Muscle atrophy‐related myotube‐derived exosomal microRNA in neuronal dysfunction: Targeting both coding and long noncoding RNAs
In mammals, microRNAs can be actively secreted from cells to blood. miR‐29b‐3p has been shown to play a pivotal role in muscle atrophy, but its role in intercellular communication is largely unknown. Here, we showed that miR‐29b‐3p was upregulated in normal and premature aging mouse muscle and plasm...
Saved in:
Published in | Aging cell Vol. 19; no. 5; pp. e13107 - n/a |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , , |
Format | Journal Article Web Resource |
Language | English |
Published |
England
John Wiley & Sons, Inc
01.05.2020
Blackwell Publishing Ltd John Wiley and Sons Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In mammals, microRNAs can be actively secreted from cells to blood. miR‐29b‐3p has been shown to play a pivotal role in muscle atrophy, but its role in intercellular communication is largely unknown. Here, we showed that miR‐29b‐3p was upregulated in normal and premature aging mouse muscle and plasma. miR‐29b‐3p was also upregulated in the blood of aging individuals, and circulating levels of miR‐29b‐3p were negatively correlated with relative appendicular skeletal muscle. Consistently, miR‐29b‐3p was observed in exosomes isolated from long‐term differentiated atrophic C2C12 cells. When C2C12‐derived miR‐29b‐3p‐containing exosomes were uptaken by neuronal SH‐SY5Y cells, increased miR‐29b‐3p levels in recipient cells were observed. Moreover, miR‐29b‐3p overexpression led to downregulation of neuronal‐related genes and inhibition of neuronal differentiation. Interestingly, we identified HIF1α‐AS2 as a novel c‐FOS targeting lncRNA that is induced by miR‐29b‐3p through down‐modulation of c‐FOS and is required for miR‐29b‐3p‐mediated neuronal differentiation inhibition. Our results suggest that atrophy‐associated circulating miR‐29b‐3p may mediate distal communication between muscle cells and neurons.
miR‐29b‐3p‐containing exosomes released from atrophied muscle can be transported via the circulation and transferred to neuronal cells. Increased miR‐29b‐3p levels in neuronal cells may lead to inhibition of neuronal differentiation. |
---|---|
AbstractList | In mammals, microRNAs can be actively secreted from cells to blood. miR‐29b‐3p has been shown to play a pivotal role in muscle atrophy, but its role in intercellular communication is largely unknown. Here, we showed that miR‐29b‐3p was upregulated in normal and premature aging mouse muscle and plasma. miR‐29b‐3p was also upregulated in the blood of aging individuals, and circulating levels of miR‐29b‐3p were negatively correlated with relative appendicular skeletal muscle. Consistently, miR‐29b‐3p was observed in exosomes isolated from long‐term differentiated atrophic C2C12 cells. When C2C12‐derived miR‐29b‐3p‐containing exosomes were uptaken by neuronal SH‐SY5Y cells, increased miR‐29b‐3p levels in recipient cells were observed. Moreover, miR‐29b‐3p overexpression led to downregulation of neuronal‐related genes and inhibition of neuronal differentiation. Interestingly, we identified HIF1α‐AS2 as a novel c‐FOS targeting lncRNA that is induced by miR‐29b‐3p through down‐modulation of c‐FOS and is required for miR‐29b‐3p‐mediated neuronal differentiation inhibition. Our results suggest that atrophy‐associated circulating miR‐29b‐3p may mediate distal communication between muscle cells and neurons. In mammals, microRNAs can be actively secreted from cells to blood. miR‐29b‐3p has been shown to play a pivotal role in muscle atrophy, but its role in intercellular communication is largely unknown. Here, we showed that miR‐29b‐3p was upregulated in normal and premature aging mouse muscle and plasma. miR‐29b‐3p was also upregulated in the blood of aging individuals, and circulating levels of miR‐29b‐3p were negatively correlated with relative appendicular skeletal muscle. Consistently, miR‐29b‐3p was observed in exosomes isolated from long‐term differentiated atrophic C2C12 cells. When C2C12‐derived miR‐29b‐3p‐containing exosomes were uptaken by neuronal SH‐SY5Y cells, increased miR‐29b‐3p levels in recipient cells were observed. Moreover, miR‐29b‐3p overexpression led to downregulation of neuronal‐related genes and inhibition of neuronal differentiation. Interestingly, we identified HIF1α‐AS2 as a novel c‐FOS targeting lncRNA that is induced by miR‐29b‐3p through down‐modulation of c‐FOS and is required for miR‐29b‐3p‐mediated neuronal differentiation inhibition. Our results suggest that atrophy‐associated circulating miR‐29b‐3p may mediate distal communication between muscle cells and neurons. miR‐29b‐3p‐containing exosomes released from atrophied muscle can be transported via the circulation and transferred to neuronal cells. Increased miR‐29b‐3p levels in neuronal cells may lead to inhibition of neuronal differentiation. In mammals, microRNAs can be actively secreted from cells to blood. miR-29b-3p has been shown to play a pivotal role in muscle atrophy, but its role in intercellular communication is largely unknown. Here, we showed that miR-29b-3p was upregulated in normal and premature aging mouse muscle and plasma. miR-29b-3p was also upregulated in the blood of aging individuals, and circulating levels of miR-29b-3p were negatively correlated with relative appendicular skeletal muscle. Consistently, miR-29b-3p was observed in exosomes isolated from long-term differentiated atrophic C2C12 cells. When C2C12-derived miR-29b-3p-containing exosomes were uptaken by neuronal SH-SY5Y cells, increased miR-29b-3p levels in recipient cells were observed. Moreover, miR-29b-3p overexpression led to downregulation of neuronal-related genes and inhibition of neuronal differentiation. Interestingly, we identified HIF1α-AS2 as a novel c-FOS targeting lncRNA that is induced by miR-29b-3p through down-modulation of c-FOS and is required for miR-29b-3p-mediated neuronal differentiation inhibition. Our results suggest that atrophy-associated circulating miR-29b-3p may mediate distal communication between muscle cells and neurons. In mammals, microRNAs can be actively secreted from cells to blood. miR-29b-3p has been shown to play a pivotal role in muscle atrophy, but its role in intercellular communication is largely unknown. Here, we showed that miR-29b-3p was upregulated in normal and premature aging mouse muscle and plasma. miR-29b-3p was also upregulated in the blood of aging individuals, and circulating levels of miR-29b-3p were negatively correlated with relative appendicular skeletal muscle. Consistently, miR-29b-3p was observed in exosomes isolated from long-term differentiated atrophic C2C12 cells. When C2C12-derived miR-29b-3p-containing exosomes were uptaken by neuronal SH-SY5Y cells, increased miR-29b-3p levels in recipient cells were observed. Moreover, miR-29b-3p overexpression led to downregulation of neuronal-related genes and inhibition of neuronal differentiation. Interestingly, we identified HIF1α-AS2 as a novel c-FOS targeting lncRNA that is induced by miR-29b-3p through down-modulation of c-FOS and is required for miR-29b-3p-mediated neuronal differentiation inhibition. Our results suggest that atrophy-associated circulating miR-29b-3p may mediate distal communication between muscle cells and neurons.In mammals, microRNAs can be actively secreted from cells to blood. miR-29b-3p has been shown to play a pivotal role in muscle atrophy, but its role in intercellular communication is largely unknown. Here, we showed that miR-29b-3p was upregulated in normal and premature aging mouse muscle and plasma. miR-29b-3p was also upregulated in the blood of aging individuals, and circulating levels of miR-29b-3p were negatively correlated with relative appendicular skeletal muscle. Consistently, miR-29b-3p was observed in exosomes isolated from long-term differentiated atrophic C2C12 cells. When C2C12-derived miR-29b-3p-containing exosomes were uptaken by neuronal SH-SY5Y cells, increased miR-29b-3p levels in recipient cells were observed. Moreover, miR-29b-3p overexpression led to downregulation of neuronal-related genes and inhibition of neuronal differentiation. Interestingly, we identified HIF1α-AS2 as a novel c-FOS targeting lncRNA that is induced by miR-29b-3p through down-modulation of c-FOS and is required for miR-29b-3p-mediated neuronal differentiation inhibition. Our results suggest that atrophy-associated circulating miR-29b-3p may mediate distal communication between muscle cells and neurons. |
Author | Nian, Fang‐Shin Yang, Chia‐Pei Tsai, Jin‐Wu Wang, Pei‐Ning Chen, Liang‐Kung Liao, Ko‐Hsun Campbell, Mel Wong, Yu‐Hui Chang, Ming‐Hsuan Teng, Yuan‐Chi Yang, Wan‐Shan Hwang, Wei‐Lun Kung, Hsing‐Jien Tzeng, Tsai‐Yu Lin, Ming‐Wei Tsai, Ting‐Fen Wang, Kai‐Hsuan Chao, Chuan‐Chuan Chang, Pei‐Ching |
AuthorAffiliation | 10 Institute of Public Health National Yang‐Ming University Taipei Taiwan 11 Cancer Progression Research Center National Yang‐Ming University Taipei Taiwan 5 Department of Life Sciences Institute of Genome Sciences National Yang‐Ming University Taipei Taiwan 14 UC Davis Comprehensive Cancer Center University of California Davis CA USA 15 Department of Geriatric Medicine School of Medicine National Yang Ming University Taipei Taiwan 7 Program in Molecular Medicine National Yang‐Ming University and Academia Sinica Taipei Taiwan 1 Institute of Microbiology and Immunology National Yang‐Ming University Taipei Taiwan 13 Aging and Health Research Center National Yang‐Ming University Taipei Taiwan 16 Center for Geriatrics and Gerontology Taipei Veterans General Hospital Taipei Taiwan 3 Institute of Molecular and Genomic Medicine National Health Research Institutes Zhunan Taiwan 9 Department of Biotechnology and Laboratory Science in Medicine National Yang‐Ming University Taipei Taiwan 8 The Ph.D. Program |
AuthorAffiliation_xml | – name: 13 Aging and Health Research Center National Yang‐Ming University Taipei Taiwan – name: 6 Institute of Brain Science National Yang‐Ming University Taipei Taiwan – name: 11 Cancer Progression Research Center National Yang‐Ming University Taipei Taiwan – name: 5 Department of Life Sciences Institute of Genome Sciences National Yang‐Ming University Taipei Taiwan – name: 14 UC Davis Comprehensive Cancer Center University of California Davis CA USA – name: 12 Department of Neurology Neurological Institute Taipei Veterans General Hospital Taipei Taiwan – name: 2 Brain Research Center National Yang‐Ming University Taipei Taiwan – name: 4 Program in Molecular Medicine School of Life Sciences National Yang‐Ming University and Academia Sinica Taipei Taiwan – name: 3 Institute of Molecular and Genomic Medicine National Health Research Institutes Zhunan Taiwan – name: 15 Department of Geriatric Medicine School of Medicine National Yang Ming University Taipei Taiwan – name: 7 Program in Molecular Medicine National Yang‐Ming University and Academia Sinica Taipei Taiwan – name: 1 Institute of Microbiology and Immunology National Yang‐Ming University Taipei Taiwan – name: 9 Department of Biotechnology and Laboratory Science in Medicine National Yang‐Ming University Taipei Taiwan – name: 16 Center for Geriatrics and Gerontology Taipei Veterans General Hospital Taipei Taiwan – name: 8 The Ph.D. Program for Cancer Molecular Biology and Drug Discovery College of Medical Science and Technology Taipei Medical University Taipei Taiwan – name: 10 Institute of Public Health National Yang‐Ming University Taipei Taiwan |
Author_xml | – sequence: 1 givenname: Chia‐Pei surname: Yang fullname: Yang, Chia‐Pei organization: National Yang‐Ming University – sequence: 2 givenname: Wan‐Shan surname: Yang fullname: Yang, Wan‐Shan organization: National Yang‐Ming University – sequence: 3 givenname: Yu‐Hui surname: Wong fullname: Wong, Yu‐Hui organization: National Yang‐Ming University – sequence: 4 givenname: Kai‐Hsuan surname: Wang fullname: Wang, Kai‐Hsuan organization: National Health Research Institutes – sequence: 5 givenname: Yuan‐Chi surname: Teng fullname: Teng, Yuan‐Chi organization: National Yang‐Ming University – sequence: 6 givenname: Ming‐Hsuan surname: Chang fullname: Chang, Ming‐Hsuan organization: National Yang‐Ming University – sequence: 7 givenname: Ko‐Hsun surname: Liao fullname: Liao, Ko‐Hsun organization: National Yang‐Ming University – sequence: 8 givenname: Fang‐Shin surname: Nian fullname: Nian, Fang‐Shin organization: National Yang‐Ming University and Academia Sinica – sequence: 9 givenname: Chuan‐Chuan surname: Chao fullname: Chao, Chuan‐Chuan organization: Taipei Medical University – sequence: 10 givenname: Jin‐Wu surname: Tsai fullname: Tsai, Jin‐Wu organization: National Yang‐Ming University – sequence: 11 givenname: Wei‐Lun surname: Hwang fullname: Hwang, Wei‐Lun organization: National Yang‐Ming University – sequence: 12 givenname: Ming‐Wei surname: Lin fullname: Lin, Ming‐Wei organization: National Yang‐Ming University – sequence: 13 givenname: Tsai‐Yu surname: Tzeng fullname: Tzeng, Tsai‐Yu organization: National Yang‐Ming University – sequence: 14 givenname: Pei‐Ning surname: Wang fullname: Wang, Pei‐Ning organization: National Yang‐Ming University – sequence: 15 givenname: Mel surname: Campbell fullname: Campbell, Mel organization: University of California – sequence: 16 givenname: Liang‐Kung surname: Chen fullname: Chen, Liang‐Kung organization: Taipei Veterans General Hospital – sequence: 17 givenname: Ting‐Fen surname: Tsai fullname: Tsai, Ting‐Fen email: tftsai@ym.edu.tw organization: National Yang‐Ming University – sequence: 18 givenname: Pei‐Ching orcidid: 0000-0001-8665-5494 surname: Chang fullname: Chang, Pei‐Ching email: pcchang@ym.edu.tw organization: National Yang‐Ming University – sequence: 19 givenname: Hsing‐Jien surname: Kung fullname: Kung, Hsing‐Jien email: hsingjienkung@gmail.com organization: University of California |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32233025$$D View this record in MEDLINE/PubMed |
BookMark | eNp9ksuKFDEUhgsZcS668QGkwI0IPeZSSapcCE0zXqBVkN6HVHKqO0MqaZOq1t4JvoDP6JOYvsygg0xt6vDnOyf8-c95ceKDh6J4itElzt8rpcFdYoqReFCc4UpUk0YQfnJb4_q0OE_pGiEsGkQfFaeUEEoRYWfFz49j0g5KNcSwXm1___gVwakBTNlvwzC2kBUD0W6yAt9DCr1yZW91DF8-TUvrSw9jDD6LZpu60evBBv-6XKi4hMH6ZdmGYVXqYHa18qZ0IRfZwFHKU9Lj4mGnXIInx_9FsXh7tZi9n8w_v_swm84nmtVcTGqlVAOCCdZWNbRVQ1iXFc05J0Y3nWCVQLrTymiDOXDedl1rUEcFM9k2vSjeHMaux7YHo8EPUTm5jrZXcSuDsvLfE29Xchk2UhBGkcB5AD0McBaWIENsrdyQfeO-Ht1SKi1bkITwWuYX5mx37YvjtTF8HSENsrcpJ-aUhzAmSWjNiEA5nIw-v4NehzHmx80UqypaNZixe6kK8aahTVNl6tnfbm9t3kSfAXQAcpYpReiktoPaxZfNWycxkrvtkrvtkvvtyi0v77TcTP0vjA_wN-tgew8pp7Or-aHnD5E544U |
CitedBy_id | crossref_primary_10_1007_s12603_023_2022_x crossref_primary_10_1016_j_archger_2021_104611 crossref_primary_10_1016_j_omtn_2021_02_025 crossref_primary_10_1007_s13105_023_00969_x crossref_primary_10_3389_fcell_2020_585644 crossref_primary_10_3390_diagnostics12092139 crossref_primary_10_1016_j_archger_2022_104754 crossref_primary_10_1002_jcsm_13106 crossref_primary_10_1016_S2666_7568_21_00248_8 crossref_primary_10_1016_j_biopha_2021_111820 crossref_primary_10_1111_acel_14407 crossref_primary_10_1016_j_archger_2025_105823 crossref_primary_10_3389_fpubh_2022_820383 crossref_primary_10_12677_ACM_2024_143768 crossref_primary_10_1016_j_jnha_2024_100268 crossref_primary_10_3389_fphys_2024_1501957 crossref_primary_10_1016_j_tem_2023_12_004 crossref_primary_10_1007_s12603_021_1693_4 crossref_primary_10_1097_JCMA_0000000000001027 crossref_primary_10_1038_s41574_025_01088_x crossref_primary_10_3390_cells11050845 crossref_primary_10_1016_j_archger_2024_105412 crossref_primary_10_1113_JP283700 crossref_primary_10_1002_rco2_80 crossref_primary_10_3390_biology13121056 crossref_primary_10_1016_j_nmd_2022_04_009 crossref_primary_10_3390_cells10112930 crossref_primary_10_1002_mco2_410 crossref_primary_10_1186_s41065_021_00208_7 crossref_primary_10_1002_adtp_202200029 crossref_primary_10_1002_jgm_3617 |
Cites_doi | 10.1038/ijo.2009.100 10.1073/pnas.251541198 10.1111/acel.12705 10.1016/j.addr.2015.04.011 10.1016/j.exger.2005.05.005 10.1073/pnas.1019055108 10.1038/270725a0 10.1128/MCB.02020-06 10.1016/j.molmed.2017.09.002 10.1152/ajpcell.00429.2011 10.1093/nar/gks1238 10.1016/j.cell.2016.01.043 10.1152/ajpcell.00163.2005 10.1016/j.neuron.2013.05.029 10.4161/auto.5.7.9351 10.1038/s41598-017-13105-9 10.1677/JOE-07-0606 10.1128/MCB.4.8.1449 10.1126/science.1065874 10.1007/s00221-011-2925-3 10.1074/jbc.M116.749770 10.1093/ageing/afq034 10.1371/journal.pone.0003656 10.1101/gad.1975411 10.1016/j.arr.2014.02.005 10.1016/j.ydbio.2015.12.013 10.1016/j.biopha.2017.09.113 10.1111/j.1365-2613.2012.00812.x 10.1038/ncomms15201 10.1038/ncb2210 10.1038/nrn1323 10.1101/gad.1779509 10.1158/0008-5472.CAN-15-3284 10.1038/ncomms15874 10.1016/j.cellsig.2013.06.002 10.1093/nar/gkx1188 10.1038/nrclinonc.2014.5 10.1007/978-1-4939-6524-3_11 10.1152/japplphysiol.00347.2003 10.1016/j.gpb.2015.02.001 10.1093/hmg/dds210 10.1002/jcp.25387 10.1016/j.molcel.2007.12.010 10.1016/j.canlet.2016.03.037 10.1016/j.bbamcr.2003.10.013 10.3389/fnbeh.2017.00112 10.1101/gad.1519207 10.1016/j.celrep.2014.07.035 |
ContentType | Journal Article Web Resource |
Copyright | 2020 The Authors. published by the Anatomical Society and John Wiley & Sons Ltd. 2020 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd. 2020. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2020 The Authors. published by the Anatomical Society and John Wiley & Sons Ltd. – notice: 2020 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd. – notice: 2020. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | 24P AAYXX CITATION NPM 7QP 7TK 8FE 8FH ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO GNUQQ HCIFZ LK8 M7P PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI 7X8 Q33 5PM |
DOI | 10.1111/acel.13107 |
DatabaseName | Wiley Online Library Open Access CrossRef PubMed Calcium & Calcified Tissue Abstracts Neurosciences Abstracts ProQuest SciTech Collection ProQuest Natural Science Journals ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central ProQuest Central Student SciTech Premium Collection Biological Sciences Biological Science Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition MEDLINE - Academic Université de Liège - Open Repository and Bibliography (ORBI) PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed Calcium & Calcified Tissue Abstracts Neurosciences Abstracts Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Biological Science Collection ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection Biological Science Database ProQuest SciTech Collection ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition Natural Science Collection ProQuest Central Korea Biological Science Collection ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) MEDLINE - Academic |
DatabaseTitleList | Calcium & Calcified Tissue Abstracts Publicly Available Content Database CrossRef PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
DocumentTitleAlternate | YANG et al |
EISSN | 1474-9726 |
EndPage | n/a |
ExternalDocumentID | PMC7253071 oai_orbi_ulg_ac_be_2268_330653 32233025 10_1111_acel_13107 ACEL13107 |
Genre | article Journal Article |
GrantInformation_xml | – fundername: Ministry of Science and Technology, Taiwan funderid: MOST 105‐2319‐B‐010‐001; MOST 105‐2320‐B‐010‐007‐MY3; MOST 105‐2320‐B‐038‐071‐MY3; MOST 105‐2633‐B‐400‐001‐003; MOST 106‐2314‐B‐038‐093; MOST 107‐2320‐B‐038‐055‐MY; MOST 107‐3011‐B‐010‐001; MOST‐108‐2321‐B‐010‐013‐MY2 – fundername: Ministry of Science and Technology, Taiwan grantid: MOST 107-3011-B-010-001 – fundername: Ministry of Science and Technology, Taiwan grantid: MOST 105-2320-B-010-007-MY3 – fundername: Ministry of Science and Technology, Taiwan grantid: MOST 106-2314-B-038-093 – fundername: Ministry of Science and Technology, Taiwan grantid: MOST 105-2320-B-038-071-MY3 – fundername: Ministry of Science and Technology, Taiwan grantid: MOST-108-2321-B-010-013-MY2 – fundername: Ministry of Science and Technology, Taiwan grantid: MOST 105-2319-B-010-001 – fundername: Ministry of Science and Technology, Taiwan grantid: MOST 107-2320-B-038-055-MY – fundername: Ministry of Science and Technology, Taiwan grantid: MOST 105-2633-B-400-001-003 – fundername: ; grantid: MOST 105‐2319‐B‐010‐001; MOST 105‐2320‐B‐010‐007‐MY3; MOST 105‐2320‐B‐038‐071‐MY3; MOST 105‐2633‐B‐400‐001‐003; MOST 106‐2314‐B‐038‐093; MOST 107‐2320‐B‐038‐055‐MY; MOST 107‐3011‐B‐010‐001; MOST‐108‐2321‐B‐010‐013‐MY2 |
GroupedDBID | --- .3N .GA .Y3 05W 0R~ 10A 1OC 23M 24P 2WC 31~ 36B 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52R 52S 52T 52W 52X 53G 5GY 5HH 5LA 5VS 66C 6J9 702 7PT 8-0 8-1 8-3 8-4 8-5 8FE 8FH 8UM 930 A01 A03 AAMMB AAZKR ABCQN ABDBF ABEML ABJNI ACCMX ACGFO ACGFS ACPRK ACSCC ACUHS ACXQS ADBBV ADKYN ADRAZ ADZMN AEFGJ AEGXH AENEX AFBPY AFEBI AFKRA AFZJQ AGXDD AIAGR AIDQK AIDYY ALMA_UNASSIGNED_HOLDINGS ALUQN AOIJS AVUZU BAWUL BBNVY BCNDV BENPR BFHJK BHPHI BY8 CAG CCPQU COF CS3 D-6 D-7 D-E D-F DIK DR2 E3Z EAD EAP EBD EBS EJD EMB EMK EMOBN EST ESX F00 F01 F04 F5P FIJ GODZA GROUPED_DOAJ GX1 HCIFZ HF~ HOLLA HZ~ IAO IHE IHR ITC IX1 J0M K.9 KQ8 LC2 LC3 LH4 LK8 LP6 LP7 LW6 M48 M7P MK4 N04 N05 N9A O9- OBS OIG OK1 OVD P2P P2X P2Z P4B P4D PHGZM PHGZT PIMPY Q11 ROL RPM RX1 SUPJJ SV3 TEORI TR2 TUS UB1 V8K W8V WQJ WXI XG1 YFH YUY ~IA ~WT AAHHS AAYXX ACCFJ ADZOD AEEZP AEQDE AIWBW AJBDE CITATION NPM PQGLB 7QP 7TK WIN ABUWG AZQEC DWQXO GNUQQ PKEHL PQEST PQQKQ PQUKI 7X8 PUEGO Q33 5PM |
ID | FETCH-LOGICAL-c5867-8aaa9e7575b48eb4925faa9c6662dc9f75470cfcadcd16e66bffbd0f375d9033 |
IEDL.DBID | DR2 |
ISSN | 1474-9718 1474-9726 |
IngestDate | Thu Aug 21 18:32:26 EDT 2025 Fri Aug 01 18:59:07 EDT 2025 Sun Aug 24 02:59:04 EDT 2025 Wed Aug 13 10:00:13 EDT 2025 Wed Aug 13 03:44:18 EDT 2025 Mon Jul 21 05:47:43 EDT 2025 Thu Apr 24 23:05:28 EDT 2025 Tue Jul 01 01:49:15 EDT 2025 Sun Jul 06 04:45:05 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | lncRNAs aging muscle atrophy miR-29b-3p HIF-1α-AS2 |
Language | English |
License | Attribution 2020 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd. This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5867-8aaa9e7575b48eb4925faa9c6662dc9f75470cfcadcd16e66bffbd0f375d9033 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 scopus-id:2-s2.0-85082619033 Chia‐Pei Yang, Wan‐Shan Yang and Yu‐Hui Wong equally contributed to this work. |
ORCID | 0000-0001-8665-5494 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1111%2Facel.13107 |
PMID | 32233025 |
PQID | 2544349155 |
PQPubID | 1036381 |
PageCount | 16 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_7253071 liege_orbi_v2_oai_orbi_ulg_ac_be_2268_330653 proquest_miscellaneous_2385270001 proquest_journals_2544349155 proquest_journals_2406993994 pubmed_primary_32233025 crossref_citationtrail_10_1111_acel_13107 crossref_primary_10_1111_acel_13107 wiley_primary_10_1111_acel_13107_ACEL13107 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | May 2020 |
PublicationDateYYYYMMDD | 2020-05-01 |
PublicationDate_xml | – month: 05 year: 2020 text: May 2020 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: London – name: Hoboken |
PublicationTitle | Aging cell |
PublicationTitleAlternate | Aging Cell |
PublicationYear | 2020 |
Publisher | John Wiley & Sons, Inc Blackwell Publishing Ltd John Wiley and Sons Inc |
Publisher_xml | – name: John Wiley & Sons, Inc – name: Blackwell Publishing Ltd – name: John Wiley and Sons Inc |
References | 2009; 23 2015; 13 2017; 7 1977; 270 2017; 8 2013; 25 2016; 108 2010; 39 2013; 41 2017; 23 2005; 40 2016; 76 2017; 292 2017; 1509 2004; 5 2011; 13 2006; 290 2008; 3 2017; 232 2012; 302 2016; 164 2004; 1644 2018; 46 2003; 1985 2012; 93 2009; 33 2018; 17 2017; 96 2001; 294 2011; 108 1984; 4 2013; 78 2017; 11 2008; 29 2015; 88 2016; 410 2016; 376 2009; 5 2014; 17 2011; 25 2007; 21 2014; 8 2008; 197 2012; 216 2012; 21 2014; 11 2001; 98 2007; 27 e_1_2_10_23_1 e_1_2_10_46_1 e_1_2_10_21_1 e_1_2_10_44_1 e_1_2_10_42_1 e_1_2_10_40_1 e_1_2_10_2_1 e_1_2_10_4_1 e_1_2_10_18_1 e_1_2_10_6_1 e_1_2_10_16_1 e_1_2_10_39_1 e_1_2_10_8_1 e_1_2_10_14_1 e_1_2_10_37_1 e_1_2_10_13_1 e_1_2_10_34_1 e_1_2_10_11_1 e_1_2_10_32_1 e_1_2_10_30_1 Shipley M. M. (e_1_2_10_38_1) 2016; 108 e_1_2_10_29_1 e_1_2_10_27_1 e_1_2_10_25_1 e_1_2_10_48_1 e_1_2_10_24_1 e_1_2_10_45_1 e_1_2_10_22_1 e_1_2_10_43_1 e_1_2_10_20_1 e_1_2_10_41_1 e_1_2_10_3_1 e_1_2_10_19_1 e_1_2_10_5_1 e_1_2_10_17_1 e_1_2_10_7_1 e_1_2_10_15_1 e_1_2_10_36_1 e_1_2_10_12_1 e_1_2_10_35_1 e_1_2_10_9_1 e_1_2_10_10_1 e_1_2_10_33_1 e_1_2_10_31_1 e_1_2_10_50_1 e_1_2_10_28_1 e_1_2_10_49_1 e_1_2_10_26_1 e_1_2_10_47_1 |
References_xml | – volume: 23 start-page: 1183 year: 2009 end-page: 1194 article-title: Cisd2 deficiency drives premature aging and causes mitochondria‐mediated defects in mice publication-title: Genes & Development – volume: 216 start-page: 225 year: 2012 end-page: 230 article-title: Upregulated miR‐29b promotes neuronal cell death by inhibiting Bcl2L2 after ischemic brain injury publication-title: Experimental Brain Research – volume: 13 start-page: 17 year: 2015 end-page: 24 article-title: Exosome and exosomal microRNA: Trafficking, sorting, and function publication-title: Genomics Proteomics Bioinformatics – volume: 1644 start-page: 189 year: 2004 end-page: 203 article-title: Bcl‐2 family regulation of neuronal development and neurodegeneration publication-title: Biochimica Et Biophysica Acta – volume: 3 year: 2008 article-title: Rest‐mediated regulation of extracellular matrix is crucial for neural development publication-title: PLoS ONE – volume: 96 start-page: 165 year: 2017 end-page: 172 article-title: lncRNAs HIF1A‐AS2 facilitates the up‐regulation of HIF‐1alpha by sponging to miR‐153‐3p, whereby promoting angiogenesis in HUVECs in hypoxia publication-title: Biomedicine & Pharmacotherapy – volume: 39 start-page: 412 year: 2010 end-page: 423 article-title: Sarcopenia: European consensus on definition and diagnosis: Report of the European Working Group on Sarcopenia in Older People publication-title: Age and Ageing – volume: 78 start-page: 785 year: 2013 end-page: 798 article-title: Rapid single‐step induction of functional neurons from human pluripotent stem cells publication-title: Neuron – volume: 164 start-page: 1226 year: 2016 end-page: 1232 article-title: Communication by extracellular vesicles: where we are and where we need to go publication-title: Cell – volume: 33 start-page: 831 year: 2009 end-page: 841 article-title: Morphological and biochemical alterations of skeletal muscles from the genetically obese (ob/ob) mouse publication-title: International Journal of Obesity – volume: 108 start-page: 5003 year: 2011 end-page: 5008 article-title: Argonaute2 complexes carry a population of circulating microRNAs independent of vesicles in human plasma publication-title: Proceedings of the National Academy of Sciences – volume: 40 start-page: 562 year: 2005 end-page: 572 article-title: Soleus muscles of SAMP8 mice provide an accelerated model of skeletal muscle senescence publication-title: Experimental Gerontology – volume: 98 start-page: 14440 year: 2001 end-page: 14445 article-title: Atrogin‐1, a muscle‐specific F‐box protein highly expressed during muscle atrophy publication-title: Proceedings of the National Academy of Sciences – volume: 25 start-page: 2060 year: 2013 end-page: 2068 article-title: Rit subfamily small GTPases: Regulators in neuronal differentiation and survival publication-title: Cellular Signalling – volume: 8 start-page: 15874 year: 2017 article-title: Long noncoding RNA LncHIFCAR/MIR31HG is a HIF‐1alpha co‐activator driving oral cancer progression publication-title: Nature Communications – volume: 5 start-page: 87 year: 2004 end-page: 96 article-title: Insights into the ageing mind: A view from cognitive neuroscience publication-title: Nature Reviews Neuroscience – volume: 93 start-page: 157 year: 2012 end-page: 171 article-title: Muscle wasting in animal models of severe illness publication-title: International Journal of Experimental Pathology – volume: 17 year: 2018 article-title: Comparative proteomic profiling reveals a role for Cisd2 in skeletal muscle aging publication-title: Aging Cell – volume: 11 start-page: 145 year: 2014 end-page: 156 article-title: Clinical relevance of circulating cell‐free microRNAs in cancer publication-title: Nature Reviews Clinical Oncology – volume: 1509 start-page: 115 year: 2017 end-page: 122 article-title: Profiling the MicroRNA payload of exosomes derived from ex vivo primary colorectal fibroblasts publication-title: Methods in Molecular Biology – volume: 7 start-page: 12888 year: 2017 article-title: Denervation‐related alterations and biological activity of miRNAs contained in exosomes released by skeletal muscle fibers publication-title: Scientific Reports – volume: 302 start-page: C1590 year: 2012 end-page: C1598 article-title: Repression of PDGF‐R‐alpha after cellular injury involves TNF‐alpha, formation of a c‐Fos‐YY1 complex, and negative regulation by HDAC publication-title: American Journal of Physiology – volume: 23 start-page: 989 year: 2017 end-page: 1001 article-title: Biomarker potential of extracellular miRNAs in Duchenne muscular dystrophy publication-title: Trends in Molecular Medicine – volume: 108 year: 2016 article-title: Differentiation of the SH‐SY5Y Human Neuroblastoma Cell Line publication-title: Journal of Visualized Experiments – volume: 21 start-page: 531 year: 2007 end-page: 536 article-title: A functional study of miR‐124 in the developing neural tube publication-title: Genes & Development – volume: 1985 start-page: 1717 issue: 95 year: 2003 end-page: 1727 article-title: Invited review: Aging and sarcopenia publication-title: Journal of Applied Physiology – volume: 8 start-page: 15201 year: 2017 article-title: miR‐29b contributes to multiple types of muscle atrophy publication-title: Nature Communications – volume: 41 start-page: D285 year: 2013 end-page: D294 article-title: YM500: A small RNA sequencing (smRNA‐seq) database for microRNA research publication-title: Nucleic Acids Research – volume: 292 start-page: 2054 year: 2017 end-page: 2064 article-title: RIT1 GTPase Regulates Sox2 transcriptional activity and hippocampal neurogenesis publication-title: Journal of Biological Chemistry – volume: 25 start-page: 125 year: 2011 end-page: 130 article-title: miR‐29b is activated during neuronal maturation and targets BH3‐only genes to restrict apoptosis publication-title: Genes & Development – volume: 11 start-page: 112 year: 2017 article-title: Beyond neuronal activity markers: select immediate early genes in striatal neuron subtypes functionally mediate psychostimulant addiction publication-title: Frontiers in Behavioural Neurosciences – volume: 270 start-page: 725 year: 1977 end-page: 727 article-title: Serial passaging and differentiation of myogenic cells isolated from dystrophic mouse muscle publication-title: Nature – volume: 8 start-page: 1432 year: 2014 end-page: 1446 article-title: Endogenous RNAs modulate microRNA sorting to exosomes and transfer to acceptor cells publication-title: Cell Reports – volume: 17 start-page: 86 year: 2014 end-page: 98 article-title: Circulating small noncoding RNAs as biomarkers of aging publication-title: Ageing Research Reviews – volume: 29 start-page: 1 year: 2008 end-page: 7 article-title: Let me count the ways: Mechanisms of gene regulation by miRNAs and siRNAs publication-title: Molecular Cell – volume: 46 start-page: D1284 year: 2018 article-title: JASPAR 2018: Update of the open‐access database of transcription factor binding profiles and its web framework publication-title: Nucleic Acids Research – volume: 410 start-page: 1 year: 2016 end-page: 13 article-title: Muscle‐specific microRNAs in skeletal muscle development publication-title: Developmental Biology – volume: 232 start-page: 1587 year: 2017 end-page: 1590 article-title: Quantification of exosomes publication-title: Journal of Cellular Physiology – volume: 294 start-page: 1704 year: 2001 end-page: 1708 article-title: Identification of ubiquitin ligases required for skeletal muscle atrophy publication-title: Science – volume: 290 start-page: C650 year: 2006 end-page: C659 article-title: Quantification of hormone‐induced atrophy of large myotubes from C2C12 and L6 cells: Atrophy‐inducible and atrophy‐resistant C2C12 myotubes publication-title: American Journal of Physiology – volume: 5 start-page: 1043 year: 2009 end-page: 1045 article-title: Cisd2 mediates mitochondrial integrity and life span in mammals publication-title: Autophagy – volume: 27 start-page: 4374 year: 2007 end-page: 4387 article-title: NF‐kappaB regulation of YY1 inhibits skeletal myogenesis through transcriptional silencing of myofibrillar genes publication-title: Molecular and Cellular Biology – volume: 376 start-page: 155 year: 2016 end-page: 164 article-title: Tetracycline‐inducible shRNA targeting antisense long non‐coding RNA HIF1A‐AS2 represses the malignant phenotypes of bladder cancer publication-title: Cancer Letters – volume: 4 start-page: 1449 year: 1984 end-page: 1453 article-title: Cardiac actin is the major actin gene product in skeletal muscle cell differentiation in vitro publication-title: Molecular and Cellular Biology – volume: 197 start-page: 1 year: 2008 end-page: 10 article-title: Mechanisms of glucocorticoid‐induced myopathy publication-title: Journal of Endocrinology – volume: 21 start-page: 3956 year: 2012 end-page: 3968 article-title: A persistent level of Cisd2 extends healthy lifespan and delays aging in mice publication-title: Human Molecular Genetics – volume: 13 start-page: 423 year: 2011 end-page: 433 article-title: MicroRNAs are transported in plasma and delivered to recipient cells by high‐density lipoproteins publication-title: Nature Cell Biology – volume: 76 start-page: 2105 year: 2016 end-page: 2114 article-title: Transcriptome Analysis of Triple‐Negative Breast Cancer Reveals an Integrated mRNA‐lncRNA Signature with Predictive and Prognostic Value publication-title: Cancer Research – volume: 88 start-page: 37 year: 2015 end-page: 52 article-title: The mesmiRizing complexity of microRNAs for striated muscle tissue engineering publication-title: Advanced Drug Delivery Reviews – ident: e_1_2_10_25_1 doi: 10.1038/ijo.2009.100 – ident: e_1_2_10_19_1 doi: 10.1073/pnas.251541198 – ident: e_1_2_10_23_1 doi: 10.1111/acel.12705 – ident: e_1_2_10_32_1 doi: 10.1016/j.addr.2015.04.011 – ident: e_1_2_10_16_1 doi: 10.1016/j.exger.2005.05.005 – ident: e_1_2_10_3_1 doi: 10.1073/pnas.1019055108 – ident: e_1_2_10_47_1 doi: 10.1038/270725a0 – ident: e_1_2_10_44_1 doi: 10.1128/MCB.02020-06 – ident: e_1_2_10_13_1 doi: 10.1016/j.molmed.2017.09.002 – ident: e_1_2_10_49_1 doi: 10.1152/ajpcell.00429.2011 – ident: e_1_2_10_12_1 doi: 10.1093/nar/gks1238 – ident: e_1_2_10_42_1 doi: 10.1016/j.cell.2016.01.043 – ident: e_1_2_10_40_1 doi: 10.1152/ajpcell.00163.2005 – ident: e_1_2_10_50_1 doi: 10.1016/j.neuron.2013.05.029 – ident: e_1_2_10_11_1 doi: 10.4161/auto.5.7.9351 – ident: e_1_2_10_15_1 doi: 10.1038/s41598-017-13105-9 – ident: e_1_2_10_33_1 doi: 10.1677/JOE-07-0606 – ident: e_1_2_10_4_1 doi: 10.1128/MCB.4.8.1449 – ident: e_1_2_10_6_1 doi: 10.1126/science.1065874 – ident: e_1_2_10_36_1 doi: 10.1007/s00221-011-2925-3 – ident: e_1_2_10_31_1 doi: 10.1074/jbc.M116.749770 – ident: e_1_2_10_14_1 doi: 10.1093/ageing/afq034 – ident: e_1_2_10_41_1 doi: 10.1371/journal.pone.0003656 – ident: e_1_2_10_27_1 doi: 10.1101/gad.1975411 – ident: e_1_2_10_17_1 doi: 10.1016/j.arr.2014.02.005 – volume: 108 start-page: e53193 year: 2016 ident: e_1_2_10_38_1 article-title: Differentiation of the SH‐SY5Y Human Neuroblastoma Cell Line publication-title: Journal of Visualized Experiments – ident: e_1_2_10_22_1 doi: 10.1016/j.ydbio.2015.12.013 – ident: e_1_2_10_30_1 doi: 10.1016/j.biopha.2017.09.113 – ident: e_1_2_10_21_1 doi: 10.1111/j.1365-2613.2012.00812.x – ident: e_1_2_10_29_1 doi: 10.1038/ncomms15201 – ident: e_1_2_10_43_1 doi: 10.1038/ncb2210 – ident: e_1_2_10_20_1 doi: 10.1038/nrn1323 – ident: e_1_2_10_10_1 doi: 10.1101/gad.1779509 – ident: e_1_2_10_24_1 doi: 10.1158/0008-5472.CAN-15-3284 – ident: e_1_2_10_37_1 doi: 10.1038/ncomms15874 – ident: e_1_2_10_35_1 doi: 10.1016/j.cellsig.2013.06.002 – ident: e_1_2_10_26_1 doi: 10.1093/nar/gkx1188 – ident: e_1_2_10_34_1 doi: 10.1038/nrclinonc.2014.5 – ident: e_1_2_10_5_1 doi: 10.1007/978-1-4939-6524-3_11 – ident: e_1_2_10_18_1 doi: 10.1152/japplphysiol.00347.2003 – ident: e_1_2_10_48_1 doi: 10.1016/j.gpb.2015.02.001 – ident: e_1_2_10_45_1 doi: 10.1093/hmg/dds210 – ident: e_1_2_10_28_1 doi: 10.1002/jcp.25387 – ident: e_1_2_10_46_1 doi: 10.1016/j.molcel.2007.12.010 – ident: e_1_2_10_9_1 doi: 10.1016/j.canlet.2016.03.037 – ident: e_1_2_10_2_1 doi: 10.1016/j.bbamcr.2003.10.013 – ident: e_1_2_10_8_1 doi: 10.3389/fnbeh.2017.00112 – ident: e_1_2_10_7_1 doi: 10.1101/gad.1519207 – ident: e_1_2_10_39_1 doi: 10.1016/j.celrep.2014.07.035 |
RestrictionsOnAccess | open access |
SSID | ssj0017903 |
Score | 2.4505074 |
Snippet | In mammals, microRNAs can be actively secreted from cells to blood. miR‐29b‐3p has been shown to play a pivotal role in muscle atrophy, but its role in... In mammals, microRNAs can be actively secreted from cells to blood. miR-29b-3p has been shown to play a pivotal role in muscle atrophy, but its role in... |
SourceID | pubmedcentral liege proquest pubmed crossref wiley |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | e13107 |
SubjectTerms | Aging Animals Atrophy Biomarkers Cell Biology Cell Differentiation Cell interactions Cell signaling Cells, Cultured Cellular Senescence Communication Exosomes Exosomes/metabolism Genetics & genetic processes Génétique & processus génétiques HIF-1α-AS2 Human subjects Humans Life sciences lncRNAs Mice MicroRNAs MicroRNAs/genetics miR-29b-3p MIRN29 microRNA, mouse miRNA muscle atrophy Muscle Fibers, Skeletal Muscle Fibers, Skeletal/metabolism Muscular Atrophy Muscular Atrophy/metabolism Musculoskeletal system Myogenesis Myotubes Neurons Neurons/metabolism Non-coding RNA Original Plasma Proteins RNA, Long Noncoding RNA, Long Noncoding/genetics RNA, Messenger RNA, Messenger/genetics Sarcopenia Sciences du vivant Skeletal muscle |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1fb9MwELdgFRIviP8UBjKCFxBhjePECS-oTJ0mxCo0FWlvVvwPKqXJWJqJviHxBfiMfBLuXDeiotqbZTu24zufz77z7wh5mSQOYczjSOPzX860ilRcllHhmMiUy0fM4Hvnk2l2_IV_PEvPwoVbG9wqNzLRC2rTaLwjP0AorYQjmvn78-8RRo1C62oIoXGdDEAE53D4GnyYTD-f9nYEUfjYyDEXPCpADAeAUvTlKbWt3sag3YitLWlQobF6l775v9vkv-qs34-ObpNbQZGk4zXl75Brtr5LbqxDS67ukV8nXQv5FK-6YSb__PztX61YQxerZtkpCzkGuO8ScuyPpm0W0NgCvfNOp2M6r6kHusQezKrFzQ8J-I7OvOM4bHdUAYmpbnDro2VtaNVAom7qkAWttPfJ7GgyOzyOQsCFSKc5CMy8LMvCCtDgFM-tQtxCBzkajjjM6MKJlIuRdro02sSZzYCYTpmRS0RqYKKTB2QP-rGPCI1BbrHMplwXOXc5nrPhIF4ylxlY9S4eklebKZc6gJFjTIxKbg4lSB7pyTMkL_q652sIjp213njKyeZCzeUlk4ib7dNd9RXqSWUlqJq5TBKE4x2S_Q2BZVi1rfTPgAtQ2fju4p4Fh-R5XwzLEW0sZW2bDuokeYq2_BH84sM1u_SDBtkJnTP4WmwxUl8Bh7xdUs-_echvwVIQxtDma89yV8yDHB9OPvnU46v_4Qm5yfDuwDtv7pO95UVnn4KCtVTPwir6C8KPKI0 priority: 102 providerName: ProQuest – databaseName: Scholars Portal Journals: Open Access dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1fi9QwEA_nHYIv4n_37pSIvij22KZp0woiy3HHIe49yB7cW8hfXei2ut0et2-CX8DP6CdxJtuuLi6CbyGZJu3MJDPTJL8h5EWSeIQxjyOD1385MzrSsVJR4ZnItM-HzOJ95_F5dnbB31-mlzukz9_ZMbDZGtphPqmLeXl0_XX5Dib82_5UjjKuPIrBTxE3yB5YJIETdMx_7yaIImRIjrngUQGLcQdTuvnshmHaK3HLepvX-ffhyT-d2mCVTu-Q2507SUcr-d8lO666R26uEkwu75Pv47aBeoo_vIGfP7_9CHdXnKWzZb1otYMaCzp4BTXuum7qGXQ2wzN6H89HdFrRAHeJI9hlgyYQxfiGTsLxcTB6VIOgqanRAFJVWVrWUKjqqquCXpoHZHJ6Mjk-i7q0C5FJc1g2c6VU4QT4cZrnTiN6oYcaA4EOs6bwIuViaLxR1tg4cxmI1Gs79IlILTA6eUh2YRz3mNAYVi-WuZSbIuc-x2gbwnHFfGZh7vt4QF72LJemgyTHzBil7EMTFI8M4hmQ52vaLysgjq1Ur4PkZD3XU3nFJKJnh3JbfgI6qZ0EhzOXSYKgvANy2AtY9qonw2XgAhw3vr0ZEQM5wuoPyLN1M0xK3GlRlatboEnyFHf0h_CJj1bqsn5pWEFhcAZPiw1FWhPgK2-2VNPPAfhbsBSWZOjzVVC5f_BBjo5PPoTS_v8QH5BbDP8nhAOdh2R3MW_dE3C6FvppmFG_AKIWLLo priority: 102 providerName: Scholars Portal |
Title | Muscle atrophy‐related myotube‐derived exosomal microRNA in neuronal dysfunction: Targeting both coding and long noncoding RNAs |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Facel.13107 https://www.ncbi.nlm.nih.gov/pubmed/32233025 https://www.proquest.com/docview/2406993994 https://www.proquest.com/docview/2544349155 https://www.proquest.com/docview/2385270001 http://orbi.ulg.ac.be/handle/2268/330653 https://pubmed.ncbi.nlm.nih.gov/PMC7253071 |
Volume | 19 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELfGJiRexjcrjMoIXkCkahznC_FSpk4TotVUFWkvyIq_oKJN0NJMlCck_gH-Rv4S7pw0rFAhwUtk2Rc7ts93Z-fuZ0KeBIFFGHPfUxj-y5mSnvSzzEstiyNpkz7TGO88Gkcnb_nrs_Bsh7xcx8LU-BDtgRuuDCevcYFnsry0yDNl5j0frBMMJUdnLbSIJi12FCJPOe96HnMvBQncYJOiG8-vVze00d4c_1NvMzX_9Ji8bMk6VXR8nbxbd6L2QPnYq5ayp778hu_4v728QfYbG5UOaqa6SXZMfotcrW-tXN0m30ZVCfkUT9Fhkn58_e4CYoymi1WxrKSBHA2MfQE55nNRFguobIGOf5PxgM5y6jA0sQW9KlGvIm-8oFPnkw6alErgHqoK1Ko0yzWdF5DIi7zJglrKO2R6PJwenXjNXQ6eChOQxUmWZamJwTiUPDESIREt5CjYPTGtUhuHPO4rqzKttB-ZCPjESt23QRxqmMjgLtmFdswBoT6IRBaZkKs04TbBLTzs8TNmIw0Cxfod8nQ9pUI1OOd43cZcrPc7OKbCjWmHPG5pP9XoHlupnjvOEMW5nIkLJhCS26Wr-XugE9IIsGITEQSI9Nshh2sGEo1AKIWLME7BGuTbixGGkCNWf4c8aothpePvmyw3RQU0QRKim0AfunivZsf2o0EsQ-MM3o43GLUlwE_eLMlnHxyaeMxCkPNQ5zPHh38ZBzE4Gr5xqfv_QvyAXGN4SOG8RA_J7vK8Mg_BklvKLrnC-GmX7L0ajk8nXXce0nWrGJ4jnvwEuhlMnw |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxELaqRAguiDeBAkbAAcRC1ut9ISEUSquUJhGqUqk3a_2CSMlu6SaF3JD4A_wR_hS_hBlnd0VE1Ftvlu31Y2c8nrHH3xDyNAgswpj7nsLnv5wp6Uk_y7zUsjiSNukyje-dh6Oof8Q_HofHW-R3_RYG3SprmegEtS4UnpG_RiitgCOa-buTrx5GjcLb1TqExootDszyG5hs5dv9D0DfZ4zt7Y53-l4VVcBTYQJSIcmyLDUxqCmSJ0YiOJ-FHAV6PNMqtXHI466yKtNK-5GJYMRW6q4N4lCnXTz_BInf5gFYMi3Sfr87-nTYXFvEqQvF7POYeylI_QoPFV2HMmWmr3xQpuK1HbA9xbvxTert_16a_2rPbvvbu0auVnor7a0Y7TrZMvkNcmkVyXJ5k_wcLkrIp3iyDoT78-OXeyRjNJ0ti_lCGsjRwOxnkGO-F2Uxg8Zm6Ax4OOrRSU4drib2oJcl7rXIL2_o2Pmpw-5KJXAUVQXutDTLNZ0WkMiLvMqCVspbZHwRlLhNWtCPuUuoD2KSRSbkKk24TdCsB7s_YzbSIGSs3yHP618uVIV9jiE4pqK2gZA8wpGnQ540dU9WiB8ba710lBPFqZyIMyYQptulF9PPUE9II0CzTUQQIPpvh2zXBBaVkCiFe3WcgobINxc3HN8hj5tiWP14pZPlplhAnSAJ0XWgC1O8s2KXZtAgqqFzBl_Ha4zUVMAhr5fkky8OYTxmIch-aPOFY7lz_oPo7ewOXOre-XN4RC73x8OBGOyPDu6TKwyPLZzf6DZpzU8X5gHodnP5sFpRlIgLXsN_AZDiZmg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bb9MwFLbGKhAviDuFAUbwAiKoSZw4QbxUY9WArUKoRdNerPi2VUqTaWkm-obEH-A38ks4x0nDKiok3iz7xHZ8rr59JuRFGFqEMfc9hdd_WaCkJ_0s81Ib8FjaZBBovO98OI73p-zjUXS0Rd6t7sI0-BDdghtqhrPXqOBn2l5S8kyZ_I0P0Qm_QnoIkwcy3Rt-nR5Pu10EnrqXkX3GmZeCEW7hSfEkz5-v1xxSL8et6k3R5t-HJi8Hs84bjW6SG20YSYcN32-RLVPcJlebhyWXd8iPw7qCfIoL3TCOv77_dHdWjKbzZbmopYEcDbJ3ATnmW1mVc6hsjmfzvoyHdFZQB3OJLehlha4P2feWTtyxcXB2VAKDqSrR8dGs0DQvIVGURZsFtVR3yWS0N9nd99rnFjwVJWAukyzLUsMhfpMsMRJRCy3kKJjgBFqllkeMD5RVmVbaj00MrLRSD2zIIw0DHd4j29COeUCoD1YriE3EVJowm-AsG6bhWWBjDTpv_T55uRpyoVoocnwRIxerKQmyRzj29MnzjvasAeDYSPXacU6U53ImLgKBqNkuXecnQCekERBoJiIMEYy3T3ZWDBatzlbCXQJOIWBjm4sRKZAhnH6fPOuKQRlxhyUrTFkDTZhEuJM_gF-834hL12mwnNB4AF_zNUHqCLDL6yXF7NQBfvMgAlMMdb5yIvePcRDD3b0Dl3r4P8RPybXP70fi4MP40yNyPcAlBXemc4dsL85r8xjiroV80qrXb9NNLGs |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Muscle+atrophy%E2%80%90related+myotube%E2%80%90derived+exosomal+microRNA+in+neuronal+dysfunction%3A+Targeting+both+coding+and+long+noncoding+RNAs&rft.jtitle=Aging+cell&rft.au=Yang%2C+Chia%E2%80%90Pei&rft.au=Yang%2C+Wan%E2%80%90Shan&rft.au=Wong%2C+Yu%E2%80%90Hui&rft.au=Wang%2C+Kai%E2%80%90Hsuan&rft.date=2020-05-01&rft.issn=1474-9718&rft.eissn=1474-9726&rft.volume=19&rft.issue=5&rft.epage=n%2Fa&rft_id=info:doi/10.1111%2Facel.13107&rft.externalDBID=10.1111%252Facel.13107&rft.externalDocID=ACEL13107 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1474-9718&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1474-9718&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1474-9718&client=summon |