Global tractography of multi-shell diffusion-weighted imaging data using a multi-tissue model
Diffusion-weighted imaging and tractography provide a unique, non-invasive technique to study the macroscopic structure and connectivity of brain white matter in vivo. Global tractography methods aim at reconstructing the full-brain fiber configuration that best explains the measured data, based on...
Saved in:
Published in | NeuroImage (Orlando, Fla.) Vol. 123; pp. 89 - 101 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
01.12.2015
Elsevier Limited |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Diffusion-weighted imaging and tractography provide a unique, non-invasive technique to study the macroscopic structure and connectivity of brain white matter in vivo. Global tractography methods aim at reconstructing the full-brain fiber configuration that best explains the measured data, based on a generative signal model. In this work, we incorporate a multi-shell multi-tissue model based on spherical convolution, into a global tractography framework, which allows to deal with partial volume effects. The required tissue response functions can be estimated from and hence calibrated to the data. The resulting track reconstruction is quantitatively related to the apparent fiber density in the data. In addition, the fiber orientation distribution for white matter and the volume fractions of gray matter and cerebrospinal fluid are produced as ancillary results. Validation results on simulated data demonstrate that this data-driven approach improves over state-of-the-art streamline and global tracking methods, particularly in the valid connection rate. Results in human brain data correspond to known white matter anatomy and show improved modeling of partial voluming. This work is an important step toward detecting and quantifying white matter changes and connectivity in healthy subjects and patients.
[Display omitted]
•We introduce a data-driven approach to global tractography.•We rely on multi-shell tissue response functions, estimated from the data.•In silico results show increased precision of connectivity and bundle metrics.•In vivo results reconstruct known WM anatomy and CSF and GM volume fractions. |
---|---|
AbstractList | Diffusion-weighted imaging and tractography provide a unique, non-invasive technique to study the macroscopic structure and connectivity of brain white matter in vivo. Global tractography methods aim at reconstructing the full-brain fiber configuration that best explains the measured data, based on a generative signal model. In this work, we incorporate a multi-shell multi-tissue model based on spherical convolution, into a global tractography framework, which allows to deal with partial volume effects. The required tissue response functions can be estimated from and hence calibrated to the data. The resulting track reconstruction is quantitatively related to the apparent fiber density in the data. In addition, the fiber orientation distribution for white matter and the volume fractions of gray matter and cerebrospinal fluid are produced as ancillary results. Validation results on simulated data demonstrate that this data-driven approach improves over state-of-the-art streamline and global tracking methods, particularly in the valid connection rate. Results in human brain data correspond to known white matter anatomy and show improved modeling of partial voluming. This work is an important step toward detecting and quantifying white matter changes and connectivity in healthy subjects and patients. Diffusion-weighted imaging and tractography provide a unique, non-invasive technique to study the macroscopic structure and connectivity of brain white matter in vivo. Global tractography methods aim at reconstructing the full-brain fiber configuration that best explains the measured data, based on a generative signal model. In this work, we incorporate a multi-shell multi-tissue model based on spherical convolution, into a global tractography framework, which allows to deal with partial volume effects. The required tissue response functions can be estimated from and hence calibrated to the data. The resulting track reconstruction is quantitatively related to the apparent fiber density in the data. In addition, the fiber orientation distribution for white matter and the volume fractions of gray matter and cerebrospinal fluid are produced as ancillary results. Validation results on simulated data demonstrate that this data-driven approach improves over state-of-the-art streamline and global tracking methods, particularly in the valid connection rate. Results in human brain data correspond to known white matter anatomy and show improved modeling of partial voluming. This work is an important step toward detecting and quantifying white matter changes and connectivity in healthy subjects and patients.Diffusion-weighted imaging and tractography provide a unique, non-invasive technique to study the macroscopic structure and connectivity of brain white matter in vivo. Global tractography methods aim at reconstructing the full-brain fiber configuration that best explains the measured data, based on a generative signal model. In this work, we incorporate a multi-shell multi-tissue model based on spherical convolution, into a global tractography framework, which allows to deal with partial volume effects. The required tissue response functions can be estimated from and hence calibrated to the data. The resulting track reconstruction is quantitatively related to the apparent fiber density in the data. In addition, the fiber orientation distribution for white matter and the volume fractions of gray matter and cerebrospinal fluid are produced as ancillary results. Validation results on simulated data demonstrate that this data-driven approach improves over state-of-the-art streamline and global tracking methods, particularly in the valid connection rate. Results in human brain data correspond to known white matter anatomy and show improved modeling of partial voluming. This work is an important step toward detecting and quantifying white matter changes and connectivity in healthy subjects and patients. Diffusion-weighted imaging and tractography provide a unique, non-invasive technique to study the macroscopic structure and connectivity of brain white matter in vivo. Global tractography methods aim at reconstructing the full-brain fiber configuration that best explains the measured data, based on a generative signal model. In this work, we incorporate a multi-shell multi-tissue model based on spherical convolution, into a global tractography framework, which allows to deal with partial volume effects. The required tissue response functions can be estimated from and hence calibrated to the data. The resulting track reconstruction is quantitatively related to the apparent fiber density in the data. In addition, the fiber orientation distribution for white matter and the volume fractions of gray matter and cerebrospinal fluid are produced as ancillary results. Validation results on simulated data demonstrate that this data-driven approach improves over state-of-the-art streamline and global tracking methods, particularly in the valid connection rate. Results in human brain data correspond to known white matter anatomy and show improved modeling of partial voluming. This work is an important step toward detecting and quantifying white matter changes and connectivity in healthy subjects and patients. [Display omitted] •We introduce a data-driven approach to global tractography.•We rely on multi-shell tissue response functions, estimated from the data.•In silico results show increased precision of connectivity and bundle metrics.•In vivo results reconstruct known WM anatomy and CSF and GM volume fractions. |
Author | Sunaert, Stefan Reisert, Marco Suetens, Paul Christiaens, Daan Dhollander, Thijs Maes, Frederik |
Author_xml | – sequence: 1 givenname: Daan surname: Christiaens fullname: Christiaens, Daan email: daan.christiaens@esat.kuleuven.be organization: KU Leuven, Department of Electrical Engineering (ESAT), Processing of Speech and Images (PSI), Medical Image Computing, Leuven, Belgium – sequence: 2 givenname: Marco surname: Reisert fullname: Reisert, Marco organization: University of Freiburg Medical Center, Department of Radiology, Medical Physics, Freiburg, Germany – sequence: 3 givenname: Thijs surname: Dhollander fullname: Dhollander, Thijs organization: KU Leuven, Department of Electrical Engineering (ESAT), Processing of Speech and Images (PSI), Medical Image Computing, Leuven, Belgium – sequence: 4 givenname: Stefan surname: Sunaert fullname: Sunaert, Stefan organization: KU Leuven, Department of Imaging & Pathology, Translational MRI, Leuven, Belgium – sequence: 5 givenname: Paul surname: Suetens fullname: Suetens, Paul organization: KU Leuven, Department of Electrical Engineering (ESAT), Processing of Speech and Images (PSI), Medical Image Computing, Leuven, Belgium – sequence: 6 givenname: Frederik surname: Maes fullname: Maes, Frederik organization: KU Leuven, Department of Electrical Engineering (ESAT), Processing of Speech and Images (PSI), Medical Image Computing, Leuven, Belgium |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/26272729$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkUuLFDEUhYOMOA_9C1Lgxk2VeVSqko3oDM6MMOBGlxJSya3utKlKm6SU_vem6R6EXjVZJJDvnnvvOdfoYg4zIFQR3BBMug-bZoYlBjfpFTQUE95g0WAsXqArgiWvJe_pxf7NWS0IkZfoOqUNxliSVrxCl7SjfTnyCv188GHQvspRmxxWUW_XuyqM1bT47Oq0Bu8r68ZxSS7M9V9wq3UGW-07u3lVWZ11Vf7KUx9rsktpgWoKFvxr9HLUPsGb432Dftx_-X73WD99e_h69_mpNlx0ue4GY7Q1eBQMBsYHKdoe286OrNVjO4Dl1FpalhkwaSVIy_nAtOzbsQXTc8lu0PuD7jaG3wukrCaXTJldzxCWpEjPqGBd25EzUCpomYqzgr47QTdhiXNZ5EBJLFtaqLdHahkmsGobizlxp549LsDHA2BiSCnCqIzLOhc_i-nOK4LVPlS1Uf9DVftQFRaqhFoExInAc48zSm8PpVDc_-MgqmQczAasi2CyssGdI_LpRMR4Nzuj_S_YnSfxD6nX2Sw |
CitedBy_id | crossref_primary_10_1109_TMI_2018_2855736 crossref_primary_10_1162_netn_a_00049 crossref_primary_10_1016_j_pnpbp_2020_110037 crossref_primary_10_1016_j_bbi_2022_02_017 crossref_primary_10_1002_nbm_3805 crossref_primary_10_1038_s41467_021_21732_0 crossref_primary_10_1002_hbm_24579 crossref_primary_10_3389_fnagi_2019_00113 crossref_primary_10_1038_s41467_017_01285_x crossref_primary_10_1016_j_neuroimage_2018_03_058 crossref_primary_10_1002_advs_202406835 crossref_primary_10_1016_j_neuroimage_2022_119199 crossref_primary_10_1016_j_neuroimage_2023_120481 crossref_primary_10_1016_j_neuroimage_2019_116405 crossref_primary_10_3389_fphy_2017_00061 crossref_primary_10_1007_s10334_022_01033_3 crossref_primary_10_1002_mp_13555 crossref_primary_10_1007_s00429_022_02555_1 crossref_primary_10_1038_s41598_020_78284_4 crossref_primary_10_1002_nbm_4607 crossref_primary_10_20538_1682_0363_2021_2_191_201 crossref_primary_10_7554_eLife_64694 crossref_primary_10_1002_nbm_4605 crossref_primary_10_3390_brainsci14040349 crossref_primary_10_1002_jmri_27188 crossref_primary_10_1007_s00723_018_1044_8 crossref_primary_10_1038_s41467_022_30892_6 crossref_primary_10_1016_j_neuroimage_2019_116137 crossref_primary_10_1109_TNSE_2018_2878487 crossref_primary_10_3389_fnins_2016_00247 crossref_primary_10_3390_brainsci10060385 crossref_primary_10_1016_j_neuroimage_2022_119029 crossref_primary_10_1016_j_neuroimage_2018_07_068 crossref_primary_10_1002_hbm_24917 crossref_primary_10_1109_TMI_2018_2873736 crossref_primary_10_1162_netn_a_00382 crossref_primary_10_1016_j_neuroimage_2020_117206 crossref_primary_10_1016_j_neuroimage_2020_117201 crossref_primary_10_1007_s00429_019_02012_6 crossref_primary_10_1016_j_neuroimage_2021_118651 crossref_primary_10_1162_NECO_a_00896 crossref_primary_10_1038_s41467_018_04614_w crossref_primary_10_3389_fnins_2024_1403804 crossref_primary_10_1016_j_neuroimage_2018_06_027 crossref_primary_10_1016_j_neuroimage_2019_05_005 crossref_primary_10_1016_j_neuroimage_2018_01_086 crossref_primary_10_1016_j_neuroimage_2020_117429 crossref_primary_10_1016_j_heliyon_2023_e23138 crossref_primary_10_7554_eLife_40766 crossref_primary_10_1007_s00234_024_03341_y crossref_primary_10_1371_journal_pone_0168864 crossref_primary_10_1093_brain_awx245 crossref_primary_10_1002_hbm_70041 crossref_primary_10_1016_j_brs_2022_09_011 crossref_primary_10_1016_j_nicl_2019_102160 crossref_primary_10_1016_j_neuroimage_2019_116439 crossref_primary_10_3390_brainsci8020023 crossref_primary_10_1016_j_neuroimage_2022_119600 crossref_primary_10_1093_jmicro_dfv371 crossref_primary_10_1016_j_neuroimage_2022_119327 crossref_primary_10_1093_jnen_nlae069 crossref_primary_10_1038_mp_2017_92 crossref_primary_10_1016_j_neuroimage_2021_118870 crossref_primary_10_1109_TMI_2016_2557580 crossref_primary_10_1038_s41598_022_15083_z crossref_primary_10_1016_j_neuroimage_2023_120288 crossref_primary_10_1073_pnas_2116673119 crossref_primary_10_1016_j_neuroimage_2016_10_040 crossref_primary_10_1186_s12993_024_00228_z crossref_primary_10_1111_ejn_16490 crossref_primary_10_1162_netn_a_00072 crossref_primary_10_7554_eLife_83232 crossref_primary_10_1093_neuros_nyy538 crossref_primary_10_1016_j_neuroimage_2024_120534 crossref_primary_10_1016_j_dcn_2020_100788 crossref_primary_10_1038_s41380_022_01761_x crossref_primary_10_1016_j_neuroimage_2023_120212 crossref_primary_10_1002_nbm_3785 crossref_primary_10_1016_j_neuroimage_2020_116948 crossref_primary_10_1007_s00429_018_1628_y crossref_primary_10_1038_s41593_024_01868_0 crossref_primary_10_1016_j_neuroimage_2019_02_039 crossref_primary_10_1002_hbm_70019 crossref_primary_10_1002_mrm_28604 crossref_primary_10_1016_j_neuroimage_2020_116673 crossref_primary_10_1186_s10194_024_01806_2 crossref_primary_10_1155_2018_8643871 crossref_primary_10_3389_fninf_2016_00025 crossref_primary_10_1093_braincomms_fcad040 crossref_primary_10_1016_j_neuroimage_2022_119299 crossref_primary_10_1214_22_AOAS1633 crossref_primary_10_1016_j_neuroimage_2018_11_018 crossref_primary_10_1162_netn_a_00330 crossref_primary_10_3389_fnins_2019_00536 crossref_primary_10_1016_j_neuroimage_2016_09_058 crossref_primary_10_1007_s12021_019_09425_y crossref_primary_10_1016_j_jneumeth_2021_109099 crossref_primary_10_1038_s41597_022_01682_y crossref_primary_10_1007_s00429_020_02211_6 crossref_primary_10_1016_j_pnmrs_2019_03_001 |
Cites_doi | 10.3414/ME11-02-0031 10.1016/j.neuroimage.2014.07.061 10.1006/nimg.2000.0607 10.1016/j.mri.2013.12.001 10.1016/S1053-8119(03)00336-7 10.1148/radiology.161.2.3763909 10.1002/mrm.21749 10.1109/TPAMI.2008.277 10.1016/j.neuroimage.2013.04.127 10.1371/journal.pcbi.0020095 10.1002/mrm.10609 10.1016/j.neuroimage.2014.10.004 10.1109/42.906424 10.1016/j.neuroimage.2013.05.041 10.1002/nbm.781 10.1016/j.neuroimage.2011.10.045 10.1016/j.neuroimage.2013.05.055 10.1002/nbm.780 10.1002/ima.22005 10.1002/mrm.10268 10.1371/journal.pcbi.0010042 10.1016/j.neuroimage.2014.04.074 10.3389/fneur.2014.00232 10.1002/mrm.22365 10.1016/j.neuroimage.2011.09.081 10.1093/cercor/10.2.127 10.1371/journal.pone.0014832 10.1016/S0896-6273(02)00679-7 10.1016/j.neuroimage.2004.07.051 10.1002/nbm.782 10.1093/biomet/82.4.711 10.1002/mrm.1910340618 10.1016/j.neuroimage.2012.06.081 10.1002/mrm.22924 10.1016/j.media.2013.03.009 10.1016/j.neuroimage.2007.02.016 10.1016/j.neuroimage.2010.09.016 10.1016/j.neuroimage.2012.06.005 10.1089/brain.2011.0033 10.1016/j.neuroimage.2013.05.057 10.1016/j.neuroimage.2013.04.009 10.1109/TMI.2008.2004424 10.1002/hbm.22080 10.1109/TMI.2011.2112769 10.1016/j.neuroimage.2013.12.047 10.1016/S0006-3495(94)80775-1 10.1002/hbm.22099 10.1016/j.neuroimage.2012.11.049 |
ContentType | Journal Article |
Copyright | 2015 Elsevier Inc. Copyright © 2015 Elsevier Inc. All rights reserved. Copyright Elsevier Limited Dec 1, 2015 |
Copyright_xml | – notice: 2015 Elsevier Inc. – notice: Copyright © 2015 Elsevier Inc. All rights reserved. – notice: Copyright Elsevier Limited Dec 1, 2015 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7TK 7X7 7XB 88E 88G 8AO 8FD 8FE 8FH 8FI 8FJ 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2M M7P P64 PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PSYQQ Q9U RC3 7X8 7QO |
DOI | 10.1016/j.neuroimage.2015.08.008 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Neurosciences Abstracts ProQuest Health & Medical ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Psychology Database (Alumni) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Database ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student ProQuest SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Medical Database Psychology Database Biological Science Database Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest One Psychology ProQuest Central Basic Genetics Abstracts MEDLINE - Academic Biotechnology Research Abstracts |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest One Psychology ProQuest Central Student Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Health & Medical Research Collection Genetics Abstracts Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Biological Science Collection ProQuest Central Basic ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Psychology Journals (Alumni) Biological Science Database ProQuest SciTech Collection Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest Medical Library ProQuest Psychology Journals ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic Biotechnology Research Abstracts |
DatabaseTitleList | ProQuest One Psychology MEDLINE - Academic MEDLINE Engineering Research Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1095-9572 |
EndPage | 101 |
ExternalDocumentID | 3851726251 26272729 10_1016_j_neuroimage_2015_08_008 S1053811915007168 |
Genre | Journal Article |
GroupedDBID | --- --K --M .1- .FO .~1 0R~ 123 1B1 1RT 1~. 1~5 29N 4.4 457 4G. 53G 5RE 5VS 7-5 71M 7X7 88E 8AO 8FE 8FH 8FI 8FJ 8P~ 9JM AABNK AAEDT AAEDW AAFWJ AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAXKI AAXLA AAXUO AAYWO ABBQC ABCQJ ABFNM ABFRF ABIVO ABJNI ABMAC ABMZM ABUWG ABXDB ACDAQ ACGFO ACGFS ACIEU ACPRK ACRLP ACRPL ACVFH ADBBV ADCNI ADEZE ADFGL ADFRT ADMUD ADNMO ADVLN ADXHL AEBSH AEFWE AEIPS AEKER AENEX AEUPX AFJKZ AFKRA AFPKN AFPUW AFRHN AFTJW AFXIZ AGCQF AGHFR AGQPQ AGUBO AGWIK AGYEJ AHHHB AHMBA AIEXJ AIGII AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRLJ AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX APXCP ASPBG AVWKF AXJTR AZFZN AZQEC BBNVY BENPR BHPHI BKOJK BLXMC BNPGV BPHCQ BVXVI CAG CCPQU COF CS3 DM4 DU5 DWQXO EBS EFBJH EFKBS EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN FYUFA G-2 G-Q GBLVA GNUQQ GROUPED_DOAJ HCIFZ HDW HEI HMCUK HMK HMO HMQ HVGLF HZ~ IHE J1W KOM LG5 LK8 LX8 M1P M29 M2M M2V M41 M7P MO0 MOBAO N9A O-L O9- OAUVE OK1 OVD OZT P-8 P-9 P2P PC. PHGZM PHGZT PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PSYQQ PUEGO Q38 R2- ROL RPZ SAE SCC SDF SDG SDP SES SEW SNS SSH SSN SSZ T5K TEORI UKHRP UV1 WUQ XPP YK3 Z5R ZMT ZU3 ~G- 3V. 6I. AACTN AADPK AAIAV ABLVK ABYKQ AFKWA AJBFU AJOXV AMFUW C45 EFLBG LCYCR NCXOZ RIG ZA5 AAYXX AGRNS ALIPV CITATION CGR CUY CVF ECM EIF NPM 7TK 7XB 8FD 8FK FR3 K9. P64 PKEHL PQEST PQUKI PRINS Q9U RC3 7X8 7QO |
ID | FETCH-LOGICAL-c586t-6bccadc0f83eb35b98470d6df34af4bed52dd2053b0149e9d55b3a974f4ec7593 |
IEDL.DBID | .~1 |
ISSN | 1053-8119 1095-9572 |
IngestDate | Fri Jul 11 14:02:56 EDT 2025 Fri Jul 11 11:24:59 EDT 2025 Wed Aug 13 06:07:53 EDT 2025 Mon Jul 21 05:39:46 EDT 2025 Tue Jul 01 03:01:44 EDT 2025 Thu Apr 24 23:04:41 EDT 2025 Fri Feb 23 02:25:09 EST 2024 Tue Aug 26 20:08:44 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Diffusion-weighted imaging Multi-shell Multi-tissue model Global tractography |
Language | English |
License | Copyright © 2015 Elsevier Inc. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c586t-6bccadc0f83eb35b98470d6df34af4bed52dd2053b0149e9d55b3a974f4ec7593 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
PMID | 26272729 |
PQID | 1728290942 |
PQPubID | 2031077 |
PageCount | 13 |
ParticipantIDs | proquest_miscellaneous_1732836461 proquest_miscellaneous_1728258653 proquest_journals_1728290942 pubmed_primary_26272729 crossref_citationtrail_10_1016_j_neuroimage_2015_08_008 crossref_primary_10_1016_j_neuroimage_2015_08_008 elsevier_sciencedirect_doi_10_1016_j_neuroimage_2015_08_008 elsevier_clinicalkey_doi_10_1016_j_neuroimage_2015_08_008 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | December 2015 2015-12-00 2015-Dec 20151201 |
PublicationDateYYYYMMDD | 2015-12-01 |
PublicationDate_xml | – month: 12 year: 2015 text: December 2015 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Amsterdam |
PublicationTitle | NeuroImage (Orlando, Fla.) |
PublicationTitleAlternate | Neuroimage |
PublicationYear | 2015 |
Publisher | Elsevier Inc Elsevier Limited |
Publisher_xml | – name: Elsevier Inc – name: Elsevier Limited |
References | Tournier, Calamante, Connelly (bb0290) 2012; 22 (bb0060) 2013 Dell'Acqua, Catani (bb0070) 2012; 25 Girard, Whittingstall, Deriche, Descoteaux (bb0105) 2014; 98 Dell'Acqua, Simmons, Williams, Catani (bb0075) 2013; 34 Glasser, Sotiropoulos, Wilson, Coalson, Fischl, Andersson, Xu, Jbabdi, Webster, Polimeni, Essen, Jenkinson (bb0110) 2013; 80 Lu, Wang, Chou, Li, Soong, Wu (bb0180) 2008 Green (bb0120) 1995; 82 Mori, van Zijl (bb0195) 2002; 15 Tournier, Calamante, Connelly (bb0285) 2010 Jeurissen, Tournier, Dhollander, Connelly, Sijbers (bb0145) 2014; 103 Raj, Chen (bb0220) 2011; 6 Côté, Girard, Boré, Garyfallidis, Houde, Descoteaux (bb0055) 2013; 17 Poupon, Clark, Frouin, Régis, Bloch, Bihan, Mangin (bb0210) 2000; 12 Smith, Jenkinson, Woolrich, Beckmann, Behrens, Johansen-Berg, Bannister, Luca, Drobnjak, Flitney, Niazy, Saunders, Vickers, Zhang, Stefano, Brady, Matthews (bb0260) 2004; 23 Aja-Fernández, Vegas-Sánchez-Ferrero, Tristán-Vega (bb0010) 2014; 32 Aganj, Lenglet, Sapiro, Yacoub, Ugurbil, Harel (bb0005) 2010; 64 Kreher, Mader, Kiselev (bb0160) 2008; 60 Li, Liu, Young, Guo, Wong (bb0175) 2006 Gudbjartsson, Patz (bb0125) 1995; 34 Reisert, Kiselev, Dihtal, Kellner, Novikov (bb0230) 2014; 8675 Dhollander, Emsell, Hecke, Maes, Sunaert, Suetens (bb0085) 2014; 94 Reisert, Mader, Anastasopoulos, Weigel, Schnell, Kiselev (bb0235) 2011; 54 Daducci, Dal Palù, Alia, Thiran (bb0065) 2014; 246–257 Zhang, Brady, Smith (bb0320) 2001; 20 Tuch, Reese, Wiegell, Makris, Belliveau, Wedeen (bb0300) 2002; 48 Wassermann, Makris, Rathi, Shenton, Kikinis, Kubicki, Westin (bb0315) 2013; 8149 Veraart, Fieremans, Novikov (bb0310) 2015 Smith, Tournier, Calamante, Connelly (bb0245) 2012; 62 Sporns, Tononi, Kötter (bb0275) 2005; 1 Andersson, Skare, Ashburner (bb0015) 2003; 20 Lemkaddem, Skiöldebrand, Dal Palù, Thiran, Daducci (bb0170) 2014; 5 Jeurissen, Leemans, Tournier, Jones, Sijbers (bb0140) 2012; 34 Tournier, Calamante, Connelly (bb0280) 2007; 35 Jones, Knösche, Turner (bb0150) 2013; 73 Neher, Stieltjes, Reisert, Reicht, Meinzer, Fritzsche (bb0200) 2012 Reisert, Kiselev (bb0225) 2011; 30 Christiaens, Reisert, Dhollander, Maes, Sunaert, Suetens (bb0050) 2014 Beaulieu (bb0030) 2002; 15 Sotiropoulos, Jbabdi, Xu, Andersson, Moeller, Auerbach, Glasser, Hernandez, Sapiro, Jenkinson, Feinberg, Yacoub, Lenglet, Essen, Ugurbil, Behrens (bb0265) 2013; 80 Sporns (bb0270) 2000; 10 Sherbondy, Rowe, Alexander (bb0240) 2010 Caruyer, Daducci, Descoteaux, Houde, Thiran, Verma (bb0040) 2014 Assaf, Alexander, Jones, Bizzi, Behrens, Clark, Cohen, Dyrby, Huppi, Knoesche, LeBihan, Parker, Poupon (bb0020) 2013; 80 Mangin, Fillard, Cointepas, Bihan, Frouin, Poupon (bb0185) 2013; 80 Raffelt, Tournier, Rose, Ridgway, Henderson, Crozier, Salvado, Connelly (bb0215) 2012; 59 Behrens, Woolrich, Jenkinson, Johansen-Berg, Nunes, Clare, Matthews, Brady, Smith (bb0035) 2003; 50 Ding, Li, Jordan (bb0090) 2010; 32 Descoteaux, Deriche, Knosche, Anwander (bb0080) 2009; 28 Panagiotaki, Schneider, Siow, Hall, Lythgoe, Alexander (bb0205) 2012; 59 Basser, Mattiello, Le Bihan (bb0025) 1994; 66 Goh, Lenglet, Thompson, Vidal (bb0115) 2009; 5761 Smith, Tournier, Calamante, Connelly (bb0250) 2013; 67 Le Bihan, Breton, Lallemand, Grenier, Cabanis, Laval-Jeantet (bb0165) 1986; 161 Smith, Tournier, Calamante, Connelly (bb0255) 2015; 104 Van Essen, Smith, Barch, Behrens, Yacoub, Ugurbil (bb0305) 2013; 80 Chklovskii, Schikorski, Stevens (bb0045) 2002; 34 Jbabdi, Johansen-Berg (bb0135) 2011; 1 Mangin, Poupon, Cointepas, Rivière, Papadopoulos-Orfanos, Clark, Régis, Bihan (bb0190) 2002; 15 Tournier, Mori, Leemans (bb0295) 2011; 65 Kaiser, Hilgetag (bb0155) 2006; 2 Fritzsche, Neher, Reicht, van Bruggen, Goch, Reisert, Nolden, Zelzer, Meinzer, Stieltjes (bb0100) 2012; 51 Zhou, Michailovich, Rathi (bb0325) 2014 Houde, Caruyer, Daducci, Descoteaux (bb0130) 2014 Fillard, Poupon, Mangin (bb0095) 2009; 5761 Dell'Acqua (10.1016/j.neuroimage.2015.08.008_bb0070) 2012; 25 Panagiotaki (10.1016/j.neuroimage.2015.08.008_bb0205) 2012; 59 Caruyer (10.1016/j.neuroimage.2015.08.008_bb0040) 2014 (10.1016/j.neuroimage.2015.08.008_bb0060) 2013 Le Bihan (10.1016/j.neuroimage.2015.08.008_bb0165) 1986; 161 Aganj (10.1016/j.neuroimage.2015.08.008_bb0005) 2010; 64 Sporns (10.1016/j.neuroimage.2015.08.008_bb0275) 2005; 1 Smith (10.1016/j.neuroimage.2015.08.008_bb0250) 2013; 67 Zhou (10.1016/j.neuroimage.2015.08.008_bb0325) 2014 Sporns (10.1016/j.neuroimage.2015.08.008_bb0270) 2000; 10 Neher (10.1016/j.neuroimage.2015.08.008_bb0200) 2012 Jeurissen (10.1016/j.neuroimage.2015.08.008_bb0140) 2012; 34 Dhollander (10.1016/j.neuroimage.2015.08.008_bb0085) 2014; 94 Raffelt (10.1016/j.neuroimage.2015.08.008_bb0215) 2012; 59 Côté (10.1016/j.neuroimage.2015.08.008_bb0055) 2013; 17 Daducci (10.1016/j.neuroimage.2015.08.008_bb0065) 2014; 246–257 Behrens (10.1016/j.neuroimage.2015.08.008_bb0035) 2003; 50 Girard (10.1016/j.neuroimage.2015.08.008_bb0105) 2014; 98 Veraart (10.1016/j.neuroimage.2015.08.008_bb0310) 2015 Tournier (10.1016/j.neuroimage.2015.08.008_bb0285) 2010 Andersson (10.1016/j.neuroimage.2015.08.008_bb0015) 2003; 20 Fritzsche (10.1016/j.neuroimage.2015.08.008_bb0100) 2012; 51 Assaf (10.1016/j.neuroimage.2015.08.008_bb0020) 2013; 80 Beaulieu (10.1016/j.neuroimage.2015.08.008_bb0030) 2002; 15 Glasser (10.1016/j.neuroimage.2015.08.008_bb0110) 2013; 80 Houde (10.1016/j.neuroimage.2015.08.008_bb0130) 2014 Lu (10.1016/j.neuroimage.2015.08.008_bb0180) 2008 Basser (10.1016/j.neuroimage.2015.08.008_bb0025) 1994; 66 Tournier (10.1016/j.neuroimage.2015.08.008_bb0290) 2012; 22 Smith (10.1016/j.neuroimage.2015.08.008_bb0255) 2015; 104 Tuch (10.1016/j.neuroimage.2015.08.008_bb0300) 2002; 48 Jbabdi (10.1016/j.neuroimage.2015.08.008_bb0135) 2011; 1 Descoteaux (10.1016/j.neuroimage.2015.08.008_bb0080) 2009; 28 Li (10.1016/j.neuroimage.2015.08.008_bb0175) 2006 Poupon (10.1016/j.neuroimage.2015.08.008_bb0210) 2000; 12 Tournier (10.1016/j.neuroimage.2015.08.008_bb0295) 2011; 65 Tournier (10.1016/j.neuroimage.2015.08.008_bb0280) 2007; 35 Smith (10.1016/j.neuroimage.2015.08.008_bb0260) 2004; 23 Reisert (10.1016/j.neuroimage.2015.08.008_bb0225) 2011; 30 Goh (10.1016/j.neuroimage.2015.08.008_bb0115) 2009; 5761 Ding (10.1016/j.neuroimage.2015.08.008_bb0090) 2010; 32 Lemkaddem (10.1016/j.neuroimage.2015.08.008_bb0170) 2014; 5 Mangin (10.1016/j.neuroimage.2015.08.008_bb0185) 2013; 80 Aja-Fernández (10.1016/j.neuroimage.2015.08.008_bb0010) 2014; 32 Chklovskii (10.1016/j.neuroimage.2015.08.008_bb0045) 2002; 34 Jeurissen (10.1016/j.neuroimage.2015.08.008_bb0145) 2014; 103 Dell'Acqua (10.1016/j.neuroimage.2015.08.008_bb0075) 2013; 34 Kreher (10.1016/j.neuroimage.2015.08.008_bb0160) 2008; 60 Green (10.1016/j.neuroimage.2015.08.008_bb0120) 1995; 82 Wassermann (10.1016/j.neuroimage.2015.08.008_bb0315) 2013; 8149 Mori (10.1016/j.neuroimage.2015.08.008_bb0195) 2002; 15 Jones (10.1016/j.neuroimage.2015.08.008_bb0150) 2013; 73 Sherbondy (10.1016/j.neuroimage.2015.08.008_bb0240) 2010 Sotiropoulos (10.1016/j.neuroimage.2015.08.008_bb0265) 2013; 80 Gudbjartsson (10.1016/j.neuroimage.2015.08.008_bb0125) 1995; 34 Raj (10.1016/j.neuroimage.2015.08.008_bb0220) 2011; 6 Fillard (10.1016/j.neuroimage.2015.08.008_bb0095) 2009; 5761 Christiaens (10.1016/j.neuroimage.2015.08.008_bb0050) 2014 Reisert (10.1016/j.neuroimage.2015.08.008_bb0230) 2014; 8675 Kaiser (10.1016/j.neuroimage.2015.08.008_bb0155) 2006; 2 Mangin (10.1016/j.neuroimage.2015.08.008_bb0190) 2002; 15 Smith (10.1016/j.neuroimage.2015.08.008_bb0245) 2012; 62 Van Essen (10.1016/j.neuroimage.2015.08.008_bb0305) 2013; 80 Zhang (10.1016/j.neuroimage.2015.08.008_bb0320) 2001; 20 Reisert (10.1016/j.neuroimage.2015.08.008_bb0235) 2011; 54 |
References_xml | – volume: 80 start-page: 105 year: 2013 end-page: 124 ident: bb0110 article-title: The minimal preprocessing pipelines for the Human Connectome Project publication-title: NeuroImage – start-page: 1670 year: 2010 ident: bb0285 article-title: Improved probabilistic streamlines tractography by 2nd order integration over fibre orientation distributions publication-title: Proceedings of the International Society for, Magnetic Resonance in Medicine – volume: 32 start-page: 281 year: 2014 end-page: 290 ident: bb0010 article-title: Noise estimation in parallel MRI: GRAPPA and SENSE publication-title: Magn. Reson. Imaging – volume: 5761 start-page: 927 year: 2009 end-page: 934 ident: bb0095 article-title: A novel global tractography algorithm based on an adaptive spin glass model publication-title: Medical Image Computing and Computer-Assisted Intervention – MICCAI 2009 – volume: 8675 start-page: 201 year: 2014 end-page: 208 ident: bb0230 article-title: MesoFT: unifying diffusion modelling and fiber tracking publication-title: Medical Image Computing and Computer-Assisted Intervention – MICCAI 2014 – volume: 82 start-page: 711 year: 1995 end-page: 732 ident: bb0120 article-title: Reversible jump Markov chain Monte Carlo computation and Bayesian model determination publication-title: Biometrika – start-page: 57 year: 2006 end-page: 60 ident: bb0175 article-title: Brain tissue segmentation based on DWI/DTI data publication-title: 3rd IEEE International Symposium on Biomedical Imaging: Macro to Nano, IEEE – volume: 8149 start-page: 647 year: 2013 end-page: 654 ident: bb0315 article-title: On describing human white matter anatomy: The white matter query language publication-title: Medical Image Computing and Computer-Assisted Intervention – MICCAI 2013 – start-page: 5502 year: 2008 end-page: 5505 ident: bb0180 article-title: Segmentation of diffusion-weighted brain images using expectation maximization algorithm initialized by hierarchical clustering publication-title: 2008 30th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, IEEE – start-page: 115 year: 2014 end-page: 123 ident: bb0050 article-title: Atlas-guided global tractography: imposing a prior on the local tract orientation publication-title: Computational Diffusion MRI – volume: 104 start-page: 253 year: 2015 end-page: 265 ident: bb0255 article-title: The effects of SIFT on the reproducibility and biological accuracy of the structural connectome publication-title: NeuroImage – volume: 80 start-page: 125 year: 2013 end-page: 143 ident: bb0265 article-title: Advances in diffusion MRI acquisition and processing in the human connectome project publication-title: NeuroImage – volume: 59 start-page: 2241 year: 2012 end-page: 2254 ident: bb0205 article-title: Compartment models of the diffusion MR signal in brain white matter: a taxonomy and comparison publication-title: NeuroImage – volume: 48 start-page: 577 year: 2002 end-page: 582 ident: bb0300 article-title: High angular resolution diffusion imaging reveals intravoxel white matter fiber heterogeneity publication-title: Magn. Reson. Med. – volume: 35 start-page: 1459 year: 2007 end-page: 1472 ident: bb0280 article-title: Robust determination of the fibre orientation distribution in diffusion MRI: non-negativity constrained super-resolved spherical deconvolution publication-title: NeuroImage – volume: 6 start-page: e14832 year: 2011 ident: bb0220 article-title: The wiring economy principle: connectivity determines anatomy in the human brain publication-title: PLoS ONE – start-page: 183 year: 2010 end-page: 190 ident: bb0240 article-title: MicroTrack: an algorithm for concurrent projectome and microstructure estimation publication-title: Medical Image Computing and Computer-Assisted Intervention – MICCAI 2010 – start-page: 2666 year: 2014 ident: bb0040 article-title: Phantomas: a flexible software library to simulate diffusion MR phantoms publication-title: Proc. of ISMRM 2014, Milan, Italy – start-page: 273 year: 2014 ident: bb0130 article-title: How should tractography go forward? a tractometer evaluation os local reconstruction and tracking publication-title: Proc. of ISMRM 2014, Milan, Italy – volume: 5 year: 2014 ident: bb0170 article-title: Global tractography with embedded anatomical priors for quantitative connectivity analysis publication-title: Front. Neurol. – volume: 10 start-page: 127 year: 2000 end-page: 141 ident: bb0270 article-title: Theoretical neuroanatomy: relating anatomical and functional connectivity in graphs and cortical connection matrices publication-title: Cereb. Cortex – volume: 22 start-page: 53 year: 2012 end-page: 66 ident: bb0290 article-title: MRtrix: diffusion tractography in crossing fiber regions publication-title: Int. J. Imaging Syst. Technol. – year: 2013 ident: bb0060 publication-title: IEEE International Symposium on Biomedical Imaging (ISBI): HARDI Reconstruction Challenge – start-page: 1023 year: 2015 ident: bb0310 article-title: Noise map estimation in diffusion MRI using random matrix theory publication-title: Proc. of ISMRM 2015, Toronto, Canada – volume: 103 start-page: 411 year: 2014 end-page: 426 ident: bb0145 article-title: Multi-tissue constrained spherical deconvolution for improved analysis of multi-shell diffusion MRI data publication-title: NeuroImage – volume: 161 start-page: 401 year: 1986 end-page: 407 ident: bb0165 article-title: MR imaging of intravoxel incoherent motions: application to diffusion and perfusion in neurologic disorders publication-title: Radiology – volume: 34 start-page: 2464 year: 2013 end-page: 2483 ident: bb0075 article-title: Can spherical deconvolution provide more information than fiber orientations? Hindrance modulated orientational anisotropy, a true-tract specific index to characterize white matter diffusion publication-title: Hum. Brain Mapp. – volume: 15 start-page: 468 year: 2002 end-page: 480 ident: bb0195 article-title: Fiber tracking: principles and strategies—a technical review publication-title: NMR Biomed. – volume: 54 start-page: 955 year: 2011 end-page: 962 ident: bb0235 article-title: Global fiber reconstruction becomes practical publication-title: NeuroImage – volume: 73 start-page: 239 year: 2013 end-page: 254 ident: bb0150 article-title: White matter integrity, fiber count, and other fallacies: the do's and don'ts of diffusion MRI publication-title: NeuroImage – volume: 15 start-page: 481 year: 2002 end-page: 492 ident: bb0190 article-title: A framework based on spin glass models for the inference of anatomical connectivity from diffusion-weighted MR data—a technical review publication-title: NMR Biomed. – volume: 25 start-page: 375 year: 2012 end-page: 383 ident: bb0070 article-title: Structural human brain networks: hot topics in diffusion tractography publication-title: Curr. Opin. Neurol. – volume: 30 start-page: 1274 year: 2011 end-page: 1283 ident: bb0225 article-title: Fiber continuity: an anisotropic prior for ODF estimation publication-title: IEEE Trans. Med. Imaging – volume: 23 start-page: S208 year: 2004 end-page: S219 ident: bb0260 article-title: Advances in functional and structural MR image analysis and implementation as FSL publication-title: NeuroImage – year: 2014 ident: bb0325 article-title: Spatially regularized reconstruction of fibre orientation distributions in the presence of isotropic diffusion publication-title: Computing Research Repository – volume: 2 start-page: e95 year: 2006 ident: bb0155 article-title: Nonoptimal component placement, but short processing paths, due to long-distance projections in neural systems publication-title: PLoS Comput. Biol. – start-page: 83144D year: 2012 ident: bb0200 article-title: MITK global tractography publication-title: Medical Imaging 2012: Image Processing, SPIE – volume: 98 start-page: 266 year: 2014 end-page: 278 ident: bb0105 article-title: Towards quantitative connectivity analysis: reducing tractography biases publication-title: NeuroImage – volume: 5761 start-page: 877 year: 2009 end-page: 885 ident: bb0115 article-title: Estimating orientation distribution functions with probability density constraints and spatial regularity publication-title: Medical Image Computing and Computer-Assisted Intervention – MICCAI 2009 – volume: 34 start-page: 910 year: 1995 end-page: 914 ident: bb0125 article-title: The rician distribution of noisy MRI data publication-title: Magn. Reson. Med. – volume: 94 start-page: 312 year: 2014 end-page: 336 ident: bb0085 article-title: Track Orientation Density Imaging (TODI) and Track Orientation Distribution (TOD) based tractography publication-title: NeuroImage – volume: 1 start-page: e42 year: 2005 ident: bb0275 article-title: The human connectome: a structural description of the human brain publication-title: PLoS Comput. Biol. – volume: 66 start-page: 259 year: 1994 end-page: 267 ident: bb0025 article-title: MR diffusion tensor spectroscopy and imaging publication-title: Biophys. J. – volume: 62 start-page: 1924 year: 2012 end-page: 1938 ident: bb0245 article-title: Anatomically-constrained tractography: improved diffusion MRI streamlines tractography through effective use of anatomical information publication-title: NeuroImage – volume: 50 start-page: 1077 year: 2003 end-page: 1088 ident: bb0035 article-title: Characterization and propagation of uncertainty in diffusion-weighted MR imaging publication-title: Magn. Reson. Med. – volume: 20 start-page: 45 year: 2001 end-page: 57 ident: bb0320 article-title: Segmentation of brain MR images through a hidden markov random field model and the expectation-maximization algorithm publication-title: IEEE Trans. Med. Imaging – volume: 51 start-page: 441 year: 2012 end-page: 448 ident: bb0100 article-title: MITK diffusion imaging publication-title: Methods Inf. Med. – volume: 60 start-page: 953 year: 2008 end-page: 963 ident: bb0160 article-title: Gibbs tracking: a novel approach for the reconstruction of neuronal pathways publication-title: Magn. Reson. Med. – volume: 12 start-page: 184 year: 2000 end-page: 195 ident: bb0210 article-title: Regularization of diffusion-based direction maps for the tracking of brain white matter fascicles publication-title: NeuroImage – volume: 65 start-page: 1532 year: 2011 end-page: 1556 ident: bb0295 article-title: Diffusion tensor imaging and beyond publication-title: Magn. Reson. Med. – volume: 32 start-page: 45 year: 2010 end-page: 55 ident: bb0090 article-title: Convex and semi-nonnegative matrix factorizations publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 80 start-page: 290 year: 2013 end-page: 296 ident: bb0185 article-title: Toward global tractography publication-title: NeuroImage – volume: 80 start-page: 273 year: 2013 end-page: 282 ident: bb0020 article-title: The CONNECT project: combining macro- and micro-structure publication-title: NeuroImage – volume: 67 start-page: 298 year: 2013 end-page: 312 ident: bb0250 article-title: SIFT: spherical-deconvolution informed filtering of tractograms publication-title: NeuroImage – volume: 246–257 year: 2014 ident: bb0065 article-title: COMMIT: convex optimization modeling for micro-structure informed tractography publication-title: IEEE Trans. Med. Imaging – volume: 34 start-page: 341 year: 2002 end-page: 347 ident: bb0045 article-title: Wiring optimization in cortical circuits publication-title: Neuron – volume: 80 start-page: 62 year: 2013 end-page: 79 ident: bb0305 article-title: The WU-Minn human connectome project: an overview publication-title: NeuroImage – volume: 28 start-page: 269 year: 2009 end-page: 286 ident: bb0080 article-title: Deterministic and probabilistic tractography based on complex fibre orientation distributions publication-title: IEEE Trans. Med. Imaging – volume: 20 start-page: 870 year: 2003 end-page: 888 ident: bb0015 article-title: How to correct susceptibility distortions in spin-echo echo-planar images: application to diffusion tensor imaging publication-title: NeuroImage – volume: 34 start-page: 2747 year: 2012 end-page: 2766 ident: bb0140 article-title: Investigating the prevalence of complex fiber configurations in white matter tissue with diffusion magnetic resonance imaging publication-title: Hum. Brain Mapp. – volume: 15 start-page: 435 year: 2002 end-page: 455 ident: bb0030 article-title: The basis of anisotropic water diffusion in the nervous system—a technical review publication-title: NMR Biomed. – volume: 17 start-page: 844 year: 2013 end-page: 857 ident: bb0055 article-title: Tractometer: towards validation of tractography pipelines publication-title: Med. Image Anal. – volume: 59 start-page: 3976 year: 2012 end-page: 3994 ident: bb0215 article-title: Apparent fibre density: a novel measure for the analysis of diffusion-weighted magnetic resonance images publication-title: NeuroImage – volume: 64 start-page: 554 year: 2010 end-page: 566 ident: bb0005 article-title: Reconstruction of the orientation distribution function in single- and multiple-shell q-ball imaging within constant solid angle publication-title: Magn. Reson. Med. – volume: 1 start-page: 169 year: 2011 end-page: 183 ident: bb0135 article-title: Tractography: where do we go from here? publication-title: Brain Connect. – volume: 51 start-page: 441 year: 2012 ident: 10.1016/j.neuroimage.2015.08.008_bb0100 article-title: MITK diffusion imaging publication-title: Methods Inf. Med. doi: 10.3414/ME11-02-0031 – volume: 25 start-page: 375 year: 2012 ident: 10.1016/j.neuroimage.2015.08.008_bb0070 article-title: Structural human brain networks: hot topics in diffusion tractography publication-title: Curr. Opin. Neurol. – volume: 5761 start-page: 877 year: 2009 ident: 10.1016/j.neuroimage.2015.08.008_bb0115 article-title: Estimating orientation distribution functions with probability density constraints and spatial regularity – volume: 103 start-page: 411 year: 2014 ident: 10.1016/j.neuroimage.2015.08.008_bb0145 article-title: Multi-tissue constrained spherical deconvolution for improved analysis of multi-shell diffusion MRI data publication-title: NeuroImage doi: 10.1016/j.neuroimage.2014.07.061 – volume: 8149 start-page: 647 year: 2013 ident: 10.1016/j.neuroimage.2015.08.008_bb0315 article-title: On describing human white matter anatomy: The white matter query language – volume: 12 start-page: 184 year: 2000 ident: 10.1016/j.neuroimage.2015.08.008_bb0210 article-title: Regularization of diffusion-based direction maps for the tracking of brain white matter fascicles publication-title: NeuroImage doi: 10.1006/nimg.2000.0607 – volume: 32 start-page: 281 year: 2014 ident: 10.1016/j.neuroimage.2015.08.008_bb0010 article-title: Noise estimation in parallel MRI: GRAPPA and SENSE publication-title: Magn. Reson. Imaging doi: 10.1016/j.mri.2013.12.001 – volume: 20 start-page: 870 year: 2003 ident: 10.1016/j.neuroimage.2015.08.008_bb0015 article-title: How to correct susceptibility distortions in spin-echo echo-planar images: application to diffusion tensor imaging publication-title: NeuroImage doi: 10.1016/S1053-8119(03)00336-7 – year: 2013 ident: 10.1016/j.neuroimage.2015.08.008_bb0060 – volume: 246–257 year: 2014 ident: 10.1016/j.neuroimage.2015.08.008_bb0065 article-title: COMMIT: convex optimization modeling for micro-structure informed tractography publication-title: IEEE Trans. Med. Imaging – volume: 161 start-page: 401 year: 1986 ident: 10.1016/j.neuroimage.2015.08.008_bb0165 article-title: MR imaging of intravoxel incoherent motions: application to diffusion and perfusion in neurologic disorders publication-title: Radiology doi: 10.1148/radiology.161.2.3763909 – volume: 60 start-page: 953 year: 2008 ident: 10.1016/j.neuroimage.2015.08.008_bb0160 article-title: Gibbs tracking: a novel approach for the reconstruction of neuronal pathways publication-title: Magn. Reson. Med. doi: 10.1002/mrm.21749 – volume: 32 start-page: 45 year: 2010 ident: 10.1016/j.neuroimage.2015.08.008_bb0090 article-title: Convex and semi-nonnegative matrix factorizations publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2008.277 – volume: 80 start-page: 105 year: 2013 ident: 10.1016/j.neuroimage.2015.08.008_bb0110 article-title: The minimal preprocessing pipelines for the Human Connectome Project publication-title: NeuroImage doi: 10.1016/j.neuroimage.2013.04.127 – volume: 2 start-page: e95 year: 2006 ident: 10.1016/j.neuroimage.2015.08.008_bb0155 article-title: Nonoptimal component placement, but short processing paths, due to long-distance projections in neural systems publication-title: PLoS Comput. Biol. doi: 10.1371/journal.pcbi.0020095 – volume: 50 start-page: 1077 year: 2003 ident: 10.1016/j.neuroimage.2015.08.008_bb0035 article-title: Characterization and propagation of uncertainty in diffusion-weighted MR imaging publication-title: Magn. Reson. Med. doi: 10.1002/mrm.10609 – volume: 5761 start-page: 927 year: 2009 ident: 10.1016/j.neuroimage.2015.08.008_bb0095 article-title: A novel global tractography algorithm based on an adaptive spin glass model – start-page: 115 year: 2014 ident: 10.1016/j.neuroimage.2015.08.008_bb0050 article-title: Atlas-guided global tractography: imposing a prior on the local tract orientation – volume: 104 start-page: 253 year: 2015 ident: 10.1016/j.neuroimage.2015.08.008_bb0255 article-title: The effects of SIFT on the reproducibility and biological accuracy of the structural connectome publication-title: NeuroImage doi: 10.1016/j.neuroimage.2014.10.004 – volume: 20 start-page: 45 year: 2001 ident: 10.1016/j.neuroimage.2015.08.008_bb0320 article-title: Segmentation of brain MR images through a hidden markov random field model and the expectation-maximization algorithm publication-title: IEEE Trans. Med. Imaging doi: 10.1109/42.906424 – volume: 80 start-page: 62 year: 2013 ident: 10.1016/j.neuroimage.2015.08.008_bb0305 article-title: The WU-Minn human connectome project: an overview publication-title: NeuroImage doi: 10.1016/j.neuroimage.2013.05.041 – volume: 15 start-page: 468 year: 2002 ident: 10.1016/j.neuroimage.2015.08.008_bb0195 article-title: Fiber tracking: principles and strategies—a technical review publication-title: NMR Biomed. doi: 10.1002/nbm.781 – volume: 59 start-page: 3976 year: 2012 ident: 10.1016/j.neuroimage.2015.08.008_bb0215 article-title: Apparent fibre density: a novel measure for the analysis of diffusion-weighted magnetic resonance images publication-title: NeuroImage doi: 10.1016/j.neuroimage.2011.10.045 – volume: 80 start-page: 273 year: 2013 ident: 10.1016/j.neuroimage.2015.08.008_bb0020 article-title: The CONNECT project: combining macro- and micro-structure publication-title: NeuroImage doi: 10.1016/j.neuroimage.2013.05.055 – start-page: 273 year: 2014 ident: 10.1016/j.neuroimage.2015.08.008_bb0130 article-title: How should tractography go forward? a tractometer evaluation os local reconstruction and tracking – start-page: 5502 year: 2008 ident: 10.1016/j.neuroimage.2015.08.008_bb0180 article-title: Segmentation of diffusion-weighted brain images using expectation maximization algorithm initialized by hierarchical clustering – start-page: 83144D year: 2012 ident: 10.1016/j.neuroimage.2015.08.008_bb0200 article-title: MITK global tractography – volume: 15 start-page: 481 year: 2002 ident: 10.1016/j.neuroimage.2015.08.008_bb0190 article-title: A framework based on spin glass models for the inference of anatomical connectivity from diffusion-weighted MR data—a technical review publication-title: NMR Biomed. doi: 10.1002/nbm.780 – volume: 22 start-page: 53 year: 2012 ident: 10.1016/j.neuroimage.2015.08.008_bb0290 article-title: MRtrix: diffusion tractography in crossing fiber regions publication-title: Int. J. Imaging Syst. Technol. doi: 10.1002/ima.22005 – volume: 48 start-page: 577 year: 2002 ident: 10.1016/j.neuroimage.2015.08.008_bb0300 article-title: High angular resolution diffusion imaging reveals intravoxel white matter fiber heterogeneity publication-title: Magn. Reson. Med. doi: 10.1002/mrm.10268 – volume: 1 start-page: e42 year: 2005 ident: 10.1016/j.neuroimage.2015.08.008_bb0275 article-title: The human connectome: a structural description of the human brain publication-title: PLoS Comput. Biol. doi: 10.1371/journal.pcbi.0010042 – volume: 98 start-page: 266 year: 2014 ident: 10.1016/j.neuroimage.2015.08.008_bb0105 article-title: Towards quantitative connectivity analysis: reducing tractography biases publication-title: NeuroImage doi: 10.1016/j.neuroimage.2014.04.074 – volume: 5 year: 2014 ident: 10.1016/j.neuroimage.2015.08.008_bb0170 article-title: Global tractography with embedded anatomical priors for quantitative connectivity analysis publication-title: Front. Neurol. doi: 10.3389/fneur.2014.00232 – volume: 64 start-page: 554 year: 2010 ident: 10.1016/j.neuroimage.2015.08.008_bb0005 article-title: Reconstruction of the orientation distribution function in single- and multiple-shell q-ball imaging within constant solid angle publication-title: Magn. Reson. Med. doi: 10.1002/mrm.22365 – volume: 59 start-page: 2241 year: 2012 ident: 10.1016/j.neuroimage.2015.08.008_bb0205 article-title: Compartment models of the diffusion MR signal in brain white matter: a taxonomy and comparison publication-title: NeuroImage doi: 10.1016/j.neuroimage.2011.09.081 – volume: 10 start-page: 127 year: 2000 ident: 10.1016/j.neuroimage.2015.08.008_bb0270 article-title: Theoretical neuroanatomy: relating anatomical and functional connectivity in graphs and cortical connection matrices publication-title: Cereb. Cortex doi: 10.1093/cercor/10.2.127 – volume: 6 start-page: e14832 year: 2011 ident: 10.1016/j.neuroimage.2015.08.008_bb0220 article-title: The wiring economy principle: connectivity determines anatomy in the human brain publication-title: PLoS ONE doi: 10.1371/journal.pone.0014832 – volume: 34 start-page: 341 year: 2002 ident: 10.1016/j.neuroimage.2015.08.008_bb0045 article-title: Wiring optimization in cortical circuits publication-title: Neuron doi: 10.1016/S0896-6273(02)00679-7 – start-page: 183 year: 2010 ident: 10.1016/j.neuroimage.2015.08.008_bb0240 article-title: MicroTrack: an algorithm for concurrent projectome and microstructure estimation – start-page: 1023 year: 2015 ident: 10.1016/j.neuroimage.2015.08.008_bb0310 article-title: Noise map estimation in diffusion MRI using random matrix theory – volume: 23 start-page: S208 year: 2004 ident: 10.1016/j.neuroimage.2015.08.008_bb0260 article-title: Advances in functional and structural MR image analysis and implementation as FSL publication-title: NeuroImage doi: 10.1016/j.neuroimage.2004.07.051 – volume: 15 start-page: 435 year: 2002 ident: 10.1016/j.neuroimage.2015.08.008_bb0030 article-title: The basis of anisotropic water diffusion in the nervous system—a technical review publication-title: NMR Biomed. doi: 10.1002/nbm.782 – volume: 82 start-page: 711 year: 1995 ident: 10.1016/j.neuroimage.2015.08.008_bb0120 article-title: Reversible jump Markov chain Monte Carlo computation and Bayesian model determination publication-title: Biometrika doi: 10.1093/biomet/82.4.711 – volume: 34 start-page: 910 year: 1995 ident: 10.1016/j.neuroimage.2015.08.008_bb0125 article-title: The rician distribution of noisy MRI data publication-title: Magn. Reson. Med. doi: 10.1002/mrm.1910340618 – volume: 73 start-page: 239 year: 2013 ident: 10.1016/j.neuroimage.2015.08.008_bb0150 article-title: White matter integrity, fiber count, and other fallacies: the do's and don'ts of diffusion MRI publication-title: NeuroImage doi: 10.1016/j.neuroimage.2012.06.081 – volume: 8675 start-page: 201 year: 2014 ident: 10.1016/j.neuroimage.2015.08.008_bb0230 article-title: MesoFT: unifying diffusion modelling and fiber tracking – start-page: 57 year: 2006 ident: 10.1016/j.neuroimage.2015.08.008_bb0175 article-title: Brain tissue segmentation based on DWI/DTI data – volume: 65 start-page: 1532 year: 2011 ident: 10.1016/j.neuroimage.2015.08.008_bb0295 article-title: Diffusion tensor imaging and beyond publication-title: Magn. Reson. Med. doi: 10.1002/mrm.22924 – volume: 17 start-page: 844 year: 2013 ident: 10.1016/j.neuroimage.2015.08.008_bb0055 article-title: Tractometer: towards validation of tractography pipelines publication-title: Med. Image Anal. doi: 10.1016/j.media.2013.03.009 – start-page: 2666 year: 2014 ident: 10.1016/j.neuroimage.2015.08.008_bb0040 article-title: Phantomas: a flexible software library to simulate diffusion MR phantoms – volume: 35 start-page: 1459 year: 2007 ident: 10.1016/j.neuroimage.2015.08.008_bb0280 article-title: Robust determination of the fibre orientation distribution in diffusion MRI: non-negativity constrained super-resolved spherical deconvolution publication-title: NeuroImage doi: 10.1016/j.neuroimage.2007.02.016 – volume: 54 start-page: 955 year: 2011 ident: 10.1016/j.neuroimage.2015.08.008_bb0235 article-title: Global fiber reconstruction becomes practical publication-title: NeuroImage doi: 10.1016/j.neuroimage.2010.09.016 – volume: 62 start-page: 1924 year: 2012 ident: 10.1016/j.neuroimage.2015.08.008_bb0245 article-title: Anatomically-constrained tractography: improved diffusion MRI streamlines tractography through effective use of anatomical information publication-title: NeuroImage doi: 10.1016/j.neuroimage.2012.06.005 – volume: 1 start-page: 169 year: 2011 ident: 10.1016/j.neuroimage.2015.08.008_bb0135 article-title: Tractography: where do we go from here? publication-title: Brain Connect. doi: 10.1089/brain.2011.0033 – year: 2014 ident: 10.1016/j.neuroimage.2015.08.008_bb0325 article-title: Spatially regularized reconstruction of fibre orientation distributions in the presence of isotropic diffusion – volume: 80 start-page: 125 year: 2013 ident: 10.1016/j.neuroimage.2015.08.008_bb0265 article-title: Advances in diffusion MRI acquisition and processing in the human connectome project publication-title: NeuroImage doi: 10.1016/j.neuroimage.2013.05.057 – volume: 80 start-page: 290 year: 2013 ident: 10.1016/j.neuroimage.2015.08.008_bb0185 article-title: Toward global tractography publication-title: NeuroImage doi: 10.1016/j.neuroimage.2013.04.009 – volume: 28 start-page: 269 year: 2009 ident: 10.1016/j.neuroimage.2015.08.008_bb0080 article-title: Deterministic and probabilistic tractography based on complex fibre orientation distributions publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2008.2004424 – volume: 34 start-page: 2464 year: 2013 ident: 10.1016/j.neuroimage.2015.08.008_bb0075 article-title: Can spherical deconvolution provide more information than fiber orientations? Hindrance modulated orientational anisotropy, a true-tract specific index to characterize white matter diffusion publication-title: Hum. Brain Mapp. doi: 10.1002/hbm.22080 – volume: 30 start-page: 1274 year: 2011 ident: 10.1016/j.neuroimage.2015.08.008_bb0225 article-title: Fiber continuity: an anisotropic prior for ODF estimation publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2011.2112769 – volume: 94 start-page: 312 year: 2014 ident: 10.1016/j.neuroimage.2015.08.008_bb0085 article-title: Track Orientation Density Imaging (TODI) and Track Orientation Distribution (TOD) based tractography publication-title: NeuroImage doi: 10.1016/j.neuroimage.2013.12.047 – volume: 66 start-page: 259 year: 1994 ident: 10.1016/j.neuroimage.2015.08.008_bb0025 article-title: MR diffusion tensor spectroscopy and imaging publication-title: Biophys. J. doi: 10.1016/S0006-3495(94)80775-1 – start-page: 1670 year: 2010 ident: 10.1016/j.neuroimage.2015.08.008_bb0285 article-title: Improved probabilistic streamlines tractography by 2nd order integration over fibre orientation distributions – volume: 34 start-page: 2747 year: 2012 ident: 10.1016/j.neuroimage.2015.08.008_bb0140 article-title: Investigating the prevalence of complex fiber configurations in white matter tissue with diffusion magnetic resonance imaging publication-title: Hum. Brain Mapp. doi: 10.1002/hbm.22099 – volume: 67 start-page: 298 year: 2013 ident: 10.1016/j.neuroimage.2015.08.008_bb0250 article-title: SIFT: spherical-deconvolution informed filtering of tractograms publication-title: NeuroImage doi: 10.1016/j.neuroimage.2012.11.049 |
SSID | ssj0009148 |
Score | 2.5166001 |
Snippet | Diffusion-weighted imaging and tractography provide a unique, non-invasive technique to study the macroscopic structure and connectivity of brain white matter... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 89 |
SubjectTerms | Brain Brain - anatomy & histology Computer Simulation Datasets Diffusion Diffusion Magnetic Resonance Imaging - methods Diffusion Tensor Imaging - methods Diffusion-weighted imaging Geometry Global tractography Gray Matter - anatomy & histology Humans Image Processing, Computer-Assisted Inverse problems Markov Chains Methods Monte Carlo Method Multi-shell Multi-tissue model Reproducibility of Results Signal Processing, Computer-Assisted White Matter - anatomy & histology |
SummonAdditionalLinks | – databaseName: ProQuest Health & Medical dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NSwMxEA1aQbyI31arRPAa7G422Q0eRMRSBD1Z6EVCdpMVRdtqt_j3nclm24uWnpOBMJNkJsnLe4RcFk4JBd5nCdT2LIEUxIwrUyZEpnLujDTOo3yfZH-QPAzFMFy4TQOsstkT_UZtxwXekV-hjlKs4DAS30y-GKpG4etqkNBYJxtIXYaQrnSYLkh3o6T-Cic4y6BDQPLU-C7PF_n2CasWAV7CE3miyOTf6em_8tOnod4O2Q71I72tA75L1txoj2w-hhfyffJSk_jTCn8_BTpqOi6pBw6yKcI-KYqizPCWjP34i1FnKY4QkhhFwChFLPwrNcGm8qGhXjLngAx69893fRYkFFghMlkxmUOEbNEtMw6nZpErSEZdK23JE1MmubMitjYG_-R4VHLKCpFzA2eMMnFFKhQ_JK3ReOSOCeUyM5mVqTLCgWWROReVpovsPNAzKtskbTyni8AvjjIXH7oBkr3rhc81-lyjAmY3a5NobjmpOTZWsFFNcHTzhxR2PQ2JYAXb67ltqDPq-mFF604zF3RY71O9mJ1tcjFvhpWKzy9m5Maz0AeiIviyPhzqPZnIqE2O6nk2d0ksY3w1VyfLB3BKtnC0NeSmQ1rV98ydQeFU5ed-dfwCFZAZNw priority: 102 providerName: ProQuest |
Title | Global tractography of multi-shell diffusion-weighted imaging data using a multi-tissue model |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S1053811915007168 https://dx.doi.org/10.1016/j.neuroimage.2015.08.008 https://www.ncbi.nlm.nih.gov/pubmed/26272729 https://www.proquest.com/docview/1728290942 https://www.proquest.com/docview/1728258653 https://www.proquest.com/docview/1732836461 |
Volume | 123 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3da9RAEB9KC8UXsbbq2Vq24Ot6l-xHsvhUS8tp8RBr4V5k2WQ35Up7V9ocvvm3O7PZXBFUDnxJSLIDy-zOV_Y3MwBv62CUQe5zib49l2iCuAtNwZUqTSWC0y5ElO9Ejy_lp6mabsBJnwtDsMqk-zudHrV1ejNM3BzezWbDC_QM0NxgvKHITmpK-JWyoF3-7ucjzMNkskuHU4LT6ITm6TBesWbk7BYll0BeKhbzpEaTfzZRf3NBoyk6ewZPkw_Jjrtp7sBGmD-H7c_plHwXvneF_FlLGVCpJDVbNCyCB_kDQT8ZNUZZ0p8y_iP-HA2e0QzRkDECjTLCw18xl2jauDwsts3Zg8uz028nY57aKPBalbrlusJV8vWoKQVGzqoyaJBGXvtGSNfIKniVe58jfyoKl4LxSlXCYZzRyFAXyogXsDlfzMMrYEKXrvS6ME4FpKzLELLGjahCD47MmgEUPedsnWqMU6uLG9uDya7tI88t8dxSF8xROYBsRXnX1dlYg8b0i2P7PFLUfBaNwRq071e0v-23NakP-r1gk8w_WOr0lRsMl_MBHK0-o7TSEYybh8UyjcFVUeJfYwT6fFrqbAAvu322Ykmuczo5N6__a_r78ISeOlTOAWy298vwBn2rtjqMwoPXYlocwtbxx_PxBO8fTidfvv4C3Z0opg |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3daxQxEB_KFdQXqZ-9WjWCPgZvN5vchiLiR8vVtodIC32RmN1kRWnvWm-P4j_l3-hMkr170XIvfU4GwmQyH8kv8wN4WXstNWqfF5jb8wJDELe-GXIpS10Jb5X1AeU7VqOT4tOpPF2DP91fGIJVdj4xOGo3remO_DXxKOUai5H87cUlJ9Yoel3tKDSiWRz431dYss3e7H_E_X2V53u7xx9GPLEK8FqWquWqwkW7etCUAgtJWWn0zwOnXCMK2xSVdzJ3LkfbrKh68NpJWQmLaXdT-HooqfkSuvz1QmAp04P197vjz1-WbX6zIn6-k4KXWaYTdigiykKHyh_n6CcIUiZD61Citfx3QPxfwhsC394G3E0ZK3sXTewerPnJfbh1lN7kH8DXSBvAWvpvlRpgs2nDAlSRzwhoyoiGZU73cvwqXMV6x2iFGDYZQVQZoe-_M5tk2mAMLJD0PISTG1HvI-hNphO_CUyo0pZODbWVHiXr0vussQPqB4Qzs6YPw05zpk4dzYlY48x00LWfZqlzQzo3xLk5KPuQLSQvYlePFWR0tzmm-7WKftZg6FlBdmchmzKbmLGsKL3d2YJJHmZmluehDy8Ww-gb6MHHTvx0nubgrkhx3RyBGaYqVNaHx9HOFirJVU7v9Hrr-gU8h9uj46NDc7g_PngCd2jlEfCzDb3219w_xbStrZ6ls8Lg200fz78P-FjW |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NaxQxFH-UCsWL-O3WqhH0GLozmWQmiIhYl9Zq8WBhLxIzk0QUu1vdWYr_mn-d7yWZ3YuWvfQ8eZB5eV9Jfnk_gGed11Kj9nmFtT2vMAVx60PNpWx0K7xV1keU74k6PK3eTeV0C_4Mb2EIVjnExBio3byjM_J94lEqNW5Gyv2QYREfDyavzn9yYpCim9aBTiOZyLH_fYHbt8XLowNc6-dlOXn76c0hzwwDvJON6rlq8QdcNw6NwE2lbDXG6rFTLojKhqr1TpbOlWinLe0kvHZStsJiCR4q39WSGjFh-L9WC1mQj9XTet3wt6jSMzwpeFMUOqOIErYs9qr8doYRg8BlMjYRJYLLf6fG_5W-MQVObsKNXLuy18nYbsGWn92GnQ_5dv4OfE4EAqynl1e5FTabBxZBi3xBkFNGhCxLOqHjF_FQ1jtGM8QEygisygiH_5XZLNNHs2CRrucunF6Jcu_B9mw-8w-ACdXYxqlaW-lRsmu8L4IdU2cgHFmEEdSD5kyXe5sTxcYPM4DYvpu1zg3p3BD75rgZQbGSPE_9PTaQ0cPimOH9KkZcg0loA9kXK9lc46TaZUPpvcEWTI41C7P2jBE8XX3GKEFXP3bm58s8BldFisvGCKw1VaWKEdxPdrZSSalKurHXu5dP4AnsoFOa90cnxw_hOk08IX_2YLv_tfSPsH7r28fRURh8uWrP_AsWclum |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Global+tractography+of+multi-shell+diffusion-weighted+imaging+data+using+a+multi-tissue+model&rft.jtitle=NeuroImage+%28Orlando%2C+Fla.%29&rft.au=Christiaens%2C+Daan&rft.au=Reisert%2C+Marco&rft.au=Dhollander%2C+Thijs&rft.au=Sunaert%2C+Stefan&rft.date=2015-12-01&rft.pub=Elsevier+Inc&rft.issn=1053-8119&rft.eissn=1095-9572&rft.volume=123&rft.spage=89&rft.epage=101&rft_id=info:doi/10.1016%2Fj.neuroimage.2015.08.008&rft.externalDocID=S1053811915007168 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-8119&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-8119&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-8119&client=summon |