Polyphosphate fertilizer impacts the enzymatic and non-enzymatic antioxidant capacity of wheat plants grown under salinity
By 2050, the predicted global population is set to reach 9.6 billion highlighting the urgent need to increase crop productivity to meet the growing demand for food. This is becoming increasingly challenging when soils are saline and/or deficient in phosphorus (P). The synergic effect of P deficiency...
Saved in:
Published in | Scientific reports Vol. 13; no. 1; pp. 11212 - 17 |
---|---|
Main Authors | , , , , |
Format | Journal Article Web Resource |
Language | English |
Published |
London
Nature Publishing Group UK
11.07.2023
Nature Publishing Group Nature Portfolio |
Subjects | |
Online Access | Get full text |
ISSN | 2045-2322 2045-2322 |
DOI | 10.1038/s41598-023-38403-3 |
Cover
Loading…
Abstract | By 2050, the predicted global population is set to reach 9.6 billion highlighting the urgent need to increase crop productivity to meet the growing demand for food. This is becoming increasingly challenging when soils are saline and/or deficient in phosphorus (P). The synergic effect of P deficiency and salinity causes a series of secondary stresses including oxidative stress. Reactive Oxygen Species (ROS) production and oxidative damage in plants caused either by P limitation or by salt stress may restrict the overall plant performances leading to a decline in crop yield. However, the P application in adequate forms and doses could positively impact the growth of plants and enhances their tolerance to salinity. In our investigation, we evaluated the effect of different P fertilizers forms (Ortho-A, Ortho-B and Poly-B) and increasing P rates (0, 30 and 45 ppm) on the plant's antioxidant system and P uptake of durum wheat (Karim cultivar) grown under salinity (EC = 3.003 dS/m). Our results demonstrated that salinity caused a series of variations in the antioxidant capacity of wheat plants, at both, enzymatic and non-enzymatic levels. Remarkably, a strong correlation was observed between P uptake, biomass, various antioxidant system parameters and P rates and sources. Soluble P fertilizers considerably enhanced the total plant performances under salt stress compared with control plants grown under salinity and P deficiency (C+). Indeed, salt-stressed and fertilized plants exhibited a robust antioxidant system revealed by the increase in enzymatic activities of Catalase (CAT) and Ascorbate peroxidase (APX) and a significant accumulation of Proline, total polyphenols content (TPC) and soluble sugars (SS) as well as increased biomass, Chlorophyll content (CCI), leaf protein content and P uptake compared to unfertilized plants. Compared to OrthoP fertilizers at 45 ppm P, Poly-B fertilizer showed significant positive responses at 30 ppm P where the increase reached + 18.2% in protein content, + 156.8% in shoot biomass, + 93% in CCI, + 84% in shoot P content, + 51% in CAT activity, + 79% in APX activity, + 93% in TPC and + 40% in SS compared to C+. This implies that PolyP fertilizers might be an alternative for the suitable management of phosphorus fertilization under salinity. |
---|---|
AbstractList | By 2050, the predicted global population is set to reach 9.6 billion highlighting the urgent need to increase crop productivity to meet the growing demand for food. This is becoming increasingly challenging when soils are saline and/or deficient in phosphorus (P). The synergic effect of P deficiency and salinity causes a series of secondary stresses including oxidative stress. Reactive Oxygen Species (ROS) production and oxidative damage in plants caused either by P limitation or by salt stress may restrict the overall plant performances leading to a decline in crop yield. However, the P application in adequate forms and doses could positively impact the growth of plants and enhances their tolerance to salinity. In our investigation, we evaluated the effect of different P fertilizers forms (Ortho-A, Ortho-B and Poly-B) and increasing P rates (0, 30 and 45 ppm) on the plant's antioxidant system and P uptake of durum wheat (Karim cultivar) grown under salinity (EC = 3.003 dS/m). Our results demonstrated that salinity caused a series of variations in the antioxidant capacity of wheat plants, at both, enzymatic and non-enzymatic levels. Remarkably, a strong correlation was observed between P uptake, biomass, various antioxidant system parameters and P rates and sources. Soluble P fertilizers considerably enhanced the total plant performances under salt stress compared with control plants grown under salinity and P deficiency (C+). Indeed, salt-stressed and fertilized plants exhibited a robust antioxidant system revealed by the increase in enzymatic activities of Catalase (CAT) and Ascorbate peroxidase (APX) and a significant accumulation of Proline, total polyphenols content (TPC) and soluble sugars (SS) as well as increased biomass, Chlorophyll content (CCI), leaf protein content and P uptake compared to unfertilized plants. Compared to OrthoP fertilizers at 45 ppm P, Poly-B fertilizer showed significant positive responses at 30 ppm P where the increase reached + 18.2% in protein content, + 156.8% in shoot biomass, + 93% in CCI, + 84% in shoot P content, + 51% in CAT activity, + 79% in APX activity, + 93% in TPC and + 40% in SS compared to C+. This implies that PolyP fertilizers might be an alternative for the suitable management of phosphorus fertilization under salinity. The predicted global population is set to reach 9.6 billion by 2050, which highlights an urgent need to increase crop productivity to meet the growing demand for food and nutrition 1. Nevertheless, this is becoming increasingly challenging due to changing climatic conditions 2. Arid and semi-arid regions are characterized by high evapotranspiration levels that surpass precipitation, limiting water passage through the profile and, therefore, the soil's capacity to leach salts 3. This often causes soil salinity and results in low fertility of salt-affected soil 4. Soil salinity is the accumulation of soluble salts on the soil surface or in subsurface layers 5. Consequently, the increased levels of toxic ions such as sodium and chlorine (Na + and Cl −) negatively impact plant growth and yield by limiting water uptake and causing ion toxicity, which can lead to nutrient imbalances 6. This has a significant effect on the root's capacity to absorb water and results in stomatal closure altering CO 2 assimilation 7 By 2050, the predicted global population is set to reach 9.6 billion highlighting the urgent need to increase crop productivity to meet the growing demand for food. This is becoming increasingly challenging when soils are saline and/or deficient in phosphorus (P). The synergic effect of P deficiency and salinity causes a series of secondary stresses including oxidative stress. Reactive Oxygen Species (ROS) production and oxidative damage in plants caused either by P limitation or by salt stress may restrict the overall plant performances leading to a decline in crop yield. However, the P application in adequate forms and doses could positively impact the growth of plants and enhances their tolerance to salinity. In our investigation, we evaluated the effect of different P fertilizers forms (Ortho-A, Ortho-B and Poly-B) and increasing P rates (0, 30 and 45 ppm) on the plant's antioxidant system and P uptake of durum wheat (Karim cultivar) grown under salinity (EC = 3.003 dS/m). Our results demonstrated that salinity caused a series of variations in the antioxidant capacity of wheat plants, at both, enzymatic and non-enzymatic levels. Remarkably, a strong correlation was observed between P uptake, biomass, various antioxidant system parameters and P rates and sources. Soluble P fertilizers considerably enhanced the total plant performances under salt stress compared with control plants grown under salinity and P deficiency (C+). Indeed, salt-stressed and fertilized plants exhibited a robust antioxidant system revealed by the increase in enzymatic activities of Catalase (CAT) and Ascorbate peroxidase (APX) and a significant accumulation of Proline, total polyphenols content (TPC) and soluble sugars (SS) as well as increased biomass, Chlorophyll content (CCI), leaf protein content and P uptake compared to unfertilized plants. Compared to OrthoP fertilizers at 45 ppm P, Poly-B fertilizer showed significant positive responses at 30 ppm P where the increase reached + 18.2% in protein content, + 156.8% in shoot biomass, + 93% in CCI, + 84% in shoot P content, + 51% in CAT activity, + 79% in APX activity, + 93% in TPC and + 40% in SS compared to C+. This implies that PolyP fertilizers might be an alternative for the suitable management of phosphorus fertilization under salinity. By 2050, the predicted global population is set to reach 9.6 billion highlighting the urgent need to increase crop productivity to meet the growing demand for food. This is becoming increasingly challenging when soils are saline and/or deficient in phosphorus (P). The synergic effect of P deficiency and salinity causes a series of secondary stresses including oxidative stress. Reactive Oxygen Species (ROS) production and oxidative damage in plants caused either by P limitation or by salt stress may restrict the overall plant performances leading to a decline in crop yield. However, the P application in adequate forms and doses could positively impact the growth of plants and enhances their tolerance to salinity. In our investigation, we evaluated the effect of different P fertilizers forms (Ortho-A, Ortho-B and Poly-B) and increasing P rates (0, 30 and 45 ppm) on the plant's antioxidant system and P uptake of durum wheat (Karim cultivar) grown under salinity (EC = 3.003 dS/m). Our results demonstrated that salinity caused a series of variations in the antioxidant capacity of wheat plants, at both, enzymatic and non-enzymatic levels. Remarkably, a strong correlation was observed between P uptake, biomass, various antioxidant system parameters and P rates and sources. Soluble P fertilizers considerably enhanced the total plant performances under salt stress compared with control plants grown under salinity and P deficiency (C+). Indeed, salt-stressed and fertilized plants exhibited a robust antioxidant system revealed by the increase in enzymatic activities of Catalase (CAT) and Ascorbate peroxidase (APX) and a significant accumulation of Proline, total polyphenols content (TPC) and soluble sugars (SS) as well as increased biomass, Chlorophyll content (CCI), leaf protein content and P uptake compared to unfertilized plants. Compared to OrthoP fertilizers at 45 ppm P, Poly-B fertilizer showed significant positive responses at 30 ppm P where the increase reached + 18.2% in protein content, + 156.8% in shoot biomass, + 93% in CCI, + 84% in shoot P content, + 51% in CAT activity, + 79% in APX activity, + 93% in TPC and + 40% in SS compared to C+. This implies that PolyP fertilizers might be an alternative for the suitable management of phosphorus fertilization under salinity.By 2050, the predicted global population is set to reach 9.6 billion highlighting the urgent need to increase crop productivity to meet the growing demand for food. This is becoming increasingly challenging when soils are saline and/or deficient in phosphorus (P). The synergic effect of P deficiency and salinity causes a series of secondary stresses including oxidative stress. Reactive Oxygen Species (ROS) production and oxidative damage in plants caused either by P limitation or by salt stress may restrict the overall plant performances leading to a decline in crop yield. However, the P application in adequate forms and doses could positively impact the growth of plants and enhances their tolerance to salinity. In our investigation, we evaluated the effect of different P fertilizers forms (Ortho-A, Ortho-B and Poly-B) and increasing P rates (0, 30 and 45 ppm) on the plant's antioxidant system and P uptake of durum wheat (Karim cultivar) grown under salinity (EC = 3.003 dS/m). Our results demonstrated that salinity caused a series of variations in the antioxidant capacity of wheat plants, at both, enzymatic and non-enzymatic levels. Remarkably, a strong correlation was observed between P uptake, biomass, various antioxidant system parameters and P rates and sources. Soluble P fertilizers considerably enhanced the total plant performances under salt stress compared with control plants grown under salinity and P deficiency (C+). Indeed, salt-stressed and fertilized plants exhibited a robust antioxidant system revealed by the increase in enzymatic activities of Catalase (CAT) and Ascorbate peroxidase (APX) and a significant accumulation of Proline, total polyphenols content (TPC) and soluble sugars (SS) as well as increased biomass, Chlorophyll content (CCI), leaf protein content and P uptake compared to unfertilized plants. Compared to OrthoP fertilizers at 45 ppm P, Poly-B fertilizer showed significant positive responses at 30 ppm P where the increase reached + 18.2% in protein content, + 156.8% in shoot biomass, + 93% in CCI, + 84% in shoot P content, + 51% in CAT activity, + 79% in APX activity, + 93% in TPC and + 40% in SS compared to C+. This implies that PolyP fertilizers might be an alternative for the suitable management of phosphorus fertilization under salinity. Abstract By 2050, the predicted global population is set to reach 9.6 billion highlighting the urgent need to increase crop productivity to meet the growing demand for food. This is becoming increasingly challenging when soils are saline and/or deficient in phosphorus (P). The synergic effect of P deficiency and salinity causes a series of secondary stresses including oxidative stress. Reactive Oxygen Species (ROS) production and oxidative damage in plants caused either by P limitation or by salt stress may restrict the overall plant performances leading to a decline in crop yield. However, the P application in adequate forms and doses could positively impact the growth of plants and enhances their tolerance to salinity. In our investigation, we evaluated the effect of different P fertilizers forms (Ortho-A, Ortho-B and Poly-B) and increasing P rates (0, 30 and 45 ppm) on the plant's antioxidant system and P uptake of durum wheat (Karim cultivar) grown under salinity (EC = 3.003 dS/m). Our results demonstrated that salinity caused a series of variations in the antioxidant capacity of wheat plants, at both, enzymatic and non-enzymatic levels. Remarkably, a strong correlation was observed between P uptake, biomass, various antioxidant system parameters and P rates and sources. Soluble P fertilizers considerably enhanced the total plant performances under salt stress compared with control plants grown under salinity and P deficiency (C+). Indeed, salt-stressed and fertilized plants exhibited a robust antioxidant system revealed by the increase in enzymatic activities of Catalase (CAT) and Ascorbate peroxidase (APX) and a significant accumulation of Proline, total polyphenols content (TPC) and soluble sugars (SS) as well as increased biomass, Chlorophyll content (CCI), leaf protein content and P uptake compared to unfertilized plants. Compared to OrthoP fertilizers at 45 ppm P, Poly-B fertilizer showed significant positive responses at 30 ppm P where the increase reached + 18.2% in protein content, + 156.8% in shoot biomass, + 93% in CCI, + 84% in shoot P content, + 51% in CAT activity, + 79% in APX activity, + 93% in TPC and + 40% in SS compared to C+. This implies that PolyP fertilizers might be an alternative for the suitable management of phosphorus fertilization under salinity. By 2050, the predicted global population is set to reach 9.6 billion highlighting the urgent need to increase crop productivity to meet the growing demand for food. This is becoming increasingly challenging when soils are saline and/or deficient in phosphorus (P). The synergic effect of P deficiency and salinity causes a series of secondary stresses including oxidative stress. Reactive Oxygen Species (ROS) production and oxidative damage in plants caused either by P limitation or by salt stress may restrict the overall plant performances leading to a decline in crop yield. However, the P application in adequate forms and doses could positively impact the growth of plants and enhances their tolerance to salinity. In our investigation, we evaluated the effect of different P fertilizers forms (Ortho-A, Ortho-B and Poly-B) and increasing P rates (0, 30 and 45 ppm) on the plant's antioxidant system and P uptake of durum wheat (Karim cultivar) grown under salinity (EC = 3.003 dS/m). Our results demonstrated that salinity caused a series of variations in the antioxidant capacity of wheat plants, at both, enzymatic and non-enzymatic levels. Remarkably, a strong correlation was observed between P uptake, biomass, various antioxidant system parameters and P rates and sources. Soluble P fertilizers considerably enhanced the total plant performances under salt stress compared with control plants grown under salinity and P deficiency (C+). Indeed, salt-stressed and fertilized plants exhibited a robust antioxidant system revealed by the increase in enzymatic activities of Catalase (CAT) and Ascorbate peroxidase (APX) and a significant accumulation of Proline, total polyphenols content (TPC) and soluble sugars (SS) as well as increased biomass, Chlorophyll content (CCI), leaf protein content and P uptake compared to unfertilized plants. Compared to OrthoP fertilizers at 45 ppm P, Poly-B fertilizer showed significant positive responses at 30 ppm P where the increase reached + 18.2% in protein content, + 156.8% in shoot biomass, + 93% in CCI, + 84% in shoot P content, + 51% in CAT activity, + 79% in APX activity, + 93% in TPC and + 40% in SS compared to C+. This implies that PolyP fertilizers might be an alternative for the suitable management of phosphorus fertilization under salinity. |
ArticleNumber | 11212 |
Author | Colinet, Gilles Latique, Salma Mayane, Asmae Loudari, Aicha Oukarroum, Abdallah |
Author_xml | – sequence: 1 givenname: Aicha orcidid: 0000-0001-7478-4707 surname: Loudari fullname: Loudari, Aicha email: aicha.loudari@um6p.ma, aicha.loudari@gmail.com organization: Plant Stress Physiology Laboratory, Mohammed VI Polytechnic University (UM6P)-AgroBioSciences, Terra Research Center, Liege University-Gembloux Agro Bio Tech Faculty – sequence: 2 givenname: Salma orcidid: 0000-0001-9620-5892 surname: Latique fullname: Latique, Salma organization: Plant Stress Physiology Laboratory, Mohammed VI Polytechnic University (UM6P)-AgroBioSciences – sequence: 3 givenname: Asmae surname: Mayane fullname: Mayane, Asmae organization: Plant Stress Physiology Laboratory, Mohammed VI Polytechnic University (UM6P)-AgroBioSciences – sequence: 4 givenname: Gilles orcidid: 0000-0002-1850-5504 surname: Colinet fullname: Colinet, Gilles organization: Terra Research Center, Liege University-Gembloux Agro Bio Tech Faculty – sequence: 5 givenname: Abdallah orcidid: 0000-0002-1942-5610 surname: Oukarroum fullname: Oukarroum, Abdallah email: abdallah.oukarroum@um6p.ma, abdallah.oukarroum@gmail.com organization: Plant Stress Physiology Laboratory, Mohammed VI Polytechnic University (UM6P)-AgroBioSciences, High Throughput Multidisciplinary Research Laboratory, Mohammed VI Polytechnic University (UM6P) |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37433920$$D View this record in MEDLINE/PubMed |
BookMark | eNp9Uk1v1DAQjVARLaV_gAOyxIVLwF9J7BNCFR-VKsEBzpZjT3ZdZeNgJy27v57Zj8K2h0aWbU3ee543My-LkyEOUBSvGX3PqFAfsmSVViXlohRKUtyfFWecyqrkgvOTo_tpcZHzDcWv4loy_aI4FY0UQnN6Vmx-xH49LmMel3YC0kGaQh82kEhYjdZNmUxLIDBs1is7BUfs4AlmUh5HphD_BI8ncRY5YVqT2JG7JdiJjD3GM1mkeDeQefAonG0fBgS9Kp53ts9wcTjPi19fPv-8_FZef_96dfnpunSVqqYSOu1V45XjleS61r5itaUV67wEXLxhVNfKA1NtwxphOwqsRqeessZL78V5cbXX9dHemDGFlU1rE20wu0BMC2PRtevBCNZ1XrMKhK4lB6kb79q26pRzwCQ0qPVxrzXO7Qq8g2FKtn8g-vDPEJZmEW8N9kzUjEpUEHuFPsAC8PU2mFu-Y-7uc4_pONOC4bxWRqBTyZH17vBuir9nyJNZheygx-pCnLPhStRcc0Qj9O0j6E2c04AV3qKqWuEmEPXm2Mg_B_eTgQC1B7gUc07QGWwsNjxufYUeDW09KbOfQ4NzaHZzaLba_BH1Xv1J0qEuGcHDAtL_tJ9g_QXsX_Gp |
CitedBy_id | crossref_primary_10_1007_s10343_025_01113_z crossref_primary_10_1007_s00284_024_03805_7 crossref_primary_10_48130_bpr_0024_0027 crossref_primary_10_1016_j_microb_2024_100112 crossref_primary_10_3390_ph16121698 crossref_primary_10_1186_s12870_025_06123_7 crossref_primary_10_1080_17429145_2024_2327378 crossref_primary_10_3390_horticulturae10030226 crossref_primary_10_1021_acsomega_4c10415 crossref_primary_10_1007_s00344_024_11508_3 |
Cites_doi | 10.1007/s41207-016-0012-7 10.1016/j.plaphy.2019.12.007 10.1007/BF00018060 10.3390/ijms22179326 10.1073/pnas.252637799 10.1007/s12298-017-0462-7 10.1111/pce.12199 10.1016/j.atherosclerosis.2012.09.038 10.1016/j.plantsci.2019.05.018 10.1111/j.1399-3054.2008.01200.x 10.3390/ijms23041995 10.7717/peerj.11463 10.3390/biology11020191 10.3390/molecules24010155 10.4081/ija.2020.1662 10.3389/fpls.2021.646221 10.1016/S0176-1617(00)80254-0 10.1080/17429145.2012.718376 10.1080/01904167.2020.1730902 10.3390/ijms21228695 10.3389/fpls.2018.00393 10.3906/bot-1911-15 10.5772/intechopen.102873 10.1016/j.geoderma.2022.116281 10.1002/jpln.202100439 10.3389/fpls.2016.00276 10.1016/j.plaphy.2017.04.017 10.18052/www.scipress.com/ILNS.72.7 10.1016/0003-2697(87)90489-1 10.1016/j.xinn.2020.100017 10.3389/fpls.2020.615942 10.2136/sssaj1999.6351055x 10.1016/j.plaphy.2019.03.005 10.3389/fpls.2022.1038672 10.1186/s12870-022-03683-w 10.1186/s12284-020-00422-3 10.1111/jac.12181 10.1016/j.bbabio.2004.09.009 10.3390/agronomy11081491 10.1016/j.envexpbot.2008.09.008 10.3390/agronomy8080155 10.1186/s13068-018-1275-9 10.1016/j.envpol.2018.04.036 10.3389/fpls.2015.01092 10.1007/BF02542169 10.3390/ijms23095161 10.17221/410-PSE 10.1111/are.13284 10.1007/s11368-019-02375-7 10.1093/jxb/err457 10.1007/s11738-007-0025-6 10.1016/j.envexpbot.2019.02.012 10.1038/s41580-020-0230-3 10.3390/ijms21155208 10.1111/ppl.13185 10.3390/plants10010118 10.1016/j.rhisph.2021.100319 10.1093/jxb/eri053 10.1016/j.bcab.2020.101635 10.3390/plants8070192 10.1007/s00344-019-10057-4 10.1016/j.stress.2022.100111 10.3389/fpls.2019.00080 10.1016/j.tplants.2016.08.002 10.3390/w14182804 10.3390/ijms23158397 10.1016/0167-8809(92)90151-Z 10.1016/j.stress.2022.100121 10.1016/j.cub.2014.03.034 10.3389/fpls.2021.679916 10.3390/plants11212836 10.2478/v10055-010-0004-x 10.1016/j.micres.2022.127094 10.3390/agronomy9080447 10.3389/fpls.2021.660409 10.3390/agronomy11020265 10.3390/plants11020216 10.3390/agriculture10080334 10.1111/jfbc.14054 10.1007/s00344-019-10018-x 10.1016/j.indcrop.2015.12.032 10.1016/j.plaphy.2014.04.007 10.18805/ijare.v0iOF.4573 10.1078/0176-1617-01050 10.1104/pp.17.00791 10.1016/j.envexpbot.2021.104762 10.1016/j.plaphy.2013.03.004 10.1111/sum.12526 10.1021/ac60111a017 10.3389/fenvs.2014.00053 10.3390/ijms22168995 10.21273/HORTSCI13411-18 10.1016/B978-0-12-387692-8.00003-5 10.1007/978-3-319-13368-3_4 10.1104/pp.113.233478 10.1080/17429145.2020.1841842 10.7150/ijbs.12096 10.1016/0003-2697(76)90527-3 10.1016/j.cj.2021.03.005 10.1104/pp.17.01624 10.1071/FP19002 10.18393/ejss.319198 10.1079/9781780647296.0024 10.1371/journal.pone.0246944 10.1046/j.1365-3040.2000.00524.x 10.3390/agronomy11081552 10.1073/pnas.81.15.4903 10.9734/IJPSS/2018/44822 10.1080/11263504.2020.1810808 10.1007/s00344-014-9429-x 10.3389/fpls.2022.1017282 10.1016/j.agwat.2021.107257 10.1093/jxb/erv056 10.1016/j.envexpbot.2019.03.024 10.1007/s10725-014-0013-y 10.1016/j.jenvman.2021.112142 10.1080/15324982.2021.1959464 10.1016/j.envexpbot.2014.08.005 10.1016/j.scitotenv.2021.146267 10.3389/fpls.2019.00856 10.3390/ijms19030647 |
ContentType | Journal Article Web Resource |
Copyright | The Author(s) 2023 2023. The Author(s). The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2023 – notice: 2023. The Author(s). – notice: The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION NPM 3V. 7X7 7XB 88A 88E 88I 8FE 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2P M7P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI Q9U 7X8 Q33 5PM DOA |
DOI | 10.1038/s41598-023-38403-3 |
DatabaseName | Springer Nature OA Free Journals CrossRef PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability (subscription) ProQuest Central UK/Ireland ProQuest Central Essentials - QC Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Medical Database Science Database Biological Science Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central Basic MEDLINE - Academic Université de Liège - Open Repository and Bibliography (ORBI) PubMed Central (Full Participant titles) DOAJ Open Access Full Text |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Publicly Available Content Database PubMed CrossRef |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2045-2322 |
EndPage | 17 |
ExternalDocumentID | oai_doaj_org_article_31ffd915e39642e497dcbb5f8cce14e7 PMC10336104 oai_orbi_ulg_ac_be_2268_305142 37433920 10_1038_s41598_023_38403_3 |
Genre | Journal Article |
GrantInformation_xml | – fundername: SoilPhorLife project – fundername: ; |
GroupedDBID | 0R~ 3V. 4.4 53G 5VS 7X7 88A 88E 88I 8FE 8FH 8FI 8FJ AAFWJ AAJSJ AAKDD ABDBF ABUWG ACGFS ACSMW ACUHS ADBBV ADRAZ AENEX AEUYN AFKRA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI C6C CCPQU DIK DWQXO EBD EBLON EBS ESX FYUFA GNUQQ GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE KQ8 LK8 M0L M1P M2P M48 M7P M~E NAO OK1 PIMPY PQQKQ PROAC PSQYO RNT RNTTT RPM SNYQT UKHRP AASML AAYXX AFPKN CITATION PHGZM PHGZT NPM 7XB 8FK AARCD K9. PJZUB PKEHL PPXIY PQEST PQGLB PQUKI Q9U 7X8 Q33 5PM PUEGO |
ID | FETCH-LOGICAL-c585t-ef9d87d8c2542969d516a051fd4ed4e2710968de18b7173af0e16529d017d4dd3 |
IEDL.DBID | M48 |
ISSN | 2045-2322 |
IngestDate | Wed Aug 27 01:25:40 EDT 2025 Thu Aug 21 18:37:09 EDT 2025 Fri Jul 25 15:25:41 EDT 2025 Fri Jul 11 13:20:07 EDT 2025 Wed Aug 13 04:20:20 EDT 2025 Thu Apr 03 06:55:10 EDT 2025 Thu Apr 24 22:59:36 EDT 2025 Tue Jul 01 04:25:02 EDT 2025 Fri Feb 21 02:37:33 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | 2023. The Author(s). Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c585t-ef9d87d8c2542969d516a051fd4ed4e2710968de18b7173af0e16529d017d4dd3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 SoilPhorLife 1 scopus-id:2-s2.0-85164383366 |
ORCID | 0000-0002-1942-5610 0000-0001-9620-5892 0000-0002-1850-5504 0000-0001-7478-4707 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1038/s41598-023-38403-3 |
PMID | 37433920 |
PQID | 2835688353 |
PQPubID | 2041939 |
PageCount | 17 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_31ffd915e39642e497dcbb5f8cce14e7 pubmedcentral_primary_oai_pubmedcentral_nih_gov_10336104 liege_orbi_v2_oai_orbi_ulg_ac_be_2268_305142 proquest_miscellaneous_2836292305 proquest_journals_2835688353 pubmed_primary_37433920 crossref_citationtrail_10_1038_s41598_023_38403_3 crossref_primary_10_1038_s41598_023_38403_3 springer_journals_10_1038_s41598_023_38403_3 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-07-11 |
PublicationDateYYYYMMDD | 2023-07-11 |
PublicationDate_xml | – month: 07 year: 2023 text: 2023-07-11 day: 11 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Scientific reports |
PublicationTitleAbbrev | Sci Rep |
PublicationTitleAlternate | Sci Rep |
PublicationYear | 2023 |
Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
References | Zribi, Mbarki, Metoui, Trabelsi, Zribi, Ksouri (CR68) 2021; 155 Oidaira, Sano, Koshiba, Ushimaru (CR65) 2000; 156 Mohamed, El-Sayed, Rady, Caruso, Sekara, Abdelhamid (CR40) 2021; 9 Bechtaoui, Rabiu, Raklami, Oufdou, Hafidi, Jemo (CR107) 2021; 12 Pereira da Silva, Prado, Wadt, Moda, Caione (CR8) 2020; 43 Rewald, Raveh, Gendler, Ephrath, Rachmilevitch (CR80) 2012; 63 Carstensen, Herdean, Schmidt, Sharma, Spetea, Pribil (CR30) 2018; 177 Kohler, Hernández, Caravaca, Roldán (CR47) 2009; 65 Rivero, Mestre, Mittler, Rubio, Garcia-Sanchez, Martinez (CR92) 2014; 37 Duvauchelle (CR55) 2011 Phang, Shao, Liao, Yan, Lam (CR81) 2009; 135 Grattan, Grieve (CR84) 1992; 38 Šamec, Karalija, Šola, Vujčić Bok, Salopek-Sondi (CR116) 2021; 10 Shabala, Munns (CR4) 2017 Beyer, Fridovich (CR62) 1987; 161 Rezzouk, Gracia-Romero, Kefauver, Nieto-Taladriz, Serret, Araus (CR26) 2022; 259 Bargaz, Nassar, Rady, Gaballah, Thompson, Brestic (CR67) 2016; 202 Loudari, Mayane, Zeroual, Colinet, Oukarroum (CR32) 2022 Shaheen, Naseer, Ashraf, Akram (CR103) 2013; 8 Bates, Waldren, Teare (CR56) 1973; 39 Kumari, Bhatnagar, Mehla, Vashistha (CR25) 2022; 6 Xie, Yang, Gao, Yao, Wang (CR34) 2022; 14 Sharma, Jha, Dubey (CR23) 2019 Kao (CR13) 2017; 66 Pastuszak, Dziurka, Hornyák, Szczerba, Kopeć, Płażek (CR11) 2022; 23 Manaa, Goussi, Derbali, Cantamessa, Abdelly, Barbato (CR10) 2019; 162 Chen, Gao, Xie, Niu, Yang, Fang, Tian, Liu (CR124) 2017; 48 Aleksza, Horváth, Sándor, Szabados (CR121) 2017; 175 Das, Roychoudhury (CR113) 2014; 2 Kiani, Arzani, MirmohammadyMaibody, a. M. (CR122) 2021 Khan, Ahmad, Shah, Ahmad, Ghani, Nawaz (CR50) 2013; 82 Chtouki, Naciri, Garré, Nguyen, Zeroual, Oukarroum (CR44) 2022; 185 Wang, Gao, Hu, Chu (CR52) 2019 Singh, Singh, Khanna (CR83) 2016; 50 García-Ortiz, Recio-Rodríguez, Rodríguez-Sánchez, Patino-Alonso, Agudo-Conde, Rodríguez-Martín (CR95) 2012; 225 Oukarroum, Bussotti, Goltsev, Kalaji (CR18) 2015; 109 Gao, Ouyang, Wang, Xu, Tang, Chen (CR99) 2008; 54 Stiller, Garrison, Gurdyumov, Kenner, Yasmin, Yates, Song (CR120) 2021; 22 Khourchi, Elhaissoufi, Loum, Ibnyasser, Haddine, Ghani (CR46) 2022; 262 Shoukat, Abideen, Ahmed, Gulzar, Nielsen (CR72) 2019; 162 CR54 Wahid, Fahad, Danish, Adnan, Yue, Saud (CR45) 2020; 10 Loudari, Benadis, Naciri, Soulaimani, Zeroual, Gharous (CR48) 2020; 15 Garg, Kim, Owens, Ranwala, Choi, Kochian, Wu (CR104) 2002; 99 Talbi, Houmani, Kouas, Slama, Ksouri, Abdelly (CR49) 2014; 33 Gao, Wang, Shah, Chu (CR53) 2020; 20 Meng, Chen, Wang, Huang, Ye, Chen (CR35) 2021; 16 Khourchi, Delaplace, Bargaz (CR51) 2023; 429 Bouras, Choukr-Allah, Amouaouch, Bouaziz, Devkota, El Mouttaqi (CR33) 2022; 11 Chandlee, Scandalios (CR63) 1984; 81 Ahanger, Mir, Alyemeni, Ahmad (CR19) 2020; 147 Oukaltouma, El Moukhtari, Lahrizi, Mouradi, Farissi, Willems, Qaddoury, Bekkaoui, Ghoulam (CR28) 2021; 16 Savicka, Škute (CR57) 2010; 56 Bouras, Bouaziz, Bouazzama, Hirich, Choukr-Allah (CR41) 2021; 11 Bradford (CR60) 1976; 72 UlAibdin, Nafees, Rizwan, Ahmad, Ali, Obaid, Alsubeie, Darwish, Abeed (CR2) 2023 DuBois, Gilles, Hamilton, Rebers, Smith (CR59) 1956; 28 Ahanger, Agarwal (CR89) 2017; 115 Demiral (CR90) 2017; 6 Akyol, Yilmaz, Uzilday, Uzilday, Türkan (CR24) 2020; 44 Reyes Jara, Gómez Lobato, Civello, Martínez (CR118) 2022; 46 Amin, Rasool, Mir, Wani, Masoodi, Ahmad (CR127) 2021; 171 Loudari, Mayane, Naciri, Zeroual, Colinet, Oukarroum (CR31) 2022; 6 Rangseekaew, Barros-Rodríguez, Pathom-aree, Manzanera (CR108) 2022; 11 Nadarajah (CR12) 2020; 21 Tejera, Campos, Sanjuan, Lluch (CR61) 2004; 161 Ben Rejeb, Abdelly, Savouré (CR109) 2014; 80 Agrawal, Sen, Chatterjee, Rai, Yadav, Singh, Rai, Tripathi, Müller (CR126) 2015 Dekker, Boekema (CR71) 2005; 1706 Mittler (CR20) 2017; 22 Dey, Banerjee, Sharma, Maity, Etesami, Shaw, Huang, Huang, Chen (CR106) 2021; 11 Jaleel, Gopi, Manivannan, Panneerselvam (CR64) 2007; 29 Dias, Lima, Gheyi, Melo, Silva, Soares, Paiva, Silva (CR5) 2022; 36 Khourchi, Oukarroum, Tika, Delaplace, Bargaz (CR42) 2022; 22 Chen, Shabala, Niu, Chen, Shabala, Meinke, Venkataraman, Pareek, Xu, Zhou (CR1) 2021; 9 Nouman, Anwar, Gull, Newton, Rosa, Domínguez-Perles (CR14) 2016; 83 Noctor, Mhamdi, Foyer (CR17) 2014; 164 Reid, Mimura, Ohsumi, Walker, Smith (CR86) 2000; 23 Zhao, Zhang, Song, Zhu, Shabala (CR37) 2020; 1 Fabiańska, Bucher, Häusler (CR128) 2019; 286 Beji, Hamdi, Kesraoui, Seffen (CR97) 2017; 2 Keisham, Mukherjee, Bhatla (CR91) 2018; 19 Rady, El-Shewy, Seif El-Yazal, Abdelaal (CR43) 2018; 72 Taga, Miller, Pratt (CR58) 1984; 61 Sharma, Kumar, Shahzad, Ramakrishnan, Singh Sidhu, Bali (CR70) 2020; 39 Duarte, Santos, Marques, Cašador (CR73) 2013; 67 Nsarellah, Amamou, Taghouti, Annicchiarico (CR27) 2011; 3 AbdElgawad, Zinta, Hegab, Pandey, Asard, Abuelsoud (CR125) 2016; 7 You, Chan (CR21) 2015; 6 Sies, Jones (CR66) 2020; 21 Ahanger, Tomar, Tittal, Argal, Agarwal (CR115) 2017; 23 Wang, Xu, Gong, Yang, Zhang, Li (CR119) 2019; 24 Belouchrani, Latati, Ounane, Drouiche, Lounici (CR39) 2020; 39 Fahad, Hussain, Matloob, Khan, Khaliq, Saud (CR77) 2015; 75 Behdad, Mohsenzadeh, Azizi (CR78) 2021; 17 El-Mejjaouy, Lahrir, Naciri, Zeroual, Mercatoris, Dumont (CR75) 2022; 194 Hessini, Issaoui, Ferchichi, Saif, Abdelly, Siddique (CR9) 2019; 139 Hasanuzzaman, Raihan, Masud, Rahman, Nowroz, Rahman (CR16) 2021; 22 Guo, Ahmad, Zhao, Zhao, Zhong, Wang, Li (CR98) 2022; 11 Nemeskéri, Neményi, Bőcs, Pék, Helyes (CR74) 2019; 11 Schieber, Chandel (CR110) 2014; 24 Rodríguez-Martín, Gutiérrez, Torrijos, Nanos (CR96) 2018; 239 Jeandet, Formela-Luboińska, Labudda, Morkunas (CR112) 2022; 23 Lotfi, Ghassemi-Golezani, Pessarakli (CR7) 2020; 26 Arif, Islam, Robin (CR3) 2019 Singh, Mehta, Yadav, Nagar, Ghosh, Roy, Chakraborty, Singh (CR22) 2022; 23 Kasote, Katyare, Hegde, Bae (CR123) 2015; 11 Chaves, Costa, Saibo (CR69) 2011; 57 Hussain, Hussain, Khaliq, Ashraf, Anjum, Men, Wang (CR15) 2018; 9 Hasanuzzaman, Bhuyan, Parvin, Bhuiyan, Anee, Nahar, Hossen, Zulfiqar, Alam, Fujita (CR114) 2020; 21 Khan, Islam, Azom, Amin (CR38) 2018; 25 Chakraborty, Prasad, Bhatta, Torbert (CR29) 2021; 779 Van der Ploeg, Bohm, Kirkham (CR94) 1999; 63 Hernández, Munné-Bosch (CR105) 2015; 66 Rubio, Linares-Rueda, García-Sánchez, Fernández (CR87) 2005; 56 Muhammad, Shalmani, Ali, Yang, Ahmad, Li (CR36) 2021; 11 Slimani, Arraouadi, Hajlaoui (CR6) 2022; 2 Tang, Niu, Wei, Chen, Chen (CR82) 2019; 10 Latique, Mrid, Kabach, Kchikich, Sammama, Yasri, Nhiri, El Kaoua, Douira, Selmaoui (CR100) 2021; 11 Pratyusha (CR117) 2022 Isayenkov, Maathuis (CR85) 2019; 10 De Bauw, Vandamme, Lupembe, Mwakasege, Senthilkumar, Dramé, Merckx (CR93) 2019; 46 Sun, Ren, Zhao, Ji, Huang (CR101) 2018; 11 Guo, Zhang, Liu, Hou, Liu, Zhao (CR111) 2020; 13 Abbas, Chen, Khan, Feng, Palta, Siddique (CR76) 2018; 8 Rahimi, Nazari, Javadi, Samadi, da Silva (CR88) 2021; 285 Altuntas, Dasgan, Akhoundnejad (CR79) 2018; 53 Kumar, Li, Yang, Huang, Ji, Liu, Ke, Hou (CR102) 2021; 12 SV Isayenkov (38403_CR85) 2019; 10 MA Demiral (38403_CR90) 2017; 6 H Tang (38403_CR82) 2019; 10 AS Dias (38403_CR5) 2022; 36 JM Chandlee (38403_CR63) 1984; 81 N Nsarellah (38403_CR27) 2011; 3 JA Rodríguez-Martín (38403_CR96) 2018; 239 N Slimani (38403_CR6) 2022; 2 J Kohler (38403_CR47) 2009; 65 A Stiller (38403_CR120) 2021; 22 H Oidaira (38403_CR65) 2000; 156 K Das (38403_CR113) 2014; 2 M Guo (38403_CR111) 2020; 13 J Wang (38403_CR119) 2019; 24 WF Beyer Jr (38403_CR62) 1987; 161 RM Rivero (38403_CR92) 2014; 37 P De Bauw (38403_CR93) 2019; 46 M Keisham (38403_CR91) 2018; 19 AS Belouchrani (38403_CR39) 2020; 39 R Beji (38403_CR97) 2017; 2 B Duarte (38403_CR73) 2013; 67 TH Phang (38403_CR81) 2009; 135 MA Ahanger (38403_CR19) 2020; 147 G Pereira da Silva (38403_CR8) 2020; 43 J Pastuszak (38403_CR11) 2022; 23 S Kumar (38403_CR102) 2021; 12 HA Hussain (38403_CR15) 2018; 9 N Bechtaoui (38403_CR107) 2021; 12 A Behdad (38403_CR78) 2021; 17 J You (38403_CR21) 2015; 6 A Khan (38403_CR50) 2013; 82 C Zhao (38403_CR37) 2020; 1 S Gao (38403_CR99) 2008; 54 A Sharma (38403_CR70) 2020; 39 AK Garg (38403_CR104) 2002; 99 A Singh (38403_CR22) 2022; 23 X Meng (38403_CR35) 2021; 16 RR Van der Ploeg (38403_CR94) 1999; 63 CH Kao (38403_CR13) 2017; 66 D Duvauchelle (38403_CR55) 2011 K Ben Rejeb (38403_CR109) 2014; 80 S Pratyusha (38403_CR117) 2022 MA Ahanger (38403_CR89) 2017; 115 L García-Ortiz (38403_CR95) 2012; 225 I Hernández (38403_CR105) 2015; 66 Y Gao (38403_CR53) 2020; 20 R Lotfi (38403_CR7) 2020; 26 A Manaa (38403_CR10) 2019; 162 M Schieber (38403_CR110) 2014; 24 38403_CR54 K Hessini (38403_CR9) 2019; 139 P Jeandet (38403_CR112) 2022; 23 T Chen (38403_CR1) 2021; 9 R Mittler (38403_CR20) 2017; 22 S Khourchi (38403_CR51) 2023; 429 C Agrawal (38403_CR126) 2015 R Kiani (38403_CR122) 2021 I Muhammad (38403_CR36) 2021; 11 W Xie (38403_CR34) 2022; 14 S Khourchi (38403_CR46) 2022; 262 Y El-Mejjaouy (38403_CR75) 2022; 194 D Chakraborty (38403_CR29) 2021; 779 A Loudari (38403_CR48) 2020; 15 D Aleksza (38403_CR121) 2017; 175 E Nemeskéri (38403_CR74) 2019; 11 MM Bradford (38403_CR60) 1976; 72 S Latique (38403_CR100) 2021; 11 M DuBois (38403_CR59) 1956; 28 P Rangseekaew (38403_CR108) 2022; 11 Z UlAibdin (38403_CR2) 2023 FZ Rezzouk (38403_CR26) 2022; 259 NA Tejera (38403_CR61) 2004; 161 MR Arif (38403_CR3) 2019 M Hasanuzzaman (38403_CR114) 2020; 21 S Shaheen (38403_CR103) 2013; 8 MA Ahanger (38403_CR115) 2017; 23 MM Chaves (38403_CR69) 2011; 57 N Singh (38403_CR83) 2016; 50 A Carstensen (38403_CR30) 2018; 177 K Oukaltouma (38403_CR28) 2021; 16 X-M Sun (38403_CR101) 2018; 11 M Chtouki (38403_CR44) 2022; 185 JP Dekker (38403_CR71) 2005; 1706 G Noctor (38403_CR17) 2014; 164 HI Mohamed (38403_CR40) 2021; 9 M Savicka (38403_CR57) 2010; 56 AM Reyes Jara (38403_CR118) 2022; 46 X Guo (38403_CR98) 2022; 11 P Sharma (38403_CR23) 2019 A Loudari (38403_CR31) 2022; 6 MS Taga (38403_CR58) 1984; 61 CA Jaleel (38403_CR64) 2007; 29 H Bouras (38403_CR41) 2021; 11 SR Grattan (38403_CR84) 1992; 38 R Kumari (38403_CR25) 2022; 6 KK Nadarajah (38403_CR12) 2020; 21 M Hasanuzzaman (38403_CR16) 2021; 22 S-J Chen (38403_CR124) 2017; 48 H AbdElgawad (38403_CR125) 2016; 7 H Sies (38403_CR66) 2020; 21 S Fahad (38403_CR77) 2015; 75 DM Kasote (38403_CR123) 2015; 11 A Loudari (38403_CR32) 2022 O Zribi (38403_CR68) 2021; 155 S Shabala (38403_CR4) 2017 F Wahid (38403_CR45) 2020; 10 I Fabiańska (38403_CR128) 2019; 286 L Rubio (38403_CR87) 2005; 56 B Rewald (38403_CR80) 2012; 63 W Nouman (38403_CR14) 2016; 83 X Wang (38403_CR52) 2019 E Shoukat (38403_CR72) 2019; 162 S Khourchi (38403_CR42) 2022; 22 E Rahimi (38403_CR88) 2021; 285 TY Akyol (38403_CR24) 2020; 44 G Abbas (38403_CR76) 2018; 8 MM Rady (38403_CR43) 2018; 72 D Šamec (38403_CR116) 2021; 10 A Oukarroum (38403_CR18) 2015; 109 MZ Khan (38403_CR38) 2018; 25 H Bouras (38403_CR33) 2022; 11 A Bargaz (38403_CR67) 2016; 202 LS Bates (38403_CR56) 1973; 39 I Amin (38403_CR127) 2021; 171 OZ Talbi (38403_CR49) 2014; 33 RJ Reid (38403_CR86) 2000; 23 G Dey (38403_CR106) 2021; 11 O Altuntas (38403_CR79) 2018; 53 |
References_xml | – volume: 2 start-page: 2 year: 2017 ident: CR97 article-title: Effects of salts on phosphorus adsorption in alkalize Tunisian soil publication-title: Euro-Mediterr. J. Environ. Integr. doi: 10.1007/s41207-016-0012-7 – volume: 147 start-page: 31 year: 2020 end-page: 42 ident: CR19 article-title: Combined effects of brassinosteroid and kinetin mitigates salinity stress in tomato through the modulation of antioxidant and osmolyte metabolism publication-title: Plant Physiol. Biochem. doi: 10.1016/j.plaphy.2019.12.007 – volume: 39 start-page: 205 year: 1973 end-page: 207 ident: CR56 article-title: Rapid determination of free proline for water-stress studies publication-title: Plant Soil doi: 10.1007/BF00018060 – volume: 22 start-page: 9326 issue: 17 year: 2021 ident: CR16 article-title: Regulation of reactive oxygen species and antioxidant defence in plants under salinity publication-title: Int. J. Mol. Sci. doi: 10.3390/ijms22179326 – volume: 99 start-page: 15898 issue: 25 year: 2002 end-page: 15903 ident: CR104 article-title: Trehalose accumulation in rice plants confers high tolerance levels to different abiotic stresses publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.252637799 – volume: 23 start-page: 731 year: 2017 end-page: 744 ident: CR115 article-title: Plant growth under water/salt stress: ROS production, antioxidants and significance of added potassium under such conditions publication-title: Physiol. Mol. Biol. Plants doi: 10.1007/s12298-017-0462-7 – ident: CR54 – volume: 37 start-page: 1059 issue: 5 year: 2014 end-page: 1073 ident: CR92 article-title: The combined effect of salinity and heat reveals a specific physiological, biochemical and molecular response in tomato plants publication-title: Plant Cell Environ. doi: 10.1111/pce.12199 – year: 2011 ident: CR55 publication-title: Plant Materials Collection Guide – volume: 225 start-page: 497 issue: 2 year: 2012 end-page: 503 ident: CR95 article-title: Sodium and potassium intake present a J-shaped relationship with arterial stiffness and carotid intima-media thickness publication-title: Atherosclerosis doi: 10.1016/j.atherosclerosis.2012.09.038 – volume: 286 start-page: 57 year: 2019 end-page: 67 ident: CR128 article-title: Intracellular phosphate homeostasis—A short way from metabolism to signaling publication-title: Plant Sci. doi: 10.1016/j.plantsci.2019.05.018 – volume: 135 start-page: 412 issue: 4 year: 2009 end-page: 425 ident: CR81 article-title: High external phosphate (Pi) increases sodium ion uptake and reduces salt tolerance of ‘Pi-tolerant’ soybean publication-title: Physiol. Plant. doi: 10.1111/j.1399-3054.2008.01200.x – volume: 23 start-page: 1995 issue: 4 year: 2022 ident: CR22 article-title: How to cope with the challenges of environmental stresses in the era of global climate change: An update on ROS stave off in plants publication-title: Int. J. Mol. Sci. doi: 10.3390/ijms23041995 – volume: 9 year: 2021 ident: CR40 article-title: Coupling effects of phosphorus fertilization source and rate on growth and ion accumulation of common bean under salinity stress publication-title: PeerJ doi: 10.7717/peerj.11463 – volume: 11 start-page: 191 year: 2022 ident: CR108 article-title: Plant beneficial deep-sea actinobacterium, MT1.1T promote growth of tomato ( ) under salinity stress publication-title: Biology doi: 10.3390/biology11020191 – volume: 24 start-page: 155 year: 2019 ident: CR119 article-title: Biosynthesis, chemistry, and pharmacology of polyphenols from species: A review publication-title: Molecules doi: 10.3390/molecules24010155 – volume: 16 start-page: 1 year: 2021 end-page: 13 ident: CR28 article-title: Phosphorus deficiency enhances water deficit impact on some morphological and physiological traits in four faba bean ( L.) varieties publication-title: Ital. J. Agron. doi: 10.4081/ija.2020.1662 – year: 2021 ident: CR122 article-title: Polyphenols, flavonoids, and antioxidant activity involved in salt tolerance in wheat, and their amphidiploids publication-title: Front. Plant Sci. doi: 10.3389/fpls.2021.646221 – volume: 156 start-page: 811 issue: 5–6 year: 2000 end-page: 813 ident: CR65 article-title: Enhancement of antioxidative enzyme activities in chilled rice seedlings publication-title: J. Plant Physiol. doi: 10.1016/S0176-1617(00)80254-0 – volume: 8 start-page: 85 year: 2013 end-page: 96 ident: CR103 article-title: Salt stress affects water relations, photosynthesis, and oxidative defense mechanisms in L publication-title: J. Plant Interact. doi: 10.1080/17429145.2012.718376 – volume: 43 start-page: 1485 issue: 10 year: 2020 end-page: 1497 ident: CR8 article-title: Accuracy of nutritional diagnostics for phosphorus considering five standards by the method of diagnosing nutritional composition in sugarcane publication-title: J. Plant Nutr. doi: 10.1080/01904167.2020.1730902 – volume: 21 start-page: 8695 year: 2020 ident: CR114 article-title: Regulation of ROS metabolism in plants under environmental stress: A review of recent experimental evidence publication-title: Int. J. Mol. Sci. doi: 10.3390/ijms21228695 – volume: 9 start-page: 393 year: 2018 ident: CR15 article-title: Chilling and drought stresses in crop plants: Implications, cross talk, and potential management opportunities publication-title: Front. Plant Sci. doi: 10.3389/fpls.2018.00393 – volume: 44 start-page: 1 issue: 1 year: 2020 end-page: 13 ident: CR24 article-title: Plant response to salinity: An analysis of ROS formation, signaling, and antioxidant defense publication-title: Turk. J. Bot. doi: 10.3906/bot-1911-15 – year: 2022 ident: CR117 article-title: Phenolic compounds in the plant development and defense: An overview, plant stress physiology—Perspectives in agriculture publication-title: IntechOpen doi: 10.5772/intechopen.102873 – volume: 429 year: 2023 ident: CR51 article-title: Polyphosphate fertilizer use efficiency strongly relies on soil physicochemical properties and root-microbial activities publication-title: Geoderma doi: 10.1016/j.geoderma.2022.116281 – volume: 185 start-page: 603 year: 2022 end-page: 611 ident: CR44 article-title: Phosphorus fertilizer form and application frequency affect soil P availability, chickpea yield, and P use efficiency under drip fertigation publication-title: J. Plant Nutr. Soil Sci. doi: 10.1002/jpln.202100439 – volume: 7 start-page: 276 year: 2016 ident: CR125 article-title: High salinity induces different oxidative stress and antioxidant responses in maize seedlings organs publication-title: Front. Plant Sci. doi: 10.3389/fpls.2016.00276 – volume: 115 start-page: 449 year: 2017 end-page: 460 ident: CR89 article-title: Salinity stress induced alterations in antioxidant metabolism and nitrogen assimilation in wheat ( L.) as influenced by potassium supplementation publication-title: Plant Physiol. Biochem. doi: 10.1016/j.plaphy.2017.04.017 – volume: 72 start-page: 7 year: 2018 end-page: 20 ident: CR43 article-title: Response of salt-stressed common bean plant performances to foliar application of phosphorus (MAP) publication-title: Int. Lett. Nat. Sci. doi: 10.18052/www.scipress.com/ILNS.72.7 – volume: 161 start-page: 559 issue: 2 year: 1987 end-page: 566 ident: CR62 article-title: Assaying for superoxide dismutase activity: Some large consequences of minor changes in conditions publication-title: Anal. Biochem. doi: 10.1016/0003-2697(87)90489-1 – volume: 1 issue: 1 year: 2020 ident: CR37 article-title: Mechanisms of plant responses and adaptation to soil salinity publication-title: Innovation doi: 10.1016/j.xinn.2020.100017 – volume: 11 year: 2021 ident: CR36 article-title: Mechanisms regulating the dynamics of photosynthesis under abiotic stresses publication-title: Front. Plant Sci. doi: 10.3389/fpls.2020.615942 – volume: 63 start-page: 1055 issue: 5 year: 1999 end-page: 1062 ident: CR94 article-title: On the origin of the theory of plant nutrition and the law of minimum publication-title: Soil Sci. Soc. Am. J. doi: 10.2136/sssaj1999.6351055x – volume: 139 start-page: 171 year: 2019 end-page: 178 ident: CR9 article-title: Interactive effects of salinity and nitrogen forms on plant growth, photosynthesis and osmotic adjustment in maize publication-title: Plant Physiol. Biochem. doi: 10.1016/j.plaphy.2019.03.005 – volume: 3 start-page: 34 year: 2011 end-page: 40 ident: CR27 article-title: Adaptation of Moroccan durum wheat varieties from different breeding eras publication-title: J. Plant Breed. Crop Sci. – volume: 66 start-page: 87 year: 2017 end-page: 93 ident: CR13 article-title: Mechanisms of salt tolerance in rice plants: Cell wall-related genes and expansins publication-title: J. Taiwan Agric. Res – year: 2022 ident: CR32 article-title: Photosynthetic performance and nutrient uptake under salt stress: Differential responses of wheat plants to contrasting phosphorus forms and rates publication-title: Front. Plant Sci. doi: 10.3389/fpls.2022.1038672 – volume: 22 start-page: 1 issue: 1 year: 2022 end-page: 15 ident: CR42 article-title: Polyphosphate application influences morpho-physiological root traits involved in P acquisition and durum wheat growth performance publication-title: BMC Plant Biol. doi: 10.1186/s12870-022-03683-w – volume: 13 start-page: 61 year: 2020 ident: CR111 article-title: OsProDH negatively regulates thermotolerance in rice by modulating proline metabolism and reactive oxygen species scavenging publication-title: Rice doi: 10.1186/s12284-020-00422-3 – volume: 202 start-page: 497 issue: 6 year: 2016 end-page: 507 ident: CR67 article-title: Improved salinity tolerance by phosphorus fertilizer in two recombinant inbred lines contrasting in their P-efficiency publication-title: J. Agron. Crop Sci. doi: 10.1111/jac.12181 – volume: 1706 start-page: 12 issue: 1–2 year: 2005 end-page: 39 ident: CR71 article-title: Supramolecular organization of thylakoid membrane proteins in green plants publication-title: Biochim. Biophys. Acta (BBA) Bioenergetics doi: 10.1016/j.bbabio.2004.09.009 – volume: 11 start-page: 1491 issue: 8 year: 2021 ident: CR41 article-title: How phosphorus fertilization alleviates the effect of salinity on sugar beet ( L.) productivity and quality publication-title: Agronomy doi: 10.3390/agronomy11081491 – volume: 65 start-page: 245 issue: 2–3 year: 2009 end-page: 252 ident: CR47 article-title: Induction of antioxidant enzymes is involved in the greater effectiveness of a PGPR versus AM fungi with respect to increasing the tolerance of lettuce to severe salt stress publication-title: Environ. Exp. Bot. doi: 10.1016/j.envexpbot.2008.09.008 – volume: 8 start-page: 155 issue: 8 year: 2018 ident: CR76 article-title: Salinity and low phosphorus differentially affect shoot and root traits in two wheat cultivars with contrasting tolerance to salt publication-title: Agronomy doi: 10.3390/agronomy8080155 – volume: 11 start-page: 272 year: 2018 ident: CR101 article-title: Microalgae for the production of lipid and carotenoids: A review with focus on stress regulation and adaptation publication-title: Biotechnol. Biofuels doi: 10.1186/s13068-018-1275-9 – volume: 239 start-page: 438 year: 2018 end-page: 447 ident: CR96 article-title: Wood and bark of as archives of heavy metal pollution in the Mediterranean Region publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2018.04.036 – volume: 6 start-page: 1092 year: 2015 ident: CR21 article-title: ROS regulation during abiotic stress responses in crop plants publication-title: Front. Plant Sci. doi: 10.3389/fpls.2015.01092 – volume: 61 start-page: 928 year: 1984 end-page: 931 ident: CR58 article-title: Chia seeds as a source of natural lipid antioxidants publication-title: J. Am. Oil Chem. Soc. doi: 10.1007/BF02542169 – volume: 23 start-page: 5161 year: 2022 ident: CR112 article-title: The role of sugars in plant responses to stress and their regulatory function during development publication-title: Int. J. Mol. Sci. doi: 10.3390/ijms23095161 – volume: 54 start-page: 374 year: 2008 end-page: 381 ident: CR99 article-title: Effects of salt stress on growth, antioxidant enzyme and phenylalanine ammonia-lyase activities in L. seedlings publication-title: Plant Soil Environ. doi: 10.17221/410-PSE – volume: 48 start-page: 4608 year: 2017 end-page: 4622 ident: CR124 article-title: Effect of l-ascorbyl-2-polyphosphate supplementation on growth performance, body composition, antioxidative capacity and salinity stress tolerance of juvenile Pacific white shrimp, publication-title: Aquac. Res. doi: 10.1111/are.13284 – volume: 20 start-page: 1 year: 2020 end-page: 11 ident: CR53 article-title: Polyphosphate fertilizers increased maize ( L.) P, Fe, Zn, and Mn uptake by decreasing P fixation and mobilizing microelements in calcareous soil publication-title: J. Soils Sediments doi: 10.1007/s11368-019-02375-7 – volume: 63 start-page: 2717 issue: 7 year: 2012 end-page: 2727 ident: CR80 article-title: Phenotypic plasticity and water flux rates of citrus root orders under salinity publication-title: J. Exp. Bot. doi: 10.1093/jxb/err457 – volume: 29 start-page: 205 year: 2007 end-page: 209 ident: CR64 article-title: Responses of antioxidant defense system of (L.) G. Don. to paclobutrazol treatment under salinity publication-title: Acta Physiol. Plant. doi: 10.1007/s11738-007-0025-6 – volume: 162 start-page: 103 year: 2019 end-page: 114 ident: CR10 article-title: Salinity tolerance of quinoa ( Willd.) as assessed by chloroplast ultrastructure and photosynthetic performance publication-title: Environ. Exp. Bot. doi: 10.1016/j.envexpbot.2019.02.012 – volume: 21 start-page: 363 year: 2020 end-page: 383 ident: CR66 article-title: Reactive oxygen species (ROS) as pleiotropic physiological signalling agents publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/s41580-020-0230-3 – volume: 21 start-page: 5208 issue: 15 year: 2020 ident: CR12 article-title: ROS homeostasis in abiotic stress tolerance in plants publication-title: Int. J. Mol. Sci. doi: 10.3390/ijms21155208 – volume: 171 start-page: 578 year: 2021 end-page: 594 ident: CR127 article-title: Ion homeostasis for salinity tolerance in plants: A molecular approach publication-title: Physiol. Plant. doi: 10.1111/ppl.13185 – volume: 10 start-page: 118 year: 2021 ident: CR116 article-title: The role of polyphenols in abiotic stress response: The influence of molecular structure publication-title: Plants doi: 10.3390/plants10010118 – volume: 17 year: 2021 ident: CR78 article-title: Growth, leaf gas exchange and physiological parameters of two L. populations subjected to salt stress condition publication-title: Rhizosphere doi: 10.1016/j.rhisph.2021.100319 – volume: 56 start-page: 613 issue: 412 year: 2005 end-page: 622 ident: CR87 article-title: Physiological evidence for a sodium-dependent high-affinity phosphate and nitrate transport at the plasma membrane of leaf and root cells of L publication-title: J. Exp. Bot. doi: 10.1093/jxb/eri053 – volume: 26 year: 2020 ident: CR7 article-title: Salicylic acid regulates photosynthetic electron transfer and stomatal conductance of mung bean ( L.) under salinity stress publication-title: Biocatal. Agric. Biotechnol. doi: 10.1016/j.bcab.2020.101635 – year: 2019 ident: CR3 article-title: Salinity stress alters root morphology and root hair traits in publication-title: Plants doi: 10.3390/plants8070192 – volume: 39 start-page: 1205 issue: 3 year: 2020 end-page: 1210 ident: CR39 article-title: Study of the interaction salinity: Phosphorus fertilization on sorghum publication-title: J. Plant Growth Regul. doi: 10.1007/s00344-019-10057-4 – volume: 6 year: 2022 ident: CR25 article-title: Potential of organic amendments (AM fungi, PGPR, vermicompost and seaweeds) in combating salt stress—A review publication-title: Plant Stress doi: 10.1016/j.stress.2022.100111 – volume: 10 start-page: 80 year: 2019 ident: CR85 article-title: Plant salinity stress: Many unanswered questions remain publication-title: Front. Plant Sci. doi: 10.3389/fpls.2019.00080 – volume: 22 start-page: 11 issue: 1 year: 2017 end-page: 19 ident: CR20 article-title: ROS are good publication-title: Trends Plant Sci. doi: 10.1016/j.tplants.2016.08.002 – volume: 14 start-page: 2804 issue: 18 year: 2022 ident: CR34 article-title: The effect and influence mechanism of soil salinity on phosphorus availability in coastal salt-affected soils publication-title: Water doi: 10.3390/w14182804 – volume: 23 start-page: 8397 issue: 15 year: 2022 ident: CR11 article-title: Physiological and biochemical parameters of salinity resistance of three durum wheat genotypes publication-title: Int. J. Mol. Sci. doi: 10.3390/ijms23158397 – volume: 38 start-page: 275 issue: 4 year: 1992 end-page: 300 ident: CR84 article-title: Mineral element acquisition and growth response of plants grown in saline environments publication-title: Agric. Ecosyst. Environ. doi: 10.1016/0167-8809(92)90151-Z – volume: 6 year: 2022 ident: CR31 article-title: Root morphological and anatomical responses to increasing phosphorus concentration of wheat plants grown under salinity publication-title: Plant Stress doi: 10.1016/j.stress.2022.100121 – volume: 24 start-page: R453 year: 2014 end-page: R462 ident: CR110 article-title: ROS function in redox signaling and oxidative stress publication-title: Curr. Biol. CB doi: 10.1016/j.cub.2014.03.034 – volume: 12 year: 2021 ident: CR107 article-title: Phosphate-dependent regulation of growth and stresses management in plants publication-title: Front. Plant Sci. doi: 10.3389/fpls.2021.679916 – start-page: 93 year: 2019 end-page: 136 ident: CR23 article-title: Oxidative stress and antioxidative defense system in plants growing under abiotic stresses publication-title: Handbook of Plant and Crop Stress – volume: 11 start-page: 2836 year: 2022 ident: CR98 article-title: Effect of salt stress on growth and physiological properties of asparagus seedlings publication-title: Plants doi: 10.3390/plants11212836 – volume: 56 start-page: 26 issue: 1 year: 2010 end-page: 33 ident: CR57 article-title: Effects of high temperature on malondialdehyde content, superoxide production and growth changes in wheat seedlings ( L.) publication-title: Ekologija doi: 10.2478/v10055-010-0004-x – volume: 262 year: 2022 ident: CR46 article-title: Phosphate solubilizing bacteria can significantly contribute to enhance P availability from polyphosphates and their use efficiency in wheat publication-title: Microbiol. Res. doi: 10.1016/j.micres.2022.127094 – volume: 11 start-page: 586 issue: 3 year: 2019 ident: CR74 article-title: Physiological factors and their relationship with the productivity of processing tomato under different water supplies publication-title: Water doi: 10.3390/agronomy9080447 – volume: 12 year: 2021 ident: CR102 article-title: Effect of salt stress on growth, physiological parameters, and ionic concentration of water dropwort ( ) cultivars publication-title: Front. Plant Sci. doi: 10.3389/fpls.2021.660409 – volume: 11 start-page: 265 year: 2021 ident: CR100 article-title: Foliar application of water extracts improves salinity tolerance in wheat ( L.) publication-title: Agronomy doi: 10.3390/agronomy11020265 – volume: 11 start-page: 216 issue: 2 year: 2022 ident: CR33 article-title: How does quinoa ( Willd.) respond to phosphorus fertilization and irrigation water salinity? publication-title: Plants doi: 10.3390/plants11020216 – volume: 2 start-page: 9 issue: 04 year: 2022 end-page: 19 ident: CR6 article-title: Biochemical and physiological behavior against salt stress effect on two quinoa accessions ( Willd.) publication-title: Int. J. Agric. Animal Prod. (IJAAP) – volume: 10 start-page: 334 issue: 8 year: 2020 ident: CR45 article-title: Sustainable management with Mycorrhizae and phosphate solubilizing bacteria for enhanced phosphorus uptake in calcareous soils publication-title: Agriculture doi: 10.3390/agriculture10080334 – volume: 82 start-page: 281 issue: 2 year: 2013 end-page: 287 ident: CR50 article-title: Amelioration of salinity stress in wheat ( L.) by foliar application of phosphorus publication-title: Phyton (Buenos Aires) – volume: 46 year: 2022 ident: CR118 article-title: Phenylalanine ammonia lyase is more relevant than Chalcone synthase and Chalcone isomerase in the biosynthesis of flavonoids during postharvest senescence of broccoli publication-title: J. Food Biochem. doi: 10.1111/jfbc.14054 – volume: 39 start-page: 509 year: 2020 end-page: 531 ident: CR70 article-title: Photosynthetic response of plants under different abiotic stresses: A review publication-title: J. Plant Growth Regul. doi: 10.1007/s00344-019-10018-x – volume: 83 start-page: 166 year: 2016 end-page: 176 ident: CR14 article-title: Profiling of polyphenolics, nutrients and antioxidant potential of germplasm’s leaves from seven cultivars of Lam publication-title: Ind. Crops Prod. doi: 10.1016/j.indcrop.2015.12.032 – volume: 80 start-page: 278 year: 2014 end-page: 284 ident: CR109 article-title: How reactive oxygen species and proline face stress together publication-title: Plant Physiol. Biochem. doi: 10.1016/j.plaphy.2014.04.007 – volume: 50 start-page: 567 issue: 6 year: 2016 end-page: 572 ident: CR83 article-title: Growth of lentil ( Medikus) as influenced by phosphorus, rhizobium and plant growth promoting rhizobacteria publication-title: Indian J. Agric. Res. doi: 10.18805/ijare.v0iOF.4573 – volume: 161 start-page: 329 issue: 3 year: 2004 end-page: 338 ident: CR61 article-title: Nitrogenase and antioxidant enzyme activities in nodules formed by isogenic strains with varying tolerance to salt stress publication-title: J. Plant Physiol. doi: 10.1078/0176-1617-01050 – volume: 175 start-page: 555 year: 2017 end-page: 567 ident: CR121 article-title: Proline accumulation is regulated by transcription factors associated with phosphate starvation1[OPEN] publication-title: Plant Physiol. doi: 10.1104/pp.17.00791 – volume: 194 year: 2022 ident: CR75 article-title: How far can chlorophyll a fluorescence detect phosphorus status in wheat leaves ( L.) publication-title: Environ. Exp. Bot. doi: 10.1016/j.envexpbot.2021.104762 – volume: 67 start-page: 178 year: 2013 end-page: 188 ident: CR73 article-title: Ecophysiological adaptations of two halophytes to salt stress: Photosynthesis, PS II photochemistry and antioxidant feedback—Implications for resilience in climate change publication-title: Plant Physiol. Biochem. doi: 10.1016/j.plaphy.2013.03.004 – year: 2019 ident: CR52 article-title: Comparison of the hydrolysis characteristics of three polyphosphates and their effects on soil P and micronutrient availability publication-title: Soil Use Manag. doi: 10.1111/sum.12526 – volume: 28 start-page: 350 issue: 3 year: 1956 end-page: 356 ident: CR59 article-title: Colorimetric method for determination of sugars and related substances publication-title: Anal. Chem. doi: 10.1021/ac60111a017 – volume: 2 start-page: 53 year: 2014 ident: CR113 article-title: Reactive oxygen species (ROS) and response of antioxidants as ROS-scavengers during environmental stress in plants publication-title: Front. Environ. Sci. doi: 10.3389/fenvs.2014.00053 – volume: 22 start-page: 8995 year: 2021 ident: CR120 article-title: From fighting critters to saving lives: Polyphenols in plant defense and human health publication-title: Int. J. Mol. Sci. doi: 10.3390/ijms22168995 – volume: 53 start-page: 1820 issue: 12 year: 2018 end-page: 1826 ident: CR79 article-title: Silicon-induced salinity tolerance improves photosynthesis, leaf water status, membrane stability, and growth in pepper ( L.) publication-title: HortScience doi: 10.21273/HORTSCI13411-18 – volume: 57 start-page: 49 year: 2011 end-page: 104 ident: CR69 article-title: Recent advances in photosynthesis under drought and salinity publication-title: Adv. Bot. Res. doi: 10.1016/B978-0-12-387692-8.00003-5 – start-page: 79 year: 2015 end-page: 113 ident: CR126 article-title: Signal perception and mechanism of salt toxicity/tolerance in photosynthetic organisms: cyanobacteria to plants publication-title: Stress Responses in Plants: Mechanisms of Toxicity and Tolerance doi: 10.1007/978-3-319-13368-3_4 – volume: 164 start-page: 1636 issue: 4 year: 2014 end-page: 1648 ident: CR17 article-title: The roles of reactive oxygen metabolism in drought: Not so cut and dried publication-title: Plant Physiol. doi: 10.1104/pp.113.233478 – volume: 15 start-page: 398 issue: 1 year: 2020 end-page: 405 ident: CR48 article-title: Salt stress affects mineral nutrition in shoots and roots and chlorophyll a fluorescence of tomato plants grown in hydroponic culture publication-title: J. Plant Interact. doi: 10.1080/17429145.2020.1841842 – volume: 11 start-page: 982 year: 2015 end-page: 991 ident: CR123 article-title: Significance of antioxidant potential of plants and its relevance to therapeutic applications publication-title: Int. J. Biol. Sci. doi: 10.7150/ijbs.12096 – volume: 72 start-page: 248 issue: 1–2 year: 1976 end-page: 254 ident: CR60 article-title: A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding publication-title: Anal. Biochem. doi: 10.1016/0003-2697(76)90527-3 – volume: 9 start-page: 506 issue: 3 year: 2021 end-page: 520 ident: CR1 article-title: Molecular mechanisms of salinity tolerance in rice publication-title: Crop J. doi: 10.1016/j.cj.2021.03.005 – volume: 177 start-page: 271 issue: 1 year: 2018 end-page: 284 ident: CR30 article-title: The impacts of phosphorus deficiency on the photosynthetic electron transport chain publication-title: Plant Physiol. doi: 10.1104/pp.17.01624 – volume: 46 start-page: 1009 issue: 11 year: 2019 end-page: 1022 ident: CR93 article-title: Anatomical root responses of rice to combined phosphorus and water stress—Relations to tolerance and breeding opportunities publication-title: Funct. Plant Biol. doi: 10.1071/FP19002 – volume: 6 start-page: 357 issue: 4 year: 2017 end-page: 364 ident: CR90 article-title: Effect of salt stress on the concentration of nitrogen and phosphorus in root and leaf of strawberry plant publication-title: Eurasian J. Soil Sci. doi: 10.18393/ejss.319198 – start-page: 24 year: 2017 end-page: 63 ident: CR4 article-title: Salinity stress: Physiological constraints and adaptive mechanisms publication-title: Plant Stress Physiology doi: 10.1079/9781780647296.0024 – volume: 16 issue: 2 year: 2021 ident: CR35 article-title: Effects of phosphorus deficiency on the absorption of mineral nutrients, photosynthetic system performance and antioxidant metabolism in publication-title: PLoS One doi: 10.1371/journal.pone.0246944 – volume: 23 start-page: 223 issue: 2 year: 2000 end-page: 228 ident: CR86 article-title: Phosphate uptake in Chara: Membrane transport via Na/Pi cotransport publication-title: Plant Cell Environ. doi: 10.1046/j.1365-3040.2000.00524.x – volume: 11 start-page: 1552 year: 2021 ident: CR106 article-title: Management of phosphorus in salinity-stressed agriculture for sustainable crop production by salt-tolerant phosphate-solubilizing bacteria—A review publication-title: Agronomy doi: 10.3390/agronomy11081552 – volume: 81 start-page: 4903 issue: 15 year: 1984 end-page: 4907 ident: CR63 article-title: Regulation of Cat1 gene expression in the scutellum of maize during early sporophytic development publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.81.15.4903 – volume: 25 start-page: 1 issue: 2 year: 2018 end-page: 9 ident: CR38 article-title: Short-term influence of salinity on uptake of phosphorus by publication-title: Int. J. Plant Soil Sci. doi: 10.9734/IJPSS/2018/44822 – volume: 155 start-page: 935 issue: 4 year: 2021 end-page: 943 ident: CR68 article-title: Salinity and phosphorus availability differentially affect plant growth, leaf morphology, water relations, solutes accumulation and antioxidant capacity in publication-title: Plant Biosyst. doi: 10.1080/11263504.2020.1810808 – volume: 33 start-page: 860 issue: 4 year: 2014 end-page: 870 ident: CR49 article-title: Comparative study of the interactive effects of salinity and phosphorus availability in wild ( ) and cultivated barley ( ) publication-title: J. Plant Growth Regul. doi: 10.1007/s00344-014-9429-x – year: 2023 ident: CR2 article-title: Combined effect of Zinc lysine and biochar on growth and physiology of wheat ( L.) to alleviate salinity stress publication-title: Front. Plant Sci. doi: 10.3389/fpls.2022.1017282 – volume: 259 year: 2022 ident: CR26 article-title: Durum wheat ideotypes in Mediterranean environments differing in water and temperature conditions publication-title: Agric. Water Manag. doi: 10.1016/j.agwat.2021.107257 – volume: 66 start-page: 2889 year: 2015 end-page: 2900 ident: CR105 article-title: Linking phosphorus availability with photo-oxidative stress in plants publication-title: J. Exp. Bot. doi: 10.1093/jxb/erv056 – volume: 162 start-page: 504 year: 2019 end-page: 514 ident: CR72 article-title: Changes in growth and photosynthesis linked with intensity and duration of salinity in publication-title: Environ. Exp. Bot. doi: 10.1016/j.envexpbot.2019.03.024 – volume: 75 start-page: 391 issue: 2 year: 2015 end-page: 404 ident: CR77 article-title: Phytohormones and plant responses to salinity stress: A review publication-title: Plant Growth Regul. doi: 10.1007/s10725-014-0013-y – volume: 285 year: 2021 ident: CR88 article-title: Potassium-enriched clinoptilolite zeolite mitigates the adverse impacts of salinity stress in perennial ryegrass ( L.) by increasing silicon absorption and improving the K/Na ratio publication-title: J. Environ. Manag. doi: 10.1016/j.jenvman.2021.112142 – volume: 36 start-page: 163 issue: 2 year: 2022 end-page: 180 ident: CR5 article-title: Effect of combined potassium-phosphorus fertilization on gas exchange, antioxidant activity and fruit production of West Indian cherry under salt stress publication-title: Arid Land Res. Manag. doi: 10.1080/15324982.2021.1959464 – volume: 109 start-page: 80 year: 2015 end-page: 88 ident: CR18 article-title: Correlation between reactive oxygen species production and photochemistry of photosystems I and II in L. plants under salt stress publication-title: Environ. Exp. Bot. doi: 10.1016/j.envexpbot.2014.08.005 – volume: 779 year: 2021 ident: CR29 article-title: Understanding the environmental impact of phosphorus in acidic soils receiving repeated poultry litter applications publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2021.146267 – volume: 10 start-page: 856 year: 2019 ident: CR82 article-title: Phosphorus limitation improved salt tolerance in maize through tissue mass density increase, osmolytes accumulation, and Na+ uptake inhibition publication-title: Front. Plant Sci. doi: 10.3389/fpls.2019.00856 – volume: 19 start-page: 647 issue: 3 year: 2018 ident: CR91 article-title: Mechanisms of sodium transport in plants—Progresses and challenges publication-title: Int. J. Mol. Sci. doi: 10.3390/ijms19030647 – volume: 83 start-page: 166 year: 2016 ident: 38403_CR14 publication-title: Ind. Crops Prod. doi: 10.1016/j.indcrop.2015.12.032 – volume: 286 start-page: 57 year: 2019 ident: 38403_CR128 publication-title: Plant Sci. doi: 10.1016/j.plantsci.2019.05.018 – volume: 16 start-page: 1 year: 2021 ident: 38403_CR28 publication-title: Ital. J. Agron. doi: 10.4081/ija.2020.1662 – volume: 16 issue: 2 year: 2021 ident: 38403_CR35 publication-title: PLoS One doi: 10.1371/journal.pone.0246944 – volume: 147 start-page: 31 year: 2020 ident: 38403_CR19 publication-title: Plant Physiol. Biochem. doi: 10.1016/j.plaphy.2019.12.007 – volume: 9 start-page: 393 year: 2018 ident: 38403_CR15 publication-title: Front. Plant Sci. doi: 10.3389/fpls.2018.00393 – volume: 3 start-page: 34 year: 2011 ident: 38403_CR27 publication-title: J. Plant Breed. Crop Sci. – volume-title: Plant Materials Collection Guide year: 2011 ident: 38403_CR55 – volume: 39 start-page: 509 year: 2020 ident: 38403_CR70 publication-title: J. Plant Growth Regul. doi: 10.1007/s00344-019-10018-x – year: 2022 ident: 38403_CR32 publication-title: Front. Plant Sci. doi: 10.3389/fpls.2022.1038672 – volume: 72 start-page: 7 year: 2018 ident: 38403_CR43 publication-title: Int. Lett. Nat. Sci. doi: 10.18052/www.scipress.com/ILNS.72.7 – volume: 262 year: 2022 ident: 38403_CR46 publication-title: Microbiol. Res. doi: 10.1016/j.micres.2022.127094 – volume: 161 start-page: 329 issue: 3 year: 2004 ident: 38403_CR61 publication-title: J. Plant Physiol. doi: 10.1078/0176-1617-01050 – volume: 15 start-page: 398 issue: 1 year: 2020 ident: 38403_CR48 publication-title: J. Plant Interact. doi: 10.1080/17429145.2020.1841842 – volume: 12 year: 2021 ident: 38403_CR107 publication-title: Front. Plant Sci. doi: 10.3389/fpls.2021.679916 – volume: 10 start-page: 118 year: 2021 ident: 38403_CR116 publication-title: Plants doi: 10.3390/plants10010118 – volume: 109 start-page: 80 year: 2015 ident: 38403_CR18 publication-title: Environ. Exp. Bot. doi: 10.1016/j.envexpbot.2014.08.005 – volume: 155 start-page: 935 issue: 4 year: 2021 ident: 38403_CR68 publication-title: Plant Biosyst. doi: 10.1080/11263504.2020.1810808 – ident: 38403_CR54 – volume: 28 start-page: 350 issue: 3 year: 1956 ident: 38403_CR59 publication-title: Anal. Chem. doi: 10.1021/ac60111a017 – volume: 185 start-page: 603 year: 2022 ident: 38403_CR44 publication-title: J. Plant Nutr. Soil Sci. doi: 10.1002/jpln.202100439 – volume: 194 year: 2022 ident: 38403_CR75 publication-title: Environ. Exp. Bot. doi: 10.1016/j.envexpbot.2021.104762 – year: 2019 ident: 38403_CR3 publication-title: Plants doi: 10.3390/plants8070192 – volume: 66 start-page: 87 year: 2017 ident: 38403_CR13 publication-title: J. Taiwan Agric. Res – volume: 21 start-page: 363 year: 2020 ident: 38403_CR66 publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/s41580-020-0230-3 – volume: 21 start-page: 5208 issue: 15 year: 2020 ident: 38403_CR12 publication-title: Int. J. Mol. Sci. doi: 10.3390/ijms21155208 – volume: 63 start-page: 1055 issue: 5 year: 1999 ident: 38403_CR94 publication-title: Soil Sci. Soc. Am. J. doi: 10.2136/sssaj1999.6351055x – volume: 67 start-page: 178 year: 2013 ident: 38403_CR73 publication-title: Plant Physiol. Biochem. doi: 10.1016/j.plaphy.2013.03.004 – volume: 2 start-page: 9 issue: 04 year: 2022 ident: 38403_CR6 publication-title: Int. J. Agric. Animal Prod. (IJAAP) – volume: 139 start-page: 171 year: 2019 ident: 38403_CR9 publication-title: Plant Physiol. Biochem. doi: 10.1016/j.plaphy.2019.03.005 – start-page: 93 volume-title: Handbook of Plant and Crop Stress year: 2019 ident: 38403_CR23 – volume: 171 start-page: 578 year: 2021 ident: 38403_CR127 publication-title: Physiol. Plant. doi: 10.1111/ppl.13185 – year: 2022 ident: 38403_CR117 publication-title: IntechOpen doi: 10.5772/intechopen.102873 – volume: 37 start-page: 1059 issue: 5 year: 2014 ident: 38403_CR92 publication-title: Plant Cell Environ. doi: 10.1111/pce.12199 – volume: 11 start-page: 982 year: 2015 ident: 38403_CR123 publication-title: Int. J. Biol. Sci. doi: 10.7150/ijbs.12096 – volume: 22 start-page: 1 issue: 1 year: 2022 ident: 38403_CR42 publication-title: BMC Plant Biol. doi: 10.1186/s12870-022-03683-w – volume: 11 start-page: 1552 year: 2021 ident: 38403_CR106 publication-title: Agronomy doi: 10.3390/agronomy11081552 – volume: 177 start-page: 271 issue: 1 year: 2018 ident: 38403_CR30 publication-title: Plant Physiol. doi: 10.1104/pp.17.01624 – volume: 29 start-page: 205 year: 2007 ident: 38403_CR64 publication-title: Acta Physiol. Plant. doi: 10.1007/s11738-007-0025-6 – volume: 156 start-page: 811 issue: 5–6 year: 2000 ident: 38403_CR65 publication-title: J. Plant Physiol. doi: 10.1016/S0176-1617(00)80254-0 – volume: 22 start-page: 11 issue: 1 year: 2017 ident: 38403_CR20 publication-title: Trends Plant Sci. doi: 10.1016/j.tplants.2016.08.002 – volume: 14 start-page: 2804 issue: 18 year: 2022 ident: 38403_CR34 publication-title: Water doi: 10.3390/w14182804 – volume: 65 start-page: 245 issue: 2–3 year: 2009 ident: 38403_CR47 publication-title: Environ. Exp. Bot. doi: 10.1016/j.envexpbot.2008.09.008 – start-page: 79 volume-title: Stress Responses in Plants: Mechanisms of Toxicity and Tolerance year: 2015 ident: 38403_CR126 doi: 10.1007/978-3-319-13368-3_4 – volume: 24 start-page: 155 year: 2019 ident: 38403_CR119 publication-title: Molecules doi: 10.3390/molecules24010155 – volume: 20 start-page: 1 year: 2020 ident: 38403_CR53 publication-title: J. Soils Sediments doi: 10.1007/s11368-019-02375-7 – volume: 115 start-page: 449 year: 2017 ident: 38403_CR89 publication-title: Plant Physiol. Biochem. doi: 10.1016/j.plaphy.2017.04.017 – volume: 46 start-page: 1009 issue: 11 year: 2019 ident: 38403_CR93 publication-title: Funct. Plant Biol. doi: 10.1071/FP19002 – volume: 2 start-page: 2 year: 2017 ident: 38403_CR97 publication-title: Euro-Mediterr. J. Environ. Integr. doi: 10.1007/s41207-016-0012-7 – volume: 44 start-page: 1 issue: 1 year: 2020 ident: 38403_CR24 publication-title: Turk. J. Bot. doi: 10.3906/bot-1911-15 – volume: 285 year: 2021 ident: 38403_CR88 publication-title: J. Environ. Manag. doi: 10.1016/j.jenvman.2021.112142 – volume: 56 start-page: 26 issue: 1 year: 2010 ident: 38403_CR57 publication-title: Ekologija doi: 10.2478/v10055-010-0004-x – volume: 225 start-page: 497 issue: 2 year: 2012 ident: 38403_CR95 publication-title: Atherosclerosis doi: 10.1016/j.atherosclerosis.2012.09.038 – volume: 54 start-page: 374 year: 2008 ident: 38403_CR99 publication-title: Plant Soil Environ. doi: 10.17221/410-PSE – volume: 11 start-page: 272 year: 2018 ident: 38403_CR101 publication-title: Biotechnol. Biofuels doi: 10.1186/s13068-018-1275-9 – volume: 25 start-page: 1 issue: 2 year: 2018 ident: 38403_CR38 publication-title: Int. J. Plant Soil Sci. doi: 10.9734/IJPSS/2018/44822 – volume: 82 start-page: 281 issue: 2 year: 2013 ident: 38403_CR50 publication-title: Phyton (Buenos Aires) – volume: 8 start-page: 85 year: 2013 ident: 38403_CR103 publication-title: J. Plant Interact. doi: 10.1080/17429145.2012.718376 – year: 2023 ident: 38403_CR2 publication-title: Front. Plant Sci. doi: 10.3389/fpls.2022.1017282 – year: 2019 ident: 38403_CR52 publication-title: Soil Use Manag. doi: 10.1111/sum.12526 – volume: 23 start-page: 731 year: 2017 ident: 38403_CR115 publication-title: Physiol. Mol. Biol. Plants doi: 10.1007/s12298-017-0462-7 – volume: 63 start-page: 2717 issue: 7 year: 2012 ident: 38403_CR80 publication-title: J. Exp. Bot. doi: 10.1093/jxb/err457 – volume: 1706 start-page: 12 issue: 1–2 year: 2005 ident: 38403_CR71 publication-title: Biochim. Biophys. Acta (BBA) Bioenergetics doi: 10.1016/j.bbabio.2004.09.009 – volume: 26 year: 2020 ident: 38403_CR7 publication-title: Biocatal. Agric. Biotechnol. doi: 10.1016/j.bcab.2020.101635 – volume: 10 start-page: 334 issue: 8 year: 2020 ident: 38403_CR45 publication-title: Agriculture doi: 10.3390/agriculture10080334 – volume: 56 start-page: 613 issue: 412 year: 2005 ident: 38403_CR87 publication-title: J. Exp. Bot. doi: 10.1093/jxb/eri053 – volume: 6 year: 2022 ident: 38403_CR25 publication-title: Plant Stress doi: 10.1016/j.stress.2022.100111 – volume: 13 start-page: 61 year: 2020 ident: 38403_CR111 publication-title: Rice doi: 10.1186/s12284-020-00422-3 – volume: 23 start-page: 1995 issue: 4 year: 2022 ident: 38403_CR22 publication-title: Int. J. Mol. Sci. doi: 10.3390/ijms23041995 – volume: 1 issue: 1 year: 2020 ident: 38403_CR37 publication-title: Innovation doi: 10.1016/j.xinn.2020.100017 – volume: 239 start-page: 438 year: 2018 ident: 38403_CR96 publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2018.04.036 – volume: 259 year: 2022 ident: 38403_CR26 publication-title: Agric. Water Manag. doi: 10.1016/j.agwat.2021.107257 – volume: 11 year: 2021 ident: 38403_CR36 publication-title: Front. Plant Sci. doi: 10.3389/fpls.2020.615942 – volume: 39 start-page: 1205 issue: 3 year: 2020 ident: 38403_CR39 publication-title: J. Plant Growth Regul. doi: 10.1007/s00344-019-10057-4 – volume: 19 start-page: 647 issue: 3 year: 2018 ident: 38403_CR91 publication-title: Int. J. Mol. Sci. doi: 10.3390/ijms19030647 – volume: 23 start-page: 223 issue: 2 year: 2000 ident: 38403_CR86 publication-title: Plant Cell Environ. doi: 10.1046/j.1365-3040.2000.00524.x – volume: 9 start-page: 506 issue: 3 year: 2021 ident: 38403_CR1 publication-title: Crop J. doi: 10.1016/j.cj.2021.03.005 – volume: 21 start-page: 8695 year: 2020 ident: 38403_CR114 publication-title: Int. J. Mol. Sci. doi: 10.3390/ijms21228695 – volume: 61 start-page: 928 year: 1984 ident: 38403_CR58 publication-title: J. Am. Oil Chem. Soc. doi: 10.1007/BF02542169 – volume: 12 year: 2021 ident: 38403_CR102 publication-title: Front. Plant Sci. doi: 10.3389/fpls.2021.660409 – volume: 39 start-page: 205 year: 1973 ident: 38403_CR56 publication-title: Plant Soil doi: 10.1007/BF00018060 – volume: 175 start-page: 555 year: 2017 ident: 38403_CR121 publication-title: Plant Physiol. doi: 10.1104/pp.17.00791 – volume: 24 start-page: R453 year: 2014 ident: 38403_CR110 publication-title: Curr. Biol. CB doi: 10.1016/j.cub.2014.03.034 – volume: 11 start-page: 1491 issue: 8 year: 2021 ident: 38403_CR41 publication-title: Agronomy doi: 10.3390/agronomy11081491 – volume: 10 start-page: 856 year: 2019 ident: 38403_CR82 publication-title: Front. Plant Sci. doi: 10.3389/fpls.2019.00856 – volume: 7 start-page: 276 year: 2016 ident: 38403_CR125 publication-title: Front. Plant Sci. doi: 10.3389/fpls.2016.00276 – volume: 9 year: 2021 ident: 38403_CR40 publication-title: PeerJ doi: 10.7717/peerj.11463 – volume: 11 start-page: 2836 year: 2022 ident: 38403_CR98 publication-title: Plants doi: 10.3390/plants11212836 – volume: 22 start-page: 8995 year: 2021 ident: 38403_CR120 publication-title: Int. J. Mol. Sci. doi: 10.3390/ijms22168995 – volume: 429 year: 2023 ident: 38403_CR51 publication-title: Geoderma doi: 10.1016/j.geoderma.2022.116281 – volume: 8 start-page: 155 issue: 8 year: 2018 ident: 38403_CR76 publication-title: Agronomy doi: 10.3390/agronomy8080155 – volume: 50 start-page: 567 issue: 6 year: 2016 ident: 38403_CR83 publication-title: Indian J. Agric. Res. doi: 10.18805/ijare.v0iOF.4573 – volume: 162 start-page: 103 year: 2019 ident: 38403_CR10 publication-title: Environ. Exp. Bot. doi: 10.1016/j.envexpbot.2019.02.012 – volume: 6 year: 2022 ident: 38403_CR31 publication-title: Plant Stress doi: 10.1016/j.stress.2022.100121 – volume: 6 start-page: 1092 year: 2015 ident: 38403_CR21 publication-title: Front. Plant Sci. doi: 10.3389/fpls.2015.01092 – volume: 22 start-page: 9326 issue: 17 year: 2021 ident: 38403_CR16 publication-title: Int. J. Mol. Sci. doi: 10.3390/ijms22179326 – volume: 80 start-page: 278 year: 2014 ident: 38403_CR109 publication-title: Plant Physiol. Biochem. doi: 10.1016/j.plaphy.2014.04.007 – volume: 11 start-page: 216 issue: 2 year: 2022 ident: 38403_CR33 publication-title: Plants doi: 10.3390/plants11020216 – volume: 202 start-page: 497 issue: 6 year: 2016 ident: 38403_CR67 publication-title: J. Agron. Crop Sci. doi: 10.1111/jac.12181 – volume: 23 start-page: 5161 year: 2022 ident: 38403_CR112 publication-title: Int. J. Mol. Sci. doi: 10.3390/ijms23095161 – volume: 46 year: 2022 ident: 38403_CR118 publication-title: J. Food Biochem. doi: 10.1111/jfbc.14054 – volume: 161 start-page: 559 issue: 2 year: 1987 ident: 38403_CR62 publication-title: Anal. Biochem. doi: 10.1016/0003-2697(87)90489-1 – volume: 36 start-page: 163 issue: 2 year: 2022 ident: 38403_CR5 publication-title: Arid Land Res. Manag. doi: 10.1080/15324982.2021.1959464 – year: 2021 ident: 38403_CR122 publication-title: Front. Plant Sci. doi: 10.3389/fpls.2021.646221 – volume: 11 start-page: 586 issue: 3 year: 2019 ident: 38403_CR74 publication-title: Water doi: 10.3390/agronomy9080447 – volume: 135 start-page: 412 issue: 4 year: 2009 ident: 38403_CR81 publication-title: Physiol. Plant. doi: 10.1111/j.1399-3054.2008.01200.x – start-page: 24 volume-title: Plant Stress Physiology year: 2017 ident: 38403_CR4 doi: 10.1079/9781780647296.0024 – volume: 48 start-page: 4608 year: 2017 ident: 38403_CR124 publication-title: Aquac. Res. doi: 10.1111/are.13284 – volume: 6 start-page: 357 issue: 4 year: 2017 ident: 38403_CR90 publication-title: Eurasian J. Soil Sci. doi: 10.18393/ejss.319198 – volume: 43 start-page: 1485 issue: 10 year: 2020 ident: 38403_CR8 publication-title: J. Plant Nutr. doi: 10.1080/01904167.2020.1730902 – volume: 779 year: 2021 ident: 38403_CR29 publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2021.146267 – volume: 2 start-page: 53 year: 2014 ident: 38403_CR113 publication-title: Front. Environ. Sci. doi: 10.3389/fenvs.2014.00053 – volume: 11 start-page: 265 year: 2021 ident: 38403_CR100 publication-title: Agronomy doi: 10.3390/agronomy11020265 – volume: 38 start-page: 275 issue: 4 year: 1992 ident: 38403_CR84 publication-title: Agric. Ecosyst. Environ. doi: 10.1016/0167-8809(92)90151-Z – volume: 17 year: 2021 ident: 38403_CR78 publication-title: Rhizosphere doi: 10.1016/j.rhisph.2021.100319 – volume: 99 start-page: 15898 issue: 25 year: 2002 ident: 38403_CR104 publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.252637799 – volume: 57 start-page: 49 year: 2011 ident: 38403_CR69 publication-title: Adv. Bot. Res. doi: 10.1016/B978-0-12-387692-8.00003-5 – volume: 164 start-page: 1636 issue: 4 year: 2014 ident: 38403_CR17 publication-title: Plant Physiol. doi: 10.1104/pp.113.233478 – volume: 81 start-page: 4903 issue: 15 year: 1984 ident: 38403_CR63 publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.81.15.4903 – volume: 72 start-page: 248 issue: 1–2 year: 1976 ident: 38403_CR60 publication-title: Anal. Biochem. doi: 10.1016/0003-2697(76)90527-3 – volume: 53 start-page: 1820 issue: 12 year: 2018 ident: 38403_CR79 publication-title: HortScience doi: 10.21273/HORTSCI13411-18 – volume: 162 start-page: 504 year: 2019 ident: 38403_CR72 publication-title: Environ. Exp. Bot. doi: 10.1016/j.envexpbot.2019.03.024 – volume: 11 start-page: 191 year: 2022 ident: 38403_CR108 publication-title: Biology doi: 10.3390/biology11020191 – volume: 66 start-page: 2889 year: 2015 ident: 38403_CR105 publication-title: J. Exp. Bot. doi: 10.1093/jxb/erv056 – volume: 33 start-page: 860 issue: 4 year: 2014 ident: 38403_CR49 publication-title: J. Plant Growth Regul. doi: 10.1007/s00344-014-9429-x – volume: 23 start-page: 8397 issue: 15 year: 2022 ident: 38403_CR11 publication-title: Int. J. Mol. Sci. doi: 10.3390/ijms23158397 – volume: 75 start-page: 391 issue: 2 year: 2015 ident: 38403_CR77 publication-title: Plant Growth Regul. doi: 10.1007/s10725-014-0013-y – volume: 10 start-page: 80 year: 2019 ident: 38403_CR85 publication-title: Front. Plant Sci. doi: 10.3389/fpls.2019.00080 |
RestrictionsOnAccess | open access |
SSID | ssj0000529419 |
Score | 2.460034 |
Snippet | By 2050, the predicted global population is set to reach 9.6 billion highlighting the urgent need to increase crop productivity to meet the growing demand for... Abstract By 2050, the predicted global population is set to reach 9.6 billion highlighting the urgent need to increase crop productivity to meet the growing... |
SourceID | doaj pubmedcentral liege proquest pubmed crossref springer |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 11212 |
SubjectTerms | 631/449 631/449/1736 631/449/2661 Abiotic stress Agriculture & agronomie Agriculture & agronomy Antioxidants Ascorbic acid Biologie végétale (sciences végétales, sylviculture, mycologie...) Biomass Chlorophyll Crop production Crop yield Cultivars Enzymatic activity Fertilization Fertilizers Humanities and Social Sciences L-Ascorbate peroxidase Life sciences multidisciplinary Nutrient content Orthophosphate Oxidative stress Phosphorus Phytobiology (plant sciences, forestry, mycology...) Plant growth Polyphenols Polyphosphate Polyps Reactive oxygen species Saline soils Salinity Salinity effects Salts Science Science (multidisciplinary) Sciences du vivant Wheat |
SummonAdditionalLinks | – databaseName: DOAJ Open Access Full Text dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3dq9MwFA9yQfBF_LZ6lQi-abnNR7PkUcXLRVB88MJ9C82XG5RurJu6_fWek3Zz8_NFKO1o0yw5OWl-h3POL4Q8VzwaGbUvua5CKV0MpXM1GCtKJ-W1qXxAQ_H9B3VxKd9d1VcHW31hTNhADzwI7kywlIJhdRQGoHKUZhI81Ja095HJmPPIYc07MKYGVm9uJDNjlkwl9FkPKxVmk3FRCjBq4Hy0EmXCfgCoLbqqf4c2fw2a_Mlzmhek81vk5ogk6auhB7fJtdjdIdeHvSU3d8n247zdLKbzfjEFOEkTxk-3s21c0iExsqcA_WjstptM2kqbLtBu3pWHd2DQvs0CXKmHNdUDYKfzRL_i95suWoygoZ_RjKeYibakfYNplqvNPXJ5_vbTm4ty3Gih9GAtrMqYTNCToD3H3auUCTVTDczWFGSEg2O8ptIhMu3Qad-kKjIFEg4wnYMMQdwnJ9DC-JBQw12Y1M7z6KNkvHHJAEiQ8DcpSZFCQdhO6NaPLOS4GUZrszdcaDsMlIWBsnmgrCjIi_07i4GD46-lX-NY7ksif3a-AVplR62y_9KqgrzMmgAvuZn9wnMt-fe6hVq8ddECcNVWIH88L8jpTmHs-A3oLTLZKQ0naNKz_WOYveiSabo4X-cyigPGruqCPBj0a99wAeAO0GtVEH2keUc9O37SzaaZIRxEIwAXS-jGTkl_tOvPonv0P0T3mNzgOMuQfJSdkpPVch2fAHBbuad5jn4H8WNBcA priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3da9swEBdbymAvY99z1w0N9raZ2pKsyE9jHS1lsFLGCn0Ttj6agLG9OFmX_PW7kx132UfB2MGWHUl3J_1Op7sj5K1kLhdOmZipxMaidDYuywyUFam8NCpPjEVF8cuZPL0Qny-zy2HBrRu2VW7HxDBQ28bgGvkhxgWTCk78Q_s9xqxRaF0dUmjcJXswBKtsQvaOjs_Ov46rLGjHEmk-eMskXB12MGOhVxnjMQflBs47M1II3A9AtUKT9b9Q59-bJ_-woIaJ6eQheTAgSvqxZ4FH5I6rH5N7fY7J9ROyOW-qdTtrunYGsJJ63EddzTduQXsHyY4CBKSu3qxD8FZa1JbWTR3_fgeI93Nu4UoNzK0GgDttPL3GcZy2Fe6koVeozlP0SFvQrkB3y-X6Kbk4Of726TQeEi7EBrSGZex8btXUKsMwi5XMbZbKAqTWW-HgYLhvUyrrUlWi8b7wiUsl9LAFsbbCWv6MTKCG7gWhOSvtNCsNc8aJlBWlzwEsCPgb7wX3NiLpttO1GaKRY1KMSgerOFe6J5QGQulAKM0j8m58p-1jcdxa-ghpOZbEONrhRrO40oNYap56b_M0czwHRcyJfGoN8KpXxrhUuGlE3gdOgJfKuf7BwlfC71UFXzG6dBoArNIc48iziBxsGUYPY0Gnbzg3Im_GxyDFaJopatesQhnJAGsnWUSe9_w1VpwDyAMUm0RE7XDeTst2n9TzWYgUDl3DAR8LaMaWSW_q9f-u27-9GS_JfYbyg-FF0wMyWS5W7hVAs2X5epC_X-4jOWs priority: 102 providerName: ProQuest – databaseName: Springer Nature OA Free Journals dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3di9QwEA_nieCL-H3VUyL4psU2SbPJoy4eh6D44MG9hTYftwulXba76u5f70z6oaunIJS2tEk3TWaa3-zM_ELIS8m8Fl7ZlKnMpaLyLq2qAowVqYK0SmfWoaH48ZM8vxAfLovLI8LGXJgYtB8pLeNneowOe9PBRIPJYIynHGwS2N8gN5G6Hfny53I-_a-CniuR6yE_JuPqmqoHc1Ck6gdoWqOT-jqc-We45G8-0zgVnd0ldwYMSd_2rb5Hjnxzn9zqV5XcPSD7z229Wy3abrUAIEkDRk7Xy71f0z4lsqMA-qhv9rtI10rLxtGmbdJfr8BwfV86OFILs6kFqE7bQL_hl5uuaoydoVdowFPMQVvTrsQEy83uIbk4e_9lfp4OSyykFuyETeqDdmrmlGW4bpXUrshlCXoanPCwMYzUlMr5XFXori9D5nMJPexAkZ1wjj8ix9BCf0KoZpWbFZVl3nqRs7IKGuCBgJ8JQfDgEpKPnW7swD-Oy2DUJvrBuTL9QBkYKBMHyvCEvJrqrHr2jX-WfodjOZVE5ux4oV1fmUGSDM9DcDovPNdgenmhZ86CdAZlrc-FnyXkdZQEqFQtzVcWnxLPtzU8xZrKG4CsynBkjmcJOR0Fxgza3xnksJMKdtCkF9Nt0Ft0xpSNb7exjGSArrMiIY97-ZoazgHWAW7NEqIOJO_gzQ7vNMtF5AaHruGAiAW8xiikP9v196578n_Fn5LbDPUJCUbzU3K8WW_9MwBnm-p51MYfvHI1wQ priority: 102 providerName: Springer Nature |
Title | Polyphosphate fertilizer impacts the enzymatic and non-enzymatic antioxidant capacity of wheat plants grown under salinity |
URI | https://link.springer.com/article/10.1038/s41598-023-38403-3 https://www.ncbi.nlm.nih.gov/pubmed/37433920 https://www.proquest.com/docview/2835688353 https://www.proquest.com/docview/2836292305 http://orbi.ulg.ac.be/handle/2268/305142 https://pubmed.ncbi.nlm.nih.gov/PMC10336104 https://doaj.org/article/31ffd915e39642e497dcbb5f8cce14e7 |
Volume | 13 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwELb2ISQuiDeBpTISNwg0tuPYB4S61a5WlXa1Air1ZiV-bCtFSekDtv31jJ20UCickKqkcuzUGc9kvul4ZhB6zYmVzAodE9E1MSusiYsiBWOFC8e1kF1tvKF4ecUvhmwwSkcHaFPuqCXgfK9p5-tJDWflu9uvq48g8B-akHHxfg5KyAeKERpTsFfgeIiOQTNxz-WXLdxvcn0TyRLZxs7sH7qjn0Iaf4CtpXdg78Ogf26l_M2fGtTU-X10r8WXuNcwxAN0YKuH6E5TcXL1CK2v63I1Hdfz6RhAJnZ-V3U5WdsZbsIl5xgAIbbVehVSueK8Mriqq_jXFljK24mBM9agaTXAeFw7_N2_1fG09Ptq8I037rGPT5vhee6DLxerx2h4fvalfxG35RdiDTbEIrZOGpEZoYmvacWlSROegww7wyx8iN_FyYWxiSi8Kz93XZtwoLABITfMGPoEHcEM7TOEJSlMlhaaWG1ZQvLCSYAODH7GOUadiVCyIbrSbW5yXyKjVMFHToVqFkrBQqmwUIpG6M12zLTJzPHP3qd-Lbc9fVbt0FDPblQrpIomzhmZpJZKMMssk5nRwLlOaG0TZrMIvQ2cAIOKifpGwl3C92UJd9GqsArgrFDUZ5UnETrZMIzaMLby-e24gANM6dX2Msi0d9Tkla2XoQ8ngLy7aYSeNvy1nTgFyAeYthshscN5O0-2e6WajEPecCANBbTM4DE2TPpzXn8n3fP_QboX6C7xUuZTkiYn6GgxW9qXAOcWRQcdZqOsg457vcHnAZxPz66uP0Frn_c74S-STpDiH4tHTok |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELfGJgQviG8CA4wETxAtsZPUfkCIwaaObdWENmlvXuKPtVKUlKZltH8UfyN3-egoH3ubVKVV4ri2787-nc93R8jrhFkZWaF9JgLjR5k1fpbFoKwkwiVayEAbVBQPB0n_JPpyGp-ukZ-dLwweq-zmxHqiNqXGPfItjAuWCLjwD-NvPmaNQutql0KjYYt9O78Ala16v_cZ6PuGsd2d4099v80q4GuAxlPfOmlEzwjNMFVTIk0cJimwpjORhQ_Dw4mJMDYUGVqoUxfYMImZNMC7JjKGQ703yAbADAlStLG9Mzj6utzVQbtZFMrWOyfgYquCFRK92Bj3OShTcF1ZAetEAQCMczSR_wvl_n1Y8w-Lbb0Q7t4ld1oESz82LHePrNniPrnZ5LScPyCLozKfj4dlNR4CjKUOz23no4Wd0MYhs6IAOaktFvM6WCxNC0OLsvB_vwPM8mNk4JtqWMs1KAq0dPQC1w06zvHkDj3H7QOKHnATWqXo3jmdPyQn10KKR2QdWmifECpZZnpxppnVNgpZmjkJ4CSCv3Eu4s54JOwGXek2-jkm4chVbYXnQjWEUkAoVRNKcY-8Xb4zbmJ_XFl6G2m5LIlxu-sb5eRctdOA4qFzRoax5RIUPxvJntEgG05obcPI9jzyruYEeCkbqe-srqX-PcuhFq0yqwAwC8Uxbj3zyGbHMKqdeyp1KSkeebV8DLMGmoLSwpazukzCANsHsUceN_y1bDgHUAmoOfCIWOG8lZ6tPilGwzoyOQwNBzweQTc6Jr1s1_-H7unV3XhJbvWPDw_Uwd5g_xm5zVCWMLRpuEnWp5OZfQ6wcJq9aGWRkrPrFv9ftQx1kg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELdGJxAviG8CA4wETxA1sZPUeUCIsVUbg6pCTNqbl_hjrRQlpR-M9k_jr-POSTrKx94mVWmVOK7tO_t-5_PdEfIyYSaNjFA-E4H2o9xoP89jUFYSYRMl0kBpVBQ_D5KD4-jjSXyyRX62vjB4rLJdE91CrSuFe-RdjAuWCLjwrm2ORQz3-u8m33zMIIWW1jadRs0iR2Z5Durb7O3hHtD6FWP9_a8fDvwmw4CvACbPfWNTLXpaKIZpm5JUx2GSAZtaHRn4MDyomAhtQpGjtTqzgQmTmKUa-FhHWnOo9xrZ7oFUFB2yvbs_GH5Z7_CgDS0K08ZTJ-CiOwNpiR5tjPscFCu4bkhDlzQAQHKB5vJ_Id6_D27-Yb11QrF_m9xq0Cx9X7PfHbJlyrvkep3fcnmPrIZVsZyMqtlkBJCWWjzDXYxXZkpr58wZBfhJTblausCxNCs1LavS__0OMM6PsYZvqkCuK1AaaGXpOcoQOinwFA89w60Eit5wUzrL0NVzvrxPjq-EFA9IB1poHhGaslz34lwxo0wUsiy3KQCVCP7G2ohb7ZGwHXSpmkjomJCjkM4iz4WsCSWBUNIRSnKPvF6_M6njgFxaehdpuS6JMbzdjWp6JpslQfLQWp2GseEpKIEmSntawTyxQikTRqbnkTeOE-ClfCy_M1eL-70ooBYlcyMBPAvJMYY988hOyzCyWYdm8mLWeOTF-jGsIGgWykpTLVyZhAHOD2KPPKz5a91wDgATEHTgEbHBeRs923xSjkcuSjkMDQdsHkE3Wia9aNf_h-7x5d14Tm7AtJefDgdHT8hNhlMJo5yGO6Qzny7MU0CI8_xZMxUpOb3q2f8LDbJ5vg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Polyphosphate+fertilizer+impacts+the+enzymatic+and+non-enzymatic+antioxidant+capacity+of+wheat+plants+grown+under+salinity&rft.jtitle=Scientific+reports&rft.au=Aicha+Loudari&rft.au=Salma+Latique&rft.au=Asmae+Mayane&rft.au=Gilles+Colinet&rft.date=2023-07-11&rft.pub=Nature+Portfolio&rft.eissn=2045-2322&rft.volume=13&rft.issue=1&rft.spage=1&rft.epage=17&rft_id=info:doi/10.1038%2Fs41598-023-38403-3&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_31ffd915e39642e497dcbb5f8cce14e7 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon |