CR72 article-title: Cytosolic-DNA-mediated, STING-dependent proinflammatory gene induction necessitates canonical NF-kappaB activation through TBK1 publication-title: J. Virol. doi: 10.1128/JVI.00037-14 – volume: 9 start-page: 550 year: 2007 end-page: 555 ident: CR99 article-title: Voltage-dependent anion channels are dispensable for mitochondrial-dependent cell death publication-title: Nat. Cell Biol. doi: 10.1038/ncb1575 – volume: 549 start-page: 394 year: 2017 end-page: 398 ident: CR2 article-title: cGAS senses long and HMGB/TFAM-bound U-turn DNA by forming protein-DNA ladders publication-title: Nature doi: 10.1038/nature23890 – volume: 55 start-page: 1370 year: 2022 end-page: 1385.e8 ident: CR95 article-title: Oxidized DNA fragments exit mitochondria via mPTP- and VDAC-dependent channels to activate NLRP3 inflammasome and interferon signaling publication-title: Immunity doi: 10.1016/j.immuni.2022.06.007 – volume: 153 start-page: 1094 year: 2013 end-page: 1107 ident: CR12 article-title: Cyclic [G(2’,5’)pA(3’,5’)p] is the metazoan second messenger produced by DNA-activated cyclic GMP-AMP synthase publication-title: Cell doi: 10.1016/j.cell.2013.04.046 – volume: 176 start-page: 1432 year: 2019 end-page: 1446.e1411 ident: CR26 article-title: Phosphoinositide interactions position cGAS at the plasma membrane to ensure efficient distinction between self- and viral DNA publication-title: Cell doi: 10.1016/j.cell.2019.01.049 – volume: 66 start-page: 705 year: 2017 end-page: 716 ident: CR39 article-title: Intratumoral administration of cGAMP transiently accumulates potent macrophages for anti-tumor immunity at a mouse tumor site publication-title: Cancer Immunol. Immunother. doi: 10.1007/s00262-017-1975-1 – volume: 52 start-page: 767 year: 2020 end-page: 781.e766 ident: CR49 article-title: Transfer of cGAMP into bystander cells via LRRC8 volume-regulated anion channels augments STING-mediated interferon responses and anti-viral immunity publication-title: Immunity doi: 10.1016/j.immuni.2020.03.016 – volume: 178 start-page: 290 year: 2019 end-page: 301.e210 ident: CR61 article-title: STING polymer structure reveals mechanisms for activation, hyperactivation, and inhibition publication-title: Cell doi: 10.1016/j.cell.2019.05.036 – volume: 140 start-page: 805 year: 2010 end-page: 820 ident: CR5 article-title: Pattern recognition receptors and inflammation publication-title: Cell doi: 10.1016/j.cell.2010.01.022 – volume: 567 start-page: 394 year: 2019 end-page: 398 ident: CR14 article-title: Structural basis of STING binding with and phosphorylation by TBK1 publication-title: Nature doi: 10.1038/s41586-019-1000-2 – volume: 9 year: 2018 ident: CR43 article-title: Structural insights into cGAMP degradation by Ecto-nucleotide pyrophosphatase phosphodiesterase 1 publication-title: Nat. Commun. doi: 10.1038/s41467-018-06922-7 – volume: 36 start-page: 401 year: 2012 end-page: 414 ident: CR10 article-title: Oxidized mitochondrial DNA activates the NLRP3 inflammasome during apoptosis publication-title: Immunity doi: 10.1016/j.immuni.2012.01.009 – volume: 49 start-page: 490 year: 2018 end-page: 503.e494 ident: CR70 article-title: Non-canonical NF-κB antagonizes STING sensor-mediated DNA sensing in radiotherapy publication-title: Immunity doi: 10.1016/j.immuni.2018.07.008 – volume: 41 start-page: 919 year: 2014 end-page: 933 ident: CR82 article-title: The E3 ubiquitin ligase AMFR and INSIG1 bridge the activation of TBK1 kinase by modifying the adaptor STING publication-title: Immunity doi: 10.1016/j.immuni.2014.11.011 – volume: 498 start-page: 380 year: 2013 end-page: 384 ident: CR23 article-title: cGAS produces a 2’-5’-linked cyclic dinucleotide second messenger that activates STING publication-title: Nature doi: 10.1038/nature12306 – volume: 30 start-page: 4370 year: 2020 end-page: 4385.e4377 ident: CR106 article-title: SFTSV infection induces BAK/BAX-dependent mitochondrial DNA release to trigger NLRP3 inflammasome activation publication-title: Cell Rep. doi: 10.1016/j.celrep.2020.02.105 – volume: 6 year: 2016 ident: CR40 article-title: Antitumor activity of cGAMP via stimulation of cGAS-cGAMP-STING-IRF3 mediated innate immune response publication-title: Sci. Rep. doi: 10.1038/srep19049 – volume: 159 start-page: 1563 year: 2014 end-page: 1577 ident: CR102 article-title: Apoptotic caspases prevent the induction of type I interferons by mitochondrial DNA publication-title: Cell doi: 10.1016/j.cell.2014.11.037 – volume: 15 start-page: 4208 year: 1995 end-page: 4214 ident: CR67 article-title: Ligand-induced association of the type I interferon receptor components publication-title: Mol. Cell. Biol. doi: 10.1128/MCB.15.8.4208 – volume: 339 start-page: 786 year: 2013 end-page: 791 ident: CR15 article-title: Cyclic GMP-AMP synthase is a cytosolic DNA sensor that activates the type I interferon pathway publication-title: Science doi: 10.1126/science.1232458 – volume: 14 start-page: 36 year: 2014 end-page: 49 ident: CR68 article-title: Regulation of type I interferon responses publication-title: Nat. Rev. Immunol. doi: 10.1038/nri3581 – volume: 20 start-page: 245 year: 1997 end-page: 267 ident: CR103 article-title: Bcl-2 gene family in the nervous system publication-title: Annu. Rev. Neurosci. doi: 10.1146/annurev.neuro.20.1.245 – volume: 33 start-page: 2937 year: 2014 end-page: 2946 ident: CR27 article-title: Cytosolic RNA:DNA hybrids activate the cGAS-STING axis publication-title: EMBO J. doi: 10.15252/embj.201488726 – volume: 9 year: 2018 ident: CR78 article-title: UBXN3B positively regulates STING-mediated antiviral immune responses publication-title: Nat. Commun. doi: 10.1038/s41467-018-04759-8 – volume: 39 start-page: 482 year: 2013 end-page: 495 ident: CR90 article-title: Oxidative damage of DNA confers resistance to cytosolic nuclease TREX1 degradation and potentiates STING-dependent immune sensing publication-title: Immunity doi: 10.1016/j.immuni.2013.08.004 – volume: 33 start-page: 765 year: 2010 end-page: 776 ident: CR77 article-title: The ubiquitin ligase TRIM56 regulates innate immune responses to intracellular double- stranded DNA publication-title: Immunity doi: 10.1016/j.immuni.2010.10.013 – volume: 77 start-page: 391 year: 1994 end-page: 400 ident: CR66 article-title: The human interferon alpha/beta receptor: characterization and molecular cloning publication-title: Cell doi: 10.1016/0092-8674(94)90154-6 – volume: 134 start-page: 587 year: 2008 end-page: 598 ident: CR91 article-title: Trex1 prevents cell-intrinsic initiation of autoimmunity publication-title: Cell doi: 10.1016/j.cell.2008.06.032 – volume: 106 start-page: 8653 year: 2009 end-page: 8658 ident: CR18 article-title: ERIS, an endoplasmic reticulum IFN stimulator, activates innate immune signaling through dimerization publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.0900850106 – volume: 18 start-page: 1707 year: 2017 end-page: 1715 ident: CR28 article-title: cGAS is activated by DNA in a length-dependent manner publication-title: EMBO Rep. doi: 10.15252/embr.201744017 – volume: 13 start-page: e1006264 year: 2017 ident: CR37 article-title: The E3 ubiquitin ligase RNF185 facilitates the cGAS-mediated innate immune response publication-title: PLoS Pathog. doi: 10.1371/journal.ppat.1006264 – volume: 175 start-page: 488 year: 2018 end-page: 501.e422 ident: CR25 article-title: NONO detects the nuclear HIV capsid to promote cGAS-mediated innate immune activation publication-title: Cell doi: 10.1016/j.cell.2018.08.062 – volume: 197 start-page: 2157 year: 2016 end-page: 2166 ident: CR92 article-title: Loss of Trex1 in dendritic cells is sufficient to trigger systemic autoimmunity publication-title: J. Immunol. doi: 10.4049/jimmunol.1600722 – volume: 37 start-page: e99238 year: 2018 ident: CR110 article-title: Mitochondrial inner membrane permeabilisation enables mtDNA release during apoptosis publication-title: EMBO J. doi: 10.15252/embj.201899238 – volume: 560 start-page: 198 year: 2018 end-page: 203 ident: CR11 article-title: New mitochondrial DNA synthesis enables NLRP3 inflammasome activation publication-title: Nature doi: 10.1038/s41586-018-0372-z – volume: 111 start-page: E4991 year: 2014 end-page: E4996 ident: CR53 article-title: Cells infected with herpes simplex virus 1 export to uninfected cells exosomes containing STING, viral mRNAs, and microRNAs publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1419338111 – volume: 11 year: 2020 ident: CR32 article-title: DNA-PK deficiency potentiates cGAS-mediated antiviral innate immunity publication-title: Nat. Commun. doi: 10.1038/s41467-020-19941-0 – volume: 347 start-page: aaa2630 year: 2015 ident: CR7 article-title: Phosphorylation of innate immune adaptor proteins MAVS, STING, and TRIF induces IRF3 activation publication-title: Science doi: 10.1126/science.aaa2630 – volume: 22 start-page: 146 year: 2016 end-page: 153 ident: CR94 article-title: Neutrophil extracellular traps enriched in oxidized mitochondrial DNA are interferogenic and contribute to lupus-like disease publication-title: Nat. Med. doi: 10.1038/nm.4027 – volume: 130 start-page: 2111 year: 2020 end-page: 2128 ident: CR50 article-title: Gut epithelial TSC1/mTOR controls RIPK3-dependent necroptosis in intestinal inflammation and cancer publication-title: J. Clin. Invest doi: 10.1172/JCI133264 – volume: 3 start-page: 1362 year: 2013 end-page: 1368 ident: CR24 article-title: Structure of human cGAS reveals a conserved family of second-messenger enzymes in innate immunity publication-title: Cell Rep. doi: 10.1016/j.celrep.2013.05.008 – volume: 2 start-page: eaah7119 year: 2017 ident: CR85 article-title: Ubiquitination of STING at lysine 224 controls IRF3 activation publication-title: Sci. Immunol. doi: 10.1126/sciimmunol.aah7119 – volume: 8 start-page: eabh0496 year: 2022 ident: CR88 article-title: The transmembrane endoplasmic reticulum-associated E3 ubiquitin ligase TRIM13 restrains the pathogenic-DNA-triggered inflammatory response publication-title: Sci. Adv. doi: 10.1126/sciadv.abh0496 – volume: 472 start-page: 481 year: 2011 end-page: 485 ident: CR69 article-title: A diverse range of gene products are effectors of the type I interferon antiviral response publication-title: Nature doi: 10.1038/nature09907 – volume: 1797 start-page: 1281 year: 2010 end-page: 1291 ident: CR16 article-title: Apoptosis is regulated by the VDAC1 N-terminal region and by VDAC oligomerization: release of cytochrome c, AIF and Smac/Diablo publication-title: Biochim. Biophys. Acta doi: 10.1016/j.bbabio.2010.03.003 – volume: 573 start-page: 434 year: 2019 end-page: 438 ident: CR46 article-title: SLC19A1 transports immunoreactive cyclic dinucleotides publication-title: Nature doi: 10.1038/s41586-019-1553-0 – volume: 455 start-page: 674 year: 2008 end-page: 678 ident: CR1 article-title: STING is an endoplasmic reticulum adaptor that facilitates innate immune signalling publication-title: Nature doi: 10.1038/nature07317 – volume: 119 start-page: e2119189119 year: 2022 ident: CR44 article-title: ENPP1’s regulation of extracellular cGAMP is a ubiquitous mechanism of attenuating STING signaling publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.2119189119 – volume: 10 year: 2020 ident: CR48 article-title: Inhibition of purinergic P2X receptor 7 (P2X7R) decreases granulocyte-macrophage colony- stimulating factor (GM-CSF) expression in U251 glioblastoma cells publication-title: Sci. Rep. doi: 10.1038/s41598-020-71887-x – volume: 371 start-page: eabc5386 year: 2021 ident: CR33 article-title: Phosphorylation and chromatin tethering prevent cGAS activation during mitosis publication-title: Science doi: 10.1126/science.abc5386 – volume: 399 start-page: 483 year: 1999 end-page: 487 ident: CR104 article-title: Bcl-2 family proteins regulate the release of apoptogenic cytochrome c by the mitochondrial channel VDAC publication-title: Nature doi: 10.1038/20959 – volume: 74 start-page: 19 year: 2019 end-page: 31.e17 ident: CR6 article-title: Apoptotic caspases suppress type I interferon production via the cleavage of cGAS, MAVS, and IRF3 publication-title: Mol. Cell doi: 10.1016/j.molcel.2019.02.013 – volume: 520 start-page: 553 year: 2015 end-page: 557 ident: CR17 article-title: Mitochondrial DNA stress primes the antiviral innate immune response publication-title: Nature doi: 10.1038/nature14156 – volume: 74 start-page: 801 year: 2019 end-page: 815.e806 ident: CR97 article-title: Interleukin-1β Induces mtDNA release to activate innate immune signaling via cGAS-STING publication-title: Mol. Cell doi: 10.1016/j.molcel.2019.02.038 – volume: 29 start-page: 538 year: 2008 end-page: 550 ident: CR19 article-title: The adaptor protein MITA links virus-sensing receptors to IRF3 transcription factor activation publication-title: Immunity doi: 10.1016/j.immuni.2008.09.003 – volume: 287 start-page: 28646 year: 2012 end-page: 28655 ident: CR81 article-title: TRIM32 protein modulates type I interferon induction and cellular antiviral response by targeting MITA/STING protein for K63-linked ubiquitination publication-title: J. Biol. Chem. doi: 10.1074/jbc.M112.362608 – volume: 25 start-page: 784 year: 2018 end-page: 796 ident: CR107 article-title: Autophagy induced during apoptosis degrades mitochondria and inhibits type I interferon secretion publication-title: Cell Death Differ. doi: 10.1038/s41418-017-0017-z – volume: 45 start-page: 555 year: 2016 end-page: 569 ident: CR36 article-title: Sumoylation promotes the stability of the DNA sensor cGAS and the adaptor STING to regulate the kinetics of response to DNA virus publication-title: Immunity doi: 10.1016/j.immuni.2016.08.014 – volume: 4 start-page: 13 year: 2018 ident: CR87 article-title: TRIM29 negatively controls antiviral immune response through targeting STING for degradation publication-title: Cell Disco. doi: 10.1038/s41421-018-0010-9 – volume: 213 start-page: 697 year: 2016 end-page: 713 ident: CR93 article-title: Oxidized mitochondrial nucleoids released by neutrophils drive type I interferon production in human lupus publication-title: J. Exp. Med doi: 10.1084/jem.20151876 – volume: 71 start-page: 825 year: 2018 end-page: 840.e826 ident: CR96 article-title: An antiviral branch of the IL-1 signaling pathway restricts immune-evasive virus replication publication-title: Mol. Cell doi: 10.1016/j.molcel.2018.07.009 – volume: 328 start-page: 1703 year: 2010 end-page: 1705 ident: CR20 article-title: c-di-AMP secreted by intracellular Listeria monocytogenes activates a host type I interferon response publication-title: Science doi: 10.1126/science.1189801 – volume: 349 start-page: 1228 year: 2015 end-page: 1232 ident: CR54 article-title: Viruses transfer the antiviral second messenger cGAMP between cells publication-title: Science doi: 10.1126/science.aab3632 – volume: 10 start-page: e1004358 year: 2014 ident: CR84 article-title: RNF26 temporally regulates virus-triggered type I interferon induction by two distinct mechanisms publication-title: PLoS Pathog. doi: 10.1371/journal.ppat.1004358 – volume: 503 start-page: 530 year: 2013 end-page: 534 ident: CR52 article-title: Cell intrinsic immunity spreads to bystander cells via the intercellular transfer of cGAMP publication-title: Nature doi: 10.1038/nature12640 – volume: 469 start-page: 221 year: 2011 end-page: 225 ident: CR8 article-title: A role for mitochondria in NLRP3 inflammasome activation publication-title: Nature doi: 10.1038/nature09663 – volume: 13 start-page: 440 year: 2015 end-page: 449 ident: CR31 article-title: Akt kinase-mediated checkpoint of cGAS DNA sensing pathway publication-title: Cell Rep. doi: 10.1016/j.celrep.2015.09.007 – volume: 359 start-page: eaao6047 year: 2018 ident: CR109 article-title: BAK/BAX macropores facilitate mitochondrial herniation and mtDNA efflux during apoptosis publication-title: Science doi: 10.1126/science.aao6047 – volume: 20 start-page: e46293 year: 2019 ident: CR55 article-title: cGAS facilitates sensing of extracellular cyclic dinucleotides to activate innate immunity publication-title: EMBO Rep. doi: 10.15252/embr.201846293 – volume: 132 start-page: e144339 year: 2022 ident: CR51 article-title: An alternatively spliced STING isoform localizes in the cytoplasmic membrane and directly senses extracellular cGAMP publication-title: J. Clin. Invest doi: 10.1172/JCI144339 – volume: 18 start-page: 157 year: 2015 end-page: 168 ident: CR62 article-title: STING activation by translocation from the ER is associated with infection and autoinflammatory disease publication-title: Cell Host Microbe doi: 10.1016/j.chom.2015.07.001 – volume: 569 start-page: 718 year: 2019 end-page: 722 ident: CR63 article-title: A conserved PLPLRT/SD motif of STING mediates the recruitment and activation of TBK1 publication-title: Nature doi: 10.1038/s41586-019-1228-x – volume: 553 start-page: 467 year: 2018 end-page: 472 ident: CR76 article-title: Chromosomal instability drives metastasis through a cytosolic DNA response publication-title: Nature doi: 10.1038/nature25432 – volume: 3 start-page: 636 year: 2021 end-page: 650 ident: CR100 article-title: Cellular pyrimidine imbalance triggers mitochondrial DNA-dependent innate immunity publication-title: Nat. Metab. doi: 10.1038/s42255-021-00385-9 – volume: 361 start-page: 704 year: 2018 end-page: 709 ident: CR30 article-title: DNA-induced liquid phase condensation of cGAS activates innate immune signaling publication-title: Science doi: 10.1126/science.aat1022 – volume: 69 start-page: 81 year: 2018 end-page: 100 ident: CR111 article-title: VDAC1 functions in Ca(2+) homeostasis and cell life and death in health and disease publication-title: Cell Calcium doi: 10.1016/j.ceca.2017.06.007 – volume: 590 start-page: 57 year: 2021 end-page: 66 ident: CR89 article-title: Function and regulation of the divisome for mitochondrial fission publication-title: Nature doi: 10.1038/s41586-021-03214-x – volume: 36 start-page: 1073 year: 2012 end-page: 1086 ident: CR58 article-title: Structural analysis of the STING adaptor protein reveals a hydrophobic dimer interface and mode of cyclic di-GMP binding publication-title: Immunity doi: 10.1016/j.immuni.2012.03.019 – volume: 46 start-page: 393 year: 2017 end-page: 404 ident: CR9 article-title: Inflammasome activation triggers caspase-1-mediated cleavage of cGAS to regulate responses to DNA virus infection publication-title: Immunity doi: 10.1016/j.immuni.2017.02.011 – volume: 386 start-page: 73 year: 2005 end-page: 83 ident: CR113 article-title: Oligomeric states of the voltage-dependent anion channel and cytochrome c release from mitochondria publication-title: Biochem. J. doi: 10.1042/BJ20041356 – volume: 214 start-page: 1769 year: 2017 end-page: 1785 ident: CR75 article-title: Intrinsic antiproliferative activity of the innate sensor STING in T lymphocytes publication-title: J. Exp. Med doi: 10.1084/jem.20161674 – volume: 183 start-page: 636 year: 2020 end-page: 649 e618 ident: CR115 article-title: TDP-43 Triggers Mitochondrial DNA Release via mPTP to Activate cGAS/STING in ALS publication-title: Cell doi: 10.1016/j.cell.2020.09.020 – volume: 159 start-page: 1549 year: 2014 end-page: 1562 ident: CR108 article-title: Apoptotic caspases suppress mtDNA-induced STING-mediated type I IFN production publication-title: Cell doi: 10.1016/j.cell.2014.11.036 – volume: 19 start-page: 725 year: 2012 end-page: 727 ident: CR60 article-title: Crystal structures of STING protein reveal basis for recognition of cyclic di-GMP publication-title: Nat. Struct. Mol. Biol. doi: 10.1038/nsmb.2332 – volume: 39 start-page: 1019 year: 2013 end-page: 1031 ident: CR22 article-title: Cyclic GMP-AMP synthase is activated by double-stranded DNA-induced ligomerization publication-title: Immunity doi: 10.1016/j.immuni.2013.10.019 – volume: 1 start-page: 184 year: 2020 end-page: 196 ident: CR42 article-title: Extracellular cGAMP is a cancer cell-produced immunotransmitter involved in radiation-induced anti-cancer immunity publication-title: Nat. Cancer doi: 10.1038/s43018-020-0028-4 – volume: 11 start-page: e1005012 year: 2015 ident: CR86 article-title: TRIM30α is a negative-feedback regulator of the intracellular DNA and DNA virus- triggered response by targeting STING publication-title: PLoS Pathog. doi: 10.1371/journal.ppat.1005012 – volume: 132 start-page: e148852 year: 2022 ident: CR101 article-title: Brown adipose TRX2 deficiency activates mtDNA-NLRP3 to impair thermogenesis and protect against diet-induced insulin resistance publication-title: J. Clin. Invest doi: 10.1172/JCI148852 – volume: 366 start-page: 1531 year: 2019 end-page: 1536 ident: CR98 article-title: VDAC oligomers form mitochondrial pores to release mtDNA fragments and promote lupus- like disease publication-title: Science doi: 10.1126/science.aav4011 – volume: 75 start-page: 372 year: 2019 end-page: 381.e375 ident: CR45 article-title: SLC19A1 is an importer of the immunotransmitter cGAMP publication-title: Mol. Cell doi: 10.1016/j.molcel.2019.05.006 – volume: 11 start-page: 389 year: 2011 end-page: 402 ident: CR4 article-title: Mitochondria in innate immune responses publication-title: Nat. Rev. Immunol. doi: 10.1038/nri2975 – volume: 30 start-page: 397 year: 2009 end-page: 407 ident: CR80 article-title: The ubiquitin ligase RNF5 regulates antiviral responses by mediating degradation of the adaptor protein MITA publication-title: Immunity doi: 10.1016/j.immuni.2009.01.008 – volume: 46 start-page: 735 year: 2012 end-page: 745 ident: CR57 article-title: Cyclic di-GMP sensing via the innate immune signaling protein STING publication-title: Mol. Cell doi: 10.1016/j.molcel.2012.05.029 – volume: 31 start-page: 107492 year: 2020 ident: CR73 article-title: TBK1 and IKKε act redundantly to mediate STING-induced NF-κB responses in myeloid cells publication-title: Cell Rep. doi: 10.1016/j.celrep.2020.03.056 – volume: 341 start-page: 1390 year: 2013 end-page: 1394 ident: CR21 article-title: Pivotal roles of cGAS-cGAMP signaling in antiviral defense and immune adjuvant effects publication-title: Science doi: 10.1126/science.1244040 – volume: 16 start-page: 1025 year: 2015 end-page: 1033 ident: CR13 article-title: Sequence-specific activation of the DNA sensor cGAS by Y-form DNA structures as found in primary HIV-1 cDNA publication-title: Nat. Immunol. doi: 10.1038/ni.3267 – volume: 11 year: 2020 ident: 965_CR32 publication-title: Nat. Commun. doi: 10.1038/s41467-020-19941-0 – volume: 386 start-page: 73 year: 2005 ident: 965_CR113 publication-title: Biochem. J. doi: 10.1042/BJ20041356 – volume: 60 start-page: 225 year: 1990 ident: 965_CR65 publication-title: Cell doi: 10.1016/0092-8674(90)90738-Z – volume: 213 start-page: 697 year: 2016 ident: 965_CR93 publication-title: J. Exp. Med doi: 10.1084/jem.20151876 – volume: 567 start-page: 394 year: 2019 ident: 965_CR14 publication-title: Nature doi: 10.1038/s41586-019-1000-2 – volume: 33 start-page: 2937 year: 2014 ident: 965_CR27 publication-title: EMBO J. doi: 10.15252/embj.201488726 – volume: 132 start-page: e144339 year: 2022 ident: 965_CR51 publication-title: J. Clin. Invest doi: 10.1172/JCI144339 – volume: 33 start-page: 765 year: 2010 ident: 965_CR77 publication-title: Immunity doi: 10.1016/j.immuni.2010.10.013 – volume: 159 start-page: 1563 year: 2014 ident: 965_CR102 publication-title: Cell doi: 10.1016/j.cell.2014.11.037 – volume: 77 start-page: 391 year: 1994 ident: 965_CR66 publication-title: Cell doi: 10.1016/0092-8674(94)90154-6 – volume: 31 start-page: 107492 year: 2020 ident: 965_CR73 publication-title: Cell Rep. doi: 10.1016/j.celrep.2020.03.056 – volume: 11 year: 2020 ident: 965_CR83 publication-title: Nat. Commun. doi: 10.1038/s41467-020-19318-3 – volume: 132 start-page: e148852 year: 2022 ident: 965_CR101 publication-title: J. Clin. Invest doi: 10.1172/JCI148852 – volume: 472 start-page: 481 year: 2011 ident: 965_CR69 publication-title: Nature doi: 10.1038/nature09907 – volume: 287 start-page: 28646 year: 2012 ident: 965_CR81 publication-title: J. Biol. Chem. doi: 10.1074/jbc.M112.362608 – volume: 14 start-page: 36 year: 2014 ident: 965_CR68 publication-title: Nat. Rev. Immunol. doi: 10.1038/nri3581 – volume: 6 year: 2016 ident: 965_CR40 publication-title: Sci. Rep. doi: 10.1038/srep19049 – volume: 113 start-page: E3403 year: 2016 ident: 965_CR64 publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1603269113 – volume: 2 start-page: eaah7119 year: 2017 ident: 965_CR85 publication-title: Sci. Immunol. doi: 10.1126/sciimmunol.aah7119 – volume: 11 start-page: e1005012 year: 2015 ident: 965_CR86 publication-title: PLoS Pathog. doi: 10.1371/journal.ppat.1005012 – volume: 55 start-page: 1370 year: 2022 ident: 965_CR95 publication-title: Immunity doi: 10.1016/j.immuni.2022.06.007 – volume: 130 start-page: 2111 year: 2020 ident: 965_CR50 publication-title: J. Clin. Invest doi: 10.1172/JCI133264 – volume: 455 start-page: 674 year: 2008 ident: 965_CR1 publication-title: Nature doi: 10.1038/nature07317 – volume: 569 start-page: 718 year: 2019 ident: 965_CR63 publication-title: Nature doi: 10.1038/s41586-019-1228-x – volume: 520 start-page: 553 year: 2015 ident: 965_CR17 publication-title: Nature doi: 10.1038/nature14156 – volume: 560 start-page: 198 year: 2018 ident: 965_CR11 publication-title: Nature doi: 10.1038/s41586-018-0372-z – volume: 9 year: 2018 ident: 965_CR43 publication-title: Nat. Commun. doi: 10.1038/s41467-018-06922-7 – volume: 347 start-page: aaa2630 year: 2015 ident: 965_CR7 publication-title: Science doi: 10.1126/science.aaa2630 – volume: 17 start-page: 369 year: 2016 ident: 965_CR35 publication-title: Nat. Immunol. doi: 10.1038/ni.3356 – volume: 27 start-page: 1165 year: 2019 ident: 965_CR74 publication-title: Cell Rep. doi: 10.1016/j.celrep.2019.03.098 – volume: 39 start-page: 482 year: 2013 ident: 965_CR90 publication-title: Immunity doi: 10.1016/j.immuni.2013.08.004 – volume: 399 start-page: 483 year: 1999 ident: 965_CR104 publication-title: Nature doi: 10.1038/20959 – volume: 116 start-page: 11946 year: 2019 ident: 965_CR29 publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1905013116 – volume: 371 start-page: eabc5386 year: 2021 ident: 965_CR33 publication-title: Science doi: 10.1126/science.abc5386 – volume: 88 start-page: 5328 year: 2014 ident: 965_CR72 publication-title: J. Virol. doi: 10.1128/JVI.00037-14 – volume: 13 start-page: e1006264 year: 2017 ident: 965_CR37 publication-title: PLoS Pathog. doi: 10.1371/journal.ppat.1006264 – volume: 603 start-page: 145 year: 2022 ident: 965_CR114 publication-title: Nature doi: 10.1038/s41586-022-04421-w – volume: 64 start-page: 105 year: 2016 ident: 965_CR38 publication-title: Mol. Cell doi: 10.1016/j.molcel.2016.08.025 – volume: 366 start-page: 1531 year: 2019 ident: 965_CR98 publication-title: Science doi: 10.1126/science.aav4011 – volume: 20 start-page: e46293 year: 2019 ident: 965_CR55 publication-title: EMBO Rep. doi: 10.15252/embr.201846293 – volume: 183 start-page: 636 year: 2020 ident: 965_CR115 publication-title: Cell doi: 10.1016/j.cell.2020.09.020 – volume: 106 start-page: 8653 year: 2009 ident: 965_CR18 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.0900850106 – volume: 361 start-page: 704 year: 2018 ident: 965_CR30 publication-title: Science doi: 10.1126/science.aat1022 – volume: 573 start-page: 434 year: 2019 ident: 965_CR46 publication-title: Nature doi: 10.1038/s41586-019-1553-0 – volume: 10 start-page: e1004358 year: 2014 ident: 965_CR84 publication-title: PLoS Pathog. doi: 10.1371/journal.ppat.1004358 – volume: 11 start-page: 584 year: 2020 ident: 965_CR34 publication-title: Protein Cell doi: 10.1007/s13238-020-00729-3 – volume: 13 start-page: 440 year: 2015 ident: 965_CR31 publication-title: Cell Rep. doi: 10.1016/j.celrep.2015.09.007 – volume: 3 start-page: 636 year: 2021 ident: 965_CR100 publication-title: Nat. Metab. doi: 10.1038/s42255-021-00385-9 – volume: 860 start-page: 690 year: 1986 ident: 965_CR112 publication-title: Biochim. Biophys. Acta doi: 10.1016/0005-2736(86)90568-7 – volume: 140 start-page: 805 year: 2010 ident: 965_CR5 publication-title: Cell doi: 10.1016/j.cell.2010.01.022 – volume: 498 start-page: 332 year: 2013 ident: 965_CR3 publication-title: Nature doi: 10.1038/nature12305 – volume: 19 start-page: 728 year: 2012 ident: 965_CR59 publication-title: Nat. Struct. Mol. Biol. doi: 10.1038/nsmb.2333 – volume: 159 start-page: 1549 year: 2014 ident: 965_CR108 publication-title: Cell doi: 10.1016/j.cell.2014.11.036 – volume: 39 start-page: 1019 year: 2013 ident: 965_CR22 publication-title: Immunity doi: 10.1016/j.immuni.2013.10.019 – volume: 9 year: 2018 ident: 965_CR78 publication-title: Nat. Commun. doi: 10.1038/s41467-018-04759-8 – volume: 8 start-page: eabh0496 year: 2022 ident: 965_CR88 publication-title: Sci. Adv. doi: 10.1126/sciadv.abh0496 – volume: 46 start-page: 735 year: 2012 ident: 965_CR57 publication-title: Mol. Cell doi: 10.1016/j.molcel.2012.05.029 – volume: 74 start-page: 19 year: 2019 ident: 965_CR6 publication-title: Mol. Cell doi: 10.1016/j.molcel.2019.02.013 – volume: 469 start-page: 221 year: 2011 ident: 965_CR8 publication-title: Nature doi: 10.1038/nature09663 – volume: 590 start-page: 57 year: 2021 ident: 965_CR89 publication-title: Nature doi: 10.1038/s41586-021-03214-x – volume: 498 start-page: 380 year: 2013 ident: 965_CR23 publication-title: Nature doi: 10.1038/nature12306 – volume: 74 start-page: 801 year: 2019 ident: 965_CR97 publication-title: Mol. Cell doi: 10.1016/j.molcel.2019.02.038 – volume: 175 start-page: 488 year: 2018 ident: 965_CR25 publication-title: Cell doi: 10.1016/j.cell.2018.08.062 – volume: 4 start-page: 13 year: 2018 ident: 965_CR87 publication-title: Cell Disco. doi: 10.1038/s41421-018-0010-9 – volume: 134 start-page: 587 year: 2008 ident: 965_CR91 publication-title: Cell doi: 10.1016/j.cell.2008.06.032 – volume: 52 start-page: 767 year: 2020 ident: 965_CR49 publication-title: Immunity doi: 10.1016/j.immuni.2020.03.016 – volume: 29 start-page: 538 year: 2008 ident: 965_CR19 publication-title: Immunity doi: 10.1016/j.immuni.2008.09.003 – volume: 178 start-page: 290 year: 2019 ident: 965_CR61 publication-title: Cell doi: 10.1016/j.cell.2019.05.036 – volume: 10 year: 2020 ident: 965_CR48 publication-title: Sci. Rep. doi: 10.1038/s41598-020-71887-x – volume: 16 start-page: 1025 year: 2015 ident: 965_CR13 publication-title: Nat. Immunol. doi: 10.1038/ni.3267 – volume: 503 start-page: 530 year: 2013 ident: 965_CR52 publication-title: Nature doi: 10.1038/nature12640 – volume: 25 start-page: 784 year: 2018 ident: 965_CR107 publication-title: Cell Death Differ. doi: 10.1038/s41418-017-0017-z – volume: 111 start-page: E4991 year: 2014 ident: 965_CR53 publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1419338111 – volume: 328 start-page: 1703 year: 2010 ident: 965_CR20 publication-title: Science doi: 10.1126/science.1189801 – volume: 341 start-page: 1390 year: 2013 ident: 965_CR21 publication-title: Science doi: 10.1126/science.1244040 – volume: 36 start-page: 401 year: 2012 ident: 965_CR10 publication-title: Immunity doi: 10.1016/j.immuni.2012.01.009 – volume: 10 start-page: 549 year: 2006 ident: 965_CR105 publication-title: Dev. Cell doi: 10.1016/j.devcel.2006.04.008 – volume: 1 start-page: 184 year: 2020 ident: 965_CR42 publication-title: Nat. Cancer doi: 10.1038/s43018-020-0028-4 – volume: 45 start-page: 555 year: 2016 ident: 965_CR36 publication-title: Immunity doi: 10.1016/j.immuni.2016.08.014 – volume: 69 start-page: 81 year: 2018 ident: 965_CR111 publication-title: Cell Calcium doi: 10.1016/j.ceca.2017.06.007 – volume: 549 start-page: 394 year: 2017 ident: 965_CR2 publication-title: Nature doi: 10.1038/nature23890 – volume: 9 start-page: 550 year: 2007 ident: 965_CR99 publication-title: Nat. Cell Biol. doi: 10.1038/ncb1575 – volume: 339 start-page: 786 year: 2013 ident: 965_CR15 publication-title: Science doi: 10.1126/science.1232458 – volume: 197 start-page: 2157 year: 2016 ident: 965_CR92 publication-title: J. Immunol. doi: 10.4049/jimmunol.1600722 – volume: 22 start-page: 146 year: 2016 ident: 965_CR94 publication-title: Nat. Med. doi: 10.1038/nm.4027 – volume: 553 start-page: 467 year: 2018 ident: 965_CR76 publication-title: Nature doi: 10.1038/nature25432 – volume: 46 start-page: 393 year: 2017 ident: 965_CR9 publication-title: Immunity doi: 10.1016/j.immuni.2017.02.011 – volume: 11 start-page: 389 year: 2011 ident: 965_CR4 publication-title: Nat. Rev. Immunol. doi: 10.1038/nri2975 – volume: 18 start-page: 1707 year: 2017 ident: 965_CR28 publication-title: EMBO Rep. doi: 10.15252/embr.201744017 – volume: 66 start-page: 705 year: 2017 ident: 965_CR39 publication-title: Cancer Immunol. Immunother. doi: 10.1007/s00262-017-1975-1 – volume: 20 start-page: 245 year: 1997 ident: 965_CR103 publication-title: Annu. Rev. Neurosci. doi: 10.1146/annurev.neuro.20.1.245 – volume: 15 start-page: 4208 year: 1995 ident: 965_CR67 publication-title: Mol. Cell. Biol. doi: 10.1128/MCB.15.8.4208 – volume: 119 start-page: e2119189119 year: 2022 ident: 965_CR44 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.2119189119 – volume: 349 start-page: 1228 year: 2015 ident: 965_CR54 publication-title: Science doi: 10.1126/science.aab3632 – volume: 16 start-page: e1008387 year: 2020 ident: 965_CR79 publication-title: PLoS Pathog. doi: 10.1371/journal.ppat.1008387 – volume: 71 start-page: 825 year: 2018 ident: 965_CR96 publication-title: Mol. Cell doi: 10.1016/j.molcel.2018.07.009 – volume: 199 start-page: 3222 year: 2017 ident: 965_CR71 publication-title: J. Immunol. doi: 10.4049/jimmunol.1700699 – volume: 567 start-page: 389 year: 2019 ident: 965_CR56 publication-title: Nature doi: 10.1038/s41586-019-0998-5 – volume: 153 start-page: 1094 year: 2013 ident: 965_CR12 publication-title: Cell doi: 10.1016/j.cell.2013.04.046 – volume: 3 start-page: 1362 year: 2013 ident: 965_CR24 publication-title: Cell Rep. doi: 10.1016/j.celrep.2013.05.008 – volume: 30 start-page: 4370 year: 2020 ident: 965_CR106 publication-title: Cell Rep. doi: 10.1016/j.celrep.2020.02.105 – volume: 214 start-page: 1769 year: 2017 ident: 965_CR75 publication-title: J. Exp. Med doi: 10.1084/jem.20161674 – volume: 176 start-page: 1432 year: 2019 ident: 965_CR26 publication-title: Cell doi: 10.1016/j.cell.2019.01.049 – volume: 1797 start-page: 1281 year: 2010 ident: 965_CR16 publication-title: Biochim. Biophys. Acta doi: 10.1016/j.bbabio.2010.03.003 – volume: 52 start-page: 357 year: 2020 ident: 965_CR47 publication-title: Immunity doi: 10.1016/j.immuni.2020.01.014 – volume: 37 start-page: e99238 year: 2018 ident: 965_CR110 publication-title: EMBO J. doi: 10.15252/embj.201899238 – volume: 75 start-page: 372 year: 2019 ident: 965_CR45 publication-title: Mol. Cell doi: 10.1016/j.molcel.2019.05.006 – volume: 16 year: 2021 ident: 965_CR41 publication-title: Infect. Agent. Cancer doi: 10.1186/s13027-021-00346-7 – volume: 49 start-page: 490 year: 2018 ident: 965_CR70 publication-title: Immunity doi: 10.1016/j.immuni.2018.07.008 – volume: 41 start-page: 919 year: 2014 ident: 965_CR82 publication-title: Immunity doi: 10.1016/j.immuni.2014.11.011 – volume: 36 start-page: 1073 year: 2012 ident: 965_CR58 publication-title: Immunity doi: 10.1016/j.immuni.2012.03.019 – volume: 18 start-page: 157 year: 2015 ident: 965_CR62 publication-title: Cell Host Microbe doi: 10.1016/j.chom.2015.07.001 – volume: 359 start-page: eaao6047 year: 2018 ident: 965_CR109 publication-title: Science doi: 10.1126/science.aao6047 – volume: 19 start-page: 725 year: 2012 ident: 965_CR60 publication-title: Nat. Struct. Mol. Biol. doi: 10.1038/nsmb.2332 – volume: 30 start-page: 397 year: 2009 ident: 965_CR80 publication-title: Immunity doi: 10.1016/j.immuni.2009.01.008 |
SSID | ssj0025474 |
Score | 2.6586313 |
SecondaryResourceType | review_article |
Snippet | In addition to constituting the genetic material of an organism, DNA is a tracer for the recognition of foreign pathogens and a trigger of the innate immune... Inflammatory diseases: Understanding mitochondrial DNA release Cytosolic DNA activates the cGAS-STING pathway which mediates inflammation and antiviral... |
SourceID | nrf doaj proquest pubmed crossref springer |
SourceType | Open Website Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 510 |
SubjectTerms | Amyotrophic lateral sclerosis Antiviral drugs Biomedical and Life Sciences Biomedicine Chromatin DNA viruses DNA, Mitochondrial - genetics DNA, Mitochondrial - metabolism Humans Immune response Immunity, Innate Inflammasomes Inflammasomes - metabolism Inflammation Inflammation - metabolism Inflammatory diseases Innate immunity Localization Macrophages Medical Biochemistry Membrane Proteins - metabolism Mitochondria Mitochondria - metabolism Mitochondrial DNA Molecular Medicine Molecular modelling Neurodegenerative diseases Nucleotidyltransferases - genetics Oligomerization Pathogens Review Article Signal Transduction Stem Cells 생화학 |
SummonAdditionalLinks | – databaseName: Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQD4gLgpZHoCBXIC5gdf2KneNC6QNp99JWqrhYthOjqmwW7W5V9d93xkmWIh69cIqUjC3bM5P5xmPPEPIW3B4vvCqZ0jEyZfWIBZ004yAdPIKK-AovCk-m5eGp-nKmz26V-sIzYV164G7hdmOCZlKEykuvDODrCiyOj6JSJsikMzQCmzc4U72rpZVR_RWZkbS7Sy6EwcO2kiFm18z8YoZytn4wLu0i_Qlo_hYkzbZn_xF52INGOu4G-5jca9pNsjVuwWGeXdN3NB_jzPvjm-T-pI-Wb5Gvk6H2LZ01eMP3fDlb0nmiM1Bj-O21NUof3ZuOKZZOAXtGfVtTvOrQbdQiLQBEGg_Gx-z45Gh6QLGC8ZW_fkJO9z-ffDpkfS0FFrUtVyyEGEBVZaMFWMVkIzc-KRkqWVo_klUKZQSkUnlfA0ipR0mKFFWjg-K1klHIp2SjnbfNc0JjAxzxwQcJHq0MNmAkT1pteDIR8F9B-LC0LvaJxrHexXeXA97Suo4dDtjhMjucKcj7dZsfXZqNf1J_RI6tKTFFdn4BguN6wXF3CU5B3gC_3UU8z-3x-W3uLhYOHIkjx3Pqe2ULsj3Ig-u1e-mEqTRmXLcwkp31Z9BLDLb4tplfZhouEY5BF886OVqPF2so4poV5MMgWD87__u0X_yPab8kD0TWAzxGt002VovL5hXgqlV4nVXoBuFeF6s priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwELdgSIgXBBuwwEBGIF7AWhPbtfOEysc-kNqXbVLFi2U78TSNJqPphPbfc-c4rRCwp0iOHTm-O9_vfOc7Qt6C2WMLK8ZMSO-Z0HLEnAyS5cAduQcRsSVeFJ7Oxkdn4ttcztOBW5fCKoc9MW7UVevxjHy_UKXELNdafbz6ybBqFHpXUwmNu-Qepi7DkC413xhcUsQszDlADMZBb6VLMyOu9ztoVBh-yxmieMnUH4op5u8HddMsw7-g519u06iNDh6RhwlG0klP98fkTt1sk51JAyb04oa-ozGwM56Yb5P70-Q_3yHfp0M1XLqo8c7vRbfoaBvoAgQbNsKmQn6kX2YTisVUQMNR21QULz_0R7fYFyAj9YeTE3Zyejw7pFjT-Je9eULODr6efj5iqboC81KPV8w570B4eS0L0JNB-1zZILgr-VjbES-DG3vALqW1FcCWahR4EbyopRN5Jbgv-FOy1bRNvUuor4G01lnHwcblTjv07XEtVR6UB0SYkXxYWuNT6nGsgPHDRBc416YnhwFymEgOozLyfj3mqk-8cWvvT0ixdU9Mmh0b2uW5STJofIBp8sKVlluhwFQrAbxYX5RCOR6kzcgboLe59BdxPD7PW3O5NGBaHJs8JsMXOiN7Az-YJO-d2XBnRl6vX4OkovvFNnV7HfvkHAEafOJZz0fr-WJVRVyzjHwYGGvz8f__9vPb5_KCPCgih2PI3B7ZWi2v65eAoVbuVRSU34tJEcQ priority: 102 providerName: ProQuest |
Title | Molecular mechanisms of mitochondrial DNA release and activation of the cGAS-STING pathway |
URI | https://link.springer.com/article/10.1038/s12276-023-00965-7 https://www.ncbi.nlm.nih.gov/pubmed/36964253 https://www.proquest.com/docview/2795072987 https://www.proquest.com/docview/2791375098 https://doaj.org/article/cf15732b9a3a475489152ac2947b3f5a https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002947633 |
Volume | 55 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
ispartofPNX | Experimental and Molecular Medicine, 2023, 55(0), , pp.510-519 |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3di9NAEF_uA8QX0Tv1omdZUXzRYLMf2eQxV--r0CL2Doovy-4mexxnE2l7yP33zmySingKPgXa2TDJzGR-u_NFyFvY9hhmRBoL6VwsMjmMrfQyTkA7EgcmYnIsFJ5M07NLMZ7L-RZhfS1MSNoPLS3DZ7rPDvu4ShhTmC7LY0TdMlbbZBdbt6NWj9LRZpMlhRJdccyQZ_es-80BhT794Fbqpb8PYv4RHg1e5-QxedTBRVq0DD4hW1W9R_YL4L1Z3NF3NCRwhpPxPfJg0sXJ98nXST_1li4qrO29Xi1WtPF0AQYMH7y6RL2jn6YFxaEp4MmoqUuKRQ7tES3SAjSk7rSYxbOL8-kpxdnFP8zdU3J5cnwxOou7KQqxk1m6jq11FoyUV5KBP_SZS5Txgtucp5kZ8tzb1AFGyY0pAZ6UQ8-Zd6KSViSl4I7xZ2SnburqgFBXgQiNNZbDXpbbzGIMj2dSJV45QH4RSfpXq13XYhwnXXzTIdTNM92KQ4M4dBCHVhF5v1nzvW2w8U_qI5TYhhKbY4cfmuWV7pRFOw9scmZzw41QsCXLAaQYx3KhLPfSROQNyFvfuOuwHq9Xjb5ZathCnOskNL0XWUQOe33QnV2vNFO5xF7rGXDyevM3WCSGWUxdNbeBJuEIxOAWz1s92vCL0xPxnUXkQ69Yv27-98d-8X_kL8lDFjQeU-UOyc56eVu9Auy0tgOyreZqQHaLYjwbw_XoePr5yyCY0CCcR_wEpLoSmg |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaqrQRcELQ8AgWMeFzA6ia28zggtKWPXdpdIbqVKi7GduKqKpuU3a2q_VP8RmacZCsE9NZTpMSJHM83L49nhpDX4PboSIuYCWktE6nsMiOdZCGgI7TAIjrDROHhKO4fic_H8niF_GpzYfBYZSsTvaDOK4t75JtRkkmscp0mH89_MuwahdHVtoVGDYv9YnEJLtvsw2Ab6PsminZ3xp_6rOkqwKxM4zkzxhoALS9kBPrBpTZMtBPcZDxOdZdnzsQWdHamdQ7qOu86HjkrCmlEmAtusdABiPxVwcGV6ZDVrZ3Rl69LF08KX_c5BKOGcdCUTZpOl6ebM7iZ4IFfztBvkCz5QxX6jgGg4Mqp-5ex-1eg1uu_3XvkbmO40l6NtPtkpSjXyHqvBKd9sqBvqT9K6vfo18itYROxXyffhm3_XTopMMv4dDaZ0crRCYgSEL1ljhxAt0c9iu1bQKdSXeYU0y3qzWIcC0YqtXu9Q3Y4Hoz2KHZRvtSLB-ToRlb-IemUVVk8JtQWACZttOHgVXOTGowm8lQmoUss2KABCdulVbYpdo49N34oH3TnqarJoYAcypNDJQF5t3znvC71ce3oLaTYciSW6fY3qumJarheWQfT5JHJNNciAecwA3NJ2ygTieFO6oC8AnqrM3vq38frSaXOpgqcmYEKffl9kQZko8WDaiTMTF3xQ0BeLh-DbMCAjy6L6sKPCTmahPCJRzWOlvPFPo64ZgF53wLr6uP__-0n18_lBbndHw8P1MFgtP-U3Ik82vHA3gbpzKcXxTOw4ObmecM2lHy_aU79DVnaUU0 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3bbtMw1JqGNPGCYOMSGGDE5QWsNrFdJw8IFUq3MlohbZOqvRjbiadpNB1tp6m_xtdxjpO0QsDe9hTJsSPH5-5zI-QVmD0mMaLDhHSOiVS2mZVeshiwI3ZAIibDROHhqLN_LL6M5XiD_GpyYTCssuGJgVHnU4d35K1EZRKrXKeq5euwiG-9_oeLnww7SKGntWmnUaHIQbG8AvNt_n7QA1i_TpL-56NP-6zuMMCcTDsLZq2zgMC8kAnICp-6WBkvuM14JzVtnnnbcSC_M2NyEN152_PEO1FIK-JccIdFD4D931Jcxkhjarw29qQIFaBjUG8YB5lZJ-y0edqaw6DC0F_O0IKQTP0hFEPvABB15cz_S-39y2UbJGH_LrlTq7C0W-HcPbJRlNtkp1uC-T5Z0jc0BJWG2_ptsjWsffc75GTYdOKlkwLzjc_mkzmdejoBpgJMuMyRFmhv1KXYyAWkKzVlTjHxoro2xrmgrlK31z1kh0eD0R7FfspXZnmfHN_IuT8gm-W0LB4R6gpAK2ON5WBfc5ta9CvyVKrYKwfaaETi5mi1q8ueY_eNHzq433mqK3BoAIcO4NAqIm9Xay6qoh_Xzv6IEFvNxILdYWA6O9U1_WvnYZs8sZnhRigwEzNQnIxLMqEs99JE5CXAW5-7s7Aen6dTfT7TYNYMdBwK8Ys0IrsNPuia18z1mjIi8mL1GrgEun5MWUwvw5yYo3IIn3hY4dFqv9jREc8sIu8axFp__P-__fj6vTwnW0Cf-utgdPCE3E4CsmPk3i7ZXMwui6egyi3ss0AzlHy_aSL9DZ9SVB0 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Molecular+mechanisms+of+mitochondrial+DNA+release+and+activation+of+the+cGAS-STING+pathway&rft.jtitle=Experimental+%26+molecular+medicine&rft.au=Kim%2C+Jeonghan&rft.au=Kim%2C+Ho-Shik&rft.au=Chung%2C+Jay+H.&rft.date=2023-03-01&rft.pub=Nature+Publishing+Group+UK&rft.eissn=2092-6413&rft.volume=55&rft.issue=3&rft.spage=510&rft.epage=519&rft_id=info:doi/10.1038%2Fs12276-023-00965-7&rft.externalDocID=10_1038_s12276_023_00965_7 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2092-6413&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2092-6413&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2092-6413&client=summon |