基于扫描滤波的农机具视觉导航基准线快速检测方法

针对基于机器视觉的自动导航系统现有导航线提取算法易受外界环境干扰和处理速度较慢等问题,该文提出一种基于图像扫描滤波的导航线提取方法.首先获取不同农作物的彩色图像,使用2G-R-B 算法对彩色图片进行灰度化处理,得到作物行和土壤背景对比性良好的图片.使用 Otsu 方法对图像进行分割,得到二值化的图像后,再采用腐蚀-中值滤波-膨胀的滤波方法对图像进行去噪处理.然后使用该文提出的扫描滤波导航线提取算法,将图像分成左右两部分,使用等面积三角形对两部分分别进行扫描后,再对扫描的结果进行滤波,从而提取作物行,得到导航线.试验结果表明,采用该方法处理一幅640×320像素的图像只需要76 ms,可满足农机...

Full description

Saved in:
Bibliographic Details
Published in农业工程学报 Vol. 29; no. 1; pp. 41 - 47
Main Author 李茗萱 张漫 孟庆宽 刘刚
Format Journal Article
LanguageChinese
Published 中国农业大学 现代精细农业系统集成研究教育部重点试验室,北京 100083 2013
Subjects
Online AccessGet full text
ISSN1002-6819
DOI10.3969/j.issn.1002-6819.2013.01.006

Cover

More Information
Summary:针对基于机器视觉的自动导航系统现有导航线提取算法易受外界环境干扰和处理速度较慢等问题,该文提出一种基于图像扫描滤波的导航线提取方法.首先获取不同农作物的彩色图像,使用2G-R-B 算法对彩色图片进行灰度化处理,得到作物行和土壤背景对比性良好的图片.使用 Otsu 方法对图像进行分割,得到二值化的图像后,再采用腐蚀-中值滤波-膨胀的滤波方法对图像进行去噪处理.然后使用该文提出的扫描滤波导航线提取算法,将图像分成左右两部分,使用等面积三角形对两部分分别进行扫描后,再对扫描的结果进行滤波,从而提取作物行,得到导航线.试验结果表明,采用该方法处理一幅640×320像素的图像只需要76 ms,可满足农机具实时导航的要求;与传统导航线提取算法相比,该算法计算速度快,适应能力强.
Bibliography:11-2047/S
agricultural machinery, machine vision, navigation, navigation baseline detection, farmland environment
Li Mingxuan, Zhang Man, Meng Qingkuan, Liu Gang (Key Laboratory of Modern Precision Agriculture System Integration Research, Ministry of Education, China Agricultural University, Beijing 10083, China)
To make up the shortages of the existing algorithms for the visual navigation such as the noise interference and the processing speed, a new algorithm for navigation line detection was designed in this article. In the first stage, the image preprocessing was carried out. Firstly, the 2G-R-B method was used to convert the color images into grey scale images in order to distinguish crop and soil better. In general, the green component G is far greater than red R and blue B component for the crops of which main pigment is chlorophyll. The 2G-R-B method was used to graying images in order to emphasize green component and restrain the rest two components. Secondly, the OTSU method was used to transfer the gr
ISSN:1002-6819
DOI:10.3969/j.issn.1002-6819.2013.01.006