Neurochemical and BOLD Responses during Neuronal Activation Measured in the Human Visual Cortex at 7 Tesla
Several laboratories have consistently reported small concentration changes in lactate, glutamate, aspartate, and glucose in the human cortex during prolonged stimuli. However, whether such changes correlate with blood oxygenation level—dependent functional magnetic resonance imaging (BOLD-fMRI) sig...
Saved in:
Published in | Journal of cerebral blood flow and metabolism Vol. 35; no. 4; pp. 601 - 610 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London, England
SAGE Publications
07.01.2015
Sage Publications Ltd Nature Publishing Group |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Several laboratories have consistently reported small concentration changes in lactate, glutamate, aspartate, and glucose in the human cortex during prolonged stimuli. However, whether such changes correlate with blood oxygenation level—dependent functional magnetic resonance imaging (BOLD-fMRI) signals have not been determined. The present study aimed at characterizing the relationship between metabolite concentrations and BOLD-fMRI signals during a block-designed paradigm of visual stimulation. Functional magnetic resonance spectroscopy (fMRS) and fMRI data were acquired from 12 volunteers. A short echo-time semi-LASER localization sequence optimized for 7 Tesla was used to achieve full signal-intensity MRS data. The group analysis confirmed that during stimulation lactate and glutamate increased by 0.26±0.06 μmol/g (∼30%) and 0.28±0.03 μmol/g (∼3%), respectively, while aspartate and glucose decreased by 0.20±0.04 μmol/g (∼5%) and 0.19±0.03 μmol/g (∼16%), respectively. The single-subject analysis revealed that BOLD-fMRI signals were positively correlated with glutamate and lactate concentration changes. The results show a linear relationship between metabolic and BOLD responses in the presence of strong excitatory sensory inputs, and support the notion that increased functional energy demands are sustained by oxidative metabolism. In addition, BOLD signals were inversely correlated with baseline γ-aminobutyric acid concentration. Finally, we discussed the critical importance of taking into account linewidth effects on metabolite quantification in fMRS paradigms. |
---|---|
AbstractList | Several laboratories have consistently reported small concentration changes in lactate, glutamate, aspartate, and glucose in the human cortex during prolonged stimuli. However, whether such changes correlate with blood oxygenation level–dependent functional magnetic resonance imaging (BOLD-fMRI) signals have not been determined. The present study aimed at characterizing the relationship between metabolite concentrations and BOLD-fMRI signals during a block-designed paradigm of visual stimulation. Functional magnetic resonance spectroscopy (fMRS) and fMRI data were acquired from 12 volunteers. A short echo-time semi-LASER localization sequence optimized for 7 Tesla was used to achieve full signal-intensity MRS data. The group analysis confirmed that during stimulation lactate and glutamate increased by 0.26±0.06
μ
mol/g (~30%) and 0.28±0.03
μ
mol/g (~3%), respectively, while aspartate and glucose decreased by 0.20±0.04
μ
mol/g (~5%) and 0.19±0.03
μ
mol/g (~16%), respectively. The single-subject analysis revealed that BOLD-fMRI signals were positively correlated with glutamate and lactate concentration changes. The results show a linear relationship between metabolic and BOLD responses in the presence of strong excitatory sensory inputs, and support the notion that increased functional energy demands are sustained by oxidative metabolism. In addition, BOLD signals were inversely correlated with baseline γ-aminobutyric acid concentration. Finally, we discussed the critical importance of taking into account linewidth effects on metabolite quantification in fMRS paradigms. Several laboratories have consistently reported small concentration changes in lactate, glutamate, aspartate, and glucose in the human cortex during prolonged stimuli. However, whether such changes correlate with blood oxygenation level-dependent functional magnetic resonance imaging (BOLD-fMRI) signals have not been determined. The present study aimed at characterizing the relationship between metabolite concentrations and BOLD-fMRI signals during a block-designed paradigm of visual stimulation. Functional magnetic resonance spectroscopy (fMRS) and fMRI data were acquired from 12 volunteers. A short echo-time semi-LASER localization sequence optimized for 7 Tesla was used to achieve full signal-intensity MRS data. The group analysis confirmed that during stimulation lactate and glutamate increased by 0.26 plus or minus 0.06 mu mol/g (~30%) and 0.28 plus or minus 0.03 mu mol/g (~3%), respectively, while aspartate and glucose decreased by 0.20 plus or minus 0.04 mu mol/g (~5%) and 0.19 plus or minus 0.03 mu mol/g (~16%), respectively. The single-subject analysis revealed that BOLD-fMRI signals were positively correlated with glutamate and lactate concentration changes. The results show a linear relationship between metabolic and BOLD responses in the presence of strong excitatory sensory inputs, and support the notion that increased functional energy demands are sustained by oxidative metabolism. In addition, BOLD signals were inversely correlated with baseline gamma -aminobutyric acid concentration. Finally, we discussed the critical importance of taking into account linewidth effects on metabolite quantification in fMRS paradigms. Several laboratories have consistently reported small concentration changes in lactate, glutamate, aspartate, and glucose in the human cortex during prolonged stimuli. However, whether such changes correlate with blood oxygenation level—dependent functional magnetic resonance imaging (BOLD-fMRI) signals have not been determined. The present study aimed at characterizing the relationship between metabolite concentrations and BOLD-fMRI signals during a block-designed paradigm of visual stimulation. Functional magnetic resonance spectroscopy (fMRS) and fMRI data were acquired from 12 volunteers. A short echo-time semi-LASER localization sequence optimized for 7 Tesla was used to achieve full signal-intensity MRS data. The group analysis confirmed that during stimulation lactate and glutamate increased by 0.26±0.06 μmol/g (∼30%) and 0.28±0.03 μmol/g (∼3%), respectively, while aspartate and glucose decreased by 0.20±0.04 μmol/g (∼5%) and 0.19±0.03 μmol/g (∼16%), respectively. The single-subject analysis revealed that BOLD-fMRI signals were positively correlated with glutamate and lactate concentration changes. The results show a linear relationship between metabolic and BOLD responses in the presence of strong excitatory sensory inputs, and support the notion that increased functional energy demands are sustained by oxidative metabolism. In addition, BOLD signals were inversely correlated with baseline γ-aminobutyric acid concentration. Finally, we discussed the critical importance of taking into account linewidth effects on metabolite quantification in fMRS paradigms. Several laboratories have consistently reported small concentration changes in lactate, glutamate, aspartate, and glucose in the human cortex during prolonged stimuli. However, whether such changes correlate with blood oxygenation level-dependent functional magnetic resonance imaging (BOLD-fMRI) signals have not been determined. The present study aimed at characterizing the relationship between metabolite concentrations and BOLD-fMRI signals during a block-designed paradigm of visual stimulation. Functional magnetic resonance spectroscopy (fMRS) and fMRI data were acquired from 12 volunteers. A short echo-time semi-LASER localization sequence optimized for 7 Tesla was used to achieve full signal-intensity MRS data. The group analysis confirmed that during stimulation lactate and glutamate increased by 0.26±0.06 μmol/g (~30%) and 0.28±0.03 μmol/g (~3%), respectively, while aspartate and glucose decreased by 0.20±0.04 μmol/g (~5%) and 0.19±0.03 μmol/g (~16%), respectively. The single-subject analysis revealed that BOLD-fMRI signals were positively correlated with glutamate and lactate concentration changes. The results show a linear relationship between metabolic and BOLD responses in the presence of strong excitatory sensory inputs, and support the notion that increased functional energy demands are sustained by oxidative metabolism. In addition, BOLD signals were inversely correlated with baseline γ-aminobutyric acid concentration. Finally, we discussed the critical importance of taking into account linewidth effects on metabolite quantification in fMRS paradigms. Several laboratories have consistently reported small concentration changes in lactate, glutamate, aspartate, and glucose in the human cortex during prolonged stimuli. However, whether such changes correlate with blood oxygenation level-dependent functional magnetic resonance imaging (BOLD-fMRI) signals have not been determined. The present study aimed at characterizing the relationship between metabolite concentrations and BOLD-fMRI signals during a block-designed paradigm of visual stimulation. Functional magnetic resonance spectroscopy (fMRS) and fMRI data were acquired from 12 volunteers. A short echo-time semi-LASER localization sequence optimized for 7 Tesla was used to achieve full signal-intensity MRS data. The group analysis confirmed that during stimulation lactate and glutamate increased by 0.26 ± 0.06 μmol/g (~30%) and 0.28 ± 0.03 μmol/g (~3%), respectively, while aspartate and glucose decreased by 0.20 ± 0.04 μmol/g (~5%) and 0.19 ± 0.03 μmol/g (~16%), respectively. The single-subject analysis revealed that BOLD-fMRI signals were positively correlated with glutamate and lactate concentration changes. The results show a linear relationship between metabolic and BOLD responses in the presence of strong excitatory sensory inputs, and support the notion that increased functional energy demands are sustained by oxidative metabolism. In addition, BOLD signals were inversely correlated with baseline γ-aminobutyric acid concentration. Finally, we discussed the critical importance of taking into account linewidth effects on metabolite quantification in fMRS paradigms. Several laboratories have consistently reported small concentration changes in lactate, glutamate, aspartate, and glucose in the human cortex during prolonged stimuli. However, whether such changes correlate with blood oxygenation level-dependent functional magnetic resonance imaging (BOLD-fMRI) signals have not been determined. The present study aimed at characterizing the relationship between metabolite concentrations and BOLD-fMRI signals during a block-designed paradigm of visual stimulation. Functional magnetic resonance spectroscopy (fMRS) and fMRI data were acquired from 12 volunteers. A short echo-time semi-LASER localization sequence optimized for 7 Tesla was used to achieve full signal-intensity MRS data. The group analysis confirmed that during stimulation lactate and glutamate increased by 0.26 ± 0.06 μmol/g (~30%) and 0.28 ± 0.03 μmol/g (~3%), respectively, while aspartate and glucose decreased by 0.20 ± 0.04 μmol/g (~5%) and 0.19 ± 0.03 μmol/g (~16%), respectively. The single-subject analysis revealed that BOLD-fMRI signals were positively correlated with glutamate and lactate concentration changes. The results show a linear relationship between metabolic and BOLD responses in the presence of strong excitatory sensory inputs, and support the notion that increased functional energy demands are sustained by oxidative metabolism. In addition, BOLD signals were inversely correlated with baseline γ-aminobutyric acid concentration. Finally, we discussed the critical importance of taking into account linewidth effects on metabolite quantification in fMRS paradigms.Several laboratories have consistently reported small concentration changes in lactate, glutamate, aspartate, and glucose in the human cortex during prolonged stimuli. However, whether such changes correlate with blood oxygenation level-dependent functional magnetic resonance imaging (BOLD-fMRI) signals have not been determined. The present study aimed at characterizing the relationship between metabolite concentrations and BOLD-fMRI signals during a block-designed paradigm of visual stimulation. Functional magnetic resonance spectroscopy (fMRS) and fMRI data were acquired from 12 volunteers. A short echo-time semi-LASER localization sequence optimized for 7 Tesla was used to achieve full signal-intensity MRS data. The group analysis confirmed that during stimulation lactate and glutamate increased by 0.26 ± 0.06 μmol/g (~30%) and 0.28 ± 0.03 μmol/g (~3%), respectively, while aspartate and glucose decreased by 0.20 ± 0.04 μmol/g (~5%) and 0.19 ± 0.03 μmol/g (~16%), respectively. The single-subject analysis revealed that BOLD-fMRI signals were positively correlated with glutamate and lactate concentration changes. The results show a linear relationship between metabolic and BOLD responses in the presence of strong excitatory sensory inputs, and support the notion that increased functional energy demands are sustained by oxidative metabolism. In addition, BOLD signals were inversely correlated with baseline γ-aminobutyric acid concentration. Finally, we discussed the critical importance of taking into account linewidth effects on metabolite quantification in fMRS paradigms. |
Author | Emir, Uzay E Tkáč, Ivan Deelchand, Dinesh K DiNuzzo, Mauro Eberly, Lynn E Mangia, Silvia Giove, Federico Bednařík, Petr |
Author_xml | – sequence: 1 givenname: Petr surname: Bednařík fullname: Bednařík, Petr – sequence: 2 givenname: Ivan surname: Tkáč fullname: Tkáč, Ivan – sequence: 3 givenname: Federico surname: Giove fullname: Giove, Federico – sequence: 4 givenname: Mauro surname: DiNuzzo fullname: DiNuzzo, Mauro – sequence: 5 givenname: Dinesh K surname: Deelchand fullname: Deelchand, Dinesh K – sequence: 6 givenname: Uzay E surname: Emir fullname: Emir, Uzay E – sequence: 7 givenname: Lynn E surname: Eberly fullname: Eberly, Lynn E – sequence: 8 givenname: Silvia surname: Mangia fullname: Mangia, Silvia email: mangia@umn.edu |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/25564236$$D View this record in MEDLINE/PubMed |
BookMark | eNqN0s9rFDEUB_AgFbutXj1KwIsgsyaTyY-5CHX9UWG1IFW8hUzmzW6WmWSbzJT2vzfdraUWBU855PN9vOS9I3TggweEnlMyp4SpNxvbdMO8JLSal4w9QjPKeV1IQsUBmpFS0kJI9fMQHaW0IYQoxvkTdFhyLqqSiRnafIUpBruGwVnTY-Nb_O5s-R5_g7QNPkHC7RSdX-Gd85mc2NFdmtEFj7-ASVOEFjuPxzXg02kwHv9wacpuEeIIV9iMWOJzSL15ih53pk_w7PY8Rt8_fjhfnBbLs0-fFyfLwnIlxqKSxNBGSGM5NcIS0jABVsm2U4bIrqmEAAO8lq2hnWDQNFBSbtpaCaBCCHaM3u7rbqdmgNaCH6Pp9Ta6wcRrHYzTf954t9arcKmrqiRKqlzg1W2BGC4mSKMeXLLQ98ZDmJKmQjKmiKrL_6CirjijlGb68gHdhCnmH90pWfMsSVYv7jd_1_XviWUw3wMbQ0oRujtCib5ZCb1bCX2zEjqvRA5UDwLWjbv55ce7_t-x1_tYMiu41-rf9S_eYMmD |
CitedBy_id | crossref_primary_10_3389_fpsyt_2017_00123 crossref_primary_10_1016_j_neuroimage_2023_120235 crossref_primary_10_1038_mp_2016_73 crossref_primary_10_1073_pnas_1524187113 crossref_primary_10_1177_0271678X17695291 crossref_primary_10_1016_j_nicl_2023_103517 crossref_primary_10_1016_j_nicl_2021_102824 crossref_primary_10_1016_j_neuroimage_2023_120194 crossref_primary_10_1177_0271678X19831022 crossref_primary_10_1186_s10194_018_0870_2 crossref_primary_10_1016_j_neuroimage_2018_09_016 crossref_primary_10_1371_journal_pone_0286633 crossref_primary_10_1111_ejn_16280 crossref_primary_10_1016_j_cub_2015_04_021 crossref_primary_10_1111_jnc_15775 crossref_primary_10_1111_jnc_13630 crossref_primary_10_1016_j_pscychresns_2018_08_007 crossref_primary_10_1177_0271678X221076570 crossref_primary_10_1016_j_neures_2019_07_009 crossref_primary_10_1002_nbm_5092 crossref_primary_10_3389_fpsyt_2018_00066 crossref_primary_10_1186_s12993_024_00248_9 crossref_primary_10_1002_mrm_29387 crossref_primary_10_1016_j_bpsc_2018_10_002 crossref_primary_10_3389_fpsyt_2021_644315 crossref_primary_10_1016_j_nicl_2021_102795 crossref_primary_10_1002_nbm_4440 crossref_primary_10_1007_s10334_021_00912_5 crossref_primary_10_1016_j_neuroimage_2017_07_017 crossref_primary_10_1093_ije_dyw235 crossref_primary_10_1016_j_neuroimage_2020_117338 crossref_primary_10_1002_nbm_3910 crossref_primary_10_1162_imag_a_00256 crossref_primary_10_1038_s41551_023_01035_z crossref_primary_10_1016_j_neuroimage_2017_04_030 crossref_primary_10_1002_nbm_5240 crossref_primary_10_1002_glia_23259 crossref_primary_10_1038_npjschz_2015_28 crossref_primary_10_1002_jmri_25356 crossref_primary_10_1152_jn_00285_2020 crossref_primary_10_1016_j_pneurobio_2017_11_001 crossref_primary_10_1111_jnc_15839 crossref_primary_10_1177_0271678X211064399 crossref_primary_10_3389_fnins_2023_1278828 crossref_primary_10_1371_journal_pcbi_1010798 crossref_primary_10_1016_j_euroneuro_2018_12_005 crossref_primary_10_1111_sjop_12411 crossref_primary_10_3389_fpsyt_2020_549903 crossref_primary_10_1038_s41598_020_76263_3 crossref_primary_10_3389_fnins_2018_00631 crossref_primary_10_1126_sciadv_ado7378 crossref_primary_10_3390_antiox10091407 crossref_primary_10_1038_s42003_023_04527_5 crossref_primary_10_1177_0269881117747579 crossref_primary_10_1523_JNEUROSCI_3455_15_2016 crossref_primary_10_3389_fnins_2019_01260 crossref_primary_10_1038_s41598_021_95685_1 crossref_primary_10_1523_ENEURO_0355_24_2025 crossref_primary_10_1523_ENEURO_0082_20_2020 crossref_primary_10_3389_fpsyt_2022_929306 crossref_primary_10_1016_j_neuroimage_2022_119813 crossref_primary_10_1002_nbm_4024 crossref_primary_10_1016_j_brs_2019_04_002 crossref_primary_10_1016_j_neuroimage_2017_05_044 crossref_primary_10_1016_j_neuroimage_2017_03_051 crossref_primary_10_1016_j_jad_2021_12_014 crossref_primary_10_1016_j_neuroimage_2021_117973 crossref_primary_10_1038_s41380_020_0756_y crossref_primary_10_1177_0271678X18795426 crossref_primary_10_1523_JNEUROSCI_3021_18_2019 crossref_primary_10_7498_aps_74_20241759 crossref_primary_10_1016_j_neuroimage_2020_117394 crossref_primary_10_1523_JNEUROSCI_4050_15_2016 crossref_primary_10_3390_antiox10111703 crossref_primary_10_3389_fnhum_2021_644079 crossref_primary_10_1177_0271678X20906902 crossref_primary_10_1002_nbm_5065 crossref_primary_10_1016_j_neuroscience_2017_09_037 crossref_primary_10_1038_npp_2017_167 crossref_primary_10_1098_rstb_2015_0349 crossref_primary_10_1111_jnc_15619 crossref_primary_10_1038_s41398_024_03137_x crossref_primary_10_1016_j_ab_2021_114479 crossref_primary_10_1134_S0006350922020245 crossref_primary_10_1002_nbm_4254 crossref_primary_10_1016_j_ab_2016_12_022 crossref_primary_10_3389_fnins_2017_00288 crossref_primary_10_1016_j_ab_2016_10_019 crossref_primary_10_1016_j_jad_2024_08_216 crossref_primary_10_3748_wjg_v23_i20_3607 crossref_primary_10_3389_fphy_2017_00031 crossref_primary_10_1007_s00723_019_01137_5 crossref_primary_10_1152_jn_00208_2019 crossref_primary_10_1016_j_neuroimage_2022_119397 crossref_primary_10_1007_s10334_023_01118_7 crossref_primary_10_1177_0271678X211045449 crossref_primary_10_1002_nbm_5215 crossref_primary_10_1134_S0006350920010248 crossref_primary_10_1002_nbm_3672 crossref_primary_10_1002_nbm_4002 crossref_primary_10_1002_nbm_5056 crossref_primary_10_1002_nbm_4801 crossref_primary_10_1371_journal_pcbi_1004971 crossref_primary_10_1016_j_neuron_2018_11_042 crossref_primary_10_1152_ajpendo_00100_2022 crossref_primary_10_7554_eLife_71016 crossref_primary_10_1177_0271678X18818291 crossref_primary_10_1162_imag_a_00452 crossref_primary_10_1007_s11064_018_2611_y crossref_primary_10_1177_0271678X21989186 crossref_primary_10_1002_mrm_30001 crossref_primary_10_1177_0271678X221075892 crossref_primary_10_3389_fpsyt_2018_00076 crossref_primary_10_1002_mrm_26022 crossref_primary_10_1007_s11426_022_1408_5 crossref_primary_10_3389_fnins_2024_1433468 crossref_primary_10_3389_fpsyt_2021_681419 crossref_primary_10_1002_mrm_29418 crossref_primary_10_1002_mrm_26788 crossref_primary_10_1007_s11682_019_00122_7 crossref_primary_10_1097_RMR_0000000000000100 crossref_primary_10_1016_j_nicl_2023_103463 crossref_primary_10_1002_mrm_26663 crossref_primary_10_1097_WNR_0000000000001000 crossref_primary_10_1126_sciadv_adj6102 crossref_primary_10_1016_j_neubiorev_2022_104940 crossref_primary_10_3389_fnins_2021_609485 crossref_primary_10_3389_fphys_2017_00030 crossref_primary_10_1002_mrm_26091 crossref_primary_10_1016_j_neubiorev_2023_105373 crossref_primary_10_1002_mrm_29243 crossref_primary_10_1002_nbm_4223 crossref_primary_10_1111_epi_17412 crossref_primary_10_1002_nbm_3890 crossref_primary_10_1016_j_neuroimage_2018_11_017 crossref_primary_10_1002_mrm_27865 crossref_primary_10_1016_j_jneumeth_2021_109372 crossref_primary_10_1016_j_neuroimage_2018_09_008 crossref_primary_10_1523_JNEUROSCI_1214_18_2018 crossref_primary_10_1007_s00429_021_02273_0 crossref_primary_10_1016_j_jadr_2023_100641 crossref_primary_10_1016_j_neuroscience_2017_01_034 crossref_primary_10_1038_s42003_023_04918_8 |
Cites_doi | 10.1016/j.neuroimage.2005.02.021 10.1016/j.mri.2005.12.023 10.1073/pnas.0501703102 10.1002/(SICI)1522-2594(199904)41:4<649::AID-MRM2>3.0.CO;2-G 10.1007/s11064-012-0848-4 10.1038/jcbfm.2008.134 10.1016/j.mri.2008.02.005 10.1002/jnr.23194 10.1038/jcbfm.2009.232 10.1007/s12031-007-0049-9 10.1002/mrm.22708 10.1097/00004647-200112000-00002 10.1073/pnas.0900728106 10.1016/j.neuroimage.2010.07.017 10.1002/(SICI)1522-2594(200002)43:2<319::AID-MRM22>3.0.CO;2-1 10.1038/jcbfm.2012.23 10.1038/jcbfm.2012.33 10.1002/mrm.1267 10.1002/mrm.21686 10.1002/hbm.21223 10.1038/nrn1246 10.1073/pnas.89.13.5951 10.1016/j.neuroimage.2014.02.016 10.1016/S0730-725X(03)00083-3 10.1016/j.bcp.2005.10.011 10.1016/j.neuroimage.2010.10.001 10.1002/mrm.22086 10.1038/sj.jcbfm.9600521 10.1016/j.mri.2003.08.028 10.1038/jcbfm.2014.145 10.1002/jnr.21371 10.1038/sj.jcbfm.9600401 10.1002/mrm.1910140104 10.1002/nbm.1646 |
ContentType | Journal Article |
Copyright | 2015 ISCBFM Copyright Nature Publishing Group Apr 2015 Copyright © 2015 International Society for Cerebral Blood Flow & Metabolism, Inc. 2015 International Society for Cerebral Blood Flow & Metabolism, Inc. |
Copyright_xml | – notice: 2015 ISCBFM – notice: Copyright Nature Publishing Group Apr 2015 – notice: Copyright © 2015 International Society for Cerebral Blood Flow & Metabolism, Inc. 2015 International Society for Cerebral Blood Flow & Metabolism, Inc. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7X7 7XB 88A 88E 8AO 8FE 8FH 8FI 8FJ 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M7P PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS 7X8 7TK 5PM |
DOI | 10.1038/jcbfm.2014.233 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) ProQuest Pharma Collection ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Medical Database Biological Science Database ProQuest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic Neurosciences Abstracts PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central China ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest One Applied & Life Sciences ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic Neurosciences Abstracts |
DatabaseTitleList | Neurosciences Abstracts ProQuest Central Student MEDLINE CrossRef MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology Chemistry |
DocumentTitleAlternate | Neurochemical and BOLD responses in the visual cortex |
EISSN | 1559-7016 |
EndPage | 610 |
ExternalDocumentID | PMC4420878 3641481241 25564236 10_1038_jcbfm_2014_233 10.1038_jcbfm.2014.233 |
Genre | Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NCRR NIH HHS grantid: P41 RR008079 – fundername: NINDS NIH HHS grantid: P30 NS076408 – fundername: NINDS NIH HHS grantid: NIH 1R03NS082541 – fundername: NINDS NIH HHS grantid: R03 NS082541 – fundername: NCATS NIH HHS grantid: UL1TR000114 – fundername: NCATS NIH HHS grantid: KL2 TR000113 – fundername: NIBIB NIH HHS grantid: P41 EB015894 – fundername: NCATS NIH HHS grantid: UL1 TR000114 – fundername: NCRR NIH HHS grantid: NIH P41RR008079 |
GroupedDBID | --- -Q- -TM .55 .GJ 0R~ 29K 2WC 36B 39C 3O- 4.4 53G 54M 5GY 5RE 5VS 70F 7X7 88E 8AO 8FE 8FH 8FI 8FJ 8R4 8R5 AABMB AACKU AACMV AADUE AAEWN AAGGD AAGMC AAJIQ AAJPV AAKGS AANSI AAPEO AAQGT AAQXH AAQXI AARDL AARIX AATAA AATBZ AAUAS AAVDI AAXOT AAYTG AAZBJ ABAWP ABAWZ ABCCA ABCJG ABDWY ABEIX ABFWQ ABHKI ABJNI ABJZC ABKRH ABLUO ABNCE ABPGX ABPNF ABQKF ABQNX ABQXT ABRHV ABUJY ABUWG ABVFX ABXGC ABYTW ACARO ACDSZ ACDXX ACFEJ ACFMA ACGBL ACGFO ACGFS ACGZU ACJER ACJTF ACLFY ACLHI ACNXM ACOFE ACOXC ACPRK ACROE ACSIQ ACUAV ACUIR ACXKE ACXMB ADBBV ADEBD ADEIA ADMPF ADNON ADRRZ ADTBJ ADUKL ADVBO ADZZY AECGH AENEX AEPTA AEQLS AESZF AEUHG AEWDL AEWHI AEXFG AEXNY AFEET AFFNX AFFZS AFKRA AFKRG AFMOU AFOSN AFQAA AFUIA AFVCE AGHKR AGKLV AGNHF AGPXR AGWFA AHDMH AHMBA AIGRN AJABX AJEFB AJMMQ AJSCY AJUZI AJXAJ AJXGE ALIPV ALKWR ALMA_UNASSIGNED_HOLDINGS AMCVQ ANDLU AOIJS ARTOV AUTPY AYAKG B8M BAWUL BBNVY BBRGL BDDNI BENPR BHPHI BKIIM BKSCU BPACV BPHCQ BSEHC BVXVI BWJAD C45 CAG CBRKF CCPQU CDWPY CFDXU COF CORYS CQQTX CS3 CUTAK D-I DC- DC. DIK DOPDO DV7 E3Z EBS EE. EJD EMOBN F5P FHBDP FYUFA GROUPED_SAGE_PREMIER_JOURNAL_COLLECTION GX1 H13 HCIFZ HMCUK HYE HZ~ J8X JSO K.F KQ8 LK8 M1P M7P O9- OK1 OVD P2P P6G PHGZM PHGZT PQQKQ PROAC PSQYO Q1R Q2X RNS RNTTT ROL RPM SASJQ SAUOL SCNPE SFC SHG SPQ SPV TEORI TR2 UKHRP W2D X7M YFH YOC ZGI ZONMY ZPPRI ZRKOI ZSSAH ZXP AAYXX AJGYC CITATION ALTZF CGR CUY CVF ECM EIF M4V NPM 3V. 7XB 88A 8FK AAPII AJHME AJVBE AZQEC DWQXO GNUQQ K9. PJZUB PKEHL PPXIY PQEST PQGLB PQUKI PRINS 7X8 7TK 5PM |
ID | FETCH-LOGICAL-c586t-470a1b67ac51a6c00b36ec87df8a07fb466eae597da1f63ebbe215ad986e16663 |
IEDL.DBID | 7X7 |
ISSN | 0271-678X 1559-7016 |
IngestDate | Thu Aug 21 18:14:40 EDT 2025 Fri Jul 11 01:27:23 EDT 2025 Fri Jul 11 02:40:25 EDT 2025 Wed Aug 13 07:23:52 EDT 2025 Thu Apr 03 06:55:16 EDT 2025 Tue Jul 01 05:28:18 EDT 2025 Thu Apr 24 23:12:35 EDT 2025 Tue Jun 17 22:40:03 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | Neurochemistry Visual Stimulation Functional Spectroscopy GABA quantification |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c586t-470a1b67ac51a6c00b36ec87df8a07fb466eae597da1f63ebbe215ad986e16663 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 content type line 14 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://journals.sagepub.com/doi/pdf/10.1038/jcbfm.2014.233 |
PMID | 25564236 |
PQID | 1667956940 |
PQPubID | 31524 |
PageCount | 10 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_4420878 proquest_miscellaneous_1673380892 proquest_miscellaneous_1669453111 proquest_journals_1667956940 pubmed_primary_25564236 crossref_primary_10_1038_jcbfm_2014_233 crossref_citationtrail_10_1038_jcbfm_2014_233 sage_journals_10_1038_jcbfm_2014_233 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2015-01-07 |
PublicationDateYYYYMMDD | 2015-01-07 |
PublicationDate_xml | – month: 01 year: 2015 text: 2015-01-07 day: 07 |
PublicationDecade | 2010 |
PublicationPlace | London, England |
PublicationPlace_xml | – name: London, England – name: United States – name: London |
PublicationTitle | Journal of cerebral blood flow and metabolism |
PublicationTitleAlternate | J Cereb Blood Flow Metab |
PublicationYear | 2015 |
Publisher | SAGE Publications Sage Publications Ltd Nature Publishing Group |
Publisher_xml | – name: SAGE Publications – name: Sage Publications Ltd – name: Nature Publishing Group |
References | Oz, Tkac 2011; 65 Ogawa, Tank, Menon, Ellermann, Kim, Merkle 1992; 89 Tkac, Oz, Adriany, Ugurbil, Gruetter 2009; 62 D'Esposito, Deouell, Gazzaley 2003; 4 Gustard, Williams, Hall, Pickard, Carpenter 2003; 21 Shulman, Hyder, Rothman 2014; 34 Klose 1990; 14 Schaller, Xin, O'Brien, Magill, Gruetter 2014; 93 Giove, Mangia, Bianciardi, Garreffa, Di Salle, Morrone 2003; 21 Lund, Norgaard, Rostrup, Rowe, Paulson 2005; 26 Mangia, Giove, Tkac, Logothetis, Henry, Olman 2009; 29 McKenna, Waagepetersen, Schousboe, Sonnewald 2006; 71 Patel, De Graaf, Mason, Rothman, Shulman, Behar 2005; 102 Lin, Stephenson, Xin, Napolitano, Morris 2012; 32 Lu, Zhao, Ge, Lewis-Amezcua 2008; 60 Muthukumaraswamy, Evans, Edden, Wise, Singh 2012; 33 Emir, Raatz, McPherson, Hodges, Torkelson, Tawfik 2011; 24 Baslow, Hrabe, Guilfoyle 2007; 32 DiNuzzo, Mangia, Maraviglia, Giove 2010; 30 Simpson, Carruthers, Vannucci 2007; 27 Tkac, Starcuk, Choi, Gruetter 1999; 41 Mangia, Giove, Dinuzzo 2012; 37 Gjedde, Marrett 2001; 21 Kim, Ogawa 2012; 32 Mangia, Tkac, Gruetter, Van de Moortele, Maraviglia, Ugurbil 2007; 27 Schaller, Mekle, Xin, Kunz, Gruetter 2013; 91 Muthukumaraswamy, Edden, Jones, Swettenham, Singh 2009; 106 Mangia, Tkac, Gruetter, Van De Moortele, Giove, Maraviglia 2006; 24 Mangia, Tkac, Logothetis, Gruetter, Van de Moortele, Ugurbil 2007; 85 Zhu, Chen 2001; 46 Donahue, Near, Blicher, Jezzard 2010; 53 Buxton, Griffeth, Simon, Moradi 2014; 8 Buxton 2010; 2 Gruetter, Tkac 2000; 43 Zappe, Uludag, Logothetis 2008; 26 Liu, Zhu, Chen 2011; 54 bibr17-jcbfm.2014.233 bibr12-jcbfm.2014.233 bibr9-jcbfm.2014.233 bibr33-jcbfm.2014.233 bibr3-jcbfm.2014.233 bibr34-jcbfm.2014.233 bibr21-jcbfm.2014.233 bibr25-jcbfm.2014.233 bibr5-jcbfm.2014.233 bibr35-jcbfm.2014.233 bibr30-jcbfm.2014.233 bibr18-jcbfm.2014.233 bibr8-jcbfm.2014.233 Buxton RB (bibr14-jcbfm.2014.233) 2014; 8 bibr22-jcbfm.2014.233 bibr4-jcbfm.2014.233 bibr26-jcbfm.2014.233 bibr31-jcbfm.2014.233 bibr6-jcbfm.2014.233 bibr36-jcbfm.2014.233 bibr19-jcbfm.2014.233 Buxton RB (bibr13-jcbfm.2014.233) 2010; 2 bibr27-jcbfm.2014.233 bibr10-jcbfm.2014.233 bibr23-jcbfm.2014.233 bibr1-jcbfm.2014.233 bibr24-jcbfm.2014.233 bibr11-jcbfm.2014.233 bibr29-jcbfm.2014.233 bibr7-jcbfm.2014.233 bibr16-jcbfm.2014.233 bibr32-jcbfm.2014.233 bibr15-jcbfm.2014.233 bibr20-jcbfm.2014.233 bibr28-jcbfm.2014.233 bibr2-jcbfm.2014.233 15809416 - Proc Natl Acad Sci U S A. 2005 Apr 12;102(15):5588-93 2161984 - Magn Reson Med. 1990 Apr;14(1):26-30 22434070 - J Cereb Blood Flow Metab. 2012 Aug;32(8):1484-95 22395207 - J Cereb Blood Flow Metab. 2012 Jul;32(7):1188-206 20633664 - Neuroimage. 2010 Nov 1;53(2):392-8 25160670 - J Cereb Blood Flow Metab. 2014 Nov;34(11):1721-35 24555953 - Neuroimage. 2014 Jun;93 Pt 1:138-45 23378234 - J Neurosci Res. 2013 Aug;91(8):1076-83 18666103 - Magn Reson Med. 2008 Aug;60(2):364-72 1631079 - Proc Natl Acad Sci U S A. 1992 Jul 1;89(13):5951-5 19888285 - J Cereb Blood Flow Metab. 2010 Mar;30(3):586-602 21413056 - Magn Reson Med. 2011 Apr;65(4):901-10 19416820 - Proc Natl Acad Sci U S A. 2009 May 19;106(20):8356-61 19591201 - Magn Reson Med. 2009 Oct;62(4):868-79 16677939 - Magn Reson Imaging. 2006 May;24(4):343-8 19002199 - J Cereb Blood Flow Metab. 2009 Mar;29(3):441-63 14595398 - Nat Rev Neurosci. 2003 Nov;4(11):863-72 12915190 - Magn Reson Imaging. 2003 Jul;21(6):599-607 20616882 - Front Neuroenergetics. 2010 Jun 17;2:8 20934521 - Neuroimage. 2011 Feb 1;54(3):2278-86 11740199 - J Cereb Blood Flow Metab. 2001 Dec;21(12):1384-92 10332839 - Magn Reson Med. 1999 Apr;41(4):649-56 18450401 - Magn Reson Imaging. 2008 Sep;26(7):961-7 14725935 - Magn Reson Imaging. 2003 Dec;21(10):1283-93 15955506 - Neuroimage. 2005 Jul 1;26(3):960-4 11675633 - Magn Reson Med. 2001 Nov;46(5):841-7 16368075 - Biochem Pharmacol. 2006 Feb 14;71(4):399-407 22846967 - Neurochem Res. 2012 Nov;37(11):2554-61 24966808 - Front Neurosci. 2014 Jun 11;8:139 21416560 - Hum Brain Mapp. 2012 Feb;33(2):455-65 17033694 - J Cereb Blood Flow Metab. 2007 May;27(5):1055-63 17873369 - J Mol Neurosci. 2007;32(3):235-45 17526022 - J Neurosci Res. 2007 Nov 15;85(15):3340-6 10680699 - Magn Reson Med. 2000 Feb;43(2):319-23 21834011 - NMR Biomed. 2011 Aug;24(7):888-94 17579656 - J Cereb Blood Flow Metab. 2007 Nov;27(11):1766-91 |
References_xml | – volume: 29 start-page: 441 year: 2009 end-page: 463 article-title: Metabolic and hemodynamic events after changes in neuronal activity: current hypotheses, theoretical predictions and NMR experimental findings publication-title: J Cereb Blood Flow Metab – volume: 71 start-page: 399 year: 2006 end-page: 407 article-title: Neuronal and astrocytic shuttle mechanisms for cytosolic-mitochondrial transfer of reducing equivalents: current evidence and pharmacological tools publication-title: Biochem Pharmacol – volume: 85 start-page: 3340 year: 2007 end-page: 3346 article-title: Dynamics of lactate concentration and blood oxygen level-dependent effect in the human visual cortex during repeated identical stimuli publication-title: J Neurosci Res – volume: 62 start-page: 868 year: 2009 end-page: 879 article-title: 1H NMR spectroscopy of the human brain at high magnetic fields: metabolite quantification at 4T vs. 7T publication-title: Magn Reson Med – volume: 26 start-page: 961 year: 2008 end-page: 967 article-title: Direct measurement of oxygen extraction with fMRI using 6% CO2 inhalation publication-title: Magn Reson Imaging – volume: 91 start-page: 1076 year: 2013 end-page: 1083 article-title: Net increase of lactate and glutamate concentration in activated human visual cortex detected with magnetic resonance spectroscopy at 7 Tesla publication-title: J Neurosci Res – volume: 32 start-page: 235 year: 2007 end-page: 245 article-title: Dynamic relationship between neurostimulation and N-acetylaspartate metabolism in the human visual cortex: evidence that NAA functions as a molecular water pump during visual stimulation publication-title: J Mol Neurosci – volume: 24 start-page: 343 year: 2006 end-page: 348 article-title: Sensitivity of single-voxel 1H-MRS in investigating the metabolism of the activated human visual cortex at 7 T publication-title: Magn Reson Imaging – volume: 43 start-page: 319 year: 2000 end-page: 323 article-title: Field mapping without reference scan using asymmetric echo-planar techniques publication-title: Magn Reson Med – volume: 26 start-page: 960 year: 2005 end-page: 964 article-title: Motion or activity: their role in intra- and inter-subject variation in fMRI publication-title: Neuroimage – volume: 60 start-page: 364 year: 2008 end-page: 372 article-title: Baseline blood oxygenation modulates response amplitude: physiologic basis for intersubject variations in functional MRI signals publication-title: Magn Reson Med – volume: 89 start-page: 5951 year: 1992 end-page: 5955 article-title: Intrinsic signal changes accompanying sensory stimulation: functional brain mapping with magnetic resonance imaging publication-title: Proc Natl Acad Sci USA – volume: 24 start-page: 888 year: 2011 end-page: 894 article-title: Noninvasive quantification of ascorbate and glutathione concentration in the elderly human brain publication-title: NMR Biomed – volume: 14 start-page: 26 year: 1990 end-page: 30 article-title: proton spectroscopy in presence of eddy currents publication-title: Magn Reson Med – volume: 33 start-page: 455 year: 2012 end-page: 465 article-title: Individual variability in the shape and amplitude of the BOLD-HRF correlates with endogenous GABAergic inhibition publication-title: Hum Brain Mapp – volume: 46 start-page: 841 year: 2001 end-page: 847 article-title: Observed BOLD effects on cerebral metabolite resonances in human visual cortex during visual stimulation: a functional (1)H MRS study at 4 T publication-title: Magn Reson Med – volume: 93 start-page: 138 year: 2014 end-page: 145 article-title: Are glutamate and lactate increases ubiquitous to physiological activation? A (1)H functional MR spectroscopy study during motor activation in human brain at 7 Tesla publication-title: Neuroimage – volume: 27 start-page: 1766 year: 2007 end-page: 1791 article-title: Supply and demand in cerebral energy metabolism: the role of nutrient transporters publication-title: J Cereb Blood Flow Metab – volume: 4 start-page: 863 year: 2003 end-page: 872 article-title: Alterations in the BOLD fMRI signal with ageing and disease: a challenge for neuroimaging publication-title: Nat Rev Neurosci – volume: 2 start-page: 8 year: 2010 article-title: Interpreting oxygenation-based neuroimaging signals: the importance and the challenge of understanding brain oxygen metabolism publication-title: Front Neuroenergetics – volume: 37 start-page: 2554 year: 2012 end-page: 2561 article-title: Metabolic pathways and activity-dependent modulation of glutamate concentration in the human brain publication-title: Neurochem Res – volume: 21 start-page: 599 year: 2003 end-page: 607 article-title: Influence of baseline hematocrit on between-subject BOLD signal change using gradient echo and asymmetric spin echo EPI publication-title: Magn Reson Imaging – volume: 32 start-page: 1484 year: 2012 end-page: 1495 article-title: Investigating the metabolic changes due to visual stimulation using functional proton magnetic resonance spectroscopy at 7 T publication-title: J Cereb Blood Flow Metab – volume: 53 start-page: 392 year: 2010 end-page: 398 article-title: Baseline GABA concentration and fMRI response publication-title: Neuroimage – volume: 8 start-page: 139 year: 2014 article-title: Variability of the coupling of blood flow and oxygen metabolism responses in the brain: a problem for interpreting BOLD studies but potentially a new window on the underlying neural activity publication-title: Front Neurosci – volume: 41 start-page: 649 year: 1999 end-page: 656 article-title: 1H NMR spectroscopy of rat brain at 1 ms echo time publication-title: Magn Reson Med – volume: 27 start-page: 1055 year: 2007 end-page: 1063 article-title: Sustained neuronal activation raises oxidative metabolism to a new steady-state level: evidence from 1H NMR spectroscopy in the human visual cortex publication-title: J Cereb Blood Flow Metab – volume: 106 start-page: 8356 year: 2009 end-page: 8361 article-title: Resting GABA concentration predicts peak gamma frequency and fMRI amplitude in response to visual stimulation in humans publication-title: Proc Natl Acad Sci USA – volume: 34 start-page: 1721 year: 2014 end-page: 1735 article-title: Insights from neuroenergetics into the interpretation of functional neuroimaging: an alternative empirical model for studying the brain's support of behavior publication-title: J Cereb Blood Flow Metab – volume: 102 start-page: 5588 year: 2005 end-page: 5593 article-title: The contribution of GABA to glutamate/glutamine cycling and energy metabolism in the rat cortex publication-title: Proc Natl Acad Sci USA – volume: 32 start-page: 1188 year: 2012 end-page: 1206 article-title: Biophysical and physiological origins of blood oxygenation level-dependent fMRI signals publication-title: J Cereb Blood Flow Metab – volume: 30 start-page: 586 year: 2010 end-page: 602 article-title: Changes in glucose uptake rather than lactate shuttle take center stage in subserving neuroenergetics: evidence from mathematical modeling publication-title: J Cereb Blood Flow Metab – volume: 21 start-page: 1283 year: 2003 end-page: 1293 article-title: The physiology and metabolism of neuronal activation: studies by NMR and other methods publication-title: Magn Reson Imaging – volume: 54 start-page: 2278 year: 2011 end-page: 2286 article-title: Baseline BOLD correlation predicts individuals' stimulus-evoked BOLD responses publication-title: Neuroimage – volume: 21 start-page: 1384 year: 2001 end-page: 1392 article-title: Glycolysis in neurons, not astrocytes, delays oxidative metabolism of human visual cortex during sustained checkerboard stimulation publication-title: J Cereb Blood Flow Metab – volume: 65 start-page: 901 year: 2011 end-page: 910 article-title: Short-echo, single-shot, full-intensity proton magnetic resonance spectroscopy for neurochemical profiling at 4 T: validation in the cerebellum and brainstem publication-title: Magn Reson Med – ident: bibr31-jcbfm.2014.233 doi: 10.1016/j.neuroimage.2005.02.021 – ident: bibr18-jcbfm.2014.233 doi: 10.1016/j.mri.2005.12.023 – ident: bibr35-jcbfm.2014.233 doi: 10.1073/pnas.0501703102 – ident: bibr19-jcbfm.2014.233 doi: 10.1002/(SICI)1522-2594(199904)41:4<649::AID-MRM2>3.0.CO;2-G – ident: bibr27-jcbfm.2014.233 doi: 10.1007/s11064-012-0848-4 – ident: bibr6-jcbfm.2014.233 doi: 10.1038/jcbfm.2008.134 – ident: bibr28-jcbfm.2014.233 doi: 10.1016/j.mri.2008.02.005 – ident: bibr4-jcbfm.2014.233 doi: 10.1002/jnr.23194 – ident: bibr7-jcbfm.2014.233 doi: 10.1038/jcbfm.2009.232 – ident: bibr26-jcbfm.2014.233 doi: 10.1007/s12031-007-0049-9 – ident: bibr16-jcbfm.2014.233 doi: 10.1002/mrm.22708 – ident: bibr8-jcbfm.2014.233 doi: 10.1097/00004647-200112000-00002 – ident: bibr24-jcbfm.2014.233 doi: 10.1073/pnas.0900728106 – ident: bibr34-jcbfm.2014.233 doi: 10.1016/j.neuroimage.2010.07.017 – volume: 8 start-page: 139 year: 2014 ident: bibr14-jcbfm.2014.233 publication-title: Front Neurosci – ident: bibr20-jcbfm.2014.233 doi: 10.1002/(SICI)1522-2594(200002)43:2<319::AID-MRM22>3.0.CO;2-1 – ident: bibr15-jcbfm.2014.233 doi: 10.1038/jcbfm.2012.23 – volume: 2 start-page: 8 year: 2010 ident: bibr13-jcbfm.2014.233 publication-title: Front Neuroenergetics – ident: bibr1-jcbfm.2014.233 doi: 10.1038/jcbfm.2012.33 – ident: bibr17-jcbfm.2014.233 doi: 10.1002/mrm.1267 – ident: bibr33-jcbfm.2014.233 doi: 10.1002/mrm.21686 – ident: bibr25-jcbfm.2014.233 doi: 10.1002/hbm.21223 – ident: bibr29-jcbfm.2014.233 doi: 10.1038/nrn1246 – ident: bibr11-jcbfm.2014.233 doi: 10.1073/pnas.89.13.5951 – ident: bibr5-jcbfm.2014.233 doi: 10.1016/j.neuroimage.2014.02.016 – ident: bibr30-jcbfm.2014.233 doi: 10.1016/S0730-725X(03)00083-3 – ident: bibr10-jcbfm.2014.233 doi: 10.1016/j.bcp.2005.10.011 – ident: bibr32-jcbfm.2014.233 doi: 10.1016/j.neuroimage.2010.10.001 – ident: bibr23-jcbfm.2014.233 doi: 10.1002/mrm.22086 – ident: bibr9-jcbfm.2014.233 doi: 10.1038/sj.jcbfm.9600521 – ident: bibr12-jcbfm.2014.233 doi: 10.1016/j.mri.2003.08.028 – ident: bibr36-jcbfm.2014.233 doi: 10.1038/jcbfm.2014.145 – ident: bibr3-jcbfm.2014.233 doi: 10.1002/jnr.21371 – ident: bibr2-jcbfm.2014.233 doi: 10.1038/sj.jcbfm.9600401 – ident: bibr21-jcbfm.2014.233 doi: 10.1002/mrm.1910140104 – ident: bibr22-jcbfm.2014.233 doi: 10.1002/nbm.1646 – reference: 14725935 - Magn Reson Imaging. 2003 Dec;21(10):1283-93 – reference: 24966808 - Front Neurosci. 2014 Jun 11;8:139 – reference: 15809416 - Proc Natl Acad Sci U S A. 2005 Apr 12;102(15):5588-93 – reference: 11740199 - J Cereb Blood Flow Metab. 2001 Dec;21(12):1384-92 – reference: 21416560 - Hum Brain Mapp. 2012 Feb;33(2):455-65 – reference: 17033694 - J Cereb Blood Flow Metab. 2007 May;27(5):1055-63 – reference: 16677939 - Magn Reson Imaging. 2006 May;24(4):343-8 – reference: 21834011 - NMR Biomed. 2011 Aug;24(7):888-94 – reference: 25160670 - J Cereb Blood Flow Metab. 2014 Nov;34(11):1721-35 – reference: 2161984 - Magn Reson Med. 1990 Apr;14(1):26-30 – reference: 19416820 - Proc Natl Acad Sci U S A. 2009 May 19;106(20):8356-61 – reference: 19591201 - Magn Reson Med. 2009 Oct;62(4):868-79 – reference: 12915190 - Magn Reson Imaging. 2003 Jul;21(6):599-607 – reference: 24555953 - Neuroimage. 2014 Jun;93 Pt 1:138-45 – reference: 20633664 - Neuroimage. 2010 Nov 1;53(2):392-8 – reference: 19002199 - J Cereb Blood Flow Metab. 2009 Mar;29(3):441-63 – reference: 19888285 - J Cereb Blood Flow Metab. 2010 Mar;30(3):586-602 – reference: 17526022 - J Neurosci Res. 2007 Nov 15;85(15):3340-6 – reference: 17873369 - J Mol Neurosci. 2007;32(3):235-45 – reference: 1631079 - Proc Natl Acad Sci U S A. 1992 Jul 1;89(13):5951-5 – reference: 16368075 - Biochem Pharmacol. 2006 Feb 14;71(4):399-407 – reference: 23378234 - J Neurosci Res. 2013 Aug;91(8):1076-83 – reference: 20934521 - Neuroimage. 2011 Feb 1;54(3):2278-86 – reference: 15955506 - Neuroimage. 2005 Jul 1;26(3):960-4 – reference: 10332839 - Magn Reson Med. 1999 Apr;41(4):649-56 – reference: 14595398 - Nat Rev Neurosci. 2003 Nov;4(11):863-72 – reference: 22395207 - J Cereb Blood Flow Metab. 2012 Jul;32(7):1188-206 – reference: 17579656 - J Cereb Blood Flow Metab. 2007 Nov;27(11):1766-91 – reference: 20616882 - Front Neuroenergetics. 2010 Jun 17;2:8 – reference: 22434070 - J Cereb Blood Flow Metab. 2012 Aug;32(8):1484-95 – reference: 22846967 - Neurochem Res. 2012 Nov;37(11):2554-61 – reference: 21413056 - Magn Reson Med. 2011 Apr;65(4):901-10 – reference: 18666103 - Magn Reson Med. 2008 Aug;60(2):364-72 – reference: 10680699 - Magn Reson Med. 2000 Feb;43(2):319-23 – reference: 18450401 - Magn Reson Imaging. 2008 Sep;26(7):961-7 – reference: 11675633 - Magn Reson Med. 2001 Nov;46(5):841-7 |
SSID | ssj0008355 |
Score | 2.5259209 |
Snippet | Several laboratories have consistently reported small concentration changes in lactate, glutamate, aspartate, and glucose in the human cortex during prolonged... |
SourceID | pubmedcentral proquest pubmed crossref sage |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 601 |
SubjectTerms | Adult Female gamma-Aminobutyric Acid - metabolism Glucose - metabolism Glutamic Acid - metabolism Humans Lactic Acid - metabolism Magnetic Resonance Imaging Male Middle Aged Original Oxygen - blood Photic Stimulation Visual Cortex - physiology Young Adult |
Title | Neurochemical and BOLD Responses during Neuronal Activation Measured in the Human Visual Cortex at 7 Tesla |
URI | https://journals.sagepub.com/doi/full/10.1038/jcbfm.2014.233 https://www.ncbi.nlm.nih.gov/pubmed/25564236 https://www.proquest.com/docview/1667956940 https://www.proquest.com/docview/1669453111 https://www.proquest.com/docview/1673380892 https://pubmed.ncbi.nlm.nih.gov/PMC4420878 |
Volume | 35 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1bTxQxFG4UHvTFKHgZRVITok-Vdtvt5ckAQohRNAaSfZt0Om1cIrPI7hr9957TucgG5XnOXNpzpv16-vU7hOzAFBVdkpwJkzxTSWnmasvZSBmpg6id9Jga-HSij8_Uh8l40iXc5h2tsh8T80BdzwLmyHeF1gawvFP83eUPhlWjcHe1K6Fxl6yjdBlSusxkWHAhusgUxpERDAblSS_aKO3ueagSHkQX6u1IytVJ6QbSvEmYvMb6yhPR0UPyoEOQdK91-SNyJzYbZHOvgdXzxW_6mmZOZ06Wb5B7B309t01ynnU4QicQQH1T0_3PH9_Tq5YlG-e0PbJIs8QlvgLPPLQZW3rRphJrOm0oQEaaS_vRn9P5EuwCEnZ_Ub-ghp5GiLHH5Ozo8PTgmHWVFlgYW71gynAvKm18GAuvA-eV1DFYUyfruUmV0jr6CGuP2oukZayqCFDB187qiPuO8glZa2ZNfEZozeFh2lmVAGr5Sjoe4P6EyDFYmXRBWN_VZehkyLEaxvcyb4dLW2bXlOiaElxTkDeD_WUrwPFfy63ec2X3I87Lv2FTkFfDZeh53BfxTZwts41TMBYJcZuNgcU8t25UkKdtMAyfgypugEqhaWYlTAYDlPBevdJMv2Upb4XsBmMLsoMBde2z_9nC57e38AW5D5bjnCAyW2RtcbWMLwEyLart_F9sk_X9w5MvX_8Avt0XVA |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6V7aFcELQ8AgWMVOAUGsde2zkg1Ke2dLsgtJX2ljqOI7ai2dLdBfqn-I2MnQddFXrr2ZPEzow9n8fjbwA20EXZpGBRSGWhQ15wESa5isKYSyYMzROmXWjgaCB6x_zjqDtagt_NXRiXVtmsiX6hzifGxcg3qRASsXzCow_n30NXNcqdrjYlNCqzOLSXP3HLNn1_sIv6fR3H-3vDnV5YVxUITVeJWchlpGkmpDZdqoWJoowJa5TMC6UjWWRcCKst4uxc00Iwm2UW3aLOEyWsO2Nj-N47sMwZbmU6sLy9N_j8pV37Ec_4pMlY0hDdwKihiWRq89Rkhbv6Tvm7mLFFN3gN215P0bySZ-Zd3_59uFdjVrJVGdkDWLLlKqxtlbhfP7skb4jPIvXh-VVY2WkqyK3BqWf-MDUlAdFlTrY_9XfJRZWXa6ekuiRJPKmm-4S7ZVHFiMlZFbzMybgkCFKJLyZIfoync5QzLkX4F9EzIsnQolU_hONb0cIj6JST0j4Bkkf4MpEoXiC40xlLIoPPFw6rGsUKEUDY_OrU1MTnrv7Gt9QfwDOVetWkTjUpqiaAt638eUX58V_J9UZzaT31p-lfQw3gVduMf96dxOjSTuZeJuG4-lF6k4xkTEUqiQN4XBlD2x3HG4c4GIcmF8ykFXCk4Yst5firJw_nLp9CqgA2nEFd6fY_R_j05hG-hJXe8Kif9g8Gh8_gLj7V9eEpuQ6d2cXcPkfANste1LOEwMltT8w_nSZU6Q |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Neurochemical+and+BOLD+responses+during+neuronal+activation+measured+in+the+human+visual+cortex+at+7+Tesla&rft.jtitle=Journal+of+cerebral+blood+flow+and+metabolism&rft.au=Bednarik%2C+Petr&rft.au=Tkac%2C+Ivan&rft.au=Giove%2C+Federico&rft.au=DiNuzzo%2C+Mauro&rft.date=2015-01-07&rft.issn=0271-678X&rft.volume=35&rft.spage=601&rft.epage=610&rft_id=info:doi/10.1038%2Fjcbfm.2014.233&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0271-678X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0271-678X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0271-678X&client=summon |