Intracellular Reverse Transcription of Pfizer BioNTech COVID-19 mRNA Vaccine BNT162b2 In Vitro in Human Liver Cell Line

Preclinical studies of COVID-19 mRNA vaccine BNT162b2, developed by Pfizer and BioNTech, showed reversible hepatic effects in animals that received the BNT162b2 injection. Furthermore, a recent study showed that SARS-CoV-2 RNA can be reverse-transcribed and integrated into the genome of human cells....

Full description

Saved in:
Bibliographic Details
Published inCurrent issues in molecular biology Vol. 44; no. 3; pp. 1115 - 1126
Main Authors Aldén, Markus, Olofsson Falla, Francisko, Yang, Daowei, Barghouth, Mohammad, Luan, Cheng, Rasmussen, Magnus, De Marinis, Yang
Format Journal Article
LanguageEnglish
Published MDPI 25.02.2022
MDPI AG
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Preclinical studies of COVID-19 mRNA vaccine BNT162b2, developed by Pfizer and BioNTech, showed reversible hepatic effects in animals that received the BNT162b2 injection. Furthermore, a recent study showed that SARS-CoV-2 RNA can be reverse-transcribed and integrated into the genome of human cells. In this study, we investigated the effect of BNT162b2 on the human liver cell line Huh7 in vitro. Huh7 cells were exposed to BNT162b2, and quantitative PCR was performed on RNA extracted from the cells. We detected high levels of BNT162b2 in Huh7 cells and changes in gene expression of long interspersed nuclear element-1 (LINE-1), which is an endogenous reverse transcriptase. Immunohistochemistry using antibody binding to LINE-1 open reading frame-1 RNA-binding protein (ORFp1) on Huh7 cells treated with BNT162b2 indicated increased nucleus distribution of LINE-1. PCR on genomic DNA of Huh7 cells exposed to BNT162b2 amplified the DNA sequence unique to BNT162b2. Our results indicate a fast up-take of BNT162b2 into human liver cell line Huh7, leading to changes in LINE-1 expression and distribution. We also show that BNT162b2 mRNA is reverse transcribed intracellularly into DNA in as fast as 6 h upon BNT162b2 exposure.
AbstractList Preclinical studies of COVID-19 mRNA vaccine BNT162b2, developed by Pfizer and BioNTech, showed reversible hepatic effects in animals that received the BNT162b2 injection. Furthermore, a recent study showed that SARS-CoV-2 RNA can be reverse-transcribed and integrated into the genome of human cells. In this study, we investigated the effect of BNT162b2 on the human liver cell line Huh7 in vitro. Huh7 cells were exposed to BNT162b2, and quantitative PCR was performed on RNA extracted from the cells. We detected high levels of BNT162b2 in Huh7 cells and changes in gene expression of long interspersed nuclear element-1 (LINE-1), which is an endogenous reverse transcriptase. Immunohistochemistry using antibody binding to LINE-1 open reading frame-1 RNA-binding protein (ORFp1) on Huh7 cells treated with BNT162b2 indicated increased nucleus distribution of LINE-1. PCR on genomic DNA of Huh7 cells exposed to BNT162b2 amplified the DNA sequence unique to BNT162b2. Our results indicate a fast up-take of BNT162b2 into human liver cell line Huh7, leading to changes in LINE-1 expression and distribution. We also show that BNT162b2 mRNA is reverse transcribed intracellularly into DNA in as fast as 6 h upon BNT162b2 exposure.Preclinical studies of COVID-19 mRNA vaccine BNT162b2, developed by Pfizer and BioNTech, showed reversible hepatic effects in animals that received the BNT162b2 injection. Furthermore, a recent study showed that SARS-CoV-2 RNA can be reverse-transcribed and integrated into the genome of human cells. In this study, we investigated the effect of BNT162b2 on the human liver cell line Huh7 in vitro. Huh7 cells were exposed to BNT162b2, and quantitative PCR was performed on RNA extracted from the cells. We detected high levels of BNT162b2 in Huh7 cells and changes in gene expression of long interspersed nuclear element-1 (LINE-1), which is an endogenous reverse transcriptase. Immunohistochemistry using antibody binding to LINE-1 open reading frame-1 RNA-binding protein (ORFp1) on Huh7 cells treated with BNT162b2 indicated increased nucleus distribution of LINE-1. PCR on genomic DNA of Huh7 cells exposed to BNT162b2 amplified the DNA sequence unique to BNT162b2. Our results indicate a fast up-take of BNT162b2 into human liver cell line Huh7, leading to changes in LINE-1 expression and distribution. We also show that BNT162b2 mRNA is reverse transcribed intracellularly into DNA in as fast as 6 h upon BNT162b2 exposure.
Preclinical studies of COVID-19 mRNA vaccine BNT162b2, developed by Pfizer and BioNTech, showed reversible hepatic effects in animals that received the BNT162b2 injection. Furthermore, a recent study showed that SARS-CoV-2 RNA can be reverse-transcribed and integrated into the genome of human cells. In this study, we investigated the effect of BNT162b2 on the human liver cell line Huh7 in vitro. Huh7 cells were exposed to BNT162b2, and quantitative PCR was performed on RNA extracted from the cells. We detected high levels of BNT162b2 in Huh7 cells and changes in gene expression of long interspersed nuclear element-1 (LINE-1), which is an endogenous reverse transcriptase. Immunohistochemistry using antibody binding to LINE-1 open reading frame-1 RNA-binding protein (ORFp1) on Huh7 cells treated with BNT162b2 indicated increased nucleus distribution of LINE-1. PCR on genomic DNA of Huh7 cells exposed to BNT162b2 amplified the DNA sequence unique to BNT162b2. Our results indicate a fast up-take of BNT162b2 into human liver cell line Huh7, leading to changes in LINE-1 expression and distribution. We also show that BNT162b2 mRNA is reverse transcribed intracellularly into DNA in as fast as 6 h upon BNT162b2 exposure.
Preclinical studies of COVID-19 mRNA vaccine BNT162b2, developed by Pfizer and BioNTech, showed reversible hepatic effects in animals that received the BNT162b2 injection. Furthermore, a recent study showed that SARS-CoV-2 RNA can be reverse-transcribed and in-tegrated into the genome of human cells. In this study, we investigated the effect of BNT162b2 on the human liver cell line Huh7 in vitro. Huh7 cells were exposed to BNT162b2, and quantitative PCR was performed on RNA extracted from the cells. We detected high levels of BNT162b2 in Huh7 cells and changes in gene expression of long interspersed nuclear element-1 (LINE-1), which is an endogenous reverse transcriptase. Immunohistochemistry using antibody binding to LINE-1 open reading frame-1 RNA-binding protein (ORFp1) on Huh7 cells treated with BNT162b2 indicated increased nucleus distribution of LINE-1. PCR on genomic DNA of Huh7 cells exposed to BNT162b2 amplified the DNA sequence unique to BNT162b2. Our results indicate a fast up-take of BNT162b2 intohuman liver cell line Huh7, leading to changes in LINE-1 expression and distribution. We also show that BNT162b2 mRNA is reverse transcribed intracellularly into DNA in as fast as 6 h upon BNT162b2 exposure.
Preclinical studies of COVID-19 mRNA vaccine BNT162b2, developed by Pfizer and BioNTech, showed reversible hepatic effects in animals that received the BNT162b2 injection. Furthermore, a recent study showed that SARS-CoV-2 RNA can be reverse-transcribed and in-tegrated into the genome of human cells. In this study, we investigated the effect of BNT162b2 on the human liver cell line Huh7 in vitro. Huh7 cells were exposed to BNT162b2, and quantitative PCR was performed on RNA extracted from the cells. We detected high levels of BNT162b2 in Huh7 cells and changes in gene expression of long interspersed nuclear element-1 (LINE-1), which is an endogenous reverse transcriptase. Immunohistochemistry using antibody binding to LINE-1 open reading frame-1 RNA-binding protein (ORFp1) on Huh7 cells treated with BNT162b2 indicated increased nucleus distribution of LINE-1. PCR on genomic DNA of Huh7 cells exposed to BNT162b2 amplified the DNA sequence unique to BNT162b2. Our results indicate a fast up-take of BNT162b2 into human liver cell line Huh7, leading to changes in LINE-1 expression and distribution. We also show that BNT162b2 mRNA is reverse transcribed intracellularly into DNA in as fast as 6 h upon BNT162b2 exposure.
Author Olofsson Falla, Francisko
Rasmussen, Magnus
Aldén, Markus
De Marinis, Yang
Luan, Cheng
Barghouth, Mohammad
Yang, Daowei
AuthorAffiliation 1 Department of Clinical Sciences, Lund University, 20502 Malmö, Sweden; ma7440al-s@student.lu.se (M.A.); francisko.olofsson@gmail.com (F.O.F.); daowei.yang@med.lu.se (D.Y.); mohammad.barghouth@med.lu.se (M.B.); cheng.luan@med.lu.se (C.L.)
2 Infection Medicine, Department of Clinical Sciences, Lund University, 22362 Lund, Sweden; magnus.rasmussen@med.lu.se
AuthorAffiliation_xml – name: 1 Department of Clinical Sciences, Lund University, 20502 Malmö, Sweden; ma7440al-s@student.lu.se (M.A.); francisko.olofsson@gmail.com (F.O.F.); daowei.yang@med.lu.se (D.Y.); mohammad.barghouth@med.lu.se (M.B.); cheng.luan@med.lu.se (C.L.)
– name: 2 Infection Medicine, Department of Clinical Sciences, Lund University, 22362 Lund, Sweden; magnus.rasmussen@med.lu.se
Author_xml – sequence: 1
  givenname: Markus
  orcidid: 0000-0002-5166-0055
  surname: Aldén
  fullname: Aldén, Markus
– sequence: 2
  givenname: Francisko
  surname: Olofsson Falla
  fullname: Olofsson Falla, Francisko
– sequence: 3
  givenname: Daowei
  surname: Yang
  fullname: Yang, Daowei
– sequence: 4
  givenname: Mohammad
  surname: Barghouth
  fullname: Barghouth, Mohammad
– sequence: 5
  givenname: Cheng
  surname: Luan
  fullname: Luan, Cheng
– sequence: 6
  givenname: Magnus
  surname: Rasmussen
  fullname: Rasmussen, Magnus
– sequence: 7
  givenname: Yang
  orcidid: 0000-0002-8081-2142
  surname: De Marinis
  fullname: De Marinis, Yang
BackLink https://lup.lub.lu.se/record/ad4c0fbc-8aa9-44ef-895e-e220fdaa7e87$$DView record from Swedish Publication Index
oai:portal.research.lu.se:publications/ad4c0fbc-8aa9-44ef-895e-e220fdaa7e87$$DView record from Swedish Publication Index
BookMark eNqNkk1v1DAQhiNURD_gxg_wkQMLtuM4yQWpXT660mqLqmWvljOetK4Se7GTVvDrcbqL1EUgcbA8Gr_zvKPxnGZHzjvMsteMvsvzmr4H2zdC0JzSMn-WnTAhy1lORXH0JD7OTmO8o7Qoq5K9yI7zouQ5r-VJ9rBwQ9CAXTd2OpBrvMcQkayDdhGC3Q7WO-Jb8rW1PzGQC-tXa4RbMr_aLD7OWE3669U52WgA65BcrNZM8oaThSMbOwRPrCOXY68dWdpEJvNklEKHL7Pnre4ivtrfZ9m3z5_W88vZ8urLYn6-nEFRyWHGGi6BtTWFkjEBHAQvocklA4MUaW0kl5pi0wqppeAtKwqoKXJg2KZsmZ9lix3XeH2ntsH2OvxQXlv1mPDhRukwWOhQCTAsVTR5W9SiMlAZk-YHZjIxKUgsvWPFB9yOzQFt68OgOxUwog5wq7pRRVRJ1VnQ0xCj0kYAbRtQlda1EgJbVdUFKuSctkbrEqup3-U_Pbpxm06zZ_8n7sMOl1g9GsDpt7vDzg9enL1VN_4-oYSsJUuAN3tA8N9HjIPqbZzWRTv0Y1RcppXKq7qqk_TtTgrBxxhSP79tGFXTqqqnq5rk_A852OFxVKkR2_296BdejPBc
CitedBy_id crossref_primary_10_3390_vaccines11091465
crossref_primary_10_7759_cureus_57860
crossref_primary_10_1002_ciuz_202310016
crossref_primary_10_11648_j_ejcbs_20241002_11
crossref_primary_10_2144_fsoa_2021_0130
crossref_primary_10_1007_s12551_022_00957_3
crossref_primary_10_1089_omi_2022_0178
crossref_primary_10_1111_pbi_13908
crossref_primary_10_1016_j_nantod_2024_102325
crossref_primary_10_7759_cureus_32361
crossref_primary_10_1021_acs_molpharmaceut_3c00555
crossref_primary_10_3389_fimmu_2024_1336906
crossref_primary_10_7759_cureus_50703
crossref_primary_10_1080_14787210_2022_2089653
crossref_primary_10_2174_0126669587296962240521114748
crossref_primary_10_1016_j_bioactmat_2024_12_032
crossref_primary_10_1186_s12951_024_02590_6
crossref_primary_10_1038_s41598_023_42429_y
crossref_primary_10_1093_brain_awae135
crossref_primary_10_3390_ijms241310514
crossref_primary_10_4236_jbm_2024_1210017
crossref_primary_10_1080_15476286_2024_2399307
crossref_primary_10_1177_01926233241278298
crossref_primary_10_2174_0118715303283480240227113401
crossref_primary_10_1073_pnas_2207841119
crossref_primary_10_3390_pharmaceutics15030952
crossref_primary_10_3390_j6020017
crossref_primary_10_3390_cimb44040113
crossref_primary_10_1002_eji_202270055
crossref_primary_10_3390_microorganisms10071463
crossref_primary_10_3389_fphar_2022_995481
crossref_primary_10_1007_s40656_022_00548_1
crossref_primary_10_1128_mbio_01775_23
crossref_primary_10_3390_ijms251910293
crossref_primary_10_1111_1346_8138_17204
crossref_primary_10_1002_jgm_3733
crossref_primary_10_1128_jvi_01694_22
crossref_primary_10_51917_dialogo_2024_10_2_23
crossref_primary_10_3390_biomedicines10071676
crossref_primary_10_3390_jcm11144249
crossref_primary_10_37191_Mapsci_2582_7367_3_2__042
crossref_primary_10_3390_diagnostics12071555
crossref_primary_10_3390_biomedicines11020451
crossref_primary_10_3390_smartcities6030065
crossref_primary_10_1038_s41591_022_02061_1
crossref_primary_10_1002_adtp_202300255
crossref_primary_10_3390_cimb45010028
crossref_primary_10_1021_acsabm_3c00721
crossref_primary_10_1038_s41551_025_01343_6
crossref_primary_10_1186_s12943_024_02141_5
crossref_primary_10_3389_fonc_2024_1454370
crossref_primary_10_1016_j_msard_2022_103938
crossref_primary_10_1016_j_apsb_2023_07_025
crossref_primary_10_3390_ijms231810881
crossref_primary_10_1016_j_vacune_2024_05_002
crossref_primary_10_1016_j_jddst_2024_105547
crossref_primary_10_29121_granthaalayah_v12_i6_2024_5696
crossref_primary_10_3390_microorganisms11051308
crossref_primary_10_3390_nano13121828
crossref_primary_10_1021_acs_chemmater_4c00947
crossref_primary_10_1038_s41392_023_01561_x
crossref_primary_10_3390_molecules27072330
crossref_primary_10_5812_tms_129322
crossref_primary_10_1016_j_mehy_2023_111015
crossref_primary_10_4103_ohbl_ohbl_17_24
crossref_primary_10_14309_ajg_0000000000002702
crossref_primary_10_1007_s00103_025_04024_6
crossref_primary_10_7759_cureus_34872
crossref_primary_10_3390_genes13050719
crossref_primary_10_25259_SNI_377_2022
crossref_primary_10_1016_j_it_2023_11_003
crossref_primary_10_1002_btm2_10622
crossref_primary_10_1016_j_vacun_2024_01_001
crossref_primary_10_1016_j_bbrc_2023_09_016
crossref_primary_10_1186_s12951_023_02011_0
crossref_primary_10_1016_j_smaim_2022_11_001
crossref_primary_10_47570_joci_2024_004
crossref_primary_10_1080_08916934_2023_2259123
crossref_primary_10_1016_j_mrgentox_2024_503767
crossref_primary_10_7759_cureus_61780
crossref_primary_10_1007_s11051_023_05867_3
crossref_primary_10_1002_adma_202303266
Cites_doi 10.1038/nrmicro1579
10.1056/NEJMoa2034577
10.1016/j.jpeds.2021.07.044
10.7326/M21-1577
10.1016/j.gene.2007.12.022
10.1056/NEJMra1510092
10.1056/NEJMoa2035389
10.1056/NEJMoa2110475
10.1089/bfm.2021.0079
10.1073/pnas.0701458104
10.1002/ajh.26132
10.1016/j.ijid.2021.04.047
10.1534/genetics.116.188680
10.1101/2021.08.20.457104
10.1002/ajh.26272
10.1016/j.ijid.2021.04.053
10.1016/j.gde.2012.02.006
10.1056/NEJMoa2101765
10.1073/pnas.0601954103
10.1073/pnas.2105968118
10.1038/35057062
10.3390/diagnostics11040579
10.7554/eLife.30058
10.1016/S1473-3099(21)00224-3
10.1146/annurev-virology-110615-035556
10.1038/s41586-021-03275-y
10.1056/NEJMoa2027906
10.1177/0300985817738095
10.1056/NEJMc2107717
10.1016/j.jconrel.2020.03.006
10.1161/CIRCULATIONAHA.121.055913
10.3389/fcimb.2021.609160
10.1128/MCB.06785-11
10.3390/pharmaceutics13040544
10.1016/j.intimp.2021.107970
10.1016/j.jconrel.2017.09.044
10.1186/1759-8753-4-10
10.1086/380207
10.1038/s41586-020-2639-4
10.1038/s41591-021-01337-2
10.1038/nrmicro1541
10.1101/gr.206805.116
10.1111/jdv.17340
10.1128/JVI.02257-13
10.1016/j.jhep.2021.04.003
10.26508/lsa.201900536
10.1016/j.ymthe.2017.03.035
10.1016/j.dmpk.2018.03.003
10.1056/NEJMoa2101544
10.1038/ncomms6276
10.1128/MCB.01888-06
ContentType Journal Article
Copyright 2022 by the authors. 2022
Copyright_xml – notice: 2022 by the authors. 2022
CorporateAuthor Translational Muscle Research
Department of Clinical Sciences, Lund
Strategiska forskningsområden (SFO)
NanoLund: Centre for Nanoscience
Section III
Infection Medicine (BMC)
Medicinska fakulteten
Translational infection medicine
Translationell infektionsmedicin
Diabetes - öpatofysiologi
Institutionen för kliniska vetenskaper, Lund
Infektionsmedicin
Lunds universitet
Profile areas and other strong research environments
Department of Clinical Sciences, Malmö
Lund University
Sektion III
Translationell muskelforskning
EpiHealth: Epidemiology for Health
EXODIAB: Excellence of Diabetes Research in Sweden
Faculty of Medicine
Strategic research areas (SRA)
Diabetes - Islet Patophysiology
Profilområden och andra starka forskningsmiljöer
Institutionen för kliniska vetenskaper, Malmö
CorporateAuthor_xml – name: Strategiska forskningsområden (SFO)
– name: Translationell muskelforskning
– name: Sektion III
– name: Translationell infektionsmedicin
– name: Diabetes - Islet Patophysiology
– name: EpiHealth: Epidemiology for Health
– name: Strategic research areas (SRA)
– name: Department of Clinical Sciences, Lund
– name: Lund University
– name: EXODIAB: Excellence of Diabetes Research in Sweden
– name: Diabetes - öpatofysiologi
– name: NanoLund: Centre for Nanoscience
– name: Profile areas and other strong research environments
– name: Infektionsmedicin
– name: Department of Clinical Sciences, Malmö
– name: Translational infection medicine
– name: Faculty of Medicine
– name: Medicinska fakulteten
– name: Institutionen för kliniska vetenskaper, Malmö
– name: Institutionen för kliniska vetenskaper, Lund
– name: Lunds universitet
– name: Translational Muscle Research
– name: Profilområden och andra starka forskningsmiljöer
– name: Section III
– name: Infection Medicine (BMC)
DBID AAYXX
CITATION
7X8
5PM
ADTPV
AGCHP
AOWAS
D8T
D95
ZZAVC
DOA
DOI 10.3390/cimb44030073
DatabaseName CrossRef
MEDLINE - Academic
PubMed Central (Full Participant titles)
SwePub
SWEPUB Lunds universitet full text
SwePub Articles
SWEPUB Freely available online
SWEPUB Lunds universitet
SwePub Articles full text
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

CrossRef



Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1467-3045
EndPage 1126
ExternalDocumentID oai_doaj_org_article_4cd1f73b3f5948dc8dd467cd9d62d67c
oai_portal_research_lu_se_publications_ad4c0fbc_8aa9_44ef_895e_e220fdaa7e87
oai_lup_lub_lu_se_ad4c0fbc_8aa9_44ef_895e_e220fdaa7e87
PMC8946961
10_3390_cimb44030073
GroupedDBID ---
36B
53G
5GY
AAYXX
AENEX
AFZYC
ALMA_UNASSIGNED_HOLDINGS
CITATION
DIK
E3Z
EMB
F5P
FRP
GROUPED_DOAJ
GX1
IAO
IGS
IHR
INH
ITC
MODMG
OK1
PGMZT
RNS
RPM
TR2
7X8
5PM
0VX
A8Z
ADBBV
ADTPV
AGCHP
AOWAS
BAWUL
C1A
D8T
D95
EMOBN
MM.
SV3
ZZAVC
ID FETCH-LOGICAL-c586t-1b26c1f90c7114c2c427cb361cde0e09d626a0ebf46a642f155c90e2c1efebf73
IEDL.DBID DOA
ISSN 1467-3045
1467-3037
IngestDate Wed Aug 27 01:29:54 EDT 2025
Sun Aug 24 03:19:59 EDT 2025
Mon Apr 21 03:20:03 EDT 2025
Thu Aug 21 18:09:48 EDT 2025
Fri Jul 11 11:05:06 EDT 2025
Tue Jul 01 01:56:24 EDT 2025
Thu Apr 24 23:01:40 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License https://creativecommons.org/licenses/by/4.0
Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c586t-1b26c1f90c7114c2c427cb361cde0e09d626a0ebf46a642f155c90e2c1efebf73
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-8081-2142
0000-0002-5166-0055
OpenAccessLink https://doaj.org/article/4cd1f73b3f5948dc8dd467cd9d62d67c
PMID 35723296
PQID 2678738989
PQPubID 23479
PageCount 12
ParticipantIDs doaj_primary_oai_doaj_org_article_4cd1f73b3f5948dc8dd467cd9d62d67c
swepub_primary_oai_portal_research_lu_se_publications_ad4c0fbc_8aa9_44ef_895e_e220fdaa7e87
swepub_primary_oai_lup_lub_lu_se_ad4c0fbc_8aa9_44ef_895e_e220fdaa7e87
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8946961
proquest_miscellaneous_2678738989
crossref_primary_10_3390_cimb44030073
crossref_citationtrail_10_3390_cimb44030073
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20220225
PublicationDateYYYYMMDD 2022-02-25
PublicationDate_xml – month: 2
  year: 2022
  text: 20220225
  day: 25
PublicationDecade 2020
PublicationTitle Current issues in molecular biology
PublicationYear 2022
Publisher MDPI
MDPI AG
Publisher_xml – name: MDPI
– name: MDPI AG
References Bahl (ref_38) 2017; 25
Heidel (ref_30) 2007; 104
Polack (ref_4) 2020; 383
Sato (ref_29) 2017; 266
Vogel (ref_37) 2021; 592
Goff (ref_54) 2007; 5
Belancio (ref_48) 2008; 411
Larson (ref_10) 2021; 144
Ishay (ref_17) 2021; 99
Barda (ref_20) 2021; 385
Parkash (ref_14) 2021; 13
Baden (ref_21) 2021; 384
Lee (ref_16) 2021; 96
Zhang (ref_25) 2021; 118
Suzuki (ref_55) 2007; 5
Menni (ref_11) 2021; 21
Eichinger (ref_23) 2021; 385
Rossman (ref_8) 2021; 27
ref_24
Servant (ref_50) 2017; 205
Hancks (ref_44) 2012; 22
Dai (ref_49) 2012; 32
Harris (ref_5) 2021; 385
Yin (ref_47) 2021; 11
Fan (ref_9) 2021; 96
ref_27
ref_26
Ostertag (ref_43) 2003; 73
Garner (ref_19) 2021; 16
Macchietto (ref_46) 2020; 3
Dagan (ref_7) 2021; 384
Sedic (ref_28) 2018; 55
Shi (ref_56) 2018; 33
Das (ref_18) 2021; 238
Mazzatenta (ref_15) 2021; 35
ref_34
Guo (ref_51) 2014; 5
ref_33
ref_32
Kadali (ref_13) 2021; 106
ref_31
Shi (ref_53) 2007; 27
Macia (ref_58) 2017; 27
Jones (ref_45) 2013; 87
Hansen (ref_12) 2021; 107
Lander (ref_42) 2001; 409
Bril (ref_39) 2021; 75
Coffin (ref_41) 2016; 3
ref_1
Mita (ref_35) 2018; 7
Butt (ref_6) 2021; 174
Mulligan (ref_2) 2020; 586
Kazazian (ref_40) 2017; 377
Walsh (ref_3) 2020; 383
Xie (ref_52) 2013; 4
Kubo (ref_57) 2006; 103
Sadoff (ref_22) 2021; 384
Sato (ref_36) 2020; 322
References_xml – volume: 5
  start-page: 187
  year: 2007
  ident: ref_55
  article-title: The road to chromatin—Nuclear entry of retroviruses
  publication-title: Nat. Rev. Microbiol.
  doi: 10.1038/nrmicro1579
– volume: 383
  start-page: 2603
  year: 2020
  ident: ref_4
  article-title: Safety and Efficacy of the BNT162b2 mRNA COVID-19 Vaccine
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMoa2034577
– volume: 238
  start-page: 26
  year: 2021
  ident: ref_18
  article-title: Myopericarditis following mRNA COVID-19 Vaccination in Adolescents 12 through 18 Years of Age
  publication-title: J. Pediatr.
  doi: 10.1016/j.jpeds.2021.07.044
– volume: 174
  start-page: 1404
  year: 2021
  ident: ref_6
  article-title: SARS-CoV-2 Vaccine Effectiveness in a High-Risk National Population in a Real-World Setting
  publication-title: Ann. Intern. Med.
  doi: 10.7326/M21-1577
– volume: 411
  start-page: 38
  year: 2008
  ident: ref_48
  article-title: The impact of multiple splice sites in human L1 elements
  publication-title: Gene
  doi: 10.1016/j.gene.2007.12.022
– ident: ref_32
– volume: 377
  start-page: 361
  year: 2017
  ident: ref_40
  article-title: Mobile DNA in Health and Disease
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMra1510092
– volume: 384
  start-page: 403
  year: 2021
  ident: ref_21
  article-title: Efficacy and Safety of the mRNA-1273 SARS-CoV-2 Vaccine
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMoa2035389
– ident: ref_26
– volume: 385
  start-page: 1078
  year: 2021
  ident: ref_20
  article-title: Safety of the BNT162b2 mRNA Covid-19 Vaccine in a Nationwide Setting
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMoa2110475
– volume: 16
  start-page: 702
  year: 2021
  ident: ref_19
  article-title: Maternal and Child Symptoms Following COVID-19 Vaccination Among Breastfeeding Mothers
  publication-title: Breastfeed. Med.
  doi: 10.1089/bfm.2021.0079
– volume: 104
  start-page: 5715
  year: 2007
  ident: ref_30
  article-title: Administration in non-human primates of escalating intravenous doses of targeted nanoparticles containing ribonucleotide reductase subunit M2 siRNA
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0701458104
– volume: 96
  start-page: 534
  year: 2021
  ident: ref_16
  article-title: Thrombocytopenia following Pfizer and Moderna SARS-CoV-2 vaccination
  publication-title: Am. J. Hematol.
  doi: 10.1002/ajh.26132
– ident: ref_1
– volume: 106
  start-page: 376
  year: 2021
  ident: ref_13
  article-title: Side effects of BNT162b2 mRNA COVID-19 vaccine: A randomized, cross-sectional study with detailed self-reported symptoms from healthcare workers
  publication-title: Int. J. Infect. Dis.
  doi: 10.1016/j.ijid.2021.04.047
– ident: ref_31
– volume: 205
  start-page: 139
  year: 2017
  ident: ref_50
  article-title: The Nucleotide Excision Repair Pathway Limits L1 Retrotransposition
  publication-title: Genetics
  doi: 10.1534/genetics.116.188680
– ident: ref_33
  doi: 10.1101/2021.08.20.457104
– volume: 96
  start-page: E357
  year: 2021
  ident: ref_9
  article-title: Cerebral venous thrombosis post BNT162b2 mRNA SARS-CoV-2 vaccination: A black swan event
  publication-title: Am. J. Hematol.
  doi: 10.1002/ajh.26272
– volume: 107
  start-page: 172
  year: 2021
  ident: ref_12
  article-title: First case of postmortem study in a patient vaccinated against SARS-CoV-2
  publication-title: Int. J. Infect. Dis.
  doi: 10.1016/j.ijid.2021.04.053
– volume: 22
  start-page: 191
  year: 2012
  ident: ref_44
  article-title: Active human retrotransposons: Variation and disease
  publication-title: Curr. Opin. Genet. Dev.
  doi: 10.1016/j.gde.2012.02.006
– volume: 384
  start-page: 1412
  year: 2021
  ident: ref_7
  article-title: BNT162b2 mRNA Covid-19 Vaccine in a Nationwide Mass Vaccination Setting
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMoa2101765
– volume: 103
  start-page: 8036
  year: 2006
  ident: ref_57
  article-title: L1 retrotransposition in nondividing and primary human somatic cells
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0601954103
– volume: 118
  start-page: e2105968118
  year: 2021
  ident: ref_25
  article-title: Reverse-transcribed SARS-CoV-2 RNA can integrate into the genome of cultured human cells and can be expressed in patient-derived tissues
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.2105968118
– volume: 409
  start-page: 860
  year: 2001
  ident: ref_42
  article-title: Initial sequencing and analysis of the human genome
  publication-title: Nature
  doi: 10.1038/35057062
– ident: ref_24
  doi: 10.3390/diagnostics11040579
– volume: 7
  start-page: e30058
  year: 2018
  ident: ref_35
  article-title: LINE-1 protein localization and functional dynamics during the cell cycle
  publication-title: Elife
  doi: 10.7554/eLife.30058
– volume: 21
  start-page: 939
  year: 2021
  ident: ref_11
  article-title: Vaccine side-effects and SARS-CoV-2 infection after vaccination in users of the COVID Symptom Study app in the UK: A prospective observational study
  publication-title: Lancet Infect. Dis.
  doi: 10.1016/S1473-3099(21)00224-3
– volume: 3
  start-page: 29
  year: 2016
  ident: ref_41
  article-title: The Discovery of Reverse Transcriptase
  publication-title: Annu. Rev. Virol.
  doi: 10.1146/annurev-virology-110615-035556
– volume: 592
  start-page: 283
  year: 2021
  ident: ref_37
  article-title: BNT162b vaccines protect rhesus macaques from SARS-CoV-2
  publication-title: Nature
  doi: 10.1038/s41586-021-03275-y
– volume: 13
  start-page: e14741
  year: 2021
  ident: ref_14
  article-title: Acute Pancreatitis: A Possible Side Effect of COVID-19 Vaccine
  publication-title: Cureus
– ident: ref_34
– volume: 383
  start-page: 2439
  year: 2020
  ident: ref_3
  article-title: Safety and Immunogenicity of Two RNA-Based COVID-19 Vaccine Candidates
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMoa2027906
– volume: 55
  start-page: 341
  year: 2018
  ident: ref_28
  article-title: Safety Evaluation of Lipid Nanoparticle-Formulated Modified mRNA in the Sprague-Dawley Rat and Cynomolgus Monkey
  publication-title: Vet. Pathol.
  doi: 10.1177/0300985817738095
– volume: 385
  start-page: 759
  year: 2021
  ident: ref_5
  article-title: Effect of Vaccination on Household Transmission of SARS-CoV-2 in England
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMc2107717
– volume: 322
  start-page: 217
  year: 2020
  ident: ref_36
  article-title: Different kinetics for the hepatic uptake of lipid nanoparticles between the apolipoprotein E/low density lipoprotein receptor and the N-acetyl-d-galactosamine/asialoglycoprotein receptor pathway
  publication-title: J. Control. Release
  doi: 10.1016/j.jconrel.2020.03.006
– volume: 144
  start-page: 506
  year: 2021
  ident: ref_10
  article-title: Myocarditis After BNT162b2 and mRNA-1273 Vaccination
  publication-title: Circulation
  doi: 10.1161/CIRCULATIONAHA.121.055913
– volume: 11
  start-page: 609160
  year: 2021
  ident: ref_47
  article-title: Exogenous Coronavirus Interacts With Endogenous Retrotransposon in Human Cells
  publication-title: Front. Cell Infect. Microbiol.
  doi: 10.3389/fcimb.2021.609160
– volume: 32
  start-page: 4323
  year: 2012
  ident: ref_49
  article-title: Poly(A) binding protein C1 is essential for efficient L1 retrotransposition and affects L1 RNP formation
  publication-title: Mol. Cell Biol.
  doi: 10.1128/MCB.06785-11
– ident: ref_27
  doi: 10.3390/pharmaceutics13040544
– volume: 99
  start-page: 107970
  year: 2021
  ident: ref_17
  article-title: Autoimmune phenomena following SARS-CoV-2 vaccination
  publication-title: Int. Immunopharmacol.
  doi: 10.1016/j.intimp.2021.107970
– volume: 266
  start-page: 216
  year: 2017
  ident: ref_29
  article-title: Highly specific delivery of siRNA to hepatocytes circumvents endothelial cell-mediated lipid nanoparticle-associated toxicity leading to the safe and efficacious decrease in the hepatitis B virus
  publication-title: J. Control. Release
  doi: 10.1016/j.jconrel.2017.09.044
– volume: 4
  start-page: 10
  year: 2013
  ident: ref_52
  article-title: Cell division promotes efficient retrotransposition in a stable L1 reporter cell line
  publication-title: Mob. DNA
  doi: 10.1186/1759-8753-4-10
– volume: 73
  start-page: 1444
  year: 2003
  ident: ref_43
  article-title: SVA elements are nonautonomous retrotransposons that cause disease in humans
  publication-title: Am. J. Hum. Genet.
  doi: 10.1086/380207
– volume: 586
  start-page: 589
  year: 2020
  ident: ref_2
  article-title: Phase I/II study of COVID-19 RNA vaccine BNT162b1 in adults
  publication-title: Nature
  doi: 10.1038/s41586-020-2639-4
– volume: 27
  start-page: 1055
  year: 2021
  ident: ref_8
  article-title: COVID-19 dynamics after a national immunization program in Israel
  publication-title: Nat. Med.
  doi: 10.1038/s41591-021-01337-2
– volume: 5
  start-page: 253
  year: 2007
  ident: ref_54
  article-title: Host factors exploited by retroviruses
  publication-title: Nat. Rev. Microbiol
  doi: 10.1038/nrmicro1541
– volume: 27
  start-page: 335
  year: 2017
  ident: ref_58
  article-title: Engineered LINE-1 retrotransposition in nondividing human neurons
  publication-title: Genome Res.
  doi: 10.1101/gr.206805.116
– volume: 35
  start-page: e543
  year: 2021
  ident: ref_15
  article-title: Purpuric lesions on the eyelids developed after BNT162b2 mRNA COVID-19 vaccine: Another piece of SARS-CoV-2 skin puzzle?
  publication-title: J. Eur. Acad. Dermatol. Venereol.
  doi: 10.1111/jdv.17340
– volume: 385
  start-page: e11
  year: 2021
  ident: ref_23
  article-title: Thrombotic Thrombocytopenia after ChAdOx1 nCoV-19 Vaccination. Reply
  publication-title: N. Engl. J. Med.
– volume: 87
  start-page: 13307
  year: 2013
  ident: ref_45
  article-title: LINE-1 retrotransposable element DNA accumulates in HIV-1-infected cells
  publication-title: J. Virol.
  doi: 10.1128/JVI.02257-13
– volume: 75
  start-page: 222
  year: 2021
  ident: ref_39
  article-title: Autoimmune hepatitis developing after coronavirus disease 2019 (COVID-19) vaccine: Causality or casualty?
  publication-title: J. Hepatol.
  doi: 10.1016/j.jhep.2021.04.003
– volume: 3
  start-page: e201900536
  year: 2020
  ident: ref_46
  article-title: Virus-induced transposable element expression up-regulation in human and mouse host cells
  publication-title: Life Sci. Alliance
  doi: 10.26508/lsa.201900536
– volume: 25
  start-page: 1316
  year: 2017
  ident: ref_38
  article-title: Preclinical and Clinical Demonstration of Immunogenicity by mRNA Vaccines against H10N8 and H7N9 Influenza Viruses
  publication-title: Mol. Ther.
  doi: 10.1016/j.ymthe.2017.03.035
– volume: 33
  start-page: 133
  year: 2018
  ident: ref_56
  article-title: Comparison of protein expression between human livers and the hepatic cell lines HepG2, Hep3B, and Huh7 using SWATH and MRM-HR proteomics: Focusing on drug-metabolizing enzymes
  publication-title: Drug Metab. Pharmacokinet.
  doi: 10.1016/j.dmpk.2018.03.003
– volume: 384
  start-page: 2187
  year: 2021
  ident: ref_22
  article-title: Safety and Efficacy of Single-Dose Ad26.COV2.S Vaccine against Covid-19
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMoa2101544
– volume: 5
  start-page: 5276
  year: 2014
  ident: ref_51
  article-title: Autophagy supports genomic stability by degrading retrotransposon RNA
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms6276
– volume: 27
  start-page: 1264
  year: 2007
  ident: ref_53
  article-title: Cell divisions are required for L1 retrotransposition
  publication-title: Mol. Cell Biol.
  doi: 10.1128/MCB.01888-06
SSID ssj0057871
ssib044733985
Score 2.5507863
Snippet Preclinical studies of COVID-19 mRNA vaccine BNT162b2, developed by Pfizer and BioNTech, showed reversible hepatic effects in animals that received the...
SourceID doaj
swepub
pubmedcentral
proquest
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage 1115
SubjectTerms Basic Medicine
BNT162b2
Cell and Molecular Biology
Cell- och molekylärbiologi
COVID-19 mRNA vaccine
Huh7
LINE-1
Liver
Medical and Health Sciences
Medicin och hälsovetenskap
Medicinska och farmaceutiska grundvetenskaper
Reverse transcription
Title Intracellular Reverse Transcription of Pfizer BioNTech COVID-19 mRNA Vaccine BNT162b2 In Vitro in Human Liver Cell Line
URI https://www.proquest.com/docview/2678738989
https://pubmed.ncbi.nlm.nih.gov/PMC8946961
https://lup.lub.lu.se/record/ad4c0fbc-8aa9-44ef-895e-e220fdaa7e87
oai:portal.research.lu.se:publications/ad4c0fbc-8aa9-44ef-895e-e220fdaa7e87
https://doaj.org/article/4cd1f73b3f5948dc8dd467cd9d62d67c
Volume 44
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrR1NaxQxNEhB8CJ-4lgtEfQkQzOZbDI5tuuWrthVSrsULyGfdKGdXba7iB787b43M1t3RNGDhwzDTJIh72PeR17eI-S1l6JKTKQctAeeCy1dri0wnuaKhzAoVbLo7ziZyONz8f5icLFV6gtjwtr0wC3g9oUPRVKlKxMmFgm-CgF42wcdJA9wg39fkHlbxhRQkhCqLPVPRRjJsmjPGQFLsVK1IfDQh-372bUTAmidqbInnJoc_j3F89ewyV5y0UYgHT0g9ztNkh60K3hI7sT6Ebnb1pb8-ph8GeNw9MtjoCk9jRh_EWkjmzZ_CjpP9FOafYtLCuMm6Ganw4_T8TuAKb0-nRzQqfW4804PJ2eF5I7TcU2ns9VyTmc1bTYA6AeM7KBD-BDc1vEJOT8anQ2P867KQu4HlVzlhePSF0kzr8A28twLrrwrZeFDZJEhnKVl0SUhLRgrCRQQr1nkvogJnqryKdmp53V8Rqj1nBdlAqwHi_uDlXbaayt80gVqWhl5uwGv8V0KcqyEcWXAFEFkmG1kZOTNbe9Fm3rjD_0OEVO3fTBhdvMAyMh0ZGT-RkYZebXBswEGQ-zYOs7XN4aDOFclVtnMiOoRQO-L_Tf17LJJ1V1pIbUsMjJqSaU35Gq9gOagmZtobBCeJedNZa02QsCqKz2IJnLOUrBWxUpl5PNv5mkNNdNlh7rs5ltsuX3_afLn_wOOu-QexwMieOh_8ILsrJbr-BLUtpXbazgUriffR3uNV-0HkgJEWg
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Intracellular+Reverse+Transcription+of+Pfizer+BioNTech+COVID-19+mRNA+Vaccine+BNT162b2+In+Vitro+in+Human+Liver+Cell+Line&rft.jtitle=Current+issues+in+molecular+biology&rft.au=Ald%C3%A9n%2C+Markus&rft.au=Olofsson+Falla%2C+Francisko&rft.au=Yang%2C+Daowei&rft.au=Barghouth%2C+Mohammad&rft.date=2022-02-25&rft.issn=1467-3045&rft.eissn=1467-3045&rft.volume=44&rft.issue=3&rft.spage=1115&rft_id=info:doi/10.3390%2Fcimb44030073&rft.externalDocID=oai_lup_lub_lu_se_ad4c0fbc_8aa9_44ef_895e_e220fdaa7e87
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1467-3045&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1467-3045&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1467-3045&client=summon