Intracellular Reverse Transcription of Pfizer BioNTech COVID-19 mRNA Vaccine BNT162b2 In Vitro in Human Liver Cell Line
Preclinical studies of COVID-19 mRNA vaccine BNT162b2, developed by Pfizer and BioNTech, showed reversible hepatic effects in animals that received the BNT162b2 injection. Furthermore, a recent study showed that SARS-CoV-2 RNA can be reverse-transcribed and integrated into the genome of human cells....
Saved in:
Published in | Current issues in molecular biology Vol. 44; no. 3; pp. 1115 - 1126 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
MDPI
25.02.2022
MDPI AG |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Preclinical studies of COVID-19 mRNA vaccine BNT162b2, developed by Pfizer and BioNTech, showed reversible hepatic effects in animals that received the BNT162b2 injection. Furthermore, a recent study showed that SARS-CoV-2 RNA can be reverse-transcribed and integrated into the genome of human cells. In this study, we investigated the effect of BNT162b2 on the human liver cell line Huh7 in vitro. Huh7 cells were exposed to BNT162b2, and quantitative PCR was performed on RNA extracted from the cells. We detected high levels of BNT162b2 in Huh7 cells and changes in gene expression of long interspersed nuclear element-1 (LINE-1), which is an endogenous reverse transcriptase. Immunohistochemistry using antibody binding to LINE-1 open reading frame-1 RNA-binding protein (ORFp1) on Huh7 cells treated with BNT162b2 indicated increased nucleus distribution of LINE-1. PCR on genomic DNA of Huh7 cells exposed to BNT162b2 amplified the DNA sequence unique to BNT162b2. Our results indicate a fast up-take of BNT162b2 into human liver cell line Huh7, leading to changes in LINE-1 expression and distribution. We also show that BNT162b2 mRNA is reverse transcribed intracellularly into DNA in as fast as 6 h upon BNT162b2 exposure. |
---|---|
AbstractList | Preclinical studies of COVID-19 mRNA vaccine BNT162b2, developed by Pfizer and BioNTech, showed reversible hepatic effects in animals that received the BNT162b2 injection. Furthermore, a recent study showed that SARS-CoV-2 RNA can be reverse-transcribed and integrated into the genome of human cells. In this study, we investigated the effect of BNT162b2 on the human liver cell line Huh7 in vitro. Huh7 cells were exposed to BNT162b2, and quantitative PCR was performed on RNA extracted from the cells. We detected high levels of BNT162b2 in Huh7 cells and changes in gene expression of long interspersed nuclear element-1 (LINE-1), which is an endogenous reverse transcriptase. Immunohistochemistry using antibody binding to LINE-1 open reading frame-1 RNA-binding protein (ORFp1) on Huh7 cells treated with BNT162b2 indicated increased nucleus distribution of LINE-1. PCR on genomic DNA of Huh7 cells exposed to BNT162b2 amplified the DNA sequence unique to BNT162b2. Our results indicate a fast up-take of BNT162b2 into human liver cell line Huh7, leading to changes in LINE-1 expression and distribution. We also show that BNT162b2 mRNA is reverse transcribed intracellularly into DNA in as fast as 6 h upon BNT162b2 exposure.Preclinical studies of COVID-19 mRNA vaccine BNT162b2, developed by Pfizer and BioNTech, showed reversible hepatic effects in animals that received the BNT162b2 injection. Furthermore, a recent study showed that SARS-CoV-2 RNA can be reverse-transcribed and integrated into the genome of human cells. In this study, we investigated the effect of BNT162b2 on the human liver cell line Huh7 in vitro. Huh7 cells were exposed to BNT162b2, and quantitative PCR was performed on RNA extracted from the cells. We detected high levels of BNT162b2 in Huh7 cells and changes in gene expression of long interspersed nuclear element-1 (LINE-1), which is an endogenous reverse transcriptase. Immunohistochemistry using antibody binding to LINE-1 open reading frame-1 RNA-binding protein (ORFp1) on Huh7 cells treated with BNT162b2 indicated increased nucleus distribution of LINE-1. PCR on genomic DNA of Huh7 cells exposed to BNT162b2 amplified the DNA sequence unique to BNT162b2. Our results indicate a fast up-take of BNT162b2 into human liver cell line Huh7, leading to changes in LINE-1 expression and distribution. We also show that BNT162b2 mRNA is reverse transcribed intracellularly into DNA in as fast as 6 h upon BNT162b2 exposure. Preclinical studies of COVID-19 mRNA vaccine BNT162b2, developed by Pfizer and BioNTech, showed reversible hepatic effects in animals that received the BNT162b2 injection. Furthermore, a recent study showed that SARS-CoV-2 RNA can be reverse-transcribed and integrated into the genome of human cells. In this study, we investigated the effect of BNT162b2 on the human liver cell line Huh7 in vitro. Huh7 cells were exposed to BNT162b2, and quantitative PCR was performed on RNA extracted from the cells. We detected high levels of BNT162b2 in Huh7 cells and changes in gene expression of long interspersed nuclear element-1 (LINE-1), which is an endogenous reverse transcriptase. Immunohistochemistry using antibody binding to LINE-1 open reading frame-1 RNA-binding protein (ORFp1) on Huh7 cells treated with BNT162b2 indicated increased nucleus distribution of LINE-1. PCR on genomic DNA of Huh7 cells exposed to BNT162b2 amplified the DNA sequence unique to BNT162b2. Our results indicate a fast up-take of BNT162b2 into human liver cell line Huh7, leading to changes in LINE-1 expression and distribution. We also show that BNT162b2 mRNA is reverse transcribed intracellularly into DNA in as fast as 6 h upon BNT162b2 exposure. Preclinical studies of COVID-19 mRNA vaccine BNT162b2, developed by Pfizer and BioNTech, showed reversible hepatic effects in animals that received the BNT162b2 injection. Furthermore, a recent study showed that SARS-CoV-2 RNA can be reverse-transcribed and in-tegrated into the genome of human cells. In this study, we investigated the effect of BNT162b2 on the human liver cell line Huh7 in vitro. Huh7 cells were exposed to BNT162b2, and quantitative PCR was performed on RNA extracted from the cells. We detected high levels of BNT162b2 in Huh7 cells and changes in gene expression of long interspersed nuclear element-1 (LINE-1), which is an endogenous reverse transcriptase. Immunohistochemistry using antibody binding to LINE-1 open reading frame-1 RNA-binding protein (ORFp1) on Huh7 cells treated with BNT162b2 indicated increased nucleus distribution of LINE-1. PCR on genomic DNA of Huh7 cells exposed to BNT162b2 amplified the DNA sequence unique to BNT162b2. Our results indicate a fast up-take of BNT162b2 intohuman liver cell line Huh7, leading to changes in LINE-1 expression and distribution. We also show that BNT162b2 mRNA is reverse transcribed intracellularly into DNA in as fast as 6 h upon BNT162b2 exposure. Preclinical studies of COVID-19 mRNA vaccine BNT162b2, developed by Pfizer and BioNTech, showed reversible hepatic effects in animals that received the BNT162b2 injection. Furthermore, a recent study showed that SARS-CoV-2 RNA can be reverse-transcribed and in-tegrated into the genome of human cells. In this study, we investigated the effect of BNT162b2 on the human liver cell line Huh7 in vitro. Huh7 cells were exposed to BNT162b2, and quantitative PCR was performed on RNA extracted from the cells. We detected high levels of BNT162b2 in Huh7 cells and changes in gene expression of long interspersed nuclear element-1 (LINE-1), which is an endogenous reverse transcriptase. Immunohistochemistry using antibody binding to LINE-1 open reading frame-1 RNA-binding protein (ORFp1) on Huh7 cells treated with BNT162b2 indicated increased nucleus distribution of LINE-1. PCR on genomic DNA of Huh7 cells exposed to BNT162b2 amplified the DNA sequence unique to BNT162b2. Our results indicate a fast up-take of BNT162b2 into human liver cell line Huh7, leading to changes in LINE-1 expression and distribution. We also show that BNT162b2 mRNA is reverse transcribed intracellularly into DNA in as fast as 6 h upon BNT162b2 exposure. |
Author | Olofsson Falla, Francisko Rasmussen, Magnus Aldén, Markus De Marinis, Yang Luan, Cheng Barghouth, Mohammad Yang, Daowei |
AuthorAffiliation | 1 Department of Clinical Sciences, Lund University, 20502 Malmö, Sweden; ma7440al-s@student.lu.se (M.A.); francisko.olofsson@gmail.com (F.O.F.); daowei.yang@med.lu.se (D.Y.); mohammad.barghouth@med.lu.se (M.B.); cheng.luan@med.lu.se (C.L.) 2 Infection Medicine, Department of Clinical Sciences, Lund University, 22362 Lund, Sweden; magnus.rasmussen@med.lu.se |
AuthorAffiliation_xml | – name: 1 Department of Clinical Sciences, Lund University, 20502 Malmö, Sweden; ma7440al-s@student.lu.se (M.A.); francisko.olofsson@gmail.com (F.O.F.); daowei.yang@med.lu.se (D.Y.); mohammad.barghouth@med.lu.se (M.B.); cheng.luan@med.lu.se (C.L.) – name: 2 Infection Medicine, Department of Clinical Sciences, Lund University, 22362 Lund, Sweden; magnus.rasmussen@med.lu.se |
Author_xml | – sequence: 1 givenname: Markus orcidid: 0000-0002-5166-0055 surname: Aldén fullname: Aldén, Markus – sequence: 2 givenname: Francisko surname: Olofsson Falla fullname: Olofsson Falla, Francisko – sequence: 3 givenname: Daowei surname: Yang fullname: Yang, Daowei – sequence: 4 givenname: Mohammad surname: Barghouth fullname: Barghouth, Mohammad – sequence: 5 givenname: Cheng surname: Luan fullname: Luan, Cheng – sequence: 6 givenname: Magnus surname: Rasmussen fullname: Rasmussen, Magnus – sequence: 7 givenname: Yang orcidid: 0000-0002-8081-2142 surname: De Marinis fullname: De Marinis, Yang |
BackLink | https://lup.lub.lu.se/record/ad4c0fbc-8aa9-44ef-895e-e220fdaa7e87$$DView record from Swedish Publication Index oai:portal.research.lu.se:publications/ad4c0fbc-8aa9-44ef-895e-e220fdaa7e87$$DView record from Swedish Publication Index |
BookMark | eNqNkk1v1DAQhiNURD_gxg_wkQMLtuM4yQWpXT660mqLqmWvljOetK4Se7GTVvDrcbqL1EUgcbA8Gr_zvKPxnGZHzjvMsteMvsvzmr4H2zdC0JzSMn-WnTAhy1lORXH0JD7OTmO8o7Qoq5K9yI7zouQ5r-VJ9rBwQ9CAXTd2OpBrvMcQkayDdhGC3Q7WO-Jb8rW1PzGQC-tXa4RbMr_aLD7OWE3669U52WgA65BcrNZM8oaThSMbOwRPrCOXY68dWdpEJvNklEKHL7Pnre4ivtrfZ9m3z5_W88vZ8urLYn6-nEFRyWHGGi6BtTWFkjEBHAQvocklA4MUaW0kl5pi0wqppeAtKwqoKXJg2KZsmZ9lix3XeH2ntsH2OvxQXlv1mPDhRukwWOhQCTAsVTR5W9SiMlAZk-YHZjIxKUgsvWPFB9yOzQFt68OgOxUwog5wq7pRRVRJ1VnQ0xCj0kYAbRtQlda1EgJbVdUFKuSctkbrEqup3-U_Pbpxm06zZ_8n7sMOl1g9GsDpt7vDzg9enL1VN_4-oYSsJUuAN3tA8N9HjIPqbZzWRTv0Y1RcppXKq7qqk_TtTgrBxxhSP79tGFXTqqqnq5rk_A852OFxVKkR2_296BdejPBc |
CitedBy_id | crossref_primary_10_3390_vaccines11091465 crossref_primary_10_7759_cureus_57860 crossref_primary_10_1002_ciuz_202310016 crossref_primary_10_11648_j_ejcbs_20241002_11 crossref_primary_10_2144_fsoa_2021_0130 crossref_primary_10_1007_s12551_022_00957_3 crossref_primary_10_1089_omi_2022_0178 crossref_primary_10_1111_pbi_13908 crossref_primary_10_1016_j_nantod_2024_102325 crossref_primary_10_7759_cureus_32361 crossref_primary_10_1021_acs_molpharmaceut_3c00555 crossref_primary_10_3389_fimmu_2024_1336906 crossref_primary_10_7759_cureus_50703 crossref_primary_10_1080_14787210_2022_2089653 crossref_primary_10_2174_0126669587296962240521114748 crossref_primary_10_1016_j_bioactmat_2024_12_032 crossref_primary_10_1186_s12951_024_02590_6 crossref_primary_10_1038_s41598_023_42429_y crossref_primary_10_1093_brain_awae135 crossref_primary_10_3390_ijms241310514 crossref_primary_10_4236_jbm_2024_1210017 crossref_primary_10_1080_15476286_2024_2399307 crossref_primary_10_1177_01926233241278298 crossref_primary_10_2174_0118715303283480240227113401 crossref_primary_10_1073_pnas_2207841119 crossref_primary_10_3390_pharmaceutics15030952 crossref_primary_10_3390_j6020017 crossref_primary_10_3390_cimb44040113 crossref_primary_10_1002_eji_202270055 crossref_primary_10_3390_microorganisms10071463 crossref_primary_10_3389_fphar_2022_995481 crossref_primary_10_1007_s40656_022_00548_1 crossref_primary_10_1128_mbio_01775_23 crossref_primary_10_3390_ijms251910293 crossref_primary_10_1111_1346_8138_17204 crossref_primary_10_1002_jgm_3733 crossref_primary_10_1128_jvi_01694_22 crossref_primary_10_51917_dialogo_2024_10_2_23 crossref_primary_10_3390_biomedicines10071676 crossref_primary_10_3390_jcm11144249 crossref_primary_10_37191_Mapsci_2582_7367_3_2__042 crossref_primary_10_3390_diagnostics12071555 crossref_primary_10_3390_biomedicines11020451 crossref_primary_10_3390_smartcities6030065 crossref_primary_10_1038_s41591_022_02061_1 crossref_primary_10_1002_adtp_202300255 crossref_primary_10_3390_cimb45010028 crossref_primary_10_1021_acsabm_3c00721 crossref_primary_10_1038_s41551_025_01343_6 crossref_primary_10_1186_s12943_024_02141_5 crossref_primary_10_3389_fonc_2024_1454370 crossref_primary_10_1016_j_msard_2022_103938 crossref_primary_10_1016_j_apsb_2023_07_025 crossref_primary_10_3390_ijms231810881 crossref_primary_10_1016_j_vacune_2024_05_002 crossref_primary_10_1016_j_jddst_2024_105547 crossref_primary_10_29121_granthaalayah_v12_i6_2024_5696 crossref_primary_10_3390_microorganisms11051308 crossref_primary_10_3390_nano13121828 crossref_primary_10_1021_acs_chemmater_4c00947 crossref_primary_10_1038_s41392_023_01561_x crossref_primary_10_3390_molecules27072330 crossref_primary_10_5812_tms_129322 crossref_primary_10_1016_j_mehy_2023_111015 crossref_primary_10_4103_ohbl_ohbl_17_24 crossref_primary_10_14309_ajg_0000000000002702 crossref_primary_10_1007_s00103_025_04024_6 crossref_primary_10_7759_cureus_34872 crossref_primary_10_3390_genes13050719 crossref_primary_10_25259_SNI_377_2022 crossref_primary_10_1016_j_it_2023_11_003 crossref_primary_10_1002_btm2_10622 crossref_primary_10_1016_j_vacun_2024_01_001 crossref_primary_10_1016_j_bbrc_2023_09_016 crossref_primary_10_1186_s12951_023_02011_0 crossref_primary_10_1016_j_smaim_2022_11_001 crossref_primary_10_47570_joci_2024_004 crossref_primary_10_1080_08916934_2023_2259123 crossref_primary_10_1016_j_mrgentox_2024_503767 crossref_primary_10_7759_cureus_61780 crossref_primary_10_1007_s11051_023_05867_3 crossref_primary_10_1002_adma_202303266 |
Cites_doi | 10.1038/nrmicro1579 10.1056/NEJMoa2034577 10.1016/j.jpeds.2021.07.044 10.7326/M21-1577 10.1016/j.gene.2007.12.022 10.1056/NEJMra1510092 10.1056/NEJMoa2035389 10.1056/NEJMoa2110475 10.1089/bfm.2021.0079 10.1073/pnas.0701458104 10.1002/ajh.26132 10.1016/j.ijid.2021.04.047 10.1534/genetics.116.188680 10.1101/2021.08.20.457104 10.1002/ajh.26272 10.1016/j.ijid.2021.04.053 10.1016/j.gde.2012.02.006 10.1056/NEJMoa2101765 10.1073/pnas.0601954103 10.1073/pnas.2105968118 10.1038/35057062 10.3390/diagnostics11040579 10.7554/eLife.30058 10.1016/S1473-3099(21)00224-3 10.1146/annurev-virology-110615-035556 10.1038/s41586-021-03275-y 10.1056/NEJMoa2027906 10.1177/0300985817738095 10.1056/NEJMc2107717 10.1016/j.jconrel.2020.03.006 10.1161/CIRCULATIONAHA.121.055913 10.3389/fcimb.2021.609160 10.1128/MCB.06785-11 10.3390/pharmaceutics13040544 10.1016/j.intimp.2021.107970 10.1016/j.jconrel.2017.09.044 10.1186/1759-8753-4-10 10.1086/380207 10.1038/s41586-020-2639-4 10.1038/s41591-021-01337-2 10.1038/nrmicro1541 10.1101/gr.206805.116 10.1111/jdv.17340 10.1128/JVI.02257-13 10.1016/j.jhep.2021.04.003 10.26508/lsa.201900536 10.1016/j.ymthe.2017.03.035 10.1016/j.dmpk.2018.03.003 10.1056/NEJMoa2101544 10.1038/ncomms6276 10.1128/MCB.01888-06 |
ContentType | Journal Article |
Copyright | 2022 by the authors. 2022 |
Copyright_xml | – notice: 2022 by the authors. 2022 |
CorporateAuthor | Translational Muscle Research Department of Clinical Sciences, Lund Strategiska forskningsområden (SFO) NanoLund: Centre for Nanoscience Section III Infection Medicine (BMC) Medicinska fakulteten Translational infection medicine Translationell infektionsmedicin Diabetes - öpatofysiologi Institutionen för kliniska vetenskaper, Lund Infektionsmedicin Lunds universitet Profile areas and other strong research environments Department of Clinical Sciences, Malmö Lund University Sektion III Translationell muskelforskning EpiHealth: Epidemiology for Health EXODIAB: Excellence of Diabetes Research in Sweden Faculty of Medicine Strategic research areas (SRA) Diabetes - Islet Patophysiology Profilområden och andra starka forskningsmiljöer Institutionen för kliniska vetenskaper, Malmö |
CorporateAuthor_xml | – name: Strategiska forskningsområden (SFO) – name: Translationell muskelforskning – name: Sektion III – name: Translationell infektionsmedicin – name: Diabetes - Islet Patophysiology – name: EpiHealth: Epidemiology for Health – name: Strategic research areas (SRA) – name: Department of Clinical Sciences, Lund – name: Lund University – name: EXODIAB: Excellence of Diabetes Research in Sweden – name: Diabetes - öpatofysiologi – name: NanoLund: Centre for Nanoscience – name: Profile areas and other strong research environments – name: Infektionsmedicin – name: Department of Clinical Sciences, Malmö – name: Translational infection medicine – name: Faculty of Medicine – name: Medicinska fakulteten – name: Institutionen för kliniska vetenskaper, Malmö – name: Institutionen för kliniska vetenskaper, Lund – name: Lunds universitet – name: Translational Muscle Research – name: Profilområden och andra starka forskningsmiljöer – name: Section III – name: Infection Medicine (BMC) |
DBID | AAYXX CITATION 7X8 5PM ADTPV AGCHP AOWAS D8T D95 ZZAVC DOA |
DOI | 10.3390/cimb44030073 |
DatabaseName | CrossRef MEDLINE - Academic PubMed Central (Full Participant titles) SwePub SWEPUB Lunds universitet full text SwePub Articles SWEPUB Freely available online SWEPUB Lunds universitet SwePub Articles full text DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1467-3045 |
EndPage | 1126 |
ExternalDocumentID | oai_doaj_org_article_4cd1f73b3f5948dc8dd467cd9d62d67c oai_portal_research_lu_se_publications_ad4c0fbc_8aa9_44ef_895e_e220fdaa7e87 oai_lup_lub_lu_se_ad4c0fbc_8aa9_44ef_895e_e220fdaa7e87 PMC8946961 10_3390_cimb44030073 |
GroupedDBID | --- 36B 53G 5GY AAYXX AENEX AFZYC ALMA_UNASSIGNED_HOLDINGS CITATION DIK E3Z EMB F5P FRP GROUPED_DOAJ GX1 IAO IGS IHR INH ITC MODMG OK1 PGMZT RNS RPM TR2 7X8 5PM 0VX A8Z ADBBV ADTPV AGCHP AOWAS BAWUL C1A D8T D95 EMOBN MM. SV3 ZZAVC |
ID | FETCH-LOGICAL-c586t-1b26c1f90c7114c2c427cb361cde0e09d626a0ebf46a642f155c90e2c1efebf73 |
IEDL.DBID | DOA |
ISSN | 1467-3045 1467-3037 |
IngestDate | Wed Aug 27 01:29:54 EDT 2025 Sun Aug 24 03:19:59 EDT 2025 Mon Apr 21 03:20:03 EDT 2025 Thu Aug 21 18:09:48 EDT 2025 Fri Jul 11 11:05:06 EDT 2025 Tue Jul 01 01:56:24 EDT 2025 Thu Apr 24 23:01:40 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c586t-1b26c1f90c7114c2c427cb361cde0e09d626a0ebf46a642f155c90e2c1efebf73 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-8081-2142 0000-0002-5166-0055 |
OpenAccessLink | https://doaj.org/article/4cd1f73b3f5948dc8dd467cd9d62d67c |
PMID | 35723296 |
PQID | 2678738989 |
PQPubID | 23479 |
PageCount | 12 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_4cd1f73b3f5948dc8dd467cd9d62d67c swepub_primary_oai_portal_research_lu_se_publications_ad4c0fbc_8aa9_44ef_895e_e220fdaa7e87 swepub_primary_oai_lup_lub_lu_se_ad4c0fbc_8aa9_44ef_895e_e220fdaa7e87 pubmedcentral_primary_oai_pubmedcentral_nih_gov_8946961 proquest_miscellaneous_2678738989 crossref_primary_10_3390_cimb44030073 crossref_citationtrail_10_3390_cimb44030073 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20220225 |
PublicationDateYYYYMMDD | 2022-02-25 |
PublicationDate_xml | – month: 2 year: 2022 text: 20220225 day: 25 |
PublicationDecade | 2020 |
PublicationTitle | Current issues in molecular biology |
PublicationYear | 2022 |
Publisher | MDPI MDPI AG |
Publisher_xml | – name: MDPI – name: MDPI AG |
References | Bahl (ref_38) 2017; 25 Heidel (ref_30) 2007; 104 Polack (ref_4) 2020; 383 Sato (ref_29) 2017; 266 Vogel (ref_37) 2021; 592 Goff (ref_54) 2007; 5 Belancio (ref_48) 2008; 411 Larson (ref_10) 2021; 144 Ishay (ref_17) 2021; 99 Barda (ref_20) 2021; 385 Parkash (ref_14) 2021; 13 Baden (ref_21) 2021; 384 Lee (ref_16) 2021; 96 Zhang (ref_25) 2021; 118 Suzuki (ref_55) 2007; 5 Menni (ref_11) 2021; 21 Eichinger (ref_23) 2021; 385 Rossman (ref_8) 2021; 27 ref_24 Servant (ref_50) 2017; 205 Hancks (ref_44) 2012; 22 Dai (ref_49) 2012; 32 Harris (ref_5) 2021; 385 Yin (ref_47) 2021; 11 Fan (ref_9) 2021; 96 ref_27 ref_26 Ostertag (ref_43) 2003; 73 Garner (ref_19) 2021; 16 Macchietto (ref_46) 2020; 3 Dagan (ref_7) 2021; 384 Sedic (ref_28) 2018; 55 Shi (ref_56) 2018; 33 Das (ref_18) 2021; 238 Mazzatenta (ref_15) 2021; 35 ref_34 Guo (ref_51) 2014; 5 ref_33 ref_32 Kadali (ref_13) 2021; 106 ref_31 Shi (ref_53) 2007; 27 Macia (ref_58) 2017; 27 Jones (ref_45) 2013; 87 Hansen (ref_12) 2021; 107 Lander (ref_42) 2001; 409 Bril (ref_39) 2021; 75 Coffin (ref_41) 2016; 3 ref_1 Mita (ref_35) 2018; 7 Butt (ref_6) 2021; 174 Mulligan (ref_2) 2020; 586 Kazazian (ref_40) 2017; 377 Walsh (ref_3) 2020; 383 Xie (ref_52) 2013; 4 Kubo (ref_57) 2006; 103 Sadoff (ref_22) 2021; 384 Sato (ref_36) 2020; 322 |
References_xml | – volume: 5 start-page: 187 year: 2007 ident: ref_55 article-title: The road to chromatin—Nuclear entry of retroviruses publication-title: Nat. Rev. Microbiol. doi: 10.1038/nrmicro1579 – volume: 383 start-page: 2603 year: 2020 ident: ref_4 article-title: Safety and Efficacy of the BNT162b2 mRNA COVID-19 Vaccine publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa2034577 – volume: 238 start-page: 26 year: 2021 ident: ref_18 article-title: Myopericarditis following mRNA COVID-19 Vaccination in Adolescents 12 through 18 Years of Age publication-title: J. Pediatr. doi: 10.1016/j.jpeds.2021.07.044 – volume: 174 start-page: 1404 year: 2021 ident: ref_6 article-title: SARS-CoV-2 Vaccine Effectiveness in a High-Risk National Population in a Real-World Setting publication-title: Ann. Intern. Med. doi: 10.7326/M21-1577 – volume: 411 start-page: 38 year: 2008 ident: ref_48 article-title: The impact of multiple splice sites in human L1 elements publication-title: Gene doi: 10.1016/j.gene.2007.12.022 – ident: ref_32 – volume: 377 start-page: 361 year: 2017 ident: ref_40 article-title: Mobile DNA in Health and Disease publication-title: N. Engl. J. Med. doi: 10.1056/NEJMra1510092 – volume: 384 start-page: 403 year: 2021 ident: ref_21 article-title: Efficacy and Safety of the mRNA-1273 SARS-CoV-2 Vaccine publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa2035389 – ident: ref_26 – volume: 385 start-page: 1078 year: 2021 ident: ref_20 article-title: Safety of the BNT162b2 mRNA Covid-19 Vaccine in a Nationwide Setting publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa2110475 – volume: 16 start-page: 702 year: 2021 ident: ref_19 article-title: Maternal and Child Symptoms Following COVID-19 Vaccination Among Breastfeeding Mothers publication-title: Breastfeed. Med. doi: 10.1089/bfm.2021.0079 – volume: 104 start-page: 5715 year: 2007 ident: ref_30 article-title: Administration in non-human primates of escalating intravenous doses of targeted nanoparticles containing ribonucleotide reductase subunit M2 siRNA publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0701458104 – volume: 96 start-page: 534 year: 2021 ident: ref_16 article-title: Thrombocytopenia following Pfizer and Moderna SARS-CoV-2 vaccination publication-title: Am. J. Hematol. doi: 10.1002/ajh.26132 – ident: ref_1 – volume: 106 start-page: 376 year: 2021 ident: ref_13 article-title: Side effects of BNT162b2 mRNA COVID-19 vaccine: A randomized, cross-sectional study with detailed self-reported symptoms from healthcare workers publication-title: Int. J. Infect. Dis. doi: 10.1016/j.ijid.2021.04.047 – ident: ref_31 – volume: 205 start-page: 139 year: 2017 ident: ref_50 article-title: The Nucleotide Excision Repair Pathway Limits L1 Retrotransposition publication-title: Genetics doi: 10.1534/genetics.116.188680 – ident: ref_33 doi: 10.1101/2021.08.20.457104 – volume: 96 start-page: E357 year: 2021 ident: ref_9 article-title: Cerebral venous thrombosis post BNT162b2 mRNA SARS-CoV-2 vaccination: A black swan event publication-title: Am. J. Hematol. doi: 10.1002/ajh.26272 – volume: 107 start-page: 172 year: 2021 ident: ref_12 article-title: First case of postmortem study in a patient vaccinated against SARS-CoV-2 publication-title: Int. J. Infect. Dis. doi: 10.1016/j.ijid.2021.04.053 – volume: 22 start-page: 191 year: 2012 ident: ref_44 article-title: Active human retrotransposons: Variation and disease publication-title: Curr. Opin. Genet. Dev. doi: 10.1016/j.gde.2012.02.006 – volume: 384 start-page: 1412 year: 2021 ident: ref_7 article-title: BNT162b2 mRNA Covid-19 Vaccine in a Nationwide Mass Vaccination Setting publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa2101765 – volume: 103 start-page: 8036 year: 2006 ident: ref_57 article-title: L1 retrotransposition in nondividing and primary human somatic cells publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0601954103 – volume: 118 start-page: e2105968118 year: 2021 ident: ref_25 article-title: Reverse-transcribed SARS-CoV-2 RNA can integrate into the genome of cultured human cells and can be expressed in patient-derived tissues publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.2105968118 – volume: 409 start-page: 860 year: 2001 ident: ref_42 article-title: Initial sequencing and analysis of the human genome publication-title: Nature doi: 10.1038/35057062 – ident: ref_24 doi: 10.3390/diagnostics11040579 – volume: 7 start-page: e30058 year: 2018 ident: ref_35 article-title: LINE-1 protein localization and functional dynamics during the cell cycle publication-title: Elife doi: 10.7554/eLife.30058 – volume: 21 start-page: 939 year: 2021 ident: ref_11 article-title: Vaccine side-effects and SARS-CoV-2 infection after vaccination in users of the COVID Symptom Study app in the UK: A prospective observational study publication-title: Lancet Infect. Dis. doi: 10.1016/S1473-3099(21)00224-3 – volume: 3 start-page: 29 year: 2016 ident: ref_41 article-title: The Discovery of Reverse Transcriptase publication-title: Annu. Rev. Virol. doi: 10.1146/annurev-virology-110615-035556 – volume: 592 start-page: 283 year: 2021 ident: ref_37 article-title: BNT162b vaccines protect rhesus macaques from SARS-CoV-2 publication-title: Nature doi: 10.1038/s41586-021-03275-y – volume: 13 start-page: e14741 year: 2021 ident: ref_14 article-title: Acute Pancreatitis: A Possible Side Effect of COVID-19 Vaccine publication-title: Cureus – ident: ref_34 – volume: 383 start-page: 2439 year: 2020 ident: ref_3 article-title: Safety and Immunogenicity of Two RNA-Based COVID-19 Vaccine Candidates publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa2027906 – volume: 55 start-page: 341 year: 2018 ident: ref_28 article-title: Safety Evaluation of Lipid Nanoparticle-Formulated Modified mRNA in the Sprague-Dawley Rat and Cynomolgus Monkey publication-title: Vet. Pathol. doi: 10.1177/0300985817738095 – volume: 385 start-page: 759 year: 2021 ident: ref_5 article-title: Effect of Vaccination on Household Transmission of SARS-CoV-2 in England publication-title: N. Engl. J. Med. doi: 10.1056/NEJMc2107717 – volume: 322 start-page: 217 year: 2020 ident: ref_36 article-title: Different kinetics for the hepatic uptake of lipid nanoparticles between the apolipoprotein E/low density lipoprotein receptor and the N-acetyl-d-galactosamine/asialoglycoprotein receptor pathway publication-title: J. Control. Release doi: 10.1016/j.jconrel.2020.03.006 – volume: 144 start-page: 506 year: 2021 ident: ref_10 article-title: Myocarditis After BNT162b2 and mRNA-1273 Vaccination publication-title: Circulation doi: 10.1161/CIRCULATIONAHA.121.055913 – volume: 11 start-page: 609160 year: 2021 ident: ref_47 article-title: Exogenous Coronavirus Interacts With Endogenous Retrotransposon in Human Cells publication-title: Front. Cell Infect. Microbiol. doi: 10.3389/fcimb.2021.609160 – volume: 32 start-page: 4323 year: 2012 ident: ref_49 article-title: Poly(A) binding protein C1 is essential for efficient L1 retrotransposition and affects L1 RNP formation publication-title: Mol. Cell Biol. doi: 10.1128/MCB.06785-11 – ident: ref_27 doi: 10.3390/pharmaceutics13040544 – volume: 99 start-page: 107970 year: 2021 ident: ref_17 article-title: Autoimmune phenomena following SARS-CoV-2 vaccination publication-title: Int. Immunopharmacol. doi: 10.1016/j.intimp.2021.107970 – volume: 266 start-page: 216 year: 2017 ident: ref_29 article-title: Highly specific delivery of siRNA to hepatocytes circumvents endothelial cell-mediated lipid nanoparticle-associated toxicity leading to the safe and efficacious decrease in the hepatitis B virus publication-title: J. Control. Release doi: 10.1016/j.jconrel.2017.09.044 – volume: 4 start-page: 10 year: 2013 ident: ref_52 article-title: Cell division promotes efficient retrotransposition in a stable L1 reporter cell line publication-title: Mob. DNA doi: 10.1186/1759-8753-4-10 – volume: 73 start-page: 1444 year: 2003 ident: ref_43 article-title: SVA elements are nonautonomous retrotransposons that cause disease in humans publication-title: Am. J. Hum. Genet. doi: 10.1086/380207 – volume: 586 start-page: 589 year: 2020 ident: ref_2 article-title: Phase I/II study of COVID-19 RNA vaccine BNT162b1 in adults publication-title: Nature doi: 10.1038/s41586-020-2639-4 – volume: 27 start-page: 1055 year: 2021 ident: ref_8 article-title: COVID-19 dynamics after a national immunization program in Israel publication-title: Nat. Med. doi: 10.1038/s41591-021-01337-2 – volume: 5 start-page: 253 year: 2007 ident: ref_54 article-title: Host factors exploited by retroviruses publication-title: Nat. Rev. Microbiol doi: 10.1038/nrmicro1541 – volume: 27 start-page: 335 year: 2017 ident: ref_58 article-title: Engineered LINE-1 retrotransposition in nondividing human neurons publication-title: Genome Res. doi: 10.1101/gr.206805.116 – volume: 35 start-page: e543 year: 2021 ident: ref_15 article-title: Purpuric lesions on the eyelids developed after BNT162b2 mRNA COVID-19 vaccine: Another piece of SARS-CoV-2 skin puzzle? publication-title: J. Eur. Acad. Dermatol. Venereol. doi: 10.1111/jdv.17340 – volume: 385 start-page: e11 year: 2021 ident: ref_23 article-title: Thrombotic Thrombocytopenia after ChAdOx1 nCoV-19 Vaccination. Reply publication-title: N. Engl. J. Med. – volume: 87 start-page: 13307 year: 2013 ident: ref_45 article-title: LINE-1 retrotransposable element DNA accumulates in HIV-1-infected cells publication-title: J. Virol. doi: 10.1128/JVI.02257-13 – volume: 75 start-page: 222 year: 2021 ident: ref_39 article-title: Autoimmune hepatitis developing after coronavirus disease 2019 (COVID-19) vaccine: Causality or casualty? publication-title: J. Hepatol. doi: 10.1016/j.jhep.2021.04.003 – volume: 3 start-page: e201900536 year: 2020 ident: ref_46 article-title: Virus-induced transposable element expression up-regulation in human and mouse host cells publication-title: Life Sci. Alliance doi: 10.26508/lsa.201900536 – volume: 25 start-page: 1316 year: 2017 ident: ref_38 article-title: Preclinical and Clinical Demonstration of Immunogenicity by mRNA Vaccines against H10N8 and H7N9 Influenza Viruses publication-title: Mol. Ther. doi: 10.1016/j.ymthe.2017.03.035 – volume: 33 start-page: 133 year: 2018 ident: ref_56 article-title: Comparison of protein expression between human livers and the hepatic cell lines HepG2, Hep3B, and Huh7 using SWATH and MRM-HR proteomics: Focusing on drug-metabolizing enzymes publication-title: Drug Metab. Pharmacokinet. doi: 10.1016/j.dmpk.2018.03.003 – volume: 384 start-page: 2187 year: 2021 ident: ref_22 article-title: Safety and Efficacy of Single-Dose Ad26.COV2.S Vaccine against Covid-19 publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa2101544 – volume: 5 start-page: 5276 year: 2014 ident: ref_51 article-title: Autophagy supports genomic stability by degrading retrotransposon RNA publication-title: Nat. Commun. doi: 10.1038/ncomms6276 – volume: 27 start-page: 1264 year: 2007 ident: ref_53 article-title: Cell divisions are required for L1 retrotransposition publication-title: Mol. Cell Biol. doi: 10.1128/MCB.01888-06 |
SSID | ssj0057871 ssib044733985 |
Score | 2.5507863 |
Snippet | Preclinical studies of COVID-19 mRNA vaccine BNT162b2, developed by Pfizer and BioNTech, showed reversible hepatic effects in animals that received the... |
SourceID | doaj swepub pubmedcentral proquest crossref |
SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database |
StartPage | 1115 |
SubjectTerms | Basic Medicine BNT162b2 Cell and Molecular Biology Cell- och molekylärbiologi COVID-19 mRNA vaccine Huh7 LINE-1 Liver Medical and Health Sciences Medicin och hälsovetenskap Medicinska och farmaceutiska grundvetenskaper Reverse transcription |
Title | Intracellular Reverse Transcription of Pfizer BioNTech COVID-19 mRNA Vaccine BNT162b2 In Vitro in Human Liver Cell Line |
URI | https://www.proquest.com/docview/2678738989 https://pubmed.ncbi.nlm.nih.gov/PMC8946961 https://lup.lub.lu.se/record/ad4c0fbc-8aa9-44ef-895e-e220fdaa7e87 oai:portal.research.lu.se:publications/ad4c0fbc-8aa9-44ef-895e-e220fdaa7e87 https://doaj.org/article/4cd1f73b3f5948dc8dd467cd9d62d67c |
Volume | 44 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrR1NaxQxNEhB8CJ-4lgtEfQkQzOZbDI5tuuWrthVSrsULyGfdKGdXba7iB787b43M1t3RNGDhwzDTJIh72PeR17eI-S1l6JKTKQctAeeCy1dri0wnuaKhzAoVbLo7ziZyONz8f5icLFV6gtjwtr0wC3g9oUPRVKlKxMmFgm-CgF42wcdJA9wg39fkHlbxhRQkhCqLPVPRRjJsmjPGQFLsVK1IfDQh-372bUTAmidqbInnJoc_j3F89ewyV5y0UYgHT0g9ztNkh60K3hI7sT6Ebnb1pb8-ph8GeNw9MtjoCk9jRh_EWkjmzZ_CjpP9FOafYtLCuMm6Ganw4_T8TuAKb0-nRzQqfW4804PJ2eF5I7TcU2ns9VyTmc1bTYA6AeM7KBD-BDc1vEJOT8anQ2P867KQu4HlVzlhePSF0kzr8A28twLrrwrZeFDZJEhnKVl0SUhLRgrCRQQr1nkvogJnqryKdmp53V8Rqj1nBdlAqwHi_uDlXbaayt80gVqWhl5uwGv8V0KcqyEcWXAFEFkmG1kZOTNbe9Fm3rjD_0OEVO3fTBhdvMAyMh0ZGT-RkYZebXBswEGQ-zYOs7XN4aDOFclVtnMiOoRQO-L_Tf17LJJ1V1pIbUsMjJqSaU35Gq9gOagmZtobBCeJedNZa02QsCqKz2IJnLOUrBWxUpl5PNv5mkNNdNlh7rs5ltsuX3_afLn_wOOu-QexwMieOh_8ILsrJbr-BLUtpXbazgUriffR3uNV-0HkgJEWg |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Intracellular+Reverse+Transcription+of+Pfizer+BioNTech+COVID-19+mRNA+Vaccine+BNT162b2+In+Vitro+in+Human+Liver+Cell+Line&rft.jtitle=Current+issues+in+molecular+biology&rft.au=Ald%C3%A9n%2C+Markus&rft.au=Olofsson+Falla%2C+Francisko&rft.au=Yang%2C+Daowei&rft.au=Barghouth%2C+Mohammad&rft.date=2022-02-25&rft.issn=1467-3045&rft.eissn=1467-3045&rft.volume=44&rft.issue=3&rft.spage=1115&rft_id=info:doi/10.3390%2Fcimb44030073&rft.externalDocID=oai_lup_lub_lu_se_ad4c0fbc_8aa9_44ef_895e_e220fdaa7e87 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1467-3045&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1467-3045&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1467-3045&client=summon |