Global tractography of multi-shell diffusion-weighted imaging data using a multi-tissue model

Diffusion-weighted imaging and tractography provide a unique, non-invasive technique to study the macroscopic structure and connectivity of brain white matter in vivo. Global tractography methods aim at reconstructing the full-brain fiber configuration that best explains the measured data, based on...

Full description

Saved in:
Bibliographic Details
Published inNeuroImage (Orlando, Fla.) Vol. 123; pp. 89 - 101
Main Authors Christiaens, Daan, Reisert, Marco, Dhollander, Thijs, Sunaert, Stefan, Suetens, Paul, Maes, Frederik
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 01.12.2015
Elsevier Limited
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Diffusion-weighted imaging and tractography provide a unique, non-invasive technique to study the macroscopic structure and connectivity of brain white matter in vivo. Global tractography methods aim at reconstructing the full-brain fiber configuration that best explains the measured data, based on a generative signal model. In this work, we incorporate a multi-shell multi-tissue model based on spherical convolution, into a global tractography framework, which allows to deal with partial volume effects. The required tissue response functions can be estimated from and hence calibrated to the data. The resulting track reconstruction is quantitatively related to the apparent fiber density in the data. In addition, the fiber orientation distribution for white matter and the volume fractions of gray matter and cerebrospinal fluid are produced as ancillary results. Validation results on simulated data demonstrate that this data-driven approach improves over state-of-the-art streamline and global tracking methods, particularly in the valid connection rate. Results in human brain data correspond to known white matter anatomy and show improved modeling of partial voluming. This work is an important step toward detecting and quantifying white matter changes and connectivity in healthy subjects and patients. [Display omitted] •We introduce a data-driven approach to global tractography.•We rely on multi-shell tissue response functions, estimated from the data.•In silico results show increased precision of connectivity and bundle metrics.•In vivo results reconstruct known WM anatomy and CSF and GM volume fractions.
AbstractList Diffusion-weighted imaging and tractography provide a unique, non-invasive technique to study the macroscopic structure and connectivity of brain white matter in vivo. Global tractography methods aim at reconstructing the full-brain fiber configuration that best explains the measured data, based on a generative signal model. In this work, we incorporate a multi-shell multi-tissue model based on spherical convolution, into a global tractography framework, which allows to deal with partial volume effects. The required tissue response functions can be estimated from and hence calibrated to the data. The resulting track reconstruction is quantitatively related to the apparent fiber density in the data. In addition, the fiber orientation distribution for white matter and the volume fractions of gray matter and cerebrospinal fluid are produced as ancillary results. Validation results on simulated data demonstrate that this data-driven approach improves over state-of-the-art streamline and global tracking methods, particularly in the valid connection rate. Results in human brain data correspond to known white matter anatomy and show improved modeling of partial voluming. This work is an important step toward detecting and quantifying white matter changes and connectivity in healthy subjects and patients.
Diffusion-weighted imaging and tractography provide a unique, non-invasive technique to study the macroscopic structure and connectivity of brain white matter in vivo. Global tractography methods aim at reconstructing the full-brain fiber configuration that best explains the measured data, based on a generative signal model. In this work, we incorporate a multi-shell multi-tissue model based on spherical convolution, into a global tractography framework, which allows to deal with partial volume effects. The required tissue response functions can be estimated from and hence calibrated to the data. The resulting track reconstruction is quantitatively related to the apparent fiber density in the data. In addition, the fiber orientation distribution for white matter and the volume fractions of gray matter and cerebrospinal fluid are produced as ancillary results. Validation results on simulated data demonstrate that this data-driven approach improves over state-of-the-art streamline and global tracking methods, particularly in the valid connection rate. Results in human brain data correspond to known white matter anatomy and show improved modeling of partial voluming. This work is an important step toward detecting and quantifying white matter changes and connectivity in healthy subjects and patients.Diffusion-weighted imaging and tractography provide a unique, non-invasive technique to study the macroscopic structure and connectivity of brain white matter in vivo. Global tractography methods aim at reconstructing the full-brain fiber configuration that best explains the measured data, based on a generative signal model. In this work, we incorporate a multi-shell multi-tissue model based on spherical convolution, into a global tractography framework, which allows to deal with partial volume effects. The required tissue response functions can be estimated from and hence calibrated to the data. The resulting track reconstruction is quantitatively related to the apparent fiber density in the data. In addition, the fiber orientation distribution for white matter and the volume fractions of gray matter and cerebrospinal fluid are produced as ancillary results. Validation results on simulated data demonstrate that this data-driven approach improves over state-of-the-art streamline and global tracking methods, particularly in the valid connection rate. Results in human brain data correspond to known white matter anatomy and show improved modeling of partial voluming. This work is an important step toward detecting and quantifying white matter changes and connectivity in healthy subjects and patients.
Diffusion-weighted imaging and tractography provide a unique, non-invasive technique to study the macroscopic structure and connectivity of brain white matter in vivo. Global tractography methods aim at reconstructing the full-brain fiber configuration that best explains the measured data, based on a generative signal model. In this work, we incorporate a multi-shell multi-tissue model based on spherical convolution, into a global tractography framework, which allows to deal with partial volume effects. The required tissue response functions can be estimated from and hence calibrated to the data. The resulting track reconstruction is quantitatively related to the apparent fiber density in the data. In addition, the fiber orientation distribution for white matter and the volume fractions of gray matter and cerebrospinal fluid are produced as ancillary results. Validation results on simulated data demonstrate that this data-driven approach improves over state-of-the-art streamline and global tracking methods, particularly in the valid connection rate. Results in human brain data correspond to known white matter anatomy and show improved modeling of partial voluming. This work is an important step toward detecting and quantifying white matter changes and connectivity in healthy subjects and patients. [Display omitted] •We introduce a data-driven approach to global tractography.•We rely on multi-shell tissue response functions, estimated from the data.•In silico results show increased precision of connectivity and bundle metrics.•In vivo results reconstruct known WM anatomy and CSF and GM volume fractions.
Author Sunaert, Stefan
Reisert, Marco
Suetens, Paul
Christiaens, Daan
Dhollander, Thijs
Maes, Frederik
Author_xml – sequence: 1
  givenname: Daan
  surname: Christiaens
  fullname: Christiaens, Daan
  email: daan.christiaens@esat.kuleuven.be
  organization: KU Leuven, Department of Electrical Engineering (ESAT), Processing of Speech and Images (PSI), Medical Image Computing, Leuven, Belgium
– sequence: 2
  givenname: Marco
  surname: Reisert
  fullname: Reisert, Marco
  organization: University of Freiburg Medical Center, Department of Radiology, Medical Physics, Freiburg, Germany
– sequence: 3
  givenname: Thijs
  surname: Dhollander
  fullname: Dhollander, Thijs
  organization: KU Leuven, Department of Electrical Engineering (ESAT), Processing of Speech and Images (PSI), Medical Image Computing, Leuven, Belgium
– sequence: 4
  givenname: Stefan
  surname: Sunaert
  fullname: Sunaert, Stefan
  organization: KU Leuven, Department of Imaging & Pathology, Translational MRI, Leuven, Belgium
– sequence: 5
  givenname: Paul
  surname: Suetens
  fullname: Suetens, Paul
  organization: KU Leuven, Department of Electrical Engineering (ESAT), Processing of Speech and Images (PSI), Medical Image Computing, Leuven, Belgium
– sequence: 6
  givenname: Frederik
  surname: Maes
  fullname: Maes, Frederik
  organization: KU Leuven, Department of Electrical Engineering (ESAT), Processing of Speech and Images (PSI), Medical Image Computing, Leuven, Belgium
BackLink https://www.ncbi.nlm.nih.gov/pubmed/26272729$$D View this record in MEDLINE/PubMed
BookMark eNqNkUuLFDEUhYOMOA_9C1Lgxk2VeVSqko3oDM6MMOBGlxJSya3utKlKm6SU_vem6R6EXjVZJJDvnnvvOdfoYg4zIFQR3BBMug-bZoYlBjfpFTQUE95g0WAsXqArgiWvJe_pxf7NWS0IkZfoOqUNxliSVrxCl7SjfTnyCv188GHQvspRmxxWUW_XuyqM1bT47Oq0Bu8r68ZxSS7M9V9wq3UGW-07u3lVWZ11Vf7KUx9rsktpgWoKFvxr9HLUPsGb432Dftx_-X73WD99e_h69_mpNlx0ue4GY7Q1eBQMBsYHKdoe286OrNVjO4Dl1FpalhkwaSVIy_nAtOzbsQXTc8lu0PuD7jaG3wukrCaXTJldzxCWpEjPqGBd25EzUCpomYqzgr47QTdhiXNZ5EBJLFtaqLdHahkmsGobizlxp549LsDHA2BiSCnCqIzLOhc_i-nOK4LVPlS1Uf9DVftQFRaqhFoExInAc48zSm8PpVDc_-MgqmQczAasi2CyssGdI_LpRMR4Nzuj_S_YnSfxD6nX2Sw
CitedBy_id crossref_primary_10_1109_TMI_2018_2855736
crossref_primary_10_1162_netn_a_00049
crossref_primary_10_1016_j_pnpbp_2020_110037
crossref_primary_10_1016_j_bbi_2022_02_017
crossref_primary_10_1002_nbm_3805
crossref_primary_10_1038_s41467_021_21732_0
crossref_primary_10_1002_hbm_24579
crossref_primary_10_3389_fnagi_2019_00113
crossref_primary_10_1038_s41467_017_01285_x
crossref_primary_10_1016_j_neuroimage_2018_03_058
crossref_primary_10_1002_advs_202406835
crossref_primary_10_1016_j_neuroimage_2022_119199
crossref_primary_10_1016_j_neuroimage_2023_120481
crossref_primary_10_1016_j_neuroimage_2019_116405
crossref_primary_10_3389_fphy_2017_00061
crossref_primary_10_1007_s10334_022_01033_3
crossref_primary_10_1002_mp_13555
crossref_primary_10_1007_s00429_022_02555_1
crossref_primary_10_1038_s41598_020_78284_4
crossref_primary_10_1002_nbm_4607
crossref_primary_10_20538_1682_0363_2021_2_191_201
crossref_primary_10_7554_eLife_64694
crossref_primary_10_1002_nbm_4605
crossref_primary_10_3390_brainsci14040349
crossref_primary_10_1002_jmri_27188
crossref_primary_10_1007_s00723_018_1044_8
crossref_primary_10_1038_s41467_022_30892_6
crossref_primary_10_1016_j_neuroimage_2019_116137
crossref_primary_10_1109_TNSE_2018_2878487
crossref_primary_10_3389_fnins_2016_00247
crossref_primary_10_3390_brainsci10060385
crossref_primary_10_1016_j_neuroimage_2022_119029
crossref_primary_10_1016_j_neuroimage_2018_07_068
crossref_primary_10_1002_hbm_24917
crossref_primary_10_1109_TMI_2018_2873736
crossref_primary_10_1162_netn_a_00382
crossref_primary_10_1016_j_neuroimage_2020_117206
crossref_primary_10_1016_j_neuroimage_2020_117201
crossref_primary_10_1007_s00429_019_02012_6
crossref_primary_10_1016_j_neuroimage_2021_118651
crossref_primary_10_1162_NECO_a_00896
crossref_primary_10_1038_s41467_018_04614_w
crossref_primary_10_3389_fnins_2024_1403804
crossref_primary_10_1016_j_neuroimage_2018_06_027
crossref_primary_10_1016_j_neuroimage_2019_05_005
crossref_primary_10_1016_j_neuroimage_2018_01_086
crossref_primary_10_1016_j_neuroimage_2020_117429
crossref_primary_10_1016_j_heliyon_2023_e23138
crossref_primary_10_7554_eLife_40766
crossref_primary_10_1007_s00234_024_03341_y
crossref_primary_10_1371_journal_pone_0168864
crossref_primary_10_1093_brain_awx245
crossref_primary_10_1002_hbm_70041
crossref_primary_10_1016_j_brs_2022_09_011
crossref_primary_10_1016_j_nicl_2019_102160
crossref_primary_10_1016_j_neuroimage_2019_116439
crossref_primary_10_3390_brainsci8020023
crossref_primary_10_1016_j_neuroimage_2022_119600
crossref_primary_10_1093_jmicro_dfv371
crossref_primary_10_1016_j_neuroimage_2022_119327
crossref_primary_10_1093_jnen_nlae069
crossref_primary_10_1038_mp_2017_92
crossref_primary_10_1016_j_neuroimage_2021_118870
crossref_primary_10_1109_TMI_2016_2557580
crossref_primary_10_1038_s41598_022_15083_z
crossref_primary_10_1016_j_neuroimage_2023_120288
crossref_primary_10_1073_pnas_2116673119
crossref_primary_10_1016_j_neuroimage_2016_10_040
crossref_primary_10_1186_s12993_024_00228_z
crossref_primary_10_1111_ejn_16490
crossref_primary_10_1162_netn_a_00072
crossref_primary_10_7554_eLife_83232
crossref_primary_10_1093_neuros_nyy538
crossref_primary_10_1016_j_neuroimage_2024_120534
crossref_primary_10_1016_j_dcn_2020_100788
crossref_primary_10_1038_s41380_022_01761_x
crossref_primary_10_1016_j_neuroimage_2023_120212
crossref_primary_10_1002_nbm_3785
crossref_primary_10_1016_j_neuroimage_2020_116948
crossref_primary_10_1007_s00429_018_1628_y
crossref_primary_10_1038_s41593_024_01868_0
crossref_primary_10_1016_j_neuroimage_2019_02_039
crossref_primary_10_1002_hbm_70019
crossref_primary_10_1002_mrm_28604
crossref_primary_10_1016_j_neuroimage_2020_116673
crossref_primary_10_1186_s10194_024_01806_2
crossref_primary_10_1155_2018_8643871
crossref_primary_10_3389_fninf_2016_00025
crossref_primary_10_1093_braincomms_fcad040
crossref_primary_10_1016_j_neuroimage_2022_119299
crossref_primary_10_1214_22_AOAS1633
crossref_primary_10_1016_j_neuroimage_2018_11_018
crossref_primary_10_1162_netn_a_00330
crossref_primary_10_3389_fnins_2019_00536
crossref_primary_10_1016_j_neuroimage_2016_09_058
crossref_primary_10_1007_s12021_019_09425_y
crossref_primary_10_1016_j_jneumeth_2021_109099
crossref_primary_10_1038_s41597_022_01682_y
crossref_primary_10_1007_s00429_020_02211_6
crossref_primary_10_1016_j_pnmrs_2019_03_001
Cites_doi 10.3414/ME11-02-0031
10.1016/j.neuroimage.2014.07.061
10.1006/nimg.2000.0607
10.1016/j.mri.2013.12.001
10.1016/S1053-8119(03)00336-7
10.1148/radiology.161.2.3763909
10.1002/mrm.21749
10.1109/TPAMI.2008.277
10.1016/j.neuroimage.2013.04.127
10.1371/journal.pcbi.0020095
10.1002/mrm.10609
10.1016/j.neuroimage.2014.10.004
10.1109/42.906424
10.1016/j.neuroimage.2013.05.041
10.1002/nbm.781
10.1016/j.neuroimage.2011.10.045
10.1016/j.neuroimage.2013.05.055
10.1002/nbm.780
10.1002/ima.22005
10.1002/mrm.10268
10.1371/journal.pcbi.0010042
10.1016/j.neuroimage.2014.04.074
10.3389/fneur.2014.00232
10.1002/mrm.22365
10.1016/j.neuroimage.2011.09.081
10.1093/cercor/10.2.127
10.1371/journal.pone.0014832
10.1016/S0896-6273(02)00679-7
10.1016/j.neuroimage.2004.07.051
10.1002/nbm.782
10.1093/biomet/82.4.711
10.1002/mrm.1910340618
10.1016/j.neuroimage.2012.06.081
10.1002/mrm.22924
10.1016/j.media.2013.03.009
10.1016/j.neuroimage.2007.02.016
10.1016/j.neuroimage.2010.09.016
10.1016/j.neuroimage.2012.06.005
10.1089/brain.2011.0033
10.1016/j.neuroimage.2013.05.057
10.1016/j.neuroimage.2013.04.009
10.1109/TMI.2008.2004424
10.1002/hbm.22080
10.1109/TMI.2011.2112769
10.1016/j.neuroimage.2013.12.047
10.1016/S0006-3495(94)80775-1
10.1002/hbm.22099
10.1016/j.neuroimage.2012.11.049
ContentType Journal Article
Copyright 2015 Elsevier Inc.
Copyright © 2015 Elsevier Inc. All rights reserved.
Copyright Elsevier Limited Dec 1, 2015
Copyright_xml – notice: 2015 Elsevier Inc.
– notice: Copyright © 2015 Elsevier Inc. All rights reserved.
– notice: Copyright Elsevier Limited Dec 1, 2015
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7TK
7X7
7XB
88E
88G
8AO
8FD
8FE
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2M
M7P
P64
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PSYQQ
Q9U
RC3
7X8
7QO
DOI 10.1016/j.neuroimage.2015.08.008
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Neurosciences Abstracts
ProQuest Health & Medical
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Psychology Database (Alumni)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Database
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
ProQuest SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
Medical Database
Psychology Database
Biological Science Database
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest One Psychology
ProQuest Central Basic
Genetics Abstracts
MEDLINE - Academic
Biotechnology Research Abstracts
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest One Psychology
ProQuest Central Student
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Psychology Journals (Alumni)
Biological Science Database
ProQuest SciTech Collection
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest Psychology Journals
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
Biotechnology Research Abstracts
DatabaseTitleList ProQuest One Psychology
MEDLINE - Academic

MEDLINE
Engineering Research Database

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1095-9572
EndPage 101
ExternalDocumentID 3851726251
26272729
10_1016_j_neuroimage_2015_08_008
S1053811915007168
Genre Journal Article
GroupedDBID ---
--K
--M
.1-
.FO
.~1
0R~
123
1B1
1RT
1~.
1~5
29N
4.4
457
4G.
53G
5RE
5VS
7-5
71M
7X7
88E
8AO
8FE
8FH
8FI
8FJ
8P~
9JM
AABNK
AAEDT
AAEDW
AAFWJ
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXLA
AAXUO
AAYWO
ABBQC
ABCQJ
ABFNM
ABFRF
ABIVO
ABJNI
ABMAC
ABMZM
ABUWG
ABXDB
ACDAQ
ACGFO
ACGFS
ACIEU
ACPRK
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADEZE
ADFGL
ADFRT
ADMUD
ADNMO
ADVLN
ADXHL
AEBSH
AEFWE
AEIPS
AEKER
AENEX
AEUPX
AFJKZ
AFKRA
AFPKN
AFPUW
AFRHN
AFTJW
AFXIZ
AGCQF
AGHFR
AGQPQ
AGUBO
AGWIK
AGYEJ
AHHHB
AHMBA
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRLJ
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
AZQEC
BBNVY
BENPR
BHPHI
BKOJK
BLXMC
BNPGV
BPHCQ
BVXVI
CAG
CCPQU
COF
CS3
DM4
DU5
DWQXO
EBS
EFBJH
EFKBS
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
FYUFA
G-2
G-Q
GBLVA
GNUQQ
GROUPED_DOAJ
HCIFZ
HDW
HEI
HMCUK
HMK
HMO
HMQ
HVGLF
HZ~
IHE
J1W
KOM
LG5
LK8
LX8
M1P
M29
M2M
M2V
M41
M7P
MO0
MOBAO
N9A
O-L
O9-
OAUVE
OK1
OVD
OZT
P-8
P-9
P2P
PC.
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PSYQQ
PUEGO
Q38
R2-
ROL
RPZ
SAE
SCC
SDF
SDG
SDP
SES
SEW
SNS
SSH
SSN
SSZ
T5K
TEORI
UKHRP
UV1
WUQ
XPP
YK3
Z5R
ZMT
ZU3
~G-
3V.
6I.
AACTN
AADPK
AAIAV
ABLVK
ABYKQ
AFKWA
AJBFU
AJOXV
AMFUW
C45
EFLBG
LCYCR
NCXOZ
RIG
ZA5
AAYXX
AGRNS
ALIPV
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7TK
7XB
8FD
8FK
FR3
K9.
P64
PKEHL
PQEST
PQUKI
PRINS
Q9U
RC3
7X8
7QO
ID FETCH-LOGICAL-c586t-6bccadc0f83eb35b98470d6df34af4bed52dd2053b0149e9d55b3a974f4ec7593
IEDL.DBID .~1
ISSN 1053-8119
1095-9572
IngestDate Fri Jul 11 14:02:56 EDT 2025
Fri Jul 11 11:24:59 EDT 2025
Wed Aug 13 06:07:53 EDT 2025
Mon Jul 21 05:39:46 EDT 2025
Tue Jul 01 03:01:44 EDT 2025
Thu Apr 24 23:04:41 EDT 2025
Fri Feb 23 02:25:09 EST 2024
Tue Aug 26 20:08:44 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Diffusion-weighted imaging
Multi-shell
Multi-tissue model
Global tractography
Language English
License Copyright © 2015 Elsevier Inc. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c586t-6bccadc0f83eb35b98470d6df34af4bed52dd2053b0149e9d55b3a974f4ec7593
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PMID 26272729
PQID 1728290942
PQPubID 2031077
PageCount 13
ParticipantIDs proquest_miscellaneous_1732836461
proquest_miscellaneous_1728258653
proquest_journals_1728290942
pubmed_primary_26272729
crossref_citationtrail_10_1016_j_neuroimage_2015_08_008
crossref_primary_10_1016_j_neuroimage_2015_08_008
elsevier_sciencedirect_doi_10_1016_j_neuroimage_2015_08_008
elsevier_clinicalkey_doi_10_1016_j_neuroimage_2015_08_008
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate December 2015
2015-12-00
2015-Dec
20151201
PublicationDateYYYYMMDD 2015-12-01
PublicationDate_xml – month: 12
  year: 2015
  text: December 2015
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Amsterdam
PublicationTitle NeuroImage (Orlando, Fla.)
PublicationTitleAlternate Neuroimage
PublicationYear 2015
Publisher Elsevier Inc
Elsevier Limited
Publisher_xml – name: Elsevier Inc
– name: Elsevier Limited
References Tournier, Calamante, Connelly (bb0290) 2012; 22
(bb0060) 2013
Dell'Acqua, Catani (bb0070) 2012; 25
Girard, Whittingstall, Deriche, Descoteaux (bb0105) 2014; 98
Dell'Acqua, Simmons, Williams, Catani (bb0075) 2013; 34
Glasser, Sotiropoulos, Wilson, Coalson, Fischl, Andersson, Xu, Jbabdi, Webster, Polimeni, Essen, Jenkinson (bb0110) 2013; 80
Lu, Wang, Chou, Li, Soong, Wu (bb0180) 2008
Green (bb0120) 1995; 82
Mori, van Zijl (bb0195) 2002; 15
Tournier, Calamante, Connelly (bb0285) 2010
Jeurissen, Tournier, Dhollander, Connelly, Sijbers (bb0145) 2014; 103
Raj, Chen (bb0220) 2011; 6
Côté, Girard, Boré, Garyfallidis, Houde, Descoteaux (bb0055) 2013; 17
Poupon, Clark, Frouin, Régis, Bloch, Bihan, Mangin (bb0210) 2000; 12
Smith, Jenkinson, Woolrich, Beckmann, Behrens, Johansen-Berg, Bannister, Luca, Drobnjak, Flitney, Niazy, Saunders, Vickers, Zhang, Stefano, Brady, Matthews (bb0260) 2004; 23
Aja-Fernández, Vegas-Sánchez-Ferrero, Tristán-Vega (bb0010) 2014; 32
Aganj, Lenglet, Sapiro, Yacoub, Ugurbil, Harel (bb0005) 2010; 64
Kreher, Mader, Kiselev (bb0160) 2008; 60
Li, Liu, Young, Guo, Wong (bb0175) 2006
Gudbjartsson, Patz (bb0125) 1995; 34
Reisert, Kiselev, Dihtal, Kellner, Novikov (bb0230) 2014; 8675
Dhollander, Emsell, Hecke, Maes, Sunaert, Suetens (bb0085) 2014; 94
Reisert, Mader, Anastasopoulos, Weigel, Schnell, Kiselev (bb0235) 2011; 54
Daducci, Dal Palù, Alia, Thiran (bb0065) 2014; 246–257
Zhang, Brady, Smith (bb0320) 2001; 20
Tuch, Reese, Wiegell, Makris, Belliveau, Wedeen (bb0300) 2002; 48
Wassermann, Makris, Rathi, Shenton, Kikinis, Kubicki, Westin (bb0315) 2013; 8149
Veraart, Fieremans, Novikov (bb0310) 2015
Smith, Tournier, Calamante, Connelly (bb0245) 2012; 62
Sporns, Tononi, Kötter (bb0275) 2005; 1
Andersson, Skare, Ashburner (bb0015) 2003; 20
Lemkaddem, Skiöldebrand, Dal Palù, Thiran, Daducci (bb0170) 2014; 5
Jeurissen, Leemans, Tournier, Jones, Sijbers (bb0140) 2012; 34
Tournier, Calamante, Connelly (bb0280) 2007; 35
Jones, Knösche, Turner (bb0150) 2013; 73
Neher, Stieltjes, Reisert, Reicht, Meinzer, Fritzsche (bb0200) 2012
Reisert, Kiselev (bb0225) 2011; 30
Christiaens, Reisert, Dhollander, Maes, Sunaert, Suetens (bb0050) 2014
Beaulieu (bb0030) 2002; 15
Sotiropoulos, Jbabdi, Xu, Andersson, Moeller, Auerbach, Glasser, Hernandez, Sapiro, Jenkinson, Feinberg, Yacoub, Lenglet, Essen, Ugurbil, Behrens (bb0265) 2013; 80
Sporns (bb0270) 2000; 10
Sherbondy, Rowe, Alexander (bb0240) 2010
Caruyer, Daducci, Descoteaux, Houde, Thiran, Verma (bb0040) 2014
Assaf, Alexander, Jones, Bizzi, Behrens, Clark, Cohen, Dyrby, Huppi, Knoesche, LeBihan, Parker, Poupon (bb0020) 2013; 80
Mangin, Fillard, Cointepas, Bihan, Frouin, Poupon (bb0185) 2013; 80
Raffelt, Tournier, Rose, Ridgway, Henderson, Crozier, Salvado, Connelly (bb0215) 2012; 59
Behrens, Woolrich, Jenkinson, Johansen-Berg, Nunes, Clare, Matthews, Brady, Smith (bb0035) 2003; 50
Ding, Li, Jordan (bb0090) 2010; 32
Descoteaux, Deriche, Knosche, Anwander (bb0080) 2009; 28
Panagiotaki, Schneider, Siow, Hall, Lythgoe, Alexander (bb0205) 2012; 59
Basser, Mattiello, Le Bihan (bb0025) 1994; 66
Goh, Lenglet, Thompson, Vidal (bb0115) 2009; 5761
Smith, Tournier, Calamante, Connelly (bb0250) 2013; 67
Le Bihan, Breton, Lallemand, Grenier, Cabanis, Laval-Jeantet (bb0165) 1986; 161
Smith, Tournier, Calamante, Connelly (bb0255) 2015; 104
Van Essen, Smith, Barch, Behrens, Yacoub, Ugurbil (bb0305) 2013; 80
Chklovskii, Schikorski, Stevens (bb0045) 2002; 34
Jbabdi, Johansen-Berg (bb0135) 2011; 1
Mangin, Poupon, Cointepas, Rivière, Papadopoulos-Orfanos, Clark, Régis, Bihan (bb0190) 2002; 15
Tournier, Mori, Leemans (bb0295) 2011; 65
Kaiser, Hilgetag (bb0155) 2006; 2
Fritzsche, Neher, Reicht, van Bruggen, Goch, Reisert, Nolden, Zelzer, Meinzer, Stieltjes (bb0100) 2012; 51
Zhou, Michailovich, Rathi (bb0325) 2014
Houde, Caruyer, Daducci, Descoteaux (bb0130) 2014
Fillard, Poupon, Mangin (bb0095) 2009; 5761
Dell'Acqua (10.1016/j.neuroimage.2015.08.008_bb0070) 2012; 25
Panagiotaki (10.1016/j.neuroimage.2015.08.008_bb0205) 2012; 59
Caruyer (10.1016/j.neuroimage.2015.08.008_bb0040) 2014
(10.1016/j.neuroimage.2015.08.008_bb0060) 2013
Le Bihan (10.1016/j.neuroimage.2015.08.008_bb0165) 1986; 161
Aganj (10.1016/j.neuroimage.2015.08.008_bb0005) 2010; 64
Sporns (10.1016/j.neuroimage.2015.08.008_bb0275) 2005; 1
Smith (10.1016/j.neuroimage.2015.08.008_bb0250) 2013; 67
Zhou (10.1016/j.neuroimage.2015.08.008_bb0325) 2014
Sporns (10.1016/j.neuroimage.2015.08.008_bb0270) 2000; 10
Neher (10.1016/j.neuroimage.2015.08.008_bb0200) 2012
Jeurissen (10.1016/j.neuroimage.2015.08.008_bb0140) 2012; 34
Dhollander (10.1016/j.neuroimage.2015.08.008_bb0085) 2014; 94
Raffelt (10.1016/j.neuroimage.2015.08.008_bb0215) 2012; 59
Côté (10.1016/j.neuroimage.2015.08.008_bb0055) 2013; 17
Daducci (10.1016/j.neuroimage.2015.08.008_bb0065) 2014; 246–257
Behrens (10.1016/j.neuroimage.2015.08.008_bb0035) 2003; 50
Girard (10.1016/j.neuroimage.2015.08.008_bb0105) 2014; 98
Veraart (10.1016/j.neuroimage.2015.08.008_bb0310) 2015
Tournier (10.1016/j.neuroimage.2015.08.008_bb0285) 2010
Andersson (10.1016/j.neuroimage.2015.08.008_bb0015) 2003; 20
Fritzsche (10.1016/j.neuroimage.2015.08.008_bb0100) 2012; 51
Assaf (10.1016/j.neuroimage.2015.08.008_bb0020) 2013; 80
Beaulieu (10.1016/j.neuroimage.2015.08.008_bb0030) 2002; 15
Glasser (10.1016/j.neuroimage.2015.08.008_bb0110) 2013; 80
Houde (10.1016/j.neuroimage.2015.08.008_bb0130) 2014
Lu (10.1016/j.neuroimage.2015.08.008_bb0180) 2008
Basser (10.1016/j.neuroimage.2015.08.008_bb0025) 1994; 66
Tournier (10.1016/j.neuroimage.2015.08.008_bb0290) 2012; 22
Smith (10.1016/j.neuroimage.2015.08.008_bb0255) 2015; 104
Tuch (10.1016/j.neuroimage.2015.08.008_bb0300) 2002; 48
Jbabdi (10.1016/j.neuroimage.2015.08.008_bb0135) 2011; 1
Descoteaux (10.1016/j.neuroimage.2015.08.008_bb0080) 2009; 28
Li (10.1016/j.neuroimage.2015.08.008_bb0175) 2006
Poupon (10.1016/j.neuroimage.2015.08.008_bb0210) 2000; 12
Tournier (10.1016/j.neuroimage.2015.08.008_bb0295) 2011; 65
Tournier (10.1016/j.neuroimage.2015.08.008_bb0280) 2007; 35
Smith (10.1016/j.neuroimage.2015.08.008_bb0260) 2004; 23
Reisert (10.1016/j.neuroimage.2015.08.008_bb0225) 2011; 30
Goh (10.1016/j.neuroimage.2015.08.008_bb0115) 2009; 5761
Ding (10.1016/j.neuroimage.2015.08.008_bb0090) 2010; 32
Lemkaddem (10.1016/j.neuroimage.2015.08.008_bb0170) 2014; 5
Mangin (10.1016/j.neuroimage.2015.08.008_bb0185) 2013; 80
Aja-Fernández (10.1016/j.neuroimage.2015.08.008_bb0010) 2014; 32
Chklovskii (10.1016/j.neuroimage.2015.08.008_bb0045) 2002; 34
Jeurissen (10.1016/j.neuroimage.2015.08.008_bb0145) 2014; 103
Dell'Acqua (10.1016/j.neuroimage.2015.08.008_bb0075) 2013; 34
Kreher (10.1016/j.neuroimage.2015.08.008_bb0160) 2008; 60
Green (10.1016/j.neuroimage.2015.08.008_bb0120) 1995; 82
Wassermann (10.1016/j.neuroimage.2015.08.008_bb0315) 2013; 8149
Mori (10.1016/j.neuroimage.2015.08.008_bb0195) 2002; 15
Jones (10.1016/j.neuroimage.2015.08.008_bb0150) 2013; 73
Sherbondy (10.1016/j.neuroimage.2015.08.008_bb0240) 2010
Sotiropoulos (10.1016/j.neuroimage.2015.08.008_bb0265) 2013; 80
Gudbjartsson (10.1016/j.neuroimage.2015.08.008_bb0125) 1995; 34
Raj (10.1016/j.neuroimage.2015.08.008_bb0220) 2011; 6
Fillard (10.1016/j.neuroimage.2015.08.008_bb0095) 2009; 5761
Christiaens (10.1016/j.neuroimage.2015.08.008_bb0050) 2014
Reisert (10.1016/j.neuroimage.2015.08.008_bb0230) 2014; 8675
Kaiser (10.1016/j.neuroimage.2015.08.008_bb0155) 2006; 2
Mangin (10.1016/j.neuroimage.2015.08.008_bb0190) 2002; 15
Smith (10.1016/j.neuroimage.2015.08.008_bb0245) 2012; 62
Van Essen (10.1016/j.neuroimage.2015.08.008_bb0305) 2013; 80
Zhang (10.1016/j.neuroimage.2015.08.008_bb0320) 2001; 20
Reisert (10.1016/j.neuroimage.2015.08.008_bb0235) 2011; 54
References_xml – volume: 80
  start-page: 105
  year: 2013
  end-page: 124
  ident: bb0110
  article-title: The minimal preprocessing pipelines for the Human Connectome Project
  publication-title: NeuroImage
– start-page: 1670
  year: 2010
  ident: bb0285
  article-title: Improved probabilistic streamlines tractography by 2nd order integration over fibre orientation distributions
  publication-title: Proceedings of the International Society for, Magnetic Resonance in Medicine
– volume: 32
  start-page: 281
  year: 2014
  end-page: 290
  ident: bb0010
  article-title: Noise estimation in parallel MRI: GRAPPA and SENSE
  publication-title: Magn. Reson. Imaging
– volume: 5761
  start-page: 927
  year: 2009
  end-page: 934
  ident: bb0095
  article-title: A novel global tractography algorithm based on an adaptive spin glass model
  publication-title: Medical Image Computing and Computer-Assisted Intervention – MICCAI 2009
– volume: 8675
  start-page: 201
  year: 2014
  end-page: 208
  ident: bb0230
  article-title: MesoFT: unifying diffusion modelling and fiber tracking
  publication-title: Medical Image Computing and Computer-Assisted Intervention – MICCAI 2014
– volume: 82
  start-page: 711
  year: 1995
  end-page: 732
  ident: bb0120
  article-title: Reversible jump Markov chain Monte Carlo computation and Bayesian model determination
  publication-title: Biometrika
– start-page: 57
  year: 2006
  end-page: 60
  ident: bb0175
  article-title: Brain tissue segmentation based on DWI/DTI data
  publication-title: 3rd IEEE International Symposium on Biomedical Imaging: Macro to Nano, IEEE
– volume: 8149
  start-page: 647
  year: 2013
  end-page: 654
  ident: bb0315
  article-title: On describing human white matter anatomy: The white matter query language
  publication-title: Medical Image Computing and Computer-Assisted Intervention – MICCAI 2013
– start-page: 5502
  year: 2008
  end-page: 5505
  ident: bb0180
  article-title: Segmentation of diffusion-weighted brain images using expectation maximization algorithm initialized by hierarchical clustering
  publication-title: 2008 30th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, IEEE
– start-page: 115
  year: 2014
  end-page: 123
  ident: bb0050
  article-title: Atlas-guided global tractography: imposing a prior on the local tract orientation
  publication-title: Computational Diffusion MRI
– volume: 104
  start-page: 253
  year: 2015
  end-page: 265
  ident: bb0255
  article-title: The effects of SIFT on the reproducibility and biological accuracy of the structural connectome
  publication-title: NeuroImage
– volume: 80
  start-page: 125
  year: 2013
  end-page: 143
  ident: bb0265
  article-title: Advances in diffusion MRI acquisition and processing in the human connectome project
  publication-title: NeuroImage
– volume: 59
  start-page: 2241
  year: 2012
  end-page: 2254
  ident: bb0205
  article-title: Compartment models of the diffusion MR signal in brain white matter: a taxonomy and comparison
  publication-title: NeuroImage
– volume: 48
  start-page: 577
  year: 2002
  end-page: 582
  ident: bb0300
  article-title: High angular resolution diffusion imaging reveals intravoxel white matter fiber heterogeneity
  publication-title: Magn. Reson. Med.
– volume: 35
  start-page: 1459
  year: 2007
  end-page: 1472
  ident: bb0280
  article-title: Robust determination of the fibre orientation distribution in diffusion MRI: non-negativity constrained super-resolved spherical deconvolution
  publication-title: NeuroImage
– volume: 6
  start-page: e14832
  year: 2011
  ident: bb0220
  article-title: The wiring economy principle: connectivity determines anatomy in the human brain
  publication-title: PLoS ONE
– start-page: 183
  year: 2010
  end-page: 190
  ident: bb0240
  article-title: MicroTrack: an algorithm for concurrent projectome and microstructure estimation
  publication-title: Medical Image Computing and Computer-Assisted Intervention – MICCAI 2010
– start-page: 2666
  year: 2014
  ident: bb0040
  article-title: Phantomas: a flexible software library to simulate diffusion MR phantoms
  publication-title: Proc. of ISMRM 2014, Milan, Italy
– start-page: 273
  year: 2014
  ident: bb0130
  article-title: How should tractography go forward? a tractometer evaluation os local reconstruction and tracking
  publication-title: Proc. of ISMRM 2014, Milan, Italy
– volume: 5
  year: 2014
  ident: bb0170
  article-title: Global tractography with embedded anatomical priors for quantitative connectivity analysis
  publication-title: Front. Neurol.
– volume: 10
  start-page: 127
  year: 2000
  end-page: 141
  ident: bb0270
  article-title: Theoretical neuroanatomy: relating anatomical and functional connectivity in graphs and cortical connection matrices
  publication-title: Cereb. Cortex
– volume: 22
  start-page: 53
  year: 2012
  end-page: 66
  ident: bb0290
  article-title: MRtrix: diffusion tractography in crossing fiber regions
  publication-title: Int. J. Imaging Syst. Technol.
– year: 2013
  ident: bb0060
  publication-title: IEEE International Symposium on Biomedical Imaging (ISBI): HARDI Reconstruction Challenge
– start-page: 1023
  year: 2015
  ident: bb0310
  article-title: Noise map estimation in diffusion MRI using random matrix theory
  publication-title: Proc. of ISMRM 2015, Toronto, Canada
– volume: 103
  start-page: 411
  year: 2014
  end-page: 426
  ident: bb0145
  article-title: Multi-tissue constrained spherical deconvolution for improved analysis of multi-shell diffusion MRI data
  publication-title: NeuroImage
– volume: 161
  start-page: 401
  year: 1986
  end-page: 407
  ident: bb0165
  article-title: MR imaging of intravoxel incoherent motions: application to diffusion and perfusion in neurologic disorders
  publication-title: Radiology
– volume: 34
  start-page: 2464
  year: 2013
  end-page: 2483
  ident: bb0075
  article-title: Can spherical deconvolution provide more information than fiber orientations? Hindrance modulated orientational anisotropy, a true-tract specific index to characterize white matter diffusion
  publication-title: Hum. Brain Mapp.
– volume: 15
  start-page: 468
  year: 2002
  end-page: 480
  ident: bb0195
  article-title: Fiber tracking: principles and strategies—a technical review
  publication-title: NMR Biomed.
– volume: 54
  start-page: 955
  year: 2011
  end-page: 962
  ident: bb0235
  article-title: Global fiber reconstruction becomes practical
  publication-title: NeuroImage
– volume: 73
  start-page: 239
  year: 2013
  end-page: 254
  ident: bb0150
  article-title: White matter integrity, fiber count, and other fallacies: the do's and don'ts of diffusion MRI
  publication-title: NeuroImage
– volume: 15
  start-page: 481
  year: 2002
  end-page: 492
  ident: bb0190
  article-title: A framework based on spin glass models for the inference of anatomical connectivity from diffusion-weighted MR data—a technical review
  publication-title: NMR Biomed.
– volume: 25
  start-page: 375
  year: 2012
  end-page: 383
  ident: bb0070
  article-title: Structural human brain networks: hot topics in diffusion tractography
  publication-title: Curr. Opin. Neurol.
– volume: 30
  start-page: 1274
  year: 2011
  end-page: 1283
  ident: bb0225
  article-title: Fiber continuity: an anisotropic prior for ODF estimation
  publication-title: IEEE Trans. Med. Imaging
– volume: 23
  start-page: S208
  year: 2004
  end-page: S219
  ident: bb0260
  article-title: Advances in functional and structural MR image analysis and implementation as FSL
  publication-title: NeuroImage
– year: 2014
  ident: bb0325
  article-title: Spatially regularized reconstruction of fibre orientation distributions in the presence of isotropic diffusion
  publication-title: Computing Research Repository
– volume: 2
  start-page: e95
  year: 2006
  ident: bb0155
  article-title: Nonoptimal component placement, but short processing paths, due to long-distance projections in neural systems
  publication-title: PLoS Comput. Biol.
– start-page: 83144D
  year: 2012
  ident: bb0200
  article-title: MITK global tractography
  publication-title: Medical Imaging 2012: Image Processing, SPIE
– volume: 98
  start-page: 266
  year: 2014
  end-page: 278
  ident: bb0105
  article-title: Towards quantitative connectivity analysis: reducing tractography biases
  publication-title: NeuroImage
– volume: 5761
  start-page: 877
  year: 2009
  end-page: 885
  ident: bb0115
  article-title: Estimating orientation distribution functions with probability density constraints and spatial regularity
  publication-title: Medical Image Computing and Computer-Assisted Intervention – MICCAI 2009
– volume: 34
  start-page: 910
  year: 1995
  end-page: 914
  ident: bb0125
  article-title: The rician distribution of noisy MRI data
  publication-title: Magn. Reson. Med.
– volume: 94
  start-page: 312
  year: 2014
  end-page: 336
  ident: bb0085
  article-title: Track Orientation Density Imaging (TODI) and Track Orientation Distribution (TOD) based tractography
  publication-title: NeuroImage
– volume: 1
  start-page: e42
  year: 2005
  ident: bb0275
  article-title: The human connectome: a structural description of the human brain
  publication-title: PLoS Comput. Biol.
– volume: 66
  start-page: 259
  year: 1994
  end-page: 267
  ident: bb0025
  article-title: MR diffusion tensor spectroscopy and imaging
  publication-title: Biophys. J.
– volume: 62
  start-page: 1924
  year: 2012
  end-page: 1938
  ident: bb0245
  article-title: Anatomically-constrained tractography: improved diffusion MRI streamlines tractography through effective use of anatomical information
  publication-title: NeuroImage
– volume: 50
  start-page: 1077
  year: 2003
  end-page: 1088
  ident: bb0035
  article-title: Characterization and propagation of uncertainty in diffusion-weighted MR imaging
  publication-title: Magn. Reson. Med.
– volume: 20
  start-page: 45
  year: 2001
  end-page: 57
  ident: bb0320
  article-title: Segmentation of brain MR images through a hidden markov random field model and the expectation-maximization algorithm
  publication-title: IEEE Trans. Med. Imaging
– volume: 51
  start-page: 441
  year: 2012
  end-page: 448
  ident: bb0100
  article-title: MITK diffusion imaging
  publication-title: Methods Inf. Med.
– volume: 60
  start-page: 953
  year: 2008
  end-page: 963
  ident: bb0160
  article-title: Gibbs tracking: a novel approach for the reconstruction of neuronal pathways
  publication-title: Magn. Reson. Med.
– volume: 12
  start-page: 184
  year: 2000
  end-page: 195
  ident: bb0210
  article-title: Regularization of diffusion-based direction maps for the tracking of brain white matter fascicles
  publication-title: NeuroImage
– volume: 65
  start-page: 1532
  year: 2011
  end-page: 1556
  ident: bb0295
  article-title: Diffusion tensor imaging and beyond
  publication-title: Magn. Reson. Med.
– volume: 32
  start-page: 45
  year: 2010
  end-page: 55
  ident: bb0090
  article-title: Convex and semi-nonnegative matrix factorizations
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 80
  start-page: 290
  year: 2013
  end-page: 296
  ident: bb0185
  article-title: Toward global tractography
  publication-title: NeuroImage
– volume: 80
  start-page: 273
  year: 2013
  end-page: 282
  ident: bb0020
  article-title: The CONNECT project: combining macro- and micro-structure
  publication-title: NeuroImage
– volume: 67
  start-page: 298
  year: 2013
  end-page: 312
  ident: bb0250
  article-title: SIFT: spherical-deconvolution informed filtering of tractograms
  publication-title: NeuroImage
– volume: 246–257
  year: 2014
  ident: bb0065
  article-title: COMMIT: convex optimization modeling for micro-structure informed tractography
  publication-title: IEEE Trans. Med. Imaging
– volume: 34
  start-page: 341
  year: 2002
  end-page: 347
  ident: bb0045
  article-title: Wiring optimization in cortical circuits
  publication-title: Neuron
– volume: 80
  start-page: 62
  year: 2013
  end-page: 79
  ident: bb0305
  article-title: The WU-Minn human connectome project: an overview
  publication-title: NeuroImage
– volume: 28
  start-page: 269
  year: 2009
  end-page: 286
  ident: bb0080
  article-title: Deterministic and probabilistic tractography based on complex fibre orientation distributions
  publication-title: IEEE Trans. Med. Imaging
– volume: 20
  start-page: 870
  year: 2003
  end-page: 888
  ident: bb0015
  article-title: How to correct susceptibility distortions in spin-echo echo-planar images: application to diffusion tensor imaging
  publication-title: NeuroImage
– volume: 34
  start-page: 2747
  year: 2012
  end-page: 2766
  ident: bb0140
  article-title: Investigating the prevalence of complex fiber configurations in white matter tissue with diffusion magnetic resonance imaging
  publication-title: Hum. Brain Mapp.
– volume: 15
  start-page: 435
  year: 2002
  end-page: 455
  ident: bb0030
  article-title: The basis of anisotropic water diffusion in the nervous system—a technical review
  publication-title: NMR Biomed.
– volume: 17
  start-page: 844
  year: 2013
  end-page: 857
  ident: bb0055
  article-title: Tractometer: towards validation of tractography pipelines
  publication-title: Med. Image Anal.
– volume: 59
  start-page: 3976
  year: 2012
  end-page: 3994
  ident: bb0215
  article-title: Apparent fibre density: a novel measure for the analysis of diffusion-weighted magnetic resonance images
  publication-title: NeuroImage
– volume: 64
  start-page: 554
  year: 2010
  end-page: 566
  ident: bb0005
  article-title: Reconstruction of the orientation distribution function in single- and multiple-shell q-ball imaging within constant solid angle
  publication-title: Magn. Reson. Med.
– volume: 1
  start-page: 169
  year: 2011
  end-page: 183
  ident: bb0135
  article-title: Tractography: where do we go from here?
  publication-title: Brain Connect.
– volume: 51
  start-page: 441
  year: 2012
  ident: 10.1016/j.neuroimage.2015.08.008_bb0100
  article-title: MITK diffusion imaging
  publication-title: Methods Inf. Med.
  doi: 10.3414/ME11-02-0031
– volume: 25
  start-page: 375
  year: 2012
  ident: 10.1016/j.neuroimage.2015.08.008_bb0070
  article-title: Structural human brain networks: hot topics in diffusion tractography
  publication-title: Curr. Opin. Neurol.
– volume: 5761
  start-page: 877
  year: 2009
  ident: 10.1016/j.neuroimage.2015.08.008_bb0115
  article-title: Estimating orientation distribution functions with probability density constraints and spatial regularity
– volume: 103
  start-page: 411
  year: 2014
  ident: 10.1016/j.neuroimage.2015.08.008_bb0145
  article-title: Multi-tissue constrained spherical deconvolution for improved analysis of multi-shell diffusion MRI data
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2014.07.061
– volume: 8149
  start-page: 647
  year: 2013
  ident: 10.1016/j.neuroimage.2015.08.008_bb0315
  article-title: On describing human white matter anatomy: The white matter query language
– volume: 12
  start-page: 184
  year: 2000
  ident: 10.1016/j.neuroimage.2015.08.008_bb0210
  article-title: Regularization of diffusion-based direction maps for the tracking of brain white matter fascicles
  publication-title: NeuroImage
  doi: 10.1006/nimg.2000.0607
– volume: 32
  start-page: 281
  year: 2014
  ident: 10.1016/j.neuroimage.2015.08.008_bb0010
  article-title: Noise estimation in parallel MRI: GRAPPA and SENSE
  publication-title: Magn. Reson. Imaging
  doi: 10.1016/j.mri.2013.12.001
– volume: 20
  start-page: 870
  year: 2003
  ident: 10.1016/j.neuroimage.2015.08.008_bb0015
  article-title: How to correct susceptibility distortions in spin-echo echo-planar images: application to diffusion tensor imaging
  publication-title: NeuroImage
  doi: 10.1016/S1053-8119(03)00336-7
– year: 2013
  ident: 10.1016/j.neuroimage.2015.08.008_bb0060
– volume: 246–257
  year: 2014
  ident: 10.1016/j.neuroimage.2015.08.008_bb0065
  article-title: COMMIT: convex optimization modeling for micro-structure informed tractography
  publication-title: IEEE Trans. Med. Imaging
– volume: 161
  start-page: 401
  year: 1986
  ident: 10.1016/j.neuroimage.2015.08.008_bb0165
  article-title: MR imaging of intravoxel incoherent motions: application to diffusion and perfusion in neurologic disorders
  publication-title: Radiology
  doi: 10.1148/radiology.161.2.3763909
– volume: 60
  start-page: 953
  year: 2008
  ident: 10.1016/j.neuroimage.2015.08.008_bb0160
  article-title: Gibbs tracking: a novel approach for the reconstruction of neuronal pathways
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.21749
– volume: 32
  start-page: 45
  year: 2010
  ident: 10.1016/j.neuroimage.2015.08.008_bb0090
  article-title: Convex and semi-nonnegative matrix factorizations
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2008.277
– volume: 80
  start-page: 105
  year: 2013
  ident: 10.1016/j.neuroimage.2015.08.008_bb0110
  article-title: The minimal preprocessing pipelines for the Human Connectome Project
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2013.04.127
– volume: 2
  start-page: e95
  year: 2006
  ident: 10.1016/j.neuroimage.2015.08.008_bb0155
  article-title: Nonoptimal component placement, but short processing paths, due to long-distance projections in neural systems
  publication-title: PLoS Comput. Biol.
  doi: 10.1371/journal.pcbi.0020095
– volume: 50
  start-page: 1077
  year: 2003
  ident: 10.1016/j.neuroimage.2015.08.008_bb0035
  article-title: Characterization and propagation of uncertainty in diffusion-weighted MR imaging
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.10609
– volume: 5761
  start-page: 927
  year: 2009
  ident: 10.1016/j.neuroimage.2015.08.008_bb0095
  article-title: A novel global tractography algorithm based on an adaptive spin glass model
– start-page: 115
  year: 2014
  ident: 10.1016/j.neuroimage.2015.08.008_bb0050
  article-title: Atlas-guided global tractography: imposing a prior on the local tract orientation
– volume: 104
  start-page: 253
  year: 2015
  ident: 10.1016/j.neuroimage.2015.08.008_bb0255
  article-title: The effects of SIFT on the reproducibility and biological accuracy of the structural connectome
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2014.10.004
– volume: 20
  start-page: 45
  year: 2001
  ident: 10.1016/j.neuroimage.2015.08.008_bb0320
  article-title: Segmentation of brain MR images through a hidden markov random field model and the expectation-maximization algorithm
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/42.906424
– volume: 80
  start-page: 62
  year: 2013
  ident: 10.1016/j.neuroimage.2015.08.008_bb0305
  article-title: The WU-Minn human connectome project: an overview
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2013.05.041
– volume: 15
  start-page: 468
  year: 2002
  ident: 10.1016/j.neuroimage.2015.08.008_bb0195
  article-title: Fiber tracking: principles and strategies—a technical review
  publication-title: NMR Biomed.
  doi: 10.1002/nbm.781
– volume: 59
  start-page: 3976
  year: 2012
  ident: 10.1016/j.neuroimage.2015.08.008_bb0215
  article-title: Apparent fibre density: a novel measure for the analysis of diffusion-weighted magnetic resonance images
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2011.10.045
– volume: 80
  start-page: 273
  year: 2013
  ident: 10.1016/j.neuroimage.2015.08.008_bb0020
  article-title: The CONNECT project: combining macro- and micro-structure
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2013.05.055
– start-page: 273
  year: 2014
  ident: 10.1016/j.neuroimage.2015.08.008_bb0130
  article-title: How should tractography go forward? a tractometer evaluation os local reconstruction and tracking
– start-page: 5502
  year: 2008
  ident: 10.1016/j.neuroimage.2015.08.008_bb0180
  article-title: Segmentation of diffusion-weighted brain images using expectation maximization algorithm initialized by hierarchical clustering
– start-page: 83144D
  year: 2012
  ident: 10.1016/j.neuroimage.2015.08.008_bb0200
  article-title: MITK global tractography
– volume: 15
  start-page: 481
  year: 2002
  ident: 10.1016/j.neuroimage.2015.08.008_bb0190
  article-title: A framework based on spin glass models for the inference of anatomical connectivity from diffusion-weighted MR data—a technical review
  publication-title: NMR Biomed.
  doi: 10.1002/nbm.780
– volume: 22
  start-page: 53
  year: 2012
  ident: 10.1016/j.neuroimage.2015.08.008_bb0290
  article-title: MRtrix: diffusion tractography in crossing fiber regions
  publication-title: Int. J. Imaging Syst. Technol.
  doi: 10.1002/ima.22005
– volume: 48
  start-page: 577
  year: 2002
  ident: 10.1016/j.neuroimage.2015.08.008_bb0300
  article-title: High angular resolution diffusion imaging reveals intravoxel white matter fiber heterogeneity
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.10268
– volume: 1
  start-page: e42
  year: 2005
  ident: 10.1016/j.neuroimage.2015.08.008_bb0275
  article-title: The human connectome: a structural description of the human brain
  publication-title: PLoS Comput. Biol.
  doi: 10.1371/journal.pcbi.0010042
– volume: 98
  start-page: 266
  year: 2014
  ident: 10.1016/j.neuroimage.2015.08.008_bb0105
  article-title: Towards quantitative connectivity analysis: reducing tractography biases
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2014.04.074
– volume: 5
  year: 2014
  ident: 10.1016/j.neuroimage.2015.08.008_bb0170
  article-title: Global tractography with embedded anatomical priors for quantitative connectivity analysis
  publication-title: Front. Neurol.
  doi: 10.3389/fneur.2014.00232
– volume: 64
  start-page: 554
  year: 2010
  ident: 10.1016/j.neuroimage.2015.08.008_bb0005
  article-title: Reconstruction of the orientation distribution function in single- and multiple-shell q-ball imaging within constant solid angle
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.22365
– volume: 59
  start-page: 2241
  year: 2012
  ident: 10.1016/j.neuroimage.2015.08.008_bb0205
  article-title: Compartment models of the diffusion MR signal in brain white matter: a taxonomy and comparison
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2011.09.081
– volume: 10
  start-page: 127
  year: 2000
  ident: 10.1016/j.neuroimage.2015.08.008_bb0270
  article-title: Theoretical neuroanatomy: relating anatomical and functional connectivity in graphs and cortical connection matrices
  publication-title: Cereb. Cortex
  doi: 10.1093/cercor/10.2.127
– volume: 6
  start-page: e14832
  year: 2011
  ident: 10.1016/j.neuroimage.2015.08.008_bb0220
  article-title: The wiring economy principle: connectivity determines anatomy in the human brain
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0014832
– volume: 34
  start-page: 341
  year: 2002
  ident: 10.1016/j.neuroimage.2015.08.008_bb0045
  article-title: Wiring optimization in cortical circuits
  publication-title: Neuron
  doi: 10.1016/S0896-6273(02)00679-7
– start-page: 183
  year: 2010
  ident: 10.1016/j.neuroimage.2015.08.008_bb0240
  article-title: MicroTrack: an algorithm for concurrent projectome and microstructure estimation
– start-page: 1023
  year: 2015
  ident: 10.1016/j.neuroimage.2015.08.008_bb0310
  article-title: Noise map estimation in diffusion MRI using random matrix theory
– volume: 23
  start-page: S208
  year: 2004
  ident: 10.1016/j.neuroimage.2015.08.008_bb0260
  article-title: Advances in functional and structural MR image analysis and implementation as FSL
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2004.07.051
– volume: 15
  start-page: 435
  year: 2002
  ident: 10.1016/j.neuroimage.2015.08.008_bb0030
  article-title: The basis of anisotropic water diffusion in the nervous system—a technical review
  publication-title: NMR Biomed.
  doi: 10.1002/nbm.782
– volume: 82
  start-page: 711
  year: 1995
  ident: 10.1016/j.neuroimage.2015.08.008_bb0120
  article-title: Reversible jump Markov chain Monte Carlo computation and Bayesian model determination
  publication-title: Biometrika
  doi: 10.1093/biomet/82.4.711
– volume: 34
  start-page: 910
  year: 1995
  ident: 10.1016/j.neuroimage.2015.08.008_bb0125
  article-title: The rician distribution of noisy MRI data
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.1910340618
– volume: 73
  start-page: 239
  year: 2013
  ident: 10.1016/j.neuroimage.2015.08.008_bb0150
  article-title: White matter integrity, fiber count, and other fallacies: the do's and don'ts of diffusion MRI
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2012.06.081
– volume: 8675
  start-page: 201
  year: 2014
  ident: 10.1016/j.neuroimage.2015.08.008_bb0230
  article-title: MesoFT: unifying diffusion modelling and fiber tracking
– start-page: 57
  year: 2006
  ident: 10.1016/j.neuroimage.2015.08.008_bb0175
  article-title: Brain tissue segmentation based on DWI/DTI data
– volume: 65
  start-page: 1532
  year: 2011
  ident: 10.1016/j.neuroimage.2015.08.008_bb0295
  article-title: Diffusion tensor imaging and beyond
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.22924
– volume: 17
  start-page: 844
  year: 2013
  ident: 10.1016/j.neuroimage.2015.08.008_bb0055
  article-title: Tractometer: towards validation of tractography pipelines
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2013.03.009
– start-page: 2666
  year: 2014
  ident: 10.1016/j.neuroimage.2015.08.008_bb0040
  article-title: Phantomas: a flexible software library to simulate diffusion MR phantoms
– volume: 35
  start-page: 1459
  year: 2007
  ident: 10.1016/j.neuroimage.2015.08.008_bb0280
  article-title: Robust determination of the fibre orientation distribution in diffusion MRI: non-negativity constrained super-resolved spherical deconvolution
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2007.02.016
– volume: 54
  start-page: 955
  year: 2011
  ident: 10.1016/j.neuroimage.2015.08.008_bb0235
  article-title: Global fiber reconstruction becomes practical
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2010.09.016
– volume: 62
  start-page: 1924
  year: 2012
  ident: 10.1016/j.neuroimage.2015.08.008_bb0245
  article-title: Anatomically-constrained tractography: improved diffusion MRI streamlines tractography through effective use of anatomical information
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2012.06.005
– volume: 1
  start-page: 169
  year: 2011
  ident: 10.1016/j.neuroimage.2015.08.008_bb0135
  article-title: Tractography: where do we go from here?
  publication-title: Brain Connect.
  doi: 10.1089/brain.2011.0033
– year: 2014
  ident: 10.1016/j.neuroimage.2015.08.008_bb0325
  article-title: Spatially regularized reconstruction of fibre orientation distributions in the presence of isotropic diffusion
– volume: 80
  start-page: 125
  year: 2013
  ident: 10.1016/j.neuroimage.2015.08.008_bb0265
  article-title: Advances in diffusion MRI acquisition and processing in the human connectome project
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2013.05.057
– volume: 80
  start-page: 290
  year: 2013
  ident: 10.1016/j.neuroimage.2015.08.008_bb0185
  article-title: Toward global tractography
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2013.04.009
– volume: 28
  start-page: 269
  year: 2009
  ident: 10.1016/j.neuroimage.2015.08.008_bb0080
  article-title: Deterministic and probabilistic tractography based on complex fibre orientation distributions
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2008.2004424
– volume: 34
  start-page: 2464
  year: 2013
  ident: 10.1016/j.neuroimage.2015.08.008_bb0075
  article-title: Can spherical deconvolution provide more information than fiber orientations? Hindrance modulated orientational anisotropy, a true-tract specific index to characterize white matter diffusion
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/hbm.22080
– volume: 30
  start-page: 1274
  year: 2011
  ident: 10.1016/j.neuroimage.2015.08.008_bb0225
  article-title: Fiber continuity: an anisotropic prior for ODF estimation
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2011.2112769
– volume: 94
  start-page: 312
  year: 2014
  ident: 10.1016/j.neuroimage.2015.08.008_bb0085
  article-title: Track Orientation Density Imaging (TODI) and Track Orientation Distribution (TOD) based tractography
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2013.12.047
– volume: 66
  start-page: 259
  year: 1994
  ident: 10.1016/j.neuroimage.2015.08.008_bb0025
  article-title: MR diffusion tensor spectroscopy and imaging
  publication-title: Biophys. J.
  doi: 10.1016/S0006-3495(94)80775-1
– start-page: 1670
  year: 2010
  ident: 10.1016/j.neuroimage.2015.08.008_bb0285
  article-title: Improved probabilistic streamlines tractography by 2nd order integration over fibre orientation distributions
– volume: 34
  start-page: 2747
  year: 2012
  ident: 10.1016/j.neuroimage.2015.08.008_bb0140
  article-title: Investigating the prevalence of complex fiber configurations in white matter tissue with diffusion magnetic resonance imaging
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/hbm.22099
– volume: 67
  start-page: 298
  year: 2013
  ident: 10.1016/j.neuroimage.2015.08.008_bb0250
  article-title: SIFT: spherical-deconvolution informed filtering of tractograms
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2012.11.049
SSID ssj0009148
Score 2.5166001
Snippet Diffusion-weighted imaging and tractography provide a unique, non-invasive technique to study the macroscopic structure and connectivity of brain white matter...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 89
SubjectTerms Brain
Brain - anatomy & histology
Computer Simulation
Datasets
Diffusion
Diffusion Magnetic Resonance Imaging - methods
Diffusion Tensor Imaging - methods
Diffusion-weighted imaging
Geometry
Global tractography
Gray Matter - anatomy & histology
Humans
Image Processing, Computer-Assisted
Inverse problems
Markov Chains
Methods
Monte Carlo Method
Multi-shell
Multi-tissue model
Reproducibility of Results
Signal Processing, Computer-Assisted
White Matter - anatomy & histology
SummonAdditionalLinks – databaseName: ProQuest Health & Medical
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NSwMxEA1aQbyI31arRPAa7G422Q0eRMRSBD1Z6EVCdpMVRdtqt_j3nclm24uWnpOBMJNkJsnLe4RcFk4JBd5nCdT2LIEUxIwrUyZEpnLujDTOo3yfZH-QPAzFMFy4TQOsstkT_UZtxwXekV-hjlKs4DAS30y-GKpG4etqkNBYJxtIXYaQrnSYLkh3o6T-Cic4y6BDQPLU-C7PF_n2CasWAV7CE3miyOTf6em_8tOnod4O2Q71I72tA75L1txoj2w-hhfyffJSk_jTCn8_BTpqOi6pBw6yKcI-KYqizPCWjP34i1FnKY4QkhhFwChFLPwrNcGm8qGhXjLngAx69893fRYkFFghMlkxmUOEbNEtMw6nZpErSEZdK23JE1MmubMitjYG_-R4VHLKCpFzA2eMMnFFKhQ_JK3ReOSOCeUyM5mVqTLCgWWROReVpovsPNAzKtskbTyni8AvjjIXH7oBkr3rhc81-lyjAmY3a5NobjmpOTZWsFFNcHTzhxR2PQ2JYAXb67ltqDPq-mFF604zF3RY71O9mJ1tcjFvhpWKzy9m5Maz0AeiIviyPhzqPZnIqE2O6nk2d0ksY3w1VyfLB3BKtnC0NeSmQ1rV98ydQeFU5ed-dfwCFZAZNw
  priority: 102
  providerName: ProQuest
Title Global tractography of multi-shell diffusion-weighted imaging data using a multi-tissue model
URI https://www.clinicalkey.com/#!/content/1-s2.0-S1053811915007168
https://dx.doi.org/10.1016/j.neuroimage.2015.08.008
https://www.ncbi.nlm.nih.gov/pubmed/26272729
https://www.proquest.com/docview/1728290942
https://www.proquest.com/docview/1728258653
https://www.proquest.com/docview/1732836461
Volume 123
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3da9RAEB9KC8UXsbbq2Vq24Ot6l-xHsvhUS8tp8RBr4V5k2WQ35Up7V9ocvvm3O7PZXBFUDnxJSLIDy-zOV_Y3MwBv62CUQe5zib49l2iCuAtNwZUqTSWC0y5ElO9Ejy_lp6mabsBJnwtDsMqk-zudHrV1ejNM3BzezWbDC_QM0NxgvKHITmpK-JWyoF3-7ucjzMNkskuHU4LT6ITm6TBesWbk7BYll0BeKhbzpEaTfzZRf3NBoyk6ewZPkw_Jjrtp7sBGmD-H7c_plHwXvneF_FlLGVCpJDVbNCyCB_kDQT8ZNUZZ0p8y_iP-HA2e0QzRkDECjTLCw18xl2jauDwsts3Zg8uz028nY57aKPBalbrlusJV8vWoKQVGzqoyaJBGXvtGSNfIKniVe58jfyoKl4LxSlXCYZzRyFAXyogXsDlfzMMrYEKXrvS6ME4FpKzLELLGjahCD47MmgEUPedsnWqMU6uLG9uDya7tI88t8dxSF8xROYBsRXnX1dlYg8b0i2P7PFLUfBaNwRq071e0v-23NakP-r1gk8w_WOr0lRsMl_MBHK0-o7TSEYybh8UyjcFVUeJfYwT6fFrqbAAvu322Ykmuczo5N6__a_r78ISeOlTOAWy298vwBn2rtjqMwoPXYlocwtbxx_PxBO8fTidfvv4C3Z0opg
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3daxQxEB_KFdQXqZ-9WjWCPgZvN5vchiLiR8vVtodIC32RmN1kRWnvWm-P4j_l3-hMkr170XIvfU4GwmQyH8kv8wN4WXstNWqfF5jb8wJDELe-GXIpS10Jb5X1AeU7VqOT4tOpPF2DP91fGIJVdj4xOGo3remO_DXxKOUai5H87cUlJ9Yoel3tKDSiWRz431dYss3e7H_E_X2V53u7xx9GPLEK8FqWquWqwkW7etCUAgtJWWn0zwOnXCMK2xSVdzJ3LkfbrKh68NpJWQmLaXdT-HooqfkSuvz1QmAp04P197vjz1-WbX6zIn6-k4KXWaYTdigiykKHyh_n6CcIUiZD61Citfx3QPxfwhsC394G3E0ZK3sXTewerPnJfbh1lN7kH8DXSBvAWvpvlRpgs2nDAlSRzwhoyoiGZU73cvwqXMV6x2iFGDYZQVQZoe-_M5tk2mAMLJD0PISTG1HvI-hNphO_CUyo0pZODbWVHiXr0vussQPqB4Qzs6YPw05zpk4dzYlY48x00LWfZqlzQzo3xLk5KPuQLSQvYlePFWR0tzmm-7WKftZg6FlBdmchmzKbmLGsKL3d2YJJHmZmluehDy8Ww-gb6MHHTvx0nubgrkhx3RyBGaYqVNaHx9HOFirJVU7v9Hrr-gU8h9uj46NDc7g_PngCd2jlEfCzDb3219w_xbStrZ6ls8Lg200fz78P-FjW
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NaxQxFH-UCsWL-O3WqhH0GLozmWQmiIhYl9Zq8WBhLxIzk0QUu1vdWYr_mn-d7yWZ3YuWvfQ8eZB5eV9Jfnk_gGed11Kj9nmFtT2vMAVx60PNpWx0K7xV1keU74k6PK3eTeV0C_4Mb2EIVjnExBio3byjM_J94lEqNW5Gyv2QYREfDyavzn9yYpCim9aBTiOZyLH_fYHbt8XLowNc6-dlOXn76c0hzwwDvJON6rlq8QdcNw6NwE2lbDXG6rFTLojKhqr1TpbOlWinLe0kvHZStsJiCR4q39WSGjFh-L9WC1mQj9XTet3wt6jSMzwpeFMUOqOIErYs9qr8doYRg8BlMjYRJYLLf6fG_5W-MQVObsKNXLuy18nYbsGWn92GnQ_5dv4OfE4EAqynl1e5FTabBxZBi3xBkFNGhCxLOqHjF_FQ1jtGM8QEygisygiH_5XZLNNHs2CRrucunF6Jcu_B9mw-8w-ACdXYxqlaW-lRsmu8L4IdU2cgHFmEEdSD5kyXe5sTxcYPM4DYvpu1zg3p3BD75rgZQbGSPE_9PTaQ0cPimOH9KkZcg0loA9kXK9lc46TaZUPpvcEWTI41C7P2jBE8XX3GKEFXP3bm58s8BldFisvGCKw1VaWKEdxPdrZSSalKurHXu5dP4AnsoFOa90cnxw_hOk08IX_2YLv_tfSPsH7r28fRURh8uWrP_AsWclum
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Global+tractography+of+multi-shell+diffusion-weighted+imaging+data+using+a+multi-tissue+model&rft.jtitle=NeuroImage+%28Orlando%2C+Fla.%29&rft.au=Christiaens%2C+Daan&rft.au=Reisert%2C+Marco&rft.au=Dhollander%2C+Thijs&rft.au=Sunaert%2C+Stefan&rft.date=2015-12-01&rft.pub=Elsevier+Inc&rft.issn=1053-8119&rft.eissn=1095-9572&rft.volume=123&rft.spage=89&rft.epage=101&rft_id=info:doi/10.1016%2Fj.neuroimage.2015.08.008&rft.externalDocID=S1053811915007168
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-8119&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-8119&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-8119&client=summon