Rate and Molecular Spectrum of Spontaneous Mutations in Arabidopsis thaliana

To take complete advantage of information on within-species polymorphism and divergence from close relatives, one needs to know the rate and the molecular spectrum of spontaneous mutations. To this end, we have searched for de novo spontaneous mutations in the complete nuclear genomes of five Arabid...

Full description

Saved in:
Bibliographic Details
Published inScience (American Association for the Advancement of Science) Vol. 327; no. 5961; pp. 92 - 94
Main Authors Ossowski, Stephan, Schneeberger, Korbinian, Lucas-Lledó, José Ignacio, Warthmann, Norman, Clark, Richard M, Shaw, Ruth G, Weigel, Detlef, Lynch, Michael
Format Journal Article
LanguageEnglish
Published Washington, DC American Association for the Advancement of Science 2010
The American Association for the Advancement of Science
Subjects
Online AccessGet full text
ISSN0036-8075
1095-9203
1095-9203
DOI10.1126/science.1180677

Cover

Loading…
Abstract To take complete advantage of information on within-species polymorphism and divergence from close relatives, one needs to know the rate and the molecular spectrum of spontaneous mutations. To this end, we have searched for de novo spontaneous mutations in the complete nuclear genomes of five Arabidopsis thaliana mutation accumulation lines that had been maintained by single-seed descent for 30 generations. We identified and validated 99 base substitutions and 17 small and large insertions and deletions. Our results imply a spontaneous mutation rate of 7 x 10⁻⁹ base substitutions per site per generation, the majority of which are G:C[rightward arrow]A:T transitions. We explain this very biased spectrum of base substitution mutations as a result of two main processes: deamination of methylated cytosines and ultraviolet light-induced mutagenesis.
AbstractList To take complete advantage of information on within-species polymorphism and divergence from close relatives, one needs to know the rate and the molecular spectrum of spontaneous mutations. To this end, we have searched for de novo spontaneous mutations in the complete nuclear genomes of five Arabidopsis thaliana mutation accumulation lines that had been maintained by single-seed descent for 30 generations. We identified and validated 99 base substitutions and 17 small and large insertions and deletions. Our results imply a spontaneous mutation rate of 7 x 10⁻⁹ base substitutions per site per generation, the majority of which are G:C[rightward arrow]A:T transitions. We explain this very biased spectrum of base substitution mutations as a result of two main processes: deamination of methylated cytosines and ultraviolet light-induced mutagenesis.
To take complete advantage of information on within-species polymorphism and divergence from close relatives, one needs to know the rate and the molecular spectrum of spontaneous mutations. To this end, we have searched for de novo spontaneous mutations in the complete nuclear genomes of five Arabidopsis thaliana mutation accumulation lines that had been maintained by single-seed descent for 30 generations. We identified and validated 99 base substitutions and 17 small and large insertions and deletions. Our results imply a spontaneous mutation rate of 7 × 10 −9 base substitutions per site per generation, the majority of which are G:C→A:T transitions. We explain this very biased spectrum of base substitution mutations as a result of two main processes: deamination of methylated cytosines and ultraviolet light–induced mutagenesis.
Rates of evolution in gene and genome sequences have been estimated, but these estimates are subject to error because many of the steps of evolution over the ages are not directly measurable or are hidden under subsequent changes. Ossowski et al. (p. 92 ) now provide a more accurate measurement of how often spontaneous mutations arise in a nuclear genome. Mutations arising over 30 generations were compared by sequencing DNA from individual Arabidopsis thaliana plants. UV- and deamination-induced mutagenesis appeared to bias the type of mutations found. Rapid sequencing technologies allow a more accurate calculation of the mutation rate for plants. To take complete advantage of information on within-species polymorphism and divergence from close relatives, one needs to know the rate and the molecular spectrum of spontaneous mutations. To this end, we have searched for de novo spontaneous mutations in the complete nuclear genomes of five Arabidopsis thaliana mutation accumulation lines that had been maintained by single-seed descent for 30 generations. We identified and validated 99 base substitutions and 17 small and large insertions and deletions. Our results imply a spontaneous mutation rate of 7 × 10 −9 base substitutions per site per generation, the majority of which are G:C→A:T transitions. We explain this very biased spectrum of base substitution mutations as a result of two main processes: deamination of methylated cytosines and ultraviolet light–induced mutagenesis.
To take complete advantage of information on within-species polymorphism and divergence from close relatives, one needs to know the rate and the molecular spectrum of spontaneous mutations. To this end, we have searched for de novo spontaneous mutations in the complete nuclear genomes of five Arabidopsis thaliana mutation accumulation lines that had been maintained by single-seed descent for 30 generations. We identified and validated 99 base substitutions and 17 small and large insertions and deletions. Our results imply a spontaneous mutation rate of 7 x 10(-9) base substitutions per site per generation, the majority of which are G:C-->A:T transitions. We explain this very biased spectrum of base substitution mutations as a result of two main processes: deamination of methylated cytosines and ultraviolet light-induced mutagenesis.
To take complete advantage of information on within-species polymorphism and divergence from close relatives, one needs to know the rate and the molecular spectrum of spontaneous mutations. To this end, we have searched for de novo spontaneous mutations in the complete nuclear genomes of five Arabidopsis thaliana mutation accumulation lines that had been maintained by single-seed descent for 30 generations. We identified and validated 99 base substitutions and 17 small and large insertions and deletions. Our results imply a spontaneous mutation rate of 7 x 10(-9) base substitutions per site per generation, the majority of which are G:C-->A:T transitions. We explain this very biased spectrum of base substitution mutations as a result of two main processes: deamination of methylated cytosines and ultraviolet light-induced mutagenesis.To take complete advantage of information on within-species polymorphism and divergence from close relatives, one needs to know the rate and the molecular spectrum of spontaneous mutations. To this end, we have searched for de novo spontaneous mutations in the complete nuclear genomes of five Arabidopsis thaliana mutation accumulation lines that had been maintained by single-seed descent for 30 generations. We identified and validated 99 base substitutions and 17 small and large insertions and deletions. Our results imply a spontaneous mutation rate of 7 x 10(-9) base substitutions per site per generation, the majority of which are G:C-->A:T transitions. We explain this very biased spectrum of base substitution mutations as a result of two main processes: deamination of methylated cytosines and ultraviolet light-induced mutagenesis.
To take complete advantage of information on within-species polymorphism and divergence from close relatives, one needs to know the rate and the molecular spectrum of spontaneous mutations. To this end, we have searched for de novo spontaneous mutations in the complete nuclear genomes of five Arabidopsis thaliana mutation accumulation lines that had been maintained by single-seed descent for 30 generations. We identified and validated 99 base substitutions and 17 small and large insertions and deletions. Our results imply a spontaneous mutation rate of 7 × 10-9 base substitutions per site per generation, the majority of which are G:C[arrow right]A:T transitions. We explain this very biased spectrum of base substitution mutations as a result of two main processes: deamination of methylated cytosines and ultraviolet light-induced mutagenesis. [PUBLICATION ABSTRACT]
To take complete advantage of information on within-species polymorphism and divergence from close relatives, one needs to know the rate and the molecular spectrum of spontaneous mutations. To this end, we have searched for de novo spontaneous mutations in the complete nuclear genomes of five Arabidopsis thaliana mutation accumulation lines that had been maintained by single-seed descent for 30 generations. We identified and validated 99 base substitutions and 17 small and large insertions and deletions. Our results imply a spontaneous mutation rate of 7 x 10⁻⁹ base substitutions per site per generation, the majority of which are G: C-» A: T transitions. We explain this very biased spectrum of base substitution mutations as a result of two main processes: deamination of methylated cytosines and ultraviolet light-induced mutagenesis.
Author Lucas-Lledó, José Ignacio
Schneeberger, Korbinian
Weigel, Detlef
Lynch, Michael
Ossowski, Stephan
Shaw, Ruth G
Warthmann, Norman
Clark, Richard M
AuthorAffiliation 3 Department of Biology, University of Utah, Salt Lake City, UT 84112, USA
4 Department of Ecology, Evolution, and Behavior, University of Minnesota, St. Paul, MN 55108, USA
1 Department of Molecular Biology, Max Planck Institute for Developmental Biology, 72076 Tübingen, Germany
2 Department of Biology, Indiana University, Bloomington, IN 47405, USA
AuthorAffiliation_xml – name: 1 Department of Molecular Biology, Max Planck Institute for Developmental Biology, 72076 Tübingen, Germany
– name: 2 Department of Biology, Indiana University, Bloomington, IN 47405, USA
– name: 3 Department of Biology, University of Utah, Salt Lake City, UT 84112, USA
– name: 4 Department of Ecology, Evolution, and Behavior, University of Minnesota, St. Paul, MN 55108, USA
Author_xml – sequence: 1
  fullname: Ossowski, Stephan
– sequence: 2
  fullname: Schneeberger, Korbinian
– sequence: 3
  fullname: Lucas-Lledó, José Ignacio
– sequence: 4
  fullname: Warthmann, Norman
– sequence: 5
  fullname: Clark, Richard M
– sequence: 6
  fullname: Shaw, Ruth G
– sequence: 7
  fullname: Weigel, Detlef
– sequence: 8
  fullname: Lynch, Michael
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=22280699$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/20044577$$D View this record in MEDLINE/PubMed
BookMark eNqFkstv1DAQxiNURLeFMycgQgJOS8dv54JUVbykrZAoPVsTx2m9ytqLnSDx3-NVlgV6KCfbmt83D893Uh2FGFxVPSXwlhAqz7L1LlhXHhqkUg-qBYFGLBsK7KhaADC51KDEcXWS8xqgxBr2qDqmAJwLpRbV6iuOrsbQ1ZdxcHYaMNVXW2fHNG3q2Jd7DCMGF6dcX04jjj6GXPtQnydsfRe32ed6vMXBY8DH1cMeh-ye7M_T6vrD-28Xn5arLx8_X5yvllZoOS7R9ZT1QjhtW8mIVhJRtgA9d7p3SKHRCnf99cSxVjqNFoGJtuNUdZ0Ddlq9m_Nup3bjOuvCmHAw2-Q3mH6aiN78Gwn-1tzEH4ZppbUUJcGbfYIUv08uj2bjs3XDME9qFOOUNISRQr6-l-SSC625_C_IJKdSS1XAl3fAdZxSKP9lKGESBOW7ss__nvAw2u_FFeDVHsBscegTBuvzH47SYoimKdzZzNkUc06uPyAEzM5CZm8hs7dQUYg7CuvnvZev9MM9umezbp3HmA5lOAjQDHZLezHHe4wGb1Lp9vqKAmFAFAXRcPYLbhzfWQ
CODEN SCIEAS
CitedBy_id crossref_primary_10_1186_s12915_023_01745_5
crossref_primary_10_1186_s12870_023_04315_7
crossref_primary_10_1093_molbev_msac169
crossref_primary_10_1534_genetics_119_302054
crossref_primary_10_1038_s41467_018_06932_5
crossref_primary_10_1186_s13068_024_02562_w
crossref_primary_10_1111_mec_13738
crossref_primary_10_1111_tpj_15557
crossref_primary_10_1534_genetics_111_134668
crossref_primary_10_1016_j_cub_2016_03_067
crossref_primary_10_1098_rstb_2012_0083
crossref_primary_10_1007_s11248_016_9981_1
crossref_primary_10_1016_j_dnarep_2024_103801
crossref_primary_10_1534_genetics_113_158196
crossref_primary_10_1101_gr_152538_112
crossref_primary_10_1111_tpj_13132
crossref_primary_10_1371_journal_pone_0074479
crossref_primary_10_1038_emboj_2010_313
crossref_primary_10_1111_j_1365_294X_2012_05460_x
crossref_primary_10_1093_dnares_dsad012
crossref_primary_10_1093_aob_mcab128
crossref_primary_10_1111_nph_17456
crossref_primary_10_1111_nph_17699
crossref_primary_10_1104_pp_110_169748
crossref_primary_10_1093_aob_mcu017
crossref_primary_10_1186_s12896_016_0271_z
crossref_primary_10_1007_s00253_019_09626_0
crossref_primary_10_1016_j_pmpp_2023_101968
crossref_primary_10_1111_mec_13721
crossref_primary_10_1139_cjps_2017_0364
crossref_primary_10_1093_molbev_mss024
crossref_primary_10_1371_journal_pgen_1007949
crossref_primary_10_1093_sysbio_sys048
crossref_primary_10_1016_j_molp_2018_04_009
crossref_primary_10_1002_ece3_4533
crossref_primary_10_3390_plants8120570
crossref_primary_10_1016_j_pld_2023_07_004
crossref_primary_10_1016_j_pbi_2020_101989
crossref_primary_10_1093_genetics_iyad128
crossref_primary_10_1146_annurev_genet_120215_035254
crossref_primary_10_1093_molbev_mss249
crossref_primary_10_1016_j_algal_2024_103694
crossref_primary_10_1111_mec_13705
crossref_primary_10_1371_journal_pbio_1002419
crossref_primary_10_1371_journal_pgen_1004410
crossref_primary_10_1186_s12870_024_05628_x
crossref_primary_10_1534_genetics_118_300848
crossref_primary_10_1186_s12862_020_01661_0
crossref_primary_10_1186_s13104_020_4883_y
crossref_primary_10_1007_s11103_015_0293_2
crossref_primary_10_1105_tpc_110_073999
crossref_primary_10_1126_sciadv_abm9385
crossref_primary_10_1079_PAVSNNR202116047
crossref_primary_10_1093_molbev_msad031
crossref_primary_10_1016_j_pbi_2020_101990
crossref_primary_10_1534_genetics_118_301721
crossref_primary_10_1002_em_20613
crossref_primary_10_1093_gbe_evz130
crossref_primary_10_1002_ece3_5888
crossref_primary_10_1038_ncomms5104
crossref_primary_10_1038_s41467_017_02063_5
crossref_primary_10_2903_j_efsa_2012_2943
crossref_primary_10_1111_tpj_14427
crossref_primary_10_3389_fpls_2022_838536
crossref_primary_10_3390_cells10051224
crossref_primary_10_1093_molbev_msae135
crossref_primary_10_1101_gr_178335_114
crossref_primary_10_1186_s12870_018_1474_3
crossref_primary_10_1016_j_semcdb_2019_06_005
crossref_primary_10_1104_pp_111_185074
crossref_primary_10_1134_S002689332206019X
crossref_primary_10_1002_1873_3468_12248
crossref_primary_10_3389_fpls_2021_681801
crossref_primary_10_3390_agronomy12091990
crossref_primary_10_1038_s41467_022_34795_4
crossref_primary_10_1007_s10265_018_1064_3
crossref_primary_10_1111_bij_12116
crossref_primary_10_1073_pnas_1903809116
crossref_primary_10_1007_s13353_011_0058_9
crossref_primary_10_1016_j_ijbiomac_2024_134051
crossref_primary_10_1111_evo_13892
crossref_primary_10_1105_tpc_114_124297
crossref_primary_10_1371_journal_pone_0222283
crossref_primary_10_1534_g3_120_401704
crossref_primary_10_1146_annurev_ecolsys_110218_024955
crossref_primary_10_1093_gbe_evy252
crossref_primary_10_1007_s42977_022_00146_z
crossref_primary_10_1007_s00606_017_1411_1
crossref_primary_10_1111_mec_14426
crossref_primary_10_1111_mec_16849
crossref_primary_10_1186_s12864_024_10405_z
crossref_primary_10_1371_journal_pgen_1003754
crossref_primary_10_1111_j_1365_313X_2010_04284_x
crossref_primary_10_1093_gbe_evu284
crossref_primary_10_1093_aob_mcx112
crossref_primary_10_1093_gbe_evw223
crossref_primary_10_1371_journal_pone_0033541
crossref_primary_10_1007_s00122_023_04262_9
crossref_primary_10_3389_fevo_2024_1335452
crossref_primary_10_3390_d9040045
crossref_primary_10_1007_s11627_021_10182_4
crossref_primary_10_1111_j_1365_294X_2010_04835_x
crossref_primary_10_1371_journal_pone_0183412
crossref_primary_10_1371_journal_pgen_1002652
crossref_primary_10_1111_jbi_12876
crossref_primary_10_1038_s41467_018_05281_7
crossref_primary_10_1093_gbe_evu271
crossref_primary_10_1371_journal_pone_0131508
crossref_primary_10_1038_s41586_021_04269_6
crossref_primary_10_1007_s11240_019_01589_4
crossref_primary_10_1111_bij_12342
crossref_primary_10_1073_pnas_1211021109
crossref_primary_10_1371_journal_pcbi_1008296
crossref_primary_10_1038_nrg_2016_45
crossref_primary_10_1111_j_1365_294X_2011_05434_x
crossref_primary_10_1111_nph_19227
crossref_primary_10_1038_nrg3564
crossref_primary_10_1111_1755_0998_13104
crossref_primary_10_1016_j_tplants_2024_09_008
crossref_primary_10_1007_s10722_015_0242_6
crossref_primary_10_1111_tpj_13511
crossref_primary_10_3390_ijms21072590
crossref_primary_10_1186_s13059_020_02131_y
crossref_primary_10_1038_s41580_024_00769_1
crossref_primary_10_1093_jxb_erw333
crossref_primary_10_1073_pnas_2208575119
crossref_primary_10_1038_s41598_022_19928_5
crossref_primary_10_1007_s11248_015_9867_7
crossref_primary_10_1073_pnas_1616736114
crossref_primary_10_1111_tpj_13524
crossref_primary_10_3389_fpls_2021_730258
crossref_primary_10_3835_plantgenome2016_05_0047
crossref_primary_10_1093_pnasnexus_pgae094
crossref_primary_10_3389_fgene_2019_00487
crossref_primary_10_1016_j_tplants_2019_08_007
crossref_primary_10_3389_fgene_2020_542017
crossref_primary_10_1016_j_cub_2018_03_020
crossref_primary_10_1111_pce_13811
crossref_primary_10_1038_s41598_017_14628_x
crossref_primary_10_1098_rsfs_2019_0120
crossref_primary_10_1016_j_tim_2013_09_003
crossref_primary_10_1146_annurev_genet_120213_092110
crossref_primary_10_1093_genetics_iyad146
crossref_primary_10_1093_molbev_msx064
crossref_primary_10_1007_s12042_016_9165_4
crossref_primary_10_1016_j_cub_2018_04_069
crossref_primary_10_1093_jhered_esae058
crossref_primary_10_1186_s13059_021_02348_5
crossref_primary_10_1038_nature11968
crossref_primary_10_1186_s12864_017_4394_y
crossref_primary_10_3390_genes10110894
crossref_primary_10_1093_biolinnean_blx071
crossref_primary_10_3390_genes12091391
crossref_primary_10_1186_s13059_017_1378_9
crossref_primary_10_1016_j_gde_2013_10_006
crossref_primary_10_1111_jeb_14162
crossref_primary_10_1111_tpj_13738
crossref_primary_10_1101_gr_251207_119
crossref_primary_10_1093_molbev_msz259
crossref_primary_10_3390_jmse10020168
crossref_primary_10_1038_s41477_023_01367_3
crossref_primary_10_1093_jhered_esae046
crossref_primary_10_1073_pnas_1109273108
crossref_primary_10_1111_jbi_13918
crossref_primary_10_1111_mec_15936
crossref_primary_10_1371_journal_pgen_1001115
crossref_primary_10_1371_journal_pone_0161355
crossref_primary_10_1093_nar_gkw1259
crossref_primary_10_1073_pnas_1424254112
crossref_primary_10_1016_j_tig_2024_11_002
crossref_primary_10_1002_ece3_2558
crossref_primary_10_1371_journal_pone_0282932
crossref_primary_10_1016_j_ydbio_2016_07_003
crossref_primary_10_1111_tpj_12860
crossref_primary_10_7554_eLife_14625
crossref_primary_10_1093_dnares_dsv027
crossref_primary_10_3390_ijms21030707
crossref_primary_10_1016_j_xplc_2022_100413
crossref_primary_10_1534_genetics_119_302045
crossref_primary_10_1002_bies_201500058
crossref_primary_10_1371_journal_pgen_1001104
crossref_primary_10_1007_s10265_015_0709_8
crossref_primary_10_1101_gr_231753_117
crossref_primary_10_1111_plb_12375
crossref_primary_10_1371_journal_pone_0048862
crossref_primary_10_1093_g3journal_jkac150
crossref_primary_10_1111_nph_12863
crossref_primary_10_1371_journal_pgen_1011141
crossref_primary_10_7554_eLife_89470
crossref_primary_10_1016_j_xplc_2022_100420
crossref_primary_10_1534_genetics_116_199190
crossref_primary_10_1186_s13059_020_02162_5
crossref_primary_10_1016_j_scitotenv_2024_171567
crossref_primary_10_1093_jxb_erw066
crossref_primary_10_1534_genetics_113_158758
crossref_primary_10_1101_gr_177659_114
crossref_primary_10_1073_pnas_1018222108
crossref_primary_10_1093_bioinformatics_bty165
crossref_primary_10_3390_epigenomes6040031
crossref_primary_10_1093_molbev_msz206
crossref_primary_10_1371_journal_pgen_1007155
crossref_primary_10_2135_cropsci2015_04_0220
crossref_primary_10_1093_gbe_evs027
crossref_primary_10_1093_gbe_evs028
crossref_primary_10_1371_journal_pbio_3002191
crossref_primary_10_1007_s10682_022_10205_5
crossref_primary_10_1534_g3_113_007815
crossref_primary_10_1073_pnas_1323011111
crossref_primary_10_1101_gr_219303_116
crossref_primary_10_1016_j_tig_2010_05_003
crossref_primary_10_1016_j_gpb_2018_07_009
crossref_primary_10_1126_science_adh9443
crossref_primary_10_1007_s00299_016_1993_z
crossref_primary_10_3389_fpls_2017_00402
crossref_primary_10_1111_1755_0998_13897
crossref_primary_10_1093_gbe_evq081
crossref_primary_10_1038_s41467_018_06108_1
crossref_primary_10_1186_s12864_018_4753_3
crossref_primary_10_1038_s41467_018_04256_y
crossref_primary_10_1016_j_pbi_2016_01_003
crossref_primary_10_1007_s12284_010_9046_7
crossref_primary_10_3390_ijms232112860
crossref_primary_10_1073_pnas_1609686113
crossref_primary_10_3390_plants10010144
crossref_primary_10_1007_s00438_013_0783_3
crossref_primary_10_3389_fevo_2021_681100
crossref_primary_10_1534_genetics_113_159863
crossref_primary_10_1093_gbe_evac043
crossref_primary_10_1186_s12864_015_1285_y
crossref_primary_10_1007_s00438_019_01614_3
crossref_primary_10_1093_evolut_qpac010
crossref_primary_10_1371_journal_pone_0186663
crossref_primary_10_1016_j_tig_2021_04_010
crossref_primary_10_1093_eep_dvx002
crossref_primary_10_1111_mec_15448
crossref_primary_10_1111_ddi_13288
crossref_primary_10_1146_annurev_phyto_080615_100308
crossref_primary_10_1038_s41438_021_00612_0
crossref_primary_10_1007_s11738_017_2600_9
crossref_primary_10_1016_j_mimet_2013_09_010
crossref_primary_10_1093_gbe_evac059
crossref_primary_10_1111_jeb_13535
crossref_primary_10_1371_journal_pgen_1008698
crossref_primary_10_7554_eLife_89470_4
crossref_primary_10_1016_j_ympev_2017_05_026
crossref_primary_10_1038_ng_911
crossref_primary_10_1093_gigascience_giac106
crossref_primary_10_1126_science_1212959
crossref_primary_10_1371_journal_pone_0242624
crossref_primary_10_1007_s12042_014_9135_7
crossref_primary_10_1534_genetics_111_128744
crossref_primary_10_1111_mec_14107
crossref_primary_10_1134_S0026893320010069
crossref_primary_10_1534_g3_115_023671
crossref_primary_10_1038_s41438_020_0284_6
crossref_primary_10_1371_journal_pgen_1004920
crossref_primary_10_1111_j_1365_2699_2012_02775_x
crossref_primary_10_1111_mec_16764
crossref_primary_10_3389_fpls_2023_1212967
crossref_primary_10_1186_1759_8753_3_2
crossref_primary_10_1270_jsbbs_22100
crossref_primary_10_1093_pcp_pcr029
crossref_primary_10_1111_jse_12543
crossref_primary_10_3390_plants12091734
crossref_primary_10_1093_gbe_evac038
crossref_primary_10_1093_gbe_evae213
crossref_primary_10_1093_molbev_msw141
crossref_primary_10_3390_genes12050719
crossref_primary_10_21273_HORTSCI16001_21
crossref_primary_10_1093_molbev_msv055
crossref_primary_10_1016_j_plantsci_2010_07_019
crossref_primary_10_1080_17550874_2017_1393702
crossref_primary_10_1007_s11816_019_00562_z
crossref_primary_10_1111_mec_14325
crossref_primary_10_1534_g3_120_401269
crossref_primary_10_1038_s41477_024_01807_8
crossref_primary_10_1016_j_mrfmmm_2020_111691
crossref_primary_10_1016_j_pbi_2012_08_004
crossref_primary_10_1002_csc2_20377
crossref_primary_10_1094_PHYTO_10_15_0279_R
crossref_primary_10_1038_s41467_022_29267_8
crossref_primary_10_1016_j_tplants_2011_02_006
crossref_primary_10_1073_pnas_1817580116
crossref_primary_10_3390_genes11070787
crossref_primary_10_1007_s42994_023_00130_8
crossref_primary_10_1111_ele_12858
crossref_primary_10_1007_s00299_017_2098_z
crossref_primary_10_1093_bfgp_elu009
crossref_primary_10_1093_bfgp_elu003
crossref_primary_10_1016_j_pbi_2012_10_003
crossref_primary_10_3389_fpls_2023_1305069
crossref_primary_10_1111_tpj_16482
crossref_primary_10_1104_pp_15_00291
crossref_primary_10_1111_mec_16168
crossref_primary_10_7554_eLife_06100
crossref_primary_10_1371_journal_pone_0213023
crossref_primary_10_1093_hr_uhad241
crossref_primary_10_1534_genetics_112_138461
crossref_primary_10_1371_journal_pgen_1009979
crossref_primary_10_1093_molbev_msaa150
crossref_primary_10_1111_jbi_14390
crossref_primary_10_1007_s10681_015_1630_x
crossref_primary_10_1038_nature14649
crossref_primary_10_1038_s41467_021_24528_4
crossref_primary_10_7554_eLife_54898
crossref_primary_10_3390_biology2041357
crossref_primary_10_7554_eLife_70242
crossref_primary_10_1104_pp_110_167726
crossref_primary_10_1186_s13059_018_1516_z
crossref_primary_10_1186_s13059_016_1127_5
crossref_primary_10_1016_j_mrgentox_2013_07_018
crossref_primary_10_1086_729053
crossref_primary_10_1093_molbev_msw102
crossref_primary_10_1371_journal_pgen_1006455
crossref_primary_10_1007_s11816_013_0285_0
crossref_primary_10_1111_nph_15434
crossref_primary_10_1038_nature14634
crossref_primary_10_3390_agronomy12112852
crossref_primary_10_1146_annurev_phyto_082718_095959
crossref_primary_10_3389_fpls_2022_958350
crossref_primary_10_1146_annurev_ecolsys_121415_032116
crossref_primary_10_1038_s41438_020_0305_5
crossref_primary_10_1186_1471_2229_13_29
crossref_primary_10_3389_fpls_2023_1056662
crossref_primary_10_1093_gigascience_giz027
crossref_primary_10_3390_ijms232314542
crossref_primary_10_1002_ps_4727
crossref_primary_10_7554_eLife_23907
crossref_primary_10_1111_mec_17232
crossref_primary_10_1016_j_jplph_2016_03_009
crossref_primary_10_1093_g3journal_jkab431
crossref_primary_10_1371_journal_pone_0094101
crossref_primary_10_1038_s41598_018_19278_1
crossref_primary_10_1093_bioinformatics_bts231
crossref_primary_10_1371_journal_pone_0096782
crossref_primary_10_1093_plphys_kiad640
crossref_primary_10_1016_j_tplants_2016_01_024
crossref_primary_10_1016_j_cub_2011_05_013
crossref_primary_10_1093_sysbio_syr120
crossref_primary_10_1002_evl3_8
crossref_primary_10_1111_evo_14152
crossref_primary_10_3390_ijms23020654
crossref_primary_10_1371_journal_pgen_1005588
crossref_primary_10_1186_1471_2164_13_20
crossref_primary_10_1093_pcp_pcac119
crossref_primary_10_1007_s10530_015_1001_5
crossref_primary_10_1007_s00438_022_01959_2
crossref_primary_10_1111_j_1365_294X_2011_05189_x
crossref_primary_10_1111_nph_15243
crossref_primary_10_1104_pp_111_189845
crossref_primary_10_1073_pnas_1309843110
crossref_primary_10_3389_fgene_2020_00812
crossref_primary_10_2135_cropsci2019_01_0011
crossref_primary_10_1534_g3_116_030890
crossref_primary_10_1093_mp_sst165
crossref_primary_10_1007_s00425_012_1612_3
crossref_primary_10_1371_journal_pone_0075402
crossref_primary_10_1093_pcp_pcu153
crossref_primary_10_1186_1939_8433_6_4
crossref_primary_10_1270_jsbbs_17155
crossref_primary_10_1098_rstb_2013_0344
crossref_primary_10_1101_gr_140236_112
crossref_primary_10_3389_fgene_2022_979902
crossref_primary_10_1093_aob_mcr180
crossref_primary_10_1038_s41598_024_67190_8
crossref_primary_10_1093_molbev_msad238
crossref_primary_10_1186_1471_2164_13_72
crossref_primary_10_1111_mec_16587
crossref_primary_10_1093_sysbio_syz035
crossref_primary_10_1111_mec_15014
crossref_primary_10_1534_g3_114_011551
crossref_primary_10_3390_biology10080766
crossref_primary_10_1093_hr_uhae355
crossref_primary_10_1104_pp_114_238451
crossref_primary_10_1038_ng_2312
crossref_primary_10_1093_hr_uhad269
crossref_primary_10_1073_pnas_1311134110
crossref_primary_10_1111_j_1469_8137_2012_04061_x
crossref_primary_10_1016_j_tig_2015_04_001
crossref_primary_10_1016_j_jplph_2021_153365
crossref_primary_10_1038_s41467_025_58021_z
crossref_primary_10_1038_s41467_019_14213_y
crossref_primary_10_1126_science_add1250
crossref_primary_10_3732_ajb_1100580
crossref_primary_10_1038_s41477_023_01538_2
crossref_primary_10_1093_molbev_msu345
crossref_primary_10_1038_s41477_017_0076_7
crossref_primary_10_1371_journal_pgen_1009987
crossref_primary_10_1101_gr_233551_117
crossref_primary_10_3390_su9010018
crossref_primary_10_1111_jbi_13230
crossref_primary_10_1111_nph_16308
crossref_primary_10_1534_genetics_111_128355
crossref_primary_10_7717_peerj_2889
crossref_primary_10_1186_s12864_017_4407_x
crossref_primary_10_1093_molbev_msr281
crossref_primary_10_1016_j_plaphy_2011_07_006
crossref_primary_10_1111_jbi_13468
crossref_primary_10_1146_annurev_arplant_070522_054109
crossref_primary_10_1007_s10577_014_9420_1
crossref_primary_10_1038_s41437_021_00478_x
crossref_primary_10_1093_pcp_pcae113
crossref_primary_10_1111_mec_12752
crossref_primary_10_1007_s00425_023_04176_2
crossref_primary_10_1007_s00438_013_0747_7
crossref_primary_10_1002_ece3_1378
crossref_primary_10_1038_s41559_024_02439_z
crossref_primary_10_3732_ajb_1700054
crossref_primary_10_1073_pnas_2407821121
crossref_primary_10_1093_molbev_msr057
crossref_primary_10_1111_tpj_13262
crossref_primary_10_1093_molbev_msae247
crossref_primary_10_1016_j_cell_2020_04_019
crossref_primary_10_1111_nph_17560
crossref_primary_10_1186_2041_9139_4_26
crossref_primary_10_1007_s12041_013_0271_x
crossref_primary_10_1111_tpj_16501
crossref_primary_10_1016_j_mimet_2013_04_007
crossref_primary_10_3389_fgeed_2023_1196763
crossref_primary_10_1093_genetics_iyab061
crossref_primary_10_1007_s00294_016_0573_7
crossref_primary_10_1093_gbe_evw164
crossref_primary_10_1266_ggs_14_00079
crossref_primary_10_1093_nar_gkv197
crossref_primary_10_1007_s11033_023_09086_w
crossref_primary_10_1186_s13059_018_1458_5
crossref_primary_10_1126_sciadv_aay3240
crossref_primary_10_3390_ijms22168618
crossref_primary_10_1038_s41598_019_43141_6
crossref_primary_10_1038_s41477_017_0002_z
crossref_primary_10_1093_molbev_mst218
crossref_primary_10_1093_molbev_msu306
crossref_primary_10_3390_ijms25105195
crossref_primary_10_3390_v13091800
crossref_primary_10_1016_j_cub_2011_07_002
crossref_primary_10_1007_s00122_022_04122_y
crossref_primary_10_1007_s10265_014_0693_4
crossref_primary_10_1371_journal_pone_0065416
crossref_primary_10_3390_agriculture12050661
crossref_primary_10_1111_tpj_13243
crossref_primary_10_1093_plphys_kiae040
crossref_primary_10_1371_journal_pone_0058916
crossref_primary_10_1073_pnas_1912451117
crossref_primary_10_1002_ece3_1168
crossref_primary_10_1038_s41467_021_26108_y
crossref_primary_10_1093_sysbio_syr012
crossref_primary_10_1534_genetics_118_300755
crossref_primary_10_3389_fgene_2021_682324
crossref_primary_10_1002_bies_201100075
crossref_primary_10_1093_molbev_msad185
crossref_primary_10_1101_gr_259853_119
crossref_primary_10_1073_pnas_1201043109
crossref_primary_10_1007_s13562_024_00942_9
crossref_primary_10_1101_gr_170696_113
crossref_primary_10_1093_gbe_evx068
crossref_primary_10_1186_s12864_017_4220_6
crossref_primary_10_1111_mec_17165
crossref_primary_10_3389_fgene_2014_00341
crossref_primary_10_1093_molbev_msr254
crossref_primary_10_1093_aobpla_plz076
crossref_primary_10_1111_nph_16035
crossref_primary_10_3390_ijms19123758
crossref_primary_10_1093_molbev_msr225
crossref_primary_10_1371_journal_pone_0162169
crossref_primary_10_3390_ijms24108825
crossref_primary_10_3390_f11121331
crossref_primary_10_1101_gr_271726_120
crossref_primary_10_1371_journal_pbio_3000265
crossref_primary_10_1016_j_cub_2019_07_025
crossref_primary_10_3389_fgeed_2022_937853
crossref_primary_10_3390_plants12142690
crossref_primary_10_1093_dnares_dsac008
crossref_primary_10_4137_EBO_S22566
crossref_primary_10_1093_dnares_dsac022
crossref_primary_10_1086_700104
crossref_primary_10_1534_genetics_114_169243
crossref_primary_10_1534_genetics_113_151670
crossref_primary_10_1101_gr_276992_122
crossref_primary_10_1101_gr_279378_124
crossref_primary_10_1093_pcp_pcw060
crossref_primary_10_3389_fpls_2020_00336
crossref_primary_10_1186_s12915_019_0702_0
crossref_primary_10_1111_j_1469_8137_2010_03401_x
crossref_primary_10_1016_j_dnarep_2013_01_002
crossref_primary_10_1016_j_ijbiomac_2023_124064
crossref_primary_10_3390_ijms13089900
crossref_primary_10_1186_s13059_017_1342_8
crossref_primary_10_1002_ajb2_1633
crossref_primary_10_1007_s12041_013_0273_8
crossref_primary_10_1016_j_molp_2014_11_016
crossref_primary_10_1186_s12864_017_4218_0
crossref_primary_10_1186_s12870_018_1348_8
crossref_primary_10_1111_j_1558_5646_2011_01466_x
crossref_primary_10_1007_s10142_011_0215_6
crossref_primary_10_1186_s12864_020_06804_7
crossref_primary_10_1038_s41467_019_11385_5
crossref_primary_10_3389_fpls_2019_00653
crossref_primary_10_1093_jxb_ery416
crossref_primary_10_1002_cppb_20040
crossref_primary_10_1146_annurev_genet_120116_024846
crossref_primary_10_1111_1755_0998_12163
crossref_primary_10_1016_j_ecolind_2022_109419
crossref_primary_10_3389_fpls_2023_1149083
crossref_primary_10_1111_tpj_13669
crossref_primary_10_3390_genes14071492
crossref_primary_10_1093_gbe_evt069
crossref_primary_10_1016_j_scitotenv_2022_156224
crossref_primary_10_1111_gcb_17622
crossref_primary_10_1086_663239
crossref_primary_10_1371_journal_pone_0164321
crossref_primary_10_1038_s41598_022_22486_5
crossref_primary_10_1134_S2079086413020059
crossref_primary_10_1186_s12862_016_0655_7
crossref_primary_10_3389_fpls_2019_01514
crossref_primary_10_1007_s00239_021_10040_2
crossref_primary_10_1038_s41437_020_00396_4
crossref_primary_10_1038_s41467_021_25681_6
crossref_primary_10_3390_ijms21249421
crossref_primary_10_1038_s41437_018_0095_9
crossref_primary_10_1007_s44154_021_00013_2
crossref_primary_10_3389_fpls_2022_948084
crossref_primary_10_1111_mec_12347
crossref_primary_10_1038_s41467_022_28800_z
crossref_primary_10_3390_ijms21051720
crossref_primary_10_1016_j_tifs_2015_07_009
crossref_primary_10_1093_molbev_msz149
crossref_primary_10_7554_eLife_88456
crossref_primary_10_1093_molbev_msae099
crossref_primary_10_1093_evolut_qpae150
crossref_primary_10_1186_s12864_017_3980_3
crossref_primary_10_1111_j_1558_5646_2012_01583_x
crossref_primary_10_1038_nrg3425
crossref_primary_10_1111_nph_12702
crossref_primary_10_1016_j_gene_2014_07_012
crossref_primary_10_1093_genetics_iyad074
crossref_primary_10_1093_evolut_qpae168
crossref_primary_10_1016_j_pbi_2015_01_008
crossref_primary_10_1093_molbev_msae087
crossref_primary_10_1186_s12864_015_2255_0
crossref_primary_10_1111_nph_12948
crossref_primary_10_1093_sysbio_syt032
crossref_primary_10_1186_s12864_019_6211_2
crossref_primary_10_3389_fpls_2021_683043
crossref_primary_10_1111_j_1365_313X_2011_04590_x
crossref_primary_10_1080_07352689_2021_1883826
crossref_primary_10_1101_gr_183905_114
crossref_primary_10_1186_s12864_015_1402_y
crossref_primary_10_1038_s42003_018_0168_6
crossref_primary_10_1186_s12915_021_01079_0
crossref_primary_10_3389_fpls_2020_574959
crossref_primary_10_1104_pp_111_174912
crossref_primary_10_1016_j_tig_2012_10_009
crossref_primary_10_1186_s12864_015_1974_6
crossref_primary_10_1038_s41437_024_00683_4
crossref_primary_10_3390_d8040029
crossref_primary_10_1111_1755_0998_13291
crossref_primary_10_1186_s13059_024_03337_0
crossref_primary_10_1111_mec_14738
crossref_primary_10_1371_journal_pone_0068310
crossref_primary_10_1016_j_tibs_2021_05_006
crossref_primary_10_1016_j_ppees_2024_125800
crossref_primary_10_1093_gbe_evx222
crossref_primary_10_1534_g3_111_000539
crossref_primary_10_1016_j_mrrev_2011_11_002
crossref_primary_10_1146_annurev_ecolsys_112414_054249
crossref_primary_10_1093_molbev_msx193
crossref_primary_10_1007_s11816_016_0418_3
crossref_primary_10_1186_s13059_020_02161_6
crossref_primary_10_1038_ncomms15275
crossref_primary_10_1016_j_cellin_2024_100209
crossref_primary_10_3389_fpls_2019_00236
crossref_primary_10_1101_gr_204669_116
crossref_primary_10_3389_fpls_2022_823372
crossref_primary_10_1186_s12864_016_3034_2
crossref_primary_10_1038_s41598_021_82731_1
crossref_primary_10_1111_evo_12858
crossref_primary_10_3389_fevo_2016_00086
crossref_primary_10_1007_s13258_018_0754_5
crossref_primary_10_1073_pnas_2011361117
crossref_primary_10_1016_j_molp_2022_07_003
crossref_primary_10_1038_s41598_017_14738_6
crossref_primary_10_1093_molbev_msx180
crossref_primary_10_1002_ece3_722
crossref_primary_10_7554_eLife_01426
crossref_primary_10_1371_journal_pbio_2005439
crossref_primary_10_1093_gbe_evx203
crossref_primary_10_1111_tpj_12754
crossref_primary_10_1007_s11248_014_9843_7
crossref_primary_10_1093_gbe_evx206
crossref_primary_10_1038_s41437_021_00417_w
crossref_primary_10_1111_mec_16207
crossref_primary_10_1073_pnas_2119720119
crossref_primary_10_3389_fpls_2017_01851
crossref_primary_10_1111_1755_0998_13529
crossref_primary_10_1093_bfgp_elr046
crossref_primary_10_1186_s12864_018_4874_8
crossref_primary_10_3390_toxins9060183
crossref_primary_10_1111_evo_12913
crossref_primary_10_1002_ece3_4085
crossref_primary_10_1016_j_gde_2012_01_007
crossref_primary_10_3389_fgene_2015_00004
crossref_primary_10_1016_j_pbi_2012_01_002
crossref_primary_10_1038_nature10555
crossref_primary_10_1038_s41467_020_20606_1
crossref_primary_10_1007_s11627_021_10213_0
crossref_primary_10_1093_molbev_msaa200
crossref_primary_10_1134_S1021443716020059
crossref_primary_10_1038_ng_807
crossref_primary_10_1093_molbev_msz304
crossref_primary_10_1093_gbe_evr032
crossref_primary_10_1007_s10265_023_01452_w
crossref_primary_10_1371_journal_ppat_1002146
crossref_primary_10_1002_evl3_121
crossref_primary_10_1002_wsbm_1411
crossref_primary_10_1186_s13059_021_02381_4
crossref_primary_10_1111_evo_12937
crossref_primary_10_1266_ggs_87_145
crossref_primary_10_3390_genes12050621
crossref_primary_10_1186_s13059_019_1729_9
crossref_primary_10_3389_fpls_2023_1331258
crossref_primary_10_1111_j_1365_313X_2011_04852_x
crossref_primary_10_1534_genetics_120_303028
crossref_primary_10_1038_s41467_018_06983_8
crossref_primary_10_1534_genetics_115_176834
crossref_primary_10_1016_j_tig_2010_12_003
crossref_primary_10_3389_fpls_2019_01815
crossref_primary_10_1007_s11103_011_9852_3
crossref_primary_10_1007_s00122_016_2708_0
crossref_primary_10_1146_annurev_ecolsys_102710_145119
crossref_primary_10_1111_jse_12849
crossref_primary_10_1111_eva_12704
crossref_primary_10_1111_tpj_16169
crossref_primary_10_1016_j_heliyon_2023_e20231
crossref_primary_10_1073_pnas_1210663109
crossref_primary_10_1073_pnas_2023801118
crossref_primary_10_1534_g3_116_030130
crossref_primary_10_1111_pbr_12117
crossref_primary_10_1093_molbev_msu073
crossref_primary_10_1093_mp_ssr022
crossref_primary_10_1093_molbev_msv161
crossref_primary_10_1534_g3_117_040204
crossref_primary_10_1016_j_xplc_2020_100115
crossref_primary_10_1038_nmicrobiol_2016_45
crossref_primary_10_1038_nrg_2017_45
crossref_primary_10_1016_j_algal_2020_101989
crossref_primary_10_3390_genes13101799
crossref_primary_10_1111_j_1469_8137_2012_04378_x
crossref_primary_10_1007_s11240_022_02378_2
crossref_primary_10_1111_jeb_12384
crossref_primary_10_2135_cropsci2017_03_0199
crossref_primary_10_1093_gbe_evr085
crossref_primary_10_1093_molbev_msw024
crossref_primary_10_1371_journal_pone_0096879
crossref_primary_10_1186_1471_2148_14_41
crossref_primary_10_1093_molbev_msx119
crossref_primary_10_1093_dnares_dst036
crossref_primary_10_1073_pnas_1321152111
crossref_primary_10_1186_s12864_018_5081_3
crossref_primary_10_1016_j_jafr_2024_101132
crossref_primary_10_1534_g3_117_043984
crossref_primary_10_1002_1438_390X_12018
crossref_primary_10_1093_nar_gkw647
crossref_primary_10_1631_jzus_B1600125
crossref_primary_10_1371_journal_pgen_1009477
crossref_primary_10_1093_molbev_msw234
crossref_primary_10_1371_journal_pgen_1011312
crossref_primary_10_1073_pnas_2022713118
crossref_primary_10_1186_s13059_017_1288_x
crossref_primary_10_7554_eLife_70339
crossref_primary_10_1038_s41467_018_04344_z
crossref_primary_10_1371_journal_pgen_1000890
crossref_primary_10_7554_eLife_88456_3
crossref_primary_10_1007_s11434_013_0057_9
crossref_primary_10_1098_rspb_2019_2364
crossref_primary_10_3389_fpls_2019_01612
crossref_primary_10_3389_fpls_2021_602598
crossref_primary_10_1093_pcp_pcr172
crossref_primary_10_1111_jbi_14282
crossref_primary_10_1371_journal_pgen_1002838
crossref_primary_10_3389_fpls_2019_00525
crossref_primary_10_1007_s00606_014_1088_7
crossref_primary_10_1016_j_tifs_2019_03_007
crossref_primary_10_1038_s41477_024_01678_z
crossref_primary_10_1002_ece3_8834
crossref_primary_10_3389_fpls_2023_1227219
crossref_primary_10_1016_j_tig_2019_01_002
crossref_primary_10_1016_j_cub_2011_11_054
crossref_primary_10_1093_molbev_msx300
crossref_primary_10_1038_srep39843
crossref_primary_10_1093_molbev_mss093
crossref_primary_10_1073_pnas_1900870116
crossref_primary_10_1093_nar_gkt1376
crossref_primary_10_1093_gbe_evaa160
crossref_primary_10_3389_fpls_2023_1157145
crossref_primary_10_1017_wsc_2019_19
crossref_primary_10_1266_ggs_18_00039
crossref_primary_10_1038_s42003_022_04106_0
crossref_primary_10_1073_pnas_1617483114
crossref_primary_10_1080_09553002_2024_2345087
crossref_primary_10_1016_j_cub_2020_09_019
crossref_primary_10_1093_molbev_msw224
crossref_primary_10_1038_s41467_018_02839_3
crossref_primary_10_1111_1755_0998_12604
crossref_primary_10_1093_molbev_msw226
crossref_primary_10_1111_mec_12907
crossref_primary_10_1111_mec_14097
crossref_primary_10_1007_s00122_013_2177_7
crossref_primary_10_1186_s12864_016_3459_7
crossref_primary_10_1093_hr_uhac029
crossref_primary_10_1101_gr_131474_111
crossref_primary_10_1111_pbi_14370
crossref_primary_10_1038_ng_2684
crossref_primary_10_1038_s41467_020_16679_7
crossref_primary_10_1007_s00438_010_0570_3
crossref_primary_10_1093_treephys_tpac058
crossref_primary_10_1007_s00334_016_0597_4
crossref_primary_10_1101_gr_191338_115
crossref_primary_10_1101_gr_191494_115
crossref_primary_10_1038_s41467_024_52612_y
crossref_primary_10_1111_mec_17356
crossref_primary_10_9787_PBB_2018_6_4_426
crossref_primary_10_1038_s41586_023_06315_x
crossref_primary_10_1016_j_jgg_2021_12_009
crossref_primary_10_1038_s41559_017_0119
crossref_primary_10_1093_molbev_msab140
crossref_primary_10_1111_tpj_16592
crossref_primary_10_1002_tpg2_20162
crossref_primary_10_1104_pp_110_166736
crossref_primary_10_1038_s41477_017_0066_9
crossref_primary_10_1038_s41467_019_09235_5
crossref_primary_10_1016_j_isci_2024_109159
crossref_primary_10_1093_molbev_msv119
crossref_primary_10_1111_mec_17343
crossref_primary_10_3390_ijms25052795
crossref_primary_10_3897_zse_100_119945
crossref_primary_10_1093_gbe_evz140
crossref_primary_10_1007_s12041_014_0402_z
crossref_primary_10_1002_tax_13288
crossref_primary_10_1016_j_bbrc_2011_05_017
crossref_primary_10_1371_journal_pone_0121056
crossref_primary_10_1007_s13580_020_00237_7
crossref_primary_10_1007_s11103_013_0083_7
crossref_primary_10_17660_ActaHortic_2024_1405_17
crossref_primary_10_17660_ActaHortic_2024_1405_15
crossref_primary_10_1111_jse_12493
crossref_primary_10_1086_661783
crossref_primary_10_1111_tpj_70006
crossref_primary_10_1093_bioinformatics_btaa716
crossref_primary_10_1104_pp_111_192062
crossref_primary_10_7554_eLife_43606
crossref_primary_10_3389_fpls_2021_707740
crossref_primary_10_1111_j_1467_7652_2012_00733_x
crossref_primary_10_1038_nbt_2347
crossref_primary_10_1016_j_bse_2016_03_011
crossref_primary_10_1093_molbev_msab162
crossref_primary_10_1111_evo_14208
crossref_primary_10_1534_genetics_112_145078
crossref_primary_10_1016_j_tplants_2012_01_001
crossref_primary_10_1007_s00438_017_1405_2
crossref_primary_10_1007_s12033_011_9443_1
crossref_primary_10_1016_j_mrfmmm_2011_10_001
crossref_primary_10_1016_j_tplants_2012_01_006
crossref_primary_10_1111_pbr_12526
crossref_primary_10_1093_gbe_evaa131
crossref_primary_10_1098_rspb_2016_1016
crossref_primary_10_1093_molbev_msu247
crossref_primary_10_1186_1471_2164_14_56
crossref_primary_10_7554_eLife_82384
crossref_primary_10_1038_ncomms13522
crossref_primary_10_1038_s41467_021_24364_6
crossref_primary_10_1073_pnas_1011987107
crossref_primary_10_1146_annurev_cellbio_111822_014426
crossref_primary_10_1111_tpj_70029
crossref_primary_10_1111_mec_16226
crossref_primary_10_1007_s10722_021_01282_6
crossref_primary_10_1186_1471_2164_14_594
crossref_primary_10_1073_pnas_1216223109
crossref_primary_10_3389_fbioe_2018_00213
crossref_primary_10_1111_evo_12286
crossref_primary_10_1007_s11295_016_1084_x
crossref_primary_10_34133_2020_8051764
crossref_primary_10_3390_genes10090671
crossref_primary_10_1038_s41477_019_0486_9
crossref_primary_10_1007_s10725_014_0012_z
crossref_primary_10_1093_molbev_msad105
crossref_primary_10_1111_j_1365_294X_2011_05340_x
crossref_primary_10_1093_molbev_msac015
crossref_primary_10_3390_plants13101400
crossref_primary_10_1016_j_molp_2015_01_021
crossref_primary_10_1105_tpc_114_130310
crossref_primary_10_1111_mec_16454
crossref_primary_10_1098_rspb_2023_0565
crossref_primary_10_1534_genetics_115_177329
crossref_primary_10_1111_1365_2745_12347
crossref_primary_10_1080_13102818_2021_1911684
crossref_primary_10_1038_nbt_3208
crossref_primary_10_1038_ng_2669
crossref_primary_10_1038_s41437_021_00441_w
crossref_primary_10_1111_mec_13183
crossref_primary_10_1111_nph_16669
crossref_primary_10_14252_foodsafetyfscj_D_21_00016
Cites_doi 10.1073/pnas.0904895106
10.1073/pnas.96.20.11393
10.1038/274775a0
10.1038/35048692
10.1101/gr.080200.108
10.1126/science.1138632
10.1093/oxfordjournals.molbev.a004204
10.1021/bi00713a035
10.1073/pnas.0803466105
10.1186/gb-2009-10-9-r98
10.1093/genetics/155.1.369
10.1038/nmeth.1270
10.1093/molbev/msn185
10.1073/pnas.84.24.9054
10.1016/j.cell.2008.03.029
10.1534/genetics.107.085282
10.1038/hdy.2009.67
10.1038/287560a0
10.1038/nature06745
10.1101/gr.091231.109
ContentType Journal Article
Copyright Copyright 2010 American Association for the Advancement of Science
2015 INIST-CNRS
Copyright © 2010, American Association for the Advancement of Science
Copyright 2010 by the American Association for the Advancement of Science; all rights reserved. 2010
Copyright_xml – notice: Copyright 2010 American Association for the Advancement of Science
– notice: 2015 INIST-CNRS
– notice: Copyright © 2010, American Association for the Advancement of Science
– notice: Copyright 2010 by the American Association for the Advancement of Science; all rights reserved. 2010
DBID FBQ
AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QG
7QL
7QP
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7SS
7T7
7TA
7TB
7TK
7TM
7U5
7U9
8BQ
8FD
C1K
F28
FR3
H8D
H8G
H94
JG9
JQ2
K9.
KR7
L7M
L~C
L~D
M7N
P64
RC3
7S9
L.6
7X8
5PM
DOI 10.1126/science.1180677
DatabaseName AGRIS
CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Aluminium Industry Abstracts
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Ceramic Abstracts
Chemoreception Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Ecology Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Entomology Abstracts (Full archive)
Industrial and Applied Microbiology Abstracts (Microbiology A)
Materials Business File
Mechanical & Transportation Engineering Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Solid State and Superconductivity Abstracts
Virology and AIDS Abstracts
METADEX
Technology Research Database
Environmental Sciences and Pollution Management
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
AIDS and Cancer Research Abstracts
Materials Research Database
ProQuest Computer Science Collection
ProQuest Health & Medical Complete (Alumni)
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Nucleic Acids Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Health & Medical Complete (Alumni)
Materials Business File
Environmental Sciences and Pollution Management
Aerospace Database
Copper Technical Reference Library
Engineered Materials Abstracts
Genetics Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Civil Engineering Abstracts
Aluminium Industry Abstracts
Virology and AIDS Abstracts
Electronics & Communications Abstracts
Ceramic Abstracts
Ecology Abstracts
Neurosciences Abstracts
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Entomology Abstracts
Animal Behavior Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
Corrosion Abstracts
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
DatabaseTitleList AGRICOLA


CrossRef
MEDLINE
Technology Research Database
MEDLINE - Academic
Materials Research Database

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: FBQ
  name: AGRIS
  url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Biology
EISSN 1095-9203
EndPage 94
ExternalDocumentID PMC3878865
1927070321
20044577
22280699
10_1126_science_1180677
40508300
US201301720594
Genre Research Support, U.S. Gov't, Non-P.H.S
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
Feature
GrantInformation_xml – fundername: NIGMS NIH HHS
  grantid: R01 GM036827
– fundername: NIGMS NIH HHS
  grantid: GM36827
– fundername: National Institute of General Medical Sciences : NIGMS
  grantid: R01 GM036827 || GM
GroupedDBID ---
--Z
-DZ
-ET
-~X
.-4
..I
.55
.DC
.GJ
.GO
.HR
0-V
08G
0B8
0R~
0WA
123
186
18M
2FS
2KS
2WC
2XV
34G
36B
39C
3EH
3R3
3V.
4.4
41~
42X
4R4
53G
5RE
63O
66.
68V
692
6OB
6TJ
79B
7X2
7X7
7XC
7~K
85S
88A
88E
88I
8AF
8CJ
8F7
8FE
8FG
8FH
8FI
8FJ
8G5
8GL
8WZ
97F
A6W
AABCJ
AACGO
AADHG
AAFWJ
AAIKC
AAJYS
AAKAS
AAMNW
AANCE
AAWTO
AAYJJ
AAYOK
ABBHK
ABCQX
ABDBF
ABDEX
ABEFU
ABIVO
ABJCF
ABOCM
ABPLY
ABPMR
ABPPZ
ABPTK
ABQIJ
ABTAH
ABTLG
ABUWG
ABWJO
ABZEH
ACBEA
ACBEC
ACGFO
ACGFS
ACGOD
ACIWK
ACMJI
ACNCT
ACPRK
ACQAM
ACQOY
ACTDY
ADBBV
ADDRP
ADMHC
ADULT
ADZCM
ADZLD
AEGBM
AENEX
AETEA
AEUPB
AEXZC
AFCHL
AFDAS
AFFDN
AFFNX
AFHKK
AFKRA
AFOSN
AFQFN
AFRAH
AGCDD
AGFXO
AGNAY
AGSOS
AHMBA
AIDAL
AIDUJ
AJGZS
AJUXI
ALMA_UNASSIGNED_HOLDINGS
ALSLI
ANJGP
ARALO
ARAPS
ASPBG
ATCPS
AVWKF
AZQEC
B-7
BBNVY
BBWZM
BCU
BEC
BENPR
BGLVJ
BHPHI
BKF
BKNYI
BKSAR
BLC
BPHCQ
BVXVI
C2-
C45
C51
CCPQU
CJNVE
CS3
D0S
D1I
D1J
D1K
DB2
DCCCD
DNJUQ
DOOOF
DU5
DWIUU
DWQXO
D~A
EAU
EBS
EGS
EJD
EMOBN
ESX
EWM
EX3
F20
F5P
FA8
FBQ
FEDTE
FYUFA
G8K
GICCO
GNUQQ
GUQSH
GX1
HCIFZ
HGD
HMCUK
HQ3
HTVGU
HVGLF
HZ~
I.T
IAG
IAO
IBG
IEA
IEP
IER
IGG
IGS
IH2
IHR
INH
INR
IOF
IOV
IPC
IPO
IPY
ISE
ISN
ISR
ITC
J5H
J9C
JAAYA
JBMMH
JCF
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSG
JSODD
JST
K-O
K6-
K9-
KB.
KCC
KQ8
L6V
L7B
LK5
LK8
LPU
LSO
LU7
M0K
M0L
M0P
M0R
M1P
M2O
M2P
M2Q
M7P
M7R
M7S
MQT
MVM
N4W
N9A
NEJ
NHB
O9-
OCB
OFXIZ
OGEVE
OK1
OMK
OVD
P-O
P2P
P62
PATMY
PCBAR
PDBOC
PK8
PQQKQ
PROAC
PSQYO
PTHSS
PV9
PYCSY
PZZ
QJJ
QS-
R05
RHF
RHI
RNS
RXW
RZL
SA0
SC5
SJFOW
SJN
SKT
TAE
TEORI
TN5
TWZ
UBW
UBY
UCV
UHB
UHU
UKHRP
UKR
UMD
UNMZH
UQL
USG
VOH
VQA
VVN
WH7
WI4
WOQ
WOW
X7L
X7M
XFK
XIH
XJF
XKJ
XOL
XZL
Y6R
YCJ
YJ6
YK4
YKV
YNT
YOJ
YR2
YRY
YSQ
YV5
YWH
YXB
YYP
YYQ
YZZ
ZA5
ZCA
ZCF
ZCG
ZE2
ZGI
ZKG
ZVL
ZVM
ZXP
ZY4
~02
~G0
~H1
~KM
~ZZ
ABDQB
ABJNI
ABXSQ
ACHIC
ACUHS
ADQXQ
ADUKH
ADXHL
AFBNE
ALIPV
AQVQM
IPSME
YR5
AAYXX
ABDPE
AEUYN
AFQQW
CITATION
PHGZM
PHGZT
PQEDU
IQODW
PJZUB
PPXIY
PQGLB
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QG
7QL
7QP
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7SS
7T7
7TA
7TB
7TK
7TM
7U5
7U9
8BQ
8FD
C1K
F28
FR3
H8D
H8G
H94
JG9
JQ2
K9.
KR7
L7M
L~C
L~D
M7N
P64
RC3
7S9
L.6
7X8
5PM
ID FETCH-LOGICAL-c586t-aef23f55e8cb631876aa6b00f4e8fea20987a4457f1e3b6e8aca035bd427dde03
ISSN 0036-8075
1095-9203
IngestDate Thu Aug 21 17:50:28 EDT 2025
Fri Jul 11 04:50:34 EDT 2025
Fri Jul 11 15:21:14 EDT 2025
Thu Jul 10 22:47:46 EDT 2025
Fri Jul 25 10:33:46 EDT 2025
Mon Jul 21 05:55:45 EDT 2025
Mon Jul 21 09:11:09 EDT 2025
Tue Jul 01 03:11:33 EDT 2025
Thu Apr 24 23:08:48 EDT 2025
Thu Jul 03 21:21:12 EDT 2025
Wed Dec 27 19:09:04 EST 2023
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5961
Keywords Single seed descent
Divergence
Spontaneous
Arabidopsis thaliana
Ultraviolet radiation
Mutagenesis
Substitution
Cruciferae
Dicotyledones
Angiospermae
Deletion
Chromosome DNA
Spermatophyta
Cytosine
Mutation
Experimental plant
Genome
Methylation
Polymorphism
Language English
License CC BY 4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c586t-aef23f55e8cb631876aa6b00f4e8fea20987a4457f1e3b6e8aca035bd427dde03
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-2
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
These authors contributed equally to this work.
OpenAccessLink http://hdl.handle.net/10550/44819
PMID 20044577
PQID 213605241
PQPubID 1256
PageCount 3
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_3878865
proquest_miscellaneous_734219131
proquest_miscellaneous_46458846
proquest_miscellaneous_36426867
proquest_journals_213605241
pubmed_primary_20044577
pascalfrancis_primary_22280699
crossref_primary_10_1126_science_1180677
crossref_citationtrail_10_1126_science_1180677
jstor_primary_40508300
fao_agris_US201301720594
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2010
20100101
2010-01-00
2010-Jan-01
PublicationDateYYYYMMDD 2010-01-01
PublicationDate_xml – year: 2010
  text: 2010
PublicationDecade 2010
PublicationPlace Washington, DC
PublicationPlace_xml – name: Washington, DC
– name: United States
– name: Washington
PublicationTitle Science (American Association for the Advancement of Science)
PublicationTitleAlternate Science
PublicationYear 2010
Publisher American Association for the Advancement of Science
The American Association for the Advancement of Science
Publisher_xml – name: American Association for the Advancement of Science
– name: The American Association for the Advancement of Science
References e_1_3_2_8_2
e_1_3_2_7_2
e_1_3_2_17_2
e_1_3_2_6_2
Wright S. I. (e_1_3_2_16_2) 2002; 19
e_1_3_2_18_2
e_1_3_2_19_2
e_1_3_2_20_2
e_1_3_2_10_2
e_1_3_2_21_2
e_1_3_2_11_2
e_1_3_2_22_2
e_1_3_2_4_2
e_1_3_2_12_2
e_1_3_2_23_2
e_1_3_2_3_2
e_1_3_2_13_2
e_1_3_2_24_2
e_1_3_2_2_2
e_1_3_2_14_2
Shaw F. H. (e_1_3_2_15_2) 2002; 56
Shaw R. G. (e_1_3_2_5_2) 2000; 155
References_xml – ident: e_1_3_2_3_2
  doi: 10.1073/pnas.0904895106
– ident: e_1_3_2_14_2
  doi: 10.1073/pnas.96.20.11393
– ident: e_1_3_2_19_2
  doi: 10.1038/274775a0
– ident: e_1_3_2_6_2
  doi: 10.1038/35048692
– ident: e_1_3_2_7_2
  doi: 10.1101/gr.080200.108
– ident: e_1_3_2_17_2
  doi: 10.1126/science.1138632
– ident: e_1_3_2_23_2
– volume: 19
  start-page: 1407
  year: 2002
  ident: e_1_3_2_16_2
  article-title: Rates and patterns of molecular evolution in inbred and outbred Arabidopsis.
  publication-title: Mol. Biol. Evol.
  doi: 10.1093/oxfordjournals.molbev.a004204
– ident: e_1_3_2_18_2
  doi: 10.1021/bi00713a035
– ident: e_1_3_2_2_2
  doi: 10.1073/pnas.0803466105
– ident: e_1_3_2_8_2
  doi: 10.1186/gb-2009-10-9-r98
– volume: 155
  start-page: 369
  year: 2000
  ident: e_1_3_2_5_2
  article-title: Spontaneous mutational effects on reproductive traits of Arabidopsis thaliana.
  publication-title: Genetics
  doi: 10.1093/genetics/155.1.369
– ident: e_1_3_2_11_2
  doi: 10.1038/nmeth.1270
– ident: e_1_3_2_10_2
  doi: 10.1093/molbev/msn185
– ident: e_1_3_2_13_2
  doi: 10.1073/pnas.84.24.9054
– ident: e_1_3_2_22_2
  doi: 10.1016/j.cell.2008.03.029
– ident: e_1_3_2_24_2
  doi: 10.1534/genetics.107.085282
– ident: e_1_3_2_12_2
  doi: 10.1038/hdy.2009.67
– volume: 56
  start-page: 453
  year: 2002
  ident: e_1_3_2_15_2
  article-title: A comprehensive model of mutations affecting fitness and inferences for Arabidopsis thaliana.
  publication-title: Evolution
– ident: e_1_3_2_20_2
  doi: 10.1038/287560a0
– ident: e_1_3_2_21_2
  doi: 10.1038/nature06745
– ident: e_1_3_2_4_2
  doi: 10.1101/gr.091231.109
SSID ssj0009593
Score 2.5494149
Snippet To take complete advantage of information on within-species polymorphism and divergence from close relatives, one needs to know the rate and the molecular...
Rates of evolution in gene and genome sequences have been estimated, but these estimates are subject to error because many of the steps of evolution over the...
SourceID pubmedcentral
proquest
pubmed
pascalfrancis
crossref
jstor
fao
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 92
SubjectTerms Agronomy. Soil science and plant productions
Arabidopsis - genetics
Arabidopsis - radiation effects
Arabidopsis thaliana
Biological and medical sciences
Cytosine - metabolism
Deamination
DNA Methylation
DNA, Intergenic
DNA, Plant - genetics
Flowers & plants
Fundamental and applied biological sciences. Psychology
Genetic mutation
Genetics and breeding of economic plants
genome
Genome, Plant
Genomes
Genomics
INDEL Mutation
Intergenic DNA
Introns
Methylation
Molecular biology
Molecular spectra
Mutagenesis
Mutation
Natural selection
Plant biology
Plant breeding: fundamental aspects and methodology
Polymorphism
Sequence Analysis, DNA
Sequence Deletion
Sequencing
Ultraviolet radiation
Ultraviolet Rays
Untranslated regions
Title Rate and Molecular Spectrum of Spontaneous Mutations in Arabidopsis thaliana
URI https://www.jstor.org/stable/40508300
https://www.ncbi.nlm.nih.gov/pubmed/20044577
https://www.proquest.com/docview/213605241
https://www.proquest.com/docview/36426867
https://www.proquest.com/docview/46458846
https://www.proquest.com/docview/734219131
https://pubmed.ncbi.nlm.nih.gov/PMC3878865
Volume 327
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Bb5swFLbSVpN2mdZuXVm3zocdOk1UBGMDxyRNla5JOpVG6w0ZYreRVhIl5LD91v2YPWNDSNdo6y4oAgOB78PvPfvzewh9pCpKlmxs04A5tscJgW9OCttrSh7QhIaiyFMwGLLeyPtyQ28ajV811dIyT07Sn4-uK_kfVGEf4KpWyT4B2eqisAN-A76wBYRh-88YX4GzqNUSZaHboqZ8Pl_eFwtSZtMM_D-hlK6DZb6SjrfmPJmMpzOVkCS_K0Y7eN1TLT968ECrWZ0alpU8saVFBKWmwJxWH76Nostv0cV5pSlb8THq9Ibdbrt7ZfQYF9M5BOo1wvZHnVZk9_vd00szXaEn9j-f32Y81RKywqSAW94btIZDMxV1by5hhjOMpHW1duBJz1Lv2E1e5XrHTnTWAcNgGuqs76an1hX4jM3XdZb_tCa1-pfiRCXLY6bmzFre7gf2tFI5qsE1h4XhFtpxIYgBs7HTap-2zzYmhTapp2qLusqbrnlNW5JPS_ms0vLyBXzOUtdheSxQeqj3rTlQ1y_RCxP54Jam8S5qiGwPPdO1UH_soV3zthf42KRC__QKfQWGY8VwDAzHFcNxyXA8lbjGcFwxHE8yXGM4Lhn-Go3Outednm1qgNgp9B65zYV0iaRUBGnCwP74jHMGpkJ6IpCCu04Y-NzzqC-bgiRMBDzlDqHJ2HN9sNwO2Ufb2TQTBwj70vNSkVCFiddMghBeuySCeYXlkq6FTsp3HKcmQb6q0_I9LgJll8UGlNiAYqHj6oSZzg2zuekBgBbzW7Dc8ShylV4AQgeVLMlC-wWS1SUghIK4yHEsdLQGbdWg5JWFDkusY9MrLWK3SZhDwS-30IfqKJgMNQ-osYgJA7c8YP7mFkruEEBkYiG8oYVPPPB1mgRu80aTa_X3lEiEqmf212hXNVAZ7dePZJO7IrM9CfwgYPTt3578ED3XKh41FPoObQPjxHsIDvLkyHxjvwFK-xG4
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Rate+and+Molecular+Spectrum+of+Spontaneous+Mutations+in+Arabidopsis+thaliana&rft.jtitle=Science+%28American+Association+for+the+Advancement+of+Science%29&rft.au=OSSOWSKI%2C+Stephan&rft.au=SCHNEEBERGER%2C+Korbinian&rft.au=LUCAS-LLEDO%2C+Jos%C3%A9+Ignacio&rft.au=WARTHMANN%2C+Norman&rft.date=2010&rft.pub=American+Association+for+the+Advancement+of+Science&rft.issn=0036-8075&rft.volume=327&rft.issue=5961&rft.spage=92&rft.epage=94&rft_id=info:doi/10.1126%2Fscience.1180677&rft.externalDBID=n%2Fa&rft.externalDocID=22280699
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0036-8075&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0036-8075&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0036-8075&client=summon