Phosphorus limitation, soil‐borne pathogens and the coexistence of plant species in hyperdiverse forests and shrublands

507 I. 507 II. 509 III. 510 IV. 510 V. 512 VI. 516 VII. 518 518 References 518 SUMMARY: Hyperdiverse forests occur in the lowland tropics, whereas the most species‐rich shrublands are found in regions such as south‐western Australia (kwongan) and South Africa (fynbos). Despite large differences, the...

Full description

Saved in:
Bibliographic Details
Published inThe New phytologist Vol. 206; no. 2; pp. 507 - 521
Main Authors Laliberté, Etienne, Lambers, Hans, Burgess, Treena I, Wright, S. Joseph
Format Journal Article
LanguageEnglish
Published England Academic Press 01.04.2015
New Phytologist Trust
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:507 I. 507 II. 509 III. 510 IV. 510 V. 512 VI. 516 VII. 518 518 References 518 SUMMARY: Hyperdiverse forests occur in the lowland tropics, whereas the most species‐rich shrublands are found in regions such as south‐western Australia (kwongan) and South Africa (fynbos). Despite large differences, these ecosystems share an important characteristic: their soils are strongly weathered and phosphorus (P) is a key growth‐limiting nutrient. Soil‐borne pathogens are increasingly being recognized as drivers of plant diversity in lowland tropical rainforests, but have received little attention in species‐rich shrublands. We suggest a trade‐off in which the species most proficient at acquiring P have ephemeral roots that are particularly susceptible to soil‐borne pathogens. This could equalize out the differences in competitive ability among co‐occurring species in these ecosystems, thus contributing to coexistence. Moreover, effective protection against soil‐borne pathogens by ectomycorrhizal (ECM) fungi might explain the occurrence of monodominant stands of ECM trees and shrubs amongst otherwise species‐rich communities. We identify gaps in our knowledge which need to be filled in order to evaluate a possible link between P limitation, fine root traits, soil‐borne pathogens and local plant species diversity. Such a link may help to explain how numerous plant species can coexist in hyperdiverse rainforests and shrublands, and, conversely, how monodominant stands can develop in these ecosystems.
Bibliography:http://dx.doi.org/10.1111/nph.13203
ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-3
content type line 23
ObjectType-Review-1
ISSN:0028-646X
1469-8137
DOI:10.1111/nph.13203