Estimating a common deterministic time trend break in large panels with cross sectional dependence
This paper develops an estimation procedure for a common deterministic time trend break in large panels. The dependent variable in each equation consists of a deterministic trend and an error term. The deterministic trend is subject to a change in the intercept, slope or both, and the break date is...
Saved in:
Published in | Journal of econometrics Vol. 164; no. 2; pp. 310 - 330 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Amsterdam
Elsevier B.V
01.10.2011
Elsevier Elsevier Sequoia S.A |
Series | Journal of Econometrics |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | This paper develops an estimation procedure for a common deterministic time trend break in large panels. The dependent variable in each equation consists of a deterministic trend and an error term. The deterministic trend is subject to a change in the intercept, slope or both, and the break date is common for all equations. The estimation method is simply minimizing the sum of squared residuals for all possible break dates. Both serial and cross sectional correlations are important factors that decide the rate of convergence and the limiting distribution of the break date estimate. The rate of convergence is faster when the errors are stationary than when they have a unit root. When there is no cross sectional dependence among the errors, the rate of convergence depends on the number of equations and thus is faster than the univariate case. When the errors have a common factor structure with factor loadings correlated with the intercept and slope change parameters, the rate of convergence does not depend on the number of equations and thus reduces to the univariate case. The limiting distribution of the break date estimate is also provided. Some Monte Carlo experiments are performed to assess the adequacy of the asymptotic results. A brief empirical example using the US GDP price index is offered. |
---|---|
AbstractList | This paper develops an estimation procedure for a common deterministic time trend break in large panels. The dependent variable in each equation consists of a deterministic trend and an error term. The deterministic trend is subject to a change in the intercept, slope or both, and the break date is common for all equations. The estimation method is simply minimizing the sum of squared residuals for all possible break dates. Both serial and cross sectional correlations are important factors that decide the rate of convergence and the limiting distribution of the break date estimate. The rate of convergence is faster when the errors are stationary than when they have a unit root. When there is no cross sectional dependence among the errors, the rate of convergence depends on the number of equations and thus is faster than the univariate case. When the errors have a common factor structure with factor loadings correlated with the intercept and slope change parameters, the rate of convergence does not depend on the number of equations and thus reduces to the univariate case. The limiting distribution of the break date estimate is also provided. Some Monte Carlo experiments are performed to assess the adequacy of the asymptotic results. A brief empirical example using the US GDP price index is offered. This paper develops an estimation procedure for a common deterministic time trend break in large panels. The dependent variable in each equation consists of a deterministic trend and an error term. The deterministic trend is subject to a change in the intercept, slope or both, and the break date is common for all equations. The estimation method is simply minimizing the sum of squared residuals for all possible break dates. Both serial and cross sectional correlations are important factors that decide the rate of convergence and the limiting distribution of the break date estimate. The rate of convergence is faster when the errors are stationary than when they have a unit root. When there is no cross sectional dependence among the errors, the rate of convergence depends on the number of equations and thus is faster than the univariate case. When the errors have a common factor structure with factor loadings correlated with the intercept and slope change parameters, the rate of convergence does not depend on the number of equations and thus reduces to the univariate case. The limiting distribution of the break date estimate is also provided. Some Monte Carlo experiments are performed to assess the adequacy of the asymptotic results. A brief empirical example using the US GDP price index is offered. [PUBLICATION ABSTRACT] This paper develops an estimation procedure for a common deterministic time trend break in large panels. The dependent variable in each equation consists of a deterministic trend and an error term. The deterministic trend is subject to a change in the intercept, slope or both, and the break date is common for all equations. The estimation method is simply minimizing the sum of squared residuals for all possible break dates. Both serial and cross sectional correlations are important factors that decide the rate of convergence and the limiting distribution of the break date estimate. The rate of convergence is faster when the errors are stationary than when they have a unit root. When there is no cross sectional dependence among the errors, the rate of convergence depends on the number of equations and thus is faster than the univariate case. When the errors have a common factor structure with factor loadings correlated with the intercept and slope change parameters, the rate of convergence does not depend on the number of equations and thus reduces to the univariate case. The limiting distribution of the break date estimate is also provided. Some Monte Carlo experiments are performed to assess the adequacy of the asymptotic results. A brief empirical example using the US GDP price index is offered. All rights reserved, Elsevier |
Author | Kim, Dukpa |
Author_xml | – sequence: 1 givenname: Dukpa surname: Kim fullname: Kim, Dukpa email: dukpa@virginia.edu organization: Department of Economics, University of Virginia, Monroe Hall, McCormick Road, Charlottesville, VA 22903, United States |
BackLink | http://www.econis.eu/PPNSET?PPN=668774304$$DView this record in ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24472857$$DView record in Pascal Francis http://econpapers.repec.org/article/eeeeconom/v_3a164_3ay_3a2011_3ai_3a2_3ap_3a310-330.htm$$DView record in RePEc |
BookMark | eNqFkt9r1TAUx4NM8G76J4hBEH3pNWnaJMWHIWP-wIEv-hzSJN1S26QmuZP9957eexmyB1c4TSCf8z0n-Z5TdBJicAi9pGRLCeXvx-3oTAxx3taE0i3hW0LlE7ShUtQVl117gjaEkaZqiODP0GnOIyGkbSTboP4yFz_r4sM11tjEeY4BW1dcmn3wcGYwnDtckgsW98npX9gHPOl07fCig5sy_uPLDTYp5oyzM8XHoCfQWCDDBeOeo6eDnrJ7cVzP0M9Plz8uvlRX3z9_vfh4VZlW8lJ11NaWddrZgYlet3Jgralt1zE79Kzmphe9sLWUnBnZdbrtnTZGUtpSbmxj2Bl6e9BdUvy9c7mo2Wfjpgm6jLuspOyoYJxIIN_9l6QCXocx0azo6wfoGHcJLrjqiU4IUncAfTtACS5t1JLgRdOdcvDtfVG3imnKG_jfQawuweLXLcQCwShRjBF1U2ZQe3MsqbPR05B0MD7fq9ZNI2rZCuBeHbi1yD8A51KIBvwGoj0Qe3OSG-4ZKLeOjhrVcXTUvinCFYwO5H14kGd80auxJWk_PZp9fuwLzL71Lqls_DoI1icYD2Wjf0ThL1Mo4-4 |
CODEN | JECMB6 |
CitedBy_id | crossref_primary_10_1515_snde_2024_0018 crossref_primary_10_1016_j_jeconom_2020_04_009 crossref_primary_10_1016_j_jeconom_2019_04_033 crossref_primary_10_1016_j_jeca_2023_e00340 crossref_primary_10_2139_ssrn_3917796 crossref_primary_10_1111_ectj_12033 crossref_primary_10_1017_S0266466615000237 crossref_primary_10_1080_07474938_2018_1454378 crossref_primary_10_1016_j_jmva_2018_07_001 crossref_primary_10_2139_ssrn_3617416 crossref_primary_10_1007_s13132_025_02650_8 crossref_primary_10_1007_s42952_021_00140_6 crossref_primary_10_1016_j_jeconom_2015_09_004 crossref_primary_10_1016_j_ecosta_2023_01_005 crossref_primary_10_2139_ssrn_3238216 crossref_primary_10_1016_j_econlet_2019_108897 crossref_primary_10_1080_03610918_2020_1733609 crossref_primary_10_1016_j_jeconom_2021_12_011 crossref_primary_10_1007_s42952_019_00034_8 crossref_primary_10_1007_s00362_020_01180_6 crossref_primary_10_1080_03610918_2020_1795194 crossref_primary_10_1080_07350015_2022_2035227 crossref_primary_10_1002_asmb_2303 crossref_primary_10_1002_jae_2769 crossref_primary_10_1080_07350015_2024_2327844 crossref_primary_10_16984_saufenbilder_441235 crossref_primary_10_2139_ssrn_3268759 crossref_primary_10_1016_j_jeconom_2015_03_048 crossref_primary_10_2139_ssrn_3238226 crossref_primary_10_1038_s41598_020_80701_7 crossref_primary_10_3390_risks5010007 crossref_primary_10_1080_07474938_2020_1772567 crossref_primary_10_1080_00949655_2014_945089 crossref_primary_10_1080_03610918_2023_2282392 crossref_primary_10_1038_s43247_021_00102_0 crossref_primary_10_31801_cfsuasmas_567078 crossref_primary_10_1016_j_jeconom_2018_01_003 crossref_primary_10_2139_ssrn_2875193 crossref_primary_10_3390_econometrics12020011 crossref_primary_10_2139_ssrn_2417560 crossref_primary_10_2139_ssrn_3239963 crossref_primary_10_1016_j_jeconom_2022_01_001 crossref_primary_10_1093_ectj_utab028 crossref_primary_10_2139_ssrn_1805728 crossref_primary_10_1002_jae_2712 crossref_primary_10_1080_07474938_2015_1114262 crossref_primary_10_1080_01621459_2015_1119696 crossref_primary_10_1080_03610926_2019_1637000 crossref_primary_10_1016_j_jeconom_2019_08_013 crossref_primary_10_1080_07350015_2017_1340299 crossref_primary_10_1007_s11749_014_0367_5 crossref_primary_10_1093_rfs_hhaa084 crossref_primary_10_1080_07350015_2022_2053690 crossref_primary_10_1111_jtsa_12763 crossref_primary_10_3390_sym15101890 crossref_primary_10_1016_j_jeconom_2024_105685 crossref_primary_10_1017_S0266466615000468 crossref_primary_10_1007_s10260_020_00533_7 crossref_primary_10_1016_j_econlet_2021_109971 crossref_primary_10_2139_ssrn_3238230 crossref_primary_10_1111_jtsa_12407 |
Cites_doi | 10.1016/j.econlet.2005.01.010 10.1111/j.1468-0262.2006.00754.x 10.1017/S0266466609990326 10.1002/jae.859 10.1162/003465397557132 10.1111/1467-937X.00051 10.1111/1468-0262.00070 10.2307/2998540 10.1016/j.jeconom.2009.10.020 10.1016/j.jedc.2006.05.001 10.2307/2938229 10.2139/ssrn.1808001 10.1016/j.jeconom.2004.09.004 10.1111/j.1468-0262.2004.00528.x 10.1214/aos/1176348666 |
ContentType | Journal Article |
Copyright | 2011 Elsevier B.V. 2015 INIST-CNRS Copyright Elsevier Sequoia S.A. Oct 1, 2011 |
Copyright_xml | – notice: 2011 Elsevier B.V. – notice: 2015 INIST-CNRS – notice: Copyright Elsevier Sequoia S.A. Oct 1, 2011 |
DBID | AAYXX CITATION OQ6 IQODW DKI X2L 8BJ FQK JBE 7S9 L.6 |
DOI | 10.1016/j.jeconom.2011.06.018 |
DatabaseName | CrossRef ECONIS Pascal-Francis RePEc IDEAS RePEc International Bibliography of the Social Sciences (IBSS) International Bibliography of the Social Sciences International Bibliography of the Social Sciences AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef International Bibliography of the Social Sciences (IBSS) AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA International Bibliography of the Social Sciences (IBSS) International Bibliography of the Social Sciences (IBSS) |
Database_xml | – sequence: 1 dbid: DKI name: RePEc IDEAS url: http://ideas.repec.org/ sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Economics Statistics Mathematics |
EISSN | 1872-6895 |
EndPage | 330 |
ExternalDocumentID | 2445827221 eeeeconom_v_3a164_3ay_3a2011_3ai_3a2_3ap_3a310_330_htm 24472857 668774304 10_1016_j_jeconom_2011_06_018 S030440761100131X |
Genre | Feature |
GeographicLocations | United States--US United States |
GeographicLocations_xml | – name: United States--US – name: United States |
GroupedDBID | --K --M --Z -DZ -~X .~1 0R~ 1B1 1OL 1RT 1~. 1~5 29K 3R3 4.4 41~ 457 4G. 5GY 5VS 63O 6P2 7-5 71M 8P~ 9JN 9JO AABCJ AABNK AACTN AAEDT AAEDW AAFFL AAIAV AAIKJ AAKOC AALRI AAOAW AAPFB AAQFI AAQXK AAXUO AAYOK ABAOU ABEFU ABEHJ ABFNM ABFRF ABJNI ABLJU ABMAC ABXDB ABYKQ ACAZW ACDAQ ACGFO ACGFS ACHQT ACNCT ACRLP ACROA ADBBV ADEZE ADFHU ADGUI ADIYS ADMUD AEBSH AEFWE AEKER AENEX AETEA AEYQN AFFNX AFKWA AFODL AFTJW AGHFR AGTHC AGUBO AGYEJ AHHHB AI. AIEXJ AIGVJ AIIAU AIKHN AITUG AJBFU AJOXV AJWLA ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ARUGR ASPBG AVWKF AXJTR AXLSJ AZFZN BEHZQ BEZPJ BGSCR BKOJK BKOMP BLXMC BNTGB BPUDD BULVW BZJEE CS3 D-I DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HMB HMJ HVGLF HZ~ H~9 IHE IXIXF J1W K-O KOM LPU LY5 M26 M41 MHUIS MO0 MS~ MVM N9A O-L O9- OAUVE OHT OZT P-8 P-9 P2P PC. PQQKQ Q38 R2- RIG ROL RPZ RXW SCU SDF SDG SDP SEB SEE SES SEW SME SPC SPCBC SSB SSF SSW SSZ T5K TAE TN5 U5U UHB UQL VH1 WUQ YK3 YQT YYP ZCG ~G- AAHBH AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADMHG ADNMO ADXHL AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH OQ6 EFKBS IQODW DKI X2L 8BJ FQK JBE 7S9 L.6 |
ID | FETCH-LOGICAL-c586t-91d2d39aedf37ba58f35c2d993dfb326cb7b7d28863c899a5beacc811516cd4c3 |
IEDL.DBID | .~1 |
ISSN | 0304-4076 |
IngestDate | Thu Jul 10 17:21:24 EDT 2025 Fri Jul 11 10:13:08 EDT 2025 Sun Jul 13 04:36:55 EDT 2025 Thu Mar 28 07:20:29 EDT 2024 Mon Jul 21 09:17:10 EDT 2025 Sat Mar 08 16:10:34 EST 2025 Tue Jul 01 02:35:49 EDT 2025 Thu Apr 24 22:54:22 EDT 2025 Fri Feb 23 02:21:00 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | C33 Panel data Deterministic trend Structural break Statistical distribution Error estimation Error rate Serial correlation Dependent variable Stochastic method Unit root Limit distribution Cross sectional study Convergence rate Approximation theory Monte Carlo method Data analysis Convergence acceleration Price index Statistical estimation Statistical method Numerical analysis Correlation analysis Trend analysis Cross correlation Econometrics |
Language | English |
License | https://www.elsevier.com/tdm/userlicense/1.0 CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c586t-91d2d39aedf37ba58f35c2d993dfb326cb7b7d28863c899a5beacc811516cd4c3 |
Notes | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 ObjectType-Article-2 |
PQID | 887977029 |
PQPubID | 45228 |
PageCount | 21 |
ParticipantIDs | proquest_miscellaneous_889173608 proquest_miscellaneous_1705433748 proquest_journals_887977029 repec_primary_eeeeconom_v_3a164_3ay_3a2011_3ai_3a2_3ap_3a310_330_htm pascalfrancis_primary_24472857 econis_primary_668774304 crossref_primary_10_1016_j_jeconom_2011_06_018 crossref_citationtrail_10_1016_j_jeconom_2011_06_018 elsevier_sciencedirect_doi_10_1016_j_jeconom_2011_06_018 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2011-10-01 |
PublicationDateYYYYMMDD | 2011-10-01 |
PublicationDate_xml | – month: 10 year: 2011 text: 2011-10-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Amsterdam |
PublicationPlace_xml | – name: Amsterdam |
PublicationSeriesTitle | Journal of Econometrics |
PublicationTitle | Journal of econometrics |
PublicationYear | 2011 |
Publisher | Elsevier B.V Elsevier Elsevier Sequoia S.A |
Publisher_xml | – name: Elsevier B.V – name: Elsevier – name: Elsevier Sequoia S.A |
References | Bai (br000010) 1997; 79 Kim, D., 2010, Common local breaks in time trends for large panel data. Manuscript, Department of Economics, University of Virginia. Phillips, Moon (br000075) 1999; 67 Pivetta, Reis (br000085) 2007; 31 Kao, C., Trapani, L., Urga, G., 2007, Modelling and testing for structural breaks in panels with common and idiosyncratic stochastic trends, Center for Policy Research Working Paper No. 92. Maxwell School of Citizenship and Public Affairs, Syracuse University. Bai (br000015) 2010; 157 Bai, Ng (br000030) 2004; 72 Qu, Perron (br000090) 2007; 75 De Wachter, S., Tzavalis, E., 2004, Detection of structural breaks in linear dynamic panel data models. QM University of London Working Paper 505. Phillips, Solo (br000080) 1992; 20 Perron, Zhu (br000070) 2005; 129 Bai, Lumsdaine, Stock (br000020) 1998; 65 Bai, Perron (br000025) 1998; 66 De Wachter, Tzavalis (br000050) 2005; 88 Carrion-i-Silvestre, Kim, Perron (br000035) 2009; 25 Emerson, J., Kao, C., 2000, Testing for structural change of a time trend regression in panel data. Manuscript, Syracuse University. Clark (br000040) 2006; 21 Andrews (br000005) 1991; 59 Qu (10.1016/j.jeconom.2011.06.018_br000090) 2007; 75 Andrews (10.1016/j.jeconom.2011.06.018_br000005) 1991; 59 Bai (10.1016/j.jeconom.2011.06.018_br000015) 2010; 157 10.1016/j.jeconom.2011.06.018_br000060 Bai (10.1016/j.jeconom.2011.06.018_br000010) 1997; 79 De Wachter (10.1016/j.jeconom.2011.06.018_br000050) 2005; 88 Perron (10.1016/j.jeconom.2011.06.018_br000070) 2005; 129 Bai (10.1016/j.jeconom.2011.06.018_br000030) 2004; 72 10.1016/j.jeconom.2011.06.018_br000045 Bai (10.1016/j.jeconom.2011.06.018_br000020) 1998; 65 Pivetta (10.1016/j.jeconom.2011.06.018_br000085) 2007; 31 10.1016/j.jeconom.2011.06.018_br000065 Bai (10.1016/j.jeconom.2011.06.018_br000025) 1998; 66 10.1016/j.jeconom.2011.06.018_br000055 Phillips (10.1016/j.jeconom.2011.06.018_br000080) 1992; 20 Clark (10.1016/j.jeconom.2011.06.018_br000040) 2006; 21 Phillips (10.1016/j.jeconom.2011.06.018_br000075) 1999; 67 Carrion-i-Silvestre (10.1016/j.jeconom.2011.06.018_br000035) 2009; 25 |
References_xml | – volume: 129 start-page: 65 year: 2005 end-page: 119 ident: br000070 article-title: Structural breaks with deterministic and stochastic trends publication-title: Journal of Econometrics – reference: Emerson, J., Kao, C., 2000, Testing for structural change of a time trend regression in panel data. Manuscript, Syracuse University. – volume: 66 start-page: 47 year: 1998 end-page: 78 ident: br000025 article-title: Estimating and testing linear models with multiple structural changes publication-title: Econometrica – volume: 21 start-page: 563 year: 2006 end-page: 587 ident: br000040 article-title: Disaggregate evidence on the persistence of consumer price inflation publication-title: Journal of Applied Econometrics – volume: 157 start-page: 78 year: 2010 end-page: 92 ident: br000015 article-title: Common breaks in means and variances for panel data publication-title: Journal of Econometrics – reference: Kao, C., Trapani, L., Urga, G., 2007, Modelling and testing for structural breaks in panels with common and idiosyncratic stochastic trends, Center for Policy Research Working Paper No. 92. Maxwell School of Citizenship and Public Affairs, Syracuse University. – volume: 20 start-page: 971 year: 1992 end-page: 1001 ident: br000080 article-title: Asymptotics for linear process publication-title: Annals of Statistics – volume: 59 start-page: 817 year: 1991 end-page: 858 ident: br000005 article-title: Heteroskedasticity and autocorrelation consistent covariance matrix estimation publication-title: Econometrica – volume: 88 start-page: 91 year: 2005 end-page: 96 ident: br000050 article-title: Monte Carlo comparison of model and moment selection and classical inference approaches to break detection in panel data models publication-title: Economics Letters – volume: 75 start-page: 459 year: 2007 end-page: 502 ident: br000090 article-title: Estimating and testing structural changes in multivariate regressions publication-title: Econometrica – volume: 65 start-page: 395 year: 1998 end-page: 432 ident: br000020 article-title: Testing for and dating breaks in multivariate time series publication-title: Review of Economic Studies – volume: 72 start-page: 1127 year: 2004 end-page: 1177 ident: br000030 article-title: A panic attack on unit roots and cointegration publication-title: Econometrica – volume: 31 start-page: 1326 year: 2007 end-page: 1358 ident: br000085 article-title: The persistence of inflation in the United States publication-title: Journal of Economic Dynamics and Control – volume: 25 start-page: 1754 year: 2009 end-page: 1792 ident: br000035 article-title: GLS-based unit root tests with multiple structural breaks under both the null and alternative hypotheses publication-title: Econometric Theory – volume: 79 start-page: 551 year: 1997 end-page: 563 ident: br000010 article-title: Estimation of a change point in multiple regression models publication-title: Review of Economics and Statistics – volume: 67 start-page: 1057 year: 1999 end-page: 1111 ident: br000075 article-title: Linear regression limit theory for nonstationary panel data publication-title: Econometrica – reference: De Wachter, S., Tzavalis, E., 2004, Detection of structural breaks in linear dynamic panel data models. QM University of London Working Paper 505. – reference: Kim, D., 2010, Common local breaks in time trends for large panel data. Manuscript, Department of Economics, University of Virginia. – volume: 88 start-page: 91 year: 2005 ident: 10.1016/j.jeconom.2011.06.018_br000050 article-title: Monte Carlo comparison of model and moment selection and classical inference approaches to break detection in panel data models publication-title: Economics Letters doi: 10.1016/j.econlet.2005.01.010 – ident: 10.1016/j.jeconom.2011.06.018_br000060 – volume: 75 start-page: 459 year: 2007 ident: 10.1016/j.jeconom.2011.06.018_br000090 article-title: Estimating and testing structural changes in multivariate regressions publication-title: Econometrica doi: 10.1111/j.1468-0262.2006.00754.x – volume: 25 start-page: 1754 year: 2009 ident: 10.1016/j.jeconom.2011.06.018_br000035 article-title: GLS-based unit root tests with multiple structural breaks under both the null and alternative hypotheses publication-title: Econometric Theory doi: 10.1017/S0266466609990326 – volume: 21 start-page: 563 year: 2006 ident: 10.1016/j.jeconom.2011.06.018_br000040 article-title: Disaggregate evidence on the persistence of consumer price inflation publication-title: Journal of Applied Econometrics doi: 10.1002/jae.859 – volume: 79 start-page: 551 year: 1997 ident: 10.1016/j.jeconom.2011.06.018_br000010 article-title: Estimation of a change point in multiple regression models publication-title: Review of Economics and Statistics doi: 10.1162/003465397557132 – ident: 10.1016/j.jeconom.2011.06.018_br000065 – volume: 65 start-page: 395 year: 1998 ident: 10.1016/j.jeconom.2011.06.018_br000020 article-title: Testing for and dating breaks in multivariate time series publication-title: Review of Economic Studies doi: 10.1111/1467-937X.00051 – volume: 67 start-page: 1057 year: 1999 ident: 10.1016/j.jeconom.2011.06.018_br000075 article-title: Linear regression limit theory for nonstationary panel data publication-title: Econometrica doi: 10.1111/1468-0262.00070 – volume: 66 start-page: 47 year: 1998 ident: 10.1016/j.jeconom.2011.06.018_br000025 article-title: Estimating and testing linear models with multiple structural changes publication-title: Econometrica doi: 10.2307/2998540 – volume: 157 start-page: 78 year: 2010 ident: 10.1016/j.jeconom.2011.06.018_br000015 article-title: Common breaks in means and variances for panel data publication-title: Journal of Econometrics doi: 10.1016/j.jeconom.2009.10.020 – ident: 10.1016/j.jeconom.2011.06.018_br000045 – volume: 31 start-page: 1326 issue: 4 year: 2007 ident: 10.1016/j.jeconom.2011.06.018_br000085 article-title: The persistence of inflation in the United States publication-title: Journal of Economic Dynamics and Control doi: 10.1016/j.jedc.2006.05.001 – volume: 59 start-page: 817 year: 1991 ident: 10.1016/j.jeconom.2011.06.018_br000005 article-title: Heteroskedasticity and autocorrelation consistent covariance matrix estimation publication-title: Econometrica doi: 10.2307/2938229 – ident: 10.1016/j.jeconom.2011.06.018_br000055 doi: 10.2139/ssrn.1808001 – volume: 129 start-page: 65 year: 2005 ident: 10.1016/j.jeconom.2011.06.018_br000070 article-title: Structural breaks with deterministic and stochastic trends publication-title: Journal of Econometrics doi: 10.1016/j.jeconom.2004.09.004 – volume: 72 start-page: 1127 year: 2004 ident: 10.1016/j.jeconom.2011.06.018_br000030 article-title: A panic attack on unit roots and cointegration publication-title: Econometrica doi: 10.1111/j.1468-0262.2004.00528.x – volume: 20 start-page: 971 issue: 2 year: 1992 ident: 10.1016/j.jeconom.2011.06.018_br000080 article-title: Asymptotics for linear process publication-title: Annals of Statistics doi: 10.1214/aos/1176348666 |
SSID | ssj0005483 |
Score | 2.2426908 |
Snippet | This paper develops an estimation procedure for a common deterministic time trend break in large panels. The dependent variable in each equation consists of a... |
SourceID | proquest repec pascalfrancis econis crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 310 |
SubjectTerms | Acceleration of convergence Applications Correlation Correlation analysis Deterministic trend Distribution theory Econometrics equations Estimating techniques Estimation Exact sciences and technology Insurance, economics, finance Limit theorems Mathematics Monte Carlo simulation Numerical analysis Numerical analysis. Scientific computation Panel data prices Probability and statistics Probability theory and stochastic processes Sciences and techniques of general use Statistics Structural break Structural break Deterministic trend Panel data Structural change Studies Time series Unit root United States |
Title | Estimating a common deterministic time trend break in large panels with cross sectional dependence |
URI | https://dx.doi.org/10.1016/j.jeconom.2011.06.018 http://www.econis.eu/PPNSET?PPN=668774304 http://econpapers.repec.org/article/eeeeconom/v_3a164_3ay_3a2011_3ai_3a2_3ap_3a310-330.htm https://www.proquest.com/docview/887977029 https://www.proquest.com/docview/1705433748 https://www.proquest.com/docview/889173608 |
Volume | 164 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9swEBelHaxjjK3bqNctaLBXJ7Yl2fJj6QfpSvuyFfIm9OUtaeea2h30pX_77vy15GEUFlCwo7N9kc6n39n3QcgXr00SGSPC1Ekf8tzmoZRFHoo8AdXIMysSDE6-uEznV_zrQiy2yNEQC4Nulb3u73R6q637X2b9aM6q5XL2DV_qcTTD4zZpzAIj2HmGUj59XHPz4F0qTiAOkfpvFM9sNV35Nvq3z-SZTiOs_bG2Pj3D_mW9sVC9rHQNw1d0dS82gOnOna-8XVufTl-TVz2wpIcd72_Ili_3yPMh7rjeIy8uxgytsLeLKLNL0vyWmBPYwJ7yB9UUhgJkk7reUaYloliDnjboQEvBiNbXdFnSG_Qip6BOgG2KD3Rp-59o3bp3ITdDiV3r35Gr05PvR_OwL74QWiHTBpSgSxzLtXcFy4wWsmDCJg7gjCsMYD5rMpO5RMqUWbDZtDCgwq0EgBmn1nHL3pPt8rb0-4TG0jsb5bqImeYZ83nOrUtFbIS3LCpcQPgw5Mr2mcmxQMaNGlzQVqqfKYUzpdAVL5YBmY6HVV1qjqcO2O_mcyRPUwnwF0QjIHKYYbUhfgpWlqfOOtmQiPHkAJyyRIosIAeDiKheQdQKdDsg7yjJA_J57IU7G1_XwLTd3tcKEx1xhumBAkL_QSMlmNssjYDkuBW-8eoePh2vvxXTYBTD9wO0lnOml7gJrYIGCF8xFqmfza8P_z8OB2Q3Gfwj449ku7m7958AsDVm0t6RE7JzeHY-v4S94_OzP9y7QeI |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELfGhrQhhGCAFgbDSLymTWI7cR7R2FRg3Qub1DfLXxkpI6uWDIkX_nbu8kX7gCZRyVVaX9KrfT7_LrkPQt57bZLIGBGmTvqQ5zYPpSzyUOQJqEaeWZFgcPL8PJ1d8s8Lsdgix0MsDLpV9rq_0-mttu6_mfajOV2V5fQrPtTjaIbHbdKYxQOyw2H5YhmDye81Pw_e5eIE6hDJ_4bxTJeTpW_Df_tUnukkwuIfaxvUQ-wv642d6vFK1zB-RVf4YgOZ7tz6lbdrG9TpU_KkR5b0Q8f8M7Llq32yOwQe1_vk0XxM0Qqf9hBmdlmanxNzAgfYU11RTWEsQDip6z1lWiKKRehpgx60FKxo_Z2WFb1GN3IK-gTYpnhHl7b_idatfxdyM9TYtf4FuTw9uTiehX31hdAKmTagBV3iWK69K1hmtJAFEzZxgGdcYQD0WZOZzCVSpsyC0aaFAR1uJSDMOLWOW_aSbFc3lT8gNJbe2SjXRcw0z5jPc25dKmIjvGVR4QLChyFXtk9NjhUyrtXgg7ZU_UwpnCmFvnixDMhkPG3V5ea474SDbj5H8jSVgH9BNAIihxlWG_KnYGu576pHGxIxXhyQU5ZIkQXkcBAR1WuIWoFyB-gdJXlA3o29sLTxeQ1M281drTDTEWeYHygg9B80UoK9zdIISD62wjf-uodXx-tPxTRYxfD-C1rLOdMlHkJbQQOIrxiL1Lfmx6v_H4e3ZHd2MT9TZ5_OvxySvWRwloxfk-3m9s6_AfTWmKN2df4BSJRCdw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Estimating+a+common+deterministic+time+trend+break+in+large+panels+with+cross+sectional+dependence&rft.jtitle=Journal+of+econometrics&rft.au=Kim%2C+Dukpa&rft.date=2011-10-01&rft.pub=Elsevier&rft.issn=0304-4076&rft.volume=164&rft.issue=2&rft.spage=310&rft.epage=330&rft_id=info:doi/10.1016%2Fj.jeconom.2011.06.018&rft.externalDocID=668774304 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0304-4076&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0304-4076&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0304-4076&client=summon |