均方根嵌入式容积粒子PHD多目标跟踪方法

针对基于概率假设密度算法(Probability hypothesis density,PHD)的非线性多目标跟踪精度低、滤波发散等问题,提出了一种新的PHD算法—改进的均方根嵌入式容积粒子PHD算法(Advanced square-root imbedded cubature particle PHD,ASRICP-PHD).新的算法在初始化采样时将整个采样区域等概率划分为若干个区域,然后利用既定的准则从每个区域抽取粒子,并利用均方根嵌入式容积滤波方法对每个粒子进行滤波,来拟合重要密度函数,预测和更新多目标状态的PHD.仿真结果表明该算法能对多目标进行有效跟踪,相比拟随机采样法和伪随机采样,...

Full description

Saved in:
Bibliographic Details
Published in自动化学报 Vol. 43; no. 2; pp. 238 - 247
Main Author 熊志刚 黄树彩 赵炜 苑智玮 徐晨洋
Format Journal Article
LanguageChinese
Published 空军工程大学防空反导学院 西安710051 2017
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:针对基于概率假设密度算法(Probability hypothesis density,PHD)的非线性多目标跟踪精度低、滤波发散等问题,提出了一种新的PHD算法—改进的均方根嵌入式容积粒子PHD算法(Advanced square-root imbedded cubature particle PHD,ASRICP-PHD).新的算法在初始化采样时将整个采样区域等概率划分为若干个区域,然后利用既定的准则从每个区域抽取粒子,并利用均方根嵌入式容积滤波方法对每个粒子进行滤波,来拟合重要密度函数,预测和更新多目标状态的PHD.仿真结果表明该算法能对多目标进行有效跟踪,相比拟随机采样法和伪随机采样,等概率采样的方法在多目标位置估计和数目估计上有更高的精度.
Bibliography:Considering the low accuracy, filter divergence and other problems of nonlinear multi-target tracking based on probability hypothesis density (PHD), a new filter named advanced square-root imbedded cubature particle PHD (ASRICP-PHD) is proposed. ASRICP-PHD divides the whole particle sampling area into several parts of equal probability, then uses a special rule to obtain particles from each part, and matches the important density function with square-root imbedded cubature particle filter, and therefore predicts and updates PHD. Simulation shows that ASRICP-PHD is able to track multiple targets effectively. Moreover, compared with quasi random sampling, the method of particle sampling based on probability has higher accuracy in terms of multi-target positions and number's estimations.
Multi-target tracking, probability hypothesis density (PHD), square-root imbedded cubature filter, sampling with equal probability
XIONG Zhi-Gang1, HUANG Shu-Cai1, ZHAO Wei1, YUAN Zhi-Wei1 ,XU Chen-Yang1
11-2109/TP
ISSN:0254-4156
1874-1029
DOI:10.16383/j.aas.2017.c150881