Efficient data labeling strategies for automated muscle segmentation in lower leg MRIs of Charcot-Marie-Tooth disease patients

We aimed to develop efficient data labeling strategies for ground truth segmentation in lower-leg magnetic resonance imaging (MRI) of patients with Charcot-Marie-Tooth disease (CMT) and to develop an automated muscle segmentation model using different labeling approaches. The impact of using unlabel...

Full description

Saved in:
Bibliographic Details
Published inPloS one Vol. 19; no. 9; p. e0310203
Main Authors Lee, Seung-Ah, Kim, Hyun Su, Yang, Ehwa, Yoon, Young Cheol, Lee, Ji Hyun, Choi, Byung-Ok, Kim, Jae-Hun
Format Journal Article
LanguageEnglish
Published United States Public Library of Science 06.09.2024
Public Library of Science (PLoS)
Subjects
Online AccessGet full text
ISSN1932-6203
1932-6203
DOI10.1371/journal.pone.0310203

Cover

Loading…
Abstract We aimed to develop efficient data labeling strategies for ground truth segmentation in lower-leg magnetic resonance imaging (MRI) of patients with Charcot-Marie-Tooth disease (CMT) and to develop an automated muscle segmentation model using different labeling approaches. The impact of using unlabeled data on model performance was further examined. Using axial T1-weighted MRIs of 120 patients with CMT (60 each with mild and severe intramuscular fat infiltration), we compared the performance of segmentation models obtained using several different labeling strategies. The effect of leveraging unlabeled data on segmentation performance was evaluated by comparing the performances of few-supervised, semi-supervised (mean teacher model), and fully-supervised learning models. We employed a 2D U-Net architecture and assessed its performance by comparing the average Dice coefficients (ADC) using paired t-tests with Bonferroni correction. Among few-supervised models utilizing 10% labeled data, labeling three slices (the uppermost, central, and lowermost slices) per subject exhibited a significantly higher ADC (90.84±3.46%) compared with other strategies using a single image slice per subject (uppermost, 87.79±4.41%; central, 89.42±4.07%; lowermost, 89.29±4.71%, p < 0.0001) or all slices per subject (85.97±9.82%, p < 0.0001). Moreover, semi-supervised learning significantly enhanced the segmentation performance. The semi-supervised model using the three-slices strategy showed the highest segmentation performance (91.03±3.67%) among 10% labeled set models. Fully-supervised model showed an ADC of 91.39±3.76. A three-slice-based labeling strategy for ground truth segmentation is the most efficient method for developing automated muscle segmentation models of CMT lower leg MRI. Additionally, semi-supervised learning with unlabeled data significantly enhances segmentation performance.
AbstractList We aimed to develop efficient data labeling strategies for ground truth segmentation in lower-leg magnetic resonance imaging (MRI) of patients with Charcot-Marie-Tooth disease (CMT) and to develop an automated muscle segmentation model using different labeling approaches. The impact of using unlabeled data on model performance was further examined. Using axial T1-weighted MRIs of 120 patients with CMT (60 each with mild and severe intramuscular fat infiltration), we compared the performance of segmentation models obtained using several different labeling strategies. The effect of leveraging unlabeled data on segmentation performance was evaluated by comparing the performances of few-supervised, semi-supervised (mean teacher model), and fully-supervised learning models. We employed a 2D U-Net architecture and assessed its performance by comparing the average Dice coefficients (ADC) using paired t-tests with Bonferroni correction. Among few-supervised models utilizing 10% labeled data, labeling three slices (the uppermost, central, and lowermost slices) per subject exhibited a significantly higher ADC (90.84±3.46%) compared with other strategies using a single image slice per subject (uppermost, 87.79±4.41%; central, 89.42±4.07%; lowermost, 89.29±4.71%, p < 0.0001) or all slices per subject (85.97±9.82%, p < 0.0001). Moreover, semi-supervised learning significantly enhanced the segmentation performance. The semi-supervised model using the three-slices strategy showed the highest segmentation performance (91.03±3.67%) among 10% labeled set models. Fully-supervised model showed an ADC of 91.39±3.76. A three-slice-based labeling strategy for ground truth segmentation is the most efficient method for developing automated muscle segmentation models of CMT lower leg MRI. Additionally, semi-supervised learning with unlabeled data significantly enhances segmentation performance.
We aimed to develop efficient data labeling strategies for ground truth segmentation in lower-leg magnetic resonance imaging (MRI) of patients with Charcot-Marie-Tooth disease (CMT) and to develop an automated muscle segmentation model using different labeling approaches. The impact of using unlabeled data on model performance was further examined. Using axial T1-weighted MRIs of 120 patients with CMT (60 each with mild and severe intramuscular fat infiltration), we compared the performance of segmentation models obtained using several different labeling strategies. The effect of leveraging unlabeled data on segmentation performance was evaluated by comparing the performances of few-supervised, semi-supervised (mean teacher model), and fully-supervised learning models. We employed a 2D U-Net architecture and assessed its performance by comparing the average Dice coefficients (ADC) using paired t-tests with Bonferroni correction. Among few-supervised models utilizing 10% labeled data, labeling three slices (the uppermost, central, and lowermost slices) per subject exhibited a significantly higher ADC (90.84±3.46%) compared with other strategies using a single image slice per subject (uppermost, 87.79±4.41%; central, 89.42±4.07%; lowermost, 89.29±4.71%, p < 0.0001) or all slices per subject (85.97±9.82%, p < 0.0001). Moreover, semi-supervised learning significantly enhanced the segmentation performance. The semi-supervised model using the three-slices strategy showed the highest segmentation performance (91.03±3.67%) among 10% labeled set models. Fully-supervised model showed an ADC of 91.39±3.76. A three-slice-based labeling strategy for ground truth segmentation is the most efficient method for developing automated muscle segmentation models of CMT lower leg MRI. Additionally, semi-supervised learning with unlabeled data significantly enhances segmentation performance.
We aimed to develop efficient data labeling strategies for ground truth segmentation in lower-leg magnetic resonance imaging (MRI) of patients with Charcot-Marie-Tooth disease (CMT) and to develop an automated muscle segmentation model using different labeling approaches. The impact of using unlabeled data on model performance was further examined. Using axial T1-weighted MRIs of 120 patients with CMT (60 each with mild and severe intramuscular fat infiltration), we compared the performance of segmentation models obtained using several different labeling strategies. The effect of leveraging unlabeled data on segmentation performance was evaluated by comparing the performances of few-supervised, semi-supervised (mean teacher model), and fully-supervised learning models. We employed a 2D U-Net architecture and assessed its performance by comparing the average Dice coefficients (ADC) using paired t-tests with Bonferroni correction. Among few-supervised models utilizing 10% labeled data, labeling three slices (the uppermost, central, and lowermost slices) per subject exhibited a significantly higher ADC (90.84±3.46%) compared with other strategies using a single image slice per subject (uppermost, 87.79±4.41%; central, 89.42±4.07%; lowermost, 89.29±4.71%, p < 0.0001) or all slices per subject (85.97±9.82%, p < 0.0001). Moreover, semi-supervised learning significantly enhanced the segmentation performance. The semi-supervised model using the three-slices strategy showed the highest segmentation performance (91.03±3.67%) among 10% labeled set models. Fully-supervised model showed an ADC of 91.39±3.76. A three-slice-based labeling strategy for ground truth segmentation is the most efficient method for developing automated muscle segmentation models of CMT lower leg MRI. Additionally, semi-supervised learning with unlabeled data significantly enhances segmentation performance.We aimed to develop efficient data labeling strategies for ground truth segmentation in lower-leg magnetic resonance imaging (MRI) of patients with Charcot-Marie-Tooth disease (CMT) and to develop an automated muscle segmentation model using different labeling approaches. The impact of using unlabeled data on model performance was further examined. Using axial T1-weighted MRIs of 120 patients with CMT (60 each with mild and severe intramuscular fat infiltration), we compared the performance of segmentation models obtained using several different labeling strategies. The effect of leveraging unlabeled data on segmentation performance was evaluated by comparing the performances of few-supervised, semi-supervised (mean teacher model), and fully-supervised learning models. We employed a 2D U-Net architecture and assessed its performance by comparing the average Dice coefficients (ADC) using paired t-tests with Bonferroni correction. Among few-supervised models utilizing 10% labeled data, labeling three slices (the uppermost, central, and lowermost slices) per subject exhibited a significantly higher ADC (90.84±3.46%) compared with other strategies using a single image slice per subject (uppermost, 87.79±4.41%; central, 89.42±4.07%; lowermost, 89.29±4.71%, p < 0.0001) or all slices per subject (85.97±9.82%, p < 0.0001). Moreover, semi-supervised learning significantly enhanced the segmentation performance. The semi-supervised model using the three-slices strategy showed the highest segmentation performance (91.03±3.67%) among 10% labeled set models. Fully-supervised model showed an ADC of 91.39±3.76. A three-slice-based labeling strategy for ground truth segmentation is the most efficient method for developing automated muscle segmentation models of CMT lower leg MRI. Additionally, semi-supervised learning with unlabeled data significantly enhances segmentation performance.
Audience Academic
Author Yang, Ehwa
Kim, Hyun Su
Kim, Jae-Hun
Lee, Ji Hyun
Lee, Seung-Ah
Yoon, Young Cheol
Choi, Byung-Ok
Author_xml – sequence: 1
  givenname: Seung-Ah
  surname: Lee
  fullname: Lee, Seung-Ah
– sequence: 2
  givenname: Hyun Su
  orcidid: 0000-0002-0179-9542
  surname: Kim
  fullname: Kim, Hyun Su
– sequence: 3
  givenname: Ehwa
  surname: Yang
  fullname: Yang, Ehwa
– sequence: 4
  givenname: Young Cheol
  surname: Yoon
  fullname: Yoon, Young Cheol
– sequence: 5
  givenname: Ji Hyun
  orcidid: 0000-0002-8582-5436
  surname: Lee
  fullname: Lee, Ji Hyun
– sequence: 6
  givenname: Byung-Ok
  surname: Choi
  fullname: Choi, Byung-Ok
– sequence: 7
  givenname: Jae-Hun
  surname: Kim
  fullname: Kim, Jae-Hun
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39241036$$D View this record in MEDLINE/PubMed
BookMark eNqNk01v1DAQhiNURD_gHyCwhITgkMVO4nwcq1WBlVpVKoWrNWuPs14l8WI7Ai78dhw2rbqoB-SD7dHzznjGM6fJ0WAHTJKXjC5YXrEPWzu6AbrFLpoXNGc0o_mT5IQ1eZaW8Xz04HycnHq_pZTndVk-S47zJisYzcuT5PeF1kYaHAJREIB0sMbODC3xwUHA1qAn2joCY7B9NCjSj152SDy2fVRBMHYgZiCd_YGOdNiSq5uVJ1aT5QactCG9AmcwvbU2bIgyHsEj2UVdVPvnyVMNnccX836WfP14cbv8nF5ef1otzy9TyesypAUtG0BZaVqiokrVlSwqzrRka1nFu2o0V03VyJgxr9ccUUKpizXohumKZ_lZ8nrvd9dZL-bSeRGrxjirMkojsdoTysJW7Jzpwf0SFoz4a7CuFeCCiakLxbNMoywKkHXBWLPOi1qVUJeKK8pg8vVujubs9xF9EL3xErsOBrTjHJbnvJke9uYf9PHHzVQLMb4ZtI2_Iyen4rymFc-rKqsitXiEikthb2RsE22i_UDw_kAQmYA_Qwuj92L15eb_2etvh-zbB-wGoQsbb7tx6hV_CL6asx_XPar7st_1ZwSKPSCd9d6hvkcYFdMY3JVLTGMg5jHI_wCm-Pk7
Cites_doi 10.3389/fneur.2021.625308
10.1186/s12880-020-00485-0
10.1016/j.media.2022.102508
10.1007/s13258-022-01253-w
10.1007/s00256-011-1199-y
10.1016/j.nmd.2023.07.001
10.1016/S1474-4422(15)00242-2
10.1002/jcsm.12415
10.1371/journal.pone.0216487
10.1016/S1067-2516(09)80083-5
10.1002/mus.26352
10.1007/s10334-019-00816-5
10.1148/ryai.230031
10.1016/S1474-4422(09)70110-3
10.1007/s13755-023-00220-3
10.1007/s00415-008-0808-8
10.1007/978-3-319-67558-9_28
10.1016/j.compbiomed.2020.103884
10.1016/j.mri.2017.12.014
10.1186/s13023-021-02040-8
10.1364/BOE.10.003800
10.3390/jpm13091298
10.1109/TPAMI.2022.3198175
10.1212/WNL.0000000000006214
10.1093/brain/awv240
10.3988/jcn.2021.17.1.52
10.1007/s12021-020-09485-5
10.2214/ajr.173.6.10584817
10.1038/s41598-022-21112-8
10.1186/s13244-020-00946-8
ContentType Journal Article
Copyright Copyright: © 2024 Lee et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
COPYRIGHT 2024 Public Library of Science
2024 Lee et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2024 Lee et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: Copyright: © 2024 Lee et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
– notice: COPYRIGHT 2024 Public Library of Science
– notice: 2024 Lee et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2024 Lee et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
IOV
ISR
3V.
7QG
7QL
7QO
7RV
7SN
7SS
7T5
7TG
7TM
7U9
7X2
7X7
7XB
88E
8AO
8C1
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABJCF
ABUWG
AEUYN
AFKRA
ARAPS
ATCPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
C1K
CCPQU
D1I
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
KB.
KB0
KL.
L6V
LK8
M0K
M0S
M1P
M7N
M7P
M7S
NAPCQ
P5Z
P62
P64
PATMY
PDBOC
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
PYCSY
RC3
7X8
DOA
DOI 10.1371/journal.pone.0310203
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Gale In Context: Opposing Viewpoints
Gale In Context: Science
ProQuest Central (Corporate)
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Biotechnology Research Abstracts
Nursing & Allied Health Database
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Meteorological & Geoastrophysical Abstracts
Nucleic Acids Abstracts
Virology and AIDS Abstracts
Agricultural Science Collection
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Public Health Database
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
Agricultural & Environmental Science Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Materials Science Collection
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Materials Science Database
Nursing & Allied Health Database (Alumni Edition)
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest Engineering Collection
Biological Sciences
Agricultural Science Database
ProQuest Health & Medical Collection
Medical Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biological Science Database (ProQuest)
Engineering Database
Nursing & Allied Health Premium
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Environmental Science Database
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
Environmental Science Collection
Genetics Abstracts
MEDLINE - Academic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Agricultural Science Database
Publicly Available Content Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Meteorological & Geoastrophysical Abstracts
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
Virology and AIDS Abstracts
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Agricultural Science Collection
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Environmental Science Collection
Entomology Abstracts
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Environmental Science Database
ProQuest Nursing & Allied Health Source (Alumni)
Engineering Research Database
ProQuest One Academic
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
Materials Science Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
ProQuest Engineering Collection
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Agricultural & Environmental Science Collection
AIDS and Cancer Research Abstracts
Materials Science Database
ProQuest Materials Science Collection
ProQuest Public Health
ProQuest Nursing & Allied Health Source
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Animal Behavior Abstracts
Materials Science & Engineering Collection
Immunology Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList CrossRef

MEDLINE - Academic
Agricultural Science Database


MEDLINE

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 1932-6203
ExternalDocumentID 3101517200
oai_doaj_org_article_d522fec44ac84119b348d6a86d5d01a0
A807537727
39241036
10_1371_journal_pone_0310203
Genre Journal Article
GeographicLocations South Korea
GeographicLocations_xml – name: South Korea
GroupedDBID ---
123
29O
2WC
53G
5VS
7RV
7X2
7X7
7XC
88E
8AO
8C1
8CJ
8FE
8FG
8FH
8FI
8FJ
A8Z
AAFWJ
AAUCC
AAWOE
AAYXX
ABDBF
ABIVO
ABJCF
ABUWG
ACGFO
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
AEAQA
AENEX
AEUYN
AFKRA
AFPKN
AFRAH
AHMBA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
APEBS
ARAPS
ATCPS
BAWUL
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
BKEYQ
BPHCQ
BVXVI
BWKFM
CCPQU
CITATION
CS3
D1I
D1J
D1K
DIK
DU5
E3Z
EAP
EAS
EBD
EMOBN
ESX
EX3
F5P
FPL
FYUFA
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
IAO
IEA
IGS
IHR
IHW
INH
INR
IOV
IPY
ISE
ISR
ITC
K6-
KB.
KQ8
L6V
LK5
LK8
M0K
M1P
M48
M7P
M7R
M7S
M~E
NAPCQ
O5R
O5S
OK1
OVT
P2P
P62
PATMY
PDBOC
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
PTHSS
PV9
PYCSY
RNS
RPM
RZL
SV3
TR2
UKHRP
WOQ
WOW
~02
~KM
3V.
ADRAZ
BBORY
CGR
CUY
CVF
ECM
EIF
IPNFZ
NPM
RIG
PMFND
7QG
7QL
7QO
7SN
7SS
7T5
7TG
7TM
7U9
7XB
8FD
8FK
AZQEC
C1K
DWQXO
FR3
GNUQQ
H94
K9.
KL.
M7N
P64
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
PRINS
RC3
7X8
PUEGO
ESTFP
ID FETCH-LOGICAL-c586t-4069aec7f06ed0dd87c4751fc1bc70ddd9f5d979c19358b5eeca6f4baf91f7523
IEDL.DBID M48
ISSN 1932-6203
IngestDate Sun Dec 08 00:30:40 EST 2024
Wed Aug 27 01:31:56 EDT 2025
Thu Jul 10 18:31:59 EDT 2025
Fri Jul 25 10:14:55 EDT 2025
Tue Jun 17 22:04:46 EDT 2025
Tue Jun 10 21:04:21 EDT 2025
Fri Jun 27 06:09:20 EDT 2025
Fri Jun 27 06:00:24 EDT 2025
Thu May 22 21:23:59 EDT 2025
Wed Feb 19 02:06:13 EST 2025
Tue Jul 01 03:19:00 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 9
Language English
License Copyright: © 2024 Lee et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Creative Commons Attribution License
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c586t-4069aec7f06ed0dd87c4751fc1bc70ddd9f5d979c19358b5eeca6f4baf91f7523
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-8582-5436
0000-0002-0179-9542
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1371/journal.pone.0310203
PMID 39241036
PQID 3101517200
PQPubID 1436336
PageCount e0310203
ParticipantIDs plos_journals_3101517200
doaj_primary_oai_doaj_org_article_d522fec44ac84119b348d6a86d5d01a0
proquest_miscellaneous_3101553592
proquest_journals_3101517200
gale_infotracmisc_A807537727
gale_infotracacademiconefile_A807537727
gale_incontextgauss_ISR_A807537727
gale_incontextgauss_IOV_A807537727
gale_healthsolutions_A807537727
pubmed_primary_39241036
crossref_primary_10_1371_journal_pone_0310203
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-09-06
PublicationDateYYYYMMDD 2024-09-06
PublicationDate_xml – month: 09
  year: 2024
  text: 2024-09-06
  day: 06
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: San Francisco
PublicationTitle PloS one
PublicationTitleAlternate PLoS One
PublicationYear 2024
Publisher Public Library of Science
Public Library of Science (PLoS)
Publisher_xml – sequence: 0
  name: Public Library of Science
– name: Public Library of Science
– name: Public Library of Science (PLoS)
References A Mey (pone.0310203.ref035) 2023; 45
M Gadermayr (pone.0310203.ref014) 2018; 48
JS Bosma (pone.0310203.ref028) 2023; 5
C Ge (pone.0310203.ref029) 2020; 20
S Attarian (pone.0310203.ref019) 2021; 16
D Klein (pone.0310203.ref020) 2015; 138
Y Rong (pone.0310203.ref016) 2019; 10
P Li (pone.0310203.ref038) 2023
J Bas (pone.0310203.ref002) 2020; 94
KMD Cornett (pone.0310203.ref008) 2019; 59
S Laine (pone.0310203.ref034) 2016
Z Zhou (pone.0310203.ref018) 2017; 2017
D Pareyson (pone.0310203.ref001) 2009; 8
D Goutallier (pone.0310203.ref015) 1994
CH Sudre (pone.0310203.ref017) 2017; 2017
G Stilwell (pone.0310203.ref010) 1995; 34
HS Kim (pone.0310203.ref024) 2021; 17
E Gallardo (pone.0310203.ref011) 2008; 255
JM Morrow (pone.0310203.ref005) 2016; 15
J Park (pone.0310203.ref026) 2022; 44
J Kemnitz (pone.0310203.ref022) 2020; 33
Y Peng (pone.0310203.ref037) 2023; 11
A Tarvainen (pone.0310203.ref032) 2017
B Kanber (pone.0310203.ref006) 2021; 19
S Mesbah (pone.0310203.ref023) 2019; 14
M Khouy (pone.0310203.ref031) 2023; 13
MW Anderson (pone.0310203.ref027) 1999; 173
J Huo (pone.0310203.ref033) 2022; 80
C Pisciotta (pone.0310203.ref021) 2023; 33
YJ Kim (pone.0310203.ref009) 2022; 12
O Ronneberger (pone.0310203.ref030) 2015
JM Morrow (pone.0310203.ref004) 2018; 91
AC Ogier (pone.0310203.ref007) 2021; 12
HS Kim (pone.0310203.ref003) 2019; 10
M Gaeta (pone.0310203.ref012) 2012; 41
J Ding (pone.0310203.ref013) 2020; 11
HM Kwon (pone.0310203.ref025) 2021; 11
C Decourt (pone.0310203.ref036) 2020; 123
References_xml – volume: 12
  start-page: 625308
  year: 2021
  ident: pone.0310203.ref007
  article-title: Overview of MR Image Segmentation Strategies in Neuromuscular Disorders
  publication-title: Front Neurol
  doi: 10.3389/fneur.2021.625308
– volume: 20
  start-page: 87
  year: 2020
  ident: pone.0310203.ref029
  article-title: Deep semi-supervised learning for brain tumor classification
  publication-title: BMC Med Imaging
  doi: 10.1186/s12880-020-00485-0
– volume: 80
  start-page: 102508
  year: 2022
  ident: pone.0310203.ref033
  article-title: Automatic Grading Assessments for Knee MRI Cartilage Defects via Self-ensembling Semi-supervised Learning with Dual-Consistency
  publication-title: Med Image Anal
  doi: 10.1016/j.media.2022.102508
– volume: 44
  start-page: 1007
  year: 2022
  ident: pone.0310203.ref026
  article-title: Identification and clinical characterization of Charcot-Marie-Tooth disease type 1C patients with LITAF p.G112S mutation
  publication-title: Genes Genomics
  doi: 10.1007/s13258-022-01253-w
– volume: 41
  start-page: 515
  year: 2012
  ident: pone.0310203.ref012
  article-title: MRI findings, patterns of disease distribution, and muscle fat fraction calculation in five patients with Charcot-Marie-Tooth type 2 F disease
  publication-title: Skeletal Radiol
  doi: 10.1007/s00256-011-1199-y
– volume: 2017
  start-page: 4761
  year: 2017
  ident: pone.0310203.ref018
  article-title: Fine-tuning Convolutional Neural Networks for Biomedical Image Analysis: Actively and Incrementally
  publication-title: Proc IEEE Comput Soc Conf Comput Vis Pattern Recognit
– volume: 33
  start-page: 627
  year: 2023
  ident: pone.0310203.ref021
  article-title: Gene therapy and other novel treatment approaches for Charcot-Marie-Tooth disease
  publication-title: Neuromuscul Disord
  doi: 10.1016/j.nmd.2023.07.001
– volume: 15
  start-page: 65
  year: 2016
  ident: pone.0310203.ref005
  article-title: MRI biomarker assessment of neuromuscular disease progression: a prospective observational cohort study
  publication-title: Lancet Neurol
  doi: 10.1016/S1474-4422(15)00242-2
– volume: 10
  start-page: 574
  year: 2019
  ident: pone.0310203.ref003
  article-title: Muscle fat quantification using magnetic resonance imaging: case-control study of Charcot-Marie-Tooth disease patients and volunteers
  publication-title: J Cachexia Sarcopenia Muscle
  doi: 10.1002/jcsm.12415
– year: 2016
  ident: pone.0310203.ref034
  publication-title: Temporal ensembling for semi-supervised learning
– volume: 14
  start-page: e0216487
  year: 2019
  ident: pone.0310203.ref023
  article-title: Novel stochastic framework for automatic segmentation of human thigh MRI volumes and its applications in spinal cord injured individuals
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0216487
– volume: 34
  start-page: 583
  year: 1995
  ident: pone.0310203.ref010
  article-title: Patterns of muscle atrophy in the lower limbs in patients with Charcot-Marie-Tooth disease as measured by magnetic resonance imaging
  publication-title: J Foot Ankle Surg
  doi: 10.1016/S1067-2516(09)80083-5
– volume: 59
  start-page: 213
  year: 2019
  ident: pone.0310203.ref008
  article-title: Magnetic resonance imaging of the anterior compartment of the lower leg is a biomarker for weakness, disability, and impaired gait in childhood Charcot-Marie-Tooth disease
  publication-title: Muscle Nerve
  doi: 10.1002/mus.26352
– volume: 94
  start-page: e1480
  year: 2020
  ident: pone.0310203.ref002
  article-title: Fat fraction distribution in lower limb muscles of patients with CMT1A: A quantitative MRI study
  publication-title: Neurology
– start-page: 78
  year: 1994
  ident: pone.0310203.ref015
  article-title: Fatty muscle degeneration in cuff ruptures. Pre- and postoperative evaluation by CT scan
  publication-title: Clin Orthop Relat Res
– volume: 33
  start-page: 483
  year: 2020
  ident: pone.0310203.ref022
  article-title: Clinical evaluation of fully automated thigh muscle and adipose tissue segmentation using a U-Net deep learning architecture in context of osteoarthritic knee pain
  publication-title: MAGMA
  doi: 10.1007/s10334-019-00816-5
– volume: 5
  start-page: e230031
  year: 2023
  ident: pone.0310203.ref028
  article-title: Semisupervised Learning with Report-guided Pseudo Labels for Deep Learning-based Prostate Cancer Detection Using Biparametric MRI
  publication-title: Radiol Artif Intell
  doi: 10.1148/ryai.230031
– year: 2023
  ident: pone.0310203.ref038
  article-title: mResU-Net: multi-scale residual U-Net-based brain tumor segmentation from multimodal MRI
  publication-title: Med Biol Eng Comput
– volume: 8
  start-page: 654
  year: 2009
  ident: pone.0310203.ref001
  article-title: Diagnosis, natural history, and management of Charcot-Marie-Tooth disease
  publication-title: Lancet Neurol
  doi: 10.1016/S1474-4422(09)70110-3
– volume: 11
  start-page: 17
  year: 2023
  ident: pone.0310203.ref037
  article-title: The nnU-Net based method for automatic segmenting fetal brain tissues
  publication-title: Health Inf Sci Syst
  doi: 10.1007/s13755-023-00220-3
– start-page: 234
  volume-title: Medical Image Computing and Computer-Assisted Intervention: MICCAI 2015. Lecture Notes in Computer Science
  year: 2015
  ident: pone.0310203.ref030
– volume: 255
  start-page: 986
  year: 2008
  ident: pone.0310203.ref011
  article-title: Magnetic resonance imaging findings of leg musculature in Charcot-Marie-Tooth disease type 2 due to dynamin 2 mutation
  publication-title: J Neurol
  doi: 10.1007/s00415-008-0808-8
– volume: 2017
  start-page: 240
  year: 2017
  ident: pone.0310203.ref017
  article-title: Generalised Dice Overlap as a Deep Learning Loss Function for Highly Unbalanced Segmentations
  publication-title: Deep Learn Med Image Anal Multimodal Learn Clin Decis Support
  doi: 10.1007/978-3-319-67558-9_28
– volume: 123
  start-page: 103884
  year: 2020
  ident: pone.0310203.ref036
  article-title: Semi-supervised generative adversarial networks for the segmentation of the left ventricle in pediatric MRI
  publication-title: Comput Biol Med
  doi: 10.1016/j.compbiomed.2020.103884
– volume: 48
  start-page: 20
  year: 2018
  ident: pone.0310203.ref014
  article-title: A comprehensive study on automated muscle segmentation for assessing fat infiltration in neuromuscular diseases
  publication-title: Magn Reson Imaging
  doi: 10.1016/j.mri.2017.12.014
– volume: 16
  start-page: 433
  year: 2021
  ident: pone.0310203.ref019
  article-title: A double-blind, placebo-controlled, randomized trial of PXT3003 for the treatment of Charcot-Marie-Tooth type 1A
  publication-title: Orphanet J Rare Dis
  doi: 10.1186/s13023-021-02040-8
– volume: 10
  start-page: 3800
  year: 2019
  ident: pone.0310203.ref016
  article-title: Deriving external forces via convolutional neural networks for biomedical image segmentation
  publication-title: Biomed Opt Express
  doi: 10.1364/BOE.10.003800
– volume: 13
  start-page: 1298
  year: 2023
  ident: pone.0310203.ref031
  article-title: Medical Image Segmentation Using Automatic Optimized U-Net Architecture Based on Genetic Algorithm
  publication-title: J Pers Med
  doi: 10.3390/jpm13091298
– volume: 11
  year: 2021
  ident: pone.0310203.ref025
  article-title: Clinical and Neuroimaging Features in Charcot-Marie-Tooth Patients with GNB4 Mutations
  publication-title: Life (Basel)
– volume: 45
  start-page: 4747
  year: 2023
  ident: pone.0310203.ref035
  article-title: Improved Generalization in Semi-Supervised Learning: A Survey of Theoretical Results
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2022.3198175
– volume: 91
  start-page: e1125
  year: 2018
  ident: pone.0310203.ref004
  article-title: Validation of MRC Centre MRI calf muscle fat fraction protocol as an outcome measure in CMT1A.
  publication-title: Neurology
  doi: 10.1212/WNL.0000000000006214
– volume: 138
  start-page: 3193
  year: 2015
  ident: pone.0310203.ref020
  article-title: Targeting the colony stimulating factor 1 receptor alleviates two forms of Charcot-Marie-Tooth disease in mice
  publication-title: Brain
  doi: 10.1093/brain/awv240
– volume: 17
  start-page: 52
  year: 2021
  ident: pone.0310203.ref024
  article-title: Clinical and Neuroimaging Features in Charcot-Marie-Tooth Patients with GDAP1 Mutations
  publication-title: J Clin Neurol
  doi: 10.3988/jcn.2021.17.1.52
– year: 2017
  ident: pone.0310203.ref032
  publication-title: Mean teachers are better role models: Weight-averaged consistency targets improve semi-supervised deep learning results
– volume: 19
  start-page: 379
  year: 2021
  ident: pone.0310203.ref006
  article-title: Musclesense: a Trained, Artificial Neural Network for the Anatomical Segmentation of Lower Limb Magnetic Resonance Images in Neuromuscular Diseases
  publication-title: Neuroinformatics
  doi: 10.1007/s12021-020-09485-5
– volume: 173
  start-page: 1663
  year: 1999
  ident: pone.0310203.ref027
  article-title: Compartmental anatomy: relevance to staging and biopsy of musculoskeletal tumors
  publication-title: AJR Am J Roentgenol
  doi: 10.2214/ajr.173.6.10584817
– volume: 12
  start-page: 16622
  year: 2022
  ident: pone.0310203.ref009
  article-title: Magnetic resonance imaging-based lower limb muscle evaluation in Charcot-Marie-Tooth disease type 1A patients and its correlation with clinical data
  publication-title: Sci Rep
  doi: 10.1038/s41598-022-21112-8
– volume: 11
  start-page: 128
  year: 2020
  ident: pone.0310203.ref013
  article-title: Deep learning-based thigh muscle segmentation for reproducible fat fraction quantification using fat-water decomposition MRI
  publication-title: Insights Imaging
  doi: 10.1186/s13244-020-00946-8
SSID ssj0053866
Score 2.4564834
Snippet We aimed to develop efficient data labeling strategies for ground truth segmentation in lower-leg magnetic resonance imaging (MRI) of patients with...
SourceID plos
doaj
proquest
gale
pubmed
crossref
SourceType Open Website
Aggregation Database
Index Database
StartPage e0310203
SubjectTerms Adolescent
Adult
Aged
Analysis
Automation
Biological markers
Biomarkers
Care and treatment
Charcot-Marie-Tooth disease
Charcot-Marie-Tooth Disease - diagnostic imaging
Charcot-Marie-Tooth Disease - pathology
Denervation
Diagnosis
Female
Humans
Image processing
Image Processing, Computer-Assisted - methods
Image segmentation
Labeling
Learning
Leg
Leg - diagnostic imaging
Leg - pathology
Legs
Machine learning
Magnetic resonance
Magnetic resonance imaging
Magnetic Resonance Imaging - methods
Male
Methods
Middle Aged
Muscle, Skeletal - diagnostic imaging
Muscle, Skeletal - pathology
Muscles
Patients
Performance evaluation
Segmentation
Semi-supervised learning
Young Adult
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELbQnrggyquBAgYhAYe0m8SP5FhQqxZpQSot6s3yc1Vpm6xwcuW3M3aciJVAcOCY9cTKzsP-Rp75jNAbSEyMaUqWl6VlOSklzxVsS3nJTKOp4ZqS0I28-szOrsina3r9y1VfoSZspAceFXdkACA4qwmRuiZF0aiK1IbJmhlqloWM2TpMPiVT4xoMUcxYapSreHGU7HK47Vp7GMgwy-mSrLQRRb7-eVVebDed_zPkjFvP6X10L2FGfDx-6x66Y9sHaC9FpcfvEnX0-4fox0lkhICNBIfSTwwmjv3m2PcTJQQGlIrl0HcAVa3Bt4OHObG369vUhdTimxZvwuVpeGPXeHVx7nHncDiX112fr0JynV92YGGcTndwImf1j9DV6cnlx7M83bCQa1qzPg9tr9Jq7pbMmqUxNdeE08LpQmkOz6Zx1DS80UU4LlXUWi2ZI0q6pnAcctjHaNGCTvcRloALlDaOVLUiICorrhqt4H29NJbLDOWTusV2JNIQ8TSNQwIy6lEE84hkngx9CDaZZQMNdvwBnEMk5xB_c44MvQwWFWNP6RzM4jhQMFeQWPAMvY4SgQqjDbU2azl4L86_fPsHoa8XO0Jvk5DrwKZapv4G-E-BYmtH8mBHEgJa7wzvB_-btOIFKARwGYf1DN6cfPL3w6_m4TBpqJ9rbTckGVrRpszQk9GXZ80CQiYFAJmn_0Pjz9DdEmBfrMJjB2jRfx_sc4BtvXoRI_Qn7nlAcA
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELZguXBBlFcDBQxCAg5u8_AjOaGCWrVIC1Jp0d4ix3ZWlbbJUifX_vbOZJ2glQBx3HhiaT0ezzfxzDeEvIPAxNoilSxNnWQ81YpV4JZYKm1hhFVGcKxGnn-TJxf860Iswgc3H9IqxzNxOKhta_Ab-QHAEHBOCpT6af2LYdcovF0NLTTukntIXYYpXWoxBVxgy1KGcrlMJQdBO_vrtnH7SImZjq2ygjsaWPuns3m2XrX-78BzcEDHD8mDgBzp4UbVO-SOax6RnWCbnn4IBNIfH5Obo4EXAtwJxQRQCooeqs6p70ZiCApYleq-awGwOkuveg9zUu-WV6EWqaGXDV1hCzW6cks6Pzv1tK0p3s6btmNzDLHZeQt6puGOhwaKVv-EXBwfnX85YaHPAjMilx3D4lftjKpj6Wxsba4MVyKpTVIZBb9tUQtbqMIkeGlaCeeMljWvdF0ktYJI9imZNbCmu4RqQAeVsTXP8oqDqM5UVZgK3jexdUpHhI3LXa43dBrlcKemIAzZrGOJ6imDeiLyGXUyySIZ9vCgvV6WwbZKCxiydoZzbXIO-6DKeG6lzqUVNk50HJHXqNFyU1k6mXR5iETMGYQXKiJvBwkkxGgw42ape-_L0-8__0Pox9mW0PsgVLegU6NDlQP8JyTa2pLc25IEszZbw7u4_8ZV8eVvA4A3xz355-E30zBOill0jWv7ICMyUaQRebbZy9PKAk7mCcCZ5_-e_AW5nwKsG7Ls5B6Zdde9ewmwrKteDbZ3Cy0gN8U
  priority: 102
  providerName: ProQuest
Title Efficient data labeling strategies for automated muscle segmentation in lower leg MRIs of Charcot-Marie-Tooth disease patients
URI https://www.ncbi.nlm.nih.gov/pubmed/39241036
https://www.proquest.com/docview/3101517200
https://www.proquest.com/docview/3101553592
https://doaj.org/article/d522fec44ac84119b348d6a86d5d01a0
http://dx.doi.org/10.1371/journal.pone.0310203
Volume 19
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fa9swEBZd-rKXse5Xs3WZNgbbHhxiR5bshzHakqwdpBtZM_JmZEkOg9ROIwe6l_3tu1NkQ6CBvRgSnWxyp7O-y-m-I-Q9BCZapxEPosjwgEVSBDlsS0HEdapiLVTMsBp5csUvZuzbPJ4fkKZnq1egvTe0w35Ss_Wyf3f75ws4_GfXtUGEzaT-qipNH6kuI6T_PIS9SaCrTlibVwDv5twX0O2bubNBOR7_9m3dWS0rux-Kui1p_Jg88liSnm6Nf0QOTPmEHHlvtfSjp5T-9JT8HTmmCNhgKB4JpWB6V4dObd1QRVBAr1Ru6gogrNH0ZmPhntSaxY2vTirp75IusakaXZoFnUwvLa0Kivl6VdXBBIPu4LoCy1Of9aGetNU-I7Px6Pr8IvCdFwIVJ7wOsBxWGiWKATd6oHUiFBNxWKgwVwI-67SIdSpSFWIaNY-NUZIXLJdFGhYCYtvnpFOCTo8JlYAXcqULNkxyBqJyKPJU5TBfDbQRskuCRt3Zakuwkbksm4DAZKvHDM2TefN0yRnapJVFemz3RbVeZN7bMg2osjCKMakSFoZpPmSJ5jLhOtaDUA665A1aNNvWmrZOnp0iNfMQAg7RJe-cBFJklHgGZyE31maX33_9h9DP6Y7QBy9UVGBTJX3dA_wmpN7akTzZkQRHVzvDx7j-Gq3YDBQCeE3Aew5mNmvy_uG37TDeFM_VlabaeJl4GKdRl7zYruVWs4CcWQgA5-X-574iDyMAee7MHT8hnXq9Ma8BpNV5jzwQcwHX5DzE6_hrjxyeja5-THvub4-e88t_kzZA-w
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELem8gAviPG1wmAGgYCHbPlw7OQBoQGbWrYOaXRT34xjOxVSl5QlFeKFP4m_kbvECaoEiJc9trlYqu9897v67neEPIPExJg05F4YWu6xUAkvg7DkhdykOjZCxwy7kScnfHTGPszi2Qb52fXCYFll5xMbR21Kjf-R7wEMgeAkQKlvll89nBqFt6vdCI3WLI7s92-QslWvx-9Bv8_D8PBg-m7kuakCno4TXnvY6qmsFrnPrfGNSYRmIg5yHWRawGeT5rFJRaoDvCLMYmu14jnLVJ4GuYiR6ABc_jUIvD6eKDHrEzzwHZy79rxIBHvOGnaXZWF3kYIz7EZzufDXTAnoY8FguSirvwPdJuAd3iI3HVKl-61pbZINW9wmm84XVPSlI6x-dYf8OGh4KCB8USw4pWBYTZc7reqOiIICNqZqVZcAkK2hF6sK1qSVnV-43qeCfinoAke20YWd08npuKJlTrEaQJe1N8GU3puWYFfU3SlRRwlb3SVnV6KBe2RQwJ5uEaoAjWTa5CxKMgaiKhJZqjN4X_vGCjUkXrfdctnSd8jmDk9A2tPuo0T1SKeeIXmLOullkXy7-aK8nEt3lqUBzJpbzZjSCQuCNItYYrhKuImNHyh_SHZQo7LtZO1diNxH4ucI0hkxJE8bCSTgKLDCZ65WVSXHH8__Q-jT6ZrQCyeUl6BTrVxXBfwmJPZak9xekwQ3otceb6H9dbtSyd8HDt7sbPLPj5_0j3FRrNorbLlyMnEUp-GQ3G9tud9ZwOUsAPj04N-L75Dro-nkWB6PT44ekhshQMqmwo9vk0F9ubKPABLW2ePmHFLy-aoP_i-OHnaG
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF5VQUJcEOVVQ6ELAgEHN7G9D_uAUKGNGkoKKi3Kzax31xFSaofaEeLCD-PXMWOvjSIB4tKjs-OVvPPOznxDyBNITIxJQuGHoRU-C5X0M3BLfihMormRmjPsRp4ei8Mz9nbGZxvkZ9cLg2WVnU1sDLUpNf5HPoQwBJyTBKYOc1cW8WF__Gr51ccJUnjT2o3TaEXkyH7_Bulb9XKyD7x-Gobjg9M3h76bMOBrHovax7ZPZbXMR8KakTGx1EzyINdBpiU8myTnJpGJDvC6MOPWaiVylqk8CXLJEfQAzP8VGfEAdUzO-mQP7IgQrlUvksHQScbusizsLsJxht2YLucKm4kBvV8YLBdl9fegt3F-4xvkuota6V4rZptkwxY3yaazCxV97sCrX9wiPw4aTApwZRSLTykIWdPxTqu6A6WgECdTtapLCJatoeerCvaklZ2fuz6ogn4p6ALHt9GFndPpyaSiZU6xMkCXtT_F9N4_LUHGqLtfog4etrpNzi6FA3fIoIAz3SJUQWSSaZOzKM4YkKpIZonO4H09MlYqj_jdcafLFsojbe7zJKRA7TmmyJ7Usccjr5EnPS0CcTc_lBfz1Ol1aiB-za1mTOmYBUGSRSw2QsXCcDMK1MgjO8jRtO1q7c1Juocg0BGkNtIjjxsKBOMoUKznalVV6eT9p_8g-niyRvTMEeUl8FQr12EB34QgX2uU22uUYFL02vIWyl93KlX6W_ngzU4m_7z8qF_GTbGCr7DlytHwiCehR-62styfLMToLIBQ6t6_N98hV0Hl03eT46P75FoI0WVT7Ce2yaC-WNkHEB3W2cNGDSn5fNl6_wvrSnq8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Efficient+data+labeling+strategies+for+automated+muscle+segmentation+in+lower+leg+MRIs+of+Charcot-Marie-Tooth+disease+patients&rft.jtitle=PloS+one&rft.au=Lee%2C+Seung-Ah&rft.au=Hyun+Su+Kim&rft.au=Yoon%2C+Young&rft.au=Lee%2C+Ji&rft.date=2024-09-06&rft.pub=Public+Library+of+Science&rft.eissn=1932-6203&rft.volume=19&rft.issue=9&rft_id=info:doi/10.1371%2Fjournal.pone.0310203&rft.externalDocID=3101517200
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-6203&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-6203&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-6203&client=summon