Interactome map uncovers phosphatidylserine transport by oxysterol-binding proteins

The lipid-binding profiles of all lipid-transfer proteins in Saccharomyces cerevisiae are determined and a new subfamily of oxysterol-binding proteins that function in phosphatidylserine homeostasis and transport is identified. A novel family of phosphatidylserine transport proteins Eukaryotic cells...

Full description

Saved in:
Bibliographic Details
Published inNature (London) Vol. 501; no. 7466; pp. 257 - 261
Main Authors Maeda, Kenji, Anand, Kanchan, Chiapparino, Antonella, Kumar, Arun, Poletto, Mattia, Kaksonen, Marko, Gavin, Anne-Claude
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 12.09.2013
Nature Publishing Group
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The lipid-binding profiles of all lipid-transfer proteins in Saccharomyces cerevisiae are determined and a new subfamily of oxysterol-binding proteins that function in phosphatidylserine homeostasis and transport is identified. A novel family of phosphatidylserine transport proteins Eukaryotic cells are compartmentalized internally by a series of functionally specialized membrane-bound organelles with unique lipid composition. In this study, Anne-Claude Gavin and colleagues determine the lipid-binding profiles of all lipid-transfer proteins in the budding yeast Saccharomyces cerevisiae , and identify a previously unrecognized subfamily of oxysterol-binding proteins (OSBPs) that function in phosphatidylserine homeostasis and transport rather than in the transfer of sterols. Phylogenetic analysis shows that similar OSPBs are broadly conserved — including in humans where they are associated with pathologies including cancer and metabolic syndrome. The internal organization of eukaryotic cells into functionally specialized, membrane-delimited organelles of unique composition implies a need for active, regulated lipid transport. Phosphatidylserine (PS), for example, is synthesized in the endoplasmic reticulum and then preferentially associates—through mechanisms not fully elucidated—with the inner leaflet of the plasma membrane 1 , 2 , 3 . Lipids can travel via transport vesicles. Alternatively, several protein families known as lipid-transfer proteins (LTPs) can extract a variety of specific lipids from biological membranes and transport them, within a hydrophobic pocket, through aqueous phases 4 , 5 , 6 , 7 . Here we report the development of an integrated approach that combines protein fractionation and lipidomics to characterize the LTP–lipid complexes formed in vivo . We applied the procedure to 13 LTPs in the yeast Saccharomyces cerevisiae : the six Sec14 homology (Sfh) proteins and the seven oxysterol-binding homology (Osh) proteins. We found that Osh6 and Osh7 have an unexpected specificity for PS. In vivo , they participate in PS homeostasis and the transport of this lipid to the plasma membrane. The structure of Osh6 bound to PS reveals unique features that are conserved among other metazoan oxysterol-binding proteins (OSBPs) and are required for PS recognition. Our findings represent the first direct evidence, to our knowledge, for the non-vesicular transfer of PS from its site of biosynthesis (the endoplasmic reticulum) to its site of biological activity (the plasma membrane). We describe a new subfamily of OSBPs, including human ORP5 and ORP10, that transfer PS and propose new mechanisms of action for a protein family that is involved in several human pathologies such as cancer, dyslipidaemia and metabolic syndrome.
AbstractList The internal organization of eukaryotic cells into functionally specialized, membrane-delimited organelles of unique composition implies a need for active, regulated lipid transport. Phosphatidylserine (PS), for example, is synthesized in the endoplasmic reticulum and then preferentially associates--through mechanisms not fully elucidated--with the inner leaflet of the plasma membrane. Lipids can travel via transport vesicles. Alternatively, several protein families known as lipid-transfer proteins (LTPs) can extract a variety of specific lipids from biological membranes and transport them, within a hydrophobic pocket, through aqueous phases. Here we report the development of an integrated approach that combines protein fractionation and lipidomics to characterize the LTP-lipid complexes formed in vivo. We applied the procedure to 13 LTPs in the yeast Saccharomyces cerevisiae: the six Sec14 homology (Sfh) proteins and the seven oxysterol-binding homology (Osh) proteins. We found that Osh6 and Osh7 have an unexpected specificity for PS. In vivo, they participate in PS homeostasis and the transport of this lipid to the plasma membrane. The structure of Osh6 bound to PS reveals unique features that are conserved among other metazoan oxysterol-binding proteins (OSBPs) and are required for PS recognition. Our findings represent the first direct evidence, to our knowledge, for the non-vesicular transfer of PS from its site of biosynthesis (the endoplasmic reticulum) to its site of biological activity (the plasma membrane). We describe a new subfamily of OSBPs, including human ORP5 and ORP10, that transfer PS and propose new mechanisms of action for a protein family that is involved in several human pathologies such as cancer, dyslipidaemia and metabolic syndrome.The internal organization of eukaryotic cells into functionally specialized, membrane-delimited organelles of unique composition implies a need for active, regulated lipid transport. Phosphatidylserine (PS), for example, is synthesized in the endoplasmic reticulum and then preferentially associates--through mechanisms not fully elucidated--with the inner leaflet of the plasma membrane. Lipids can travel via transport vesicles. Alternatively, several protein families known as lipid-transfer proteins (LTPs) can extract a variety of specific lipids from biological membranes and transport them, within a hydrophobic pocket, through aqueous phases. Here we report the development of an integrated approach that combines protein fractionation and lipidomics to characterize the LTP-lipid complexes formed in vivo. We applied the procedure to 13 LTPs in the yeast Saccharomyces cerevisiae: the six Sec14 homology (Sfh) proteins and the seven oxysterol-binding homology (Osh) proteins. We found that Osh6 and Osh7 have an unexpected specificity for PS. In vivo, they participate in PS homeostasis and the transport of this lipid to the plasma membrane. The structure of Osh6 bound to PS reveals unique features that are conserved among other metazoan oxysterol-binding proteins (OSBPs) and are required for PS recognition. Our findings represent the first direct evidence, to our knowledge, for the non-vesicular transfer of PS from its site of biosynthesis (the endoplasmic reticulum) to its site of biological activity (the plasma membrane). We describe a new subfamily of OSBPs, including human ORP5 and ORP10, that transfer PS and propose new mechanisms of action for a protein family that is involved in several human pathologies such as cancer, dyslipidaemia and metabolic syndrome.
The lipid-binding profiles of all lipid-transfer proteins in Saccharomyces cerevisiae are determined and a new subfamily of oxysterol-binding proteins that function in phosphatidylserine homeostasis and transport is identified. A novel family of phosphatidylserine transport proteins Eukaryotic cells are compartmentalized internally by a series of functionally specialized membrane-bound organelles with unique lipid composition. In this study, Anne-Claude Gavin and colleagues determine the lipid-binding profiles of all lipid-transfer proteins in the budding yeast Saccharomyces cerevisiae , and identify a previously unrecognized subfamily of oxysterol-binding proteins (OSBPs) that function in phosphatidylserine homeostasis and transport rather than in the transfer of sterols. Phylogenetic analysis shows that similar OSPBs are broadly conserved — including in humans where they are associated with pathologies including cancer and metabolic syndrome. The internal organization of eukaryotic cells into functionally specialized, membrane-delimited organelles of unique composition implies a need for active, regulated lipid transport. Phosphatidylserine (PS), for example, is synthesized in the endoplasmic reticulum and then preferentially associates—through mechanisms not fully elucidated—with the inner leaflet of the plasma membrane 1 , 2 , 3 . Lipids can travel via transport vesicles. Alternatively, several protein families known as lipid-transfer proteins (LTPs) can extract a variety of specific lipids from biological membranes and transport them, within a hydrophobic pocket, through aqueous phases 4 , 5 , 6 , 7 . Here we report the development of an integrated approach that combines protein fractionation and lipidomics to characterize the LTP–lipid complexes formed in vivo . We applied the procedure to 13 LTPs in the yeast Saccharomyces cerevisiae : the six Sec14 homology (Sfh) proteins and the seven oxysterol-binding homology (Osh) proteins. We found that Osh6 and Osh7 have an unexpected specificity for PS. In vivo , they participate in PS homeostasis and the transport of this lipid to the plasma membrane. The structure of Osh6 bound to PS reveals unique features that are conserved among other metazoan oxysterol-binding proteins (OSBPs) and are required for PS recognition. Our findings represent the first direct evidence, to our knowledge, for the non-vesicular transfer of PS from its site of biosynthesis (the endoplasmic reticulum) to its site of biological activity (the plasma membrane). We describe a new subfamily of OSBPs, including human ORP5 and ORP10, that transfer PS and propose new mechanisms of action for a protein family that is involved in several human pathologies such as cancer, dyslipidaemia and metabolic syndrome.
The internal organization of eukaryotic cells into functionally specialized, membrane-delimited organelles of unique composition implies a need for active, regulated lipid transport. Phosphatidyl- serine (PS), for example, is synthesized in the endoplasmic reticulum and then preferentially associates-through mechanisms not fully elucidated-with the inner leaflet of the plasma membrane. Lipids can travel via transport vesicles. Alternatively, several protein families known as lipid-transfer proteins (LTPs) can extract a variety of specific lipids from biological membranes and transport them, within a hydrophobic pocket, through aqueous phases. Here we report the development of an integrated approach that combines protein fractionation and lipidomics to characterize the LTP-lipid complexes formed invivo. We applied the procedure to 13 LTPs in the yeast Saccharomyces cerevisiae: the six Sec14 homology (Sfh) proteins and the seven oxysterol-binding homology (Osh) proteins. We found that Osh6 and Osh7 have an unexpected specificity for PS. Invivo, they participate in PS homeostasis and the transport of this lipid to the plasma membrane. The structure of Osh6 bound to PS reveals unique features that are conserved among other metazoan oxysterol-binding proteins (OSBPs) and are required for PS recognition. Our findings represent the first direct evidence, to our knowledge, for the non-vesicular transfer of PS from its site of biosynthesis (the endoplasmic reticulum) to its site of biological activity (the plasma membrane). We describe a new subfamily of OSBPs, including human ORP5 and ORP10, that transfer PS and propose new mechanisms of action for a protein family that is involved in several human pathologies such as cancer, dyslipidae- mia and metabolic syndrome. [PUBLICATION ABSTRACT]
The internal organization of eukaryotic cells into functionally specialized, membrane-delimited organelles of unique composition implies a need for active, regulated lipid transport. Phosphatidylserine (PS), for example, is synthesized in the endoplasmic reticulum and then preferentially associates--through mechanisms not fully elucidated--with the inner leaflet of the plasma membrane (1-3). Lipids can travel via transport vesicles. Alternatively, several protein families known as lipid-transfer proteins (LTPs) can extract a variety of specific lipids from biological membranes and transport them, within a hydrophobic pocket, through aqueous phases (4-7).Here we report the development of an integrated approach that combines protein fractionation and lipidomics to characterize the LTP-lipid complexes formed in vivo. We applied the procedure to 13 LTPs in the yeast Saccharomyces cerevisiae the six Sec14 homology (Sfh) proteins and the seven oxysterol-binding homology (Osh) proteins. We found that Osh6 and Osh7 have an unexpected specificity for PS. In vivo, they participate in PS homeostasis and the transport of this lipid to the plasma membrane. The structure of Osh6 bound to PS reveals unique features that are conserved among other metazoan oxysterol-binding proteins (OSBPs) and are required for PS recognition. Our findings represent the first direct evidence, to our knowledge, for the non-vesicular transfer of PS from its site of biosynthesis (the endoplasmic reticulum) to its site of biological activity (the plasma membrane). We describe a new subfamily of OSBPs, including human ORP5 and ORP10, that transfer PS and propose new mechanisms of action for a protein family that is involved in several human pathologies such as cancer, dyslipidaemia and metabolic syndrome.
The internal organization of eukaryotic cells into functionally specialized, membrane-delimited organelles of unique composition implies a need for active, regulated lipid transport. Phosphatidylserine (PS), for example, is synthesized in the endoplasmic reticulum and then preferentially associates--through mechanisms not fully elucidated--with the inner leaflet of the plasma membrane. Lipids can travel via transport vesicles. Alternatively, several protein families known as lipid-transfer proteins (LTPs) can extract a variety of specific lipids from biological membranes and transport them, within a hydrophobic pocket, through aqueous phases. Here we report the development of an integrated approach that combines protein fractionation and lipidomics to characterize the LTP-lipid complexes formed in vivo. We applied the procedure to 13 LTPs in the yeast Saccharomyces cerevisiae: the six Sec14 homology (Sfh) proteins and the seven oxysterol-binding homology (Osh) proteins. We found that Osh6 and Osh7 have an unexpected specificity for PS. In vivo, they participate in PS homeostasis and the transport of this lipid to the plasma membrane. The structure of Osh6 bound to PS reveals unique features that are conserved among other metazoan oxysterol-binding proteins (OSBPs) and are required for PS recognition. Our findings represent the first direct evidence, to our knowledge, for the non-vesicular transfer of PS from its site of biosynthesis (the endoplasmic reticulum) to its site of biological activity (the plasma membrane). We describe a new subfamily of OSBPs, including human ORP5 and ORP10, that transfer PS and propose new mechanisms of action for a protein family that is involved in several human pathologies such as cancer, dyslipidaemia and metabolic syndrome.
Audience Academic
Author Kumar, Arun
Chiapparino, Antonella
Maeda, Kenji
Kaksonen, Marko
Anand, Kanchan
Poletto, Mattia
Gavin, Anne-Claude
Author_xml – sequence: 1
  givenname: Kenji
  surname: Maeda
  fullname: Maeda, Kenji
  organization: European Molecular Biology Laboratory, EMBL, Meyerhofstrasse 1, D-69117 Heidelberg, Germany
– sequence: 2
  givenname: Kanchan
  surname: Anand
  fullname: Anand, Kanchan
  organization: European Molecular Biology Laboratory, EMBL, Meyerhofstrasse 1, D-69117 Heidelberg, Germany, Present address: Center of Advanced European Studies and Research (Caesar), Ludwig-Erhard-Allee 2, 53175 Bonn, Germany
– sequence: 3
  givenname: Antonella
  surname: Chiapparino
  fullname: Chiapparino, Antonella
  organization: European Molecular Biology Laboratory, EMBL, Meyerhofstrasse 1, D-69117 Heidelberg, Germany
– sequence: 4
  givenname: Arun
  surname: Kumar
  fullname: Kumar, Arun
  organization: European Molecular Biology Laboratory, EMBL, Meyerhofstrasse 1, D-69117 Heidelberg, Germany
– sequence: 5
  givenname: Mattia
  surname: Poletto
  fullname: Poletto, Mattia
  organization: European Molecular Biology Laboratory, EMBL, Meyerhofstrasse 1, D-69117 Heidelberg, Germany
– sequence: 6
  givenname: Marko
  surname: Kaksonen
  fullname: Kaksonen, Marko
  organization: European Molecular Biology Laboratory, EMBL, Meyerhofstrasse 1, D-69117 Heidelberg, Germany
– sequence: 7
  givenname: Anne-Claude
  surname: Gavin
  fullname: Gavin, Anne-Claude
  email: gavin@embl.de
  organization: European Molecular Biology Laboratory, EMBL, Meyerhofstrasse 1, D-69117 Heidelberg, Germany
BackLink https://www.ncbi.nlm.nih.gov/pubmed/23934110$$D View this record in MEDLINE/PubMed
BookMark eNp10t9r1TAUB_AgE3c3ffJdintRtDNpfvZxDH9cGAhOn0uae9pltEmXpLL735txp9w7Kn0IlM_35CQ5J-jIeQcIvSb4nGCqPjmd5gCkYhQ_QyvCpCiZUPIIrTCuVIkVFcfoJMZbjDEnkr1AxxWtKSMEr9D12iUI2iQ_QjHqqZid8b8hxGK68XG60clutkOEYB0UKWgXJx9S0W4Lf7-NOeqHsrVuY11fTMEnsC6-RM87nTOvHtdT9OvL55-X38qr71_XlxdXpeFKpLKWuOKMUKVbwIZ3FCRQLiTRIneH65bIqpNcd7wmRmUrWauYlh0hQnAG9BS929XNG9_NEFMz2mhgGLQDP8eGMFoJImosMj17Qm_9HFzuLivGqeBVvad6PUBjXefzic1D0eaCskpJrmqeVbmgenD5Hof8NJ3Nvw_82wVvJnvX7KPzBZS_DYzWLFZ9fxDIJsF96vUcY7O-_nFo3zyefm5H2DRTsKMO2-bvGGTwYQdM8DEG6P4RgpuHIWv2hixr8kQbm_Kg5A6CtsN_Mh93mZgrux7C3gMs8D9K9uCP
CODEN NATUAS
CitedBy_id crossref_primary_10_1074_jbc_RA117_000596
crossref_primary_10_1093_jxb_erx156
crossref_primary_10_1042_BCJ20160580
crossref_primary_10_1083_jcb_202103141
crossref_primary_10_1371_journal_pbio_2003864
crossref_primary_10_1038_srep35762
crossref_primary_10_1126_science_aab1370
crossref_primary_10_1016_j_devcel_2017_12_026
crossref_primary_10_3389_fcell_2021_784367
crossref_primary_10_1074_jbc_M114_571216
crossref_primary_10_1016_j_bbamem_2024_184308
crossref_primary_10_1016_j_plipres_2015_10_004
crossref_primary_10_1016_j_biochi_2024_09_007
crossref_primary_10_1093_jxb_erz228
crossref_primary_10_1091_mbc_E21_07_0363
crossref_primary_10_1042_BCJ20210016
crossref_primary_10_1038_srep26829
crossref_primary_10_1016_j_bcp_2023_115621
crossref_primary_10_1016_j_biochi_2020_10_018
crossref_primary_10_1007_s00018_018_2795_y
crossref_primary_10_1021_acs_jpcb_1c04704
crossref_primary_10_1091_mbc_E17_12_0738
crossref_primary_10_1007_s10123_019_00056_6
crossref_primary_10_3389_fmicb_2024_1409085
crossref_primary_10_1016_j_ceb_2018_10_002
crossref_primary_10_1371_journal_pone_0108368
crossref_primary_10_15252_embj_201591481
crossref_primary_10_4155_fmc_2016_0182
crossref_primary_10_1016_j_bbalip_2019_05_005
crossref_primary_10_1371_journal_pgen_1010549
crossref_primary_10_1126_science_aav9959
crossref_primary_10_1146_annurev_biochem_061516_044445
crossref_primary_10_1016_j_biochi_2018_12_013
crossref_primary_10_1016_j_ceb_2018_10_008
crossref_primary_10_3389_fcell_2021_627700
crossref_primary_10_3390_jof3040061
crossref_primary_10_1242_jcs_102715
crossref_primary_10_1016_j_cbpa_2014_07_015
crossref_primary_10_3390_life13020496
crossref_primary_10_1016_j_bbalip_2019_05_011
crossref_primary_10_1126_science_aab1346
crossref_primary_10_1002_bies_202400045
crossref_primary_10_1111_tra_12554
crossref_primary_10_1016_j_pbi_2014_08_004
crossref_primary_10_1126_sciadv_add4791
crossref_primary_10_1038_s41467_017_00861_5
crossref_primary_10_1038_s41467_019_10711_1
crossref_primary_10_1016_j_celrep_2022_111364
crossref_primary_10_1016_j_mce_2016_03_006
crossref_primary_10_3390_biom10060928
crossref_primary_10_1038_ncomms7671
crossref_primary_10_1038_s41467_024_54811_z
crossref_primary_10_1152_ajpcell_00349_2015
crossref_primary_10_1111_tra_12541
crossref_primary_10_1242_jcs_164715
crossref_primary_10_1016_j_devcel_2013_11_009
crossref_primary_10_1016_j_bbrc_2018_01_138
crossref_primary_10_1016_j_ceb_2015_03_006
crossref_primary_10_1073_pnas_1503191112
crossref_primary_10_7554_eLife_91345
crossref_primary_10_1007_s10863_018_9745_0
crossref_primary_10_1038_s41586_022_05164_4
crossref_primary_10_1016_j_plipres_2016_08_003
crossref_primary_10_1083_jcb_202205135
crossref_primary_10_1042_BST20150190
crossref_primary_10_1038_nprot_2014_148
crossref_primary_10_1016_j_jbc_2024_107665
crossref_primary_10_1038_s42003_024_07301_3
crossref_primary_10_1093_jb_mvy088
crossref_primary_10_1038_s42004_024_01384_z
crossref_primary_10_1016_j_bbalip_2024_159572
crossref_primary_10_1016_j_bbalip_2016_01_008
crossref_primary_10_1083_jcb_202207022
crossref_primary_10_1242_jcs_243733
crossref_primary_10_1083_jcb_201901039
crossref_primary_10_1007_s12275_016_5621_y
crossref_primary_10_1038_525191a
crossref_primary_10_1073_pnas_1517259113
crossref_primary_10_7554_eLife_91345_3
crossref_primary_10_1083_jcb_201401126
crossref_primary_10_1177_25152564211034424
crossref_primary_10_15252_embj_201695917
crossref_primary_10_1002_yea_3448
crossref_primary_10_1017_S003358351400016X
crossref_primary_10_1083_jcb_202112057
crossref_primary_10_1111_tra_12491
crossref_primary_10_1016_j_bbalip_2021_158990
crossref_primary_10_1042_BST20140143
crossref_primary_10_1083_jcb_201710095
crossref_primary_10_3390_molecules181113666
crossref_primary_10_1083_jcb_201910161
crossref_primary_10_1371_journal_pone_0211724
crossref_primary_10_1016_j_bbalip_2014_01_003
crossref_primary_10_15252_embr_201541108
crossref_primary_10_1016_j_ceca_2020_102336
crossref_primary_10_1016_j_ceb_2016_01_010
crossref_primary_10_15252_embr_201540137
crossref_primary_10_1091_mbc_E19_12_0697
crossref_primary_10_1016_j_ceca_2017_01_003
crossref_primary_10_1016_j_bbalip_2014_07_014
crossref_primary_10_1042_BST20160185
crossref_primary_10_1146_annurev_biochem_061516_044924
crossref_primary_10_1007_s11274_023_03541_3
crossref_primary_10_1177_25152564241273598
crossref_primary_10_7554_eLife_07253
crossref_primary_10_1111_tra_12239
crossref_primary_10_1172_jci_insight_170148
crossref_primary_10_12998_wjcc_v8_i1_1
crossref_primary_10_1111_tra_12471
crossref_primary_10_1016_j_plipres_2014_06_002
crossref_primary_10_1111_tra_12233
crossref_primary_10_1042_BST20150265
crossref_primary_10_1128_mbio_03873_21
crossref_primary_10_1371_journal_pgen_1010106
crossref_primary_10_1021_acsinfecdis_2c00108
crossref_primary_10_1042_BST20150262
crossref_primary_10_3390_ijms22094703
crossref_primary_10_1371_journal_pone_0174706
crossref_primary_10_1016_j_bbamcr_2017_05_017
crossref_primary_10_1016_j_bbamcr_2017_05_018
crossref_primary_10_1002_1873_3468_14558
crossref_primary_10_1371_journal_pone_0242677
crossref_primary_10_1083_jcb_201812020
crossref_primary_10_15252_embj_201798002
crossref_primary_10_1093_jxb_erx183
crossref_primary_10_1007_s00018_023_04728_5
crossref_primary_10_1016_j_ijpara_2021_01_008
crossref_primary_10_1021_ac500446z
crossref_primary_10_1074_jbc_RA117_001558
crossref_primary_10_1016_j_tibs_2017_05_001
crossref_primary_10_1146_annurev_biochem_061516_044932
crossref_primary_10_1016_j_cell_2015_05_051
crossref_primary_10_1016_j_bbrc_2018_04_002
crossref_primary_10_1016_j_biochi_2016_08_001
crossref_primary_10_1016_j_yexcr_2014_01_002
crossref_primary_10_3389_fcell_2023_1291506
crossref_primary_10_1177_2515256420946627
crossref_primary_10_1146_annurev_cellbio_111315_125024
crossref_primary_10_1016_j_bbalip_2021_159020
crossref_primary_10_1016_j_cell_2016_06_037
crossref_primary_10_1038_s41580_018_0071_5
crossref_primary_10_1016_j_molmet_2022_101481
crossref_primary_10_1186_s12915_021_01183_1
crossref_primary_10_1074_jbc_M116_760256
crossref_primary_10_1038_srep28031
crossref_primary_10_15252_embj_201489703
crossref_primary_10_1016_j_ceb_2023_102192
crossref_primary_10_1083_jcb_201905162
crossref_primary_10_1021_acs_jmedchem_2c01025
crossref_primary_10_1002_mbo3_211
crossref_primary_10_1177_25152564241272245
crossref_primary_10_1016_j_semcdb_2017_07_017
crossref_primary_10_1042_BCJ20190839
crossref_primary_10_1126_science_aah6171
crossref_primary_10_1091_mbc_e13_04_0215
crossref_primary_10_1016_j_bbalip_2019_07_001
crossref_primary_10_1111_mpp_13264
crossref_primary_10_1111_tra_12609
crossref_primary_10_1097_MOL_0000000000000298
crossref_primary_10_1016_j_bbalip_2016_02_001
crossref_primary_10_1016_j_bbalip_2019_04_013
crossref_primary_10_3390_cells12151974
crossref_primary_10_1007_s00018_018_2850_8
crossref_primary_10_1016_j_devcel_2017_10_031
crossref_primary_10_1016_j_antiviral_2019_104548
crossref_primary_10_1016_j_plipres_2022_101146
crossref_primary_10_1038_s41467_022_31462_6
crossref_primary_10_1113_JP274957
crossref_primary_10_1016_j_bbamem_2018_12_003
crossref_primary_10_1186_s12964_019_0438_z
crossref_primary_10_1073_pnas_1422363112
crossref_primary_10_1016_j_molcel_2016_01_031
crossref_primary_10_7554_eLife_74602
crossref_primary_10_1007_s00018_020_03604_w
crossref_primary_10_1038_s41556_019_0394_2
crossref_primary_10_1016_j_ceb_2018_04_012
crossref_primary_10_1091_mbc_e16_06_0353
crossref_primary_10_1038_nprot_2016_059
crossref_primary_10_1016_j_devcel_2018_04_011
crossref_primary_10_1007_s00018_014_1786_x
crossref_primary_10_1016_j_celrep_2017_05_028
crossref_primary_10_1091_mbc_E23_03_0089
crossref_primary_10_3852_15_309
crossref_primary_10_1016_j_ceb_2016_03_012
crossref_primary_10_3389_fmolb_2021_747601
crossref_primary_10_1083_jcb_201811139
crossref_primary_10_1083_jcb_201709123
crossref_primary_10_1134_S0006297919040023
crossref_primary_10_1146_annurev_cellbio_100818_125251
crossref_primary_10_1242_jcs_260857
crossref_primary_10_1111_tra_12709
crossref_primary_10_3389_fcell_2021_664788
crossref_primary_10_1016_j_jmb_2017_12_017
crossref_primary_10_1016_j_bbalip_2016_02_024
crossref_primary_10_1016_j_bbalip_2019_07_005
crossref_primary_10_1016_j_jbior_2024_101061
crossref_primary_10_1074_jbc_M115_682997
crossref_primary_10_1083_jcb_202010016
crossref_primary_10_3389_fmicb_2021_673509
crossref_primary_10_1016_j_bbrc_2020_06_090
crossref_primary_10_1091_mbc_E18_01_0051
crossref_primary_10_1242_jcs_262347
crossref_primary_10_1016_j_bbrc_2013_12_002
crossref_primary_10_1042_BST20190537
crossref_primary_10_1083_jcb_202109162
crossref_primary_10_1096_fj_202001802R
crossref_primary_10_1242_jcs_256529
crossref_primary_10_1016_j_ceb_2023_102212
crossref_primary_10_1371_journal_pone_0215009
crossref_primary_10_1016_j_tibs_2018_10_001
crossref_primary_10_1038_s41580_019_0180_9
crossref_primary_10_1172_JCI85499
crossref_primary_10_1194_jlr_R085324
crossref_primary_10_1093_femsml_uqad018
crossref_primary_10_1038_nature13474
crossref_primary_10_1093_plphys_kiad238
crossref_primary_10_3389_fcell_2021_737907
crossref_primary_10_1038_s44318_024_00096_3
crossref_primary_10_26508_lsa_202201430
crossref_primary_10_1093_schbul_sbv179
crossref_primary_10_1177_2515256420979586
crossref_primary_10_1002_ps_5568
crossref_primary_10_1016_j_bcp_2021_114455
crossref_primary_10_1083_jcb_202312055
crossref_primary_10_4137_LPI_S31726
crossref_primary_10_1016_j_devcel_2020_06_026
crossref_primary_10_1016_j_devcel_2016_09_030
crossref_primary_10_1177_25152564221150428
crossref_primary_10_1146_annurev_biochem_060713_035307
crossref_primary_10_1242_jcs_205435
crossref_primary_10_1038_s41467_019_11780_y
crossref_primary_10_1016_j_tcb_2017_07_006
crossref_primary_10_1093_femsyr_foae030
crossref_primary_10_1042_ETLS20220028
crossref_primary_10_15252_embj_2022112677
crossref_primary_10_1038_nrm4080
crossref_primary_10_1242_jcs_237388
crossref_primary_10_1016_j_bbalip_2016_08_012
crossref_primary_10_1194_jlr_R046094
crossref_primary_10_3389_fcell_2020_00663
crossref_primary_10_1016_j_molcel_2018_11_014
crossref_primary_10_1016_j_jare_2024_12_014
crossref_primary_10_1016_j_bmc_2022_116856
crossref_primary_10_1186_s12915_017_0432_0
crossref_primary_10_1002_1873_3468_13639
crossref_primary_10_1016_j_str_2017_02_010
crossref_primary_10_1242_jcs_258856
crossref_primary_10_1002_cppb_20101
crossref_primary_10_1016_j_cell_2019_04_010
crossref_primary_10_1242_dev_150573
crossref_primary_10_1007_s11427_023_2443_9
crossref_primary_10_1016_j_celrep_2018_05_019
crossref_primary_10_1016_j_psj_2019_12_036
crossref_primary_10_1016_j_bbamem_2014_07_029
crossref_primary_10_1002_ps_3722
crossref_primary_10_1093_plphys_kiaa056
crossref_primary_10_3389_fcell_2020_00675
crossref_primary_10_1111_febs_15451
Cites_doi 10.1038/415141a
10.1126/science.1152066
10.1007/s12154-008-0007-1
10.1016/j.ceb.2008.03.013
10.1038/ncb2351
10.1107/S0907444904019158
10.1038/nrm1591
10.1107/S0907444901012471
10.1016/S1097-2765(04)00083-8
10.1016/j.molcel.2008.04.008
10.1107/S0108767389009815
10.1006/abio.2001.5552
10.1093/nar/gkr1065
10.1016/j.cell.2010.09.048
10.1083/jcb.201012028
10.1038/nchembio.625
10.1074/jbc.M108811200
10.1038/ncb2487
10.1038/ncomms2370
10.1038/nrm2971
10.1016/j.cell.2010.12.034
10.1107/S0021889892009944
10.1074/jbc.M706718200
10.1107/S0021889893005588
10.1146/annurev.biophys.093008.131234
10.1038/nature02026
10.1091/mbc.11.6.1989
10.1083/jcb.200201037
10.1093/nar/gkn072
10.1107/S0907444902016657
10.1083/jcb.200905007
10.1093/bioinformatics/btl529
10.1093/nar/gkr245
10.1083/jcb.201104062
10.1083/jcb.200510084
10.1073/pnas.0811700106
10.1038/msb.2010.87
10.1091/mbc.01-10-0476
10.1002/yea.1142
10.1083/jcb.153.1.47
10.1038/nature03923
10.1038/nature04532
10.1073/pnas.92.11.4947
10.1093/bioinformatics/btp033
10.1046/j.1432-1327.2001.02116.x
10.1042/BJ20100263
10.1101/gr.849004
10.1093/genetics/157.3.1117
10.1128/JB.154.1.304-311.1983
ContentType Journal Article
Copyright Springer Nature Limited 2013
COPYRIGHT 2013 Nature Publishing Group
Copyright Nature Publishing Group Sep 12, 2013
Copyright_xml – notice: Springer Nature Limited 2013
– notice: COPYRIGHT 2013 Nature Publishing Group
– notice: Copyright Nature Publishing Group Sep 12, 2013
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QG
7QL
7QP
7QR
7RV
7SN
7SS
7ST
7T5
7TG
7TK
7TM
7TO
7U9
7X2
7X7
7XB
88A
88E
88G
88I
8AF
8AO
8C1
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
8G5
ABJCF
ABUWG
AEUYN
AFKRA
ARAPS
ATCPS
AZQEC
BBNVY
BEC
BENPR
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
D1I
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
GUQSH
H94
HCIFZ
K9.
KB.
KB0
KL.
L6V
LK8
M0K
M0S
M1P
M2M
M2O
M2P
M7N
M7P
M7S
MBDVC
NAPCQ
P5Z
P62
P64
PATMY
PCBAR
PDBOC
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PSYQQ
PTHSS
PYCSY
Q9U
R05
RC3
S0X
SOI
7X8
DOI 10.1038/nature12430
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Nursing & Allied Health Database (ProQuest)
Ecology Abstracts
Entomology Abstracts (Full archive)
Environment Abstracts
Immunology Abstracts
Meteorological & Geoastrophysical Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Agricultural Science Collection
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Psychology Database (Alumni)
Science Database (Alumni Edition)
STEM Database
ProQuest Pharma Collection
Public Health Database (Proquest)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Research Library
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
Agricultural & Environmental Science Collection
ProQuest Central Essentials
Biological Science Collection
eLibrary
ProQuest Central
Technology Collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Materials Science Collection
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
Research Library Prep
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Materials Science Database
Nursing & Allied Health Database (Alumni Edition)
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest Engineering Collection
Biological Sciences
Agricultural Science Database
Health & Medical Collection (Alumni)
Medical Database
Psychology Database (ProQuest)
Research Library
Science Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biological Science Database
ProQuest Engineering Database
Research Library (Corporate)
Nursing & Allied Health Premium
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Environmental Science Database
Earth, Atmospheric & Aquatic Science Database
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest One Psychology
Engineering Collection
Environmental Science Collection
ProQuest Central Basic
University of Michigan
Genetics Abstracts
SIRS Editorial
Environment Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Agricultural Science Database
ProQuest One Psychology
Research Library Prep
ProQuest Central Student
Oncogenes and Growth Factors Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
elibrary
ProQuest AP Science
SciTech Premium Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Meteorological & Geoastrophysical Abstracts
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
Chemoreception Abstracts
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
Virology and AIDS Abstracts
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
Agricultural Science Collection
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Environmental Science Collection
Entomology Abstracts
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Environmental Science Database
ProQuest Nursing & Allied Health Source (Alumni)
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest One Academic (New)
University of Michigan
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
SIRS Editorial
Materials Science Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
Research Library (Alumni Edition)
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
Earth, Atmospheric & Aquatic Science Collection
ProQuest Health & Medical Research Collection
Genetics Abstracts
ProQuest Engineering Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Agricultural & Environmental Science Collection
AIDS and Cancer Research Abstracts
Materials Science Database
ProQuest Research Library
ProQuest Materials Science Collection
ProQuest Public Health
ProQuest Central Basic
ProQuest Science Journals
ProQuest Nursing & Allied Health Source
ProQuest Psychology Journals (Alumni)
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
ProQuest Psychology Journals
Animal Behavior Abstracts
Materials Science & Engineering Collection
Immunology Abstracts
Environment Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

Agricultural Science Database

MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Physics
EISSN 1476-4687
EndPage 261
ExternalDocumentID 3109860471
A342875895
23934110
10_1038_nature12430
Genre Research Support, Non-U.S. Gov't
Journal Article
GeographicLocations United States
GeographicLocations_xml – name: United States
GroupedDBID ---
--Z
-DZ
-ET
-~X
.55
.CO
.XZ
00M
07C
0R~
0WA
123
186
1OL
1VR
29M
2KS
2XV
39C
3V.
4.4
41X
53G
5RE
6TJ
70F
7RV
7X2
7X7
7XC
85S
88A
88E
88I
8AF
8AO
8C1
8CJ
8FE
8FG
8FH
8FI
8FJ
8G5
8R4
8R5
8WZ
97F
97L
A6W
A7Z
A8Z
AAEEF
AAHBH
AAHTB
AAIKC
AAKAB
AAKAS
AAMNW
AASDW
AAYEP
AAYZH
AAZLF
ABAWZ
ABDBF
ABDQB
ABFSI
ABIVO
ABJCF
ABJNI
ABLJU
ABOCM
ABPEJ
ABPPZ
ABUWG
ABWJO
ABZEH
ACBEA
ACBWK
ACGFO
ACGFS
ACGOD
ACIWK
ACKOT
ACMJI
ACNCT
ACPRK
ACUHS
ACWUS
ADBBV
ADFRT
ADUKH
ADYSU
ADZCM
AENEX
AEUYN
AFFNX
AFKRA
AFLOW
AFRAH
AFSHS
AGAYW
AGHSJ
AGHTU
AGNAY
AGSOS
AHMBA
AHSBF
AIDAL
AIDUJ
ALFFA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMTXH
APEBS
ARAPS
ARMCB
ARTTT
ASPBG
ATCPS
ATWCN
AVWKF
AXYYD
AZFZN
AZQEC
B0M
BBNVY
BCU
BDKGC
BEC
BENPR
BGLVJ
BHPHI
BIN
BKEYQ
BKKNO
BKSAR
BLC
BPHCQ
BVXVI
CCPQU
CJ0
CS3
D1I
D1J
D1K
DO4
DU5
DWQXO
E.-
E.L
EAD
EAP
EAS
EAZ
EBC
EBD
EBO
EBS
ECC
EE.
EJD
EMB
EMF
EMH
EMK
EMOBN
EPL
EPS
ESE
ESN
ESX
EX3
EXGXG
F5P
FEDTE
FQGFK
FSGXE
FYUFA
GNUQQ
GUQSH
HCIFZ
HMCUK
HVGLF
HZ~
I-F
IAO
ICQ
IEA
IEP
IGS
IH2
IHR
INH
INR
IOF
IPY
ISR
ITC
K6-
KB.
KOO
L6V
L7B
LK5
LK8
LSO
M0K
M0L
M1P
M2M
M2O
M2P
M7P
M7R
M7S
N9A
NAPCQ
NEJ
NEPJS
O9-
OBC
OES
OHH
OMK
OVD
P-O
P2P
P62
PATMY
PCBAR
PDBOC
PKN
PM3
PQQKQ
PROAC
PSQYO
PSYQQ
PTHSS
PYCSY
Q2X
R05
RND
RNS
RNT
RNTTT
RXW
S0X
SC5
SHXYY
SIXXV
SJFOW
SJN
SNYQT
SOJ
SV3
TAE
TAOOD
TBHMF
TDRGL
TEORI
TH9
TN5
TSG
TUS
TWZ
U5U
UIG
UKHRP
UKR
UMD
UQL
VQA
VVN
WH7
WOW
X7M
XIH
XKW
XZL
Y6R
YAE
YCJ
YFH
YIF
YIN
YNT
YOC
YQT
YR2
YR5
YXB
YZZ
Z5M
ZCA
ZE2
ZKB
~02
~7V
~88
~8M
~KM
AARCD
AAYXX
ABFSG
ACMFV
ACSTC
ADGHP
ADXHL
AETEA
AEZWR
AFANA
AIXLP
ALPWD
ATHPR
CITATION
PHGZM
PHGZT
CGR
CUY
CVF
ECM
EIF
NPM
PJZUB
PPXIY
PQGLB
AEIIB
PMFND
7QG
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7TG
7TK
7TM
7TO
7U9
7XB
8FD
8FK
C1K
FR3
H94
K9.
KL.
M7N
MBDVC
P64
PKEHL
PQEST
PQUKI
PRINS
Q9U
RC3
SOI
7X8
ID FETCH-LOGICAL-c586t-970254138abe0c5f3e7e35671a693409b172f75af591c802574b84a7f116654e3
IEDL.DBID 8FG
ISSN 0028-0836
1476-4687
IngestDate Tue Aug 05 10:51:27 EDT 2025
Sat Aug 23 12:42:10 EDT 2025
Tue Jun 17 21:24:29 EDT 2025
Thu Jun 12 23:39:20 EDT 2025
Tue Jun 10 15:32:01 EDT 2025
Tue Jun 10 20:35:37 EDT 2025
Fri Jun 27 03:50:13 EDT 2025
Mon Jul 21 05:50:18 EDT 2025
Tue Jul 01 02:57:02 EDT 2025
Thu Apr 24 22:51:03 EDT 2025
Fri Feb 21 02:37:49 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 7466
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c586t-970254138abe0c5f3e7e35671a693409b172f75af591c802574b84a7f116654e3
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
PMID 23934110
PQID 1445365296
PQPubID 40569
PageCount 5
ParticipantIDs proquest_miscellaneous_1432616906
proquest_journals_1445365296
gale_infotracmisc_A342875895
gale_infotracgeneralonefile_A342875895
gale_infotraccpiq_342875895
gale_infotracacademiconefile_A342875895
gale_incontextgauss_ISR_A342875895
pubmed_primary_23934110
crossref_primary_10_1038_nature12430
crossref_citationtrail_10_1038_nature12430
springer_journals_10_1038_nature12430
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2013-09-12
PublicationDateYYYYMMDD 2013-09-12
PublicationDate_xml – month: 09
  year: 2013
  text: 2013-09-12
  day: 12
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationSubtitle International weekly journal of science
PublicationTitle Nature (London)
PublicationTitleAbbrev Nature
PublicationTitleAlternate Nature
PublicationYear 2013
Publisher Nature Publishing Group UK
Nature Publishing Group
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
References Adams (CR50) 2002; 58
Ejsing (CR14) 2009; 106
Holthuis, Levine (CR6) 2005; 6
Yeung (CR1) 2008; 319
Fischl, Carman (CR38) 1983; 154
Rossmann (CR47) 1990; 46
Letunic, Bork (CR43) 2007; 23
Leventis, Grinstein (CR2) 2010; 39
Beh, Cool, Phillips, Rine (CR23) 2001; 157
Raychaudhuri, Im, Hurley, Prinz (CR10) 2006; 173
Lev (CR5) 2010; 11
Gavin (CR9) 2002; 415
Schulz (CR12) 2009; 187
de Saint-Jean (CR19) 2011; 195
Chen, Zheng, Brown, Schreiber (CR35) 1995; 92
Di Tommaso (CR45) 2011; 39
Burgett (CR22) 2011; 7
Panaretou, Piper (CR39) 2006; 313
Emsley, Cowtan (CR49) 2004; 60
Read (CR48) 2001; 57
CR42
Janke (CR34) 2004; 21
Fairn, Hermansson, Somerharju, Grinstein (CR3) 2011; 13
Crooks, Hon, Chandonia, Brenner (CR44) 2004; 14
Yu (CR27) 2004; 13
Li, Gianoulis, Yip, Gerstein, Snyder (CR30) 2010; 143
Punta (CR20) 2012; 40
Spira (CR17) 2012; 14
Kabsch (CR46) 1993; 26
D’Angelo, Vicinanza, De Matteis (CR4) 2008; 20
Gallego (CR29) 2010; 6
Pei, Kim, Grishin (CR52) 2008; 36
Li (CR11) 2000; 11
Stefan, Audhya, Emr (CR37) 2002; 13
Im, Raychaudhuri, Prinz, Hurley (CR18) 2005; 437
Tong, Boone, Stansfield, Stark (CR33) 2007
Ngo, Colbourne, Ridgway (CR21) 2010; 429
Fairn (CR24) 2011; 194
Li (CR13) 2002; 157
Waterhouse, Procter, Martin, Clamp, Barton (CR41) 2009; 25
Huh (CR40) 2003; 425
Rossanese (CR36) 2001; 153
Riekhof (CR16) 2007; 282
Stefan (CR7) 2011; 144
Churchward, Brandman, Rogasevskaia, Coorssen (CR32) 2008; 1
Weerheim, Kolb, Sturk, Nieuwland (CR31) 2002; 302
Yu, Lemmon (CR26) 2001; 276
Park (CR28) 2008; 30
Gavin (CR8) 2006; 440
Pichler (CR25) 2001; 268
Laskowski, MacArthur, Moss, Thornton (CR51) 1993; 26
Slaughter (CR15) 2013; 4
CJ Stefan (BFnature12430_CR37) 2002; 13
BD Slaughter (BFnature12430_CR15) 2013; 4
JW Yu (BFnature12430_CR26) 2001; 276
BFnature12430_CR42
MG Rossmann (BFnature12430_CR47) 1990; 46
M de Saint-Jean (BFnature12430_CR19) 2011; 195
T Yeung (BFnature12430_CR1) 2008; 319
RA Laskowski (BFnature12430_CR51) 1993; 26
PD Adams (BFnature12430_CR50) 2002; 58
H Pichler (BFnature12430_CR25) 2001; 268
W Kabsch (BFnature12430_CR46) 1993; 26
AH Tong (BFnature12430_CR33) 2007
CT Beh (BFnature12430_CR23) 2001; 157
G D’Angelo (BFnature12430_CR4) 2008; 20
M Punta (BFnature12430_CR20) 2012; 40
AW Burgett (BFnature12430_CR22) 2011; 7
S Raychaudhuri (BFnature12430_CR10) 2006; 173
WK Huh (BFnature12430_CR40) 2003; 425
YJ Im (BFnature12430_CR18) 2005; 437
I Letunic (BFnature12430_CR43) 2007; 23
PA Leventis (BFnature12430_CR2) 2010; 39
O Gallego (BFnature12430_CR29) 2010; 6
WR Riekhof (BFnature12430_CR16) 2007; 282
JC Holthuis (BFnature12430_CR6) 2005; 6
JW Yu (BFnature12430_CR27) 2004; 13
AM Weerheim (BFnature12430_CR31) 2002; 302
AM Waterhouse (BFnature12430_CR41) 2009; 25
OW Rossanese (BFnature12430_CR36) 2001; 153
J Chen (BFnature12430_CR35) 1995; 92
AC Gavin (BFnature12430_CR8) 2006; 440
TA Schulz (BFnature12430_CR12) 2009; 187
GD Fairn (BFnature12430_CR24) 2011; 194
B Panaretou (BFnature12430_CR39) 2006; 313
X Li (BFnature12430_CR13) 2002; 157
GE Crooks (BFnature12430_CR44) 2004; 14
RJ Read (BFnature12430_CR48) 2001; 57
GD Fairn (BFnature12430_CR3) 2011; 13
X Li (BFnature12430_CR30) 2010; 143
F Spira (BFnature12430_CR17) 2012; 14
J Pei (BFnature12430_CR52) 2008; 36
MH Ngo (BFnature12430_CR21) 2010; 429
P Emsley (BFnature12430_CR49) 2004; 60
X Li (BFnature12430_CR11) 2000; 11
C Janke (BFnature12430_CR34) 2004; 21
P Di Tommaso (BFnature12430_CR45) 2011; 39
MA Churchward (BFnature12430_CR32) 2008; 1
S Lev (BFnature12430_CR5) 2010; 11
WS Park (BFnature12430_CR28) 2008; 30
AS Fischl (BFnature12430_CR38) 1983; 154
CJ Stefan (BFnature12430_CR7) 2011; 144
CS Ejsing (BFnature12430_CR14) 2009; 106
AC Gavin (BFnature12430_CR9) 2002; 415
20545625 - Biochem J. 2010 Jul 1;429(1):13-24
15572765 - Acta Crystallogr D Biol Crystallogr. 2004 Dec;60(Pt 12 Pt 1):2126-32
14562095 - Nature. 2003 Oct 16;425(6959):686-91
21558174 - Nucleic Acids Res. 2011 Jul;39(Web Server issue):W13-7
11878797 - Anal Biochem. 2002 Mar 15;302(2):191-8
11238399 - Genetics. 2001 Mar;157(3):1117-40
20192774 - Annu Rev Biophys. 2010;39:407-27
2180438 - Acta Crystallogr A. 1990 Feb 1;46 ( Pt 2):73-82
21295699 - Cell. 2011 Feb 4;144(3):389-401
12393927 - Acta Crystallogr D Biol Crystallogr. 2002 Nov;58(Pt 11):1948-54
20008566 - J Cell Biol. 2009 Dec 14;187(6):889-903
19568800 - J Chem Biol. 2008 Nov;1(1-4):79-87
21964439 - Nat Cell Biol. 2011 Oct 02;13(12):1424-30
18490149 - Curr Opin Cell Biol. 2008 Aug;20(4):360-70
15334558 - Yeast. 2004 Aug;21(11):947-62
11298754 - Eur J Biochem. 2001 Apr;268(8):2351-61
11916983 - J Cell Biol. 2002 Apr 1;157(1):63-77
16136145 - Nature. 2005 Sep 1;437(7055):154-8
6300035 - J Bacteriol. 1983 Apr;154(1):304-11
19174513 - Proc Natl Acad Sci U S A. 2009 Feb 17;106(7):2136-41
22127870 - Nucleic Acids Res. 2012 Jan;40(Database issue):D290-301
11557775 - J Biol Chem. 2001 Nov 23;276(47):44179-84
21035178 - Cell. 2010 Nov 12;143(4):639-50
11854411 - Mol Biol Cell. 2002 Feb;13(2):542-57
23340420 - Nat Commun. 2013;4:1380
15173120 - Genome Res. 2004 Jun;14(6):1188-90
11285273 - J Cell Biol. 2001 Apr 2;153(1):47-62
15023338 - Mol Cell. 2004 Mar 12;13(5):677-88
15738987 - Nat Rev Mol Cell Biol. 2005 Mar;6(3):209-20
11805826 - Nature. 2002 Jan 10;415(6868):141-7
21119626 - Mol Syst Biol. 2010 Nov 30;6:430
16118421 - Methods Mol Biol. 2006;313:27-32
18287115 - Nucleic Acids Res. 2008 Apr;36(7):2295-300
22162133 - J Cell Biol. 2011 Dec 12;195(6):965-78
11567148 - Acta Crystallogr D Biol Crystallogr. 2001 Oct;57(Pt 10):1373-82
10848624 - Mol Biol Cell. 2000 Jun;11(6):1989-2005
7539137 - Proc Natl Acad Sci U S A. 1995 May 23;92(11):4947-51
21788369 - J Cell Biol. 2011 Jul 25;194(2):257-75
21822274 - Nat Chem Biol. 2011 Aug 07;7(9):639-47
18187657 - Science. 2008 Jan 11;319(5860):210-3
17050570 - Bioinformatics. 2007 Jan 1;23(1):127-8
18471983 - Mol Cell. 2008 May 9;30(3):381-92
17951629 - J Biol Chem. 2007 Dec 21;282(51):36853-61
16585271 - J Cell Biol. 2006 Apr 10;173(1):107-19
19151095 - Bioinformatics. 2009 May 1;25(9):1189-91
20823909 - Nat Rev Mol Cell Biol. 2010 Oct;11(10):739-50
22544065 - Nat Cell Biol. 2012 Apr 29;14(6):640-8
16429126 - Nature. 2006 Mar 30;440(7084):631-6
References_xml – volume: 415
  start-page: 141
  year: 2002
  end-page: 147
  ident: CR9
  article-title: Functional organization of the yeast proteome by systematic analysis of protein complexes
  publication-title: Nature
  doi: 10.1038/415141a
– volume: 319
  start-page: 210
  year: 2008
  end-page: 213
  ident: CR1
  article-title: Membrane phosphatidylserine regulates surface charge and protein localization
  publication-title: Science
  doi: 10.1126/science.1152066
– volume: 1
  start-page: 79
  year: 2008
  end-page: 87
  ident: CR32
  article-title: Copper (II) sulfate charring for high sensitivity on-plate fluorescent detection of lipids and sterols: quantitative analyses of the composition of functional secretory vesicles
  publication-title: J. Chem. Biol.
  doi: 10.1007/s12154-008-0007-1
– volume: 20
  start-page: 360
  year: 2008
  end-page: 370
  ident: CR4
  article-title: Lipid-transfer proteins in biosynthetic pathways
  publication-title: Curr. Opin. Cell Biol.
  doi: 10.1016/j.ceb.2008.03.013
– volume: 13
  start-page: 1424
  year: 2011
  end-page: 1430
  ident: CR3
  article-title: Phosphatidylserine is polarized and required for proper Cdc42 localization and for development of cell polarity
  publication-title: Nature Cell Biol.
  doi: 10.1038/ncb2351
– volume: 60
  start-page: 2126
  year: 2004
  end-page: 2132
  ident: CR49
  article-title: Coot: model-building tools for molecular graphics
  publication-title: Acta Crystallogr. D
  doi: 10.1107/S0907444904019158
– volume: 6
  start-page: 209
  year: 2005
  end-page: 220
  ident: CR6
  article-title: Lipid traffic: floppy drives and a superhighway
  publication-title: Nature Rev. Mol. Cell Biol.
  doi: 10.1038/nrm1591
– volume: 57
  start-page: 1373
  year: 2001
  end-page: 1382
  ident: CR48
  article-title: Pushing the boundaries of molecular replacement with maximum likelihood
  publication-title: Acta Crystallogr. D
  doi: 10.1107/S0907444901012471
– ident: CR42
– volume: 13
  start-page: 677
  year: 2004
  end-page: 688
  ident: CR27
  article-title: Genome-wide analysis of membrane targeting by pleckstrin homology domains
  publication-title: Mol. Cell
  doi: 10.1016/S1097-2765(04)00083-8
– volume: 30
  start-page: 381
  year: 2008
  end-page: 392
  ident: CR28
  article-title: Comprehensive identification of PIP3-regulated PH domains from to by model prediction and live imaging
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2008.04.008
– volume: 313
  start-page: 27
  year: 2006
  end-page: 32
  ident: CR39
  article-title: Isolation of yeast plasma membranes
  publication-title: Methods Mol. Biol.
– volume: 46
  start-page: 73
  year: 1990
  end-page: 82
  ident: CR47
  article-title: The molecular replacement method
  publication-title: Acta Crystallogr. A
  doi: 10.1107/S0108767389009815
– volume: 302
  start-page: 191
  year: 2002
  end-page: 198
  ident: CR31
  article-title: Phospholipid composition of cell-derived microparticles determined by one-dimensional high-performance thin-layer chromatography
  publication-title: Anal. Biochem.
  doi: 10.1006/abio.2001.5552
– volume: 40
  start-page: D290
  year: 2012
  end-page: D301
  ident: CR20
  article-title: The Pfam protein families database
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkr1065
– volume: 143
  start-page: 639
  year: 2010
  end-page: 650
  ident: CR30
  article-title: Extensive metabolite-protein interactions revealed by large-scale systematic analyses
  publication-title: Cell
  doi: 10.1016/j.cell.2010.09.048
– volume: 194
  start-page: 257
  year: 2011
  end-page: 275
  ident: CR24
  article-title: High-resolution mapping reveals topologically distinct cellular pools of phosphatidylserine
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.201012028
– volume: 7
  start-page: 639
  year: 2011
  end-page: 647
  ident: CR22
  article-title: Natural products reveal cancer cell dependence on oxysterol-binding proteins
  publication-title: Nature Chem. Biol.
  doi: 10.1038/nchembio.625
– volume: 276
  start-page: 44179
  year: 2001
  end-page: 44184
  ident: CR26
  article-title: All phox homology (PX) domains from specifically recognize phosphatidylinositol 3-phosphate
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M108811200
– volume: 14
  start-page: 640
  year: 2012
  end-page: 648
  ident: CR17
  article-title: Patchwork organization of the yeast plasma membrane into numerous coexisting domains
  publication-title: Nature Cell Biol.
  doi: 10.1038/ncb2487
– volume: 4
  start-page: 1380
  year: 2013
  ident: CR15
  article-title: Non-uniform membrane diffusion enables steady-state cell polarization via vesicular trafficking
  publication-title: Nature Commun.
  doi: 10.1038/ncomms2370
– volume: 11
  start-page: 739
  year: 2010
  end-page: 750
  ident: CR5
  article-title: Non-vesicular lipid transport by lipid-transfer proteins and beyond
  publication-title: Nature Rev. Mol. Cell Biol.
  doi: 10.1038/nrm2971
– volume: 144
  start-page: 389
  year: 2011
  end-page: 401
  ident: CR7
  article-title: Osh proteins regulate phosphoinositide metabolism at ER-plasma membrane contact sites
  publication-title: Cell
  doi: 10.1016/j.cell.2010.12.034
– volume: 26
  start-page: 283
  year: 1993
  end-page: 291
  ident: CR51
  article-title: PROCHECK: a program to check the stereochemical quality of protein structures
  publication-title: J. Appl. Cryst.
  doi: 10.1107/S0021889892009944
– volume: 282
  start-page: 36853
  year: 2007
  end-page: 36861
  ident: CR16
  article-title: Lysophosphatidylcholine metabolism in : the role of P-type ATPases in transport and a broad specificity acyltransferase in acylation
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M706718200
– volume: 26
  start-page: 795
  year: 1993
  end-page: 800
  ident: CR46
  article-title: Automatic processing of rotation diffraction data from crystals of initially unknown symmetry and cell constants
  publication-title: J. Appl. Cryst.
  doi: 10.1107/S0021889893005588
– volume: 39
  start-page: 407
  year: 2010
  end-page: 427
  ident: CR2
  article-title: The distribution and function of phosphatidylserine in cellular membranes
  publication-title: Annu Rev Biophys
  doi: 10.1146/annurev.biophys.093008.131234
– volume: 425
  start-page: 686
  year: 2003
  end-page: 691
  ident: CR40
  article-title: Global analysis of protein localization in budding yeast
  publication-title: Nature
  doi: 10.1038/nature02026
– volume: 11
  start-page: 1989
  year: 2000
  end-page: 2005
  ident: CR11
  article-title: Identification of a novel family of nonclassic yeast phosphatidylinositol transfer proteins whose function modulates phospholipase D activity and Sec14p-independent cell growth
  publication-title: Mol. Biol. Cell
  doi: 10.1091/mbc.11.6.1989
– volume: 157
  start-page: 63
  year: 2002
  end-page: 78
  ident: CR13
  article-title: Analysis of oxysterol binding protein homologue Kes1p function in regulation of Sec14p-dependent protein transport from the yeast Golgi complex
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.200201037
– volume: 36
  start-page: 2295
  year: 2008
  end-page: 2300
  ident: CR52
  article-title: PROMALS3D: a tool for multiple protein sequence and structure alignments
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkn072
– volume: 58
  start-page: 1948
  year: 2002
  end-page: 1954
  ident: CR50
  article-title: PHENIX: building new software for automated crystallographic structure determination
  publication-title: Acta Crystallogr. D
  doi: 10.1107/S0907444902016657
– volume: 187
  start-page: 889
  year: 2009
  end-page: 903
  ident: CR12
  article-title: Lipid-regulated sterol transfer between closely apposed membranes by oxysterol-binding protein homologues
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.200905007
– volume: 23
  start-page: 127
  year: 2007
  end-page: 128
  ident: CR43
  article-title: Interactive Tree Of Life (iTOL): an online tool for phylogenetic tree display and annotation
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btl529
– volume: 39
  start-page: W13
  year: 2011
  end-page: W17
  ident: CR45
  article-title: T-Coffee: a web server for the multiple sequence alignment of protein and RNA sequences using structural information and homology extension
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkr245
– volume: 195
  start-page: 965
  year: 2011
  end-page: 978
  ident: CR19
  article-title: Osh4p exchanges sterols for phosphatidylinositol 4-phosphate between lipid bilayers
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.201104062
– volume: 173
  start-page: 107
  year: 2006
  end-page: 119
  ident: CR10
  article-title: Nonvesicular sterol movement from plasma membrane to ER requires oxysterol-binding protein-related proteins and phosphoinositides
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.200510084
– volume: 106
  start-page: 2136
  year: 2009
  end-page: 2141
  ident: CR14
  article-title: Global analysis of the yeast lipidome by quantitative shotgun mass spectrometry
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.0811700106
– volume: 6
  start-page: 430
  year: 2010
  ident: CR29
  article-title: A systematic screen for protein–lipid interactions in
  publication-title: Mol. Syst. Biol.
  doi: 10.1038/msb.2010.87
– volume: 157
  start-page: 1117
  year: 2001
  end-page: 1140
  ident: CR23
  article-title: Overlapping functions of the yeast oxysterol-binding protein homologues
  publication-title: Genetics
– volume: 13
  start-page: 542
  year: 2002
  end-page: 557
  ident: CR37
  article-title: The yeast synaptojanin-like proteins control the cellular distribution of phosphatidylinositol (4,5)-bisphosphate
  publication-title: Mol. Biol. Cell
  doi: 10.1091/mbc.01-10-0476
– volume: 21
  start-page: 947
  year: 2004
  end-page: 962
  ident: CR34
  article-title: A versatile toolbox for PCR-based tagging of yeast genes: new fluorescent proteins, more markers and promoter substitution cassettes
  publication-title: Yeast
  doi: 10.1002/yea.1142
– volume: 153
  start-page: 47
  year: 2001
  end-page: 62
  ident: CR36
  article-title: A role for actin, Cdc1p, and Myo2p in the inheritance of late Golgi elements in
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.153.1.47
– year: 2007
  ident: CR33
  publication-title: Yeast Gene Analysis, Methods in Microbiology
– volume: 154
  start-page: 304
  year: 1983
  end-page: 311
  ident: CR38
  article-title: Phosphatidylinositol biosynthesis in : purification and properties of microsome-associated phosphatidylinositol synthase
  publication-title: J. Bacteriol.
– volume: 437
  start-page: 154
  year: 2005
  end-page: 158
  ident: CR18
  article-title: Structural mechanism for sterol sensing and transport by OSBP-related proteins
  publication-title: Nature
  doi: 10.1038/nature03923
– volume: 440
  start-page: 631
  year: 2006
  end-page: 636
  ident: CR8
  article-title: Proteome survey reveals modularity of the yeast cell machinery
  publication-title: Nature
  doi: 10.1038/nature04532
– volume: 92
  start-page: 4947
  year: 1995
  end-page: 4951
  ident: CR35
  article-title: Identification of an 11-kDa FKBP12-rapamycin-binding domain within the 289-kDa FKBP12-rapamycin-associated protein and characterization of a critical serine residue
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.92.11.4947
– volume: 25
  start-page: 1189
  year: 2009
  end-page: 1191
  ident: CR41
  article-title: Jalview Version 2–a multiple sequence alignment editor and analysis workbench
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btp033
– volume: 268
  start-page: 2351
  year: 2001
  end-page: 2361
  ident: CR25
  article-title: A subfraction of the yeast endoplasmic reticulum associates with the plasma membrane and has a high capacity to synthesize lipids
  publication-title: Eur. J. Biochem.
  doi: 10.1046/j.1432-1327.2001.02116.x
– volume: 429
  start-page: 13
  year: 2010
  end-page: 24
  ident: CR21
  article-title: Functional implications of sterol transport by the oxysterol-binding protein gene family
  publication-title: Biochem. J.
  doi: 10.1042/BJ20100263
– volume: 14
  start-page: 1188
  year: 2004
  end-page: 1190
  ident: CR44
  article-title: WebLogo: a sequence logo generator
  publication-title: Genome Res.
  doi: 10.1101/gr.849004
– volume: 30
  start-page: 381
  year: 2008
  ident: BFnature12430_CR28
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2008.04.008
– volume: 268
  start-page: 2351
  year: 2001
  ident: BFnature12430_CR25
  publication-title: Eur. J. Biochem.
  doi: 10.1046/j.1432-1327.2001.02116.x
– volume: 282
  start-page: 36853
  year: 2007
  ident: BFnature12430_CR16
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M706718200
– volume: 39
  start-page: W13
  year: 2011
  ident: BFnature12430_CR45
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkr245
– volume: 440
  start-page: 631
  year: 2006
  ident: BFnature12430_CR8
  publication-title: Nature
  doi: 10.1038/nature04532
– volume: 14
  start-page: 640
  year: 2012
  ident: BFnature12430_CR17
  publication-title: Nature Cell Biol.
  doi: 10.1038/ncb2487
– volume: 20
  start-page: 360
  year: 2008
  ident: BFnature12430_CR4
  publication-title: Curr. Opin. Cell Biol.
  doi: 10.1016/j.ceb.2008.03.013
– volume: 153
  start-page: 47
  year: 2001
  ident: BFnature12430_CR36
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.153.1.47
– volume: 26
  start-page: 283
  year: 1993
  ident: BFnature12430_CR51
  publication-title: J. Appl. Cryst.
  doi: 10.1107/S0021889892009944
– volume: 4
  start-page: 1380
  year: 2013
  ident: BFnature12430_CR15
  publication-title: Nature Commun.
  doi: 10.1038/ncomms2370
– volume: 157
  start-page: 1117
  year: 2001
  ident: BFnature12430_CR23
  publication-title: Genetics
  doi: 10.1093/genetics/157.3.1117
– volume: 429
  start-page: 13
  year: 2010
  ident: BFnature12430_CR21
  publication-title: Biochem. J.
  doi: 10.1042/BJ20100263
– volume: 313
  start-page: 27
  year: 2006
  ident: BFnature12430_CR39
  publication-title: Methods Mol. Biol.
– volume: 36
  start-page: 2295
  year: 2008
  ident: BFnature12430_CR52
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkn072
– volume: 40
  start-page: D290
  year: 2012
  ident: BFnature12430_CR20
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkr1065
– volume: 194
  start-page: 257
  year: 2011
  ident: BFnature12430_CR24
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.201012028
– volume: 6
  start-page: 430
  year: 2010
  ident: BFnature12430_CR29
  publication-title: Mol. Syst. Biol.
  doi: 10.1038/msb.2010.87
– volume: 39
  start-page: 407
  year: 2010
  ident: BFnature12430_CR2
  publication-title: Annu Rev Biophys
  doi: 10.1146/annurev.biophys.093008.131234
– volume: 1
  start-page: 79
  year: 2008
  ident: BFnature12430_CR32
  publication-title: J. Chem. Biol.
  doi: 10.1007/s12154-008-0007-1
– volume: 187
  start-page: 889
  year: 2009
  ident: BFnature12430_CR12
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.200905007
– volume: 157
  start-page: 63
  year: 2002
  ident: BFnature12430_CR13
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.200201037
– volume: 23
  start-page: 127
  year: 2007
  ident: BFnature12430_CR43
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btl529
– volume: 92
  start-page: 4947
  year: 1995
  ident: BFnature12430_CR35
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.92.11.4947
– volume: 13
  start-page: 1424
  year: 2011
  ident: BFnature12430_CR3
  publication-title: Nature Cell Biol.
  doi: 10.1038/ncb2351
– volume: 144
  start-page: 389
  year: 2011
  ident: BFnature12430_CR7
  publication-title: Cell
  doi: 10.1016/j.cell.2010.12.034
– volume: 195
  start-page: 965
  year: 2011
  ident: BFnature12430_CR19
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.201104062
– volume: 58
  start-page: 1948
  year: 2002
  ident: BFnature12430_CR50
  publication-title: Acta Crystallogr. D
  doi: 10.1107/S0907444902016657
– volume: 13
  start-page: 677
  year: 2004
  ident: BFnature12430_CR27
  publication-title: Mol. Cell
  doi: 10.1016/S1097-2765(04)00083-8
– volume: 302
  start-page: 191
  year: 2002
  ident: BFnature12430_CR31
  publication-title: Anal. Biochem.
  doi: 10.1006/abio.2001.5552
– ident: BFnature12430_CR42
– volume: 106
  start-page: 2136
  year: 2009
  ident: BFnature12430_CR14
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.0811700106
– volume: 14
  start-page: 1188
  year: 2004
  ident: BFnature12430_CR44
  publication-title: Genome Res.
  doi: 10.1101/gr.849004
– volume: 415
  start-page: 141
  year: 2002
  ident: BFnature12430_CR9
  publication-title: Nature
  doi: 10.1038/415141a
– volume: 7
  start-page: 639
  year: 2011
  ident: BFnature12430_CR22
  publication-title: Nature Chem. Biol.
  doi: 10.1038/nchembio.625
– volume: 21
  start-page: 947
  year: 2004
  ident: BFnature12430_CR34
  publication-title: Yeast
  doi: 10.1002/yea.1142
– volume: 276
  start-page: 44179
  year: 2001
  ident: BFnature12430_CR26
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M108811200
– volume: 154
  start-page: 304
  year: 1983
  ident: BFnature12430_CR38
  publication-title: J. Bacteriol.
  doi: 10.1128/JB.154.1.304-311.1983
– volume: 46
  start-page: 73
  year: 1990
  ident: BFnature12430_CR47
  publication-title: Acta Crystallogr. A
  doi: 10.1107/S0108767389009815
– volume: 13
  start-page: 542
  year: 2002
  ident: BFnature12430_CR37
  publication-title: Mol. Biol. Cell
  doi: 10.1091/mbc.01-10-0476
– volume: 425
  start-page: 686
  year: 2003
  ident: BFnature12430_CR40
  publication-title: Nature
  doi: 10.1038/nature02026
– volume: 173
  start-page: 107
  year: 2006
  ident: BFnature12430_CR10
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.200510084
– volume: 11
  start-page: 1989
  year: 2000
  ident: BFnature12430_CR11
  publication-title: Mol. Biol. Cell
  doi: 10.1091/mbc.11.6.1989
– volume: 11
  start-page: 739
  year: 2010
  ident: BFnature12430_CR5
  publication-title: Nature Rev. Mol. Cell Biol.
  doi: 10.1038/nrm2971
– volume: 6
  start-page: 209
  year: 2005
  ident: BFnature12430_CR6
  publication-title: Nature Rev. Mol. Cell Biol.
  doi: 10.1038/nrm1591
– volume: 319
  start-page: 210
  year: 2008
  ident: BFnature12430_CR1
  publication-title: Science
  doi: 10.1126/science.1152066
– volume: 25
  start-page: 1189
  year: 2009
  ident: BFnature12430_CR41
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btp033
– volume: 26
  start-page: 795
  year: 1993
  ident: BFnature12430_CR46
  publication-title: J. Appl. Cryst.
  doi: 10.1107/S0021889893005588
– volume: 143
  start-page: 639
  year: 2010
  ident: BFnature12430_CR30
  publication-title: Cell
  doi: 10.1016/j.cell.2010.09.048
– volume: 60
  start-page: 2126
  year: 2004
  ident: BFnature12430_CR49
  publication-title: Acta Crystallogr. D
  doi: 10.1107/S0907444904019158
– volume: 437
  start-page: 154
  year: 2005
  ident: BFnature12430_CR18
  publication-title: Nature
  doi: 10.1038/nature03923
– volume-title: Yeast Gene Analysis, Methods in Microbiology
  year: 2007
  ident: BFnature12430_CR33
– volume: 57
  start-page: 1373
  year: 2001
  ident: BFnature12430_CR48
  publication-title: Acta Crystallogr. D
  doi: 10.1107/S0907444901012471
– reference: 20192774 - Annu Rev Biophys. 2010;39:407-27
– reference: 21035178 - Cell. 2010 Nov 12;143(4):639-50
– reference: 16585271 - J Cell Biol. 2006 Apr 10;173(1):107-19
– reference: 15738987 - Nat Rev Mol Cell Biol. 2005 Mar;6(3):209-20
– reference: 11916983 - J Cell Biol. 2002 Apr 1;157(1):63-77
– reference: 2180438 - Acta Crystallogr A. 1990 Feb 1;46 ( Pt 2):73-82
– reference: 21119626 - Mol Syst Biol. 2010 Nov 30;6:430
– reference: 18287115 - Nucleic Acids Res. 2008 Apr;36(7):2295-300
– reference: 21788369 - J Cell Biol. 2011 Jul 25;194(2):257-75
– reference: 19174513 - Proc Natl Acad Sci U S A. 2009 Feb 17;106(7):2136-41
– reference: 11298754 - Eur J Biochem. 2001 Apr;268(8):2351-61
– reference: 19151095 - Bioinformatics. 2009 May 1;25(9):1189-91
– reference: 15023338 - Mol Cell. 2004 Mar 12;13(5):677-88
– reference: 23340420 - Nat Commun. 2013;4:1380
– reference: 22544065 - Nat Cell Biol. 2012 Apr 29;14(6):640-8
– reference: 20823909 - Nat Rev Mol Cell Biol. 2010 Oct;11(10):739-50
– reference: 19568800 - J Chem Biol. 2008 Nov;1(1-4):79-87
– reference: 11238399 - Genetics. 2001 Mar;157(3):1117-40
– reference: 7539137 - Proc Natl Acad Sci U S A. 1995 May 23;92(11):4947-51
– reference: 15572765 - Acta Crystallogr D Biol Crystallogr. 2004 Dec;60(Pt 12 Pt 1):2126-32
– reference: 11854411 - Mol Biol Cell. 2002 Feb;13(2):542-57
– reference: 14562095 - Nature. 2003 Oct 16;425(6959):686-91
– reference: 21295699 - Cell. 2011 Feb 4;144(3):389-401
– reference: 18471983 - Mol Cell. 2008 May 9;30(3):381-92
– reference: 11567148 - Acta Crystallogr D Biol Crystallogr. 2001 Oct;57(Pt 10):1373-82
– reference: 16429126 - Nature. 2006 Mar 30;440(7084):631-6
– reference: 6300035 - J Bacteriol. 1983 Apr;154(1):304-11
– reference: 10848624 - Mol Biol Cell. 2000 Jun;11(6):1989-2005
– reference: 15334558 - Yeast. 2004 Aug;21(11):947-62
– reference: 21964439 - Nat Cell Biol. 2011 Oct 02;13(12):1424-30
– reference: 17951629 - J Biol Chem. 2007 Dec 21;282(51):36853-61
– reference: 20545625 - Biochem J. 2010 Jul 1;429(1):13-24
– reference: 11285273 - J Cell Biol. 2001 Apr 2;153(1):47-62
– reference: 22162133 - J Cell Biol. 2011 Dec 12;195(6):965-78
– reference: 16118421 - Methods Mol Biol. 2006;313:27-32
– reference: 20008566 - J Cell Biol. 2009 Dec 14;187(6):889-903
– reference: 21822274 - Nat Chem Biol. 2011 Aug 07;7(9):639-47
– reference: 16136145 - Nature. 2005 Sep 1;437(7055):154-8
– reference: 11805826 - Nature. 2002 Jan 10;415(6868):141-7
– reference: 22127870 - Nucleic Acids Res. 2012 Jan;40(Database issue):D290-301
– reference: 11878797 - Anal Biochem. 2002 Mar 15;302(2):191-8
– reference: 18490149 - Curr Opin Cell Biol. 2008 Aug;20(4):360-70
– reference: 11557775 - J Biol Chem. 2001 Nov 23;276(47):44179-84
– reference: 21558174 - Nucleic Acids Res. 2011 Jul;39(Web Server issue):W13-7
– reference: 15173120 - Genome Res. 2004 Jun;14(6):1188-90
– reference: 12393927 - Acta Crystallogr D Biol Crystallogr. 2002 Nov;58(Pt 11):1948-54
– reference: 17050570 - Bioinformatics. 2007 Jan 1;23(1):127-8
– reference: 18187657 - Science. 2008 Jan 11;319(5860):210-3
SSID ssj0005174
Score 2.5510476
Snippet The lipid-binding profiles of all lipid-transfer proteins in Saccharomyces cerevisiae are determined and a new subfamily of oxysterol-binding proteins that...
The internal organization of eukaryotic cells into functionally specialized, membrane-delimited organelles of unique composition implies a need for active,...
SourceID proquest
gale
pubmed
crossref
springer
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 257
SubjectTerms 631/45/287/1192
631/45/535/1266
631/45/608
631/553/2710
Binding proteins
Biological membranes
Biological Transport
Biosynthesis
Carrier Proteins - chemistry
Carrier Proteins - metabolism
Cell Membrane - metabolism
Dyslipidemias - metabolism
Endoplasmic Reticulum - metabolism
Eukaryotes
Fractionation
Homeostasis
Humanities and Social Sciences
Humans
Interactomes
letter
Ligands
Lipid metabolism
Lipids
Membranes
Metabolic disorders
Metabolic Syndrome - metabolism
multidisciplinary
Neoplasms - metabolism
Phosphatidylserines
Phosphatidylserines - metabolism
Phylogeny
Physiological aspects
Properties
Protein Interaction Maps
Proteins
Receptors, Steroid - chemistry
Receptors, Steroid - metabolism
Saccharomyces cerevisiae - metabolism
Saccharomyces cerevisiae Proteins - chemistry
Saccharomyces cerevisiae Proteins - metabolism
Science
Sterols
Substrate Specificity
Yeast
Yeasts
Title Interactome map uncovers phosphatidylserine transport by oxysterol-binding proteins
URI https://link.springer.com/article/10.1038/nature12430
https://www.ncbi.nlm.nih.gov/pubmed/23934110
https://www.proquest.com/docview/1445365296
https://www.proquest.com/docview/1432616906
Volume 501
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT9wwEB4VUKVeqkJfKXTlVvSFFJFs4sQ5VRSxpT2gCoq0t8hxHEBakkB2pfLvO-M4S7JFveTiiRPZHs83nvE3ALvjROaZ4tJFLeTooKjCFVp7rhxHiOc8D_03k21xEh2fhz-nfGoP3BqbVtntiWajzitFZ-T7CPx5EFGU8Gt941LVKIqu2hIaa7Dho6WhlC4x-X6f4rHCwmzv53mB2G9pM9G4UfpzzyKt7ss9w7QSKTUGaPIMnlrkyA7aqd6ER7rcgscmg1M1W7BptbRhny2V9JfncGYO_KikzrVm17JmaMUoZ7Nh9WXV1Jc4LfndrDFXANm84zln2R2r_hDF8201I9eZ7BszjA5XZfMCzidHvw-PXVtGwVVcRHM3ienGux8ImWlP8SLQsQ54FPsySgJ07zLEMEXMZcETXwmUjcNMhDIufJ9KE-vgJayXValfA8uiBN2LQuSox2FM0ESGCQJfPx9HKvG1A3vdUKbKcoxTqYtZamLdgUh74-7A7lK4bqk1HhZ7T3OSEllFSdkwF3LRNOmPs9P0ICCHj4uEO_DJChUVflBJe7kAf5v4rQaS2wNJVV_dpL3Wj4PWi3bCHupmZyCISqmGzd0KSu2m0KT3S9iBd8tmepMS3UpdLUgG8TSFLlHmVbvyloNDbHUhwjUHPnRLsdf5vyP35v8_sQ1Pxqa2B9XD2IH1-e1Cv0WENc9GsBZPY3yKQ39kVGoEG9-OTn6d_gXBliX7
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3dT9RAEJ8gxuiLEfyqoK4GFE0a-rX9eDCGqOedIA8CCW_rdrsFkqMt9C56_5R_ozP9ONqT-MbzTrfN7Ox8dGZ-A7DhRDKJFZcm3kKOAYpKzVBry5SOj_6cZWH8VlVb7PvDI-_bMT9egj9tLwyVVbY6sVLUSa7oH_k2Ov7c9SlL-LG4MGlqFGVX2xEatVjs6tkvDNnKD6PPeL6bjjP4cvhpaDZTBUzFQ39iRgE1gNtuKGNtKZ66OtAu9wNb-pGL0U6MJj0NuEx5ZKsQaQMvDj0ZpLZNk3q1i_vegtuei5acOtMHX69KShZQn5t-QMsNt2uYTjSmVG7dsYCLdqBjCBcys5XBGzyA-42nynZq0VqBJZ2twp2qYlSVq7DSaIWSbTXQ1e8ewkH1g5FG-Jxrdi4LhlaTakRLVpzmZXGKYpDMxmXVcsgmLa46i2cs_02Q0pf5mEJ1sqesQpA4y8pHcHQjDH4My1me6afAYj_CcCYNE9QbXkCukPQidLTtxPFVZGsD3resFKrBNKfRGmNR5dbdUHT4bsDGnLiooTyuJ3tNZyIIHCOj6psTOS1LMTr4IXZcCjB5GHED3jZEaY4vVLJpZsDPJjytHuVaj1IVZxeis_qmt3pSH9h126z3CFEJqP5yK0GiUUKluLoyBryaL9OTVFiX6XxKNOi_U6oUaZ7UkjdnDqHjeegeGrDZimJn83859-z_H_ES7g4Pv--JvdH-7hrcc6q5IjSLYx2WJ5dT_Ry9u0n8orpSDH7e9B3-C1ftXN0
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3dT9RAEJ8gRsOLEfyggroaUDRprl_bbh-MIeCFE0OMSMJb3W63QHK0hd5F71_zr3OmH2d7Et943um22Z3PzsxvALacUCax4tJEKeQYoKjUFFpbpnR89OcsC-O3qtriyD848T6f8tMl-N32wlBZZasTK0Wd5Ir-kQ_Q8eeuT1nCQdqURXzdH34srkyaIEWZ1nacRs0ih3r2E8O38sNoH-9623GGn77vHZjNhAFTceFPzDCgZnDbFTLWluKpqwPtcj-wpR-6GPnEaN7TgMuUh7YSSBt4sfBkkNo2Te3VLu57B-4GbiBIxsRep7xkAQG66Q20XDGoITvRsFLpdccaLtqEjlFcyNJWxm_4EB40XivbrdlsFZZ0tgb3qupRVa7BaqMhSrbTwFi_ewTH1c9GGudzqdmlLBhaUKoXLVlxnpfFObJEMhuXVfshm7QY6yyesfwXwUtf52MK28m2sgpN4iIrH8PJrRzwE1jO8kyvA4v9EEObVCSoQ7yA3CLpheh024njq9DWBrxvjzJSDb45jdkYR1We3RVR59wN2JoTFzWsx81kr-lOIgLKyIjlzuS0LKPR8bdo16Vgk4uQG_C2IUpzfKGSTWMDfjZha_UoN3qUqri4ijqrb3qrZ_WF3bTNZo8QFYLqL7ccFDUKqYz-io8Br-bL9CQV2WU6nxIN-vKUNkWapzXnzQ-HkPI8dBUN2G5ZsbP5vyf37P8f8RLuo_RGX0ZHhxuw4lQjRmgsxyYsT66n-jk6epP4RSVRDH7ctgj_AWx-YN4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Interactome+map+uncovers+phosphatidylserine+transport+by+oxysterol-binding+proteins&rft.jtitle=Nature+%28London%29&rft.au=Maeda%2C+Kenji&rft.au=Anand%2C+Kanchan&rft.au=Chiapparino%2C+Antonella&rft.au=Kumar%2C+Arun&rft.date=2013-09-12&rft.pub=Nature+Publishing+Group&rft.issn=0028-0836&rft.volume=501&rft.issue=7466&rft.spage=257&rft_id=info:doi/10.1038%2Fnature12430&rft.externalDocID=A342875895
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0028-0836&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0028-0836&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0028-0836&client=summon