MEGSA: A Powerful and Flexible Framework for Analyzing Mutual Exclusivity of Tumor Mutations

The central challenges in tumor sequencing studies is to identify driver genes and pathways, investigate their functional relationships, and nominate drug targets. The efficiency of these analyses, particularly for infrequently mutated genes, is compromised when subjects carry different combinations...

Full description

Saved in:
Bibliographic Details
Published inAmerican journal of human genetics Vol. 98; no. 3; pp. 442 - 455
Main Authors Hua, Xing, Hyland, Paula L., Huang, Jing, Song, Lei, Zhu, Bin, Caporaso, Neil E., Landi, Maria Teresa, Chatterjee, Nilanjan, Shi, Jianxin
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 03.03.2016
Cell Press
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The central challenges in tumor sequencing studies is to identify driver genes and pathways, investigate their functional relationships, and nominate drug targets. The efficiency of these analyses, particularly for infrequently mutated genes, is compromised when subjects carry different combinations of driver mutations. Mutual exclusivity analysis helps address these challenges. To identify mutually exclusive gene sets (MEGS), we developed a powerful and flexible analytic framework based on a likelihood ratio test and a model selection procedure. Extensive simulations demonstrated that our method outperformed existing methods for both statistical power and the capability of identifying the exact MEGS, particularly for highly imbalanced MEGS. Our method can be used for de novo discovery, for pathway-guided searches, or for expanding established small MEGS. We applied our method to the whole-exome sequencing data for 13 cancer types from The Cancer Genome Atlas (TCGA). We identified multiple previously unreported non-pairwise MEGS in multiple cancer types. For acute myeloid leukemia, we identified a MEGS with five genes (FLT3, IDH2, NRAS, KIT, and TP53) and a MEGS (NPM1, TP53, and RUNX1) whose mutation status was strongly associated with survival (p = 6.7 × 10−4). For breast cancer, we identified a significant MEGS consisting of TP53 and four infrequently mutated genes (ARID1A, AKT1, MED23, and TBL1XR1), providing support for their role as cancer drivers.
AbstractList The central challenges in tumor sequencing studies is to identify driver genes and pathways, investigate their functional relationships, and nominate drug targets. The efficiency of these analyses, particularly for infrequently mutated genes, is compromised when subjects carry different combinations of driver mutations. Mutual exclusivity analysis helps address these challenges. To identify mutually exclusive gene sets (MEGS), we developed a powerful and flexible analytic framework based on a likelihood ratio test and a model selection procedure. Extensive simulations demonstrated that our method outperformed existing methods for both statistical power and the capability of identifying the exact MEGS, particularly for highly imbalanced MEGS. Our method can be used for de novo discovery, for pathway-guided searches, or for expanding established small MEGS. We applied our method to the whole-exome sequencing data for 13 cancer types from The Cancer Genome Atlas (TCGA). We identified multiple previously unreported non-pairwise MEGS in multiple cancer types. For acute myeloid leukemia, we identified a MEGS with five genes (FLT3, IDH2, NRAS, KIT, and TP53) and a MEGS (NPM1, TP53, and RUNX1) whose mutation status was strongly associated with survival (p = 6.7 × 10−4). For breast cancer, we identified a significant MEGS consisting of TP53 and four infrequently mutated genes (ARID1A, AKT1, MED23, and TBL1XR1), providing support for their role as cancer drivers.
The central challenges in tumor sequencing studies is to identify driver genes and pathways, investigate their functional relationships, and nominate drug targets. The efficiency of these analyses, particularly for infrequently mutated genes, is compromised when subjects carry different combinations of driver mutations. Mutual exclusivity analysis helps address these challenges. To identify mutually exclusive gene sets (MEGS), we developed a powerful and flexible analytic framework based on a likelihood ratio test and a model selection procedure. Extensive simulations demonstrated that our method outperformed existing methods for both statistical power and the capability of identifying the exact MEGS, particularly for highly imbalanced MEGS. Our method can be used for de novo discovery, for pathway-guided searches, or for expanding established small MEGS. We applied our method to the whole-exome sequencing data for 13 cancer types from The Cancer Genome Atlas (TCGA). We identified multiple previously unreported non-pairwise MEGS in multiple cancer types. For acute myeloid leukemia, we identified a MEGS with five genes (FLT3, IDH2, NRAS, KIT, and TP53) and a MEGS (NPM1, TP53, and RUNX1) whose mutation status was strongly associated with survival (p = 6.7 10 super(-4)). For breast cancer, we identified a significant MEGS consisting of TP53 and four infrequently mutated genes (ARID1A, AKT1, MED23, and TBL1XR1), providing support for their role as cancer drivers.
The central challenges in tumor sequencing studies is to identify driver genes and pathways, investigate their functional relationships, and nominate drug targets. The efficiency of these analyses, particularly for infrequently mutated genes, is compromised when subjects carry different combinations of driver mutations. Mutual exclusivity analysis helps address these challenges. To identify mutually exclusive gene sets (MEGS), we developed a powerful and flexible analytic framework based on a likelihood ratio test and a model selection procedure. Extensive simulations demonstrated that our method outperformed existing methods for both statistical power and the capability of identifying the exact MEGS, particularly for highly imbalanced MEGS. Our method can be used for de novo discovery, for pathway-guided searches, or for expanding established small MEGS. We applied our method to the whole-exome sequencing data for 13 cancer types from The Cancer Genome Atlas (TCGA). We identified multiple previously unreported non-pairwise MEGS in multiple cancer types. For acute myeloid leukemia, we identified a MEGS with five genes (FLT3, IDH2, NRAS, KIT, and TP53) and a MEGS (NPM1, TP53, and RUNX1) whose mutation status was strongly associated with survival (p = 6.7 × 10(-4)). For breast cancer, we identified a significant MEGS consisting of TP53 and four infrequently mutated genes (ARID1A, AKT1, MED23, and TBL1XR1), providing support for their role as cancer drivers.
The central challenges in tumor sequencing studies is to identify driver genes and pathways, investigate their functional relationships, and nominate drug targets. The efficiency of these analyses, particularly for infrequently mutated genes, is compromised when subjects carry different combinations of driver mutations. Mutual exclusivity analysis helps address these challenges. To identify mutually exclusive gene sets (MEGS), we developed a powerful and flexible analytic framework based on a likelihood ratio test and a model selection procedure. Extensive simulations demonstrated that our method outperformed existing methods for both statistical power and the capability of identifying the exact MEGS, particularly for highly imbalanced MEGS. Our method can be used for de novo discovery, for pathway-guided searches, or for expanding established small MEGS. We applied our method to the whole-exome sequencing data for 13 cancer types from The Cancer Genome Atlas (TCGA). We identified multiple previously unreported non-pairwise MEGS in multiple cancer types. For acute myeloid leukemia, we identified a MEGS with five genes (FLT3, IDH2, NRAS, KIT, and TP53) and a MEGS (NPM1, TP53, and RUNX1) whose mutation status was strongly associated with survival (p = 6.7 × 10(-4)). For breast cancer, we identified a significant MEGS consisting of TP53 and four infrequently mutated genes (ARID1A, AKT1, MED23, and TBL1XR1), providing support for their role as cancer drivers.The central challenges in tumor sequencing studies is to identify driver genes and pathways, investigate their functional relationships, and nominate drug targets. The efficiency of these analyses, particularly for infrequently mutated genes, is compromised when subjects carry different combinations of driver mutations. Mutual exclusivity analysis helps address these challenges. To identify mutually exclusive gene sets (MEGS), we developed a powerful and flexible analytic framework based on a likelihood ratio test and a model selection procedure. Extensive simulations demonstrated that our method outperformed existing methods for both statistical power and the capability of identifying the exact MEGS, particularly for highly imbalanced MEGS. Our method can be used for de novo discovery, for pathway-guided searches, or for expanding established small MEGS. We applied our method to the whole-exome sequencing data for 13 cancer types from The Cancer Genome Atlas (TCGA). We identified multiple previously unreported non-pairwise MEGS in multiple cancer types. For acute myeloid leukemia, we identified a MEGS with five genes (FLT3, IDH2, NRAS, KIT, and TP53) and a MEGS (NPM1, TP53, and RUNX1) whose mutation status was strongly associated with survival (p = 6.7 × 10(-4)). For breast cancer, we identified a significant MEGS consisting of TP53 and four infrequently mutated genes (ARID1A, AKT1, MED23, and TBL1XR1), providing support for their role as cancer drivers.
The central challenges in tumor sequencing studies is to identify driver genes and pathways, investigate their functional relationships, and nominate drug targets. The efficiency of these analyses, particularly for infrequently mutated genes, is compromised when subjects carry different combinations of driver mutations. Mutual exclusivity analysis helps address these challenges. To identify mutually exclusive gene sets (MEGS), we developed a powerful and flexible analytic framework based on a likelihood ratio test and a model selection procedure. Extensive simulations demonstrated that our method outperformed existing methods for both statistical power and the capability of identifying the exact MEGS, particularly for highly imbalanced MEGS. Our method can be used for de novo discovery, for pathway-guided searches, or for expanding established small MEGS. We applied our method to the whole-exome sequencing data for 13 cancer types from The Cancer Genome Atlas (TCGA). We identified multiple previously unreported non-pairwise MEGS in multiple cancer types. For acute myeloid leukemia, we identified a MEGS with five genes ( FLT3 , IDH2 , NRAS , KIT , and TP53 ) and a MEGS ( NPM1 , TP53 , and RUNX1 ) whose mutation status was strongly associated with survival (p = 6.7 × 10 −4 ). For breast cancer, we identified a significant MEGS consisting of TP53 and four infrequently mutated genes ( ARID1A , AKT1 , MED23 , and TBL1XR1 ), providing support for their role as cancer drivers.
The central challenges in tumor sequencing studies is to identify driver genes and pathways, investigate their functional relationships, and nominate drug targets. The efficiency of these analyses, particularly for infrequently mutated genes, is compromised when subjects carry different combinations of driver mutations. Mutual exclusivity analysis helps address these challenges. To identify mutually exclusive gene sets (MEGS), we developed a powerful and flexible analytic framework based on a likelihood ratio test and a model selection procedure. Extensive simulations demonstrated that our method outperformed existing methods for both statistical power and the capability of identifying the exact MEGS, particularly for highly imbalanced MEGS. Our method can be used for de novo discovery, for pathway-guided searches, or for expanding established small MEGS. We applied our method to the whole-exome sequencing data for 13 cancer types from The Cancer Genome Atlas (TCGA). We identified multiple previously unreported non-pairwise MEGS in multiple cancer types. For acute myeloid leukemia, we identified a MEGS with five genes (FLT3, IDH2, NRAS, KIT, and TP53) and a MEGS (NPM1, TP53, and RUNX1) whose mutation status was strongly associated with survival (p = 6.7 x 10...). For breast cancer, we identified a significant MEGS consisting of TP53 and four infrequently mutated genes (ARID1A, AKT1, MED23, and TBL1XR1), providing support for their role as cancer drivers. (ProQuest: ... denotes formulae/symbols omitted.)
Author Caporaso, Neil E.
Chatterjee, Nilanjan
Hua, Xing
Hyland, Paula L.
Huang, Jing
Shi, Jianxin
Zhu, Bin
Song, Lei
Landi, Maria Teresa
AuthorAffiliation 1 Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Bethesda, MD 20892, USA
2 Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
AuthorAffiliation_xml – name: 1 Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Bethesda, MD 20892, USA
– name: 2 Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
Author_xml – sequence: 1
  givenname: Xing
  surname: Hua
  fullname: Hua, Xing
  organization: Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Bethesda, MD 20892, USA
– sequence: 2
  givenname: Paula L.
  surname: Hyland
  fullname: Hyland, Paula L.
  organization: Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Bethesda, MD 20892, USA
– sequence: 3
  givenname: Jing
  surname: Huang
  fullname: Huang, Jing
  organization: Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
– sequence: 4
  givenname: Lei
  surname: Song
  fullname: Song, Lei
  organization: Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Bethesda, MD 20892, USA
– sequence: 5
  givenname: Bin
  surname: Zhu
  fullname: Zhu, Bin
  organization: Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Bethesda, MD 20892, USA
– sequence: 6
  givenname: Neil E.
  surname: Caporaso
  fullname: Caporaso, Neil E.
  organization: Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Bethesda, MD 20892, USA
– sequence: 7
  givenname: Maria Teresa
  surname: Landi
  fullname: Landi, Maria Teresa
  organization: Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Bethesda, MD 20892, USA
– sequence: 8
  givenname: Nilanjan
  surname: Chatterjee
  fullname: Chatterjee, Nilanjan
  organization: Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Bethesda, MD 20892, USA
– sequence: 9
  givenname: Jianxin
  surname: Shi
  fullname: Shi, Jianxin
  email: jianxin.shi@nih.gov
  organization: Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Bethesda, MD 20892, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/26899600$$D View this record in MEDLINE/PubMed
BookMark eNqNkl9rFDEUxYNU7Lb6BXyQgC--7Jg_M5NERFjKbhVaFKxvQkgymW3GzKRNZrZdP71ZtxXtQ_EpD_d3DjfnniNwMITBAvASowIjXL_tCtVdrguCcFVgUiCCn4AZriib1zWqDsAMIUTmggh2CI5S6hDCmCP6DBySmgtRIzQD38-Xp18X7-ACfgk3NraTh2po4MrbW6e9hauoensT4g_YhggXg_Lbn25Yw_NpnJSHy1vjp-Q2btzC0MKLqc9UnqnRhSE9B09b5ZN9cfceg2-r5cXJx_nZ59NPJ4uzual4Pc6xabmpsSZNaQVqWIt5pTVWrSWUKs0Y1YSykjWtYbzBWFOFKdFY25ogYQw9Bh_2vleT7m1j7DBG5eVVdL2KWxmUk_9OBncp12EjS54jomU2eHNnEMP1ZNMoe5eM9V4NNkxJYiaQKIXg9X-gDHFWC4oy-voB2oUp5gh_U7SinFORqVd_L_9n6_sbZYDvARNDStG20rh9wPkvzkuM5K4OspO7OshdHSQmMtchS8kD6b37o6L3e5HNJ9s4G2Uyzg7GNi5aM8omuMfkvwAx9M3w
CitedBy_id crossref_primary_10_1016_j_cell_2019_05_005
crossref_primary_10_1093_bib_bbx109
crossref_primary_10_1371_journal_pmed_1002162
crossref_primary_10_1016_j_ajhg_2023_12_009
crossref_primary_10_1158_1055_9965_EPI_17_0984
crossref_primary_10_3389_fgene_2021_746495
crossref_primary_10_1093_bib_bbw037
crossref_primary_10_1093_bioinformatics_btaa957
crossref_primary_10_1016_j_cmpb_2025_108681
crossref_primary_10_1038_s41525_023_00369_6
crossref_primary_10_1155_2019_4860367
crossref_primary_10_1186_s13059_016_1114_x
crossref_primary_10_1038_s10038_020_00870_1
crossref_primary_10_1016_j_jtho_2024_07_024
crossref_primary_10_1186_s13073_022_01029_7
crossref_primary_10_3389_fmed_2025_1460956
crossref_primary_10_1038_s41467_019_10902_w
crossref_primary_10_1016_j_xcrm_2023_101358
crossref_primary_10_1073_pnas_1520213113
crossref_primary_10_1038_s41598_019_42500_7
crossref_primary_10_3389_fcell_2020_00020
crossref_primary_10_1093_biostatistics_kxab004
crossref_primary_10_1109_TCBB_2017_2788016
crossref_primary_10_1016_j_cell_2020_06_012
crossref_primary_10_1016_j_gde_2022_101989
crossref_primary_10_1182_blood_2016_01_693879
crossref_primary_10_1038_s41598_020_58819_5
crossref_primary_10_1016_j_jmoldx_2018_09_009
crossref_primary_10_1016_j_drudis_2019_11_014
crossref_primary_10_1371_journal_pcbi_1008792
crossref_primary_10_1371_journal_pgen_1007746
Cites_doi 10.1155/2012/273947
10.1158/0008-5472.CAN-09-4161
10.1038/nrc3365
10.18632/oncotarget.2092
10.1056/NEJMoa1301689
10.1038/nature11412
10.1016/j.molcel.2005.02.010
10.1371/journal.pcbi.1003503
10.1016/j.cell.2012.04.023
10.1101/gr.120477.111
10.1186/1755-8794-4-34
10.4103/1477-3163.122760
10.3109/10409238.2013.840259
10.1371/journal.pmed.0020017
10.1038/nbt.2203
10.1016/j.cell.2013.01.019
10.1158/0008-5472.CAN-11-1562
10.1038/nature13385
10.1038/onc.2009.509
10.1053/j.seminoncol.2008.04.004
10.1038/onc.2012.328
10.1038/nature12912
10.2307/1912557
10.1101/gad.214023.113
10.1186/s13059-015-0700-7
10.1371/journal.pcbi.1003054
10.1073/pnas.1204311109
10.1074/jbc.M110.105262
10.1101/gad.236869.113
10.1002/1097-4652(200101)186:1<136::AID-JCP1010>3.0.CO;2-4
10.1016/j.cell.2012.06.024
10.1101/gr.125567.111
10.1126/science.1068943
10.1038/nrc2981
10.1007/s11910-013-0345-4
10.1128/MCB.01216-13
10.1038/nature12213
10.1093/bioinformatics/bts564
10.1155/2013/271347
10.3109/10715761003667554
10.1038/nature07423
10.1111/j.2517-6161.1995.tb02031.x
10.1186/gb-2013-14-7-r80
ContentType Journal Article
Copyright 2016 The American Society of Human Genetics
Copyright © 2016 The American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.
Copyright Cell Press Mar 3, 2016
2016 by The American Society of Human Genetics. All rights reserved. 2016 The American Society of Human Genetics
Copyright_xml – notice: 2016 The American Society of Human Genetics
– notice: Copyright © 2016 The American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.
– notice: Copyright Cell Press Mar 3, 2016
– notice: 2016 by The American Society of Human Genetics. All rights reserved. 2016 The American Society of Human Genetics
DBID 6I.
AAFTH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QP
7TK
7TM
7U7
8FD
C1K
FR3
K9.
NAPCQ
P64
RC3
7X8
5PM
DOI 10.1016/j.ajhg.2015.12.021
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Calcium & Calcified Tissue Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Toxicology Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
ProQuest Health & Medical Complete (Alumni)
ProQuest Nursing & Allied Health Premium
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Nursing & Allied Health Premium
Genetics Abstracts
Technology Research Database
Toxicology Abstracts
Nucleic Acids Abstracts
ProQuest Health & Medical Complete (Alumni)
Engineering Research Database
Calcium & Calcified Tissue Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
DatabaseTitleList
Genetics Abstracts
MEDLINE
MEDLINE - Academic

Nursing & Allied Health Premium
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1537-6605
EndPage 455
ExternalDocumentID PMC4800034
3986096111
26899600
10_1016_j_ajhg_2015_12_021
S0002929716000021
Genre Journal Article
Research Support, N.I.H., Intramural
GrantInformation_xml – fundername: Intramural NIH HHS
GroupedDBID ---
--K
--Z
-~X
0R~
123
1~5
23M
2WC
4.4
457
4G.
53G
5GY
62-
6I.
6J9
7-5
85S
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAKRW
AALRI
AAUCE
AAVLU
AAWTL
AAXJY
AAXUO
ABJNI
ABMAC
ABMWF
ABOCM
ABVKL
ACGFO
ACGFS
ACGOD
ACNCT
ACPRK
ADBBV
ADEZE
ADJPV
AENEX
AEXQZ
AFRAH
AFTJW
AGKMS
AHMBA
AITUG
ALKID
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
AOIJS
ASPBG
AVWKF
AZFZN
BAWUL
CS3
D0L
DIK
E3Z
EBS
ECV
EJD
F5P
FCP
FDB
FEDTE
GX1
HVGLF
HYE
IH2
IHE
IXB
JIG
KQ8
L7B
M41
NCXOZ
O-L
O9-
OK1
P2P
PQQKQ
RCE
RIG
RNS
ROL
RPM
RPZ
SES
SJN
SSZ
TN5
TR2
TWZ
UHB
UKR
UNMZH
UPT
VQA
WH7
WQ6
ZA5
ZCA
.55
.GJ
34R
3O-
41~
AAFWJ
AAIKJ
AAMRU
AAQXK
AAYWO
AAYXX
ABDGV
ABWVN
ACKIV
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
ADVLN
ADXHL
AEUPX
AFPUW
AGCDD
AGCQF
AGHFR
AGQPQ
AI.
AIGII
AKAPO
AKBMS
AKRWK
AKYEP
APXCP
C1A
CITATION
FA8
FGOYB
HZ~
MVM
NEJ
OHT
OZT
R2-
VH1
WOQ
X7M
XOL
ZCG
ZGI
ZXP
0SF
CGR
CUY
CVF
ECM
EIF
NPM
Z5M
7QP
7TK
7TM
7U7
8FD
C1K
EFKBS
FR3
K9.
NAPCQ
P64
RC3
7X8
5PM
ID FETCH-LOGICAL-c586t-1cf8c61b2d4e90d7f185bb1afe233ab773b23747dfc78d11b3a132b1be6209cc3
IEDL.DBID IXB
ISSN 0002-9297
1537-6605
IngestDate Thu Aug 21 18:07:04 EDT 2025
Thu Jul 10 19:02:43 EDT 2025
Fri Jul 11 12:24:15 EDT 2025
Fri Jul 25 19:45:01 EDT 2025
Wed Feb 19 01:55:49 EST 2025
Tue Jul 01 03:39:14 EDT 2025
Thu Apr 24 23:05:34 EDT 2025
Fri Feb 23 02:29:30 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords oncogenic pathways
mutual exclusivity
tumor sequencing
driver genes
Language English
License http://www.elsevier.com/open-access/userlicense/1.0
Copyright © 2016 The American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c586t-1cf8c61b2d4e90d7f185bb1afe233ab773b23747dfc78d11b3a132b1be6209cc3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S0002929716000021
PMID 26899600
PQID 1773538839
PQPubID 24320
PageCount 14
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_4800034
proquest_miscellaneous_1790949986
proquest_miscellaneous_1770876930
proquest_journals_1773538839
pubmed_primary_26899600
crossref_citationtrail_10_1016_j_ajhg_2015_12_021
crossref_primary_10_1016_j_ajhg_2015_12_021
elsevier_sciencedirect_doi_10_1016_j_ajhg_2015_12_021
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2016-03-03
PublicationDateYYYYMMDD 2016-03-03
PublicationDate_xml – month: 03
  year: 2016
  text: 2016-03-03
  day: 03
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Chicago
PublicationTitle American journal of human genetics
PublicationTitleAlternate Am J Hum Genet
PublicationYear 2016
Publisher Elsevier Inc
Cell Press
Elsevier
Publisher_xml – name: Elsevier Inc
– name: Cell Press
– name: Elsevier
References Lin, Wu, Chang, Juan, Hsu, Chen, Lu, Tang, Yang, Yang, Wang (bib36) 2010; 70
Lawrence, Stojanov, Mermel, Robinson, Garraway, Golub, Meyerson, Gabriel, Lander, Getz (bib14) 2014; 505
(bib31) 2013; 368
(bib5) 2014; 511
Leiserson, Wu, Vandin, Raphael (bib42) 2015; 16
Yang, Zhao, Xia, Liu, Yan, Ji, Wang (bib26) 2012; 109
Babur, Gonen, Aksoy, Schultz, Giovanni, Sander, Demir (bib11) 2015
Vandin, Upfal, Raphael (bib7) 2012; 22
Nik-Zainal, Van Loo, Wedge, Alexandrov, Greenman, Lau, Raine, Jones, Marshall, Ramakrishna (bib43) 2012; 149
Benjamini, Hochberg (bib13) 1995; 57
Wallace (bib39) 2012; 12
Cairns, Harris, Mak (bib33) 2011; 11
Lawrence, Stojanov, Polak, Kryukov, Cibulskis, Sivachenko, Carter, Stewart, Mermel, Roberts (bib1) 2013; 499
Chimge, Frenkel (bib28) 2013; 32
Vuong (bib47) 1989; 57
van Lith, Navis, Verrijp, Niclou, Bjerkvig, Wesseling, Tops, Molenaar, van Noorden, Leenders (bib37) 2014; 1846
Cohen, Holmen, Colman (bib34) 2013; 13
Soto-Reyes, Recillas-Targa (bib21) 2010; 29
Pao, Wang, Riely, Miller, Pan, Ladanyi, Zakowski, Heelan, Kris, Varmus (bib3) 2005; 2
Poss, Ebmeier, Taatjes (bib27) 2013; 48
Jiang, Du, Yang (bib38) 2013; 12
Decristofaro, Betz, Rorie, Reisman, Wang, Weissman (bib29) 2001; 186
Ding, Getz, Wheeler, Mardis, McLellan, Cibulskis, Sougnez, Greulich, Muzny, Morgan (bib4) 2008; 455
Zhao, Zhang, Wu, Zhang (bib9) 2012; 28
(bib15) 2012; 490
Szczurek, Beerenwinkel (bib8) 2014; 10
Guan, Wang, Shih (bib22) 2011; 71
Oesper, Mahmoody, Raphael (bib45) 2013; 14
Yan, Cao, Arenas, Bentley, Shao (bib17) 2010; 285
Wang, Balamotis, Stevens, Yamaguchi, Handa, Berk (bib24) 2005; 17
Hodis, Watson, Kryukov, Arold, Imielinski, Theurillat, Nickerson, Auclair, Li, Place (bib2) 2012; 150
Adikesavan, Karmakar, Pardo, Wang, Liu, Li, Smith (bib19) 2014; 34
Scholl, Gilliland, Fröhling (bib32) 2008; 35
Son, Cheong, Kim, Chung, Kang, Pae (bib40) 2011; 2011
Peterson, Bögler, Taylor (bib16) 2003; 63
Liou, Storz (bib41) 2010; 44
Ciriello, Cerami, Sander, Schultz (bib6) 2012; 22
Mottis, Mouchiroud, Auwerx (bib18) 2013; 27
Carter, Cibulskis, Helman, McKenna, Shen, Zack, Laird, Onofrio, Winckler, Weir (bib44) 2012; 30
Smolková, Ježek (bib35) 2012; 2012
Miller, Settle, Sulman, Aldape, Milosavljevic (bib12) 2011; 4
Saldaña-Meyer, González-Buendía, Guerrero, Narendra, Bonasio, Recillas-Targa, Reinberg (bib20) 2014; 28
Leiserson, Blokh, Sharan, Raphael (bib10) 2013; 9
Stevens, Cantin, Wang, Shevchenko, Shevchenko, Berk (bib25) 2002; 296
Ozaki, Nakagawara, Nagase (bib30) 2013; 2013
Landau, Carter, Stojanov, McKenna, Stevenson, Lawrence, Sougnez, Stewart, Sivachenko, Wang (bib46) 2013; 152
Samartzis, Gutsche, Dedes, Fink, Stucki, Imesch (bib23) 2014; 5
Cohen (10.1016/j.ajhg.2015.12.021_bib34) 2013; 13
Yang (10.1016/j.ajhg.2015.12.021_bib26) 2012; 109
Leiserson (10.1016/j.ajhg.2015.12.021_bib42) 2015; 16
Cairns (10.1016/j.ajhg.2015.12.021_bib33) 2011; 11
Adikesavan (10.1016/j.ajhg.2015.12.021_bib19) 2014; 34
Decristofaro (10.1016/j.ajhg.2015.12.021_bib29) 2001; 186
Lawrence (10.1016/j.ajhg.2015.12.021_bib1) 2013; 499
Carter (10.1016/j.ajhg.2015.12.021_bib44) 2012; 30
Wang (10.1016/j.ajhg.2015.12.021_bib24) 2005; 17
Szczurek (10.1016/j.ajhg.2015.12.021_bib8) 2014; 10
Ciriello (10.1016/j.ajhg.2015.12.021_bib6) 2012; 22
Stevens (10.1016/j.ajhg.2015.12.021_bib25) 2002; 296
Son (10.1016/j.ajhg.2015.12.021_bib40) 2011; 2011
(10.1016/j.ajhg.2015.12.021_bib31) 2013; 368
Ding (10.1016/j.ajhg.2015.12.021_bib4) 2008; 455
Chimge (10.1016/j.ajhg.2015.12.021_bib28) 2013; 32
Poss (10.1016/j.ajhg.2015.12.021_bib27) 2013; 48
Ozaki (10.1016/j.ajhg.2015.12.021_bib30) 2013; 2013
Vuong (10.1016/j.ajhg.2015.12.021_bib47) 1989; 57
Vandin (10.1016/j.ajhg.2015.12.021_bib7) 2012; 22
Babur (10.1016/j.ajhg.2015.12.021_bib11) 2015
Nik-Zainal (10.1016/j.ajhg.2015.12.021_bib43) 2012; 149
Pao (10.1016/j.ajhg.2015.12.021_bib3) 2005; 2
Leiserson (10.1016/j.ajhg.2015.12.021_bib10) 2013; 9
Benjamini (10.1016/j.ajhg.2015.12.021_bib13) 1995; 57
Hodis (10.1016/j.ajhg.2015.12.021_bib2) 2012; 150
Lin (10.1016/j.ajhg.2015.12.021_bib36) 2010; 70
Wallace (10.1016/j.ajhg.2015.12.021_bib39) 2012; 12
Lawrence (10.1016/j.ajhg.2015.12.021_bib14) 2014; 505
Zhao (10.1016/j.ajhg.2015.12.021_bib9) 2012; 28
Yan (10.1016/j.ajhg.2015.12.021_bib17) 2010; 285
(10.1016/j.ajhg.2015.12.021_bib15) 2012; 490
van Lith (10.1016/j.ajhg.2015.12.021_bib37) 2014; 1846
Oesper (10.1016/j.ajhg.2015.12.021_bib45) 2013; 14
Samartzis (10.1016/j.ajhg.2015.12.021_bib23) 2014; 5
Jiang (10.1016/j.ajhg.2015.12.021_bib38) 2013; 12
(10.1016/j.ajhg.2015.12.021_bib5) 2014; 511
Peterson (10.1016/j.ajhg.2015.12.021_bib16) 2003; 63
Guan (10.1016/j.ajhg.2015.12.021_bib22) 2011; 71
Smolková (10.1016/j.ajhg.2015.12.021_bib35) 2012; 2012
Miller (10.1016/j.ajhg.2015.12.021_bib12) 2011; 4
Scholl (10.1016/j.ajhg.2015.12.021_bib32) 2008; 35
Liou (10.1016/j.ajhg.2015.12.021_bib41) 2010; 44
Saldaña-Meyer (10.1016/j.ajhg.2015.12.021_bib20) 2014; 28
Soto-Reyes (10.1016/j.ajhg.2015.12.021_bib21) 2010; 29
Landau (10.1016/j.ajhg.2015.12.021_bib46) 2013; 152
Mottis (10.1016/j.ajhg.2015.12.021_bib18) 2013; 27
23895164 - Genome Biol. 2013;14(7):R80
20570896 - Cancer Res. 2010 Jul 15;70(14):5807-17
20370557 - Free Radic Res. 2010 May;44(5):479-96
25887147 - Genome Biol. 2015;16:45
22675360 - Int J Cell Biol. 2012;2012:273947
24747768 - Biochim Biophys Acta. 2014 Aug;1846(1):66-74
21908773 - Genome Res. 2012 Feb;22(2):398-406
18692684 - Semin Oncol. 2008 Aug;35(4):336-45
15696205 - PLoS Med. 2005 Jan;2(1):e17
24379735 - J Carcinog. 2013 Nov 06;12:21
22988093 - Proc Natl Acad Sci U S A. 2012 Oct 9;109(41):E2813-22
23717195 - PLoS Comput Biol. 2013;9(5):e1003054
26253137 - Genome Biol. 2015;16:160
23045283 - Oncogene. 2013 Apr 25;32(17):2121-30
14583449 - Cancer Res. 2003 Oct 15;63(20):6579-82
23001348 - Nat Rev Cancer. 2012 Oct;12(10):685-98
18948947 - Nature. 2008 Oct 23;455(7216):1069-75
15749018 - Mol Cell. 2005 Mar 4;17(5):683-94
23415222 - Cell. 2013 Feb 14;152(4):714-26
21258394 - Nat Rev Cancer. 2011 Feb;11(2):85-95
23532369 - Curr Neurol Neurosci Rep. 2013 May;13(5):345
21637379 - J Signal Transduct. 2011;2011:792639
24390350 - Nature. 2014 Jan 23;505(7484):495-501
22544022 - Nat Biotechnol. 2012 May;30(5):413-21
11147808 - J Cell Physiol. 2001 Jan;186(1):136-45
24078903 - Int J Genomics. 2013;2013:271347
20189993 - J Biol Chem. 2010 Apr 30;285(18):14042-51
21653252 - Genome Res. 2012 Feb;22(2):375-85
21489305 - BMC Med Genomics. 2011;4:34
20101205 - Oncogene. 2010 Apr 15;29(15):2217-27
11934987 - Science. 2002 Apr 26;296(5568):755-8
22817889 - Cell. 2012 Jul 20;150(2):251-63
24675718 - PLoS Comput Biol. 2014 Mar;10(3):e1003503
23770567 - Nature. 2013 Jul 11;499(7457):214-8
22608083 - Cell. 2012 May 25;149(5):994-1007
24696455 - Genes Dev. 2014 Apr 1;28(7):723-34
25079552 - Nature. 2014 Jul 31;511(7511):543-50
23630073 - Genes Dev. 2013 Apr 15;27(8):819-35
22982574 - Bioinformatics. 2012 Nov 15;28(22):2940-7
23000897 - Nature. 2012 Oct 4;490(7418):61-70
24088064 - Crit Rev Biochem Mol Biol. 2013 Nov-Dec;48(6):575-608
24449765 - Mol Cell Biol. 2014 Apr;34(7):1246-61
21900401 - Cancer Res. 2011 Nov 1;71(21):6718-27
23634996 - N Engl J Med. 2013 May 30;368(22):2059-74
24979463 - Oncotarget. 2014 Jul 30;5(14):5295-303
References_xml – volume: 455
  start-page: 1069
  year: 2008
  end-page: 1075
  ident: bib4
  article-title: Somatic mutations affect key pathways in lung adenocarcinoma
  publication-title: Nature
– volume: 5
  start-page: 5295
  year: 2014
  end-page: 5303
  ident: bib23
  article-title: Loss of ARID1A expression sensitizes cancer cells to PI3K- and AKT-inhibition
  publication-title: Oncotarget
– volume: 71
  start-page: 6718
  year: 2011
  end-page: 6727
  ident: bib22
  article-title: ARID1A, a factor that promotes formation of SWI/SNF-mediated chromatin remodeling, is a tumor suppressor in gynecologic cancers
  publication-title: Cancer Res.
– volume: 28
  start-page: 723
  year: 2014
  end-page: 734
  ident: bib20
  article-title: CTCF regulates the human p53 gene through direct interaction with its natural antisense transcript, Wrap53
  publication-title: Genes Dev.
– volume: 511
  start-page: 543
  year: 2014
  end-page: 550
  ident: bib5
  article-title: Comprehensive molecular profiling of lung adenocarcinoma
  publication-title: Nature
– volume: 34
  start-page: 1246
  year: 2014
  end-page: 1261
  ident: bib19
  article-title: Activation of p53 transcriptional activity by SMRT: a histone deacetylase 3-independent function of a transcriptional corepressor
  publication-title: Mol. Cell. Biol.
– volume: 2011
  start-page: 792639
  year: 2011
  ident: bib40
  article-title: Mitogen-activated protein kinases and reactive oxygen species: how can ROS activate MAPK pathways?
  publication-title: J. Signal Transduct.
– volume: 12
  start-page: 685
  year: 2012
  end-page: 698
  ident: bib39
  article-title: Mitochondria and cancer
  publication-title: Nat. Rev. Cancer
– volume: 149
  start-page: 994
  year: 2012
  end-page: 1007
  ident: bib43
  article-title: The life history of 21 breast cancers
  publication-title: Cell
– volume: 57
  start-page: 307
  year: 1989
  end-page: 333
  ident: bib47
  article-title: Likelihood ratio tests for model selection and non-nested hypotheses
  publication-title: Econometrica
– volume: 14
  start-page: R80
  year: 2013
  ident: bib45
  article-title: THetA: inferring intra-tumor heterogeneity from high-throughput DNA sequencing data
  publication-title: Genome Biol.
– volume: 505
  start-page: 495
  year: 2014
  end-page: 501
  ident: bib14
  article-title: Discovery and saturation analysis of cancer genes across 21 tumour types
  publication-title: Nature
– volume: 28
  start-page: 2940
  year: 2012
  end-page: 2947
  ident: bib9
  article-title: Efficient methods for identifying mutated driver pathways in cancer
  publication-title: Bioinformatics
– volume: 109
  start-page: E2813
  year: 2012
  end-page: E2822
  ident: bib26
  article-title: Selective requirement for Mediator MED23 in Ras-active lung cancer
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 186
  start-page: 136
  year: 2001
  end-page: 145
  ident: bib29
  article-title: Characterization of SWI/SNF protein expression in human breast cancer cell lines and other malignancies
  publication-title: J. Cell. Physiol.
– volume: 48
  start-page: 575
  year: 2013
  end-page: 608
  ident: bib27
  article-title: The Mediator complex and transcription regulation
  publication-title: Crit. Rev. Biochem. Mol. Biol.
– volume: 11
  start-page: 85
  year: 2011
  end-page: 95
  ident: bib33
  article-title: Regulation of cancer cell metabolism
  publication-title: Nat. Rev. Cancer
– volume: 22
  start-page: 375
  year: 2012
  end-page: 385
  ident: bib7
  article-title: De novo discovery of mutated driver pathways in cancer
  publication-title: Genome Res.
– volume: 499
  start-page: 214
  year: 2013
  end-page: 218
  ident: bib1
  article-title: Mutational heterogeneity in cancer and the search for new cancer-associated genes
  publication-title: Nature
– volume: 30
  start-page: 413
  year: 2012
  end-page: 421
  ident: bib44
  article-title: Absolute quantification of somatic DNA alterations in human cancer
  publication-title: Nat. Biotechnol.
– volume: 490
  start-page: 61
  year: 2012
  end-page: 70
  ident: bib15
  article-title: Comprehensive molecular portraits of human breast tumours
  publication-title: Nature
– volume: 35
  start-page: 336
  year: 2008
  end-page: 345
  ident: bib32
  article-title: Deregulation of signaling pathways in acute myeloid leukemia
  publication-title: Semin. Oncol.
– volume: 150
  start-page: 251
  year: 2012
  end-page: 263
  ident: bib2
  article-title: A landscape of driver mutations in melanoma
  publication-title: Cell
– volume: 2
  start-page: e17
  year: 2005
  ident: bib3
  article-title: KRAS mutations and primary resistance of lung adenocarcinomas to gefitinib or erlotinib
  publication-title: PLoS Med.
– volume: 32
  start-page: 2121
  year: 2013
  end-page: 2130
  ident: bib28
  article-title: The RUNX family in breast cancer: relationships with estrogen signaling
  publication-title: Oncogene
– volume: 2012
  start-page: 273947
  year: 2012
  ident: bib35
  article-title: The role of mitochondrial NADPH-dependent isocitrate dehydrogenase in cancer cells
  publication-title: Int. J. Cell Biol.
– volume: 70
  start-page: 5807
  year: 2010
  end-page: 5817
  ident: bib36
  article-title: Dysregulation of p53/Sp1 control leads to DNA methyltransferase-1 overexpression in lung cancer
  publication-title: Cancer Res.
– year: 2015
  ident: bib11
  article-title: Systematic identification of cancer driving signaling pathways based on mutual exclusivity of genomic alterations
– volume: 29
  start-page: 2217
  year: 2010
  end-page: 2227
  ident: bib21
  article-title: Epigenetic regulation of the human p53 gene promoter by the CTCF transcription factor in transformed cell lines
  publication-title: Oncogene
– volume: 13
  start-page: 345
  year: 2013
  ident: bib34
  article-title: IDH1 and IDH2 mutations in gliomas
  publication-title: Curr. Neurol. Neurosci. Rep.
– volume: 12
  start-page: 21
  year: 2013
  ident: bib38
  article-title: p53 and regulation of tumor metabolism
  publication-title: J. Carcinog.
– volume: 57
  start-page: 289
  year: 1995
  end-page: 300
  ident: bib13
  article-title: Controlling the false discovery rate: a practical and powerful approach to multiple testing
  publication-title: J. R. Stat. Soc., B
– volume: 9
  start-page: e1003054
  year: 2013
  ident: bib10
  article-title: Simultaneous identification of multiple driver pathways in cancer
  publication-title: PLoS Comput. Biol.
– volume: 296
  start-page: 755
  year: 2002
  end-page: 758
  ident: bib25
  article-title: Transcription control by E1A and MAP kinase pathway via Sur2 mediator subunit
  publication-title: Science
– volume: 16
  start-page: 160
  year: 2015
  ident: bib42
  article-title: CoMEt: a statistical approach to identify combinations of mutually exclusive alterations in cancer
  publication-title: Genome Biol.
– volume: 1846
  start-page: 66
  year: 2014
  end-page: 74
  ident: bib37
  article-title: Glutamate as chemotactic fuel for diffuse glioma cells: are they glutamate suckers?
  publication-title: Biochim. Biophys. Acta
– volume: 63
  start-page: 6579
  year: 2003
  end-page: 6582
  ident: bib16
  article-title: p53-mediated repression of DNA methyltransferase 1 expression by specific DNA binding
  publication-title: Cancer Res.
– volume: 152
  start-page: 714
  year: 2013
  end-page: 726
  ident: bib46
  article-title: Evolution and impact of subclonal mutations in chronic lymphocytic leukemia
  publication-title: Cell
– volume: 44
  start-page: 479
  year: 2010
  end-page: 496
  ident: bib41
  article-title: Reactive oxygen species in cancer
  publication-title: Free Radic. Res.
– volume: 27
  start-page: 819
  year: 2013
  end-page: 835
  ident: bib18
  article-title: Emerging roles of the corepressors NCoR1 and SMRT in homeostasis
  publication-title: Genes Dev.
– volume: 17
  start-page: 683
  year: 2005
  end-page: 694
  ident: bib24
  article-title: Mediator requirement for both recruitment and postrecruitment steps in transcription initiation
  publication-title: Mol. Cell
– volume: 285
  start-page: 14042
  year: 2010
  end-page: 14051
  ident: bib17
  article-title: GATA3 inhibits breast cancer metastasis through the reversal of epithelial-mesenchymal transition
  publication-title: J. Biol. Chem.
– volume: 4
  start-page: 34
  year: 2011
  ident: bib12
  article-title: Discovering functional modules by identifying recurrent and mutually exclusive mutational patterns in tumors
  publication-title: BMC Med. Genomics
– volume: 22
  start-page: 398
  year: 2012
  end-page: 406
  ident: bib6
  article-title: Mutual exclusivity analysis identifies oncogenic network modules
  publication-title: Genome Res.
– volume: 2013
  start-page: 271347
  year: 2013
  ident: bib30
  article-title: RUNX family participates in the regulation of p53-dependent DNA damage response
  publication-title: Int. J. Genomics
– volume: 10
  start-page: e1003503
  year: 2014
  ident: bib8
  article-title: Modeling mutual exclusivity of cancer mutations
  publication-title: PLoS Comput. Biol.
– volume: 368
  start-page: 2059
  year: 2013
  end-page: 2074
  ident: bib31
  article-title: Genomic and epigenomic landscapes of adult de novo acute myeloid leukemia
  publication-title: N. Engl. J. Med.
– volume: 2012
  start-page: 273947
  year: 2012
  ident: 10.1016/j.ajhg.2015.12.021_bib35
  article-title: The role of mitochondrial NADPH-dependent isocitrate dehydrogenase in cancer cells
  publication-title: Int. J. Cell Biol.
  doi: 10.1155/2012/273947
– volume: 70
  start-page: 5807
  year: 2010
  ident: 10.1016/j.ajhg.2015.12.021_bib36
  article-title: Dysregulation of p53/Sp1 control leads to DNA methyltransferase-1 overexpression in lung cancer
  publication-title: Cancer Res.
  doi: 10.1158/0008-5472.CAN-09-4161
– volume: 12
  start-page: 685
  year: 2012
  ident: 10.1016/j.ajhg.2015.12.021_bib39
  article-title: Mitochondria and cancer
  publication-title: Nat. Rev. Cancer
  doi: 10.1038/nrc3365
– volume: 5
  start-page: 5295
  year: 2014
  ident: 10.1016/j.ajhg.2015.12.021_bib23
  article-title: Loss of ARID1A expression sensitizes cancer cells to PI3K- and AKT-inhibition
  publication-title: Oncotarget
  doi: 10.18632/oncotarget.2092
– volume: 368
  start-page: 2059
  year: 2013
  ident: 10.1016/j.ajhg.2015.12.021_bib31
  article-title: Genomic and epigenomic landscapes of adult de novo acute myeloid leukemia
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMoa1301689
– volume: 490
  start-page: 61
  year: 2012
  ident: 10.1016/j.ajhg.2015.12.021_bib15
  article-title: Comprehensive molecular portraits of human breast tumours
  publication-title: Nature
  doi: 10.1038/nature11412
– volume: 17
  start-page: 683
  year: 2005
  ident: 10.1016/j.ajhg.2015.12.021_bib24
  article-title: Mediator requirement for both recruitment and postrecruitment steps in transcription initiation
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2005.02.010
– volume: 1846
  start-page: 66
  year: 2014
  ident: 10.1016/j.ajhg.2015.12.021_bib37
  article-title: Glutamate as chemotactic fuel for diffuse glioma cells: are they glutamate suckers?
  publication-title: Biochim. Biophys. Acta
– volume: 10
  start-page: e1003503
  year: 2014
  ident: 10.1016/j.ajhg.2015.12.021_bib8
  article-title: Modeling mutual exclusivity of cancer mutations
  publication-title: PLoS Comput. Biol.
  doi: 10.1371/journal.pcbi.1003503
– volume: 149
  start-page: 994
  year: 2012
  ident: 10.1016/j.ajhg.2015.12.021_bib43
  article-title: The life history of 21 breast cancers
  publication-title: Cell
  doi: 10.1016/j.cell.2012.04.023
– volume: 22
  start-page: 375
  year: 2012
  ident: 10.1016/j.ajhg.2015.12.021_bib7
  article-title: De novo discovery of mutated driver pathways in cancer
  publication-title: Genome Res.
  doi: 10.1101/gr.120477.111
– volume: 4
  start-page: 34
  year: 2011
  ident: 10.1016/j.ajhg.2015.12.021_bib12
  article-title: Discovering functional modules by identifying recurrent and mutually exclusive mutational patterns in tumors
  publication-title: BMC Med. Genomics
  doi: 10.1186/1755-8794-4-34
– volume: 12
  start-page: 21
  year: 2013
  ident: 10.1016/j.ajhg.2015.12.021_bib38
  article-title: p53 and regulation of tumor metabolism
  publication-title: J. Carcinog.
  doi: 10.4103/1477-3163.122760
– volume: 48
  start-page: 575
  year: 2013
  ident: 10.1016/j.ajhg.2015.12.021_bib27
  article-title: The Mediator complex and transcription regulation
  publication-title: Crit. Rev. Biochem. Mol. Biol.
  doi: 10.3109/10409238.2013.840259
– volume: 2
  start-page: e17
  year: 2005
  ident: 10.1016/j.ajhg.2015.12.021_bib3
  article-title: KRAS mutations and primary resistance of lung adenocarcinomas to gefitinib or erlotinib
  publication-title: PLoS Med.
  doi: 10.1371/journal.pmed.0020017
– volume: 30
  start-page: 413
  year: 2012
  ident: 10.1016/j.ajhg.2015.12.021_bib44
  article-title: Absolute quantification of somatic DNA alterations in human cancer
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.2203
– volume: 2011
  start-page: 792639
  year: 2011
  ident: 10.1016/j.ajhg.2015.12.021_bib40
  article-title: Mitogen-activated protein kinases and reactive oxygen species: how can ROS activate MAPK pathways?
  publication-title: J. Signal Transduct.
– volume: 152
  start-page: 714
  year: 2013
  ident: 10.1016/j.ajhg.2015.12.021_bib46
  article-title: Evolution and impact of subclonal mutations in chronic lymphocytic leukemia
  publication-title: Cell
  doi: 10.1016/j.cell.2013.01.019
– volume: 71
  start-page: 6718
  year: 2011
  ident: 10.1016/j.ajhg.2015.12.021_bib22
  article-title: ARID1A, a factor that promotes formation of SWI/SNF-mediated chromatin remodeling, is a tumor suppressor in gynecologic cancers
  publication-title: Cancer Res.
  doi: 10.1158/0008-5472.CAN-11-1562
– volume: 511
  start-page: 543
  year: 2014
  ident: 10.1016/j.ajhg.2015.12.021_bib5
  article-title: Comprehensive molecular profiling of lung adenocarcinoma
  publication-title: Nature
  doi: 10.1038/nature13385
– volume: 29
  start-page: 2217
  year: 2010
  ident: 10.1016/j.ajhg.2015.12.021_bib21
  article-title: Epigenetic regulation of the human p53 gene promoter by the CTCF transcription factor in transformed cell lines
  publication-title: Oncogene
  doi: 10.1038/onc.2009.509
– volume: 35
  start-page: 336
  year: 2008
  ident: 10.1016/j.ajhg.2015.12.021_bib32
  article-title: Deregulation of signaling pathways in acute myeloid leukemia
  publication-title: Semin. Oncol.
  doi: 10.1053/j.seminoncol.2008.04.004
– volume: 32
  start-page: 2121
  year: 2013
  ident: 10.1016/j.ajhg.2015.12.021_bib28
  article-title: The RUNX family in breast cancer: relationships with estrogen signaling
  publication-title: Oncogene
  doi: 10.1038/onc.2012.328
– volume: 505
  start-page: 495
  year: 2014
  ident: 10.1016/j.ajhg.2015.12.021_bib14
  article-title: Discovery and saturation analysis of cancer genes across 21 tumour types
  publication-title: Nature
  doi: 10.1038/nature12912
– volume: 57
  start-page: 307
  year: 1989
  ident: 10.1016/j.ajhg.2015.12.021_bib47
  article-title: Likelihood ratio tests for model selection and non-nested hypotheses
  publication-title: Econometrica
  doi: 10.2307/1912557
– volume: 27
  start-page: 819
  year: 2013
  ident: 10.1016/j.ajhg.2015.12.021_bib18
  article-title: Emerging roles of the corepressors NCoR1 and SMRT in homeostasis
  publication-title: Genes Dev.
  doi: 10.1101/gad.214023.113
– volume: 16
  start-page: 160
  year: 2015
  ident: 10.1016/j.ajhg.2015.12.021_bib42
  article-title: CoMEt: a statistical approach to identify combinations of mutually exclusive alterations in cancer
  publication-title: Genome Biol.
  doi: 10.1186/s13059-015-0700-7
– volume: 9
  start-page: e1003054
  year: 2013
  ident: 10.1016/j.ajhg.2015.12.021_bib10
  article-title: Simultaneous identification of multiple driver pathways in cancer
  publication-title: PLoS Comput. Biol.
  doi: 10.1371/journal.pcbi.1003054
– volume: 63
  start-page: 6579
  year: 2003
  ident: 10.1016/j.ajhg.2015.12.021_bib16
  article-title: p53-mediated repression of DNA methyltransferase 1 expression by specific DNA binding
  publication-title: Cancer Res.
– volume: 109
  start-page: E2813
  year: 2012
  ident: 10.1016/j.ajhg.2015.12.021_bib26
  article-title: Selective requirement for Mediator MED23 in Ras-active lung cancer
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1204311109
– volume: 285
  start-page: 14042
  year: 2010
  ident: 10.1016/j.ajhg.2015.12.021_bib17
  article-title: GATA3 inhibits breast cancer metastasis through the reversal of epithelial-mesenchymal transition
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M110.105262
– volume: 28
  start-page: 723
  year: 2014
  ident: 10.1016/j.ajhg.2015.12.021_bib20
  article-title: CTCF regulates the human p53 gene through direct interaction with its natural antisense transcript, Wrap53
  publication-title: Genes Dev.
  doi: 10.1101/gad.236869.113
– volume: 186
  start-page: 136
  year: 2001
  ident: 10.1016/j.ajhg.2015.12.021_bib29
  article-title: Characterization of SWI/SNF protein expression in human breast cancer cell lines and other malignancies
  publication-title: J. Cell. Physiol.
  doi: 10.1002/1097-4652(200101)186:1<136::AID-JCP1010>3.0.CO;2-4
– volume: 150
  start-page: 251
  year: 2012
  ident: 10.1016/j.ajhg.2015.12.021_bib2
  article-title: A landscape of driver mutations in melanoma
  publication-title: Cell
  doi: 10.1016/j.cell.2012.06.024
– volume: 22
  start-page: 398
  year: 2012
  ident: 10.1016/j.ajhg.2015.12.021_bib6
  article-title: Mutual exclusivity analysis identifies oncogenic network modules
  publication-title: Genome Res.
  doi: 10.1101/gr.125567.111
– volume: 296
  start-page: 755
  year: 2002
  ident: 10.1016/j.ajhg.2015.12.021_bib25
  article-title: Transcription control by E1A and MAP kinase pathway via Sur2 mediator subunit
  publication-title: Science
  doi: 10.1126/science.1068943
– volume: 11
  start-page: 85
  year: 2011
  ident: 10.1016/j.ajhg.2015.12.021_bib33
  article-title: Regulation of cancer cell metabolism
  publication-title: Nat. Rev. Cancer
  doi: 10.1038/nrc2981
– volume: 13
  start-page: 345
  year: 2013
  ident: 10.1016/j.ajhg.2015.12.021_bib34
  article-title: IDH1 and IDH2 mutations in gliomas
  publication-title: Curr. Neurol. Neurosci. Rep.
  doi: 10.1007/s11910-013-0345-4
– year: 2015
  ident: 10.1016/j.ajhg.2015.12.021_bib11
– volume: 34
  start-page: 1246
  year: 2014
  ident: 10.1016/j.ajhg.2015.12.021_bib19
  article-title: Activation of p53 transcriptional activity by SMRT: a histone deacetylase 3-independent function of a transcriptional corepressor
  publication-title: Mol. Cell. Biol.
  doi: 10.1128/MCB.01216-13
– volume: 499
  start-page: 214
  year: 2013
  ident: 10.1016/j.ajhg.2015.12.021_bib1
  article-title: Mutational heterogeneity in cancer and the search for new cancer-associated genes
  publication-title: Nature
  doi: 10.1038/nature12213
– volume: 28
  start-page: 2940
  year: 2012
  ident: 10.1016/j.ajhg.2015.12.021_bib9
  article-title: Efficient methods for identifying mutated driver pathways in cancer
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bts564
– volume: 2013
  start-page: 271347
  year: 2013
  ident: 10.1016/j.ajhg.2015.12.021_bib30
  article-title: RUNX family participates in the regulation of p53-dependent DNA damage response
  publication-title: Int. J. Genomics
  doi: 10.1155/2013/271347
– volume: 44
  start-page: 479
  year: 2010
  ident: 10.1016/j.ajhg.2015.12.021_bib41
  article-title: Reactive oxygen species in cancer
  publication-title: Free Radic. Res.
  doi: 10.3109/10715761003667554
– volume: 455
  start-page: 1069
  year: 2008
  ident: 10.1016/j.ajhg.2015.12.021_bib4
  article-title: Somatic mutations affect key pathways in lung adenocarcinoma
  publication-title: Nature
  doi: 10.1038/nature07423
– volume: 57
  start-page: 289
  year: 1995
  ident: 10.1016/j.ajhg.2015.12.021_bib13
  article-title: Controlling the false discovery rate: a practical and powerful approach to multiple testing
  publication-title: J. R. Stat. Soc., B
  doi: 10.1111/j.2517-6161.1995.tb02031.x
– volume: 14
  start-page: R80
  year: 2013
  ident: 10.1016/j.ajhg.2015.12.021_bib45
  article-title: THetA: inferring intra-tumor heterogeneity from high-throughput DNA sequencing data
  publication-title: Genome Biol.
  doi: 10.1186/gb-2013-14-7-r80
– reference: 20189993 - J Biol Chem. 2010 Apr 30;285(18):14042-51
– reference: 24390350 - Nature. 2014 Jan 23;505(7484):495-501
– reference: 20370557 - Free Radic Res. 2010 May;44(5):479-96
– reference: 21489305 - BMC Med Genomics. 2011;4:34
– reference: 15749018 - Mol Cell. 2005 Mar 4;17(5):683-94
– reference: 22608083 - Cell. 2012 May 25;149(5):994-1007
– reference: 23001348 - Nat Rev Cancer. 2012 Oct;12(10):685-98
– reference: 20570896 - Cancer Res. 2010 Jul 15;70(14):5807-17
– reference: 18948947 - Nature. 2008 Oct 23;455(7216):1069-75
– reference: 23717195 - PLoS Comput Biol. 2013;9(5):e1003054
– reference: 18692684 - Semin Oncol. 2008 Aug;35(4):336-45
– reference: 22675360 - Int J Cell Biol. 2012;2012:273947
– reference: 23630073 - Genes Dev. 2013 Apr 15;27(8):819-35
– reference: 15696205 - PLoS Med. 2005 Jan;2(1):e17
– reference: 23000897 - Nature. 2012 Oct 4;490(7418):61-70
– reference: 24078903 - Int J Genomics. 2013;2013:271347
– reference: 21900401 - Cancer Res. 2011 Nov 1;71(21):6718-27
– reference: 25079552 - Nature. 2014 Jul 31;511(7511):543-50
– reference: 11934987 - Science. 2002 Apr 26;296(5568):755-8
– reference: 25887147 - Genome Biol. 2015;16:45
– reference: 21258394 - Nat Rev Cancer. 2011 Feb;11(2):85-95
– reference: 22982574 - Bioinformatics. 2012 Nov 15;28(22):2940-7
– reference: 22988093 - Proc Natl Acad Sci U S A. 2012 Oct 9;109(41):E2813-22
– reference: 23415222 - Cell. 2013 Feb 14;152(4):714-26
– reference: 26253137 - Genome Biol. 2015;16:160
– reference: 24696455 - Genes Dev. 2014 Apr 1;28(7):723-34
– reference: 23770567 - Nature. 2013 Jul 11;499(7457):214-8
– reference: 24747768 - Biochim Biophys Acta. 2014 Aug;1846(1):66-74
– reference: 21637379 - J Signal Transduct. 2011;2011:792639
– reference: 24449765 - Mol Cell Biol. 2014 Apr;34(7):1246-61
– reference: 24675718 - PLoS Comput Biol. 2014 Mar;10(3):e1003503
– reference: 14583449 - Cancer Res. 2003 Oct 15;63(20):6579-82
– reference: 11147808 - J Cell Physiol. 2001 Jan;186(1):136-45
– reference: 23532369 - Curr Neurol Neurosci Rep. 2013 May;13(5):345
– reference: 23045283 - Oncogene. 2013 Apr 25;32(17):2121-30
– reference: 22544022 - Nat Biotechnol. 2012 May;30(5):413-21
– reference: 24979463 - Oncotarget. 2014 Jul 30;5(14):5295-303
– reference: 24379735 - J Carcinog. 2013 Nov 06;12:21
– reference: 21908773 - Genome Res. 2012 Feb;22(2):398-406
– reference: 22817889 - Cell. 2012 Jul 20;150(2):251-63
– reference: 21653252 - Genome Res. 2012 Feb;22(2):375-85
– reference: 24088064 - Crit Rev Biochem Mol Biol. 2013 Nov-Dec;48(6):575-608
– reference: 23895164 - Genome Biol. 2013;14(7):R80
– reference: 20101205 - Oncogene. 2010 Apr 15;29(15):2217-27
– reference: 23634996 - N Engl J Med. 2013 May 30;368(22):2059-74
SSID ssj0011803
Score 2.3578403
Snippet The central challenges in tumor sequencing studies is to identify driver genes and pathways, investigate their functional relationships, and nominate drug...
SourceID pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 442
SubjectTerms Breast cancer
Breast Neoplasms - genetics
Cell Line, Tumor
Computational Biology - methods
Core Binding Factor Alpha 2 Subunit - genetics
driver genes
Female
fms-Like Tyrosine Kinase 3 - genetics
Genes
Genome-Wide Association Study
Genomes
GTP Phosphohydrolases - genetics
Humans
Isocitrate Dehydrogenase - genetics
Leukemia, Myeloid, Acute - diagnosis
Leukemia, Myeloid, Acute - genetics
Mediator Complex - genetics
Membrane Proteins - genetics
Models, Molecular
Mutation
mutual exclusivity
Nuclear Proteins - genetics
oncogenic pathways
Proto-Oncogene Proteins c-akt - genetics
Proto-Oncogene Proteins c-kit - genetics
Receptors, Cytoplasmic and Nuclear - genetics
Repressor Proteins - genetics
Sequence Analysis, DNA
Simulation
Transcription Factors - genetics
tumor sequencing
Tumor Suppressor Protein p53 - genetics
Title MEGSA: A Powerful and Flexible Framework for Analyzing Mutual Exclusivity of Tumor Mutations
URI https://dx.doi.org/10.1016/j.ajhg.2015.12.021
https://www.ncbi.nlm.nih.gov/pubmed/26899600
https://www.proquest.com/docview/1773538839
https://www.proquest.com/docview/1770876930
https://www.proquest.com/docview/1790949986
https://pubmed.ncbi.nlm.nih.gov/PMC4800034
Volume 98
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9swEBddYbCXse9l7YoGexumPsmWlb1lJWkZZAzWQh4GQpLlNSV1yhrDur9-d_IHy8bysDfbOhnrLN2HdPc7xt7maZV7VCQJOl4yyZTFqwB5EoL2wqPKzTzlDs8_qbOL7OMiX-yxkz4XhsIqO9nfyvQorbsnxx03j2-WS8rxTQUqdzT4SejGZHKZ6ZjEt_gwnCSATmVvAhN1lzjTxnjZq8tvFN6Vxy1BAf9STn8bn3_GUP6mlGaP2MPOmuST9oMfs71QP2H32_qSd0_Z1_n09MvkPZ_wz1QMrWpW3NYlnxEIplsFPusjsziarjzik_xEVcbnDWWV8OkPv2puY3UJvq74eXONVNjWbvI9Yxez6fnJWdKVU0h8rtUmAV9pr8CJMgvjtCwqVNXOga2CkNK6opBOSPQuysoXugRw0qKr6sAFJdKx9_I526_XdXjJOL7J6ZBCsIT3lylns9IDWAXao8sjRwx6PhrfYY1TyYuV6YPKrgzx3hDvDQiDvB-xd0OfmxZpYyd13v8eszVfDKqCnf0O-39putV6awDHjoIfbcURezM04zqjwxNbh3UTaQi9byzTXTTjlMB-tBqxF-30GIYilCYgHOxdbE2cgYBwvrdb6uVlxPvOdIQRevWfQz5gD_BOxcA5ecj2N9-b8BotqY07YvdOF3AUF8wvFxocfQ
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELemoQleJtiAFQYYaW8oWmwnjstbmdp1sE5IdFIfkCzbcbZOJZ1YIwF_PXfOhygTfeAtis9RfLbvw777HSFHaVykDhRJBI6XiBJp4MmzNPJeOe5A5SYOc4cnF3J8mXycpbMtctLmwmBYZSP7a5kepHXz5rjh5vHtfI45vjEH5Q4GPwpdTCZ_ANZAhvUbzmYfuqsEpmLR2sBI3mTO1EFe5ub6CuO70nAmyNm_tNN96_PvIMo_tNLoMdltzEk6qP_4Cdny5R7ZqQtM_twnXyfD0y-D93RAP2M1tKJaUFPmdIQomHbh6agNzaJgu9IAUPILdBmdVJhWQoc_3KK6C-Ul6LKg0-obUEFbfcr3lFyOhtOTcdTUU4hcquQqYq5QTjLL88T34zwrQFdby0zhuRDGZpmwXIB7kRcuUzljVhjwVS2zXvK475x4RrbLZekPCIUvWeVj5g0C_iXSmiR3jBnJlAOfR_QIa_moXQM2jjUvFrqNKrvRyHuNvNeMa-B9j7zr-tzWUBsbqdN2evTagtGgCzb2O2znUjfb9U4zGDtIfjAWe-Rt1wwbDW9PTOmXVaBB-L6-iDfR9GNE-1GyR57Xy6MbCpcKkXCgd7a2cDoCBPpebynn1wHwO1EBR-jFfw75DXk4nk7O9fnZxaeX5BG0yBBFJw7J9up75V-BWbWyr8O2-Q2qXR6r
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=MEGSA%3A+A+Powerful+and+Flexible+Framework+for+Analyzing+Mutual+Exclusivity+of+Tumor+Mutations&rft.jtitle=American+journal+of+human+genetics&rft.au=Hua%2C+Xing&rft.au=Hyland%2C+Paula%C2%A0L.&rft.au=Huang%2C+Jing&rft.au=Song%2C+Lei&rft.date=2016-03-03&rft.pub=Elsevier&rft.issn=0002-9297&rft.eissn=1537-6605&rft.volume=98&rft.issue=3&rft.spage=442&rft.epage=455&rft_id=info:doi/10.1016%2Fj.ajhg.2015.12.021&rft_id=info%3Apmid%2F26899600&rft.externalDocID=PMC4800034
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0002-9297&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0002-9297&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0002-9297&client=summon