Understanding the Role of the Antioxidant System and the Tetrapyrrole Cycle in Iron Deficiency Chlorosis
Iron deficiency chlorosis (IDC) is an abiotic stress often experienced by soybean, owing to the low solubility of iron in alkaline soils. Here, soybean lines with contrasting Fe efficiencies were analyzed to test the hypothesis that the Fe efficiency trait is linked to antioxidative stress signaling...
Saved in:
Published in | Plants (Basel) Vol. 8; no. 9; p. 348 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
13.09.2019
MDPI |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Iron deficiency chlorosis (IDC) is an abiotic stress often experienced by soybean, owing to the low solubility of iron in alkaline soils. Here, soybean lines with contrasting Fe efficiencies were analyzed to test the hypothesis that the Fe efficiency trait is linked to antioxidative stress signaling via proper management of tissue Fe accumulation and transport, which in turn influences the regulation of heme and non heme containing enzymes involved in Fe uptake and ROS scavenging. Inefficient plants displayed higher oxidative stress and lower ferric reductase activity, whereas root and leaf catalase activity were nine-fold and three-fold higher, respectively. Efficient plants do not activate their antioxidant system because there is no formation of ROS under iron deficiency; while inefficient plants are not able to deal with ROS produced under iron deficiency because ascorbate peroxidase and superoxide dismutase are not activated because of the lack of iron as a cofactor, and of heme as a constituent of those enzymes. Superoxide dismutase and peroxidase isoenzymatic regulation may play a determinant role: 10 superoxide dismutase isoenzymes were observed in both cultivars, but iron superoxide dismutase activity was only detected in efficient plants; 15 peroxidase isoenzymes were observed in the roots and trifoliate leaves of efficient and inefficient cultivars and peroxidase activity levels were only increased in roots of efficient plants. |
---|---|
AbstractList | Iron deficiency chlorosis (IDC) is an abiotic stress often experienced by soybean, owing to the low solubility of iron in alkaline soils. Here, soybean lines with contrasting Fe efficiencies were analyzed to test the hypothesis that the Fe efficiency trait is linked to antioxidative stress signaling via proper management of tissue Fe accumulation and transport, which in turn influences the regulation of heme and non heme containing enzymes involved in Fe uptake and ROS scavenging. Inefficient plants displayed higher oxidative stress and lower ferric reductase activity, whereas root and leaf catalase activity were nine-fold and three-fold higher, respectively. Efficient plants do not activate their antioxidant system because there is no formation of ROS under iron deficiency; while inefficient plants are not able to deal with ROS produced under iron deficiency because ascorbate peroxidase and superoxide dismutase are not activated because of the lack of iron as a cofactor, and of heme as a constituent of those enzymes. Superoxide dismutase and peroxidase isoenzymatic regulation may play a determinant role: 10 superoxide dismutase isoenzymes were observed in both cultivars, but iron superoxide dismutase activity was only detected in efficient plants; 15 peroxidase isoenzymes were observed in the roots and trifoliate leaves of efficient and inefficient cultivars and peroxidase activity levels were only increased in roots of efficient plants. Iron deficiency chlorosis (IDC) is an abiotic stress often experienced by soybean, owing to the low solubility of iron in alkaline soils. Here, soybean lines with contrasting Fe efficiencies were analyzed to test the hypothesis that the Fe efficiency trait is linked to antioxidative stress signaling via proper management of tissue Fe accumulation and transport, which in turn influences the regulation of heme and non heme containing enzymes involved in Fe uptake and ROS scavenging. Inefficient plants displayed higher oxidative stress and lower ferric reductase activity, whereas root and leaf catalase activity were nine-fold and three-fold higher, respectively. Efficient plants do not activate their antioxidant system because there is no formation of ROS under iron deficiency; while inefficient plants are not able to deal with ROS produced under iron deficiency because ascorbate peroxidase and superoxide dismutase are not activated because of the lack of iron as a cofactor, and of heme as a constituent of those enzymes. Superoxide dismutase and peroxidase isoenzymatic regulation may play a determinant role: 10 superoxide dismutase isoenzymes were observed in both cultivars, but iron superoxide dismutase activity was only detected in efficient plants; 15 peroxidase isoenzymes were observed in the roots and trifoliate leaves of efficient and inefficient cultivars and peroxidase activity levels were only increased in roots of efficient plants.Iron deficiency chlorosis (IDC) is an abiotic stress often experienced by soybean, owing to the low solubility of iron in alkaline soils. Here, soybean lines with contrasting Fe efficiencies were analyzed to test the hypothesis that the Fe efficiency trait is linked to antioxidative stress signaling via proper management of tissue Fe accumulation and transport, which in turn influences the regulation of heme and non heme containing enzymes involved in Fe uptake and ROS scavenging. Inefficient plants displayed higher oxidative stress and lower ferric reductase activity, whereas root and leaf catalase activity were nine-fold and three-fold higher, respectively. Efficient plants do not activate their antioxidant system because there is no formation of ROS under iron deficiency; while inefficient plants are not able to deal with ROS produced under iron deficiency because ascorbate peroxidase and superoxide dismutase are not activated because of the lack of iron as a cofactor, and of heme as a constituent of those enzymes. Superoxide dismutase and peroxidase isoenzymatic regulation may play a determinant role: 10 superoxide dismutase isoenzymes were observed in both cultivars, but iron superoxide dismutase activity was only detected in efficient plants; 15 peroxidase isoenzymes were observed in the roots and trifoliate leaves of efficient and inefficient cultivars and peroxidase activity levels were only increased in roots of efficient plants. |
Author | Santos, Carla S. Rangel, António O.S.S. Uzilday, Baris Carvalho, Susana M.P. Turkan, Ismail Roriz, Mariana Vasconcelos, Marta W. Ozgur, Rengin |
AuthorAffiliation | 3 GreenUPorto – Research Centre for Sustainable Agrifood Production, Faculty of Sciences of University of Porto, Rua da Agrária 747, 4485-646 Vairão, Portugal 1 Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina – Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, Porto 4169-005, Portugal; cssantos@porto.ucp.pt (C.S.S.); mroriz@porto.ucp.pt (M.R.) 2 Department of Biology, Faculty of Science, Ege University, Bornova, İzmir 35100, Turkey ismail.turkan@ege.edu.tr (I.T.) |
AuthorAffiliation_xml | – name: 2 Department of Biology, Faculty of Science, Ege University, Bornova, İzmir 35100, Turkey ismail.turkan@ege.edu.tr (I.T.) – name: 3 GreenUPorto – Research Centre for Sustainable Agrifood Production, Faculty of Sciences of University of Porto, Rua da Agrária 747, 4485-646 Vairão, Portugal – name: 1 Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina – Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, Porto 4169-005, Portugal; cssantos@porto.ucp.pt (C.S.S.); mroriz@porto.ucp.pt (M.R.) |
Author_xml | – sequence: 1 givenname: Carla S. orcidid: 0000-0002-6708-5550 surname: Santos fullname: Santos, Carla S. – sequence: 2 givenname: Rengin surname: Ozgur fullname: Ozgur, Rengin – sequence: 3 givenname: Baris orcidid: 0000-0001-8168-056X surname: Uzilday fullname: Uzilday, Baris – sequence: 4 givenname: Ismail surname: Turkan fullname: Turkan, Ismail – sequence: 5 givenname: Mariana orcidid: 0000-0002-5365-8186 surname: Roriz fullname: Roriz, Mariana – sequence: 6 givenname: António O.S.S. surname: Rangel fullname: Rangel, António O.S.S. – sequence: 7 givenname: Susana M.P. orcidid: 0000-0001-7157-1079 surname: Carvalho fullname: Carvalho, Susana M.P. – sequence: 8 givenname: Marta W. orcidid: 0000-0002-5110-7006 surname: Vasconcelos fullname: Vasconcelos, Marta W. |
BookMark | eNqFkt9rFDEQx4NUbK199H3BF19W83OTfRHKaetBQdD2OeSS2bsce8mZ5Ir735u7q-AVwRCSIfnMNzOTeY3OQgyA0FuCPzDW44_b0YSSFe4x4-oFuqCUslZKLs_-ss_RVc5rXIeqk3Sv0DkjgmPadRdo9RAcpFxMcD4sm7KC5nscoYnDwb4Oxcdf3tVnmh9TLrBpKnm4uoeSzHZKaY_PJltXH5p5iqH5DIO3HoKdmtlqjClmn9-gl4MZM1w97Zfo4ebL_exre_ftdj67vmutUF1pCRF9zwdspZKOGscMNswJTDhdKD4obha86xYDSDII5QiWrqeOGwE9oUZYdonmR10XzVpvk9-YNOlovD4cxLTUJhVfw9USBBuMUpw4w4E5ZYUxylpCMSUAfdX6dNTa7hYbcBZCTXk8ET29CX6ll_FRd1LV-vIq8P5JIMWfO8hFb3y2MNZvg7jLmjLJSc8Zl_9HaS-4Yozs0XfP0HXcpVCrqqkQmFIpqaoUO1K21j8nGLT1xdTv3IfqR02w3veQPumh6tU-8_qT7b_53-h7yuQ |
CitedBy_id | crossref_primary_10_1016_j_plantsci_2020_110808 crossref_primary_10_1016_j_indcrop_2024_118484 crossref_primary_10_13080_z_a_2022_109_008 crossref_primary_10_3390_plants12223839 crossref_primary_10_1007_s42729_020_00304_z crossref_primary_10_1007_s11738_021_03315_0 crossref_primary_10_1016_j_plaphy_2023_02_021 crossref_primary_10_1016_j_plaphy_2020_04_002 crossref_primary_10_1007_s11356_021_17559_3 crossref_primary_10_38042_biotechstudies_1442001 crossref_primary_10_1016_j_sajb_2022_03_052 crossref_primary_10_1007_s11104_023_06143_y crossref_primary_10_1134_S1021443722040124 crossref_primary_10_1016_j_scitotenv_2022_158774 crossref_primary_10_3390_ijms23073719 crossref_primary_10_1007_s12298_023_01321_9 crossref_primary_10_1016_j_pmpp_2021_101681 crossref_primary_10_1016_j_pmpp_2023_102132 crossref_primary_10_3390_ijms22031226 crossref_primary_10_1111_jam_15591 crossref_primary_10_1016_j_biteb_2023_101360 crossref_primary_10_1038_s41598_020_76664_4 crossref_primary_10_1093_jxb_erae324 crossref_primary_10_2139_ssrn_4169780 crossref_primary_10_1007_s11104_022_05702_z crossref_primary_10_1016_j_plaphy_2022_11_017 crossref_primary_10_1016_j_fgb_2024_103875 crossref_primary_10_1016_j_scienta_2022_111502 crossref_primary_10_5114_bta_2023_130729 crossref_primary_10_3390_ijms222212319 crossref_primary_10_3390_ijms252111480 crossref_primary_10_1007_s12517_021_07978_4 crossref_primary_10_3390_antiox10101556 crossref_primary_10_1038_s41598_021_83445_0 crossref_primary_10_1016_j_plaphy_2023_107718 crossref_primary_10_1007_s00344_024_11520_7 crossref_primary_10_1016_j_scitotenv_2020_144671 crossref_primary_10_1186_s12870_024_05324_w crossref_primary_10_1016_j_plaphy_2023_108305 crossref_primary_10_1111_ppl_13367 crossref_primary_10_3390_toxics11020123 crossref_primary_10_1016_j_envexpbot_2023_105356 crossref_primary_10_1016_j_heliyon_2023_e14620 crossref_primary_10_1080_11263504_2020_1866093 |
Cites_doi | 10.3389/fpls.2016.01726 10.1002/jpln.201400068 10.1074/jbc.M111.310987 10.1016/j.bbabio.2015.05.007 10.1016/S0034-4257(02)00010-X 10.1007/s00425-014-2087-1 10.1016/j.tiv.2011.10.014 10.1093/jxb/erz290 10.1074/jbc.M305569200 10.1016/j.plaphy.2010.08.016 10.1016/j.bbabio.2011.01.006 10.1016/S0168-9452(01)00573-8 10.3389/fpls.2015.00325 10.1007/s11120-015-0154-5 10.1016/j.plaphy.2016.04.050 10.1093/pcp/pcu053 10.1016/bs.mie.2016.05.038 10.3389/fphar.2014.00061 10.1016/j.redox.2015.01.010 10.3389/fpls.2016.01586 10.1007/s10725-018-0463-8 10.1590/S1415-47572012000600016 10.1104/pp.18.01469 10.1104/pp.113.228544 10.1016/S0021-9258(18)65809-0 10.1104/pp.15.01589 10.1007/s11104-013-1842-6 10.1016/j.plaphy.2007.05.005 10.1016/j.plantsci.2009.02.011 10.1371/journal.pone.0116283 10.3390/biom5020679 10.1016/j.plaphy.2017.09.004 10.1199/tab.0145 10.1590/S1677-04202007000200007 10.1093/emboj/16.16.4806 10.1016/j.tplants.2004.08.009 10.1271/bbb.61.2025 10.1016/j.plaphy.2019.01.007 10.1016/j.jplph.2006.02.011 10.1186/1471-2164-10-376 10.3389/fpls.2014.00726 10.1078/0176-1617-00174 10.2135/cropsci2017.03.0154 10.1016/j.ecoenv.2016.12.013 10.1016/j.gene.2014.10.004 10.1038/17800 10.1007/s11103-007-9216-1 10.3389/fenvs.2017.00086 10.1111/tpj.13011 10.1016/j.plaphy.2013.05.032 10.1111/plb.12093 10.1093/pcp/pcq047 10.1111/plb.12684 10.1016/S0168-9452(01)00432-0 10.1093/treephys/tpq105 10.1016/j.plantsci.2011.03.015 10.1093/jxb/eru034 10.1093/jxb/ers239 10.1016/j.jplph.2012.04.019 10.1104/pp.106.082040 10.2174/157340110790909572 10.1105/tpc.108.061341 10.1007/s00425-006-0293-1 10.1104/pp.104.3.815 10.2307/1310977 10.3389/fenvs.2014.00053 10.1016/j.plaphy.2004.12.001 10.1074/jbc.M307229200 10.1093/jxb/ert153 10.1016/j.foodres.2012.12.021 10.1080/00380768.2004.10408564 |
ContentType | Journal Article |
Copyright | 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2019 by the authors. 2019 |
Copyright_xml | – notice: 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2019 by the authors. 2019 |
DBID | AAYXX CITATION 3V. 7SN 7SS 7T7 7X2 8FD 8FE 8FH 8FK ABUWG AFKRA ATCPS AZQEC BBNVY BENPR BHPHI C1K CCPQU DWQXO FR3 GNUQQ HCIFZ LK8 M0K M7P P64 PATMY PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PYCSY 7X8 7S9 L.6 5PM DOA |
DOI | 10.3390/plants8090348 |
DatabaseName | CrossRef ProQuest Central (Corporate) Ecology Abstracts Entomology Abstracts (Full archive) Industrial and Applied Microbiology Abstracts (Microbiology A) Agricultural Science Collection Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland Agricultural & Environmental Science Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Central Engineering Research Database ProQuest Central Student SciTech Premium Collection ProQuest Biological Science Collection Agriculture Science Database Biological Science Database Biotechnology and BioEngineering Abstracts Environmental Science Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Environmental Science Collection MEDLINE - Academic AGRICOLA AGRICOLA - Academic PubMed Central (Full Participant titles) Open Access资源_DOAJ |
DatabaseTitle | CrossRef Agricultural Science Database Publicly Available Content Database ProQuest Central Student Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest Central ProQuest One Applied & Life Sciences Natural Science Collection ProQuest Central Korea Agricultural & Environmental Science Collection Biological Science Collection Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Central (New) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Agricultural Science Collection Biological Science Database ProQuest SciTech Collection Ecology Abstracts Biotechnology and BioEngineering Abstracts Environmental Science Collection Entomology Abstracts ProQuest One Academic UKI Edition Environmental Science Database Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA Agricultural Science Database CrossRef MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Botany |
EISSN | 2223-7747 |
ExternalDocumentID | oai_doaj_org_article_7e53fa8841da4e3d8c5aa8cc12021ee9 PMC6784024 10_3390_plants8090348 |
GroupedDBID | 53G 5VS 7X2 7XC 8FE 8FH AADQD AAHBH AAYXX ADBBV AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS AOIJS ATCPS BBNVY BCNDV BENPR BHPHI CCPQU CITATION ECGQY GROUPED_DOAJ HCIFZ HYE KQ8 LK8 M0K M48 M7P MODMG M~E OK1 PATMY PGMZT PHGZM PHGZT PIMPY PROAC PYCSY RPM 3V. 7SN 7SS 7T7 8FD 8FK ABUWG AZQEC C1K DWQXO FR3 GNUQQ P64 PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 7X8 7S9 L.6 5PM PUEGO |
ID | FETCH-LOGICAL-c586t-115994f0c787d2ad3a0a3d50142b84f84ab466bfe71f58d107d92d4a5e912a5c3 |
IEDL.DBID | M48 |
ISSN | 2223-7747 |
IngestDate | Wed Aug 27 01:32:42 EDT 2025 Thu Aug 21 18:12:05 EDT 2025 Fri Jul 11 15:59:58 EDT 2025 Fri Jul 11 09:30:28 EDT 2025 Fri Jul 25 09:29:13 EDT 2025 Tue Jul 01 00:40:03 EDT 2025 Thu Apr 24 22:56:48 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c586t-115994f0c787d2ad3a0a3d50142b84f84ab466bfe71f58d107d92d4a5e912a5c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-7157-1079 0000-0002-5110-7006 0000-0002-6708-5550 0000-0002-5365-8186 0000-0001-8168-056X |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/plants8090348 |
PMID | 31540266 |
PQID | 2550227728 |
PQPubID | 2032347 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_7e53fa8841da4e3d8c5aa8cc12021ee9 pubmedcentral_primary_oai_pubmedcentral_nih_gov_6784024 proquest_miscellaneous_2374194347 proquest_miscellaneous_2295483317 proquest_journals_2550227728 crossref_citationtrail_10_3390_plants8090348 crossref_primary_10_3390_plants8090348 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20190913 |
PublicationDateYYYYMMDD | 2019-09-13 |
PublicationDate_xml | – month: 9 year: 2019 text: 20190913 day: 13 |
PublicationDecade | 2010 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Plants (Basel) |
PublicationYear | 2019 |
Publisher | MDPI AG MDPI |
Publisher_xml | – name: MDPI AG – name: MDPI |
References | Donnini (ref_63) 2011; 31 Groppa (ref_80) 2001; 161 Carvalho (ref_34) 2013; 54 Hansen (ref_4) 2004; 50 Asensio (ref_26) 2012; 169 Bartoli (ref_31) 2013; 64 Tripathi (ref_20) 2018; 5 Li (ref_38) 2015; 554 Mbonankira (ref_39) 2015; 178 Crisp (ref_40) 2003; 278 Palatnik (ref_64) 2002; 162 Hotta (ref_44) 1997; 61 Caverzan (ref_30) 2012; 35 Mittler (ref_16) 2004; 9 Ozgur (ref_75) 2014; 65 Busch (ref_21) 2015; 4 Moldzio (ref_14) 2015; 5 Richter (ref_46) 2010; 51 Sun (ref_17) 2016; 7 Wu (ref_50) 2019; 87 Larkin (ref_12) 2016; 7 Asada (ref_29) 2006; 141 Gill (ref_66) 2013; 70 (ref_42) 2014; 5 Matthus (ref_53) 2019; 179 ref_28 Caramanico (ref_48) 2017; 119 Shanmugam (ref_58) 2015; 84 Bari (ref_68) 2019; 136 Guerinot (ref_1) 1994; 104 Santos (ref_36) 2015; 6 ref_71 Le (ref_19) 2016; 170 Vasconcelos (ref_7) 2014; 374 Zhang (ref_59) 2011; 1807 Shi (ref_24) 2007; 45 Chiabrando (ref_51) 2014; 5 Myouga (ref_61) 2008; 20 ref_79 ref_78 Sims (ref_73) 2002; 81 Mauzerall (ref_10) 1956; 219 Landi (ref_52) 2014; 240 Vasconcelos (ref_72) 2006; 224 ref_74 Uzilday (ref_76) 2012; 182 Brzezowski (ref_13) 2015; 1847 Watanabe (ref_65) 2016; 580 Ruley (ref_77) 2004; 42 Roriz (ref_35) 2014; 5 Zhao (ref_37) 2018; 57 Jelali (ref_62) 2014; 16 Elkhouni (ref_49) 2018; 20 Santos (ref_54) 2016; 106 Spirt (ref_22) 2010; 6 Willekens (ref_27) 1997; 16 Das (ref_25) 2014; 2 Lok (ref_69) 2012; 287 ref_81 Robinson (ref_8) 1999; 397 (ref_47) 2014; 55 Tanaka (ref_11) 2011; 9 Jeong (ref_9) 2009; 176 ref_45 Brown (ref_6) 1989; 39 Bhattacharjee (ref_56) 2014; 107 Schmid (ref_57) 2014; 164 ref_3 ref_2 Turella (ref_70) 2003; 278 Wang (ref_43) 2015; 126 Waters (ref_60) 2012; 63 Guo (ref_55) 2017; 139 Lee (ref_23) 2001; 158 Agarwal (ref_67) 2007; 19 Bashir (ref_33) 2007; 65 Gill (ref_32) 2010; 48 Gokul (ref_41) 2019; 70 ref_5 Sun (ref_18) 2007; 164 Lu (ref_15) 2012; 26 |
References_xml | – volume: 7 start-page: 1726 year: 2016 ident: ref_17 article-title: Reactive oxygen species function to mediate the Fe deficiency response in an Fe-efficient apple genotype: an early response mechanism for enhancing reactive oxygen production publication-title: Front. Plant Sci. doi: 10.3389/fpls.2016.01726 – ident: ref_78 – volume: 178 start-page: 477 year: 2015 ident: ref_39 article-title: Catalase and ascorbate peroxidase activities are not directly involved in the silicon-mediated alleviation of ferrous iron toxicity in rice publication-title: J. Plant Nutr. Soil Sci. doi: 10.1002/jpln.201400068 – volume: 287 start-page: 607 year: 2012 ident: ref_69 article-title: Nitric oxide storage and transport in cells are mediated by glutathione S-transferase P1-1 and multidrug resistance protein 1 via dinitrosyl iron complexes publication-title: J. Biol. Chem. doi: 10.1074/jbc.M111.310987 – ident: ref_74 – volume: 1847 start-page: 968 year: 2015 ident: ref_13 article-title: Regulation and function of tetrapyrrole biosynthesis in plants and algae publication-title: Biochim. Biophys. Acta doi: 10.1016/j.bbabio.2015.05.007 – volume: 81 start-page: 337 year: 2002 ident: ref_73 article-title: Relationships between leaf pigment content and spectral reflectance across a wide range of species, leaf structures and developmental stages publication-title: Remote Sens. Env. doi: 10.1016/S0034-4257(02)00010-X – volume: 240 start-page: 941 year: 2014 ident: ref_52 article-title: Photoprotection by foliar anthocyanins mitigates effects of boron toxicity in sweet basil (Ocimum basilicum) publication-title: Planta doi: 10.1007/s00425-014-2087-1 – volume: 26 start-page: 81 year: 2012 ident: ref_15 article-title: Enhancement of nitrite on heme-induced oxidative reactions: A potential toxicological implication publication-title: Toxicol. Vitr. doi: 10.1016/j.tiv.2011.10.014 – volume: 70 start-page: 4197 year: 2019 ident: ref_41 article-title: Keep talking: crosstalk between iron and sulfur networks fine-tunes growth and development to promote survival under iron limitation publication-title: J. Exp. Bot. doi: 10.1093/jxb/erz290 – volume: 278 start-page: 42294 year: 2003 ident: ref_70 article-title: Glutathione transferase superfamily behaves like storage proteins for dinitrosyl-diglutathionyl-iron complex in heterogeneous systems publication-title: J. Biol. Chem. doi: 10.1074/jbc.M305569200 – volume: 48 start-page: 909 year: 2010 ident: ref_32 article-title: Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants publication-title: Plant Physiol. Biochem. doi: 10.1016/j.plaphy.2010.08.016 – volume: 1807 start-page: 391 year: 2011 ident: ref_59 article-title: Characterization of photosystem II in transgenic tobacco plants with decreased iron superoxide dismutase publication-title: Biochim. Biophys. Acta Bioenerg. doi: 10.1016/j.bbabio.2011.01.006 – volume: 162 start-page: 363 year: 2002 ident: ref_64 article-title: Status of antioxidant metabolites and enzymes in a catalase-deficient mutant of barley (Hordeum vulgare L.) publication-title: Plant Sci. doi: 10.1016/S0168-9452(01)00573-8 – volume: 6 start-page: 325 year: 2015 ident: ref_36 article-title: Iron partitioning at an early growth stage impacts iron deficiency responses in soybean plants (Glycine max L.) publication-title: Front. Plant Sci. doi: 10.3389/fpls.2015.00325 – volume: 126 start-page: 189 year: 2015 ident: ref_43 article-title: Organization of chlorophyll biosynthesis and insertion of chlorophyll into the chlorophyll-binding proteins in chloroplasts publication-title: Photosynth. Res. doi: 10.1007/s11120-015-0154-5 – volume: 106 start-page: 91 year: 2016 ident: ref_54 article-title: Effect of tris(3-hydroxy-4-pyridinonate) iron(III) complexes on iron uptake and storage in soybean (Glycine max L.) publication-title: Plant Physiol. Biochem. doi: 10.1016/j.plaphy.2016.04.050 – volume: 55 start-page: 1224 year: 2014 ident: ref_47 article-title: The role of metals in production and scavenging of reactive oxygen species in photosystem II publication-title: Plant Cell Physiol. doi: 10.1093/pcp/pcu053 – ident: ref_71 – volume: 580 start-page: 455 year: 2016 ident: ref_65 article-title: Chapter Twenty – Creation of a thermally tolerant peroxidase publication-title: Methods Enzym. doi: 10.1016/bs.mie.2016.05.038 – volume: 5 start-page: 61 year: 2014 ident: ref_51 article-title: Heme in pathophysiology: A matter of scavenging, metabolism and trafficking across cell membranes publication-title: Front. Pharm. doi: 10.3389/fphar.2014.00061 – volume: 4 start-page: 260 year: 2015 ident: ref_21 article-title: Interdependence of tetrapyrrole metabolism, the generation of oxidative stress and the mitigative oxidative stress response publication-title: Redox Biol. doi: 10.1016/j.redox.2015.01.010 – volume: 7 start-page: 1586 year: 2016 ident: ref_12 article-title: Tetrapyrrole Signaling in Plants publication-title: Front. Plant Sci. doi: 10.3389/fpls.2016.01586 – volume: 87 start-page: 357 year: 2019 ident: ref_50 article-title: 5-Aminolevulinic acid (ALA) biosynthetic and metabolic pathways and its role in higher plants: a review publication-title: Plant Growth Reg. doi: 10.1007/s10725-018-0463-8 – volume: 35 start-page: 1011 year: 2012 ident: ref_30 article-title: Plant responses to stresses: role of ascorbate peroxidase in the antioxidant protection publication-title: Genet. Mol. Biol. doi: 10.1590/S1415-47572012000600016 – volume: 179 start-page: 1754 year: 2019 ident: ref_53 article-title: Phosphate starvation alters abiotic-stress-induced cytosolic free calcium increases in roots publication-title: Plant Physiol. doi: 10.1104/pp.18.01469 – volume: 107 start-page: 1811 year: 2014 ident: ref_56 article-title: Membrane lipid peroxidation and its conflict of interest: the two faces of oxidative stress publication-title: Curr. Sci. – volume: 164 start-page: 160 year: 2014 ident: ref_57 article-title: Feruloyl-CoA 6’-Hydroxylase1-dependent coumarins mediate iron acquisition from alkaline substrates in Arabidopsis publication-title: Plant Physiol. doi: 10.1104/pp.113.228544 – volume: 219 start-page: 435 year: 1956 ident: ref_10 article-title: The occurrence and determination of S-aminolevulinic acid and porphobilinogen in urine publication-title: J. Biol. Chem. doi: 10.1016/S0021-9258(18)65809-0 – volume: 170 start-page: 540 year: 2016 ident: ref_19 article-title: Zinc finger of arabidopsis thaliana12 (ZAT12) interacts with FER-like iron deficiency-induced transcription factor (FIT) linking iron deficiency and oxidative stress responses publication-title: Plant Physiol. doi: 10.1104/pp.15.01589 – volume: 374 start-page: 161 year: 2014 ident: ref_7 article-title: Morpho-physiological parameters affecting iron deficiency chlorosis in soybean (Glycine max L.) publication-title: Plant Soil doi: 10.1007/s11104-013-1842-6 – volume: 45 start-page: 542 year: 2007 ident: ref_24 article-title: Exogenous nitric oxide protect cucumber roots against oxidative stress induced by salt stress publication-title: Plant Physiol. Biochem. doi: 10.1016/j.plaphy.2007.05.005 – volume: 176 start-page: 709 year: 2009 ident: ref_9 article-title: Iron uptake mechanisms in plants: Functions of the FRO family of ferric reductases publication-title: Plant Sci. doi: 10.1016/j.plantsci.2009.02.011 – ident: ref_45 doi: 10.1371/journal.pone.0116283 – volume: 5 start-page: 679 year: 2015 ident: ref_14 article-title: Heme Degradation by Heme Oxygenase Protects Mitochondria but Induces ER Stress via Formed Bilirubin publication-title: Biomolecules doi: 10.3390/biom5020679 – volume: 119 start-page: 286 year: 2017 ident: ref_48 article-title: Iron deficiency stimulates anthocyanin accumulation in grapevine apical leaves publication-title: Plant Physiol. Biochem. doi: 10.1016/j.plaphy.2017.09.004 – volume: 9 start-page: e0145 year: 2011 ident: ref_11 article-title: Tetrapyrrole metabolism in Arabidopsis thaliana publication-title: Arab. Book doi: 10.1199/tab.0145 – volume: 19 start-page: 149 year: 2007 ident: ref_67 article-title: Stimulation of antioxidant system and lipid peroxidation by abiotic stresses in leaves of Momordica charantia publication-title: Braz. J. Plant. Physiol. doi: 10.1590/S1677-04202007000200007 – volume: 16 start-page: 4806 year: 1997 ident: ref_27 article-title: Catalase is a sink for H2O2 and is indispensable for stress defence in C3 plants publication-title: EMBO J. doi: 10.1093/emboj/16.16.4806 – volume: 9 start-page: 490 year: 2004 ident: ref_16 article-title: Reactive oxygen gene network of plants publication-title: Trends Plant Sci. doi: 10.1016/j.tplants.2004.08.009 – volume: 61 start-page: 2025 year: 1997 ident: ref_44 article-title: New Physiological Effects of 5-Aminolevulinic Acid in Plants: The Increase of Photosynthesis, Chlorophyll Content, and Plant Growth publication-title: Biosci. Biotec. Biochem. doi: 10.1271/bbb.61.2025 – volume: 136 start-page: 22 year: 2019 ident: ref_68 article-title: Cadmium tolerance is associated with the root-driven coordination of cadmium sequestration, iron regulation, and ROS scavenging in rice publication-title: Plant Physiol. Biochem. doi: 10.1016/j.plaphy.2019.01.007 – volume: 164 start-page: 536 year: 2007 ident: ref_18 article-title: Protective effect of nitric oxide on iron deficiency-induced oxidative stress in maize (Zea mays) publication-title: J. Plant Physiol. doi: 10.1016/j.jplph.2006.02.011 – ident: ref_5 doi: 10.1186/1471-2164-10-376 – volume: 5 start-page: 726 year: 2014 ident: ref_35 article-title: High relative air humidity influences mineral accumulation and growth in iron deficient soybean plants publication-title: Front. Plant Sci. doi: 10.3389/fpls.2014.00726 – ident: ref_28 – volume: 158 start-page: 737 year: 2001 ident: ref_23 article-title: The inductive responses of the antioxidant enzymes by salt stress in the rice (Oryza sativa L.) publication-title: J. Plant Physiol. doi: 10.1078/0176-1617-00174 – volume: 57 start-page: 1349 year: 2018 ident: ref_37 article-title: Physiological regulation associated with differential tolerance to iron deficiency in soybean publication-title: Crop Sci. doi: 10.2135/cropsci2017.03.0154 – volume: 139 start-page: 50 year: 2017 ident: ref_55 article-title: Antioxidative systems, metal ion homeostasis and cadmium distribution in Iris lactea exposed to cadmium stress publication-title: Ecotoxicol. Env. Saf. doi: 10.1016/j.ecoenv.2016.12.013 – volume: 554 start-page: 16 year: 2015 ident: ref_38 article-title: Co-expression analysis reveals a group of genes potentially involved in regulation of plant response to iron-deficiency publication-title: Gene doi: 10.1016/j.gene.2014.10.004 – ident: ref_3 – volume: 397 start-page: 694 year: 1999 ident: ref_8 article-title: A ferric-chelate reductase for iron uptake from soils publication-title: Nature doi: 10.1038/17800 – volume: 65 start-page: 277 year: 2007 ident: ref_33 article-title: Expression and enzyme activity of glutathione reductase is upregulated by Fe-deficiency in graminaceous plants publication-title: Plant Mol. Biol. doi: 10.1007/s11103-007-9216-1 – volume: 5 start-page: 86 year: 2018 ident: ref_20 article-title: Acquisition and homeostasis of iron in higher plants and their probable role in abiotic stress tolerance publication-title: Front. Env. Sci. doi: 10.3389/fenvs.2017.00086 – volume: 84 start-page: 464 year: 2015 ident: ref_58 article-title: Glutathione plays an essential role in nitric oxide-mediated iron-deficiency signaling and iron-deficiency tolerance in Arabidopsis publication-title: Plant J. doi: 10.1111/tpj.13011 – volume: 70 start-page: 204 year: 2013 ident: ref_66 article-title: Glutathione and glutathione reductase: A boon in disguise for plant abiotic stress defense operations publication-title: Plant Physiol. Biochem. doi: 10.1016/j.plaphy.2013.05.032 – volume: 16 start-page: 607 year: 2014 ident: ref_62 article-title: Root antioxidant responses of two Pisum sativum cultivars to direct and induced Fe deficiency publication-title: Plant Biol. doi: 10.1111/plb.12093 – volume: 51 start-page: 670 year: 2010 ident: ref_46 article-title: Rapid dark repression of 5-aminolevulinic acid synthesis in green barley leaves publication-title: Plant Cell Physiol. doi: 10.1093/pcp/pcq047 – volume: 20 start-page: 415 year: 2018 ident: ref_49 article-title: Structural and functional integrity of Sulla carnosa photosynthetic apparatus under iron deficiency conditions publication-title: Plant Biol. doi: 10.1111/plb.12684 – ident: ref_79 – volume: 161 start-page: 481 year: 2001 ident: ref_80 article-title: Polyamines as protectores against cadmium or copper-induced oxidative damage in sunflower leaf discs publication-title: Plant Sci. doi: 10.1016/S0168-9452(01)00432-0 – volume: 31 start-page: 102 year: 2011 ident: ref_63 article-title: Oxidative stress responses and root lignification induced by Fe deficiency conditions in pear and quince genotypes publication-title: Tree Physiol. doi: 10.1093/treephys/tpq105 – volume: 182 start-page: 59 year: 2012 ident: ref_76 article-title: Comparison of ROS formation and antioxidant enzymes in Cleome gynandra (C4) and Cleome spinosa (C3) under drought stress publication-title: Plant Sci. doi: 10.1016/j.plantsci.2011.03.015 – ident: ref_81 – ident: ref_2 – volume: 65 start-page: 1377 year: 2014 ident: ref_75 article-title: Endoplasmic reticulum stress triggers ROS signaling, changes the redox state, and regulates the antioxidant defence of Arabidopsis thaliana publication-title: J. Exp. Bot. doi: 10.1093/jxb/eru034 – volume: 63 start-page: 5903 year: 2012 ident: ref_60 article-title: Rosette iron deficiency transcript and microRNA profiling reveals links between copper and iron homeostasis in Arabidopsis thaliana publication-title: J. Exp. Bot. doi: 10.1093/jxb/ers239 – volume: 169 start-page: 1253 year: 2012 ident: ref_26 article-title: Two Fe-superoxide dismutase families respond differently to stress and senescence in legumes publication-title: J. Plant Physiol. doi: 10.1016/j.jplph.2012.04.019 – volume: 141 start-page: 391 year: 2006 ident: ref_29 article-title: Production and scavenging of reactive oxygen species in chloroplasts and their functions publication-title: Plant Physiol. doi: 10.1104/pp.106.082040 – volume: 6 start-page: 36 year: 2010 ident: ref_22 article-title: Carotenoids in Photooxidative Stress publication-title: Curr. Nutr. Food Sci. doi: 10.2174/157340110790909572 – volume: 20 start-page: 3148 year: 2008 ident: ref_61 article-title: A heterocomplex of iron superoxide dismutases defends chloroplast nucleoids against oxidative stress and is essential for chloroplast development in Arabidopsis publication-title: Plant Cell doi: 10.1105/tpc.108.061341 – volume: 224 start-page: 1116 year: 2006 ident: ref_72 article-title: Molecular and phenotypic characterization of transgenic soybean expressing the Arabisopsis ferric chelate reductase gene, FRO2 publication-title: Planta doi: 10.1007/s00425-006-0293-1 – volume: 104 start-page: 815 year: 1994 ident: ref_1 article-title: Iron: Nutritious, Noxious, and Not Readily Available publication-title: Plant Physiol. doi: 10.1104/pp.104.3.815 – volume: 39 start-page: 546 year: 1989 ident: ref_6 article-title: Plant metabolic responses to iron-deficiency stress publication-title: Bioscience. doi: 10.2307/1310977 – volume: 2 start-page: 53 year: 2014 ident: ref_25 article-title: Reactive oxygen species (ROS) and response of antioxidants as ROS-scavengers during environmental stress in plants publication-title: Front. Env. Sci. doi: 10.3389/fenvs.2014.00053 – volume: 42 start-page: 899 year: 2004 ident: ref_77 article-title: Antioxidant defense in a lead accumulating plant, Sesbania drummondii publication-title: Plant Physiol. Biochem. doi: 10.1016/j.plaphy.2004.12.001 – volume: 278 start-page: 45499 year: 2003 ident: ref_40 article-title: Inhibition of heme biosynthesis prevents transcription of iron uptake genes in yeast publication-title: J. Biol. Chem. doi: 10.1074/jbc.M307229200 – volume: 5 start-page: 105 year: 2014 ident: ref_42 article-title: Metal species involved in long distance metal transport in plants publication-title: Front. Plant Sci. – volume: 64 start-page: 3169 year: 2013 ident: ref_31 article-title: Glutathione and ascorbic acid protect Arabidopsis plants against detrimental effects of iron deficiency publication-title: J. Exp. Bot. doi: 10.1093/jxb/ert153 – volume: 54 start-page: 961 year: 2013 ident: ref_34 article-title: Producing more with less: Strategies and novel technologies for plant-based food biofortification publication-title: Food Res. Int. doi: 10.1016/j.foodres.2012.12.021 – volume: 50 start-page: 983 year: 2004 ident: ref_4 article-title: Iron deficiency of soybean in the North Central U.S. an associated soil properties publication-title: Soil Sci. Plant Nutr. doi: 10.1080/00380768.2004.10408564 |
SSID | ssj0000800816 |
Score | 2.3285832 |
Snippet | Iron deficiency chlorosis (IDC) is an abiotic stress often experienced by soybean, owing to the low solubility of iron in alkaline soils. Here, soybean lines... |
SourceID | doaj pubmedcentral proquest crossref |
SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database |
StartPage | 348 |
SubjectTerms | abiotic stress Alkaline soils aminolevulinic acid Antioxidants ascorbate peroxidase Ascorbic acid Bioaccumulation Biosynthesis Carotenoids Catalase Chlorophyll Chloroplasts Chlorosis Cultivars enzyme activity Enzymes FeSOD Glycine max Heme heme-containing enzymes hemin Iron Iron constituents Iron deficiency Isoenzymes isozymes L-Ascorbate peroxidase Leaves Lipid peroxidation nutrient deficiencies Nutrient deficiency Oxidative stress Peroxidase Physiology Pigments Plants Reductases Roots Scavenging solubility Soybeans Superoxide dismutase |
SummonAdditionalLinks | – databaseName: Open Access资源_DOAJ dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA4iHryIT1xfRBBPFm3zaHrUVVFBD-KCt5I2E3ZlaZfdFfTfO9PWpT2oF2-lGdp0kmm-L5l8YewEBMl-uShIvKQtOWESJBLJSiR1po3Qyuc0of_4pO8G8uFVvbaO-qKcsFoeuHbceQxKeGuMDJ2VIJzJlbUmz0Nk7SFAtXUPx7wWmXprcJAJdS2qKZDXn0_GlFdiaFqCzvppDUKVVn8HYHbTI1vjze06W2uAIr-sK7jBlqDYZCtXJYK5zy02HLQ3pXBEcfy5HAMvfXV9STmMHyOHleG1JjlHy6roBeYkIzCltELe_8Rn81HB76dlwa-B5CRoLybvD5HHl7PRbJsNbm9e-ndBc2hCkCuj5wEivCSR_iLHSHSRdcJeWOFo9TDKjPRG2kxqnXmIQ6-MQ_bnsK2kVZCEkVW52GHLRVnALuMmBi11FMXKAtIwl1gPBv8ALosNhm3cY2ffXkzzRlGcDrYYp8gsyOlpx-k9drown9RSGj8ZXlGTLIxIAbu6gf0ibfpF-le_6LGD7wZNm7CcpcifSDIxjvAdx4tiDChaJbEFlO9oQyufRiCu-sVGIBAjZT20iTudpVPpbkkxGlby3QgPkLTLvf_4yn22igiuSnoLxQFbnk_f4RBR0jw7qgLiC4K7E00 priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1La9tAEF5ap4deSp_UTVq2UHqqSKR9aHQqsZuQFhpKiCE3sdpHbTBa13ag-feZkdeudWhuQjuIZXZn9M3s7DeMffKCaL9ckVVB0pWcvMoqicFKIXWjQWgVLCX0f17qi4n8caNuUsJtlcoqtz6xc9QuWsqRHyP0Jba7soCviz8ZdY2i09XUQuMxO0AXDDBgB6Ozy19XuywL4SHI9YZcU2B8f7yYU30JUHqCev7s_Yw6zv4e0OyXSe79d86fs2cJMPLTzQq_YI98-5I9GUUEdXev2HSyfzmFI5rjV3HueQzd8ynVMv6dOZwM33CTc5Tshq79mugEllReyMd3-G0-a_n3ZWz5N0-0EnQnk4-nGM_H1Wz1mk3Oz67HF1lqnpBZBXqdIdKrKhlOLFqkK4wT5sQIR6eIRQMygDSN1LoJvsyDAodRoMM1k0b5Ki-MsuING7Sx9W8Zh9JrqVH5yngMx1xlggf0BK4pAc23HLIvWy3WNjGLU4OLeY0RBim97il9yD7vxBcbSo3_CY5oSXZCxITdvYjL33UyrLr0SgQDIHNnpBcOrDIGrM0LRC_eV0N2tF3QOpnnqv63mYbs424YDYtOS0zr4y3K0AkoCMRXD8gIBGTEsIcyZW-z9CbdH2ln047GG2ECBu_y3cMTPGRPEaN1ZW25OGKD9fLWv0cctG4-pM1-D0-NC18 priority: 102 providerName: ProQuest |
Title | Understanding the Role of the Antioxidant System and the Tetrapyrrole Cycle in Iron Deficiency Chlorosis |
URI | https://www.proquest.com/docview/2550227728 https://www.proquest.com/docview/2295483317 https://www.proquest.com/docview/2374194347 https://pubmed.ncbi.nlm.nih.gov/PMC6784024 https://doaj.org/article/7e53fa8841da4e3d8c5aa8cc12021ee9 |
Volume | 8 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fb9MwELbGxgMvCMYQhVEZCfG0bIt_5wGhtWwaSJvQtEp7i5zYXouqZKSdtP733LlpWQSbeIviUxKdffH32efvCPnoOcp-OZZkQeCRnDRLMgFkhQlVKMOVDCUu6J-dq9OR-H4lr_5ICrUOnP2T2mE9qVEz3b_7tfgCAf8ZGSdQ9oObKaaMGFxxEOYJ2YJJSWMxg7MW6f9sgZGJhVBxQgRMKfRScfPvJ3RmqCjk30Gf3dzJe5PRyQvyvEWR9GjZ7S_Jhq-2ydNBDUhv8YqMR_dPrFCAePSinnpah3h9hAmOdxMHH0OXguUULGPTpZ-jxkCDOYd0uIBn00lFvzV1Rb961JrAg5p0OAaSX88msx0yOjm-HJ4mbUWFpJRGzROAf1kmwmEJYeqYddweWu5wa5EVRgQjbCGUKoLXaZDGATV00JHCSp-lzMqSvyabVV35N4Qa7ZVQjGlpPXA0l9ngDfweXKENxLTukb2VF_OylRvHqhfTHGgHOj3vOL1HPq3Nb5Y6Gw8ZDrBL1kYojx1v1M113kZbrr3kwRojUmeF586U0lpTlikDSON91iO7qw7NV0MuB3KFeoqawTs-rJsh2nALxVa-vgUb3BY1HEDXIzYcUBrK7oGN7gyWzkd3W6rJOGp7A3YARi_e_q873pFnAOFi1lvKd8nmvLn17wEmzYs-2Rocn_-46Mdlhn4Mh98uYxU0 |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fb9MwED6NDgleED-1wgAjAU9Ea2zHcR4QWrtNLdsqNLXS3oITO7RSlZS2E_Sf4m_kLk1K88De9hbFJ8s5ny_f2efvAN47QbRflntRJulKjh95kcRghUuVKC1UkKW0oX85VP2x_HodXO_Bn_ouDKVV1j6xdNS2SGmP_AihL7HdhVx_mf_0qGoUna7WJTQ2ZnHu1r8wZFt-Hpzg_H7g_Ox01Ot7VVUBLw20WnkIgaJIZp0UTdVyY4XpGGHpeI0nWmZamkQqlWQu9LNAWwyPLH6MNIGLfG6CVGC_92BfCtXhLdjvng6_XW13dQh_aV9tyDyFiDpH8xnls2jaDqEaQzs_v7JGQAPYNtMyd_5zZ4_hUQVQ2fHGop7Ansufwv1ugSBy_Qwm493LMAzRI7sqZo4VWfl8TLmTv6cWB8M2XOgMJcumkVsRfcGC0hlZb419s2nOBosiZyeOaCzoDijrTWYFDn26fA7jO1HrC2jlRe4OgOnQKalwsgPjMPyzkcmcRs9jk1Cjuwjb8KnWYpxWTOZUUGMWY0RDSo8bSm_Dx634fEPh8T_BLk3JVoiYt8sXxeJHXC3kOHSByIzW0rdGOmF1Ghij09TniJaci9pwWE9oXLmDZfzPeNvwbtuMC5lOZ0zuihuUoRNXLRDP3SIjEAASox_KhA1jaQy62ZJPJyVtOMISiYjs5e0DfAsP-qPLi_hiMDx_BQ8RH5Ypdb44hNZqceNeIwZbJW8qw2fw_a7X2l9Oy0eg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fb9MwED6NDiFeED9FYYCRgCeiNrHjOA8Ire2qlUE1Tau0t-DENq1UJaXtBP3X-Ou4S9LSPLC3vUXxyXLO58t39vk7gHeWE-2XCbzYCbqS48deLDBYCYRMpeIydBlt6H8by9OJ-HIVXh3An-1dGEqr3PrE0lGbIqM98g5CX2K7iwLVcXVaxPlg-Hnx06MKUnTSui2nUZnImd38wvBt9Wk0wLl-HwTDk8v-qVdXGPCyUMm1h3AojoXrZmi2JtCG667mho7aglQJp4ROhZSps5HvQmUwVDL4YUKHNvYDHWYc-70DhxFFRS047J2Mzy92OzyExZQvK2JPzuNuZzGn3BZFWyNUb2jvR1jWC2iA3GaK5t4_b_gQHtRglR1X1vUIDmz-GO72CgSUmycwnexfjGGIJNlFMbescOXzMeVR_p4ZHAyreNEZSpZNl3ZNVAZLSm1k_Q32zWY5Gy2LnA0sUVrQfVDWn84LHPps9RQmt6LWZ9DKi9w-B6YiK4XEiQ-1xVDQxNpZhV7IpJFC1xG14eNWi0lWs5pTcY15gtENKT1pKL0NH3bii4rO43-CPZqSnRCxcJcviuWPpF7USWRD7rRSwjdaWG5UFmqtsswPEDlZG7fhaDuhSe0aVsk_Q27D210zLmo6qdG5La5Rhk5fFUdsd4MMRzBI7H4oEzWMpTHoZks-m5YU4ghRBKKzFzcP8A3cwzWWfB2Nz17CfYSKZXadz4-gtV5e21cIx9bp69ruGXy_7aX2F0n9S9U |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Understanding+the+Role+of+the+Antioxidant+System+and+the+Tetrapyrrole+Cycle+in+Iron+Deficiency+Chlorosis&rft.jtitle=Plants+%28Basel%29&rft.au=Santos%2C+Carla+S.&rft.au=Ozgur%2C+Rengin&rft.au=Uzilday%2C+Baris&rft.au=Turkan%2C+Ismail&rft.date=2019-09-13&rft.issn=2223-7747&rft.eissn=2223-7747&rft.volume=8&rft.issue=9&rft.spage=348&rft_id=info:doi/10.3390%2Fplants8090348&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_plants8090348 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2223-7747&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2223-7747&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2223-7747&client=summon |