MEGSA: A Powerful and Flexible Framework for Analyzing Mutual Exclusivity of Tumor Mutations
The central challenges in tumor sequencing studies is to identify driver genes and pathways, investigate their functional relationships, and nominate drug targets. The efficiency of these analyses, particularly for infrequently mutated genes, is compromised when subjects carry different combinations...
Saved in:
Published in | American journal of human genetics Vol. 98; no. 3; pp. 442 - 455 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
03.03.2016
Cell Press Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The central challenges in tumor sequencing studies is to identify driver genes and pathways, investigate their functional relationships, and nominate drug targets. The efficiency of these analyses, particularly for infrequently mutated genes, is compromised when subjects carry different combinations of driver mutations. Mutual exclusivity analysis helps address these challenges. To identify mutually exclusive gene sets (MEGS), we developed a powerful and flexible analytic framework based on a likelihood ratio test and a model selection procedure. Extensive simulations demonstrated that our method outperformed existing methods for both statistical power and the capability of identifying the exact MEGS, particularly for highly imbalanced MEGS. Our method can be used for de novo discovery, for pathway-guided searches, or for expanding established small MEGS. We applied our method to the whole-exome sequencing data for 13 cancer types from The Cancer Genome Atlas (TCGA). We identified multiple previously unreported non-pairwise MEGS in multiple cancer types. For acute myeloid leukemia, we identified a MEGS with five genes (FLT3, IDH2, NRAS, KIT, and TP53) and a MEGS (NPM1, TP53, and RUNX1) whose mutation status was strongly associated with survival (p = 6.7 × 10−4). For breast cancer, we identified a significant MEGS consisting of TP53 and four infrequently mutated genes (ARID1A, AKT1, MED23, and TBL1XR1), providing support for their role as cancer drivers. |
---|---|
AbstractList | The central challenges in tumor sequencing studies is to identify driver genes and pathways, investigate their functional relationships, and nominate drug targets. The efficiency of these analyses, particularly for infrequently mutated genes, is compromised when subjects carry different combinations of driver mutations. Mutual exclusivity analysis helps address these challenges. To identify mutually exclusive gene sets (MEGS), we developed a powerful and flexible analytic framework based on a likelihood ratio test and a model selection procedure. Extensive simulations demonstrated that our method outperformed existing methods for both statistical power and the capability of identifying the exact MEGS, particularly for highly imbalanced MEGS. Our method can be used for de novo discovery, for pathway-guided searches, or for expanding established small MEGS. We applied our method to the whole-exome sequencing data for 13 cancer types from The Cancer Genome Atlas (TCGA). We identified multiple previously unreported non-pairwise MEGS in multiple cancer types. For acute myeloid leukemia, we identified a MEGS with five genes (FLT3, IDH2, NRAS, KIT, and TP53) and a MEGS (NPM1, TP53, and RUNX1) whose mutation status was strongly associated with survival (p = 6.7 × 10−4). For breast cancer, we identified a significant MEGS consisting of TP53 and four infrequently mutated genes (ARID1A, AKT1, MED23, and TBL1XR1), providing support for their role as cancer drivers. The central challenges in tumor sequencing studies is to identify driver genes and pathways, investigate their functional relationships, and nominate drug targets. The efficiency of these analyses, particularly for infrequently mutated genes, is compromised when subjects carry different combinations of driver mutations. Mutual exclusivity analysis helps address these challenges. To identify mutually exclusive gene sets (MEGS), we developed a powerful and flexible analytic framework based on a likelihood ratio test and a model selection procedure. Extensive simulations demonstrated that our method outperformed existing methods for both statistical power and the capability of identifying the exact MEGS, particularly for highly imbalanced MEGS. Our method can be used for de novo discovery, for pathway-guided searches, or for expanding established small MEGS. We applied our method to the whole-exome sequencing data for 13 cancer types from The Cancer Genome Atlas (TCGA). We identified multiple previously unreported non-pairwise MEGS in multiple cancer types. For acute myeloid leukemia, we identified a MEGS with five genes (FLT3, IDH2, NRAS, KIT, and TP53) and a MEGS (NPM1, TP53, and RUNX1) whose mutation status was strongly associated with survival (p = 6.7 10 super(-4)). For breast cancer, we identified a significant MEGS consisting of TP53 and four infrequently mutated genes (ARID1A, AKT1, MED23, and TBL1XR1), providing support for their role as cancer drivers. The central challenges in tumor sequencing studies is to identify driver genes and pathways, investigate their functional relationships, and nominate drug targets. The efficiency of these analyses, particularly for infrequently mutated genes, is compromised when subjects carry different combinations of driver mutations. Mutual exclusivity analysis helps address these challenges. To identify mutually exclusive gene sets (MEGS), we developed a powerful and flexible analytic framework based on a likelihood ratio test and a model selection procedure. Extensive simulations demonstrated that our method outperformed existing methods for both statistical power and the capability of identifying the exact MEGS, particularly for highly imbalanced MEGS. Our method can be used for de novo discovery, for pathway-guided searches, or for expanding established small MEGS. We applied our method to the whole-exome sequencing data for 13 cancer types from The Cancer Genome Atlas (TCGA). We identified multiple previously unreported non-pairwise MEGS in multiple cancer types. For acute myeloid leukemia, we identified a MEGS with five genes (FLT3, IDH2, NRAS, KIT, and TP53) and a MEGS (NPM1, TP53, and RUNX1) whose mutation status was strongly associated with survival (p = 6.7 × 10(-4)). For breast cancer, we identified a significant MEGS consisting of TP53 and four infrequently mutated genes (ARID1A, AKT1, MED23, and TBL1XR1), providing support for their role as cancer drivers. The central challenges in tumor sequencing studies is to identify driver genes and pathways, investigate their functional relationships, and nominate drug targets. The efficiency of these analyses, particularly for infrequently mutated genes, is compromised when subjects carry different combinations of driver mutations. Mutual exclusivity analysis helps address these challenges. To identify mutually exclusive gene sets (MEGS), we developed a powerful and flexible analytic framework based on a likelihood ratio test and a model selection procedure. Extensive simulations demonstrated that our method outperformed existing methods for both statistical power and the capability of identifying the exact MEGS, particularly for highly imbalanced MEGS. Our method can be used for de novo discovery, for pathway-guided searches, or for expanding established small MEGS. We applied our method to the whole-exome sequencing data for 13 cancer types from The Cancer Genome Atlas (TCGA). We identified multiple previously unreported non-pairwise MEGS in multiple cancer types. For acute myeloid leukemia, we identified a MEGS with five genes (FLT3, IDH2, NRAS, KIT, and TP53) and a MEGS (NPM1, TP53, and RUNX1) whose mutation status was strongly associated with survival (p = 6.7 × 10(-4)). For breast cancer, we identified a significant MEGS consisting of TP53 and four infrequently mutated genes (ARID1A, AKT1, MED23, and TBL1XR1), providing support for their role as cancer drivers.The central challenges in tumor sequencing studies is to identify driver genes and pathways, investigate their functional relationships, and nominate drug targets. The efficiency of these analyses, particularly for infrequently mutated genes, is compromised when subjects carry different combinations of driver mutations. Mutual exclusivity analysis helps address these challenges. To identify mutually exclusive gene sets (MEGS), we developed a powerful and flexible analytic framework based on a likelihood ratio test and a model selection procedure. Extensive simulations demonstrated that our method outperformed existing methods for both statistical power and the capability of identifying the exact MEGS, particularly for highly imbalanced MEGS. Our method can be used for de novo discovery, for pathway-guided searches, or for expanding established small MEGS. We applied our method to the whole-exome sequencing data for 13 cancer types from The Cancer Genome Atlas (TCGA). We identified multiple previously unreported non-pairwise MEGS in multiple cancer types. For acute myeloid leukemia, we identified a MEGS with five genes (FLT3, IDH2, NRAS, KIT, and TP53) and a MEGS (NPM1, TP53, and RUNX1) whose mutation status was strongly associated with survival (p = 6.7 × 10(-4)). For breast cancer, we identified a significant MEGS consisting of TP53 and four infrequently mutated genes (ARID1A, AKT1, MED23, and TBL1XR1), providing support for their role as cancer drivers. The central challenges in tumor sequencing studies is to identify driver genes and pathways, investigate their functional relationships, and nominate drug targets. The efficiency of these analyses, particularly for infrequently mutated genes, is compromised when subjects carry different combinations of driver mutations. Mutual exclusivity analysis helps address these challenges. To identify mutually exclusive gene sets (MEGS), we developed a powerful and flexible analytic framework based on a likelihood ratio test and a model selection procedure. Extensive simulations demonstrated that our method outperformed existing methods for both statistical power and the capability of identifying the exact MEGS, particularly for highly imbalanced MEGS. Our method can be used for de novo discovery, for pathway-guided searches, or for expanding established small MEGS. We applied our method to the whole-exome sequencing data for 13 cancer types from The Cancer Genome Atlas (TCGA). We identified multiple previously unreported non-pairwise MEGS in multiple cancer types. For acute myeloid leukemia, we identified a MEGS with five genes ( FLT3 , IDH2 , NRAS , KIT , and TP53 ) and a MEGS ( NPM1 , TP53 , and RUNX1 ) whose mutation status was strongly associated with survival (p = 6.7 × 10 −4 ). For breast cancer, we identified a significant MEGS consisting of TP53 and four infrequently mutated genes ( ARID1A , AKT1 , MED23 , and TBL1XR1 ), providing support for their role as cancer drivers. The central challenges in tumor sequencing studies is to identify driver genes and pathways, investigate their functional relationships, and nominate drug targets. The efficiency of these analyses, particularly for infrequently mutated genes, is compromised when subjects carry different combinations of driver mutations. Mutual exclusivity analysis helps address these challenges. To identify mutually exclusive gene sets (MEGS), we developed a powerful and flexible analytic framework based on a likelihood ratio test and a model selection procedure. Extensive simulations demonstrated that our method outperformed existing methods for both statistical power and the capability of identifying the exact MEGS, particularly for highly imbalanced MEGS. Our method can be used for de novo discovery, for pathway-guided searches, or for expanding established small MEGS. We applied our method to the whole-exome sequencing data for 13 cancer types from The Cancer Genome Atlas (TCGA). We identified multiple previously unreported non-pairwise MEGS in multiple cancer types. For acute myeloid leukemia, we identified a MEGS with five genes (FLT3, IDH2, NRAS, KIT, and TP53) and a MEGS (NPM1, TP53, and RUNX1) whose mutation status was strongly associated with survival (p = 6.7 x 10...). For breast cancer, we identified a significant MEGS consisting of TP53 and four infrequently mutated genes (ARID1A, AKT1, MED23, and TBL1XR1), providing support for their role as cancer drivers. (ProQuest: ... denotes formulae/symbols omitted.) |
Author | Caporaso, Neil E. Chatterjee, Nilanjan Hua, Xing Hyland, Paula L. Huang, Jing Shi, Jianxin Zhu, Bin Song, Lei Landi, Maria Teresa |
AuthorAffiliation | 1 Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Bethesda, MD 20892, USA 2 Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA |
AuthorAffiliation_xml | – name: 1 Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Bethesda, MD 20892, USA – name: 2 Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA |
Author_xml | – sequence: 1 givenname: Xing surname: Hua fullname: Hua, Xing organization: Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Bethesda, MD 20892, USA – sequence: 2 givenname: Paula L. surname: Hyland fullname: Hyland, Paula L. organization: Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Bethesda, MD 20892, USA – sequence: 3 givenname: Jing surname: Huang fullname: Huang, Jing organization: Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA – sequence: 4 givenname: Lei surname: Song fullname: Song, Lei organization: Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Bethesda, MD 20892, USA – sequence: 5 givenname: Bin surname: Zhu fullname: Zhu, Bin organization: Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Bethesda, MD 20892, USA – sequence: 6 givenname: Neil E. surname: Caporaso fullname: Caporaso, Neil E. organization: Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Bethesda, MD 20892, USA – sequence: 7 givenname: Maria Teresa surname: Landi fullname: Landi, Maria Teresa organization: Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Bethesda, MD 20892, USA – sequence: 8 givenname: Nilanjan surname: Chatterjee fullname: Chatterjee, Nilanjan organization: Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Bethesda, MD 20892, USA – sequence: 9 givenname: Jianxin surname: Shi fullname: Shi, Jianxin email: jianxin.shi@nih.gov organization: Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Bethesda, MD 20892, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/26899600$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkl9rFDEUxYNU7Lb6BXyQgC--7Jg_M5NERFjKbhVaFKxvQkgymW3GzKRNZrZdP71ZtxXtQ_EpD_d3DjfnniNwMITBAvASowIjXL_tCtVdrguCcFVgUiCCn4AZriib1zWqDsAMIUTmggh2CI5S6hDCmCP6DBySmgtRIzQD38-Xp18X7-ACfgk3NraTh2po4MrbW6e9hauoensT4g_YhggXg_Lbn25Yw_NpnJSHy1vjp-Q2btzC0MKLqc9UnqnRhSE9B09b5ZN9cfceg2-r5cXJx_nZ59NPJ4uzual4Pc6xabmpsSZNaQVqWIt5pTVWrSWUKs0Y1YSykjWtYbzBWFOFKdFY25ogYQw9Bh_2vleT7m1j7DBG5eVVdL2KWxmUk_9OBncp12EjS54jomU2eHNnEMP1ZNMoe5eM9V4NNkxJYiaQKIXg9X-gDHFWC4oy-voB2oUp5gh_U7SinFORqVd_L_9n6_sbZYDvARNDStG20rh9wPkvzkuM5K4OspO7OshdHSQmMtchS8kD6b37o6L3e5HNJ9s4G2Uyzg7GNi5aM8omuMfkvwAx9M3w |
CitedBy_id | crossref_primary_10_1016_j_cell_2019_05_005 crossref_primary_10_1093_bib_bbx109 crossref_primary_10_1371_journal_pmed_1002162 crossref_primary_10_1016_j_ajhg_2023_12_009 crossref_primary_10_1158_1055_9965_EPI_17_0984 crossref_primary_10_3389_fgene_2021_746495 crossref_primary_10_1093_bib_bbw037 crossref_primary_10_1093_bioinformatics_btaa957 crossref_primary_10_1016_j_cmpb_2025_108681 crossref_primary_10_1038_s41525_023_00369_6 crossref_primary_10_1155_2019_4860367 crossref_primary_10_1186_s13059_016_1114_x crossref_primary_10_1038_s10038_020_00870_1 crossref_primary_10_1016_j_jtho_2024_07_024 crossref_primary_10_1186_s13073_022_01029_7 crossref_primary_10_3389_fmed_2025_1460956 crossref_primary_10_1038_s41467_019_10902_w crossref_primary_10_1016_j_xcrm_2023_101358 crossref_primary_10_1073_pnas_1520213113 crossref_primary_10_1038_s41598_019_42500_7 crossref_primary_10_3389_fcell_2020_00020 crossref_primary_10_1093_biostatistics_kxab004 crossref_primary_10_1109_TCBB_2017_2788016 crossref_primary_10_1016_j_cell_2020_06_012 crossref_primary_10_1016_j_gde_2022_101989 crossref_primary_10_1182_blood_2016_01_693879 crossref_primary_10_1038_s41598_020_58819_5 crossref_primary_10_1016_j_jmoldx_2018_09_009 crossref_primary_10_1016_j_drudis_2019_11_014 crossref_primary_10_1371_journal_pcbi_1008792 crossref_primary_10_1371_journal_pgen_1007746 |
Cites_doi | 10.1155/2012/273947 10.1158/0008-5472.CAN-09-4161 10.1038/nrc3365 10.18632/oncotarget.2092 10.1056/NEJMoa1301689 10.1038/nature11412 10.1016/j.molcel.2005.02.010 10.1371/journal.pcbi.1003503 10.1016/j.cell.2012.04.023 10.1101/gr.120477.111 10.1186/1755-8794-4-34 10.4103/1477-3163.122760 10.3109/10409238.2013.840259 10.1371/journal.pmed.0020017 10.1038/nbt.2203 10.1016/j.cell.2013.01.019 10.1158/0008-5472.CAN-11-1562 10.1038/nature13385 10.1038/onc.2009.509 10.1053/j.seminoncol.2008.04.004 10.1038/onc.2012.328 10.1038/nature12912 10.2307/1912557 10.1101/gad.214023.113 10.1186/s13059-015-0700-7 10.1371/journal.pcbi.1003054 10.1073/pnas.1204311109 10.1074/jbc.M110.105262 10.1101/gad.236869.113 10.1002/1097-4652(200101)186:1<136::AID-JCP1010>3.0.CO;2-4 10.1016/j.cell.2012.06.024 10.1101/gr.125567.111 10.1126/science.1068943 10.1038/nrc2981 10.1007/s11910-013-0345-4 10.1128/MCB.01216-13 10.1038/nature12213 10.1093/bioinformatics/bts564 10.1155/2013/271347 10.3109/10715761003667554 10.1038/nature07423 10.1111/j.2517-6161.1995.tb02031.x 10.1186/gb-2013-14-7-r80 |
ContentType | Journal Article |
Copyright | 2016 The American Society of Human Genetics Copyright © 2016 The American Society of Human Genetics. Published by Elsevier Inc. All rights reserved. Copyright Cell Press Mar 3, 2016 2016 by The American Society of Human Genetics. All rights reserved. 2016 The American Society of Human Genetics |
Copyright_xml | – notice: 2016 The American Society of Human Genetics – notice: Copyright © 2016 The American Society of Human Genetics. Published by Elsevier Inc. All rights reserved. – notice: Copyright Cell Press Mar 3, 2016 – notice: 2016 by The American Society of Human Genetics. All rights reserved. 2016 The American Society of Human Genetics |
DBID | 6I. AAFTH AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QP 7TK 7TM 7U7 8FD C1K FR3 K9. NAPCQ P64 RC3 7X8 5PM |
DOI | 10.1016/j.ajhg.2015.12.021 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Calcium & Calcified Tissue Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Toxicology Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database ProQuest Health & Medical Complete (Alumni) ProQuest Nursing & Allied Health Premium Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Nursing & Allied Health Premium Genetics Abstracts Technology Research Database Toxicology Abstracts Nucleic Acids Abstracts ProQuest Health & Medical Complete (Alumni) Engineering Research Database Calcium & Calcified Tissue Abstracts Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic |
DatabaseTitleList | Genetics Abstracts MEDLINE MEDLINE - Academic Nursing & Allied Health Premium |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1537-6605 |
EndPage | 455 |
ExternalDocumentID | PMC4800034 3986096111 26899600 10_1016_j_ajhg_2015_12_021 S0002929716000021 |
Genre | Journal Article Research Support, N.I.H., Intramural |
GrantInformation_xml | – fundername: Intramural NIH HHS |
GroupedDBID | --- --K --Z -~X 0R~ 123 1~5 23M 2WC 4.4 457 4G. 53G 5GY 62- 6I. 6J9 7-5 85S AACTN AAEDT AAEDW AAFTH AAIAV AAKRW AALRI AAUCE AAVLU AAWTL AAXJY AAXUO ABJNI ABMAC ABMWF ABOCM ABVKL ACGFO ACGFS ACGOD ACNCT ACPRK ADBBV ADEZE ADJPV AENEX AEXQZ AFRAH AFTJW AGKMS AHMBA AITUG ALKID ALMA_UNASSIGNED_HOLDINGS AMRAJ AOIJS ASPBG AVWKF AZFZN BAWUL CS3 D0L DIK E3Z EBS ECV EJD F5P FCP FDB FEDTE GX1 HVGLF HYE IH2 IHE IXB JIG KQ8 L7B M41 NCXOZ O-L O9- OK1 P2P PQQKQ RCE RIG RNS ROL RPM RPZ SES SJN SSZ TN5 TR2 TWZ UHB UKR UNMZH UPT VQA WH7 WQ6 ZA5 ZCA .55 .GJ 34R 3O- 41~ AAFWJ AAIKJ AAMRU AAQXK AAYWO AAYXX ABDGV ABWVN ACKIV ACRPL ACVFH ADCNI ADMUD ADNMO ADVLN ADXHL AEUPX AFPUW AGCDD AGCQF AGHFR AGQPQ AI. AIGII AKAPO AKBMS AKRWK AKYEP APXCP C1A CITATION FA8 FGOYB HZ~ MVM NEJ OHT OZT R2- VH1 WOQ X7M XOL ZCG ZGI ZXP 0SF CGR CUY CVF ECM EIF NPM Z5M 7QP 7TK 7TM 7U7 8FD C1K EFKBS FR3 K9. NAPCQ P64 RC3 7X8 5PM |
ID | FETCH-LOGICAL-c586t-1cf8c61b2d4e90d7f185bb1afe233ab773b23747dfc78d11b3a132b1be6209cc3 |
IEDL.DBID | IXB |
ISSN | 0002-9297 1537-6605 |
IngestDate | Thu Aug 21 18:07:04 EDT 2025 Thu Jul 10 19:02:43 EDT 2025 Fri Jul 11 12:24:15 EDT 2025 Fri Jul 25 19:45:01 EDT 2025 Wed Feb 19 01:55:49 EST 2025 Tue Jul 01 03:39:14 EDT 2025 Thu Apr 24 23:05:34 EDT 2025 Fri Feb 23 02:29:30 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | oncogenic pathways mutual exclusivity tumor sequencing driver genes |
Language | English |
License | http://www.elsevier.com/open-access/userlicense/1.0 Copyright © 2016 The American Society of Human Genetics. Published by Elsevier Inc. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c586t-1cf8c61b2d4e90d7f185bb1afe233ab773b23747dfc78d11b3a132b1be6209cc3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S0002929716000021 |
PMID | 26899600 |
PQID | 1773538839 |
PQPubID | 24320 |
PageCount | 14 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_4800034 proquest_miscellaneous_1790949986 proquest_miscellaneous_1770876930 proquest_journals_1773538839 pubmed_primary_26899600 crossref_citationtrail_10_1016_j_ajhg_2015_12_021 crossref_primary_10_1016_j_ajhg_2015_12_021 elsevier_sciencedirect_doi_10_1016_j_ajhg_2015_12_021 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2016-03-03 |
PublicationDateYYYYMMDD | 2016-03-03 |
PublicationDate_xml | – month: 03 year: 2016 text: 2016-03-03 day: 03 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Chicago |
PublicationTitle | American journal of human genetics |
PublicationTitleAlternate | Am J Hum Genet |
PublicationYear | 2016 |
Publisher | Elsevier Inc Cell Press Elsevier |
Publisher_xml | – name: Elsevier Inc – name: Cell Press – name: Elsevier |
References | Lin, Wu, Chang, Juan, Hsu, Chen, Lu, Tang, Yang, Yang, Wang (bib36) 2010; 70 Lawrence, Stojanov, Mermel, Robinson, Garraway, Golub, Meyerson, Gabriel, Lander, Getz (bib14) 2014; 505 (bib31) 2013; 368 (bib5) 2014; 511 Leiserson, Wu, Vandin, Raphael (bib42) 2015; 16 Yang, Zhao, Xia, Liu, Yan, Ji, Wang (bib26) 2012; 109 Babur, Gonen, Aksoy, Schultz, Giovanni, Sander, Demir (bib11) 2015 Vandin, Upfal, Raphael (bib7) 2012; 22 Nik-Zainal, Van Loo, Wedge, Alexandrov, Greenman, Lau, Raine, Jones, Marshall, Ramakrishna (bib43) 2012; 149 Benjamini, Hochberg (bib13) 1995; 57 Wallace (bib39) 2012; 12 Cairns, Harris, Mak (bib33) 2011; 11 Lawrence, Stojanov, Polak, Kryukov, Cibulskis, Sivachenko, Carter, Stewart, Mermel, Roberts (bib1) 2013; 499 Chimge, Frenkel (bib28) 2013; 32 Vuong (bib47) 1989; 57 van Lith, Navis, Verrijp, Niclou, Bjerkvig, Wesseling, Tops, Molenaar, van Noorden, Leenders (bib37) 2014; 1846 Cohen, Holmen, Colman (bib34) 2013; 13 Soto-Reyes, Recillas-Targa (bib21) 2010; 29 Pao, Wang, Riely, Miller, Pan, Ladanyi, Zakowski, Heelan, Kris, Varmus (bib3) 2005; 2 Poss, Ebmeier, Taatjes (bib27) 2013; 48 Jiang, Du, Yang (bib38) 2013; 12 Decristofaro, Betz, Rorie, Reisman, Wang, Weissman (bib29) 2001; 186 Ding, Getz, Wheeler, Mardis, McLellan, Cibulskis, Sougnez, Greulich, Muzny, Morgan (bib4) 2008; 455 Zhao, Zhang, Wu, Zhang (bib9) 2012; 28 (bib15) 2012; 490 Szczurek, Beerenwinkel (bib8) 2014; 10 Guan, Wang, Shih (bib22) 2011; 71 Oesper, Mahmoody, Raphael (bib45) 2013; 14 Yan, Cao, Arenas, Bentley, Shao (bib17) 2010; 285 Wang, Balamotis, Stevens, Yamaguchi, Handa, Berk (bib24) 2005; 17 Hodis, Watson, Kryukov, Arold, Imielinski, Theurillat, Nickerson, Auclair, Li, Place (bib2) 2012; 150 Adikesavan, Karmakar, Pardo, Wang, Liu, Li, Smith (bib19) 2014; 34 Scholl, Gilliland, Fröhling (bib32) 2008; 35 Son, Cheong, Kim, Chung, Kang, Pae (bib40) 2011; 2011 Peterson, Bögler, Taylor (bib16) 2003; 63 Liou, Storz (bib41) 2010; 44 Ciriello, Cerami, Sander, Schultz (bib6) 2012; 22 Mottis, Mouchiroud, Auwerx (bib18) 2013; 27 Carter, Cibulskis, Helman, McKenna, Shen, Zack, Laird, Onofrio, Winckler, Weir (bib44) 2012; 30 Smolková, Ježek (bib35) 2012; 2012 Miller, Settle, Sulman, Aldape, Milosavljevic (bib12) 2011; 4 Saldaña-Meyer, González-Buendía, Guerrero, Narendra, Bonasio, Recillas-Targa, Reinberg (bib20) 2014; 28 Leiserson, Blokh, Sharan, Raphael (bib10) 2013; 9 Stevens, Cantin, Wang, Shevchenko, Shevchenko, Berk (bib25) 2002; 296 Ozaki, Nakagawara, Nagase (bib30) 2013; 2013 Landau, Carter, Stojanov, McKenna, Stevenson, Lawrence, Sougnez, Stewart, Sivachenko, Wang (bib46) 2013; 152 Samartzis, Gutsche, Dedes, Fink, Stucki, Imesch (bib23) 2014; 5 Cohen (10.1016/j.ajhg.2015.12.021_bib34) 2013; 13 Yang (10.1016/j.ajhg.2015.12.021_bib26) 2012; 109 Leiserson (10.1016/j.ajhg.2015.12.021_bib42) 2015; 16 Cairns (10.1016/j.ajhg.2015.12.021_bib33) 2011; 11 Adikesavan (10.1016/j.ajhg.2015.12.021_bib19) 2014; 34 Decristofaro (10.1016/j.ajhg.2015.12.021_bib29) 2001; 186 Lawrence (10.1016/j.ajhg.2015.12.021_bib1) 2013; 499 Carter (10.1016/j.ajhg.2015.12.021_bib44) 2012; 30 Wang (10.1016/j.ajhg.2015.12.021_bib24) 2005; 17 Szczurek (10.1016/j.ajhg.2015.12.021_bib8) 2014; 10 Ciriello (10.1016/j.ajhg.2015.12.021_bib6) 2012; 22 Stevens (10.1016/j.ajhg.2015.12.021_bib25) 2002; 296 Son (10.1016/j.ajhg.2015.12.021_bib40) 2011; 2011 (10.1016/j.ajhg.2015.12.021_bib31) 2013; 368 Ding (10.1016/j.ajhg.2015.12.021_bib4) 2008; 455 Chimge (10.1016/j.ajhg.2015.12.021_bib28) 2013; 32 Poss (10.1016/j.ajhg.2015.12.021_bib27) 2013; 48 Ozaki (10.1016/j.ajhg.2015.12.021_bib30) 2013; 2013 Vuong (10.1016/j.ajhg.2015.12.021_bib47) 1989; 57 Vandin (10.1016/j.ajhg.2015.12.021_bib7) 2012; 22 Babur (10.1016/j.ajhg.2015.12.021_bib11) 2015 Nik-Zainal (10.1016/j.ajhg.2015.12.021_bib43) 2012; 149 Pao (10.1016/j.ajhg.2015.12.021_bib3) 2005; 2 Leiserson (10.1016/j.ajhg.2015.12.021_bib10) 2013; 9 Benjamini (10.1016/j.ajhg.2015.12.021_bib13) 1995; 57 Hodis (10.1016/j.ajhg.2015.12.021_bib2) 2012; 150 Lin (10.1016/j.ajhg.2015.12.021_bib36) 2010; 70 Wallace (10.1016/j.ajhg.2015.12.021_bib39) 2012; 12 Lawrence (10.1016/j.ajhg.2015.12.021_bib14) 2014; 505 Zhao (10.1016/j.ajhg.2015.12.021_bib9) 2012; 28 Yan (10.1016/j.ajhg.2015.12.021_bib17) 2010; 285 (10.1016/j.ajhg.2015.12.021_bib15) 2012; 490 van Lith (10.1016/j.ajhg.2015.12.021_bib37) 2014; 1846 Oesper (10.1016/j.ajhg.2015.12.021_bib45) 2013; 14 Samartzis (10.1016/j.ajhg.2015.12.021_bib23) 2014; 5 Jiang (10.1016/j.ajhg.2015.12.021_bib38) 2013; 12 (10.1016/j.ajhg.2015.12.021_bib5) 2014; 511 Peterson (10.1016/j.ajhg.2015.12.021_bib16) 2003; 63 Guan (10.1016/j.ajhg.2015.12.021_bib22) 2011; 71 Smolková (10.1016/j.ajhg.2015.12.021_bib35) 2012; 2012 Miller (10.1016/j.ajhg.2015.12.021_bib12) 2011; 4 Scholl (10.1016/j.ajhg.2015.12.021_bib32) 2008; 35 Liou (10.1016/j.ajhg.2015.12.021_bib41) 2010; 44 Saldaña-Meyer (10.1016/j.ajhg.2015.12.021_bib20) 2014; 28 Soto-Reyes (10.1016/j.ajhg.2015.12.021_bib21) 2010; 29 Landau (10.1016/j.ajhg.2015.12.021_bib46) 2013; 152 Mottis (10.1016/j.ajhg.2015.12.021_bib18) 2013; 27 23895164 - Genome Biol. 2013;14(7):R80 20570896 - Cancer Res. 2010 Jul 15;70(14):5807-17 20370557 - Free Radic Res. 2010 May;44(5):479-96 25887147 - Genome Biol. 2015;16:45 22675360 - Int J Cell Biol. 2012;2012:273947 24747768 - Biochim Biophys Acta. 2014 Aug;1846(1):66-74 21908773 - Genome Res. 2012 Feb;22(2):398-406 18692684 - Semin Oncol. 2008 Aug;35(4):336-45 15696205 - PLoS Med. 2005 Jan;2(1):e17 24379735 - J Carcinog. 2013 Nov 06;12:21 22988093 - Proc Natl Acad Sci U S A. 2012 Oct 9;109(41):E2813-22 23717195 - PLoS Comput Biol. 2013;9(5):e1003054 26253137 - Genome Biol. 2015;16:160 23045283 - Oncogene. 2013 Apr 25;32(17):2121-30 14583449 - Cancer Res. 2003 Oct 15;63(20):6579-82 23001348 - Nat Rev Cancer. 2012 Oct;12(10):685-98 18948947 - Nature. 2008 Oct 23;455(7216):1069-75 15749018 - Mol Cell. 2005 Mar 4;17(5):683-94 23415222 - Cell. 2013 Feb 14;152(4):714-26 21258394 - Nat Rev Cancer. 2011 Feb;11(2):85-95 23532369 - Curr Neurol Neurosci Rep. 2013 May;13(5):345 21637379 - J Signal Transduct. 2011;2011:792639 24390350 - Nature. 2014 Jan 23;505(7484):495-501 22544022 - Nat Biotechnol. 2012 May;30(5):413-21 11147808 - J Cell Physiol. 2001 Jan;186(1):136-45 24078903 - Int J Genomics. 2013;2013:271347 20189993 - J Biol Chem. 2010 Apr 30;285(18):14042-51 21653252 - Genome Res. 2012 Feb;22(2):375-85 21489305 - BMC Med Genomics. 2011;4:34 20101205 - Oncogene. 2010 Apr 15;29(15):2217-27 11934987 - Science. 2002 Apr 26;296(5568):755-8 22817889 - Cell. 2012 Jul 20;150(2):251-63 24675718 - PLoS Comput Biol. 2014 Mar;10(3):e1003503 23770567 - Nature. 2013 Jul 11;499(7457):214-8 22608083 - Cell. 2012 May 25;149(5):994-1007 24696455 - Genes Dev. 2014 Apr 1;28(7):723-34 25079552 - Nature. 2014 Jul 31;511(7511):543-50 23630073 - Genes Dev. 2013 Apr 15;27(8):819-35 22982574 - Bioinformatics. 2012 Nov 15;28(22):2940-7 23000897 - Nature. 2012 Oct 4;490(7418):61-70 24088064 - Crit Rev Biochem Mol Biol. 2013 Nov-Dec;48(6):575-608 24449765 - Mol Cell Biol. 2014 Apr;34(7):1246-61 21900401 - Cancer Res. 2011 Nov 1;71(21):6718-27 23634996 - N Engl J Med. 2013 May 30;368(22):2059-74 24979463 - Oncotarget. 2014 Jul 30;5(14):5295-303 |
References_xml | – volume: 455 start-page: 1069 year: 2008 end-page: 1075 ident: bib4 article-title: Somatic mutations affect key pathways in lung adenocarcinoma publication-title: Nature – volume: 5 start-page: 5295 year: 2014 end-page: 5303 ident: bib23 article-title: Loss of ARID1A expression sensitizes cancer cells to PI3K- and AKT-inhibition publication-title: Oncotarget – volume: 71 start-page: 6718 year: 2011 end-page: 6727 ident: bib22 article-title: ARID1A, a factor that promotes formation of SWI/SNF-mediated chromatin remodeling, is a tumor suppressor in gynecologic cancers publication-title: Cancer Res. – volume: 28 start-page: 723 year: 2014 end-page: 734 ident: bib20 article-title: CTCF regulates the human p53 gene through direct interaction with its natural antisense transcript, Wrap53 publication-title: Genes Dev. – volume: 511 start-page: 543 year: 2014 end-page: 550 ident: bib5 article-title: Comprehensive molecular profiling of lung adenocarcinoma publication-title: Nature – volume: 34 start-page: 1246 year: 2014 end-page: 1261 ident: bib19 article-title: Activation of p53 transcriptional activity by SMRT: a histone deacetylase 3-independent function of a transcriptional corepressor publication-title: Mol. Cell. Biol. – volume: 2011 start-page: 792639 year: 2011 ident: bib40 article-title: Mitogen-activated protein kinases and reactive oxygen species: how can ROS activate MAPK pathways? publication-title: J. Signal Transduct. – volume: 12 start-page: 685 year: 2012 end-page: 698 ident: bib39 article-title: Mitochondria and cancer publication-title: Nat. Rev. Cancer – volume: 149 start-page: 994 year: 2012 end-page: 1007 ident: bib43 article-title: The life history of 21 breast cancers publication-title: Cell – volume: 57 start-page: 307 year: 1989 end-page: 333 ident: bib47 article-title: Likelihood ratio tests for model selection and non-nested hypotheses publication-title: Econometrica – volume: 14 start-page: R80 year: 2013 ident: bib45 article-title: THetA: inferring intra-tumor heterogeneity from high-throughput DNA sequencing data publication-title: Genome Biol. – volume: 505 start-page: 495 year: 2014 end-page: 501 ident: bib14 article-title: Discovery and saturation analysis of cancer genes across 21 tumour types publication-title: Nature – volume: 28 start-page: 2940 year: 2012 end-page: 2947 ident: bib9 article-title: Efficient methods for identifying mutated driver pathways in cancer publication-title: Bioinformatics – volume: 109 start-page: E2813 year: 2012 end-page: E2822 ident: bib26 article-title: Selective requirement for Mediator MED23 in Ras-active lung cancer publication-title: Proc. Natl. Acad. Sci. USA – volume: 186 start-page: 136 year: 2001 end-page: 145 ident: bib29 article-title: Characterization of SWI/SNF protein expression in human breast cancer cell lines and other malignancies publication-title: J. Cell. Physiol. – volume: 48 start-page: 575 year: 2013 end-page: 608 ident: bib27 article-title: The Mediator complex and transcription regulation publication-title: Crit. Rev. Biochem. Mol. Biol. – volume: 11 start-page: 85 year: 2011 end-page: 95 ident: bib33 article-title: Regulation of cancer cell metabolism publication-title: Nat. Rev. Cancer – volume: 22 start-page: 375 year: 2012 end-page: 385 ident: bib7 article-title: De novo discovery of mutated driver pathways in cancer publication-title: Genome Res. – volume: 499 start-page: 214 year: 2013 end-page: 218 ident: bib1 article-title: Mutational heterogeneity in cancer and the search for new cancer-associated genes publication-title: Nature – volume: 30 start-page: 413 year: 2012 end-page: 421 ident: bib44 article-title: Absolute quantification of somatic DNA alterations in human cancer publication-title: Nat. Biotechnol. – volume: 490 start-page: 61 year: 2012 end-page: 70 ident: bib15 article-title: Comprehensive molecular portraits of human breast tumours publication-title: Nature – volume: 35 start-page: 336 year: 2008 end-page: 345 ident: bib32 article-title: Deregulation of signaling pathways in acute myeloid leukemia publication-title: Semin. Oncol. – volume: 150 start-page: 251 year: 2012 end-page: 263 ident: bib2 article-title: A landscape of driver mutations in melanoma publication-title: Cell – volume: 2 start-page: e17 year: 2005 ident: bib3 article-title: KRAS mutations and primary resistance of lung adenocarcinomas to gefitinib or erlotinib publication-title: PLoS Med. – volume: 32 start-page: 2121 year: 2013 end-page: 2130 ident: bib28 article-title: The RUNX family in breast cancer: relationships with estrogen signaling publication-title: Oncogene – volume: 2012 start-page: 273947 year: 2012 ident: bib35 article-title: The role of mitochondrial NADPH-dependent isocitrate dehydrogenase in cancer cells publication-title: Int. J. Cell Biol. – volume: 70 start-page: 5807 year: 2010 end-page: 5817 ident: bib36 article-title: Dysregulation of p53/Sp1 control leads to DNA methyltransferase-1 overexpression in lung cancer publication-title: Cancer Res. – year: 2015 ident: bib11 article-title: Systematic identification of cancer driving signaling pathways based on mutual exclusivity of genomic alterations – volume: 29 start-page: 2217 year: 2010 end-page: 2227 ident: bib21 article-title: Epigenetic regulation of the human p53 gene promoter by the CTCF transcription factor in transformed cell lines publication-title: Oncogene – volume: 13 start-page: 345 year: 2013 ident: bib34 article-title: IDH1 and IDH2 mutations in gliomas publication-title: Curr. Neurol. Neurosci. Rep. – volume: 12 start-page: 21 year: 2013 ident: bib38 article-title: p53 and regulation of tumor metabolism publication-title: J. Carcinog. – volume: 57 start-page: 289 year: 1995 end-page: 300 ident: bib13 article-title: Controlling the false discovery rate: a practical and powerful approach to multiple testing publication-title: J. R. Stat. Soc., B – volume: 9 start-page: e1003054 year: 2013 ident: bib10 article-title: Simultaneous identification of multiple driver pathways in cancer publication-title: PLoS Comput. Biol. – volume: 296 start-page: 755 year: 2002 end-page: 758 ident: bib25 article-title: Transcription control by E1A and MAP kinase pathway via Sur2 mediator subunit publication-title: Science – volume: 16 start-page: 160 year: 2015 ident: bib42 article-title: CoMEt: a statistical approach to identify combinations of mutually exclusive alterations in cancer publication-title: Genome Biol. – volume: 1846 start-page: 66 year: 2014 end-page: 74 ident: bib37 article-title: Glutamate as chemotactic fuel for diffuse glioma cells: are they glutamate suckers? publication-title: Biochim. Biophys. Acta – volume: 63 start-page: 6579 year: 2003 end-page: 6582 ident: bib16 article-title: p53-mediated repression of DNA methyltransferase 1 expression by specific DNA binding publication-title: Cancer Res. – volume: 152 start-page: 714 year: 2013 end-page: 726 ident: bib46 article-title: Evolution and impact of subclonal mutations in chronic lymphocytic leukemia publication-title: Cell – volume: 44 start-page: 479 year: 2010 end-page: 496 ident: bib41 article-title: Reactive oxygen species in cancer publication-title: Free Radic. Res. – volume: 27 start-page: 819 year: 2013 end-page: 835 ident: bib18 article-title: Emerging roles of the corepressors NCoR1 and SMRT in homeostasis publication-title: Genes Dev. – volume: 17 start-page: 683 year: 2005 end-page: 694 ident: bib24 article-title: Mediator requirement for both recruitment and postrecruitment steps in transcription initiation publication-title: Mol. Cell – volume: 285 start-page: 14042 year: 2010 end-page: 14051 ident: bib17 article-title: GATA3 inhibits breast cancer metastasis through the reversal of epithelial-mesenchymal transition publication-title: J. Biol. Chem. – volume: 4 start-page: 34 year: 2011 ident: bib12 article-title: Discovering functional modules by identifying recurrent and mutually exclusive mutational patterns in tumors publication-title: BMC Med. Genomics – volume: 22 start-page: 398 year: 2012 end-page: 406 ident: bib6 article-title: Mutual exclusivity analysis identifies oncogenic network modules publication-title: Genome Res. – volume: 2013 start-page: 271347 year: 2013 ident: bib30 article-title: RUNX family participates in the regulation of p53-dependent DNA damage response publication-title: Int. J. Genomics – volume: 10 start-page: e1003503 year: 2014 ident: bib8 article-title: Modeling mutual exclusivity of cancer mutations publication-title: PLoS Comput. Biol. – volume: 368 start-page: 2059 year: 2013 end-page: 2074 ident: bib31 article-title: Genomic and epigenomic landscapes of adult de novo acute myeloid leukemia publication-title: N. Engl. J. Med. – volume: 2012 start-page: 273947 year: 2012 ident: 10.1016/j.ajhg.2015.12.021_bib35 article-title: The role of mitochondrial NADPH-dependent isocitrate dehydrogenase in cancer cells publication-title: Int. J. Cell Biol. doi: 10.1155/2012/273947 – volume: 70 start-page: 5807 year: 2010 ident: 10.1016/j.ajhg.2015.12.021_bib36 article-title: Dysregulation of p53/Sp1 control leads to DNA methyltransferase-1 overexpression in lung cancer publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-09-4161 – volume: 12 start-page: 685 year: 2012 ident: 10.1016/j.ajhg.2015.12.021_bib39 article-title: Mitochondria and cancer publication-title: Nat. Rev. Cancer doi: 10.1038/nrc3365 – volume: 5 start-page: 5295 year: 2014 ident: 10.1016/j.ajhg.2015.12.021_bib23 article-title: Loss of ARID1A expression sensitizes cancer cells to PI3K- and AKT-inhibition publication-title: Oncotarget doi: 10.18632/oncotarget.2092 – volume: 368 start-page: 2059 year: 2013 ident: 10.1016/j.ajhg.2015.12.021_bib31 article-title: Genomic and epigenomic landscapes of adult de novo acute myeloid leukemia publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa1301689 – volume: 490 start-page: 61 year: 2012 ident: 10.1016/j.ajhg.2015.12.021_bib15 article-title: Comprehensive molecular portraits of human breast tumours publication-title: Nature doi: 10.1038/nature11412 – volume: 17 start-page: 683 year: 2005 ident: 10.1016/j.ajhg.2015.12.021_bib24 article-title: Mediator requirement for both recruitment and postrecruitment steps in transcription initiation publication-title: Mol. Cell doi: 10.1016/j.molcel.2005.02.010 – volume: 1846 start-page: 66 year: 2014 ident: 10.1016/j.ajhg.2015.12.021_bib37 article-title: Glutamate as chemotactic fuel for diffuse glioma cells: are they glutamate suckers? publication-title: Biochim. Biophys. Acta – volume: 10 start-page: e1003503 year: 2014 ident: 10.1016/j.ajhg.2015.12.021_bib8 article-title: Modeling mutual exclusivity of cancer mutations publication-title: PLoS Comput. Biol. doi: 10.1371/journal.pcbi.1003503 – volume: 149 start-page: 994 year: 2012 ident: 10.1016/j.ajhg.2015.12.021_bib43 article-title: The life history of 21 breast cancers publication-title: Cell doi: 10.1016/j.cell.2012.04.023 – volume: 22 start-page: 375 year: 2012 ident: 10.1016/j.ajhg.2015.12.021_bib7 article-title: De novo discovery of mutated driver pathways in cancer publication-title: Genome Res. doi: 10.1101/gr.120477.111 – volume: 4 start-page: 34 year: 2011 ident: 10.1016/j.ajhg.2015.12.021_bib12 article-title: Discovering functional modules by identifying recurrent and mutually exclusive mutational patterns in tumors publication-title: BMC Med. Genomics doi: 10.1186/1755-8794-4-34 – volume: 12 start-page: 21 year: 2013 ident: 10.1016/j.ajhg.2015.12.021_bib38 article-title: p53 and regulation of tumor metabolism publication-title: J. Carcinog. doi: 10.4103/1477-3163.122760 – volume: 48 start-page: 575 year: 2013 ident: 10.1016/j.ajhg.2015.12.021_bib27 article-title: The Mediator complex and transcription regulation publication-title: Crit. Rev. Biochem. Mol. Biol. doi: 10.3109/10409238.2013.840259 – volume: 2 start-page: e17 year: 2005 ident: 10.1016/j.ajhg.2015.12.021_bib3 article-title: KRAS mutations and primary resistance of lung adenocarcinomas to gefitinib or erlotinib publication-title: PLoS Med. doi: 10.1371/journal.pmed.0020017 – volume: 30 start-page: 413 year: 2012 ident: 10.1016/j.ajhg.2015.12.021_bib44 article-title: Absolute quantification of somatic DNA alterations in human cancer publication-title: Nat. Biotechnol. doi: 10.1038/nbt.2203 – volume: 2011 start-page: 792639 year: 2011 ident: 10.1016/j.ajhg.2015.12.021_bib40 article-title: Mitogen-activated protein kinases and reactive oxygen species: how can ROS activate MAPK pathways? publication-title: J. Signal Transduct. – volume: 152 start-page: 714 year: 2013 ident: 10.1016/j.ajhg.2015.12.021_bib46 article-title: Evolution and impact of subclonal mutations in chronic lymphocytic leukemia publication-title: Cell doi: 10.1016/j.cell.2013.01.019 – volume: 71 start-page: 6718 year: 2011 ident: 10.1016/j.ajhg.2015.12.021_bib22 article-title: ARID1A, a factor that promotes formation of SWI/SNF-mediated chromatin remodeling, is a tumor suppressor in gynecologic cancers publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-11-1562 – volume: 511 start-page: 543 year: 2014 ident: 10.1016/j.ajhg.2015.12.021_bib5 article-title: Comprehensive molecular profiling of lung adenocarcinoma publication-title: Nature doi: 10.1038/nature13385 – volume: 29 start-page: 2217 year: 2010 ident: 10.1016/j.ajhg.2015.12.021_bib21 article-title: Epigenetic regulation of the human p53 gene promoter by the CTCF transcription factor in transformed cell lines publication-title: Oncogene doi: 10.1038/onc.2009.509 – volume: 35 start-page: 336 year: 2008 ident: 10.1016/j.ajhg.2015.12.021_bib32 article-title: Deregulation of signaling pathways in acute myeloid leukemia publication-title: Semin. Oncol. doi: 10.1053/j.seminoncol.2008.04.004 – volume: 32 start-page: 2121 year: 2013 ident: 10.1016/j.ajhg.2015.12.021_bib28 article-title: The RUNX family in breast cancer: relationships with estrogen signaling publication-title: Oncogene doi: 10.1038/onc.2012.328 – volume: 505 start-page: 495 year: 2014 ident: 10.1016/j.ajhg.2015.12.021_bib14 article-title: Discovery and saturation analysis of cancer genes across 21 tumour types publication-title: Nature doi: 10.1038/nature12912 – volume: 57 start-page: 307 year: 1989 ident: 10.1016/j.ajhg.2015.12.021_bib47 article-title: Likelihood ratio tests for model selection and non-nested hypotheses publication-title: Econometrica doi: 10.2307/1912557 – volume: 27 start-page: 819 year: 2013 ident: 10.1016/j.ajhg.2015.12.021_bib18 article-title: Emerging roles of the corepressors NCoR1 and SMRT in homeostasis publication-title: Genes Dev. doi: 10.1101/gad.214023.113 – volume: 16 start-page: 160 year: 2015 ident: 10.1016/j.ajhg.2015.12.021_bib42 article-title: CoMEt: a statistical approach to identify combinations of mutually exclusive alterations in cancer publication-title: Genome Biol. doi: 10.1186/s13059-015-0700-7 – volume: 9 start-page: e1003054 year: 2013 ident: 10.1016/j.ajhg.2015.12.021_bib10 article-title: Simultaneous identification of multiple driver pathways in cancer publication-title: PLoS Comput. Biol. doi: 10.1371/journal.pcbi.1003054 – volume: 63 start-page: 6579 year: 2003 ident: 10.1016/j.ajhg.2015.12.021_bib16 article-title: p53-mediated repression of DNA methyltransferase 1 expression by specific DNA binding publication-title: Cancer Res. – volume: 109 start-page: E2813 year: 2012 ident: 10.1016/j.ajhg.2015.12.021_bib26 article-title: Selective requirement for Mediator MED23 in Ras-active lung cancer publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1204311109 – volume: 285 start-page: 14042 year: 2010 ident: 10.1016/j.ajhg.2015.12.021_bib17 article-title: GATA3 inhibits breast cancer metastasis through the reversal of epithelial-mesenchymal transition publication-title: J. Biol. Chem. doi: 10.1074/jbc.M110.105262 – volume: 28 start-page: 723 year: 2014 ident: 10.1016/j.ajhg.2015.12.021_bib20 article-title: CTCF regulates the human p53 gene through direct interaction with its natural antisense transcript, Wrap53 publication-title: Genes Dev. doi: 10.1101/gad.236869.113 – volume: 186 start-page: 136 year: 2001 ident: 10.1016/j.ajhg.2015.12.021_bib29 article-title: Characterization of SWI/SNF protein expression in human breast cancer cell lines and other malignancies publication-title: J. Cell. Physiol. doi: 10.1002/1097-4652(200101)186:1<136::AID-JCP1010>3.0.CO;2-4 – volume: 150 start-page: 251 year: 2012 ident: 10.1016/j.ajhg.2015.12.021_bib2 article-title: A landscape of driver mutations in melanoma publication-title: Cell doi: 10.1016/j.cell.2012.06.024 – volume: 22 start-page: 398 year: 2012 ident: 10.1016/j.ajhg.2015.12.021_bib6 article-title: Mutual exclusivity analysis identifies oncogenic network modules publication-title: Genome Res. doi: 10.1101/gr.125567.111 – volume: 296 start-page: 755 year: 2002 ident: 10.1016/j.ajhg.2015.12.021_bib25 article-title: Transcription control by E1A and MAP kinase pathway via Sur2 mediator subunit publication-title: Science doi: 10.1126/science.1068943 – volume: 11 start-page: 85 year: 2011 ident: 10.1016/j.ajhg.2015.12.021_bib33 article-title: Regulation of cancer cell metabolism publication-title: Nat. Rev. Cancer doi: 10.1038/nrc2981 – volume: 13 start-page: 345 year: 2013 ident: 10.1016/j.ajhg.2015.12.021_bib34 article-title: IDH1 and IDH2 mutations in gliomas publication-title: Curr. Neurol. Neurosci. Rep. doi: 10.1007/s11910-013-0345-4 – year: 2015 ident: 10.1016/j.ajhg.2015.12.021_bib11 – volume: 34 start-page: 1246 year: 2014 ident: 10.1016/j.ajhg.2015.12.021_bib19 article-title: Activation of p53 transcriptional activity by SMRT: a histone deacetylase 3-independent function of a transcriptional corepressor publication-title: Mol. Cell. Biol. doi: 10.1128/MCB.01216-13 – volume: 499 start-page: 214 year: 2013 ident: 10.1016/j.ajhg.2015.12.021_bib1 article-title: Mutational heterogeneity in cancer and the search for new cancer-associated genes publication-title: Nature doi: 10.1038/nature12213 – volume: 28 start-page: 2940 year: 2012 ident: 10.1016/j.ajhg.2015.12.021_bib9 article-title: Efficient methods for identifying mutated driver pathways in cancer publication-title: Bioinformatics doi: 10.1093/bioinformatics/bts564 – volume: 2013 start-page: 271347 year: 2013 ident: 10.1016/j.ajhg.2015.12.021_bib30 article-title: RUNX family participates in the regulation of p53-dependent DNA damage response publication-title: Int. J. Genomics doi: 10.1155/2013/271347 – volume: 44 start-page: 479 year: 2010 ident: 10.1016/j.ajhg.2015.12.021_bib41 article-title: Reactive oxygen species in cancer publication-title: Free Radic. Res. doi: 10.3109/10715761003667554 – volume: 455 start-page: 1069 year: 2008 ident: 10.1016/j.ajhg.2015.12.021_bib4 article-title: Somatic mutations affect key pathways in lung adenocarcinoma publication-title: Nature doi: 10.1038/nature07423 – volume: 57 start-page: 289 year: 1995 ident: 10.1016/j.ajhg.2015.12.021_bib13 article-title: Controlling the false discovery rate: a practical and powerful approach to multiple testing publication-title: J. R. Stat. Soc., B doi: 10.1111/j.2517-6161.1995.tb02031.x – volume: 14 start-page: R80 year: 2013 ident: 10.1016/j.ajhg.2015.12.021_bib45 article-title: THetA: inferring intra-tumor heterogeneity from high-throughput DNA sequencing data publication-title: Genome Biol. doi: 10.1186/gb-2013-14-7-r80 – reference: 20189993 - J Biol Chem. 2010 Apr 30;285(18):14042-51 – reference: 24390350 - Nature. 2014 Jan 23;505(7484):495-501 – reference: 20370557 - Free Radic Res. 2010 May;44(5):479-96 – reference: 21489305 - BMC Med Genomics. 2011;4:34 – reference: 15749018 - Mol Cell. 2005 Mar 4;17(5):683-94 – reference: 22608083 - Cell. 2012 May 25;149(5):994-1007 – reference: 23001348 - Nat Rev Cancer. 2012 Oct;12(10):685-98 – reference: 20570896 - Cancer Res. 2010 Jul 15;70(14):5807-17 – reference: 18948947 - Nature. 2008 Oct 23;455(7216):1069-75 – reference: 23717195 - PLoS Comput Biol. 2013;9(5):e1003054 – reference: 18692684 - Semin Oncol. 2008 Aug;35(4):336-45 – reference: 22675360 - Int J Cell Biol. 2012;2012:273947 – reference: 23630073 - Genes Dev. 2013 Apr 15;27(8):819-35 – reference: 15696205 - PLoS Med. 2005 Jan;2(1):e17 – reference: 23000897 - Nature. 2012 Oct 4;490(7418):61-70 – reference: 24078903 - Int J Genomics. 2013;2013:271347 – reference: 21900401 - Cancer Res. 2011 Nov 1;71(21):6718-27 – reference: 25079552 - Nature. 2014 Jul 31;511(7511):543-50 – reference: 11934987 - Science. 2002 Apr 26;296(5568):755-8 – reference: 25887147 - Genome Biol. 2015;16:45 – reference: 21258394 - Nat Rev Cancer. 2011 Feb;11(2):85-95 – reference: 22982574 - Bioinformatics. 2012 Nov 15;28(22):2940-7 – reference: 22988093 - Proc Natl Acad Sci U S A. 2012 Oct 9;109(41):E2813-22 – reference: 23415222 - Cell. 2013 Feb 14;152(4):714-26 – reference: 26253137 - Genome Biol. 2015;16:160 – reference: 24696455 - Genes Dev. 2014 Apr 1;28(7):723-34 – reference: 23770567 - Nature. 2013 Jul 11;499(7457):214-8 – reference: 24747768 - Biochim Biophys Acta. 2014 Aug;1846(1):66-74 – reference: 21637379 - J Signal Transduct. 2011;2011:792639 – reference: 24449765 - Mol Cell Biol. 2014 Apr;34(7):1246-61 – reference: 24675718 - PLoS Comput Biol. 2014 Mar;10(3):e1003503 – reference: 14583449 - Cancer Res. 2003 Oct 15;63(20):6579-82 – reference: 11147808 - J Cell Physiol. 2001 Jan;186(1):136-45 – reference: 23532369 - Curr Neurol Neurosci Rep. 2013 May;13(5):345 – reference: 23045283 - Oncogene. 2013 Apr 25;32(17):2121-30 – reference: 22544022 - Nat Biotechnol. 2012 May;30(5):413-21 – reference: 24979463 - Oncotarget. 2014 Jul 30;5(14):5295-303 – reference: 24379735 - J Carcinog. 2013 Nov 06;12:21 – reference: 21908773 - Genome Res. 2012 Feb;22(2):398-406 – reference: 22817889 - Cell. 2012 Jul 20;150(2):251-63 – reference: 21653252 - Genome Res. 2012 Feb;22(2):375-85 – reference: 24088064 - Crit Rev Biochem Mol Biol. 2013 Nov-Dec;48(6):575-608 – reference: 23895164 - Genome Biol. 2013;14(7):R80 – reference: 20101205 - Oncogene. 2010 Apr 15;29(15):2217-27 – reference: 23634996 - N Engl J Med. 2013 May 30;368(22):2059-74 |
SSID | ssj0011803 |
Score | 2.3578403 |
Snippet | The central challenges in tumor sequencing studies is to identify driver genes and pathways, investigate their functional relationships, and nominate drug... |
SourceID | pubmedcentral proquest pubmed crossref elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 442 |
SubjectTerms | Breast cancer Breast Neoplasms - genetics Cell Line, Tumor Computational Biology - methods Core Binding Factor Alpha 2 Subunit - genetics driver genes Female fms-Like Tyrosine Kinase 3 - genetics Genes Genome-Wide Association Study Genomes GTP Phosphohydrolases - genetics Humans Isocitrate Dehydrogenase - genetics Leukemia, Myeloid, Acute - diagnosis Leukemia, Myeloid, Acute - genetics Mediator Complex - genetics Membrane Proteins - genetics Models, Molecular Mutation mutual exclusivity Nuclear Proteins - genetics oncogenic pathways Proto-Oncogene Proteins c-akt - genetics Proto-Oncogene Proteins c-kit - genetics Receptors, Cytoplasmic and Nuclear - genetics Repressor Proteins - genetics Sequence Analysis, DNA Simulation Transcription Factors - genetics tumor sequencing Tumor Suppressor Protein p53 - genetics |
Title | MEGSA: A Powerful and Flexible Framework for Analyzing Mutual Exclusivity of Tumor Mutations |
URI | https://dx.doi.org/10.1016/j.ajhg.2015.12.021 https://www.ncbi.nlm.nih.gov/pubmed/26899600 https://www.proquest.com/docview/1773538839 https://www.proquest.com/docview/1770876930 https://www.proquest.com/docview/1790949986 https://pubmed.ncbi.nlm.nih.gov/PMC4800034 |
Volume | 98 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9swEBddYbCXse9l7YoGexumPsmWlb1lJWkZZAzWQh4GQpLlNSV1yhrDur9-d_IHy8bysDfbOhnrLN2HdPc7xt7maZV7VCQJOl4yyZTFqwB5EoL2wqPKzTzlDs8_qbOL7OMiX-yxkz4XhsIqO9nfyvQorbsnxx03j2-WS8rxTQUqdzT4SejGZHKZ6ZjEt_gwnCSATmVvAhN1lzjTxnjZq8tvFN6Vxy1BAf9STn8bn3_GUP6mlGaP2MPOmuST9oMfs71QP2H32_qSd0_Z1_n09MvkPZ_wz1QMrWpW3NYlnxEIplsFPusjsziarjzik_xEVcbnDWWV8OkPv2puY3UJvq74eXONVNjWbvI9Yxez6fnJWdKVU0h8rtUmAV9pr8CJMgvjtCwqVNXOga2CkNK6opBOSPQuysoXugRw0qKr6sAFJdKx9_I526_XdXjJOL7J6ZBCsIT3lylns9IDWAXao8sjRwx6PhrfYY1TyYuV6YPKrgzx3hDvDQiDvB-xd0OfmxZpYyd13v8eszVfDKqCnf0O-39putV6awDHjoIfbcURezM04zqjwxNbh3UTaQi9byzTXTTjlMB-tBqxF-30GIYilCYgHOxdbE2cgYBwvrdb6uVlxPvOdIQRevWfQz5gD_BOxcA5ecj2N9-b8BotqY07YvdOF3AUF8wvFxocfQ |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELemoQleJtiAFQYYaW8oWmwnjstbmdp1sE5IdFIfkCzbcbZOJZ1YIwF_PXfOhygTfeAtis9RfLbvw777HSFHaVykDhRJBI6XiBJp4MmzNPJeOe5A5SYOc4cnF3J8mXycpbMtctLmwmBYZSP7a5kepHXz5rjh5vHtfI45vjEH5Q4GPwpdTCZ_ANZAhvUbzmYfuqsEpmLR2sBI3mTO1EFe5ub6CuO70nAmyNm_tNN96_PvIMo_tNLoMdltzEk6qP_4Cdny5R7ZqQtM_twnXyfD0y-D93RAP2M1tKJaUFPmdIQomHbh6agNzaJgu9IAUPILdBmdVJhWQoc_3KK6C-Ul6LKg0-obUEFbfcr3lFyOhtOTcdTUU4hcquQqYq5QTjLL88T34zwrQFdby0zhuRDGZpmwXIB7kRcuUzljVhjwVS2zXvK475x4RrbLZekPCIUvWeVj5g0C_iXSmiR3jBnJlAOfR_QIa_moXQM2jjUvFrqNKrvRyHuNvNeMa-B9j7zr-tzWUBsbqdN2evTagtGgCzb2O2znUjfb9U4zGDtIfjAWe-Rt1wwbDW9PTOmXVaBB-L6-iDfR9GNE-1GyR57Xy6MbCpcKkXCgd7a2cDoCBPpebynn1wHwO1EBR-jFfw75DXk4nk7O9fnZxaeX5BG0yBBFJw7J9up75V-BWbWyr8O2-Q2qXR6r |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=MEGSA%3A+A+Powerful+and+Flexible+Framework+for+Analyzing+Mutual+Exclusivity+of+Tumor+Mutations&rft.jtitle=American+journal+of+human+genetics&rft.au=Hua%2C+Xing&rft.au=Hyland%2C+Paula%C2%A0L.&rft.au=Huang%2C+Jing&rft.au=Song%2C+Lei&rft.date=2016-03-03&rft.pub=Elsevier&rft.issn=0002-9297&rft.eissn=1537-6605&rft.volume=98&rft.issue=3&rft.spage=442&rft.epage=455&rft_id=info:doi/10.1016%2Fj.ajhg.2015.12.021&rft_id=info%3Apmid%2F26899600&rft.externalDocID=PMC4800034 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0002-9297&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0002-9297&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0002-9297&client=summon |