Estimating a common deterministic time trend break in large panels with cross sectional dependence

This paper develops an estimation procedure for a common deterministic time trend break in large panels. The dependent variable in each equation consists of a deterministic trend and an error term. The deterministic trend is subject to a change in the intercept, slope or both, and the break date is...

Full description

Saved in:
Bibliographic Details
Published inJournal of econometrics Vol. 164; no. 2; pp. 310 - 330
Main Author Kim, Dukpa
Format Journal Article
LanguageEnglish
Published Amsterdam Elsevier B.V 01.10.2011
Elsevier
Elsevier Sequoia S.A
SeriesJournal of Econometrics
Subjects
Online AccessGet full text

Cover

Loading…
Abstract This paper develops an estimation procedure for a common deterministic time trend break in large panels. The dependent variable in each equation consists of a deterministic trend and an error term. The deterministic trend is subject to a change in the intercept, slope or both, and the break date is common for all equations. The estimation method is simply minimizing the sum of squared residuals for all possible break dates. Both serial and cross sectional correlations are important factors that decide the rate of convergence and the limiting distribution of the break date estimate. The rate of convergence is faster when the errors are stationary than when they have a unit root. When there is no cross sectional dependence among the errors, the rate of convergence depends on the number of equations and thus is faster than the univariate case. When the errors have a common factor structure with factor loadings correlated with the intercept and slope change parameters, the rate of convergence does not depend on the number of equations and thus reduces to the univariate case. The limiting distribution of the break date estimate is also provided. Some Monte Carlo experiments are performed to assess the adequacy of the asymptotic results. A brief empirical example using the US GDP price index is offered.
AbstractList This paper develops an estimation procedure for a common deterministic time trend break in large panels. The dependent variable in each equation consists of a deterministic trend and an error term. The deterministic trend is subject to a change in the intercept, slope or both, and the break date is common for all equations. The estimation method is simply minimizing the sum of squared residuals for all possible break dates. Both serial and cross sectional correlations are important factors that decide the rate of convergence and the limiting distribution of the break date estimate. The rate of convergence is faster when the errors are stationary than when they have a unit root. When there is no cross sectional dependence among the errors, the rate of convergence depends on the number of equations and thus is faster than the univariate case. When the errors have a common factor structure with factor loadings correlated with the intercept and slope change parameters, the rate of convergence does not depend on the number of equations and thus reduces to the univariate case. The limiting distribution of the break date estimate is also provided. Some Monte Carlo experiments are performed to assess the adequacy of the asymptotic results. A brief empirical example using the US GDP price index is offered.
This paper develops an estimation procedure for a common deterministic time trend break in large panels. The dependent variable in each equation consists of a deterministic trend and an error term. The deterministic trend is subject to a change in the intercept, slope or both, and the break date is common for all equations. The estimation method is simply minimizing the sum of squared residuals for all possible break dates. Both serial and cross sectional correlations are important factors that decide the rate of convergence and the limiting distribution of the break date estimate. The rate of convergence is faster when the errors are stationary than when they have a unit root. When there is no cross sectional dependence among the errors, the rate of convergence depends on the number of equations and thus is faster than the univariate case. When the errors have a common factor structure with factor loadings correlated with the intercept and slope change parameters, the rate of convergence does not depend on the number of equations and thus reduces to the univariate case. The limiting distribution of the break date estimate is also provided. Some Monte Carlo experiments are performed to assess the adequacy of the asymptotic results. A brief empirical example using the US GDP price index is offered. [PUBLICATION ABSTRACT]
This paper develops an estimation procedure for a common deterministic time trend break in large panels. The dependent variable in each equation consists of a deterministic trend and an error term. The deterministic trend is subject to a change in the intercept, slope or both, and the break date is common for all equations. The estimation method is simply minimizing the sum of squared residuals for all possible break dates. Both serial and cross sectional correlations are important factors that decide the rate of convergence and the limiting distribution of the break date estimate. The rate of convergence is faster when the errors are stationary than when they have a unit root. When there is no cross sectional dependence among the errors, the rate of convergence depends on the number of equations and thus is faster than the univariate case. When the errors have a common factor structure with factor loadings correlated with the intercept and slope change parameters, the rate of convergence does not depend on the number of equations and thus reduces to the univariate case. The limiting distribution of the break date estimate is also provided. Some Monte Carlo experiments are performed to assess the adequacy of the asymptotic results. A brief empirical example using the US GDP price index is offered. All rights reserved, Elsevier
Author Kim, Dukpa
Author_xml – sequence: 1
  givenname: Dukpa
  surname: Kim
  fullname: Kim, Dukpa
  email: dukpa@virginia.edu
  organization: Department of Economics, University of Virginia, Monroe Hall, McCormick Road, Charlottesville, VA 22903, United States
BackLink http://www.econis.eu/PPNSET?PPN=668774304$$DView this record in ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften
http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24472857$$DView record in Pascal Francis
http://econpapers.repec.org/article/eeeeconom/v_3a164_3ay_3a2011_3ai_3a2_3ap_3a310-330.htm$$DView record in RePEc
BookMark eNqFkt9r1TAUx4NM8G76J4hBEH3pNWnaJMWHIWP-wIEv-hzSJN1S26QmuZP9957eexmyB1c4TSCf8z0n-Z5TdBJicAi9pGRLCeXvx-3oTAxx3taE0i3hW0LlE7ShUtQVl117gjaEkaZqiODP0GnOIyGkbSTboP4yFz_r4sM11tjEeY4BW1dcmn3wcGYwnDtckgsW98npX9gHPOl07fCig5sy_uPLDTYp5oyzM8XHoCfQWCDDBeOeo6eDnrJ7cVzP0M9Plz8uvlRX3z9_vfh4VZlW8lJ11NaWddrZgYlet3Jgralt1zE79Kzmphe9sLWUnBnZdbrtnTZGUtpSbmxj2Bl6e9BdUvy9c7mo2Wfjpgm6jLuspOyoYJxIIN_9l6QCXocx0azo6wfoGHcJLrjqiU4IUncAfTtACS5t1JLgRdOdcvDtfVG3imnKG_jfQawuweLXLcQCwShRjBF1U2ZQe3MsqbPR05B0MD7fq9ZNI2rZCuBeHbi1yD8A51KIBvwGoj0Qe3OSG-4ZKLeOjhrVcXTUvinCFYwO5H14kGd80auxJWk_PZp9fuwLzL71Lqls_DoI1icYD2Wjf0ThL1Mo4-4
CODEN JECMB6
CitedBy_id crossref_primary_10_1515_snde_2024_0018
crossref_primary_10_1016_j_jeconom_2020_04_009
crossref_primary_10_1016_j_jeconom_2019_04_033
crossref_primary_10_1016_j_jeca_2023_e00340
crossref_primary_10_2139_ssrn_3917796
crossref_primary_10_1111_ectj_12033
crossref_primary_10_1017_S0266466615000237
crossref_primary_10_1080_07474938_2018_1454378
crossref_primary_10_1016_j_jmva_2018_07_001
crossref_primary_10_2139_ssrn_3617416
crossref_primary_10_1007_s13132_025_02650_8
crossref_primary_10_1007_s42952_021_00140_6
crossref_primary_10_1016_j_jeconom_2015_09_004
crossref_primary_10_1016_j_ecosta_2023_01_005
crossref_primary_10_2139_ssrn_3238216
crossref_primary_10_1016_j_econlet_2019_108897
crossref_primary_10_1080_03610918_2020_1733609
crossref_primary_10_1016_j_jeconom_2021_12_011
crossref_primary_10_1007_s42952_019_00034_8
crossref_primary_10_1007_s00362_020_01180_6
crossref_primary_10_1080_03610918_2020_1795194
crossref_primary_10_1080_07350015_2022_2035227
crossref_primary_10_1002_asmb_2303
crossref_primary_10_1002_jae_2769
crossref_primary_10_1080_07350015_2024_2327844
crossref_primary_10_16984_saufenbilder_441235
crossref_primary_10_2139_ssrn_3268759
crossref_primary_10_1016_j_jeconom_2015_03_048
crossref_primary_10_2139_ssrn_3238226
crossref_primary_10_1038_s41598_020_80701_7
crossref_primary_10_3390_risks5010007
crossref_primary_10_1080_07474938_2020_1772567
crossref_primary_10_1080_00949655_2014_945089
crossref_primary_10_1080_03610918_2023_2282392
crossref_primary_10_1038_s43247_021_00102_0
crossref_primary_10_31801_cfsuasmas_567078
crossref_primary_10_1016_j_jeconom_2018_01_003
crossref_primary_10_2139_ssrn_2875193
crossref_primary_10_3390_econometrics12020011
crossref_primary_10_2139_ssrn_2417560
crossref_primary_10_2139_ssrn_3239963
crossref_primary_10_1016_j_jeconom_2022_01_001
crossref_primary_10_1093_ectj_utab028
crossref_primary_10_2139_ssrn_1805728
crossref_primary_10_1002_jae_2712
crossref_primary_10_1080_07474938_2015_1114262
crossref_primary_10_1080_01621459_2015_1119696
crossref_primary_10_1080_03610926_2019_1637000
crossref_primary_10_1016_j_jeconom_2019_08_013
crossref_primary_10_1080_07350015_2017_1340299
crossref_primary_10_1007_s11749_014_0367_5
crossref_primary_10_1093_rfs_hhaa084
crossref_primary_10_1080_07350015_2022_2053690
crossref_primary_10_1111_jtsa_12763
crossref_primary_10_3390_sym15101890
crossref_primary_10_1016_j_jeconom_2024_105685
crossref_primary_10_1017_S0266466615000468
crossref_primary_10_1007_s10260_020_00533_7
crossref_primary_10_1016_j_econlet_2021_109971
crossref_primary_10_2139_ssrn_3238230
crossref_primary_10_1111_jtsa_12407
Cites_doi 10.1016/j.econlet.2005.01.010
10.1111/j.1468-0262.2006.00754.x
10.1017/S0266466609990326
10.1002/jae.859
10.1162/003465397557132
10.1111/1467-937X.00051
10.1111/1468-0262.00070
10.2307/2998540
10.1016/j.jeconom.2009.10.020
10.1016/j.jedc.2006.05.001
10.2307/2938229
10.2139/ssrn.1808001
10.1016/j.jeconom.2004.09.004
10.1111/j.1468-0262.2004.00528.x
10.1214/aos/1176348666
ContentType Journal Article
Copyright 2011 Elsevier B.V.
2015 INIST-CNRS
Copyright Elsevier Sequoia S.A. Oct 1, 2011
Copyright_xml – notice: 2011 Elsevier B.V.
– notice: 2015 INIST-CNRS
– notice: Copyright Elsevier Sequoia S.A. Oct 1, 2011
DBID AAYXX
CITATION
OQ6
IQODW
DKI
X2L
8BJ
FQK
JBE
7S9
L.6
DOI 10.1016/j.jeconom.2011.06.018
DatabaseName CrossRef
ECONIS
Pascal-Francis
RePEc IDEAS
RePEc
International Bibliography of the Social Sciences (IBSS)
International Bibliography of the Social Sciences
International Bibliography of the Social Sciences
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
International Bibliography of the Social Sciences (IBSS)
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA
International Bibliography of the Social Sciences (IBSS)
International Bibliography of the Social Sciences (IBSS)

Database_xml – sequence: 1
  dbid: DKI
  name: RePEc IDEAS
  url: http://ideas.repec.org/
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Economics
Statistics
Mathematics
EISSN 1872-6895
EndPage 330
ExternalDocumentID 2445827221
eeeeconom_v_3a164_3ay_3a2011_3ai_3a2_3ap_3a310_330_htm
24472857
668774304
10_1016_j_jeconom_2011_06_018
S030440761100131X
Genre Feature
GeographicLocations United States--US
United States
GeographicLocations_xml – name: United States--US
– name: United States
GroupedDBID --K
--M
--Z
-DZ
-~X
.~1
0R~
1B1
1OL
1RT
1~.
1~5
29K
3R3
4.4
41~
457
4G.
5GY
5VS
63O
6P2
7-5
71M
8P~
9JN
9JO
AABCJ
AABNK
AACTN
AAEDT
AAEDW
AAFFL
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAPFB
AAQFI
AAQXK
AAXUO
AAYOK
ABAOU
ABEFU
ABEHJ
ABFNM
ABFRF
ABJNI
ABLJU
ABMAC
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFO
ACGFS
ACHQT
ACNCT
ACRLP
ACROA
ADBBV
ADEZE
ADFHU
ADGUI
ADIYS
ADMUD
AEBSH
AEFWE
AEKER
AENEX
AETEA
AEYQN
AFFNX
AFKWA
AFODL
AFTJW
AGHFR
AGTHC
AGUBO
AGYEJ
AHHHB
AI.
AIEXJ
AIGVJ
AIIAU
AIKHN
AITUG
AJBFU
AJOXV
AJWLA
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ARUGR
ASPBG
AVWKF
AXJTR
AXLSJ
AZFZN
BEHZQ
BEZPJ
BGSCR
BKOJK
BKOMP
BLXMC
BNTGB
BPUDD
BULVW
BZJEE
CS3
D-I
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HMB
HMJ
HVGLF
HZ~
H~9
IHE
IXIXF
J1W
K-O
KOM
LPU
LY5
M26
M41
MHUIS
MO0
MS~
MVM
N9A
O-L
O9-
OAUVE
OHT
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
R2-
RIG
ROL
RPZ
RXW
SCU
SDF
SDG
SDP
SEB
SEE
SES
SEW
SME
SPC
SPCBC
SSB
SSF
SSW
SSZ
T5K
TAE
TN5
U5U
UHB
UQL
VH1
WUQ
YK3
YQT
YYP
ZCG
~G-
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADMHG
ADNMO
ADXHL
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
OQ6
EFKBS
IQODW
DKI
X2L
8BJ
FQK
JBE
7S9
L.6
ID FETCH-LOGICAL-c586t-91d2d39aedf37ba58f35c2d993dfb326cb7b7d28863c899a5beacc811516cd4c3
IEDL.DBID .~1
ISSN 0304-4076
IngestDate Thu Jul 10 17:21:24 EDT 2025
Fri Jul 11 10:13:08 EDT 2025
Sun Jul 13 04:36:55 EDT 2025
Thu Mar 28 07:20:29 EDT 2024
Mon Jul 21 09:17:10 EDT 2025
Sat Mar 08 16:10:34 EST 2025
Tue Jul 01 02:35:49 EDT 2025
Thu Apr 24 22:54:22 EDT 2025
Fri Feb 23 02:21:00 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords C33
Panel data
Deterministic trend
Structural break
Statistical distribution
Error estimation
Error rate
Serial correlation
Dependent variable
Stochastic method
Unit root
Limit distribution
Cross sectional study
Convergence rate
Approximation theory
Monte Carlo method
Data analysis
Convergence acceleration
Price index
Statistical estimation
Statistical method
Numerical analysis
Correlation analysis
Trend analysis
Cross correlation
Econometrics
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c586t-91d2d39aedf37ba58f35c2d993dfb326cb7b7d28863c899a5beacc811516cd4c3
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
ObjectType-Article-2
PQID 887977029
PQPubID 45228
PageCount 21
ParticipantIDs proquest_miscellaneous_889173608
proquest_miscellaneous_1705433748
proquest_journals_887977029
repec_primary_eeeeconom_v_3a164_3ay_3a2011_3ai_3a2_3ap_3a310_330_htm
pascalfrancis_primary_24472857
econis_primary_668774304
crossref_primary_10_1016_j_jeconom_2011_06_018
crossref_citationtrail_10_1016_j_jeconom_2011_06_018
elsevier_sciencedirect_doi_10_1016_j_jeconom_2011_06_018
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2011-10-01
PublicationDateYYYYMMDD 2011-10-01
PublicationDate_xml – month: 10
  year: 2011
  text: 2011-10-01
  day: 01
PublicationDecade 2010
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationSeriesTitle Journal of Econometrics
PublicationTitle Journal of econometrics
PublicationYear 2011
Publisher Elsevier B.V
Elsevier
Elsevier Sequoia S.A
Publisher_xml – name: Elsevier B.V
– name: Elsevier
– name: Elsevier Sequoia S.A
References Bai (br000010) 1997; 79
Kim, D., 2010, Common local breaks in time trends for large panel data. Manuscript, Department of Economics, University of Virginia.
Phillips, Moon (br000075) 1999; 67
Pivetta, Reis (br000085) 2007; 31
Kao, C., Trapani, L., Urga, G., 2007, Modelling and testing for structural breaks in panels with common and idiosyncratic stochastic trends, Center for Policy Research Working Paper No. 92. Maxwell School of Citizenship and Public Affairs, Syracuse University.
Bai (br000015) 2010; 157
Bai, Ng (br000030) 2004; 72
Qu, Perron (br000090) 2007; 75
De Wachter, S., Tzavalis, E., 2004, Detection of structural breaks in linear dynamic panel data models. QM University of London Working Paper 505.
Phillips, Solo (br000080) 1992; 20
Perron, Zhu (br000070) 2005; 129
Bai, Lumsdaine, Stock (br000020) 1998; 65
Bai, Perron (br000025) 1998; 66
De Wachter, Tzavalis (br000050) 2005; 88
Carrion-i-Silvestre, Kim, Perron (br000035) 2009; 25
Emerson, J., Kao, C., 2000, Testing for structural change of a time trend regression in panel data. Manuscript, Syracuse University.
Clark (br000040) 2006; 21
Andrews (br000005) 1991; 59
Qu (10.1016/j.jeconom.2011.06.018_br000090) 2007; 75
Andrews (10.1016/j.jeconom.2011.06.018_br000005) 1991; 59
Bai (10.1016/j.jeconom.2011.06.018_br000015) 2010; 157
10.1016/j.jeconom.2011.06.018_br000060
Bai (10.1016/j.jeconom.2011.06.018_br000010) 1997; 79
De Wachter (10.1016/j.jeconom.2011.06.018_br000050) 2005; 88
Perron (10.1016/j.jeconom.2011.06.018_br000070) 2005; 129
Bai (10.1016/j.jeconom.2011.06.018_br000030) 2004; 72
10.1016/j.jeconom.2011.06.018_br000045
Bai (10.1016/j.jeconom.2011.06.018_br000020) 1998; 65
Pivetta (10.1016/j.jeconom.2011.06.018_br000085) 2007; 31
10.1016/j.jeconom.2011.06.018_br000065
Bai (10.1016/j.jeconom.2011.06.018_br000025) 1998; 66
10.1016/j.jeconom.2011.06.018_br000055
Phillips (10.1016/j.jeconom.2011.06.018_br000080) 1992; 20
Clark (10.1016/j.jeconom.2011.06.018_br000040) 2006; 21
Phillips (10.1016/j.jeconom.2011.06.018_br000075) 1999; 67
Carrion-i-Silvestre (10.1016/j.jeconom.2011.06.018_br000035) 2009; 25
References_xml – volume: 129
  start-page: 65
  year: 2005
  end-page: 119
  ident: br000070
  article-title: Structural breaks with deterministic and stochastic trends
  publication-title: Journal of Econometrics
– reference: Emerson, J., Kao, C., 2000, Testing for structural change of a time trend regression in panel data. Manuscript, Syracuse University.
– volume: 66
  start-page: 47
  year: 1998
  end-page: 78
  ident: br000025
  article-title: Estimating and testing linear models with multiple structural changes
  publication-title: Econometrica
– volume: 21
  start-page: 563
  year: 2006
  end-page: 587
  ident: br000040
  article-title: Disaggregate evidence on the persistence of consumer price inflation
  publication-title: Journal of Applied Econometrics
– volume: 157
  start-page: 78
  year: 2010
  end-page: 92
  ident: br000015
  article-title: Common breaks in means and variances for panel data
  publication-title: Journal of Econometrics
– reference: Kao, C., Trapani, L., Urga, G., 2007, Modelling and testing for structural breaks in panels with common and idiosyncratic stochastic trends, Center for Policy Research Working Paper No. 92. Maxwell School of Citizenship and Public Affairs, Syracuse University.
– volume: 20
  start-page: 971
  year: 1992
  end-page: 1001
  ident: br000080
  article-title: Asymptotics for linear process
  publication-title: Annals of Statistics
– volume: 59
  start-page: 817
  year: 1991
  end-page: 858
  ident: br000005
  article-title: Heteroskedasticity and autocorrelation consistent covariance matrix estimation
  publication-title: Econometrica
– volume: 88
  start-page: 91
  year: 2005
  end-page: 96
  ident: br000050
  article-title: Monte Carlo comparison of model and moment selection and classical inference approaches to break detection in panel data models
  publication-title: Economics Letters
– volume: 75
  start-page: 459
  year: 2007
  end-page: 502
  ident: br000090
  article-title: Estimating and testing structural changes in multivariate regressions
  publication-title: Econometrica
– volume: 65
  start-page: 395
  year: 1998
  end-page: 432
  ident: br000020
  article-title: Testing for and dating breaks in multivariate time series
  publication-title: Review of Economic Studies
– volume: 72
  start-page: 1127
  year: 2004
  end-page: 1177
  ident: br000030
  article-title: A panic attack on unit roots and cointegration
  publication-title: Econometrica
– volume: 31
  start-page: 1326
  year: 2007
  end-page: 1358
  ident: br000085
  article-title: The persistence of inflation in the United States
  publication-title: Journal of Economic Dynamics and Control
– volume: 25
  start-page: 1754
  year: 2009
  end-page: 1792
  ident: br000035
  article-title: GLS-based unit root tests with multiple structural breaks under both the null and alternative hypotheses
  publication-title: Econometric Theory
– volume: 79
  start-page: 551
  year: 1997
  end-page: 563
  ident: br000010
  article-title: Estimation of a change point in multiple regression models
  publication-title: Review of Economics and Statistics
– volume: 67
  start-page: 1057
  year: 1999
  end-page: 1111
  ident: br000075
  article-title: Linear regression limit theory for nonstationary panel data
  publication-title: Econometrica
– reference: De Wachter, S., Tzavalis, E., 2004, Detection of structural breaks in linear dynamic panel data models. QM University of London Working Paper 505.
– reference: Kim, D., 2010, Common local breaks in time trends for large panel data. Manuscript, Department of Economics, University of Virginia.
– volume: 88
  start-page: 91
  year: 2005
  ident: 10.1016/j.jeconom.2011.06.018_br000050
  article-title: Monte Carlo comparison of model and moment selection and classical inference approaches to break detection in panel data models
  publication-title: Economics Letters
  doi: 10.1016/j.econlet.2005.01.010
– ident: 10.1016/j.jeconom.2011.06.018_br000060
– volume: 75
  start-page: 459
  year: 2007
  ident: 10.1016/j.jeconom.2011.06.018_br000090
  article-title: Estimating and testing structural changes in multivariate regressions
  publication-title: Econometrica
  doi: 10.1111/j.1468-0262.2006.00754.x
– volume: 25
  start-page: 1754
  year: 2009
  ident: 10.1016/j.jeconom.2011.06.018_br000035
  article-title: GLS-based unit root tests with multiple structural breaks under both the null and alternative hypotheses
  publication-title: Econometric Theory
  doi: 10.1017/S0266466609990326
– volume: 21
  start-page: 563
  year: 2006
  ident: 10.1016/j.jeconom.2011.06.018_br000040
  article-title: Disaggregate evidence on the persistence of consumer price inflation
  publication-title: Journal of Applied Econometrics
  doi: 10.1002/jae.859
– volume: 79
  start-page: 551
  year: 1997
  ident: 10.1016/j.jeconom.2011.06.018_br000010
  article-title: Estimation of a change point in multiple regression models
  publication-title: Review of Economics and Statistics
  doi: 10.1162/003465397557132
– ident: 10.1016/j.jeconom.2011.06.018_br000065
– volume: 65
  start-page: 395
  year: 1998
  ident: 10.1016/j.jeconom.2011.06.018_br000020
  article-title: Testing for and dating breaks in multivariate time series
  publication-title: Review of Economic Studies
  doi: 10.1111/1467-937X.00051
– volume: 67
  start-page: 1057
  year: 1999
  ident: 10.1016/j.jeconom.2011.06.018_br000075
  article-title: Linear regression limit theory for nonstationary panel data
  publication-title: Econometrica
  doi: 10.1111/1468-0262.00070
– volume: 66
  start-page: 47
  year: 1998
  ident: 10.1016/j.jeconom.2011.06.018_br000025
  article-title: Estimating and testing linear models with multiple structural changes
  publication-title: Econometrica
  doi: 10.2307/2998540
– volume: 157
  start-page: 78
  year: 2010
  ident: 10.1016/j.jeconom.2011.06.018_br000015
  article-title: Common breaks in means and variances for panel data
  publication-title: Journal of Econometrics
  doi: 10.1016/j.jeconom.2009.10.020
– ident: 10.1016/j.jeconom.2011.06.018_br000045
– volume: 31
  start-page: 1326
  issue: 4
  year: 2007
  ident: 10.1016/j.jeconom.2011.06.018_br000085
  article-title: The persistence of inflation in the United States
  publication-title: Journal of Economic Dynamics and Control
  doi: 10.1016/j.jedc.2006.05.001
– volume: 59
  start-page: 817
  year: 1991
  ident: 10.1016/j.jeconom.2011.06.018_br000005
  article-title: Heteroskedasticity and autocorrelation consistent covariance matrix estimation
  publication-title: Econometrica
  doi: 10.2307/2938229
– ident: 10.1016/j.jeconom.2011.06.018_br000055
  doi: 10.2139/ssrn.1808001
– volume: 129
  start-page: 65
  year: 2005
  ident: 10.1016/j.jeconom.2011.06.018_br000070
  article-title: Structural breaks with deterministic and stochastic trends
  publication-title: Journal of Econometrics
  doi: 10.1016/j.jeconom.2004.09.004
– volume: 72
  start-page: 1127
  year: 2004
  ident: 10.1016/j.jeconom.2011.06.018_br000030
  article-title: A panic attack on unit roots and cointegration
  publication-title: Econometrica
  doi: 10.1111/j.1468-0262.2004.00528.x
– volume: 20
  start-page: 971
  issue: 2
  year: 1992
  ident: 10.1016/j.jeconom.2011.06.018_br000080
  article-title: Asymptotics for linear process
  publication-title: Annals of Statistics
  doi: 10.1214/aos/1176348666
SSID ssj0005483
Score 2.2426908
Snippet This paper develops an estimation procedure for a common deterministic time trend break in large panels. The dependent variable in each equation consists of a...
SourceID proquest
repec
pascalfrancis
econis
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 310
SubjectTerms Acceleration of convergence
Applications
Correlation
Correlation analysis
Deterministic trend
Distribution theory
Econometrics
equations
Estimating techniques
Estimation
Exact sciences and technology
Insurance, economics, finance
Limit theorems
Mathematics
Monte Carlo simulation
Numerical analysis
Numerical analysis. Scientific computation
Panel data
prices
Probability and statistics
Probability theory and stochastic processes
Sciences and techniques of general use
Statistics
Structural break
Structural break Deterministic trend Panel data
Structural change
Studies
Time series
Unit root
United States
Title Estimating a common deterministic time trend break in large panels with cross sectional dependence
URI https://dx.doi.org/10.1016/j.jeconom.2011.06.018
http://www.econis.eu/PPNSET?PPN=668774304
http://econpapers.repec.org/article/eeeeconom/v_3a164_3ay_3a2011_3ai_3a2_3ap_3a310-330.htm
https://www.proquest.com/docview/887977029
https://www.proquest.com/docview/1705433748
https://www.proquest.com/docview/889173608
Volume 164
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9swEBelHaxjjK3bqNctaLBXJ7Yl2fJj6QfpSvuyFfIm9OUtaeea2h30pX_77vy15GEUFlCwo7N9kc6n39n3QcgXr00SGSPC1Ekf8tzmoZRFHoo8AdXIMysSDE6-uEznV_zrQiy2yNEQC4Nulb3u73R6q637X2b9aM6q5XL2DV_qcTTD4zZpzAIj2HmGUj59XHPz4F0qTiAOkfpvFM9sNV35Nvq3z-SZTiOs_bG2Pj3D_mW9sVC9rHQNw1d0dS82gOnOna-8XVufTl-TVz2wpIcd72_Ili_3yPMh7rjeIy8uxgytsLeLKLNL0vyWmBPYwJ7yB9UUhgJkk7reUaYloliDnjboQEvBiNbXdFnSG_Qip6BOgG2KD3Rp-59o3bp3ITdDiV3r35Gr05PvR_OwL74QWiHTBpSgSxzLtXcFy4wWsmDCJg7gjCsMYD5rMpO5RMqUWbDZtDCgwq0EgBmn1nHL3pPt8rb0-4TG0jsb5bqImeYZ83nOrUtFbIS3LCpcQPgw5Mr2mcmxQMaNGlzQVqqfKYUzpdAVL5YBmY6HVV1qjqcO2O_mcyRPUwnwF0QjIHKYYbUhfgpWlqfOOtmQiPHkAJyyRIosIAeDiKheQdQKdDsg7yjJA_J57IU7G1_XwLTd3tcKEx1xhumBAkL_QSMlmNssjYDkuBW-8eoePh2vvxXTYBTD9wO0lnOml7gJrYIGCF8xFqmfza8P_z8OB2Q3Gfwj449ku7m7958AsDVm0t6RE7JzeHY-v4S94_OzP9y7QeI
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELfGhrQhhGCAFgbDSLymTWI7cR7R2FRg3Qub1DfLXxkpI6uWDIkX_nbu8kX7gCZRyVVaX9KrfT7_LrkPQt57bZLIGBGmTvqQ5zYPpSzyUOQJqEaeWZFgcPL8PJ1d8s8Lsdgix0MsDLpV9rq_0-mttu6_mfajOV2V5fQrPtTjaIbHbdKYxQOyw2H5YhmDye81Pw_e5eIE6hDJ_4bxTJeTpW_Df_tUnukkwuIfaxvUQ-wv642d6vFK1zB-RVf4YgOZ7tz6lbdrG9TpU_KkR5b0Q8f8M7Llq32yOwQe1_vk0XxM0Qqf9hBmdlmanxNzAgfYU11RTWEsQDip6z1lWiKKRehpgx60FKxo_Z2WFb1GN3IK-gTYpnhHl7b_idatfxdyM9TYtf4FuTw9uTiehX31hdAKmTagBV3iWK69K1hmtJAFEzZxgGdcYQD0WZOZzCVSpsyC0aaFAR1uJSDMOLWOW_aSbFc3lT8gNJbe2SjXRcw0z5jPc25dKmIjvGVR4QLChyFXtk9NjhUyrtXgg7ZU_UwpnCmFvnixDMhkPG3V5ea474SDbj5H8jSVgH9BNAIihxlWG_KnYGu576pHGxIxXhyQU5ZIkQXkcBAR1WuIWoFyB-gdJXlA3o29sLTxeQ1M281drTDTEWeYHygg9B80UoK9zdIISD62wjf-uodXx-tPxTRYxfD-C1rLOdMlHkJbQQOIrxiL1Lfmx6v_H4e3ZHd2MT9TZ5_OvxySvWRwloxfk-3m9s6_AfTWmKN2df4BSJRCdw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Estimating+a+common+deterministic+time+trend+break+in+large+panels+with+cross+sectional+dependence&rft.jtitle=Journal+of+econometrics&rft.au=Kim%2C+Dukpa&rft.date=2011-10-01&rft.pub=Elsevier&rft.issn=0304-4076&rft.volume=164&rft.issue=2&rft.spage=310&rft.epage=330&rft_id=info:doi/10.1016%2Fj.jeconom.2011.06.018&rft.externalDocID=668774304
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0304-4076&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0304-4076&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0304-4076&client=summon