Efficient data labeling strategies for automated muscle segmentation in lower leg MRIs of Charcot-Marie-Tooth disease patients
We aimed to develop efficient data labeling strategies for ground truth segmentation in lower-leg magnetic resonance imaging (MRI) of patients with Charcot-Marie-Tooth disease (CMT) and to develop an automated muscle segmentation model using different labeling approaches. The impact of using unlabel...
Saved in:
Published in | PloS one Vol. 19; no. 9; p. e0310203 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Public Library of Science
06.09.2024
Public Library of Science (PLoS) |
Subjects | |
Online Access | Get full text |
ISSN | 1932-6203 1932-6203 |
DOI | 10.1371/journal.pone.0310203 |
Cover
Loading…
Abstract | We aimed to develop efficient data labeling strategies for ground truth segmentation in lower-leg magnetic resonance imaging (MRI) of patients with Charcot-Marie-Tooth disease (CMT) and to develop an automated muscle segmentation model using different labeling approaches. The impact of using unlabeled data on model performance was further examined. Using axial T1-weighted MRIs of 120 patients with CMT (60 each with mild and severe intramuscular fat infiltration), we compared the performance of segmentation models obtained using several different labeling strategies. The effect of leveraging unlabeled data on segmentation performance was evaluated by comparing the performances of few-supervised, semi-supervised (mean teacher model), and fully-supervised learning models. We employed a 2D U-Net architecture and assessed its performance by comparing the average Dice coefficients (ADC) using paired t-tests with Bonferroni correction. Among few-supervised models utilizing 10% labeled data, labeling three slices (the uppermost, central, and lowermost slices) per subject exhibited a significantly higher ADC (90.84±3.46%) compared with other strategies using a single image slice per subject (uppermost, 87.79±4.41%; central, 89.42±4.07%; lowermost, 89.29±4.71%,
p
< 0.0001) or all slices per subject (85.97±9.82%,
p
< 0.0001). Moreover, semi-supervised learning significantly enhanced the segmentation performance. The semi-supervised model using the three-slices strategy showed the highest segmentation performance (91.03±3.67%) among 10% labeled set models. Fully-supervised model showed an ADC of 91.39±3.76. A three-slice-based labeling strategy for ground truth segmentation is the most efficient method for developing automated muscle segmentation models of CMT lower leg MRI. Additionally, semi-supervised learning with unlabeled data significantly enhances segmentation performance. |
---|---|
AbstractList | We aimed to develop efficient data labeling strategies for ground truth segmentation in lower-leg magnetic resonance imaging (MRI) of patients with Charcot-Marie-Tooth disease (CMT) and to develop an automated muscle segmentation model using different labeling approaches. The impact of using unlabeled data on model performance was further examined. Using axial T1-weighted MRIs of 120 patients with CMT (60 each with mild and severe intramuscular fat infiltration), we compared the performance of segmentation models obtained using several different labeling strategies. The effect of leveraging unlabeled data on segmentation performance was evaluated by comparing the performances of few-supervised, semi-supervised (mean teacher model), and fully-supervised learning models. We employed a 2D U-Net architecture and assessed its performance by comparing the average Dice coefficients (ADC) using paired t-tests with Bonferroni correction. Among few-supervised models utilizing 10% labeled data, labeling three slices (the uppermost, central, and lowermost slices) per subject exhibited a significantly higher ADC (90.84±3.46%) compared with other strategies using a single image slice per subject (uppermost, 87.79±4.41%; central, 89.42±4.07%; lowermost, 89.29±4.71%,
p
< 0.0001) or all slices per subject (85.97±9.82%,
p
< 0.0001). Moreover, semi-supervised learning significantly enhanced the segmentation performance. The semi-supervised model using the three-slices strategy showed the highest segmentation performance (91.03±3.67%) among 10% labeled set models. Fully-supervised model showed an ADC of 91.39±3.76. A three-slice-based labeling strategy for ground truth segmentation is the most efficient method for developing automated muscle segmentation models of CMT lower leg MRI. Additionally, semi-supervised learning with unlabeled data significantly enhances segmentation performance. We aimed to develop efficient data labeling strategies for ground truth segmentation in lower-leg magnetic resonance imaging (MRI) of patients with Charcot-Marie-Tooth disease (CMT) and to develop an automated muscle segmentation model using different labeling approaches. The impact of using unlabeled data on model performance was further examined. Using axial T1-weighted MRIs of 120 patients with CMT (60 each with mild and severe intramuscular fat infiltration), we compared the performance of segmentation models obtained using several different labeling strategies. The effect of leveraging unlabeled data on segmentation performance was evaluated by comparing the performances of few-supervised, semi-supervised (mean teacher model), and fully-supervised learning models. We employed a 2D U-Net architecture and assessed its performance by comparing the average Dice coefficients (ADC) using paired t-tests with Bonferroni correction. Among few-supervised models utilizing 10% labeled data, labeling three slices (the uppermost, central, and lowermost slices) per subject exhibited a significantly higher ADC (90.84±3.46%) compared with other strategies using a single image slice per subject (uppermost, 87.79±4.41%; central, 89.42±4.07%; lowermost, 89.29±4.71%, p < 0.0001) or all slices per subject (85.97±9.82%, p < 0.0001). Moreover, semi-supervised learning significantly enhanced the segmentation performance. The semi-supervised model using the three-slices strategy showed the highest segmentation performance (91.03±3.67%) among 10% labeled set models. Fully-supervised model showed an ADC of 91.39±3.76. A three-slice-based labeling strategy for ground truth segmentation is the most efficient method for developing automated muscle segmentation models of CMT lower leg MRI. Additionally, semi-supervised learning with unlabeled data significantly enhances segmentation performance. We aimed to develop efficient data labeling strategies for ground truth segmentation in lower-leg magnetic resonance imaging (MRI) of patients with Charcot-Marie-Tooth disease (CMT) and to develop an automated muscle segmentation model using different labeling approaches. The impact of using unlabeled data on model performance was further examined. Using axial T1-weighted MRIs of 120 patients with CMT (60 each with mild and severe intramuscular fat infiltration), we compared the performance of segmentation models obtained using several different labeling strategies. The effect of leveraging unlabeled data on segmentation performance was evaluated by comparing the performances of few-supervised, semi-supervised (mean teacher model), and fully-supervised learning models. We employed a 2D U-Net architecture and assessed its performance by comparing the average Dice coefficients (ADC) using paired t-tests with Bonferroni correction. Among few-supervised models utilizing 10% labeled data, labeling three slices (the uppermost, central, and lowermost slices) per subject exhibited a significantly higher ADC (90.84±3.46%) compared with other strategies using a single image slice per subject (uppermost, 87.79±4.41%; central, 89.42±4.07%; lowermost, 89.29±4.71%, p < 0.0001) or all slices per subject (85.97±9.82%, p < 0.0001). Moreover, semi-supervised learning significantly enhanced the segmentation performance. The semi-supervised model using the three-slices strategy showed the highest segmentation performance (91.03±3.67%) among 10% labeled set models. Fully-supervised model showed an ADC of 91.39±3.76. A three-slice-based labeling strategy for ground truth segmentation is the most efficient method for developing automated muscle segmentation models of CMT lower leg MRI. Additionally, semi-supervised learning with unlabeled data significantly enhances segmentation performance.We aimed to develop efficient data labeling strategies for ground truth segmentation in lower-leg magnetic resonance imaging (MRI) of patients with Charcot-Marie-Tooth disease (CMT) and to develop an automated muscle segmentation model using different labeling approaches. The impact of using unlabeled data on model performance was further examined. Using axial T1-weighted MRIs of 120 patients with CMT (60 each with mild and severe intramuscular fat infiltration), we compared the performance of segmentation models obtained using several different labeling strategies. The effect of leveraging unlabeled data on segmentation performance was evaluated by comparing the performances of few-supervised, semi-supervised (mean teacher model), and fully-supervised learning models. We employed a 2D U-Net architecture and assessed its performance by comparing the average Dice coefficients (ADC) using paired t-tests with Bonferroni correction. Among few-supervised models utilizing 10% labeled data, labeling three slices (the uppermost, central, and lowermost slices) per subject exhibited a significantly higher ADC (90.84±3.46%) compared with other strategies using a single image slice per subject (uppermost, 87.79±4.41%; central, 89.42±4.07%; lowermost, 89.29±4.71%, p < 0.0001) or all slices per subject (85.97±9.82%, p < 0.0001). Moreover, semi-supervised learning significantly enhanced the segmentation performance. The semi-supervised model using the three-slices strategy showed the highest segmentation performance (91.03±3.67%) among 10% labeled set models. Fully-supervised model showed an ADC of 91.39±3.76. A three-slice-based labeling strategy for ground truth segmentation is the most efficient method for developing automated muscle segmentation models of CMT lower leg MRI. Additionally, semi-supervised learning with unlabeled data significantly enhances segmentation performance. |
Audience | Academic |
Author | Yang, Ehwa Kim, Hyun Su Kim, Jae-Hun Lee, Ji Hyun Lee, Seung-Ah Yoon, Young Cheol Choi, Byung-Ok |
Author_xml | – sequence: 1 givenname: Seung-Ah surname: Lee fullname: Lee, Seung-Ah – sequence: 2 givenname: Hyun Su orcidid: 0000-0002-0179-9542 surname: Kim fullname: Kim, Hyun Su – sequence: 3 givenname: Ehwa surname: Yang fullname: Yang, Ehwa – sequence: 4 givenname: Young Cheol surname: Yoon fullname: Yoon, Young Cheol – sequence: 5 givenname: Ji Hyun orcidid: 0000-0002-8582-5436 surname: Lee fullname: Lee, Ji Hyun – sequence: 6 givenname: Byung-Ok surname: Choi fullname: Choi, Byung-Ok – sequence: 7 givenname: Jae-Hun surname: Kim fullname: Kim, Jae-Hun |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39241036$$D View this record in MEDLINE/PubMed |
BookMark | eNqNk01v1DAQhiNURD_gHyCwhITgkMVO4nwcq1WBlVpVKoWrNWuPs14l8WI7Ai78dhw2rbqoB-SD7dHzznjGM6fJ0WAHTJKXjC5YXrEPWzu6AbrFLpoXNGc0o_mT5IQ1eZaW8Xz04HycnHq_pZTndVk-S47zJisYzcuT5PeF1kYaHAJREIB0sMbODC3xwUHA1qAn2joCY7B9NCjSj152SDy2fVRBMHYgZiCd_YGOdNiSq5uVJ1aT5QactCG9AmcwvbU2bIgyHsEj2UVdVPvnyVMNnccX836WfP14cbv8nF5ef1otzy9TyesypAUtG0BZaVqiokrVlSwqzrRka1nFu2o0V03VyJgxr9ccUUKpizXohumKZ_lZ8nrvd9dZL-bSeRGrxjirMkojsdoTysJW7Jzpwf0SFoz4a7CuFeCCiakLxbNMoywKkHXBWLPOi1qVUJeKK8pg8vVujubs9xF9EL3xErsOBrTjHJbnvJke9uYf9PHHzVQLMb4ZtI2_Iyen4rymFc-rKqsitXiEikthb2RsE22i_UDw_kAQmYA_Qwuj92L15eb_2etvh-zbB-wGoQsbb7tx6hV_CL6asx_XPar7st_1ZwSKPSCd9d6hvkcYFdMY3JVLTGMg5jHI_wCm-Pk7 |
Cites_doi | 10.3389/fneur.2021.625308 10.1186/s12880-020-00485-0 10.1016/j.media.2022.102508 10.1007/s13258-022-01253-w 10.1007/s00256-011-1199-y 10.1016/j.nmd.2023.07.001 10.1016/S1474-4422(15)00242-2 10.1002/jcsm.12415 10.1371/journal.pone.0216487 10.1016/S1067-2516(09)80083-5 10.1002/mus.26352 10.1007/s10334-019-00816-5 10.1148/ryai.230031 10.1016/S1474-4422(09)70110-3 10.1007/s13755-023-00220-3 10.1007/s00415-008-0808-8 10.1007/978-3-319-67558-9_28 10.1016/j.compbiomed.2020.103884 10.1016/j.mri.2017.12.014 10.1186/s13023-021-02040-8 10.1364/BOE.10.003800 10.3390/jpm13091298 10.1109/TPAMI.2022.3198175 10.1212/WNL.0000000000006214 10.1093/brain/awv240 10.3988/jcn.2021.17.1.52 10.1007/s12021-020-09485-5 10.2214/ajr.173.6.10584817 10.1038/s41598-022-21112-8 10.1186/s13244-020-00946-8 |
ContentType | Journal Article |
Copyright | Copyright: © 2024 Lee et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. COPYRIGHT 2024 Public Library of Science 2024 Lee et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2024 Lee et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: Copyright: © 2024 Lee et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. – notice: COPYRIGHT 2024 Public Library of Science – notice: 2024 Lee et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2024 Lee et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM IOV ISR 3V. 7QG 7QL 7QO 7RV 7SN 7SS 7T5 7TG 7TM 7U9 7X2 7X7 7XB 88E 8AO 8C1 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABJCF ABUWG AEUYN AFKRA ARAPS ATCPS AZQEC BBNVY BENPR BGLVJ BHPHI C1K CCPQU D1I DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. KB. KB0 KL. L6V LK8 M0K M0S M1P M7N M7P M7S NAPCQ P5Z P62 P64 PATMY PDBOC PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PTHSS PYCSY RC3 7X8 DOA |
DOI | 10.1371/journal.pone.0310203 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Gale In Context: Opposing Viewpoints Gale In Context: Science ProQuest Central (Corporate) Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Biotechnology Research Abstracts Nursing & Allied Health Database Ecology Abstracts Entomology Abstracts (Full archive) Immunology Abstracts Meteorological & Geoastrophysical Abstracts Nucleic Acids Abstracts Virology and AIDS Abstracts Agricultural Science Collection Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Public Health Database Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection Agricultural & Environmental Science Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Materials Science Collection ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Materials Science Database Nursing & Allied Health Database (Alumni Edition) Meteorological & Geoastrophysical Abstracts - Academic ProQuest Engineering Collection Biological Sciences Agricultural Science Database ProQuest Health & Medical Collection Medical Database Algology Mycology and Protozoology Abstracts (Microbiology C) Biological Science Database (ProQuest) Engineering Database Nursing & Allied Health Premium Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Environmental Science Database Materials Science Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection Environmental Science Collection Genetics Abstracts MEDLINE - Academic DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Agricultural Science Database Publicly Available Content Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Meteorological & Geoastrophysical Abstracts Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Engineering Collection Advanced Technologies & Aerospace Collection Engineering Database Virology and AIDS Abstracts ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Agricultural Science Collection ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Environmental Science Collection Entomology Abstracts Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Environmental Science Database ProQuest Nursing & Allied Health Source (Alumni) Engineering Research Database ProQuest One Academic Meteorological & Geoastrophysical Abstracts - Academic ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) Materials Science Collection ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts ProQuest Engineering Collection Biotechnology Research Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) Agricultural & Environmental Science Collection AIDS and Cancer Research Abstracts Materials Science Database ProQuest Materials Science Collection ProQuest Public Health ProQuest Nursing & Allied Health Source ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Animal Behavior Abstracts Materials Science & Engineering Collection Immunology Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE - Academic Agricultural Science Database MEDLINE |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
EISSN | 1932-6203 |
ExternalDocumentID | 3101517200 oai_doaj_org_article_d522fec44ac84119b348d6a86d5d01a0 A807537727 39241036 10_1371_journal_pone_0310203 |
Genre | Journal Article |
GeographicLocations | South Korea |
GeographicLocations_xml | – name: South Korea |
GroupedDBID | --- 123 29O 2WC 53G 5VS 7RV 7X2 7X7 7XC 88E 8AO 8C1 8CJ 8FE 8FG 8FH 8FI 8FJ A8Z AAFWJ AAUCC AAWOE AAYXX ABDBF ABIVO ABJCF ABUWG ACGFO ACIHN ACIWK ACPRK ACUHS ADBBV AEAQA AENEX AEUYN AFKRA AFPKN AFRAH AHMBA ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS APEBS ARAPS ATCPS BAWUL BBNVY BCNDV BENPR BGLVJ BHPHI BKEYQ BPHCQ BVXVI BWKFM CCPQU CITATION CS3 D1I D1J D1K DIK DU5 E3Z EAP EAS EBD EMOBN ESX EX3 F5P FPL FYUFA GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE IAO IEA IGS IHR IHW INH INR IOV IPY ISE ISR ITC K6- KB. KQ8 L6V LK5 LK8 M0K M1P M48 M7P M7R M7S M~E NAPCQ O5R O5S OK1 OVT P2P P62 PATMY PDBOC PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO PTHSS PV9 PYCSY RNS RPM RZL SV3 TR2 UKHRP WOQ WOW ~02 ~KM 3V. ADRAZ BBORY CGR CUY CVF ECM EIF IPNFZ NPM RIG PMFND 7QG 7QL 7QO 7SN 7SS 7T5 7TG 7TM 7U9 7XB 8FD 8FK AZQEC C1K DWQXO FR3 GNUQQ H94 K9. KL. M7N P64 PJZUB PKEHL PPXIY PQEST PQGLB PQUKI PRINS RC3 7X8 PUEGO ESTFP |
ID | FETCH-LOGICAL-c586t-4069aec7f06ed0dd87c4751fc1bc70ddd9f5d979c19358b5eeca6f4baf91f7523 |
IEDL.DBID | M48 |
ISSN | 1932-6203 |
IngestDate | Sun Dec 08 00:30:40 EST 2024 Wed Aug 27 01:31:56 EDT 2025 Thu Jul 10 18:31:59 EDT 2025 Fri Jul 25 10:14:55 EDT 2025 Tue Jun 17 22:04:46 EDT 2025 Tue Jun 10 21:04:21 EDT 2025 Fri Jun 27 06:09:20 EDT 2025 Fri Jun 27 06:00:24 EDT 2025 Thu May 22 21:23:59 EDT 2025 Wed Feb 19 02:06:13 EST 2025 Tue Jul 01 03:19:00 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Language | English |
License | Copyright: © 2024 Lee et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Creative Commons Attribution License |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c586t-4069aec7f06ed0dd87c4751fc1bc70ddd9f5d979c19358b5eeca6f4baf91f7523 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-8582-5436 0000-0002-0179-9542 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1371/journal.pone.0310203 |
PMID | 39241036 |
PQID | 3101517200 |
PQPubID | 1436336 |
PageCount | e0310203 |
ParticipantIDs | plos_journals_3101517200 doaj_primary_oai_doaj_org_article_d522fec44ac84119b348d6a86d5d01a0 proquest_miscellaneous_3101553592 proquest_journals_3101517200 gale_infotracmisc_A807537727 gale_infotracacademiconefile_A807537727 gale_incontextgauss_ISR_A807537727 gale_incontextgauss_IOV_A807537727 gale_healthsolutions_A807537727 pubmed_primary_39241036 crossref_primary_10_1371_journal_pone_0310203 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-09-06 |
PublicationDateYYYYMMDD | 2024-09-06 |
PublicationDate_xml | – month: 09 year: 2024 text: 2024-09-06 day: 06 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: San Francisco |
PublicationTitle | PloS one |
PublicationTitleAlternate | PLoS One |
PublicationYear | 2024 |
Publisher | Public Library of Science Public Library of Science (PLoS) |
Publisher_xml | – sequence: 0 name: Public Library of Science – name: Public Library of Science – name: Public Library of Science (PLoS) |
References | A Mey (pone.0310203.ref035) 2023; 45 M Gadermayr (pone.0310203.ref014) 2018; 48 JS Bosma (pone.0310203.ref028) 2023; 5 C Ge (pone.0310203.ref029) 2020; 20 S Attarian (pone.0310203.ref019) 2021; 16 D Klein (pone.0310203.ref020) 2015; 138 Y Rong (pone.0310203.ref016) 2019; 10 P Li (pone.0310203.ref038) 2023 J Bas (pone.0310203.ref002) 2020; 94 KMD Cornett (pone.0310203.ref008) 2019; 59 S Laine (pone.0310203.ref034) 2016 Z Zhou (pone.0310203.ref018) 2017; 2017 D Pareyson (pone.0310203.ref001) 2009; 8 D Goutallier (pone.0310203.ref015) 1994 CH Sudre (pone.0310203.ref017) 2017; 2017 G Stilwell (pone.0310203.ref010) 1995; 34 HS Kim (pone.0310203.ref024) 2021; 17 E Gallardo (pone.0310203.ref011) 2008; 255 JM Morrow (pone.0310203.ref005) 2016; 15 J Park (pone.0310203.ref026) 2022; 44 J Kemnitz (pone.0310203.ref022) 2020; 33 Y Peng (pone.0310203.ref037) 2023; 11 A Tarvainen (pone.0310203.ref032) 2017 B Kanber (pone.0310203.ref006) 2021; 19 S Mesbah (pone.0310203.ref023) 2019; 14 M Khouy (pone.0310203.ref031) 2023; 13 MW Anderson (pone.0310203.ref027) 1999; 173 J Huo (pone.0310203.ref033) 2022; 80 C Pisciotta (pone.0310203.ref021) 2023; 33 YJ Kim (pone.0310203.ref009) 2022; 12 O Ronneberger (pone.0310203.ref030) 2015 JM Morrow (pone.0310203.ref004) 2018; 91 AC Ogier (pone.0310203.ref007) 2021; 12 HS Kim (pone.0310203.ref003) 2019; 10 M Gaeta (pone.0310203.ref012) 2012; 41 J Ding (pone.0310203.ref013) 2020; 11 HM Kwon (pone.0310203.ref025) 2021; 11 C Decourt (pone.0310203.ref036) 2020; 123 |
References_xml | – volume: 12 start-page: 625308 year: 2021 ident: pone.0310203.ref007 article-title: Overview of MR Image Segmentation Strategies in Neuromuscular Disorders publication-title: Front Neurol doi: 10.3389/fneur.2021.625308 – volume: 20 start-page: 87 year: 2020 ident: pone.0310203.ref029 article-title: Deep semi-supervised learning for brain tumor classification publication-title: BMC Med Imaging doi: 10.1186/s12880-020-00485-0 – volume: 80 start-page: 102508 year: 2022 ident: pone.0310203.ref033 article-title: Automatic Grading Assessments for Knee MRI Cartilage Defects via Self-ensembling Semi-supervised Learning with Dual-Consistency publication-title: Med Image Anal doi: 10.1016/j.media.2022.102508 – volume: 44 start-page: 1007 year: 2022 ident: pone.0310203.ref026 article-title: Identification and clinical characterization of Charcot-Marie-Tooth disease type 1C patients with LITAF p.G112S mutation publication-title: Genes Genomics doi: 10.1007/s13258-022-01253-w – volume: 41 start-page: 515 year: 2012 ident: pone.0310203.ref012 article-title: MRI findings, patterns of disease distribution, and muscle fat fraction calculation in five patients with Charcot-Marie-Tooth type 2 F disease publication-title: Skeletal Radiol doi: 10.1007/s00256-011-1199-y – volume: 2017 start-page: 4761 year: 2017 ident: pone.0310203.ref018 article-title: Fine-tuning Convolutional Neural Networks for Biomedical Image Analysis: Actively and Incrementally publication-title: Proc IEEE Comput Soc Conf Comput Vis Pattern Recognit – volume: 33 start-page: 627 year: 2023 ident: pone.0310203.ref021 article-title: Gene therapy and other novel treatment approaches for Charcot-Marie-Tooth disease publication-title: Neuromuscul Disord doi: 10.1016/j.nmd.2023.07.001 – volume: 15 start-page: 65 year: 2016 ident: pone.0310203.ref005 article-title: MRI biomarker assessment of neuromuscular disease progression: a prospective observational cohort study publication-title: Lancet Neurol doi: 10.1016/S1474-4422(15)00242-2 – volume: 10 start-page: 574 year: 2019 ident: pone.0310203.ref003 article-title: Muscle fat quantification using magnetic resonance imaging: case-control study of Charcot-Marie-Tooth disease patients and volunteers publication-title: J Cachexia Sarcopenia Muscle doi: 10.1002/jcsm.12415 – year: 2016 ident: pone.0310203.ref034 publication-title: Temporal ensembling for semi-supervised learning – volume: 14 start-page: e0216487 year: 2019 ident: pone.0310203.ref023 article-title: Novel stochastic framework for automatic segmentation of human thigh MRI volumes and its applications in spinal cord injured individuals publication-title: PLoS One doi: 10.1371/journal.pone.0216487 – volume: 34 start-page: 583 year: 1995 ident: pone.0310203.ref010 article-title: Patterns of muscle atrophy in the lower limbs in patients with Charcot-Marie-Tooth disease as measured by magnetic resonance imaging publication-title: J Foot Ankle Surg doi: 10.1016/S1067-2516(09)80083-5 – volume: 59 start-page: 213 year: 2019 ident: pone.0310203.ref008 article-title: Magnetic resonance imaging of the anterior compartment of the lower leg is a biomarker for weakness, disability, and impaired gait in childhood Charcot-Marie-Tooth disease publication-title: Muscle Nerve doi: 10.1002/mus.26352 – volume: 94 start-page: e1480 year: 2020 ident: pone.0310203.ref002 article-title: Fat fraction distribution in lower limb muscles of patients with CMT1A: A quantitative MRI study publication-title: Neurology – start-page: 78 year: 1994 ident: pone.0310203.ref015 article-title: Fatty muscle degeneration in cuff ruptures. Pre- and postoperative evaluation by CT scan publication-title: Clin Orthop Relat Res – volume: 33 start-page: 483 year: 2020 ident: pone.0310203.ref022 article-title: Clinical evaluation of fully automated thigh muscle and adipose tissue segmentation using a U-Net deep learning architecture in context of osteoarthritic knee pain publication-title: MAGMA doi: 10.1007/s10334-019-00816-5 – volume: 5 start-page: e230031 year: 2023 ident: pone.0310203.ref028 article-title: Semisupervised Learning with Report-guided Pseudo Labels for Deep Learning-based Prostate Cancer Detection Using Biparametric MRI publication-title: Radiol Artif Intell doi: 10.1148/ryai.230031 – year: 2023 ident: pone.0310203.ref038 article-title: mResU-Net: multi-scale residual U-Net-based brain tumor segmentation from multimodal MRI publication-title: Med Biol Eng Comput – volume: 8 start-page: 654 year: 2009 ident: pone.0310203.ref001 article-title: Diagnosis, natural history, and management of Charcot-Marie-Tooth disease publication-title: Lancet Neurol doi: 10.1016/S1474-4422(09)70110-3 – volume: 11 start-page: 17 year: 2023 ident: pone.0310203.ref037 article-title: The nnU-Net based method for automatic segmenting fetal brain tissues publication-title: Health Inf Sci Syst doi: 10.1007/s13755-023-00220-3 – start-page: 234 volume-title: Medical Image Computing and Computer-Assisted Intervention: MICCAI 2015. Lecture Notes in Computer Science year: 2015 ident: pone.0310203.ref030 – volume: 255 start-page: 986 year: 2008 ident: pone.0310203.ref011 article-title: Magnetic resonance imaging findings of leg musculature in Charcot-Marie-Tooth disease type 2 due to dynamin 2 mutation publication-title: J Neurol doi: 10.1007/s00415-008-0808-8 – volume: 2017 start-page: 240 year: 2017 ident: pone.0310203.ref017 article-title: Generalised Dice Overlap as a Deep Learning Loss Function for Highly Unbalanced Segmentations publication-title: Deep Learn Med Image Anal Multimodal Learn Clin Decis Support doi: 10.1007/978-3-319-67558-9_28 – volume: 123 start-page: 103884 year: 2020 ident: pone.0310203.ref036 article-title: Semi-supervised generative adversarial networks for the segmentation of the left ventricle in pediatric MRI publication-title: Comput Biol Med doi: 10.1016/j.compbiomed.2020.103884 – volume: 48 start-page: 20 year: 2018 ident: pone.0310203.ref014 article-title: A comprehensive study on automated muscle segmentation for assessing fat infiltration in neuromuscular diseases publication-title: Magn Reson Imaging doi: 10.1016/j.mri.2017.12.014 – volume: 16 start-page: 433 year: 2021 ident: pone.0310203.ref019 article-title: A double-blind, placebo-controlled, randomized trial of PXT3003 for the treatment of Charcot-Marie-Tooth type 1A publication-title: Orphanet J Rare Dis doi: 10.1186/s13023-021-02040-8 – volume: 10 start-page: 3800 year: 2019 ident: pone.0310203.ref016 article-title: Deriving external forces via convolutional neural networks for biomedical image segmentation publication-title: Biomed Opt Express doi: 10.1364/BOE.10.003800 – volume: 13 start-page: 1298 year: 2023 ident: pone.0310203.ref031 article-title: Medical Image Segmentation Using Automatic Optimized U-Net Architecture Based on Genetic Algorithm publication-title: J Pers Med doi: 10.3390/jpm13091298 – volume: 11 year: 2021 ident: pone.0310203.ref025 article-title: Clinical and Neuroimaging Features in Charcot-Marie-Tooth Patients with GNB4 Mutations publication-title: Life (Basel) – volume: 45 start-page: 4747 year: 2023 ident: pone.0310203.ref035 article-title: Improved Generalization in Semi-Supervised Learning: A Survey of Theoretical Results publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/TPAMI.2022.3198175 – volume: 91 start-page: e1125 year: 2018 ident: pone.0310203.ref004 article-title: Validation of MRC Centre MRI calf muscle fat fraction protocol as an outcome measure in CMT1A. publication-title: Neurology doi: 10.1212/WNL.0000000000006214 – volume: 138 start-page: 3193 year: 2015 ident: pone.0310203.ref020 article-title: Targeting the colony stimulating factor 1 receptor alleviates two forms of Charcot-Marie-Tooth disease in mice publication-title: Brain doi: 10.1093/brain/awv240 – volume: 17 start-page: 52 year: 2021 ident: pone.0310203.ref024 article-title: Clinical and Neuroimaging Features in Charcot-Marie-Tooth Patients with GDAP1 Mutations publication-title: J Clin Neurol doi: 10.3988/jcn.2021.17.1.52 – year: 2017 ident: pone.0310203.ref032 publication-title: Mean teachers are better role models: Weight-averaged consistency targets improve semi-supervised deep learning results – volume: 19 start-page: 379 year: 2021 ident: pone.0310203.ref006 article-title: Musclesense: a Trained, Artificial Neural Network for the Anatomical Segmentation of Lower Limb Magnetic Resonance Images in Neuromuscular Diseases publication-title: Neuroinformatics doi: 10.1007/s12021-020-09485-5 – volume: 173 start-page: 1663 year: 1999 ident: pone.0310203.ref027 article-title: Compartmental anatomy: relevance to staging and biopsy of musculoskeletal tumors publication-title: AJR Am J Roentgenol doi: 10.2214/ajr.173.6.10584817 – volume: 12 start-page: 16622 year: 2022 ident: pone.0310203.ref009 article-title: Magnetic resonance imaging-based lower limb muscle evaluation in Charcot-Marie-Tooth disease type 1A patients and its correlation with clinical data publication-title: Sci Rep doi: 10.1038/s41598-022-21112-8 – volume: 11 start-page: 128 year: 2020 ident: pone.0310203.ref013 article-title: Deep learning-based thigh muscle segmentation for reproducible fat fraction quantification using fat-water decomposition MRI publication-title: Insights Imaging doi: 10.1186/s13244-020-00946-8 |
SSID | ssj0053866 |
Score | 2.4564834 |
Snippet | We aimed to develop efficient data labeling strategies for ground truth segmentation in lower-leg magnetic resonance imaging (MRI) of patients with... |
SourceID | plos doaj proquest gale pubmed crossref |
SourceType | Open Website Aggregation Database Index Database |
StartPage | e0310203 |
SubjectTerms | Adolescent Adult Aged Analysis Automation Biological markers Biomarkers Care and treatment Charcot-Marie-Tooth disease Charcot-Marie-Tooth Disease - diagnostic imaging Charcot-Marie-Tooth Disease - pathology Denervation Diagnosis Female Humans Image processing Image Processing, Computer-Assisted - methods Image segmentation Labeling Learning Leg Leg - diagnostic imaging Leg - pathology Legs Machine learning Magnetic resonance Magnetic resonance imaging Magnetic Resonance Imaging - methods Male Methods Middle Aged Muscle, Skeletal - diagnostic imaging Muscle, Skeletal - pathology Muscles Patients Performance evaluation Segmentation Semi-supervised learning Young Adult |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELbQnrggyquBAgYhAYe0m8SP5FhQqxZpQSot6s3yc1Vpm6xwcuW3M3aciJVAcOCY9cTKzsP-Rp75jNAbSEyMaUqWl6VlOSklzxVsS3nJTKOp4ZqS0I28-szOrsina3r9y1VfoSZspAceFXdkACA4qwmRuiZF0aiK1IbJmhlqloWM2TpMPiVT4xoMUcxYapSreHGU7HK47Vp7GMgwy-mSrLQRRb7-eVVebDed_zPkjFvP6X10L2FGfDx-6x66Y9sHaC9FpcfvEnX0-4fox0lkhICNBIfSTwwmjv3m2PcTJQQGlIrl0HcAVa3Bt4OHObG369vUhdTimxZvwuVpeGPXeHVx7nHncDiX112fr0JynV92YGGcTndwImf1j9DV6cnlx7M83bCQa1qzPg9tr9Jq7pbMmqUxNdeE08LpQmkOz6Zx1DS80UU4LlXUWi2ZI0q6pnAcctjHaNGCTvcRloALlDaOVLUiICorrhqt4H29NJbLDOWTusV2JNIQ8TSNQwIy6lEE84hkngx9CDaZZQMNdvwBnEMk5xB_c44MvQwWFWNP6RzM4jhQMFeQWPAMvY4SgQqjDbU2azl4L86_fPsHoa8XO0Jvk5DrwKZapv4G-E-BYmtH8mBHEgJa7wzvB_-btOIFKARwGYf1DN6cfPL3w6_m4TBpqJ9rbTckGVrRpszQk9GXZ80CQiYFAJmn_0Pjz9DdEmBfrMJjB2jRfx_sc4BtvXoRI_Qn7nlAcA priority: 102 providerName: Directory of Open Access Journals – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELZguXBBlFcDBQxCAg5u8_AjOaGCWrVIC1Jp0d4ix3ZWlbbJUifX_vbOZJ2glQBx3HhiaT0ezzfxzDeEvIPAxNoilSxNnWQ81YpV4JZYKm1hhFVGcKxGnn-TJxf860Iswgc3H9IqxzNxOKhta_Ab-QHAEHBOCpT6af2LYdcovF0NLTTukntIXYYpXWoxBVxgy1KGcrlMJQdBO_vrtnH7SImZjq2ygjsaWPuns3m2XrX-78BzcEDHD8mDgBzp4UbVO-SOax6RnWCbnn4IBNIfH5Obo4EXAtwJxQRQCooeqs6p70ZiCApYleq-awGwOkuveg9zUu-WV6EWqaGXDV1hCzW6cks6Pzv1tK0p3s6btmNzDLHZeQt6puGOhwaKVv-EXBwfnX85YaHPAjMilx3D4lftjKpj6Wxsba4MVyKpTVIZBb9tUQtbqMIkeGlaCeeMljWvdF0ktYJI9imZNbCmu4RqQAeVsTXP8oqDqM5UVZgK3jexdUpHhI3LXa43dBrlcKemIAzZrGOJ6imDeiLyGXUyySIZ9vCgvV6WwbZKCxiydoZzbXIO-6DKeG6lzqUVNk50HJHXqNFyU1k6mXR5iETMGYQXKiJvBwkkxGgw42ape-_L0-8__0Pox9mW0PsgVLegU6NDlQP8JyTa2pLc25IEszZbw7u4_8ZV8eVvA4A3xz355-E30zBOill0jWv7ICMyUaQRebbZy9PKAk7mCcCZ5_-e_AW5nwKsG7Ls5B6Zdde9ewmwrKteDbZ3Cy0gN8U priority: 102 providerName: ProQuest |
Title | Efficient data labeling strategies for automated muscle segmentation in lower leg MRIs of Charcot-Marie-Tooth disease patients |
URI | https://www.ncbi.nlm.nih.gov/pubmed/39241036 https://www.proquest.com/docview/3101517200 https://www.proquest.com/docview/3101553592 https://doaj.org/article/d522fec44ac84119b348d6a86d5d01a0 http://dx.doi.org/10.1371/journal.pone.0310203 |
Volume | 19 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fa9swEBZd-rKXse5Xs3WZNgbbHhxiR5bshzHakqwdpBtZM_JmZEkOg9ROIwe6l_3tu1NkQ6CBvRgSnWxyp7O-y-m-I-Q9BCZapxEPosjwgEVSBDlsS0HEdapiLVTMsBp5csUvZuzbPJ4fkKZnq1egvTe0w35Ss_Wyf3f75ws4_GfXtUGEzaT-qipNH6kuI6T_PIS9SaCrTlibVwDv5twX0O2bubNBOR7_9m3dWS0rux-Kui1p_Jg88liSnm6Nf0QOTPmEHHlvtfSjp5T-9JT8HTmmCNhgKB4JpWB6V4dObd1QRVBAr1Ru6gogrNH0ZmPhntSaxY2vTirp75IusakaXZoFnUwvLa0Kivl6VdXBBIPu4LoCy1Of9aGetNU-I7Px6Pr8IvCdFwIVJ7wOsBxWGiWKATd6oHUiFBNxWKgwVwI-67SIdSpSFWIaNY-NUZIXLJdFGhYCYtvnpFOCTo8JlYAXcqULNkxyBqJyKPJU5TBfDbQRskuCRt3Zakuwkbksm4DAZKvHDM2TefN0yRnapJVFemz3RbVeZN7bMg2osjCKMakSFoZpPmSJ5jLhOtaDUA665A1aNNvWmrZOnp0iNfMQAg7RJe-cBFJklHgGZyE31maX33_9h9DP6Y7QBy9UVGBTJX3dA_wmpN7akTzZkQRHVzvDx7j-Gq3YDBQCeE3Aew5mNmvy_uG37TDeFM_VlabaeJl4GKdRl7zYruVWs4CcWQgA5-X-574iDyMAee7MHT8hnXq9Ma8BpNV5jzwQcwHX5DzE6_hrjxyeja5-THvub4-e88t_kzZA-w |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELem8gAviPG1wmAGgYCHbPlw7OQBoQGbWrYOaXRT34xjOxVSl5QlFeKFP4m_kbvECaoEiJc9trlYqu9897v67neEPIPExJg05F4YWu6xUAkvg7DkhdykOjZCxwy7kScnfHTGPszi2Qb52fXCYFll5xMbR21Kjf-R7wEMgeAkQKlvll89nBqFt6vdCI3WLI7s92-QslWvx-9Bv8_D8PBg-m7kuakCno4TXnvY6qmsFrnPrfGNSYRmIg5yHWRawGeT5rFJRaoDvCLMYmu14jnLVJ4GuYiR6ABc_jUIvD6eKDHrEzzwHZy79rxIBHvOGnaXZWF3kYIz7EZzufDXTAnoY8FguSirvwPdJuAd3iI3HVKl-61pbZINW9wmm84XVPSlI6x-dYf8OGh4KCB8USw4pWBYTZc7reqOiIICNqZqVZcAkK2hF6sK1qSVnV-43qeCfinoAke20YWd08npuKJlTrEaQJe1N8GU3puWYFfU3SlRRwlb3SVnV6KBe2RQwJ5uEaoAjWTa5CxKMgaiKhJZqjN4X_vGCjUkXrfdctnSd8jmDk9A2tPuo0T1SKeeIXmLOullkXy7-aK8nEt3lqUBzJpbzZjSCQuCNItYYrhKuImNHyh_SHZQo7LtZO1diNxH4ucI0hkxJE8bCSTgKLDCZ65WVSXHH8__Q-jT6ZrQCyeUl6BTrVxXBfwmJPZak9xekwQ3otceb6H9dbtSyd8HDt7sbPLPj5_0j3FRrNorbLlyMnEUp-GQ3G9tud9ZwOUsAPj04N-L75Dro-nkWB6PT44ekhshQMqmwo9vk0F9ubKPABLW2ePmHFLy-aoP_i-OHnaG |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF5VQUJcEOVVQ6ELAgEHN7G9D_uAUKGNGkoKKi3Kzax31xFSaofaEeLCD-PXMWOvjSIB4tKjs-OVvPPOznxDyBNITIxJQuGHoRU-C5X0M3BLfihMormRmjPsRp4ei8Mz9nbGZxvkZ9cLg2WVnU1sDLUpNf5HPoQwBJyTBKYOc1cW8WF__Gr51ccJUnjT2o3TaEXkyH7_Bulb9XKyD7x-Gobjg9M3h76bMOBrHovax7ZPZbXMR8KakTGx1EzyINdBpiU8myTnJpGJDvC6MOPWaiVylqk8CXLJEfQAzP8VGfEAdUzO-mQP7IgQrlUvksHQScbusizsLsJxht2YLucKm4kBvV8YLBdl9fegt3F-4xvkuota6V4rZptkwxY3yaazCxV97sCrX9wiPw4aTApwZRSLTykIWdPxTqu6A6WgECdTtapLCJatoeerCvaklZ2fuz6ogn4p6ALHt9GFndPpyaSiZU6xMkCXtT_F9N4_LUHGqLtfog4etrpNzi6FA3fIoIAz3SJUQWSSaZOzKM4YkKpIZonO4H09MlYqj_jdcafLFsojbe7zJKRA7TmmyJ7Usccjr5EnPS0CcTc_lBfz1Ol1aiB-za1mTOmYBUGSRSw2QsXCcDMK1MgjO8jRtO1q7c1Juocg0BGkNtIjjxsKBOMoUKznalVV6eT9p_8g-niyRvTMEeUl8FQr12EB34QgX2uU22uUYFL02vIWyl93KlX6W_ngzU4m_7z8qF_GTbGCr7DlytHwiCehR-62styfLMToLIBQ6t6_N98hV0Hl03eT46P75FoI0WVT7Ce2yaC-WNkHEB3W2cNGDSn5fNl6_wvrSnq8 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Efficient+data+labeling+strategies+for+automated+muscle+segmentation+in+lower+leg+MRIs+of+Charcot-Marie-Tooth+disease+patients&rft.jtitle=PloS+one&rft.au=Lee%2C+Seung-Ah&rft.au=Hyun+Su+Kim&rft.au=Yoon%2C+Young&rft.au=Lee%2C+Ji&rft.date=2024-09-06&rft.pub=Public+Library+of+Science&rft.eissn=1932-6203&rft.volume=19&rft.issue=9&rft_id=info:doi/10.1371%2Fjournal.pone.0310203&rft.externalDocID=3101517200 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-6203&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-6203&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-6203&client=summon |