Parkinson’s disease screening using a fusion of gait point cloud and silhouette features

Parkinson’s Disease (PD) is a neurodegenerative disorder that is often accompanied by slowness of movement (bradykinesia) or gradual reduction in the frequency and amplitude of repetitive movement (hypokinesia). There is currently no cure for PD, but early detection and treatment can slow down its p...

Full description

Saved in:
Bibliographic Details
Published inPloS one Vol. 20; no. 1; p. e0315453
Main Authors Connie, Tee, Aderinola, Timilehin B., Ong, Jia You, Ong, Thian Song, Goh, Michael Kah Ong, Erfianto, Bayu, Purnama, Bedy, Lim, Ming De, Saedon, Nor Izzati
Format Journal Article
LanguageEnglish
Published United States Public Library of Science 03.01.2025
Public Library of Science (PLoS)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Parkinson’s Disease (PD) is a neurodegenerative disorder that is often accompanied by slowness of movement (bradykinesia) or gradual reduction in the frequency and amplitude of repetitive movement (hypokinesia). There is currently no cure for PD, but early detection and treatment can slow down its progression and lead to better treatment outcomes. Vision-based approaches have been proposed for the early detection of PD using gait. Gait can be captured using appearance-based or model-based approaches. Although appearance-based gait contains comprehensive features, it is easily affected by factors such as dressing. On the other hand, model-based gait is robust against changes in dressing and external contours, but it is often too sparse to contain sufficient information. Therefore, we propose a fusion of appearance-based and model-based gait features for PD prediction. First, we extracted keypoint coordinates from gait captured in videos and modeled these keypoints as a point cloud. The silhouette images are also segmented from the videos to obtain an overall appearance representation of the subject. We then perform a binary classification of gait as normal or Parkinsonian using a novel fusion of the gait point cloud and silhouette features, obtaining AUC up to 0.87 and F1-Scores up to 0.82 (precision: 0.85, recall: 0.80).
AbstractList Parkinson's Disease (PD) is a neurodegenerative disorder that is often accompanied by slowness of movement (bradykinesia) or gradual reduction in the frequency and amplitude of repetitive movement (hypokinesia). There is currently no cure for PD, but early detection and treatment can slow down its progression and lead to better treatment outcomes. Vision-based approaches have been proposed for the early detection of PD using gait. Gait can be captured using appearance-based or model-based approaches. Although appearance-based gait contains comprehensive features, it is easily affected by factors such as dressing. On the other hand, model-based gait is robust against changes in dressing and external contours, but it is often too sparse to contain sufficient information. Therefore, we propose a fusion of appearance-based and model-based gait features for PD prediction. First, we extracted keypoint coordinates from gait captured in videos and modeled these keypoints as a point cloud. The silhouette images are also segmented from the videos to obtain an overall appearance representation of the subject. We then perform a binary classification of gait as normal or Parkinsonian using a novel fusion of the gait point cloud and silhouette features, obtaining AUC up to 0.87 and F1-Scores up to 0.82 (precision: 0.85, recall: 0.80).
Parkinson's Disease (PD) is a neurodegenerative disorder that is often accompanied by slowness of movement (bradykinesia) or gradual reduction in the frequency and amplitude of repetitive movement (hypokinesia). There is currently no cure for PD, but early detection and treatment can slow down its progression and lead to better treatment outcomes. Vision-based approaches have been proposed for the early detection of PD using gait. Gait can be captured using appearance-based or model-based approaches. Although appearance-based gait contains comprehensive features, it is easily affected by factors such as dressing. On the other hand, model-based gait is robust against changes in dressing and external contours, but it is often too sparse to contain sufficient information. Therefore, we propose a fusion of appearance-based and model-based gait features for PD prediction. First, we extracted keypoint coordinates from gait captured in videos and modeled these keypoints as a point cloud. The silhouette images are also segmented from the videos to obtain an overall appearance representation of the subject. We then perform a binary classification of gait as normal or Parkinsonian using a novel fusion of the gait point cloud and silhouette features, obtaining AUC up to 0.87 and F1-Scores up to 0.82 (precision: 0.85, recall: 0.80).Parkinson's Disease (PD) is a neurodegenerative disorder that is often accompanied by slowness of movement (bradykinesia) or gradual reduction in the frequency and amplitude of repetitive movement (hypokinesia). There is currently no cure for PD, but early detection and treatment can slow down its progression and lead to better treatment outcomes. Vision-based approaches have been proposed for the early detection of PD using gait. Gait can be captured using appearance-based or model-based approaches. Although appearance-based gait contains comprehensive features, it is easily affected by factors such as dressing. On the other hand, model-based gait is robust against changes in dressing and external contours, but it is often too sparse to contain sufficient information. Therefore, we propose a fusion of appearance-based and model-based gait features for PD prediction. First, we extracted keypoint coordinates from gait captured in videos and modeled these keypoints as a point cloud. The silhouette images are also segmented from the videos to obtain an overall appearance representation of the subject. We then perform a binary classification of gait as normal or Parkinsonian using a novel fusion of the gait point cloud and silhouette features, obtaining AUC up to 0.87 and F1-Scores up to 0.82 (precision: 0.85, recall: 0.80).
Audience Academic
Author Saedon, Nor Izzati
Erfianto, Bayu
Aderinola, Timilehin B.
Connie, Tee
Goh, Michael Kah Ong
Ong, Jia You
Ong, Thian Song
Lim, Ming De
Purnama, Bedy
Author_xml – sequence: 1
  givenname: Tee
  orcidid: 0000-0002-0901-3831
  surname: Connie
  fullname: Connie, Tee
– sequence: 2
  givenname: Timilehin B.
  surname: Aderinola
  fullname: Aderinola, Timilehin B.
– sequence: 3
  givenname: Jia You
  surname: Ong
  fullname: Ong, Jia You
– sequence: 4
  givenname: Thian Song
  orcidid: 0000-0002-5867-9517
  surname: Ong
  fullname: Ong, Thian Song
– sequence: 5
  givenname: Michael Kah Ong
  surname: Goh
  fullname: Goh, Michael Kah Ong
– sequence: 6
  givenname: Bayu
  surname: Erfianto
  fullname: Erfianto, Bayu
– sequence: 7
  givenname: Bedy
  surname: Purnama
  fullname: Purnama, Bedy
– sequence: 8
  givenname: Ming De
  surname: Lim
  fullname: Lim, Ming De
– sequence: 9
  givenname: Nor Izzati
  orcidid: 0000-0002-6634-7934
  surname: Saedon
  fullname: Saedon, Nor Izzati
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39752461$$D View this record in MEDLINE/PubMed
BookMark eNqNksuKFDEUhgsZcS76BqIFguii20ollUoth8FLw8CIt4WbcCo56c5YnfQkKdCdr-Hr-SSm7ZphWmYhgeRw-M4lP_9xceC8w6J4TKo5oS15denH4GCYb3J6XlHSsIbeK45IR-sZryt6cCs-LI5jvKyqhgrOHxSHtGubmnFyVHx9D-GbddG73z9_xVLbiBCxjCogOuuW5Ri3N5QmB96V3pRLsKnceOtSqQY_6hKcLqMdVn7ElLA0CGkMGB8W9w0MER9N70nx-c3rT2fvZucXbxdnp-cz1QieZh0yrlTNaiMEU5xphawGznoNFWqloWlYKzTpBXSq5kCM6lpliO64rkzf0JPi6a7vZvBRTrJEmRUhlHesJZlY7Ajt4VJugl1D-CE9WPk34cNSQkhWDSihY40wyFvGgWlNgREQom8pGI2i73OvF9O04K9GjEmubVQ4DODQj7uxrKlFV2X02T_o3ctN1BLyfOuMTwHUtqk8FXVd05Z1PFPzO6h8NK6tyhYwNuf3Cl7uFWQm4fe0hDFGufj44f_Ziy_77PNb7AphSKvohzFld8R98Mn0-7Ffo76R_dp7GWA7QAUfY0Bzg5BKbi1-LZfcWlxOFqd_AOfC7iM
Cites_doi 10.1016/S1474-4422(21)00030-2
10.1109/ICCVW54120.2021.00456
10.1109/SIBGRAPI.2016.054
10.1016/j.eswa.2011.04.028
10.1111/1754-9485.13273
10.1109/OJEMB.2020.3026928
10.3390/s20123529
10.1109/CEI52496.2021.9574486
10.1007/s10772-018-09588-0
10.1109/CVPRW53098.2021.00425
10.1109/ICDS50568.2020.9268738
10.1109/ACCESS.2021.3095477
10.1109/ICIAICT.2019.8784845
10.1002/mds.27741
10.1007/978-3-030-01234-2_49
10.1007/s10489-020-01826-w
10.1007/s00521-018-3689-5
10.1016/j.asoc.2020.106494
10.1016/j.cmpb.2019.105033
10.1109/ICCV.2017.256
10.1007/s11227-023-05156-9
10.1016/j.artmed.2020.101966
10.1016/S0140-6736(21)00218-X
10.1109/ACCESS.2020.3016062
10.1007/s00521-019-04051-w
10.3390/a15120474
ContentType Journal Article
Copyright Copyright: © 2025 Connie et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
COPYRIGHT 2025 Public Library of Science
2025 Connie et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2025 Connie et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: Copyright: © 2025 Connie et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
– notice: COPYRIGHT 2025 Public Library of Science
– notice: 2025 Connie et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2025 Connie et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
IOV
ISR
3V.
7QG
7QL
7QO
7RV
7SN
7SS
7T5
7TG
7TM
7U9
7X2
7X7
7XB
88E
8AO
8C1
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABJCF
ABUWG
AEUYN
AFKRA
ARAPS
ATCPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
C1K
CCPQU
COVID
D1I
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
KB.
KB0
KL.
L6V
LK8
M0K
M0S
M1P
M7N
M7P
M7S
NAPCQ
P5Z
P62
P64
PATMY
PDBOC
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
PYCSY
RC3
7X8
DOA
DOI 10.1371/journal.pone.0315453
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Gale In Context: Opposing Viewpoints
Gale In Context: Science
ProQuest Central (Corporate)
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Biotechnology Research Abstracts
Nursing & Allied Health Database
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Meteorological & Geoastrophysical Abstracts
Nucleic Acids Abstracts
Virology and AIDS Abstracts
Agricultural Science Collection
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Public Health Database
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
Agricultural & Environmental Science Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One
Coronavirus Research Database
ProQuest Materials Science Collection
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Materials Science Database
Nursing & Allied Health Database (Alumni Edition)
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest Engineering Collection
Biological Sciences
Agricultural Science Database
ProQuest Health & Medical Collection
Medical Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biological Science Database
Engineering Database
Nursing & Allied Health Premium
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Environmental Science Database
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
Environmental Science Collection
Genetics Abstracts
MEDLINE - Academic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Agricultural Science Database
Publicly Available Content Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Meteorological & Geoastrophysical Abstracts
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
Virology and AIDS Abstracts
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Agricultural Science Collection
Coronavirus Research Database
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Environmental Science Collection
Entomology Abstracts
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Environmental Science Database
ProQuest Nursing & Allied Health Source (Alumni)
Engineering Research Database
ProQuest One Academic
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
Materials Science Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
ProQuest Engineering Collection
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Agricultural & Environmental Science Collection
AIDS and Cancer Research Abstracts
Materials Science Database
ProQuest Materials Science Collection
ProQuest Public Health
ProQuest Nursing & Allied Health Source
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Animal Behavior Abstracts
Materials Science & Engineering Collection
Immunology Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE
CrossRef

MEDLINE - Academic


Agricultural Science Database

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 1932-6203
ExternalDocumentID 3151369471
oai_doaj_org_article_a9458fe6746a4dd3a41a88b73afde8bb
A822237496
39752461
10_1371_journal_pone_0315453
Genre Journal Article
GeographicLocations Malaysia
GeographicLocations_xml – name: Malaysia
GroupedDBID ---
123
29O
2WC
53G
5VS
7RV
7X2
7X7
7XC
88E
8AO
8C1
8CJ
8FE
8FG
8FH
8FI
8FJ
A8Z
AAFWJ
AAUCC
AAWOE
AAYXX
ABDBF
ABIVO
ABJCF
ABUWG
ACGFO
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
AEAQA
AENEX
AEUYN
AFKRA
AFPKN
AFRAH
AHMBA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
APEBS
ARAPS
ATCPS
BAWUL
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
BKEYQ
BPHCQ
BVXVI
BWKFM
CCPQU
CITATION
CS3
D1I
D1J
D1K
DIK
DU5
E3Z
EAP
EAS
EBD
EMOBN
ESX
EX3
F5P
FPL
FYUFA
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
IAO
IEA
IGS
IHR
IHW
INH
INR
IOV
IPY
ISE
ISR
ITC
K6-
KB.
KQ8
L6V
LK5
LK8
M0K
M1P
M48
M7P
M7R
M7S
M~E
NAPCQ
O5R
O5S
OK1
OVT
P2P
P62
PATMY
PDBOC
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
PTHSS
PV9
PYCSY
RNS
RPM
RZL
SV3
TR2
UKHRP
WOQ
WOW
~02
~KM
3V.
ADRAZ
BBORY
CGR
CUY
CVF
ECM
EIF
IPNFZ
NPM
RIG
PMFND
7QG
7QL
7QO
7SN
7SS
7T5
7TG
7TM
7U9
7XB
8FD
8FK
AZQEC
C1K
COVID
DWQXO
FR3
GNUQQ
H94
K9.
KL.
M7N
P64
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
PRINS
RC3
7X8
PUEGO
ID FETCH-LOGICAL-c586t-9e46cc242f884c64dce42a64bda0edcda55478d1b8a9c26a1fc97cf1d96d0fb53
IEDL.DBID M48
ISSN 1932-6203
IngestDate Wed Aug 13 01:18:19 EDT 2025
Wed Aug 27 01:25:05 EDT 2025
Tue Aug 05 10:35:37 EDT 2025
Fri Jul 25 11:19:43 EDT 2025
Tue Jun 17 21:58:19 EDT 2025
Tue Jun 10 20:53:44 EDT 2025
Fri Jun 27 05:14:59 EDT 2025
Fri Jun 27 05:14:51 EDT 2025
Thu May 22 21:23:30 EDT 2025
Wed Feb 19 02:03:14 EST 2025
Tue Jul 01 03:31:06 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License Copyright: © 2025 Connie et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Creative Commons Attribution License
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c586t-9e46cc242f884c64dce42a64bda0edcda55478d1b8a9c26a1fc97cf1d96d0fb53
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-6634-7934
0000-0002-5867-9517
0000-0002-0901-3831
OpenAccessLink https://doaj.org/article/a9458fe6746a4dd3a41a88b73afde8bb
PMID 39752461
PQID 3151369471
PQPubID 1436336
PageCount e0315453
ParticipantIDs plos_journals_3151369471
doaj_primary_oai_doaj_org_article_a9458fe6746a4dd3a41a88b73afde8bb
proquest_miscellaneous_3151452890
proquest_journals_3151369471
gale_infotracmisc_A822237496
gale_infotracacademiconefile_A822237496
gale_incontextgauss_ISR_A822237496
gale_incontextgauss_IOV_A822237496
gale_healthsolutions_A822237496
pubmed_primary_39752461
crossref_primary_10_1371_journal_pone_0315453
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-01-03
PublicationDateYYYYMMDD 2025-01-03
PublicationDate_xml – month: 01
  year: 2025
  text: 2025-01-03
  day: 03
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: San Francisco
PublicationTitle PloS one
PublicationTitleAlternate PLoS One
PublicationYear 2025
Publisher Public Library of Science
Public Library of Science (PLoS)
Publisher_xml – name: Public Library of Science
– name: Public Library of Science (PLoS)
References A Vellido (pone.0315453.ref007) 2020; 32
W Zheng (pone.0315453.ref017) 2024
BR Bloem (pone.0315453.ref001) 2021; 397
SL Oh (pone.0315453.ref021) 2020; 32
S Williams (pone.0315453.ref029) 2020; 110
E Tolosa (pone.0315453.ref002) 2021; 20
T Connie (pone.0315453.ref013) 2022; 15
pone.0315453.ref020
X Li (pone.0315453.ref003) 2021; 21
XF Han (pone.0315453.ref019) 2023
pone.0315453.ref025
pone.0315453.ref024
pone.0315453.ref006
A Benba (pone.0315453.ref023) 2019; 22
pone.0315453.ref008
TB Aderinola (pone.0315453.ref018) 2021; 9
C Ricciardi (pone.0315453.ref027) 2019; 180
W Wang (pone.0315453.ref010) 2020; 8
E Balaji (pone.0315453.ref026) 2020; 94
L di Biase (pone.0315453.ref011) 2020; 20
Z Cao (pone.0315453.ref028) 2019
pone.0315453.ref031
F Åström (pone.0315453.ref022) 2011; 38
pone.0315453.ref030
J Laguarta (pone.0315453.ref009) 2020; 1
pone.0315453.ref014
DA Moses (pone.0315453.ref004) 2021; 65
RN Yousef (pone.0315453.ref016) 2023; 79
S Ahuja (pone.0315453.ref005) 2021; 51
T Wichmann (pone.0315453.ref012) 2019; 34
pone.0315453.ref015
References_xml – volume: 20
  start-page: 385
  issue: 5
  year: 2021
  ident: pone.0315453.ref002
  article-title: Challenges in the diagnosis of Parkinson’s disease
  publication-title: The Lancet Neurology
  doi: 10.1016/S1474-4422(21)00030-2
– ident: pone.0315453.ref015
  doi: 10.1109/ICCVW54120.2021.00456
– ident: pone.0315453.ref025
  doi: 10.1109/SIBGRAPI.2016.054
– volume: 38
  start-page: 12470
  issue: 10
  year: 2011
  ident: pone.0315453.ref022
  article-title: A parallel neural network approach to prediction of Parkinson’s Disease
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2011.04.028
– volume: 65
  start-page: 498
  issue: 5
  year: 2021
  ident: pone.0315453.ref004
  article-title: Deep learning applied to automatic disease detection using chest x-rays
  publication-title: Journal of Medical Imaging and Radiation Oncology
  doi: 10.1111/1754-9485.13273
– volume: 1
  start-page: 275
  year: 2020
  ident: pone.0315453.ref009
  article-title: COVID-19 artificial intelligence diagnosis using only cough recordings
  publication-title: IEEE Open Journal of Engineering in Medicine and Biology
  doi: 10.1109/OJEMB.2020.3026928
– volume: 20
  start-page: 3529
  issue: 12
  year: 2020
  ident: pone.0315453.ref011
  article-title: Gait Analysis in Parkinson’s Disease: An Overview of the Most Accurate Markers for Diagnosis and Symptoms Monitoring
  publication-title: Sensors
  doi: 10.3390/s20123529
– ident: pone.0315453.ref031
  doi: 10.1109/CEI52496.2021.9574486
– volume: 22
  start-page: 121
  year: 2019
  ident: pone.0315453.ref023
  article-title: Voice signal processing for detecting possible early signs of Parkinson’s disease in patients with rapid eye movement sleep behavior disorder
  publication-title: International Journal of Speech Technology
  doi: 10.1007/s10772-018-09588-0
– ident: pone.0315453.ref030
  doi: 10.1109/CVPRW53098.2021.00425
– ident: pone.0315453.ref024
  doi: 10.1109/ICDS50568.2020.9268738
– volume: 9
  start-page: 100352
  year: 2021
  ident: pone.0315453.ref018
  article-title: Learning age from gait: A survey
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3095477
– year: 2024
  ident: pone.0315453.ref017
  article-title: GaitSTR: Gait Recognition With Sequential Two-Stream Refinement
  publication-title: IEEE Transactions on Biometrics, Behavior, and Identity Science
– ident: pone.0315453.ref006
  doi: 10.1109/ICIAICT.2019.8784845
– volume: 34
  start-page: 1130
  issue: 8
  year: 2019
  ident: pone.0315453.ref012
  article-title: Changing views of the pathophysiology of Parkinsonism
  publication-title: Movement Disorders
  doi: 10.1002/mds.27741
– ident: pone.0315453.ref020
  doi: 10.1007/978-3-030-01234-2_49
– volume: 51
  start-page: 571
  year: 2021
  ident: pone.0315453.ref005
  article-title: Deep transfer learning-based automated detection of COVID-19 from lung CT scan slices
  publication-title: Applied Intelligence
  doi: 10.1007/s10489-020-01826-w
– volume: 32
  start-page: 10927
  issue: 15
  year: 2020
  ident: pone.0315453.ref021
  article-title: A deep learning approach for Parkinson’s disease diagnosis from EEG signals
  publication-title: Neural Computing and Applications
  doi: 10.1007/s00521-018-3689-5
– volume: 94
  start-page: 106494
  year: 2020
  ident: pone.0315453.ref026
  article-title: Supervised machine learning based gait classification system for early detection and stage classification of Parkinson’s disease
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2020.106494
– volume: 180
  start-page: 105033
  year: 2019
  ident: pone.0315453.ref027
  article-title: Using gait analysis’ parameters to classify Parkinsonism: A data mining approach
  publication-title: Computer Methods and Programs in Biomedicine
  doi: 10.1016/j.cmpb.2019.105033
– ident: pone.0315453.ref014
  doi: 10.1109/ICCV.2017.256
– volume: 79
  start-page: 12815
  issue: 12
  year: 2023
  ident: pone.0315453.ref016
  article-title: Model-based and model-free deep features fusion for high performed human gait recognition
  publication-title: The Journal of supercomputing/Journal of supercomputing
  doi: 10.1007/s11227-023-05156-9
– volume: 110
  start-page: 101966
  year: 2020
  ident: pone.0315453.ref029
  article-title: Supervised classification of bradykinesia in Parkinson’s disease from smartphone videos
  publication-title: Artificial Intelligence in Medicine
  doi: 10.1016/j.artmed.2020.101966
– start-page: 1
  year: 2023
  ident: pone.0315453.ref019
  article-title: 3D point cloud descriptors: state-of-the-art
  publication-title: Artificial Intelligence Review
– year: 2019
  ident: pone.0315453.ref028
  article-title: OpenPose: Realtime Multi-Person 2D Pose Estimation using Part Affinity Fields
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
– volume: 397
  start-page: 2284
  issue: 10291
  year: 2021
  ident: pone.0315453.ref001
  article-title: Parkinson’s disease
  publication-title: The Lancet
  doi: 10.1016/S0140-6736(21)00218-X
– volume: 8
  start-page: 147635
  year: 2020
  ident: pone.0315453.ref010
  article-title: Early Detection of Parkinson’s Disease Using Deep Learning and Machine Learning
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3016062
– volume: 21
  start-page: 1
  year: 2021
  ident: pone.0315453.ref003
  article-title: Artificial intelligence-assisted reduction in patients’ waiting time for outpatient process: a retrospective cohort study
  publication-title: BMC health services research
– volume: 32
  start-page: 18069
  issue: 24
  year: 2020
  ident: pone.0315453.ref007
  article-title: The importance of interpretability and visualization in machine learning for applications in medicine and health care
  publication-title: Neural computing and applications
  doi: 10.1007/s00521-019-04051-w
– volume: 15
  start-page: 474
  issue: 12
  year: 2022
  ident: pone.0315453.ref013
  article-title: Pose-Based Gait Analysis for Diagnosis of Parkinson’s Disease
  publication-title: Algorithms
  doi: 10.3390/a15120474
– ident: pone.0315453.ref008
SSID ssj0053866
Score 2.4655573
Snippet Parkinson’s Disease (PD) is a neurodegenerative disorder that is often accompanied by slowness of movement (bradykinesia) or gradual reduction in the frequency...
Parkinson's Disease (PD) is a neurodegenerative disorder that is often accompanied by slowness of movement (bradykinesia) or gradual reduction in the frequency...
SourceID plos
doaj
proquest
gale
pubmed
crossref
SourceType Open Website
Aggregation Database
Index Database
StartPage e0315453
SubjectTerms Accuracy
Aged
Algorithms
Artificial intelligence
Basal ganglia
Central nervous system diseases
COVID-19
Datasets
Disease
Electroencephalography
Female
Gait
Gait - physiology
Handwriting
Humans
Hypokinesia
Male
Medical diagnosis
Medical research
Medical screening
Medicine, Experimental
Methods
Middle Aged
Motion perception
Movement disorders
Neurodegenerative diseases
Parkinson Disease - diagnosis
Parkinson Disease - physiopathology
Parkinson's disease
Physiological aspects
Signal processing
Testing
Video
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwELXQnrggSoEGSjEIqXBIu0lsJz4WRFWQAAko2ps18cd2pVWyapL_j8fxRkQCwYFrPImSN57xOJ55Q8grm7vKSYtNMzKesmJpUik5pMgc4qRmLl9iofCnz-Lqmn1c8dUvrb4wJ2ykBx6BOwfJeOWsKJkAZkwBLIOqqssCnLFVXaP39WvefjM1-mBvxULEQrmizM6jXs52bWPPsK8B48VsIQp8_ZNXXuy2bffnkDMsPZf3yb0YM9KL8V0PyB3bPCAH0So7-jpSR785JCssYg71XKcdjWcv1DsGv1n1SxTFJPc1BeoG_EdGW0fXsOnprt00PdXbdjAUGkO7zfamHTAHiDobiD-7h-T68v33d1dp7J2Qal6JPpWWYUY086qomBbMaMtyEKw2sLRGG-BI5GWyugKpcwGZ07LULjNSmKWrefGILBqP1hGhTgKroPAe2nq3ylzNrFs64UwGhTY8S0i6B1LtRooMFc7JSr-1GBFSCLyKwCfkLaI9ySLBdbjg1a6i2tXf1J6Q56grNVaLTmaqLkLAUzIpEvIySCDJRYNZNGsYuk59-PLjH4S-fZ0JnUYh1_a3oCFWLvhvQvKsmeTxTNKbqp4NH-HM2qPSKQ9IVgjpAwR_5362_X74xTSMD8XMuMa2wyjDOB4XJ-TxOEsnZH2syZEv8Mn_QPwpuZtj7-OQgndMFv3tYJ_5gKyvT4Lt_QS9pDS4
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELZguXBBlFdDCxiEBBzSJvEj8QkVRFWQAAkoWnGJHD-2K62SdJPc-Rv8PX4JHscbFAkQ13gSKfPy2DPzDUJPTWYLKwwMzUhZTEmiYyGYjAE5xApFbZZAo_D7D_zsnL5bsmW4cOtCWeXOJ3pHrRsFd-THxG1NhAvnS1-2lzFMjYLsahihcRVdA-gyKOnKl9OBy9ky56FdjuTpcZDOUdvU5gimG1BGZtuRR-2ffPOi3TTd3wNPvwGd3kQ3QuSIT0ZR76Erpr6F9oJtdvh5AJB-cRt9g1Zm39X18_uPDoccDHYOwh1a3VaFodh9hSW2A9yV4cbilVz3uG3WdY_Vphk0lrXG3Xpz0QxQC4St8QCg3R10fvrmy-uzOMxQiBUreB8LQ6EymjqRFFRxqpWhmeS00jIxWmnJANBLp1Uhhcq4TK0SubKpFlwntmLkLlrUjl_7CFshaSGJ89TGuVdqK2psYrnVqSRKszRC8Y6VZTtCZZQ-X5a7I8bIoxJYXwbWR-gV8HuiBaBr_6DZrspgN6UUlBXW8JxySbUmkqayKKqcSKtNUVURegTSKseu0clcyxMf-ORU8Ag98RQAdlFDNc1KDl1Xvv349T-IPn-aET0LRLbpt1LJ0MHg_glAtGaUhzNKZ7JqtrwPurXjSlf-Vm735k7f_rz8eFqGj0KFXG2aYaShDNLGEbo36unEWRdzMsANvP_vjx-g6xlMN_ZFdodo0W8H88CFXH310NvVL796LME
  priority: 102
  providerName: ProQuest
Title Parkinson’s disease screening using a fusion of gait point cloud and silhouette features
URI https://www.ncbi.nlm.nih.gov/pubmed/39752461
https://www.proquest.com/docview/3151369471
https://www.proquest.com/docview/3151452890
https://doaj.org/article/a9458fe6746a4dd3a41a88b73afde8bb
http://dx.doi.org/10.1371/journal.pone.0315453
Volume 20
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3Nb9MwFLe27sIFMb5WGMUgpMEhVT5sJz4gtE0tA2kDDYp6ixx_dJWqpDSJBBf-dvwcN1KlTdrFh_jZUn7xs5_z3vs9hN7p2GSGayiaEdGAJKEKOKciAOYQwyUxcQiJwpdX7GJGvs7pfA9ta7Z6AOtbr3ZQT2q2WY3__P77ySr8R1e1IY22g8brqtRjqFpAaLKPDuzZlIKqXpLer2C123kvwWoJWBwmPpnurll2DivH6d_v3IP1qqrvNkvd8TR9hB56uxKfdgvhEO3p8jE69Jpb4_eeXvrDEzSHRGeX83VSY--fwXbzsBdae4xhCIRfYIFNC__RcGXwQiwbvK6WZYPlqmoVFqXC9XJ1U7UQJ4SNduSg9VM0m05-nl8Evr5CIGnGmoBrAlHTxH6ujEhGlNQkFowUSoRaSSUokH2pqMgElzETkZE8lSZSnKnQFDR5hgalResIYcMFyURid3Ftt15iCqJNaJhRkUikotEQBVsg83VHo5E7X1pqrx8dQjkAn3vgh-gM0O5lgQTbPag2i9zrVC44oZnRLCVMEKUSQSKRZUWaCKN0VhRD9Bq-Vd5llPaqnJ86oyglnA3RWycBRBglRNosRFvX-Zdvv-4h9ON6R-jEC5mq2QgpfHaDfScg2NqRPN6RtOosd7qPYGVtUalzC0iUMG6NCDtyu9pu737Td8OkED1X6qrtZAgFl_IQPe9WaY-stUcpcAq-uM9bvkQPYqh_7MLwjtGg2bT6lTXKmmKE9tN5atvsPIJ2-nmEDs4mV9-vR-43x8jpIbT_Jv8BsDI69w
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaq5QAXRHk1UKhBIOCQNg_HiQ8IlUe1Sx9I0KIVl-D4say0SpZNIsSNv8Gf4EfxS_A4TtBKgLj0up5E2S8z34zjeSD0QEU600zB0Iww8UkcSJ-xhPvQOUQzQXQUQKHw8Qkdn5HX02S6gX70tTCQVtlzoiVqWQn4Rr4XG9cUU2a49Nnysw9To-B0tR-h0anFofr6xWzZ6qeTl-b9Poyig1enL8a-myrgiySjjc8UgVxhYh4yI4ISKRSJOCWF5IGSQvIEWlzJsMg4ExHloRYsFTqUjMpAFzAlwlD-BeN4A7CodDps8Ax3UOrK8-I03HPasLusSrUL0xRIEq-5PzslYPAFo-Wiqv8e6FqHd3AFXXaRKt7vVGsTbajyKtp0XFDjx65h9ZNr6AOUTtsqsp_fvtfYnflgQ0hmk2xcI4bk-hnmWLfwbQ5XGs_4vMHLal42WCyqVmJeSlzPF5-qFnKPsFa24Wh9HZ2dC7o30Kg0eG0hrBknGY-NZ1CGzokuiNKBplqGPBYyCT3k91Dmy641R27P51KzpekwygH63EHvoeeA9yALjbXtD9Vqljs7zTkjSaYVTQnlRMqYk5BnWZHGXEuVFYWHduBt5V2V6kAP-b4NtFLCqIfuWwlorlFC9s6Mt3WdT968_w-hd2_XhB45IV01Ky64q5gw_wmadq1Jbq9JGooQa8tboFs9KnX-25jMlb2-_Xn53rAMN4WMvFJVbSdDEjim9tDNTk8HZE2Mm0Cfwlv_vvkOujg-PT7KjyYnh7fRpQgmK9sEv200alatumPCvaa4a20Mo4_nbdS_ACzXa7w
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwELaqRUJcEOWvC4UaBAIOaTeJ48QHhApl1aVQENBqxSU4_llWWiXLJhHixmvwKjwOT8JM4gStBIhLr_EkcsYz34zt-SHknglsYoXBphl-5LFwpD0hIulh5RArFLPBCBOFXx3zwxP2YhpNN8iPLhcGwyo7TGyAWhcKz8j3QjBNIReApXvWhUW8ORg_WX72sIMU3rR27TRaETkyX7_A9q18PDmAtb4fBOPn758deq7DgKeihFeeMAzjhhlMOGGKM60MCyRnmZYjo5WWEZa70n6WSKECLn2rRKysrwXXI5thxwiA_3NxCHMDXYqn_WYPcIRzl6oXwpydZOwui9zsYmcFFoVrprDpGNDbhcFyUZR_d3ob4ze-RC46r5Xut2K2STZMfplsOlwo6UNXvPrRFfIB06ibjLKf376X1N3_UAAn2DCDmaQYaD-jktoaz-loYelMziu6LOZ5RdWiqDWVuablfPGpqDEOiVrTFB8tr5KTM-HuNTLIgV9bhFohWSJDsBIGoJ3ZjBk7stxqX4ZKR_6QeB0r02VbpiNt7upi2N60PEqR9alj_ZA8RX73tFhku3lQrGap09lUChYl1vCYccm0DiXzZZJkcSitNkmWDckOrlbaZqz2UJHuN05XzAQfkrsNBRbayFFkZ7Iuy3Ty-vQ_iN69XSN64IhsUa2kki57Av4JC3itUW6vUQJcqLXhLZStjitl-lux4M1O3v48fKcfxo9idF5uirqlYRFeWQ_J9VZOe86CvxthzcIb__74DjkP6py-nBwf3SQXAmyy3MT6bZNBtarNLfD8qux2o2KUfDxrnf4F8S1v8g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Parkinson%27s+disease+screening+using+a+fusion+of+gait+point+cloud+and+silhouette+features&rft.jtitle=PloS+one&rft.au=Connie%2C+Tee&rft.au=Aderinola%2C+Timilehin+B&rft.au=Ong%2C+Jia+You&rft.au=Ong%2C+Thian+Song&rft.date=2025-01-03&rft.pub=Public+Library+of+Science&rft.issn=1932-6203&rft.eissn=1932-6203&rft.volume=20&rft.issue=1&rft.spage=e0315453&rft_id=info:doi/10.1371%2Fjournal.pone.0315453&rft.externalDBID=ISR&rft.externalDocID=A822237496
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-6203&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-6203&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-6203&client=summon