Ketamine blocks bursting in the lateral habenula to rapidly relieve depression

The N -methyl- d -aspartate receptor (NMDAR) antagonist ketamine has attracted enormous interest in mental health research owing to its rapid antidepressant actions, but its mechanism of action has remained elusive. Here we show that blockade of NMDAR-dependent bursting activity in the ‘anti-reward...

Full description

Saved in:
Bibliographic Details
Published inNature (London) Vol. 554; no. 7692; pp. 317 - 322
Main Authors Yang, Yan, Cui, Yihui, Sang, Kangning, Dong, Yiyan, Ni, Zheyi, Ma, Shuangshuang, Hu, Hailan
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 15.02.2018
Nature Publishing Group
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The N -methyl- d -aspartate receptor (NMDAR) antagonist ketamine has attracted enormous interest in mental health research owing to its rapid antidepressant actions, but its mechanism of action has remained elusive. Here we show that blockade of NMDAR-dependent bursting activity in the ‘anti-reward center’, the lateral habenula (LHb), mediates the rapid antidepressant actions of ketamine in rat and mouse models of depression. LHb neurons show a significant increase in burst activity and theta-band synchronization in depressive-like animals, which is reversed by ketamine. Burst-evoking photostimulation of LHb drives behavioural despair and anhedonia. Pharmacology and modelling experiments reveal that LHb bursting requires both NMDARs and low-voltage-sensitive T-type calcium channels (T-VSCCs). Furthermore, local blockade of NMDAR or T-VSCCs in the LHb is sufficient to induce rapid antidepressant effects. Our results suggest a simple model whereby ketamine quickly elevates mood by blocking NMDAR-dependent bursting activity of LHb neurons to disinhibit downstream monoaminergic reward centres, and provide a framework for developing new rapid-acting antidepressants. The rapid antidepressant activity of ketamine results from reversal of increased burst firing and synchronization in the lateral habenula in rat and mouse models of depression. A burst of activity for antidepressants The lateral habenula (LHb) is a region of the brain that is associated with aversion and other negative emotions. Hailan Hu and colleagues present a pair of papers in this week's issue on the role of burst firing in LHb neurons in depression in rats. First, they show that ketamine, a drug that can be used as an antidepressant, blocks LHb neuron bursting activity, and that both NMDAR and low-voltage-sensitive T-type calcium channels (T-VSCCs) are required for the drug to be effective. In the second study, the authors identify a potential mechanism for regulating this bursting behaviour that could represent a new therapeutic target. Levels of an astroglial potassium channel, Kir4.1, covary with the degree of membrane hyperpolarization and bursting activity of LHb neurons, as well as depression-related behaviours in various rodent models. The team suggest that blocking LHb neuron bursting activity could revive reward centres in the brain and elevate mood, and provide a model framework for developing rapid-acting antidepressants.
AbstractList The N-methyl-d-aspartate receptor (NMDAR) antagonist ketamine has attracted enormous interest in mental health research owing to its rapid antidepressant actions, but its mechanism of action has remained elusive. Here we show that blockade of NMDAR-dependent bursting activity in the 'anti-reward center', the lateral habenula (LHb), mediates the rapid antidepressant actions of ketamine in rat and mouse models of depression. LHb neurons show a significant increase in burst activity and theta-band synchronization in depressive-like animals, which is reversed by ketamine. Burst-evoking photostimulation of LHb drives behavioural despair and anhedonia. Pharmacology and modelling experiments reveal that LHb bursting requires both NMDARs and low-voltage-sensitive T-type calcium channels (T-VSCCs). Furthermore, local blockade of NMDAR or T-VSCCs in the LHb is sufficient to induce rapid antidepressant effects. Our results suggest a simple model whereby ketamine quickly elevates mood by blocking NMDAR-dependent bursting activity of LHb neurons to disinhibit downstream monoaminergic reward centres, and provide a framework for developing new rapid-acting antidepressants.
The N-methyl-d-aspartate receptor (NMDAR) antagonist ketamine has attracted enormous interest in mental health research owing to its rapid antidepressant actions, but its mechanism of action has remained elusive. Here we show that blockade of NMDAR-dependent bursting activity in the 'anti-reward center', the lateral habenula (LHb), mediates the rapid antidepressant actions of ketamine in rat and mouse models of depression. LHb neurons show a significant increase in burst activity and theta-band synchronization in depressive-like animals, which is reversed by ketamine. Burstevoking photostimulation of LHb drives behavioural despair and anhedonia. Pharmacology and modelling experiments reveal that LHb bursting requires both NMDARs and low-voltage-sensitive T-type calcium channels (T-VSCCs). Furthermore, local blockade of NMDAR or T-VSCCs in the LHb is sufficient to induce rapid antidepressant effects. Our results suggest a simple model whereby ketamine quickly elevates mood by blocking NMDAR-dependent bursting activity of LHb neurons to disinhibit downstream monoaminergic reward centres, and provide a framework for developing new rapid-acting antidepressants.
The N -methyl- d -aspartate receptor (NMDAR) antagonist ketamine has attracted enormous interest in mental health research owing to its rapid antidepressant actions, but its mechanism of action has remained elusive. Here we show that blockade of NMDAR-dependent bursting activity in the ‘anti-reward center’, the lateral habenula (LHb), mediates the rapid antidepressant actions of ketamine in rat and mouse models of depression. LHb neurons show a significant increase in burst activity and theta-band synchronization in depressive-like animals, which is reversed by ketamine. Burst-evoking photostimulation of LHb drives behavioural despair and anhedonia. Pharmacology and modelling experiments reveal that LHb bursting requires both NMDARs and low-voltage-sensitive T-type calcium channels (T-VSCCs). Furthermore, local blockade of NMDAR or T-VSCCs in the LHb is sufficient to induce rapid antidepressant effects. Our results suggest a simple model whereby ketamine quickly elevates mood by blocking NMDAR-dependent bursting activity of LHb neurons to disinhibit downstream monoaminergic reward centres, and provide a framework for developing new rapid-acting antidepressants. The rapid antidepressant activity of ketamine results from reversal of increased burst firing and synchronization in the lateral habenula in rat and mouse models of depression. A burst of activity for antidepressants The lateral habenula (LHb) is a region of the brain that is associated with aversion and other negative emotions. Hailan Hu and colleagues present a pair of papers in this week's issue on the role of burst firing in LHb neurons in depression in rats. First, they show that ketamine, a drug that can be used as an antidepressant, blocks LHb neuron bursting activity, and that both NMDAR and low-voltage-sensitive T-type calcium channels (T-VSCCs) are required for the drug to be effective. In the second study, the authors identify a potential mechanism for regulating this bursting behaviour that could represent a new therapeutic target. Levels of an astroglial potassium channel, Kir4.1, covary with the degree of membrane hyperpolarization and bursting activity of LHb neurons, as well as depression-related behaviours in various rodent models. The team suggest that blocking LHb neuron bursting activity could revive reward centres in the brain and elevate mood, and provide a model framework for developing rapid-acting antidepressants.
The N-methyl-d-aspartate receptor (NMDAR) antagonist ketamine has attracted enormous interest in mental health research owing to its rapid antidepressant actions, but its mechanism of action has remained elusive. Here we show that blockade of NMDAR-dependent bursting activity in the 'anti-reward center', the lateral habenula (LHb), mediates the rapid antidepressant actions of ketamine in rat and mouse models of depression. LHb neurons show a significant increase in burst activity and theta-band synchronization in depressive-like animals, which is reversed by ketamine. Burst-evoking photostimulation of LHb drives behavioural despair and anhedonia. Pharmacology and modelling experiments reveal that LHb bursting requires both NMDARs and low-voltage-sensitive T-type calcium channels (T-VSCCs). Furthermore, local blockade of NMDAR or T-VSCCs in the LHb is sufficient to induce rapid antidepressant effects. Our results suggest a simple model whereby ketamine quickly elevates mood by blocking NMDAR-dependent bursting activity of LHb neurons to disinhibit downstream monoaminergic reward centres, and provide a framework for developing new rapid-acting antidepressants.The N-methyl-d-aspartate receptor (NMDAR) antagonist ketamine has attracted enormous interest in mental health research owing to its rapid antidepressant actions, but its mechanism of action has remained elusive. Here we show that blockade of NMDAR-dependent bursting activity in the 'anti-reward center', the lateral habenula (LHb), mediates the rapid antidepressant actions of ketamine in rat and mouse models of depression. LHb neurons show a significant increase in burst activity and theta-band synchronization in depressive-like animals, which is reversed by ketamine. Burst-evoking photostimulation of LHb drives behavioural despair and anhedonia. Pharmacology and modelling experiments reveal that LHb bursting requires both NMDARs and low-voltage-sensitive T-type calcium channels (T-VSCCs). Furthermore, local blockade of NMDAR or T-VSCCs in the LHb is sufficient to induce rapid antidepressant effects. Our results suggest a simple model whereby ketamine quickly elevates mood by blocking NMDAR-dependent bursting activity of LHb neurons to disinhibit downstream monoaminergic reward centres, and provide a framework for developing new rapid-acting antidepressants.
Audience Academic
Author Sang, Kangning
Dong, Yiyan
Hu, Hailan
Yang, Yan
Cui, Yihui
Ni, Zheyi
Ma, Shuangshuang
Author_xml – sequence: 1
  givenname: Yan
  surname: Yang
  fullname: Yang, Yan
  organization: Center for Neuroscience, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, School of Medicine, Interdisciplinary Institute of Neuroscience and Technology, Qiushi Academy for Advanced Studies, Zhejiang University, Mental Health Center, School of Medicine, Zhejiang University
– sequence: 2
  givenname: Yihui
  surname: Cui
  fullname: Cui, Yihui
  organization: Center for Neuroscience, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, School of Medicine, Interdisciplinary Institute of Neuroscience and Technology, Qiushi Academy for Advanced Studies, Zhejiang University, Mental Health Center, School of Medicine, Zhejiang University
– sequence: 3
  givenname: Kangning
  surname: Sang
  fullname: Sang, Kangning
  organization: Center for Neuroscience, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, School of Medicine, Interdisciplinary Institute of Neuroscience and Technology, Qiushi Academy for Advanced Studies, Zhejiang University, Mental Health Center, School of Medicine, Zhejiang University
– sequence: 4
  givenname: Yiyan
  surname: Dong
  fullname: Dong, Yiyan
  organization: Center for Neuroscience, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, School of Medicine, Interdisciplinary Institute of Neuroscience and Technology, Qiushi Academy for Advanced Studies, Zhejiang University
– sequence: 5
  givenname: Zheyi
  surname: Ni
  fullname: Ni, Zheyi
  organization: Center for Neuroscience, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, School of Medicine, Interdisciplinary Institute of Neuroscience and Technology, Qiushi Academy for Advanced Studies, Zhejiang University
– sequence: 6
  givenname: Shuangshuang
  surname: Ma
  fullname: Ma, Shuangshuang
  organization: Center for Neuroscience, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, School of Medicine, Interdisciplinary Institute of Neuroscience and Technology, Qiushi Academy for Advanced Studies, Zhejiang University
– sequence: 7
  givenname: Hailan
  surname: Hu
  fullname: Hu, Hailan
  email: huhailan@zju.edu.cn
  organization: Center for Neuroscience, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, School of Medicine, Interdisciplinary Institute of Neuroscience and Technology, Qiushi Academy for Advanced Studies, Zhejiang University, Mental Health Center, School of Medicine, Zhejiang University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29446381$$D View this record in MEDLINE/PubMed
BookMark eNp10ktv1DAQAGALFdFt4cQdRXABQYpfcZxjVRWoqEDicbYcZ5K6eJ3UdhD99_VqC-1WQT5Ysr4ZzXjmAO350QNCzwk-IpjJ916nOQCtKtw8QivCa1FyIes9tMKYyhJLJvbRQYyXGOOK1PwJ2qcN54JJskJfPkPSa-uhaN1ofsWinUNM1g-F9UW6gMLpBEG74kK34GenizQWQU-2c9dFAGfhNxQdTAFitKN_ih732kV4dnsfop8fTn-cfCrPv348Ozk-L00lRSolJ6zhPZEMCyYMEYw0dSsbQghoXHe1ZFJiXUstGiE51YwxkKwXFPfS5NIP0ett3imMVzPEpNY2GnBOexjnqGhunUuKOcv01QN6Oc7B5-o2imEihZR3atAOlPX9mII2m6TquKK1oLymJKtyQQ3gN1-Up9Lb_LzjXy54M9krdR8dLaB8Olhbs5j1zU5ANgn-pEHPMaqz79927Yvb7ud2DZ2agl3rcK3-bkAGb7fAhDHGAP0_QrDa7Je6t19Zkwfa2KRTnnyu2br_xLzbxsSc2Q8Q7gawxG8A-y_cag
CitedBy_id crossref_primary_10_3389_fnsyn_2018_00046
crossref_primary_10_1177_24705470211014210
crossref_primary_10_1016_j_neuroscience_2024_09_010
crossref_primary_10_1038_s41380_022_01598_4
crossref_primary_10_3390_biom15020165
crossref_primary_10_1098_rstb_2023_0225
crossref_primary_10_1016_j_ynstr_2021_100403
crossref_primary_10_1063_5_0232718
crossref_primary_10_1016_j_neuropharm_2022_109312
crossref_primary_10_1038_s41398_021_01774_0
crossref_primary_10_1016_j_expneurol_2019_05_005
crossref_primary_10_2147_NSS_S341161
crossref_primary_10_1016_j_aeue_2018_09_017
crossref_primary_10_1002_eat_24036
crossref_primary_10_1186_s13041_020_00670_w
crossref_primary_10_1016_j_neuron_2022_01_011
crossref_primary_10_1016_j_yfrne_2019_100771
crossref_primary_10_3389_fnbeh_2023_1289407
crossref_primary_10_3389_fnsyn_2018_00039
crossref_primary_10_1124_pharmrev_120_000056
crossref_primary_10_1007_s11071_020_05913_y
crossref_primary_10_1371_journal_pone_0256390
crossref_primary_10_1126_science_aax0719
crossref_primary_10_1016_j_tox_2022_153163
crossref_primary_10_1038_s41386_024_01840_3
crossref_primary_10_1038_s41586_023_06624_1
crossref_primary_10_1038_s41380_022_01540_8
crossref_primary_10_3390_molecules29050964
crossref_primary_10_1007_s11427_023_2406_3
crossref_primary_10_1002_gps_5910
crossref_primary_10_1146_annurev_med_051322_120608
crossref_primary_10_1016_j_biopsych_2021_04_024
crossref_primary_10_1016_j_neuint_2021_105044
crossref_primary_10_1038_s41467_024_55600_4
crossref_primary_10_1016_j_brainresbull_2023_110838
crossref_primary_10_1021_acs_oprd_9b00436
crossref_primary_10_1038_s41380_021_01040_1
crossref_primary_10_1038_s41398_019_0506_6
crossref_primary_10_1016_j_neuron_2022_01_007
crossref_primary_10_3389_fpsyt_2019_00320
crossref_primary_10_1016_j_celrep_2022_111111
crossref_primary_10_1080_14737175_2019_1643237
crossref_primary_10_7554_eLife_87529_3
crossref_primary_10_1016_j_neures_2024_01_006
crossref_primary_10_1038_s41380_021_01183_1
crossref_primary_10_1016_j_biopha_2022_113598
crossref_primary_10_1209_0295_5075_acd474
crossref_primary_10_7554_eLife_87529
crossref_primary_10_1097_WNR_0000000000002019
crossref_primary_10_1038_s41398_020_0784_z
crossref_primary_10_3389_fsurg_2022_1050232
crossref_primary_10_1016_j_neuron_2019_02_033
crossref_primary_10_1021_jacs_8b11414
crossref_primary_10_1140_epjs_s11734_022_00631_5
crossref_primary_10_3390_jcm13061727
crossref_primary_10_1038_s41420_022_00869_x
crossref_primary_10_1097_YIC_0000000000000409
crossref_primary_10_4062_biomolther_2018_141
crossref_primary_10_1016_j_bbrc_2021_09_062
crossref_primary_10_3389_fneur_2023_1113545
crossref_primary_10_1016_j_pneurobio_2024_102707
crossref_primary_10_3390_molecules25235777
crossref_primary_10_1007_s11571_023_09960_0
crossref_primary_10_1242_dev_182865
crossref_primary_10_1016_j_jad_2024_12_064
crossref_primary_10_1016_j_neuropharm_2019_107687
crossref_primary_10_1126_sciadv_aaz3173
crossref_primary_10_7498_aps_70_20210208
crossref_primary_10_1016_j_bja_2018_03_030
crossref_primary_10_1016_j_mri_2019_09_005
crossref_primary_10_1016_j_cnsns_2022_106370
crossref_primary_10_1155_2022_6897359
crossref_primary_10_1016_j_jphs_2020_11_002
crossref_primary_10_3389_fnhum_2018_00326
crossref_primary_10_1038_s41598_020_65349_7
crossref_primary_10_3389_fncir_2025_1516839
crossref_primary_10_1016_j_ejmech_2023_115252
crossref_primary_10_1016_j_ynstr_2020_100267
crossref_primary_10_3389_fnint_2022_949162
crossref_primary_10_1002_glia_23994
crossref_primary_10_1038_s41593_023_01367_8
crossref_primary_10_3389_fnbeh_2022_852235
crossref_primary_10_1007_s00213_022_06098_5
crossref_primary_10_1126_sciadv_abn0193
crossref_primary_10_1021_acs_jcim_4c01636
crossref_primary_10_5334_cpsy_80
crossref_primary_10_1016_j_bbi_2020_05_032
crossref_primary_10_1016_j_tins_2018_12_002
crossref_primary_10_1088_1674_1056_acd7d3
crossref_primary_10_1017_S1092852919001007
crossref_primary_10_3389_fnhum_2022_787495
crossref_primary_10_1016_j_cub_2023_11_037
crossref_primary_10_1016_j_neuint_2020_104844
crossref_primary_10_1016_j_pnpbp_2023_110910
crossref_primary_10_1126_science_aat8078
crossref_primary_10_1016_j_bcp_2022_114963
crossref_primary_10_1155_2021_6635084
crossref_primary_10_1038_s41398_024_03069_6
crossref_primary_10_1093_ijnp_pyaf010
crossref_primary_10_3389_fnmol_2023_1188184
crossref_primary_10_2174_1570159X23666241003125019
crossref_primary_10_1021_acs_analchem_2c01884
crossref_primary_10_1007_s00406_024_01809_9
crossref_primary_10_1016_j_cub_2019_02_048
crossref_primary_10_1016_j_pnpbp_2025_111280
crossref_primary_10_1021_acschemneuro_2c00637
crossref_primary_10_1111_ejn_16093
crossref_primary_10_1101_sqb_2018_83_036871
crossref_primary_10_1523_JNEUROSCI_2082_23_2024
crossref_primary_10_1523_JNEUROSCI_0128_21_2021
crossref_primary_10_1097_JCP_0000000000001132
crossref_primary_10_1007_s43440_021_00232_4
crossref_primary_10_1007_s44192_022_00012_3
crossref_primary_10_1016_j_pbb_2024_173917
crossref_primary_10_3390_ijms23042083
crossref_primary_10_1016_j_cell_2019_02_037
crossref_primary_10_3389_fnins_2019_00761
crossref_primary_10_1016_j_jad_2024_04_050
crossref_primary_10_1177_02698811221140011
crossref_primary_10_1007_s12204_022_2455_0
crossref_primary_10_1016_j_biopsych_2018_04_018
crossref_primary_10_1021_jacs_9b12315
crossref_primary_10_1016_j_neuropharm_2022_109378
crossref_primary_10_1007_s00018_024_05121_6
crossref_primary_10_3389_fpsyt_2023_1214018
crossref_primary_10_3390_ijms24086985
crossref_primary_10_1016_j_neuropharm_2022_109374
crossref_primary_10_1016_j_neuropharm_2022_109252
crossref_primary_10_1016_j_phrs_2023_106734
crossref_primary_10_1155_2022_6894392
crossref_primary_10_1038_s41593_023_01379_4
crossref_primary_10_1016_j_jpsychires_2022_12_010
crossref_primary_10_1515_tnsci_2020_0167
crossref_primary_10_23736_S2724_6612_21_02068_9
crossref_primary_10_1016_j_neuron_2023_09_004
crossref_primary_10_1007_s00213_022_06272_9
crossref_primary_10_1038_s41593_020_0640_8
crossref_primary_10_1038_s41380_019_0400_x
crossref_primary_10_3389_fnmol_2019_00211
crossref_primary_10_1038_s41467_023_38028_0
crossref_primary_10_1038_s41467_023_41750_4
crossref_primary_10_1016_j_jad_2023_03_076
crossref_primary_10_1523_ENEURO_0069_24_2024
crossref_primary_10_3390_ijms21186525
crossref_primary_10_1016_j_ijbiomac_2021_06_027
crossref_primary_10_1126_science_adr2191
crossref_primary_10_1016_j_aca_2022_340217
crossref_primary_10_1002_ejoc_202000430
crossref_primary_10_1021_acschemneuro_0c00684
crossref_primary_10_3390_ph16071013
crossref_primary_10_1007_s11684_021_0896_8
crossref_primary_10_1038_s41398_022_02297_y
crossref_primary_10_2174_1570159X19666210909150200
crossref_primary_10_1016_j_neubiorev_2025_106119
crossref_primary_10_3390_cells12101360
crossref_primary_10_1007_s12035_022_03103_y
crossref_primary_10_1007_s11064_019_02744_1
crossref_primary_10_1177_2470547018787781
crossref_primary_10_1186_s40478_023_01545_6
crossref_primary_10_1016_j_celrep_2021_109936
crossref_primary_10_1007_s00213_022_06201_w
crossref_primary_10_1016_j_jare_2023_06_001
crossref_primary_10_1126_sciadv_abf0634
crossref_primary_10_1172_JCI158742
crossref_primary_10_1021_acs_jcim_1c01208
crossref_primary_10_3934_era_2023301
crossref_primary_10_1007_s40263_024_01123_x
crossref_primary_10_1016_j_ynstr_2019_100196
crossref_primary_10_3389_fnins_2023_1085282
crossref_primary_10_1016_j_yhbeh_2020_104715
crossref_primary_10_1016_j_neulet_2024_137805
crossref_primary_10_1002_celc_201801367
crossref_primary_10_3389_fncel_2020_00048
crossref_primary_10_3389_fnsys_2019_00078
crossref_primary_10_1007_s12264_021_00794_6
crossref_primary_10_1038_nrn_2018_28
crossref_primary_10_1186_s13287_022_03032_6
crossref_primary_10_1111_pcn_12902
crossref_primary_10_1271_kagakutoseibutsu_59_369
crossref_primary_10_2139_ssrn_4137692
crossref_primary_10_3389_fnmol_2023_1169320
crossref_primary_10_3390_ijms252212404
crossref_primary_10_1021_acs_orglett_8b03733
crossref_primary_10_3389_fpsyt_2023_1078779
crossref_primary_10_4103_1673_5374_293156
crossref_primary_10_1088_2053_1583_aaf3d0
crossref_primary_10_1371_journal_pone_0229288
crossref_primary_10_1038_s41586_020_2731_9
crossref_primary_10_1016_j_neuron_2018_10_042
crossref_primary_10_1038_s41380_023_02288_5
crossref_primary_10_1038_s41598_025_91994_x
crossref_primary_10_1016_j_cub_2019_06_027
crossref_primary_10_1016_j_msec_2020_110797
crossref_primary_10_1016_j_bbr_2020_112898
crossref_primary_10_3390_genes14040896
crossref_primary_10_1038_s41386_020_00843_0
crossref_primary_10_1016_j_neuron_2024_06_028
crossref_primary_10_3389_fnbeh_2021_815700
crossref_primary_10_1111_ejn_14843
crossref_primary_10_26599_JNR_2022_9040006
crossref_primary_10_1016_j_pnpbp_2020_109939
crossref_primary_10_1002_brb3_3511
crossref_primary_10_3389_fphar_2019_00528
crossref_primary_10_1002_syn_70005
crossref_primary_10_1038_s41380_018_0341_9
crossref_primary_10_1016_j_neuron_2024_11_011
crossref_primary_10_1089_neu_2024_0184
crossref_primary_10_1016_j_bbr_2023_114328
crossref_primary_10_1063_5_0093234
crossref_primary_10_1016_j_cortex_2021_05_013
crossref_primary_10_1523_ENEURO_0201_20_2020
crossref_primary_10_1038_s41598_022_08953_z
crossref_primary_10_1155_2018_6589608
crossref_primary_10_1073_pnas_1916570117
crossref_primary_10_3389_fpain_2023_1268985
crossref_primary_10_1016_j_brainres_2019_06_002
crossref_primary_10_1159_000508680
crossref_primary_10_26599_BSA_2018_2018_9050009
crossref_primary_10_1002_advs_202205173
crossref_primary_10_1016_j_bbr_2020_112548
crossref_primary_10_1016_j_talanta_2022_123402
crossref_primary_10_1155_2020_4951591
crossref_primary_10_1172_jci_insight_133625
crossref_primary_10_1186_s12888_022_04221_6
crossref_primary_10_1016_j_bbrc_2022_01_024
crossref_primary_10_1126_science_adp3897
crossref_primary_10_1016_j_expneurol_2025_115154
crossref_primary_10_1111_cns_14831
crossref_primary_10_1007_s00115_021_01225_7
crossref_primary_10_1016_j_neuron_2018_05_032
crossref_primary_10_1371_journal_pbio_3001146
crossref_primary_10_3390_molecules28093859
crossref_primary_10_1021_acschemneuro_0c00246
crossref_primary_10_1088_1674_1056_abcfa9
crossref_primary_10_3389_fphar_2024_1428485
crossref_primary_10_3389_fncel_2019_00499
crossref_primary_10_3390_biom9110746
crossref_primary_10_1007_s12264_019_00367_8
crossref_primary_10_1016_j_mehy_2022_110910
crossref_primary_10_1016_j_neuropharm_2025_110424
crossref_primary_10_1002_mco2_156
crossref_primary_10_3174_ajnr_A8156
crossref_primary_10_3389_fnbeh_2021_786011
crossref_primary_10_1002_advs_202401059
crossref_primary_10_1021_acs_analchem_9b05771
crossref_primary_10_1038_s41596_023_00928_2
crossref_primary_10_3389_fimmu_2023_1049739
crossref_primary_10_1016_j_ecoenv_2024_116831
crossref_primary_10_1016_j_jpsychires_2021_02_020
crossref_primary_10_1038_s41467_024_52727_2
crossref_primary_10_1007_s11071_023_08229_9
crossref_primary_10_3904_kjim_2021_492
crossref_primary_10_3389_fnsyn_2021_689518
crossref_primary_10_1038_s41467_021_25356_2
crossref_primary_10_1016_j_brainresbull_2022_07_004
crossref_primary_10_1080_14728222_2023_2257390
crossref_primary_10_1016_j_isci_2021_102143
crossref_primary_10_1016_j_pharmthera_2023_108539
crossref_primary_10_1016_j_brainres_2024_149117
crossref_primary_10_3389_fnbeh_2022_929507
crossref_primary_10_1016_j_pharmthera_2018_05_010
crossref_primary_10_3892_ol_2018_9243
crossref_primary_10_1016_j_cub_2021_08_021
crossref_primary_10_1016_j_patter_2024_101057
crossref_primary_10_1007_s00213_019_05322_z
crossref_primary_10_1016_j_bpsgos_2024_100314
crossref_primary_10_3390_children11070801
crossref_primary_10_1016_j_bbr_2019_112342
crossref_primary_10_1016_j_neubiorev_2021_05_003
crossref_primary_10_1097_ALN_0000000000005037
crossref_primary_10_1101_sqb_2018_83_038885
crossref_primary_10_3389_fpsyt_2022_1043846
crossref_primary_10_1177_2045125320916657
crossref_primary_10_1007_s12035_023_03574_7
crossref_primary_10_1016_j_neuron_2023_02_017
crossref_primary_10_3389_fphar_2019_01402
crossref_primary_10_1146_annurev_neuro_121522_025740
crossref_primary_10_1007_s11920_019_1108_y
crossref_primary_10_1186_s12888_024_06035_0
crossref_primary_10_1016_j_celrep_2024_113968
crossref_primary_10_3390_antiox11112296
crossref_primary_10_1038_s41380_023_01982_8
crossref_primary_10_1523_JNEUROSCI_2192_23_2024
crossref_primary_10_1038_s41593_024_01856_4
crossref_primary_10_3389_fphar_2020_590221
crossref_primary_10_1016_j_expneurol_2019_113058
crossref_primary_10_1002_dta_2726
crossref_primary_10_1038_mp_2017_255
crossref_primary_10_3389_fcell_2021_713762
crossref_primary_10_1016_j_isci_2021_102377
crossref_primary_10_1038_s41467_020_18167_4
crossref_primary_10_1038_s41598_020_75641_1
crossref_primary_10_1038_s41380_020_0686_8
crossref_primary_10_1093_ijnp_pyaa089
crossref_primary_10_1515_revneuro_2024_0147
crossref_primary_10_1016_j_bbr_2020_112532
crossref_primary_10_1007_s43440_020_00203_1
crossref_primary_10_1038_s41380_022_01513_x
crossref_primary_10_1038_s41467_023_43150_0
crossref_primary_10_1038_s41598_020_74496_w
crossref_primary_10_1016_j_cub_2022_08_016
crossref_primary_10_1021_acschemneuro_1c00371
crossref_primary_10_1016_j_celrep_2023_112695
crossref_primary_10_1016_j_neuropharm_2021_108718
crossref_primary_10_1007_s00213_020_05541_9
crossref_primary_10_1016_j_jep_2025_119414
crossref_primary_10_1111_ejn_14647
crossref_primary_10_1038_s41467_023_43636_x
crossref_primary_10_1113_JP285015
crossref_primary_10_1007_s12264_019_00422_4
crossref_primary_10_1016_j_jep_2024_118040
crossref_primary_10_1111_ejn_14400
crossref_primary_10_1007_s12035_024_04302_5
crossref_primary_10_1111_epi_14676
crossref_primary_10_1016_j_cub_2024_05_075
crossref_primary_10_1515_revneuro_2019_0090
crossref_primary_10_3389_fphar_2024_1394730
crossref_primary_10_1016_j_cobeha_2018_11_001
crossref_primary_10_1111_jnc_16046
crossref_primary_10_1038_s44220_024_00286_2
crossref_primary_10_3389_fncom_2023_1119685
crossref_primary_10_1016_j_actbio_2023_09_038
crossref_primary_10_1007_s00213_022_06105_9
crossref_primary_10_1016_j_neuron_2024_10_014
crossref_primary_10_1021_acs_jproteome_7b00811
crossref_primary_10_3389_fncel_2022_923039
crossref_primary_10_1038_s41386_020_0714_z
crossref_primary_10_1007_s11427_020_1815_6
crossref_primary_10_1007_s12264_020_00565_9
crossref_primary_10_1177_02698811241268884
crossref_primary_10_1186_s12951_023_02008_9
crossref_primary_10_1016_j_bbr_2020_112628
crossref_primary_10_1021_acs_analchem_2c01103
crossref_primary_10_1016_j_jad_2023_10_136
crossref_primary_10_1177_10738584211057047
crossref_primary_10_1146_annurev_pharmtox_010617_052811
crossref_primary_10_1016_j_bbr_2020_112508
crossref_primary_10_1111_apha_13211
crossref_primary_10_12688_f1000research_14344_1
crossref_primary_10_3389_fnbeh_2021_749180
crossref_primary_10_1002_adhm_202300154
crossref_primary_10_1016_j_neures_2022_12_015
crossref_primary_10_3389_fncel_2023_1114914
crossref_primary_10_1007_s12325_020_01272_7
crossref_primary_10_1016_j_apmt_2020_100891
crossref_primary_10_14336_AD_2024_0239
crossref_primary_10_1142_S021812742050131X
crossref_primary_10_1007_s00213_021_06040_1
crossref_primary_10_1126_sciadv_abd7605
crossref_primary_10_3390_genes14010143
crossref_primary_10_1016_j_neuropharm_2021_108617
crossref_primary_10_2174_1570180820666230418104418
crossref_primary_10_1016_j_neuron_2024_01_023
crossref_primary_10_1038_s41386_020_0616_0
crossref_primary_10_1080_15622975_2020_1725117
crossref_primary_10_3389_fcimb_2022_966004
crossref_primary_10_1016_j_expneurol_2020_113433
crossref_primary_10_1176_appi_ajp_20240378
crossref_primary_10_1021_acsptsci_0c00065
crossref_primary_10_3390_ph17010016
crossref_primary_10_3390_molecules27238536
crossref_primary_10_1021_acs_joc_0c01090
crossref_primary_10_4103_1673_5374_335168
crossref_primary_10_3390_molecules24101927
crossref_primary_10_3390_jcm11020448
crossref_primary_10_1038_s41467_018_08168_9
crossref_primary_10_1016_j_expneurol_2021_113964
crossref_primary_10_1002_advs_202204463
crossref_primary_10_1016_j_jprot_2020_103679
crossref_primary_10_1097_MS9_0000000000002487
crossref_primary_10_1177_2398212820957847
crossref_primary_10_1016_j_neubiorev_2024_105719
crossref_primary_10_1002_jmri_28830
crossref_primary_10_1016_j_biopsych_2022_02_014
crossref_primary_10_1111_cpr_12804
crossref_primary_10_1016_j_jpsychires_2024_11_034
crossref_primary_10_1038_s41467_023_42306_2
crossref_primary_10_3390_ijms221910236
crossref_primary_10_1007_s11571_022_09872_5
crossref_primary_10_1007_s00406_020_01103_4
crossref_primary_10_3389_fnins_2021_678978
crossref_primary_10_1017_S0033583523000033
crossref_primary_10_1126_sciadv_adf3887
crossref_primary_10_1523_JNEUROSCI_1659_20_2020
crossref_primary_10_1038_s41598_021_97758_7
crossref_primary_10_1038_s41398_022_01830_3
crossref_primary_10_1631_jzus_B2300933
crossref_primary_10_1016_j_neuron_2024_01_007
crossref_primary_10_3389_fphar_2021_652130
crossref_primary_10_1016_j_psyneuen_2019_05_007
crossref_primary_10_3389_fpsyt_2018_00434
crossref_primary_10_1055_a_1193_8661
crossref_primary_10_3389_fnins_2022_914300
crossref_primary_10_1016_j_nbd_2024_106543
crossref_primary_10_1016_j_heliyon_2024_e40427
crossref_primary_10_1021_acs_jmedchem_1c00820
crossref_primary_10_1007_s11916_020_00871_x
crossref_primary_10_3389_fnins_2023_1202372
crossref_primary_10_1038_s41380_024_02419_6
crossref_primary_10_1136_gpsych_2019_100053
crossref_primary_10_1016_j_ibror_2018_11_004
crossref_primary_10_1038_s41467_022_30386_5
crossref_primary_10_5607_en22024
crossref_primary_10_1007_s11071_024_10008_z
crossref_primary_10_1038_s41467_023_37601_x
crossref_primary_10_1007_s11071_024_10107_x
crossref_primary_10_1016_j_jep_2023_116658
crossref_primary_10_1007_s00213_020_05748_w
crossref_primary_10_1038_s41589_024_01555_y
crossref_primary_10_1093_brain_awac456
crossref_primary_10_2147_IJGM_S421265
crossref_primary_10_5664_jcsm_10746
crossref_primary_10_7554_eLife_64041
crossref_primary_10_1177_0269881120959644
crossref_primary_10_1016_j_ynstr_2022_100450
crossref_primary_10_1007_s00213_023_06480_x
crossref_primary_10_1016_j_scib_2024_11_033
crossref_primary_10_1002_tcr_202300066
crossref_primary_10_1038_s41573_020_0086_4
crossref_primary_10_1021_acs_orglett_8b02822
crossref_primary_10_1126_science_ado7010
crossref_primary_10_1093_ijnp_pyy094
crossref_primary_10_1096_fj_202402296RR
crossref_primary_10_1002_brb3_1715
crossref_primary_10_1016_j_neuroscience_2023_11_020
crossref_primary_10_1016_j_talanta_2020_121828
crossref_primary_10_1016_j_bja_2024_03_012
crossref_primary_10_1016_j_neures_2022_09_015
crossref_primary_10_1051_e3sconf_202021803017
crossref_primary_10_1007_s00213_020_05737_z
crossref_primary_10_3934_era_2024006
crossref_primary_10_1016_j_ecoenv_2024_117643
crossref_primary_10_1016_j_expneurol_2021_113637
crossref_primary_10_1007_s00401_021_02371_7
crossref_primary_10_1016_j_chaos_2023_113415
crossref_primary_10_1016_j_drudis_2019_07_007
crossref_primary_10_1016_j_bbrc_2020_11_065
crossref_primary_10_3390_cells10102628
crossref_primary_10_3389_fpsyt_2018_00253
crossref_primary_10_1038_s41380_022_01495_w
crossref_primary_10_1038_s41380_020_0720_x
crossref_primary_10_1021_acschemneuro_2c00067
crossref_primary_10_1186_s12974_020_01843_z
crossref_primary_10_1016_j_celrep_2021_109612
crossref_primary_10_1126_science_adr9296
crossref_primary_10_1016_j_neures_2024_12_006
crossref_primary_10_1016_j_neuropharm_2020_108382
crossref_primary_10_3389_fnins_2021_594448
crossref_primary_10_1016_j_neuropharm_2023_109476
crossref_primary_10_1111_bph_15228
crossref_primary_10_1016_j_bbrc_2024_150679
crossref_primary_10_1016_j_neuroscience_2019_04_053
crossref_primary_10_1016_j_cell_2022_12_033
crossref_primary_10_33805_2638_8073_110
crossref_primary_10_1136_gpsych_2021_100724
crossref_primary_10_3390_ijms25021034
crossref_primary_10_1002_jnr_25181
crossref_primary_10_1016_j_euroneuro_2022_12_003
crossref_primary_10_1016_j_cub_2024_06_010
crossref_primary_10_1142_S0218127421500966
crossref_primary_10_1126_sciadv_abo0549
crossref_primary_10_1186_s40478_019_0868_2
crossref_primary_10_3389_fnsys_2022_826475
crossref_primary_10_1155_2022_8384444
crossref_primary_10_1177_1073858418769644
crossref_primary_10_1016_j_ejphar_2023_175627
crossref_primary_10_1038_s41586_021_03769_9
crossref_primary_10_1021_jacs_1c12959
crossref_primary_10_1016_j_neuropharm_2023_109468
crossref_primary_10_1016_S1634_7072_24_49341_0
crossref_primary_10_1038_s41598_020_75733_y
crossref_primary_10_1111_bph_16420
crossref_primary_10_1515_mr_2022_0014
crossref_primary_10_1093_brain_awae209
crossref_primary_10_1177_15353702231170007
crossref_primary_10_3389_fpsyt_2023_1084443
crossref_primary_10_1016_j_bioorg_2022_106306
crossref_primary_10_3389_fnins_2023_1217451
crossref_primary_10_22201_fm_24484865e_2020_63_1_02
crossref_primary_10_30773_pi_2019_0236
crossref_primary_10_3389_fphar_2024_1471307
crossref_primary_10_1080_14737175_2019_1640604
crossref_primary_10_1016_j_taap_2021_115711
crossref_primary_10_1016_j_nbd_2023_106069
crossref_primary_10_1016_j_neuropharm_2020_108237
crossref_primary_10_3389_fncel_2022_981190
crossref_primary_10_1016_j_tins_2023_12_004
crossref_primary_10_1007_s12264_023_01047_4
crossref_primary_10_1016_j_bpsgos_2023_04_004
crossref_primary_10_1097_MD_0000000000016674
crossref_primary_10_1186_s13020_024_00990_2
crossref_primary_10_1016_j_neuron_2023_05_010
crossref_primary_10_3389_fnmol_2018_00456
crossref_primary_10_1038_s41467_023_38180_7
crossref_primary_10_1111_jnc_15356
crossref_primary_10_1371_journal_pbio_3000709
crossref_primary_10_1172_JCI152187
crossref_primary_10_1016_j_heliyon_2024_e40234
crossref_primary_10_1126_science_aay8746
crossref_primary_10_34133_icomputing_0055
crossref_primary_10_1080_15622975_2022_2027010
crossref_primary_10_1016_j_tins_2020_11_008
crossref_primary_10_1073_pnas_2000278117
crossref_primary_10_1126_scitranslmed_ade1779
crossref_primary_10_1016_j_neuropharm_2020_108369
crossref_primary_10_1016_j_neuroscience_2022_10_015
crossref_primary_10_1016_j_bbr_2023_114627
crossref_primary_10_1111_jsr_13863
crossref_primary_10_3389_fncel_2021_741292
crossref_primary_10_1038_s41583_020_0292_4
crossref_primary_10_3389_fphar_2021_649144
crossref_primary_10_1111_ejn_14253
crossref_primary_10_7554_eLife_65444
crossref_primary_10_1016_j_neuroscience_2022_08_002
crossref_primary_10_3389_fpsyg_2020_00021
crossref_primary_10_1111_ejn_15581
crossref_primary_10_3389_fpsyt_2020_00837
crossref_primary_10_1016_j_neuron_2023_05_023
crossref_primary_10_1016_j_microc_2024_111103
crossref_primary_10_1039_C9GC00336C
crossref_primary_10_1038_s41386_022_01493_0
crossref_primary_10_3389_fpubh_2022_1003553
crossref_primary_10_1038_s41386_023_01548_w
crossref_primary_10_3390_life11060573
crossref_primary_10_1016_j_bbr_2019_112153
crossref_primary_10_1038_s41380_024_02507_7
crossref_primary_10_3934_era_2022024
crossref_primary_10_1016_j_eclinm_2022_101439
crossref_primary_10_1038_s41386_021_01241_w
crossref_primary_10_31083_j_jin2105144
crossref_primary_10_1111_ejn_15237
crossref_primary_10_1126_sciadv_aax2084
crossref_primary_10_1016_j_bbi_2024_09_014
crossref_primary_10_1007_s40263_018_0492_x
crossref_primary_10_7554_eLife_41223
crossref_primary_10_1016_j_phrs_2023_106837
crossref_primary_10_3389_fncel_2018_00193
crossref_primary_10_1371_journal_pone_0316262
crossref_primary_10_1007_s12035_023_03843_5
crossref_primary_10_1016_j_bja_2018_08_020
crossref_primary_10_2174_1570159X18666200303104235
crossref_primary_10_53053_RRMJ9870
crossref_primary_10_1016_j_bioelechem_2020_107542
crossref_primary_10_1126_science_adq9566
crossref_primary_10_3389_fncel_2023_1278847
crossref_primary_10_1007_s10571_020_00804_7
crossref_primary_10_1016_j_neuint_2018_10_002
crossref_primary_10_1016_j_neuropharm_2019_107863
crossref_primary_10_1016_j_jpsychires_2024_04_003
crossref_primary_10_1016_j_pbb_2020_172870
crossref_primary_10_3389_fpsyt_2023_1109344
crossref_primary_10_1007_s12035_022_03151_4
crossref_primary_10_1016_j_ibneur_2022_09_001
crossref_primary_10_1039_D1FO00044F
crossref_primary_10_1016_j_jad_2020_06_068
crossref_primary_10_1038_d41586_018_01588_z
crossref_primary_10_1111_cns_14490
crossref_primary_10_1016_j_mcpro_2024_100777
crossref_primary_10_1016_j_neuropharm_2021_108691
crossref_primary_10_1038_s41386_022_01338_w
crossref_primary_10_1098_rsob_220380
crossref_primary_10_1016_j_pbb_2023_173590
crossref_primary_10_1007_s11431_020_1753_y
crossref_primary_10_1155_2021_7806370
crossref_primary_10_3389_fpsyt_2019_00287
crossref_primary_10_1021_acs_jproteome_1c00516
crossref_primary_10_3390_ijms221910848
crossref_primary_10_3389_fchem_2022_920661
crossref_primary_10_1016_j_jad_2024_02_085
crossref_primary_10_1016_j_neuropharm_2020_108158
crossref_primary_10_4306_jknpa_2018_57_2_108
crossref_primary_10_1007_s12264_024_01270_7
crossref_primary_10_1146_annurev_neuro_110920_040422
crossref_primary_10_1016_j_neuropharm_2023_109646
crossref_primary_10_3389_fpsyt_2019_00371
crossref_primary_10_1039_C9RA00020H
crossref_primary_10_1016_j_ejphar_2023_175532
crossref_primary_10_1038_s41593_021_00881_x
crossref_primary_10_1080_13543784_2022_2113376
crossref_primary_10_1016_j_celrep_2023_113170
crossref_primary_10_1080_09540261_2020_1854194
crossref_primary_10_1111_bph_15847
crossref_primary_10_1016_j_neuron_2023_08_022
crossref_primary_10_1016_j_pharmthera_2020_107741
crossref_primary_10_1038_s41386_018_0124_7
crossref_primary_10_1021_acs_jmedchem_0c01193
crossref_primary_10_1038_s41386_023_01632_1
crossref_primary_10_1142_S0217979221501101
crossref_primary_10_1016_j_mcn_2022_103723
crossref_primary_10_1038_s41380_021_01093_2
crossref_primary_10_1016_j_jnutbio_2019_01_007
crossref_primary_10_3389_fphar_2020_586104
crossref_primary_10_1016_j_jep_2024_118638
crossref_primary_10_1038_s41386_022_01422_1
crossref_primary_10_1038_s41401_023_01201_8
crossref_primary_10_1038_s41380_023_02380_w
crossref_primary_10_1016_j_biopsych_2020_12_006
crossref_primary_10_1016_j_pbb_2020_172973
crossref_primary_10_1016_j_nbd_2020_105189
crossref_primary_10_1186_s13041_025_01189_8
crossref_primary_10_1093_lifemeta_load004
crossref_primary_10_1017_neu_2022_15
crossref_primary_10_1016_j_neuron_2020_03_011
crossref_primary_10_4103_1673_5374_297090
crossref_primary_10_3389_fnmol_2022_882396
crossref_primary_10_1016_j_celrep_2024_114556
crossref_primary_10_3389_fnins_2021_657714
crossref_primary_10_1038_s41380_023_01957_9
crossref_primary_10_1016_j_bbi_2024_08_009
crossref_primary_10_1016_j_gendis_2022_05_003
crossref_primary_10_1073_pnas_2409443121
crossref_primary_10_1097_FBP_0000000000000713
crossref_primary_10_3390_ph15101203
crossref_primary_10_1097_01_TPM_0001012648_29185_17
crossref_primary_10_1038_s41386_020_0652_9
crossref_primary_10_1089_neu_2022_0224
crossref_primary_10_1016_j_neuron_2024_09_012
crossref_primary_10_3758_s13415_023_01118_z
crossref_primary_10_1192_bjp_2018_46
crossref_primary_10_3389_fnbeh_2022_893465
crossref_primary_10_1186_s12888_022_03838_x
crossref_primary_10_1016_j_biopsych_2024_03_006
crossref_primary_10_7554_eLife_74998
crossref_primary_10_3389_fpsyt_2020_616501
crossref_primary_10_20900_jpbs_20190004
crossref_primary_10_1038_s41386_022_01294_5
crossref_primary_10_3389_fpsyt_2022_793677
crossref_primary_10_3390_ijms26020436
crossref_primary_10_1016_j_neuron_2024_09_009
crossref_primary_10_1021_acschemneuro_9b00669
crossref_primary_10_1007_s11071_023_08980_z
crossref_primary_10_1016_j_ynstr_2021_100298
crossref_primary_10_26599_SAB_2021_9060001
crossref_primary_10_26599_SAB_2021_9060002
crossref_primary_10_1073_pnas_2215590120
crossref_primary_10_1016_j_neuron_2019_09_005
crossref_primary_10_1038_s41593_023_01436_y
crossref_primary_10_1523_ENEURO_0092_24_2024
crossref_primary_10_1523_ENEURO_0482_20_2021
crossref_primary_10_1002_da_23238
crossref_primary_10_1016_j_biopha_2023_115545
crossref_primary_10_1038_s41386_025_02084_5
crossref_primary_10_1186_s12974_020_01786_5
crossref_primary_10_1088_2634_4386_ad139b
crossref_primary_10_1111_ejn_16252
crossref_primary_10_7554_eLife_65502
crossref_primary_10_1016_j_neuron_2025_02_021
crossref_primary_10_1142_S0129183123500754
crossref_primary_10_1016_j_expneurol_2023_114448
crossref_primary_10_3389_fnins_2018_00485
crossref_primary_10_1016_j_brainresbull_2018_10_004
crossref_primary_10_1523_JNEUROSCI_2521_20_2021
crossref_primary_10_1177_0269881118798617
crossref_primary_10_1111_pcn_12892
crossref_primary_10_2139_ssrn_3928508
crossref_primary_10_1016_j_bbr_2020_113028
crossref_primary_10_3390_ijms252413658
crossref_primary_10_1038_s41586_020_03047_0
crossref_primary_10_1146_annurev_clinpsy_072120_014126
crossref_primary_10_1080_07420528_2025_2455144
crossref_primary_10_1038_s41398_024_03199_x
crossref_primary_10_1176_appi_ajp_20230980
crossref_primary_10_1111_jcpt_13604
crossref_primary_10_7554_eLife_84693
crossref_primary_10_1177_2470547019842545
crossref_primary_10_3390_ijms21218123
crossref_primary_10_1016_j_bbr_2022_113996
crossref_primary_10_1007_s12035_019_1613_3
crossref_primary_10_1016_j_chaos_2022_112904
crossref_primary_10_1016_j_neuroimage_2019_06_015
crossref_primary_10_1038_s41398_021_01255_4
crossref_primary_10_1523_JNEUROSCI_0869_23_2023
crossref_primary_10_1016_j_brainres_2023_148649
crossref_primary_10_3390_molecules27020414
crossref_primary_10_1007_s11064_023_04076_7
crossref_primary_10_1016_j_conb_2023_102806
crossref_primary_10_30773_pi_2019_06_20
crossref_primary_10_1016_j_neuron_2019_01_037
crossref_primary_10_1073_pnas_1903334116
crossref_primary_10_1016_j_jad_2019_03_062
crossref_primary_10_1007_s11071_021_07057_z
crossref_primary_10_1038_s41467_024_51956_9
crossref_primary_10_1038_s41401_025_01515_9
crossref_primary_10_1007_s11481_024_10103_3
crossref_primary_10_1016_j_brainres_2022_148111
crossref_primary_10_12677_CES_2021_95221
crossref_primary_10_1038_s41386_025_02085_4
crossref_primary_10_1016_j_tins_2025_02_002
crossref_primary_10_3389_fnins_2023_1223145
crossref_primary_10_1016_j_celrep_2018_05_022
crossref_primary_10_1007_s11071_021_07079_7
crossref_primary_10_1016_j_neuron_2022_05_001
crossref_primary_10_1002_ptr_6812
crossref_primary_10_1016_j_talanta_2023_125131
crossref_primary_10_1088_1674_1056_acc450
Cites_doi 10.1111/j.1460-9568.2004.03240.x
10.1038/35005094
10.1038/nature17998
10.1016/S0006-8993(02)04048-9
10.1016/j.celrep.2016.07.064
10.1016/j.neuron.2015.08.028
10.1016/j.celrep.2017.02.077
10.1016/j.biopsych.2007.05.028
10.1038/nn.3145
10.1371/journal.pone.0016970
10.1006/nimg.1999.0455
10.1038/nm.4037
10.1073/pnas.1323920111
10.1523/JNEUROSCI.0167-14.2014
10.1046/j.1460-9568.1998.00210.x
10.1016/j.neubiorev.2005.03.019
10.1126/science.1240729
10.1038/nature05860
10.1152/physrev.00010.2012
10.1038/nature25752
10.1016/j.neuroscience.2010.10.047
10.1016/j.cell.2010.02.037
10.1038/nature08860
10.1152/jn.00922.2005
10.1002/9780470942390.mo110176
10.1038/nature10130
10.1038/nature09742
10.1152/jn.1993.70.1.158
10.1007/s00213-013-3024-x
10.1002/cne.23167
10.1146/annurev.neuro.20.1.185
10.1523/JNEUROSCI.4891-03.2004
10.1016/j.jpba.2017.02.035
10.1038/nature19845
10.1016/j.neuron.2009.02.001
10.1073/pnas.94.23.12699
10.3389/fncel.2013.00063
10.1038/nature16954
10.1002/jnr.20754
10.1038/nature11740
10.1016/S0166-2236(96)10070-9
10.1002/jps.2600710516
10.1146/annurev-neuro-070815-014106
10.1016/j.neuropharm.2005.03.018
10.1016/S0006-3223(99)00230-9
10.1016/j.bpj.2008.11.034
10.1111/j.1748-1716.1981.tb06937.x
10.1523/JNEUROSCI.2213-07.2007
10.1113/jphysiol.1989.sp017705
10.1016/j.jneumeth.2005.12.032
10.1111/j.1527-3458.2007.00009.x
10.1001/archpsyc.63.8.856
10.1126/science.1190287
10.1126/science.1250469
10.1016/j.neuron.2012.02.037
10.1038/nature11527
10.1016/S0022-3565(25)24034-4
ContentType Journal Article
Copyright Macmillan Publishers Limited, part of Springer Nature. All rights reserved. 2018
COPYRIGHT 2018 Nature Publishing Group
Copyright Nature Publishing Group Feb 15, 2018
Copyright_xml – notice: Macmillan Publishers Limited, part of Springer Nature. All rights reserved. 2018
– notice: COPYRIGHT 2018 Nature Publishing Group
– notice: Copyright Nature Publishing Group Feb 15, 2018
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QG
7QL
7QP
7QR
7RV
7SN
7SS
7ST
7T5
7TG
7TK
7TM
7TO
7U9
7X2
7X7
7XB
88A
88E
88G
88I
8AF
8AO
8C1
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
8G5
ABJCF
ABUWG
AEUYN
AFKRA
ARAPS
ATCPS
AZQEC
BBNVY
BEC
BENPR
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
D1I
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
GUQSH
H94
HCIFZ
K9.
KB.
KB0
KL.
L6V
LK8
M0K
M0S
M1P
M2M
M2O
M2P
M7N
M7P
M7S
MBDVC
NAPCQ
P5Z
P62
P64
PATMY
PCBAR
PDBOC
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PSYQQ
PTHSS
PYCSY
Q9U
R05
RC3
S0X
SOI
7X8
DOI 10.1038/nature25509
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Nursing & Allied Health Database
Ecology Abstracts
Entomology Abstracts (Full archive)
Environment Abstracts
Immunology Abstracts
Meteorological & Geoastrophysical Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Agricultural Science Collection
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Psychology Database (Alumni)
Science Database (Alumni Edition)
STEM Database
ProQuest Pharma Collection
Public Health Database
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Research Library
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
Agricultural & Environmental Science Collection
ProQuest Central Essentials
Biological Science Collection
eLibrary Curriculum
ProQuest Central
Technology Collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One
ProQuest Materials Science Collection
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
Research Library Prep
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Materials Science Database (Proquest)
Nursing & Allied Health Database (Alumni Edition)
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest Engineering Collection
ProQuest Biological Science Collection
Agricultural Science Database
ProQuest Health & Medical Collection
Medical Database
Psychology Database
Research Library
Science Database (via ProQuest SciTech Premium Collection)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biological Science Database
Engineering Database
Research Library (Corporate)
Nursing & Allied Health Premium
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Environmental Science Database
Earth, Atmospheric & Aquatic Science Database
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest One Psychology
Engineering collection
Environmental Science Collection
ProQuest Central Basic
University of Michigan
Genetics Abstracts
SIRS Editorial
Environment Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Agricultural Science Database
ProQuest One Psychology
Research Library Prep
ProQuest Central Student
Oncogenes and Growth Factors Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
elibrary
ProQuest AP Science
SciTech Premium Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Meteorological & Geoastrophysical Abstracts
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
Chemoreception Abstracts
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
Virology and AIDS Abstracts
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
Agricultural Science Collection
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Environmental Science Collection
Entomology Abstracts
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Environmental Science Database
ProQuest Nursing & Allied Health Source (Alumni)
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest One Academic (New)
University of Michigan
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
SIRS Editorial
Materials Science Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
Research Library (Alumni Edition)
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
Earth, Atmospheric & Aquatic Science Collection
ProQuest Health & Medical Research Collection
Genetics Abstracts
ProQuest Engineering Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Agricultural & Environmental Science Collection
AIDS and Cancer Research Abstracts
Materials Science Database
ProQuest Research Library
ProQuest Materials Science Collection
ProQuest Public Health
ProQuest Central Basic
ProQuest Science Journals
ProQuest Nursing & Allied Health Source
ProQuest Psychology Journals (Alumni)
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
ProQuest Psychology Journals
Animal Behavior Abstracts
Materials Science & Engineering Collection
Immunology Abstracts
Environment Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE
Agricultural Science Database


MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Physics
EISSN 1476-4687
EndPage 322
ExternalDocumentID A527624721
29446381
10_1038_nature25509
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
--Z
-DZ
-ET
-~X
.55
.CO
.XZ
07C
0R~
0WA
123
186
1OL
1VR
29M
2KS
2XV
39C
3V.
41X
53G
5RE
6TJ
70F
7RV
7X2
7X7
7XC
85S
88A
88E
88I
8AF
8AO
8C1
8CJ
8FE
8FG
8FH
8FI
8FJ
8G5
8R4
8R5
8WZ
97F
97L
A6W
A7Z
AAEEF
AAHBH
AAHTB
AAIKC
AAKAB
AAMNW
AASDW
AAYEP
AAYZH
AAZLF
ABDQB
ABFSI
ABIVO
ABJCF
ABJNI
ABLJU
ABOCM
ABPEJ
ABPPZ
ABUWG
ABWJO
ABZEH
ACBEA
ACBWK
ACGFO
ACGFS
ACGOD
ACIWK
ACKOT
ACMJI
ACNCT
ACPRK
ACWUS
ADBBV
ADFRT
ADUKH
AENEX
AEUYN
AFFNX
AFKRA
AFLOW
AFRAH
AFSHS
AGAYW
AGHSJ
AGHTU
AGNAY
AGSOS
AHMBA
AHSBF
AIDAL
AIDUJ
ALFFA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMTXH
ARAPS
ARMCB
ASPBG
ATCPS
ATWCN
AVWKF
AXYYD
AZFZN
AZQEC
BBNVY
BCU
BEC
BENPR
BGLVJ
BHPHI
BIN
BKEYQ
BKKNO
BKSAR
BPHCQ
BVXVI
CCPQU
CJ0
CS3
D1I
D1J
D1K
DU5
DWQXO
E.-
E.L
EAP
EBS
EE.
EJD
EMH
EPS
ESX
EX3
EXGXG
F5P
FEDTE
FQGFK
FSGXE
FYUFA
GNUQQ
GUQSH
HCIFZ
HG6
HMCUK
HVGLF
HZ~
I-F
IAO
ICQ
IEA
IEP
IGS
IH2
IHR
INH
INR
IOF
IPY
ISR
ITC
K6-
KB.
KOO
L6V
L7B
LK5
LK8
LSO
M0K
M0L
M1P
M2M
M2O
M2P
M7P
M7R
M7S
N9A
NAPCQ
NEJ
NEPJS
O9-
OBC
OES
OHH
OMK
OVD
P2P
P62
PATMY
PCBAR
PDBOC
PKN
PQQKQ
PROAC
PSQYO
PSYQQ
PTHSS
PYCSY
Q2X
R05
RND
RNS
RNT
RNTTT
RXW
S0X
SC5
SHXYY
SIXXV
SJFOW
SJN
SNYQT
SOJ
SV3
TAE
TAOOD
TBHMF
TDRGL
TEORI
TN5
TSG
TWZ
U5U
UIG
UKHRP
UKR
UMD
UQL
VQA
VVN
WH7
WOW
X7M
XIH
XKW
XZL
Y6R
YAE
YCJ
YFH
YIF
YIN
YNT
YOC
YQT
YR2
YR5
YXB
YZZ
Z5M
ZCA
ZE2
~02
~7V
~88
~KM
AARCD
AAYXX
ABFSG
ACMFV
ACSTC
ADXHL
AFANA
ALPWD
ATHPR
CITATION
PHGZM
PHGZT
CGR
CUY
CVF
ECM
EIF
NPM
AEIIB
PMFND
7QG
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7TG
7TK
7TM
7TO
7U9
7XB
8FD
8FK
C1K
FR3
H94
K9.
KL.
M7N
MBDVC
P64
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
PRINS
Q9U
RC3
SOI
7X8
ID FETCH-LOGICAL-c586t-841394f1830636c163197b89111ea07d783880a78a696842a333e83f620f8c463
IEDL.DBID 8FG
ISSN 0028-0836
1476-4687
IngestDate Tue Aug 05 09:15:30 EDT 2025
Fri Jul 25 08:56:59 EDT 2025
Tue Jun 17 21:00:00 EDT 2025
Thu Jun 12 23:36:53 EDT 2025
Tue Jun 10 15:34:31 EDT 2025
Tue Jun 10 20:11:48 EDT 2025
Fri Jun 27 04:47:03 EDT 2025
Thu Apr 03 06:57:59 EDT 2025
Thu Jul 03 08:46:23 EDT 2025
Thu Apr 24 22:58:05 EDT 2025
Fri Feb 21 02:37:07 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 7692
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c586t-841394f1830636c163197b89111ea07d783880a78a696842a333e83f620f8c463
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PMID 29446381
PQID 2003018688
PQPubID 40569
PageCount 6
ParticipantIDs proquest_miscellaneous_2002482043
proquest_journals_2003018688
gale_infotracmisc_A527624721
gale_infotracgeneralonefile_A527624721
gale_infotraccpiq_527624721
gale_infotracacademiconefile_A527624721
gale_incontextgauss_ISR_A527624721
pubmed_primary_29446381
crossref_primary_10_1038_nature25509
crossref_citationtrail_10_1038_nature25509
springer_journals_10_1038_nature25509
PublicationCentury 2000
PublicationDate 2018-02-15
PublicationDateYYYYMMDD 2018-02-15
PublicationDate_xml – month: 02
  year: 2018
  text: 2018-02-15
  day: 15
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationSubtitle International weekly journal of science
PublicationTitle Nature (London)
PublicationTitleAbbrev Nature
PublicationTitleAlternate Nature
PublicationYear 2018
Publisher Nature Publishing Group UK
Nature Publishing Group
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
References Stephenson-Jones (CR13) 2016; 539
Tian, Uchida (CR23) 2015; 87
Li (CR4) 2010; 329
Li (CR17) 2013; 341
Shumake, Edwards, Gonzalez-Lima (CR15) 2003; 963
Caiati, Cherubini (CR56) 2013; 7
Lin (CR57) 2006; 155
Maeng (CR3) 2008; 63
Zhu, Munhall, Shen, Johnson (CR30) 2005; 49
Mehrke, Zong, Flockerzi, Hofmann (CR41) 1994; 271
Zhu, Wienecke, Nachtrab, Chen (CR45) 2016; 530
Jhou, Fields, Baxter, Saper, Holland (CR22) 2009; 61
Autry (CR5) 2011; 475
Lammel (CR10) 2012; 491
Rateau, Ropert (CR53) 2006; 95
Weiss, Veh (CR26) 2011; 172
Lisman (CR33) 1997; 20
Gradinaru (CR46) 2010; 141
Gigliucci (CR36) 2013; 228
Fries, Roelfsema, Engel, König, Singer (CR58) 1997; 94
Li (CR16) 2011; 470
Gören, Onat (CR37) 2007; 13
Clements, Nimmo, Grant (CR7) 1982; 71
Zanos (CR6) 2016; 533
Matsumoto, Hikosaka (CR9) 2007; 447
Shabel, Proulx, Piriz, Malinow (CR50) 2014; 345
Stamatakis, Stuber (CR12) 2012; 15
McCormick, Bal (CR27) 1997; 20
CR40
Powell, Fernandes, Schalkwyk (CR44) 2012; 2
Cui, Yang, Ni, Dong, Cai, Foncelle, Ma, Sang, Tang, Li, Shen, Berry, Wu, Hu (CR34) 2018; 554
Bon, Paulsen, Greenfield (CR54) 1998; 10
Ren, Cao, Ye, Manji, Wang (CR48) 2014; 34
Tye (CR20) 2013; 493
Huguenard, Gutnick, Prince (CR32) 1993; 70
Henn, Vollmayr (CR35) 2005; 29
Lecca (CR18) 2016; 22
Rutishauser, Ross, Mamelak, Schuman (CR59) 2010; 464
Morris, Smith, Cowen, Friston, Dolan (CR14) 1999; 10
Homayoun, Moghaddam (CR8) 2007; 27
Lin, Lin, Steinbach, Tsien (CR47) 2009; 96
Shabel, Proulx, Trias, Murphy, Malinow (CR11) 2012; 74
Kim, Han (CR43) 2006; 83
Ambert (CR39) 2010; 2
Hasan (CR42) 2017; 139
Zhu, Munhall, Shen, Johnson (CR52) 2004; 19
Zarate (CR2) 2006; 63
Gideons, Kavalali, Monteggia (CR38) 2014; 111
Grillner, McClellan, Sigvardt, Wallén, Wilén (CR28) 1981; 113
Zhong, Yan (CR55) 2011; 6
Hu (CR21) 2016; 39
Cheong, Shin (CR31) 2013; 93
Valentinova, Mameli (CR51) 2016; 16
Coulter, Huguenard, Prince (CR49) 1989; 414
Berman (CR1) 2000; 47
Zhou (CR24) 2017; 18
Schiller, Major, Koester, Schiller (CR29) 2000; 404
Chang, Kim (CR25) 2004; 24
Aizawa, Kobayashi, Tanaka, Fukai, Okamoto (CR19) 2012; 520
Y Rateau (BFnature25509_CR53) 2006; 95
J Tian (BFnature25509_CR23) 2015; 87
H Hu (BFnature25509_CR21) 2016; 39
M Stephenson-Jones (BFnature25509_CR13) 2016; 539
SJ Shabel (BFnature25509_CR50) 2014; 345
K Li (BFnature25509_CR17) 2013; 341
DA McCormick (BFnature25509_CR27) 1997; 20
JA Clements (BFnature25509_CR7) 1982; 71
JY Lin (BFnature25509_CR47) 2009; 96
P Zhong (BFnature25509_CR55) 2011; 6
J Schiller (BFnature25509_CR29) 2000; 404
M Matsumoto (BFnature25509_CR9) 2007; 447
MZ Gören (BFnature25509_CR37) 2007; 13
SJ Shabel (BFnature25509_CR11) 2012; 74
KM Tye (BFnature25509_CR20) 2013; 493
V Gigliucci (BFnature25509_CR36) 2013; 228
DA Coulter (BFnature25509_CR49) 1989; 414
CL Bon (BFnature25509_CR54) 1998; 10
P Fries (BFnature25509_CR58) 1997; 94
N Ambert (BFnature25509_CR39) 2010; 2
AM Stamatakis (BFnature25509_CR12) 2012; 15
M Hasan (BFnature25509_CR42) 2017; 139
ZT Zhu (BFnature25509_CR52) 2004; 19
BFnature25509_CR40
P Zanos (BFnature25509_CR6) 2016; 533
SY Chang (BFnature25509_CR25) 2004; 24
JE Lisman (BFnature25509_CR33) 1997; 20
Yihui Cui (BFnature25509_CR34) 2018; 554
M Ren (BFnature25509_CR48) 2014; 34
V Gradinaru (BFnature25509_CR46) 2010; 141
L Lin (BFnature25509_CR57) 2006; 155
N Li (BFnature25509_CR4) 2010; 329
ZT Zhu (BFnature25509_CR30) 2005; 49
S Maeng (BFnature25509_CR3) 2008; 63
S Lammel (BFnature25509_CR10) 2012; 491
H Homayoun (BFnature25509_CR8) 2007; 27
K Valentinova (BFnature25509_CR51) 2016; 16
FA Henn (BFnature25509_CR35) 2005; 29
ES Gideons (BFnature25509_CR38) 2014; 111
RM Berman (BFnature25509_CR1) 2000; 47
J Shumake (BFnature25509_CR15) 2003; 963
H Aizawa (BFnature25509_CR19) 2012; 520
T Weiss (BFnature25509_CR26) 2011; 172
TR Powell (BFnature25509_CR44) 2012; 2
B Li (BFnature25509_CR16) 2011; 470
L Zhou (BFnature25509_CR24) 2017; 18
KS Kim (BFnature25509_CR43) 2006; 83
G Mehrke (BFnature25509_CR41) 1994; 271
AE Autry (BFnature25509_CR5) 2011; 475
Y Zhu (BFnature25509_CR45) 2016; 530
CA Zarate Jr (BFnature25509_CR2) 2006; 63
S Grillner (BFnature25509_CR28) 1981; 113
U Rutishauser (BFnature25509_CR59) 2010; 464
TC Jhou (BFnature25509_CR22) 2009; 61
JR Huguenard (BFnature25509_CR32) 1993; 70
E Cheong (BFnature25509_CR31) 2013; 93
S Lecca (BFnature25509_CR18) 2016; 22
JS Morris (BFnature25509_CR14) 1999; 10
MD Caiati (BFnature25509_CR56) 2013; 7
29446408 - Nature. 2018 Feb 15;554(7692):304-305
29491359 - Nat Rev Neurosci. 2018 Apr;19(4):181
References_xml – volume: 19
  start-page: 1296
  year: 2004
  end-page: 1304
  ident: CR52
  article-title: Calcium-dependent subthreshold oscillations determine bursting activity induced by -methyl- -aspartate in rat subthalamic neurons
  publication-title: Eur. J. Neurosci.
  doi: 10.1111/j.1460-9568.2004.03240.x
– volume: 404
  start-page: 285
  year: 2000
  end-page: 289
  ident: CR29
  article-title: NMDA spikes in basal dendrites of cortical pyramidal neurons
  publication-title: Nature
  doi: 10.1038/35005094
– volume: 533
  start-page: 481
  year: 2016
  end-page: 486
  ident: CR6
  article-title: NMDAR inhibition-independent antidepressant actions of ketamine metabolites
  publication-title: Nature
  doi: 10.1038/nature17998
– volume: 963
  start-page: 274
  year: 2003
  end-page: 281
  ident: CR15
  article-title: Opposite metabolic changes in the habenula and ventral tegmental area of a genetic model of helpless behavior
  publication-title: Brain Res.
  doi: 10.1016/S0006-8993(02)04048-9
– volume: 16
  start-page: 2298
  year: 2016
  end-page: 2307
  ident: CR51
  article-title: mGluR-LTD at excitatory and inhibitory synapses in the lateral habenula tunes neuronal output
  publication-title: Cell Reports
  doi: 10.1016/j.celrep.2016.07.064
– volume: 87
  start-page: 1304
  year: 2015
  end-page: 1316
  ident: CR23
  article-title: Habenula lesions reveal that multiple mechanisms underlie dopamine prediction errors
  publication-title: Neuron
  doi: 10.1016/j.neuron.2015.08.028
– volume: 18
  start-page: 3018
  year: 2017
  end-page: 3032
  ident: CR24
  article-title: Organization of functional long-range circuits controlling the activity of serotonergic neurons in the dorsal raphe nucleus
  publication-title: Cell Reports
  doi: 10.1016/j.celrep.2017.02.077
– volume: 63
  start-page: 349
  year: 2008
  end-page: 352
  ident: CR3
  article-title: Cellular mechanisms underlying the antidepressant effects of ketamine: role of α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid receptors
  publication-title: Biol. Psychiatry
  doi: 10.1016/j.biopsych.2007.05.028
– volume: 15
  start-page: 1105
  year: 2012
  end-page: 1107
  ident: CR12
  article-title: Activation of lateral habenula inputs to the ventral midbrain promotes behavioral avoidance
  publication-title: Nat. Neurosci.
  doi: 10.1038/nn.3145
– volume: 6
  start-page: e16970
  year: 2011
  ident: CR55
  article-title: Differential regulation of the excitability of prefrontal cortical fast-spiking interneurons and pyramidal neurons by serotonin and fluoxetine
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0016970
– volume: 10
  start-page: 163
  year: 1999
  end-page: 172
  ident: CR14
  article-title: Covariation of activity in habenula and dorsal raphé nuclei following tryptophan depletion
  publication-title: Neuroimage
  doi: 10.1006/nimg.1999.0455
– volume: 22
  start-page: 254
  year: 2016
  end-page: 261
  ident: CR18
  article-title: Rescue of GABAB and GIRK function in the lateral habenula by protein phosphatase 2A inhibition ameliorates depression-like phenotypes in mice
  publication-title: Nat. Med.
  doi: 10.1038/nm.4037
– volume: 111
  start-page: 8649
  year: 2014
  end-page: 8654
  ident: CR38
  article-title: Mechanisms underlying differential effectiveness of memantine and ketamine in rapid antidepressant responses
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1323920111
– volume: 34
  start-page: 6583
  year: 2014
  end-page: 6595
  ident: CR48
  article-title: Arc regulates experience-dependent persistent firing patterns in frontal cortex
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.0167-14.2014
– volume: 10
  start-page: 2009
  year: 1998
  end-page: 2015
  ident: CR54
  article-title: Association between the low threshold calcium spike and activation of NMDA receptors in guinea-pig substantia nigra pars compacta neurons
  publication-title: Eur. J. Neurosci.
  doi: 10.1046/j.1460-9568.1998.00210.x
– volume: 29
  start-page: 799
  year: 2005
  end-page: 804
  ident: CR35
  article-title: Stress models of depression: forming genetically vulnerable strains
  publication-title: Neurosci. Biobehav. Rev.
  doi: 10.1016/j.neubiorev.2005.03.019
– volume: 341
  start-page: 1016
  year: 2013
  end-page: 1020
  ident: CR17
  article-title: βCaMKII in lateral habenula mediates core symptoms of depression
  publication-title: Science
  doi: 10.1126/science.1240729
– volume: 447
  start-page: 1111
  year: 2007
  end-page: 1115
  ident: CR9
  article-title: Lateral habenula as a source of negative reward signals in dopamine neurons
  publication-title: Nature
  doi: 10.1038/nature05860
– volume: 93
  start-page: 961
  year: 2013
  end-page: 992
  ident: CR31
  article-title: T-type Ca channels in normal and abnormal brain functions
  publication-title: Physiol. Rev.
  doi: 10.1152/physrev.00010.2012
– volume: 554
  start-page: 323
  issue: 7692
  year: 2018
  end-page: 327
  ident: CR34
  article-title: Astroglial Kir4.1 in the lateral habenula drives neuronal bursts in depression
  publication-title: Nature
  doi: 10.1038/nature25752
– volume: 172
  start-page: 74
  year: 2011
  end-page: 93
  ident: CR26
  article-title: Morphological and electrophysiological characteristics of neurons within identified subnuclei of the lateral habenula in rat brain slices
  publication-title: Neuroscience
  doi: 10.1016/j.neuroscience.2010.10.047
– volume: 141
  start-page: 154
  year: 2010
  end-page: 165
  ident: CR46
  article-title: Molecular and cellular approaches for diversifying and extending optogenetics
  publication-title: Cell
  doi: 10.1016/j.cell.2010.02.037
– volume: 464
  start-page: 903
  year: 2010
  end-page: 907
  ident: CR59
  article-title: Human memory strength is predicted by theta-frequency phase-locking of single neurons
  publication-title: Nature
  doi: 10.1038/nature08860
– volume: 95
  start-page: 3073
  year: 2006
  end-page: 3085
  ident: CR53
  article-title: Expression of a functional hyperpolarization-activated current ( ) in the mouse nucleus reticularis thalami
  publication-title: J. Neurophysiol.
  doi: 10.1152/jn.00922.2005
– volume: 2
  start-page: 119
  year: 2012
  end-page: 127
  ident: CR44
  article-title: Depression-related behavioral tests
  publication-title: Curr. Protoc. Mouse Biol.
  doi: 10.1002/9780470942390.mo110176
– volume: 475
  start-page: 91
  year: 2011
  end-page: 95
  ident: CR5
  article-title: NMDA receptor blockade at rest triggers rapid behavioural antidepressant responses
  publication-title: Nature
  doi: 10.1038/nature10130
– volume: 470
  start-page: 535
  year: 2011
  end-page: 539
  ident: CR16
  article-title: Synaptic potentiation onto habenula neurons in the learned helplessness model of depression
  publication-title: Nature
  doi: 10.1038/nature09742
– volume: 70
  start-page: 158
  year: 1993
  end-page: 166
  ident: CR32
  article-title: Transient Ca currents in neurons isolated from rat lateral habenula
  publication-title: J. Neurophysiol.
  doi: 10.1152/jn.1993.70.1.158
– volume: 228
  start-page: 157
  year: 2013
  end-page: 166
  ident: CR36
  article-title: Ketamine elicits sustained antidepressant-like activity via a serotonin-dependent mechanism
  publication-title: Psychopharmacology (Berl.)
  doi: 10.1007/s00213-013-3024-x
– volume: 2
  start-page: 113
  year: 2010
  end-page: 125
  ident: CR39
  article-title: Computational studies of NMDA receptors: differential effects of neuronal activity on efficacy of competitive and non-competitive antagonists
  publication-title: Open Access Bioinformatics
– volume: 520
  start-page: 4051
  year: 2012
  end-page: 4066
  ident: CR19
  article-title: Molecular characterization of the subnuclei in rat habenula
  publication-title: J. Comp. Neurol.
  doi: 10.1002/cne.23167
– volume: 20
  start-page: 185
  year: 1997
  end-page: 215
  ident: CR27
  article-title: Sleep and arousal: thalamocortical mechanisms
  publication-title: Annu. Rev. Neurosci.
  doi: 10.1146/annurev.neuro.20.1.185
– volume: 24
  start-page: 2172
  year: 2004
  end-page: 2181
  ident: CR25
  article-title: Ionic mechanism of long-lasting discharges of action potentials triggered by membrane hyperpolarization in the medial lateral habenula
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.4891-03.2004
– volume: 139
  start-page: 87
  year: 2017
  end-page: 97
  ident: CR42
  article-title: Quantitative chiral and achiral determination of ketamine and its metabolites by LC-MS/MS in human serum, urine and fecal samples
  publication-title: J. Pharm. Biomed. Anal.
  doi: 10.1016/j.jpba.2017.02.035
– volume: 539
  start-page: 289
  year: 2016
  end-page: 293
  ident: CR13
  article-title: A basal ganglia circuit for evaluating action outcomes
  publication-title: Nature
  doi: 10.1038/nature19845
– volume: 61
  start-page: 786
  year: 2009
  end-page: 800
  ident: CR22
  article-title: The rostromedial tegmental nucleus (RMTg), a GABAergic afferent to midbrain dopamine neurons, encodes aversive stimuli and inhibits motor responses
  publication-title: Neuron
  doi: 10.1016/j.neuron.2009.02.001
– volume: 94
  start-page: 12699
  year: 1997
  end-page: 12704
  ident: CR58
  article-title: Synchronization of oscillatory responses in visual cortex correlates with perception in interocular rivalry
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.94.23.12699
– volume: 7
  start-page: 63
  year: 2013
  ident: CR56
  article-title: Fluoxetine impairs GABAergic signaling in hippocampal slices from neonatal rats
  publication-title: Front. Cell. Neurosci.
  doi: 10.3389/fncel.2013.00063
– volume: 530
  start-page: 219
  year: 2016
  end-page: 222
  ident: CR45
  article-title: A thalamic input to the nucleus accumbens mediates opiate dependence
  publication-title: Nature
  doi: 10.1038/nature16954
– volume: 83
  start-page: 497
  year: 2006
  end-page: 507
  ident: CR43
  article-title: Optimization of chronic stress paradigms using anxiety- and depression-like behavioral parameters
  publication-title: J. Neurosci. Res.
  doi: 10.1002/jnr.20754
– volume: 493
  start-page: 537
  year: 2013
  end-page: 541
  ident: CR20
  article-title: Dopamine neurons modulate neural encoding and expression of depression-related behaviour
  publication-title: Nature
  doi: 10.1038/nature11740
– volume: 20
  start-page: 38
  year: 1997
  end-page: 43
  ident: CR33
  article-title: Bursts as a unit of neural information: making unreliable synapses reliable
  publication-title: Trends Neurosci.
  doi: 10.1016/S0166-2236(96)10070-9
– volume: 71
  start-page: 539
  year: 1982
  end-page: 542
  ident: CR7
  article-title: Bioavailability, pharmacokinetics, and analgesic activity of ketamine in humans
  publication-title: J. Pharm. Sci.
  doi: 10.1002/jps.2600710516
– volume: 271
  start-page: 1483
  year: 1994
  end-page: 1488
  ident: CR41
  article-title: The Ca -channel blocker Ro 40-5967 blocks differently T-type and L-type Ca channels
  publication-title: J. Pharmacol. Exp. Ther.
– ident: CR40
– volume: 491
  start-page: 212
  year: 2012
  end-page: 217
  ident: CR10
  article-title: Input-specific control of reward and aversion in the ventral tegmental area
  publication-title: Nature
– volume: 39
  start-page: 297
  year: 2016
  end-page: 324
  ident: CR21
  article-title: Reward and aversion
  publication-title: Annu. Rev. Neurosci.
  doi: 10.1146/annurev-neuro-070815-014106
– volume: 49
  start-page: 317
  year: 2005
  end-page: 327
  ident: CR30
  article-title: NMDA enhances a depolarization-activated inward current in subthalamic neurons
  publication-title: Neuropharmacology
  doi: 10.1016/j.neuropharm.2005.03.018
– volume: 47
  start-page: 351
  year: 2000
  end-page: 354
  ident: CR1
  article-title: Antidepressant effects of ketamine in depressed patients
  publication-title: Biol. Psychiatry
  doi: 10.1016/S0006-3223(99)00230-9
– volume: 96
  start-page: 1803
  year: 2009
  end-page: 1814
  ident: CR47
  article-title: Characterization of engineered channelrhodopsin variants with improved properties and kinetics
  publication-title: Biophys. J.
  doi: 10.1016/j.bpj.2008.11.034
– volume: 113
  start-page: 549
  year: 1981
  end-page: 551
  ident: CR28
  article-title: Activation of NMDA-receptors elicits “fictive locomotion” in lamprey spinal cord
  publication-title: Acta Physiol. Scand.
  doi: 10.1111/j.1748-1716.1981.tb06937.x
– volume: 27
  start-page: 11496
  year: 2007
  end-page: 11500
  ident: CR8
  article-title: NMDA receptor hypofunction produces opposite effects on prefrontal cortex interneurons and pyramidal neurons
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.2213-07.2007
– volume: 414
  start-page: 587
  year: 1989
  end-page: 604
  ident: CR49
  article-title: Calcium currents in rat thalamocortical relay neurones: kinetic properties of the transient, low-threshold current
  publication-title: J. Physiol. (Lond.)
  doi: 10.1113/jphysiol.1989.sp017705
– volume: 155
  start-page: 28
  year: 2006
  end-page: 38
  ident: CR57
  article-title: Large-scale neural ensemble recording in the brains of freely behaving mice
  publication-title: J. Neurosci. Methods
  doi: 10.1016/j.jneumeth.2005.12.032
– volume: 13
  start-page: 224
  year: 2007
  end-page: 239
  ident: CR37
  article-title: Ethosuximide: from bench to bedside
  publication-title: CNS Drug Rev.
  doi: 10.1111/j.1527-3458.2007.00009.x
– volume: 63
  start-page: 856
  year: 2006
  end-page: 864
  ident: CR2
  article-title: A randomized trial of an -methyl- -aspartate antagonist in treatment-resistant major depression
  publication-title: Arch. Gen. Psychiatry
  doi: 10.1001/archpsyc.63.8.856
– volume: 329
  start-page: 959
  year: 2010
  end-page: 964
  ident: CR4
  article-title: mTOR-dependent synapse formation underlies the rapid antidepressant effects of NMDA antagonists
  publication-title: Science
  doi: 10.1126/science.1190287
– volume: 345
  start-page: 1494
  year: 2014
  end-page: 1498
  ident: CR50
  article-title: Mood regulation. GABA/glutamate co-release controls habenula output and is modified by antidepressant treatment
  publication-title: Science
  doi: 10.1126/science.1250469
– volume: 74
  start-page: 475
  year: 2012
  end-page: 481
  ident: CR11
  article-title: Input to the lateral habenula from the basal ganglia is excitatory, aversive, and suppressed by serotonin
  publication-title: Neuron
  doi: 10.1016/j.neuron.2012.02.037
– volume: 329
  start-page: 959
  year: 2010
  ident: BFnature25509_CR4
  publication-title: Science
  doi: 10.1126/science.1190287
– volume: 404
  start-page: 285
  year: 2000
  ident: BFnature25509_CR29
  publication-title: Nature
  doi: 10.1038/35005094
– volume: 7
  start-page: 63
  year: 2013
  ident: BFnature25509_CR56
  publication-title: Front. Cell. Neurosci.
  doi: 10.3389/fncel.2013.00063
– volume: 71
  start-page: 539
  year: 1982
  ident: BFnature25509_CR7
  publication-title: J. Pharm. Sci.
  doi: 10.1002/jps.2600710516
– volume: 414
  start-page: 587
  year: 1989
  ident: BFnature25509_CR49
  publication-title: J. Physiol. (Lond.)
  doi: 10.1113/jphysiol.1989.sp017705
– volume: 70
  start-page: 158
  year: 1993
  ident: BFnature25509_CR32
  publication-title: J. Neurophysiol.
  doi: 10.1152/jn.1993.70.1.158
– volume: 113
  start-page: 549
  year: 1981
  ident: BFnature25509_CR28
  publication-title: Acta Physiol. Scand.
  doi: 10.1111/j.1748-1716.1981.tb06937.x
– volume: 93
  start-page: 961
  year: 2013
  ident: BFnature25509_CR31
  publication-title: Physiol. Rev.
  doi: 10.1152/physrev.00010.2012
– volume: 10
  start-page: 2009
  year: 1998
  ident: BFnature25509_CR54
  publication-title: Eur. J. Neurosci.
  doi: 10.1046/j.1460-9568.1998.00210.x
– volume: 470
  start-page: 535
  year: 2011
  ident: BFnature25509_CR16
  publication-title: Nature
  doi: 10.1038/nature09742
– volume: 2
  start-page: 119
  year: 2012
  ident: BFnature25509_CR44
  publication-title: Curr. Protoc. Mouse Biol.
  doi: 10.1002/9780470942390.mo110176
– volume: 475
  start-page: 91
  year: 2011
  ident: BFnature25509_CR5
  publication-title: Nature
  doi: 10.1038/nature10130
– volume: 19
  start-page: 1296
  year: 2004
  ident: BFnature25509_CR52
  publication-title: Eur. J. Neurosci.
  doi: 10.1111/j.1460-9568.2004.03240.x
– volume: 47
  start-page: 351
  year: 2000
  ident: BFnature25509_CR1
  publication-title: Biol. Psychiatry
  doi: 10.1016/S0006-3223(99)00230-9
– volume: 74
  start-page: 475
  year: 2012
  ident: BFnature25509_CR11
  publication-title: Neuron
  doi: 10.1016/j.neuron.2012.02.037
– volume: 341
  start-page: 1016
  year: 2013
  ident: BFnature25509_CR17
  publication-title: Science
  doi: 10.1126/science.1240729
– volume: 34
  start-page: 6583
  year: 2014
  ident: BFnature25509_CR48
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.0167-14.2014
– volume: 63
  start-page: 349
  year: 2008
  ident: BFnature25509_CR3
  publication-title: Biol. Psychiatry
  doi: 10.1016/j.biopsych.2007.05.028
– volume: 520
  start-page: 4051
  year: 2012
  ident: BFnature25509_CR19
  publication-title: J. Comp. Neurol.
  doi: 10.1002/cne.23167
– ident: BFnature25509_CR40
– volume: 24
  start-page: 2172
  year: 2004
  ident: BFnature25509_CR25
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.4891-03.2004
– volume: 15
  start-page: 1105
  year: 2012
  ident: BFnature25509_CR12
  publication-title: Nat. Neurosci.
  doi: 10.1038/nn.3145
– volume: 39
  start-page: 297
  year: 2016
  ident: BFnature25509_CR21
  publication-title: Annu. Rev. Neurosci.
  doi: 10.1146/annurev-neuro-070815-014106
– volume: 95
  start-page: 3073
  year: 2006
  ident: BFnature25509_CR53
  publication-title: J. Neurophysiol.
  doi: 10.1152/jn.00922.2005
– volume: 63
  start-page: 856
  year: 2006
  ident: BFnature25509_CR2
  publication-title: Arch. Gen. Psychiatry
  doi: 10.1001/archpsyc.63.8.856
– volume: 491
  start-page: 212
  year: 2012
  ident: BFnature25509_CR10
  publication-title: Nature
  doi: 10.1038/nature11527
– volume: 87
  start-page: 1304
  year: 2015
  ident: BFnature25509_CR23
  publication-title: Neuron
  doi: 10.1016/j.neuron.2015.08.028
– volume: 2
  start-page: 113
  year: 2010
  ident: BFnature25509_CR39
  publication-title: Open Access Bioinformatics
– volume: 228
  start-page: 157
  year: 2013
  ident: BFnature25509_CR36
  publication-title: Psychopharmacology (Berl.)
  doi: 10.1007/s00213-013-3024-x
– volume: 29
  start-page: 799
  year: 2005
  ident: BFnature25509_CR35
  publication-title: Neurosci. Biobehav. Rev.
  doi: 10.1016/j.neubiorev.2005.03.019
– volume: 20
  start-page: 185
  year: 1997
  ident: BFnature25509_CR27
  publication-title: Annu. Rev. Neurosci.
  doi: 10.1146/annurev.neuro.20.1.185
– volume: 447
  start-page: 1111
  year: 2007
  ident: BFnature25509_CR9
  publication-title: Nature
  doi: 10.1038/nature05860
– volume: 18
  start-page: 3018
  year: 2017
  ident: BFnature25509_CR24
  publication-title: Cell Reports
  doi: 10.1016/j.celrep.2017.02.077
– volume: 22
  start-page: 254
  year: 2016
  ident: BFnature25509_CR18
  publication-title: Nat. Med.
  doi: 10.1038/nm.4037
– volume: 141
  start-page: 154
  year: 2010
  ident: BFnature25509_CR46
  publication-title: Cell
  doi: 10.1016/j.cell.2010.02.037
– volume: 49
  start-page: 317
  year: 2005
  ident: BFnature25509_CR30
  publication-title: Neuropharmacology
  doi: 10.1016/j.neuropharm.2005.03.018
– volume: 111
  start-page: 8649
  year: 2014
  ident: BFnature25509_CR38
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1323920111
– volume: 61
  start-page: 786
  year: 2009
  ident: BFnature25509_CR22
  publication-title: Neuron
  doi: 10.1016/j.neuron.2009.02.001
– volume: 20
  start-page: 38
  year: 1997
  ident: BFnature25509_CR33
  publication-title: Trends Neurosci.
  doi: 10.1016/S0166-2236(96)10070-9
– volume: 96
  start-page: 1803
  year: 2009
  ident: BFnature25509_CR47
  publication-title: Biophys. J.
  doi: 10.1016/j.bpj.2008.11.034
– volume: 345
  start-page: 1494
  year: 2014
  ident: BFnature25509_CR50
  publication-title: Science
  doi: 10.1126/science.1250469
– volume: 554
  start-page: 323
  issue: 7692
  year: 2018
  ident: BFnature25509_CR34
  publication-title: Nature
  doi: 10.1038/nature25752
– volume: 10
  start-page: 163
  year: 1999
  ident: BFnature25509_CR14
  publication-title: Neuroimage
  doi: 10.1006/nimg.1999.0455
– volume: 13
  start-page: 224
  year: 2007
  ident: BFnature25509_CR37
  publication-title: CNS Drug Rev.
  doi: 10.1111/j.1527-3458.2007.00009.x
– volume: 155
  start-page: 28
  year: 2006
  ident: BFnature25509_CR57
  publication-title: J. Neurosci. Methods
  doi: 10.1016/j.jneumeth.2005.12.032
– volume: 172
  start-page: 74
  year: 2011
  ident: BFnature25509_CR26
  publication-title: Neuroscience
  doi: 10.1016/j.neuroscience.2010.10.047
– volume: 27
  start-page: 11496
  year: 2007
  ident: BFnature25509_CR8
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.2213-07.2007
– volume: 16
  start-page: 2298
  year: 2016
  ident: BFnature25509_CR51
  publication-title: Cell Reports
  doi: 10.1016/j.celrep.2016.07.064
– volume: 963
  start-page: 274
  year: 2003
  ident: BFnature25509_CR15
  publication-title: Brain Res.
  doi: 10.1016/S0006-8993(02)04048-9
– volume: 533
  start-page: 481
  year: 2016
  ident: BFnature25509_CR6
  publication-title: Nature
  doi: 10.1038/nature17998
– volume: 539
  start-page: 289
  year: 2016
  ident: BFnature25509_CR13
  publication-title: Nature
  doi: 10.1038/nature19845
– volume: 139
  start-page: 87
  year: 2017
  ident: BFnature25509_CR42
  publication-title: J. Pharm. Biomed. Anal.
  doi: 10.1016/j.jpba.2017.02.035
– volume: 271
  start-page: 1483
  year: 1994
  ident: BFnature25509_CR41
  publication-title: J. Pharmacol. Exp. Ther.
  doi: 10.1016/S0022-3565(25)24034-4
– volume: 6
  start-page: e16970
  year: 2011
  ident: BFnature25509_CR55
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0016970
– volume: 464
  start-page: 903
  year: 2010
  ident: BFnature25509_CR59
  publication-title: Nature
  doi: 10.1038/nature08860
– volume: 493
  start-page: 537
  year: 2013
  ident: BFnature25509_CR20
  publication-title: Nature
  doi: 10.1038/nature11740
– volume: 94
  start-page: 12699
  year: 1997
  ident: BFnature25509_CR58
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.94.23.12699
– volume: 530
  start-page: 219
  year: 2016
  ident: BFnature25509_CR45
  publication-title: Nature
  doi: 10.1038/nature16954
– volume: 83
  start-page: 497
  year: 2006
  ident: BFnature25509_CR43
  publication-title: J. Neurosci. Res.
  doi: 10.1002/jnr.20754
– reference: 29446408 - Nature. 2018 Feb 15;554(7692):304-305
– reference: 29491359 - Nat Rev Neurosci. 2018 Apr;19(4):181
SSID ssj0005174
Score 2.6917522
Snippet The N -methyl- d -aspartate receptor (NMDAR) antagonist ketamine has attracted enormous interest in mental health research owing to its rapid antidepressant...
The N-methyl-d-aspartate receptor (NMDAR) antagonist ketamine has attracted enormous interest in mental health research owing to its rapid antidepressant...
SourceID proquest
gale
pubmed
crossref
springer
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 317
SubjectTerms 13
42/41
631/378/1457
631/378/1689/1414
631/378/2586
64
64/60
64/86
9/30
9/74
Action Potentials - drug effects
Affect - drug effects
Anhedonia - drug effects
Animal models
Animals
Antidepressants
Antidepressive Agents - administration & dosage
Antidepressive Agents - pharmacology
Antidepressive Agents - therapeutic use
Bursting
Calcium Channel Blockers - pharmacology
Calcium Channel Blockers - therapeutic use
Calcium channels
Calcium channels (T-type)
Calcium channels (voltage-gated)
Calcium Channels - metabolism
Depression (Mood disorder)
Depression - drug therapy
Disease Models, Animal
Firing pattern
Glutamate receptors
Habenula
Habenula - drug effects
Habenula - metabolism
Habenula - pathology
Habenula - radiation effects
Hedonic response
Humanities and Social Sciences
Ketamine
Ketamine - administration & dosage
Ketamine - pharmacology
Ketamine - therapeutic use
Luteinizing hormone
Male
Mental depression
Mental disorders
Mental health
Mice
Mood
multidisciplinary
N-Methyl-D-aspartic acid receptors
Neurons
Neurons - drug effects
Neurons - metabolism
Pharmacology
Physiological aspects
Pineal gland
Rats
Rats, Sprague-Dawley
Receptors, N-Methyl-D-Aspartate - antagonists & inhibitors
Receptors, N-Methyl-D-Aspartate - metabolism
Reinforcement
Reward
Rodents
Science
Synchronism
Synchronization
Theta Rhythm - drug effects
Title Ketamine blocks bursting in the lateral habenula to rapidly relieve depression
URI https://link.springer.com/article/10.1038/nature25509
https://www.ncbi.nlm.nih.gov/pubmed/29446381
https://www.proquest.com/docview/2003018688
https://www.proquest.com/docview/2002482043
Volume 554
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB7RVkhcEC2v0LIyqLwqRU3iPJwTKlWXAmKFCpX2FjmOU1aEZLvJIvHvmUm8j6xWXHLxxInG9sxn-_NngGNfYGSUubJDpbTtS45xMJeBTUv8jp-pNGxFfb6Owstr__M4GJsFt9rQKhcxsQ3UWaVojfzUa8G7CIV4P7216dYo2l01V2jswJ6LmYYoXWL4cUXx2FBhNufzHC5OO9lMxNPERFzLSJtxeS0xbeyUtglo-ADuG-TIzrqm3oc7ujyAuy2DU9UHsG9Gac3eGinpdw9h9EU38jcCSZZi0vpVM3RhTURnNikZQj9WSDqBXLCfMtXlvJCsqdhMTidZ8ZfNNOLTP5otybLlI7geXvw4v7TNDQq2CkTY2NQQsZ_jsEUkEirEXm4cpYICnJZOlEWCtGBkJCRp5Pie5JxrwfPQc3Kh_JA_ht2yKvVTYK7LIx3JAPGM5_M0klq4KvaEk8s4y6S04GThxUQZeXG65aJI2m1uLpI1l1twvDSedqoa281eUnMkpFNREhHmRs7rOvn0_So5CzwM4z7OXy14Y4zyCj-opDlXgL9N0lY9y8OepZpObpO10te90puurbZVc9QzxPGo-sWLzpOYeFAnq95rwYtlMb1JHLdSV_PWxvMFnVW24EnX6ZbO8WKctiO4suDVoheuKt_iuWf__4lDuIfATxD73A2OYLeZzfVzBFdNOoCdaBzhU5y7g3Y0DWDvw8Xo29U_NfMigQ
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VIgQXRMvLtMCCWihIVm3v2l4fEKqAkJA2B2il3sx6vS4RwUnjBNQ_xW9kxo-8FHHrecfr1c7rs3fmW4A9ITEyqkzbgdbGFopjHMyUb9MvfkekOglKUp-TXtA-E1_O_fMN-Nv0wlBZZRMTy0CdDjX9Iz_0SvAuAynfjy5tujWKTlebKzQqs-iaqz_4yVa863xE_e57XuvT6Ye2Xd8qYGtfBhObFheJDE0Zs3OgEY-4UZhIcnqjnDANJfGjqFAq4o0RnuKcG8mzwHMyqUXAcd4bcFNwzOTUmd76PC8pWWF9rvsBHS4PK5pOxO9U-biQAVfzwEIiXDmZLRNe6x7crZEqO6pMaws2TL4Nt8qKUV1sw1YdFQp2UFNXv7kPva6ZqF8IXFmCSfJnwVBlBRVWs37OEGqygaKO5wH7oRKTTweKTYZsrEb9dHDFxgbx8G_DZsW5-QM4u5a9fQib-TA3j4G5Lg9NqHzET57gSaiMdHXkSSdTUZoqZcHbZhdjXdOZ060ag7g8VucyXthyC_ZmwqOKxWO92EtSR0y8GDkV3lyoaVHEnW9f4yPfw7Qh8HvZgte1UDbEF2pV9zHgsolKa0lyZ0lSj_qX8cLoq6XRi0pX66bZXRJE_9fLw43xxHX8KeK5t1jwYjZMT1JNXW6G01LGE5J6oy14VBndbHO8SKA2JE6-31jhfPI1O_fk_4t4DrfbpyfH8XGn192BOwg6JVW-u_4ubE7GU_MUgd0keVZ6E4Pv1-2-_wAJtlf7
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-NIdBeEBsfCxtg0MaXFC2JncR9QGjaqFYKFQIm7S04jjMqSto1LWj_Gn8dd_nokqribc--utbd-e7n-O5ngD0hMTKqVNuB1sYWimMcTJVv0yd-RyQ6DgpSn0-D4ORUfDjzz9bgb90LQ2WVdUwsAnUy1vSN_MArwLsM8MCWVmURn4-77yYXNr0gRTet9XMapYv0zeUfPL7lb3vHaOt9z-u-_3Z0YlcvDNjal8HMpoV2RIpujZk60IhN3E4YSwoARjlhEkriSlGhVMQhIzzFOTeSp4HnpFKLgOO8N-BmyFGQutSPGuUlSwzQVW-gw-VBSdmJWJ6qIBvZcDknNJLi0i1tkfy6d-FOhVrZYelmm7Bmsi24VVSP6nwLNqsIkbNXFY3163sw6JuZ-oUglsWYMH_mDM2XU5E1G2YMYScbKep-HrEfKjbZfKTYbMymajJMRpdsahAb_zZsUaib3YfTa9HtA1jPxpnZBua6PDSh8hFLeYLHoTLS1R1POqnqJIlSFryptRjpitqcXtgYRcUVO5dRQ-UW7C2EJyWjx2qx52SOiDgyMvK2czXP86j39Ut06HuYQgSenS14WQmlY_xDraqeBlw20Wq1JHdaknoyvIgaoy9ao-elrVZNs9sSxFig28O180RVLMqjq51jwbPFMP2S6usyM54XMp6Q1CdtwcPS6RbK8ToCrSFx8v3aC68mX6G5R_9fxFO4jRs3-tgb9HdgA_GnpCJ419-F9dl0bh4jxpvFT4rNxOD7de_efwygW_w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ketamine+blocks+bursting+in+the+lateral+habenula+to+rapidly+relieve+depression&rft.jtitle=Nature+%28London%29&rft.au=Yang%2C+Yan&rft.au=Cui%2C+Yihui&rft.au=Sang%2C+Kangning&rft.au=Dong%2C+Yiyan&rft.date=2018-02-15&rft.pub=Nature+Publishing+Group+UK&rft.issn=0028-0836&rft.eissn=1476-4687&rft.volume=554&rft.issue=7692&rft.spage=317&rft.epage=322&rft_id=info:doi/10.1038%2Fnature25509&rft.externalDocID=10_1038_nature25509
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0028-0836&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0028-0836&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0028-0836&client=summon