Polyphosphate fertilizer impacts the enzymatic and non-enzymatic antioxidant capacity of wheat plants grown under salinity

By 2050, the predicted global population is set to reach 9.6 billion highlighting the urgent need to increase crop productivity to meet the growing demand for food. This is becoming increasingly challenging when soils are saline and/or deficient in phosphorus (P). The synergic effect of P deficiency...

Full description

Saved in:
Bibliographic Details
Published inScientific reports Vol. 13; no. 1; pp. 11212 - 17
Main Authors Loudari, Aicha, Latique, Salma, Mayane, Asmae, Colinet, Gilles, Oukarroum, Abdallah
Format Journal Article Web Resource
LanguageEnglish
Published London Nature Publishing Group UK 11.07.2023
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text
ISSN2045-2322
2045-2322
DOI10.1038/s41598-023-38403-3

Cover

Loading…
Abstract By 2050, the predicted global population is set to reach 9.6 billion highlighting the urgent need to increase crop productivity to meet the growing demand for food. This is becoming increasingly challenging when soils are saline and/or deficient in phosphorus (P). The synergic effect of P deficiency and salinity causes a series of secondary stresses including oxidative stress. Reactive Oxygen Species (ROS) production and oxidative damage in plants caused either by P limitation or by salt stress may restrict the overall plant performances leading to a decline in crop yield. However, the P application in adequate forms and doses could positively impact the growth of plants and enhances their tolerance to salinity. In our investigation, we evaluated the effect of different P fertilizers forms (Ortho-A, Ortho-B and Poly-B) and increasing P rates (0, 30 and 45 ppm) on the plant's antioxidant system and P uptake of durum wheat (Karim cultivar) grown under salinity (EC = 3.003 dS/m). Our results demonstrated that salinity caused a series of variations in the antioxidant capacity of wheat plants, at both, enzymatic and non-enzymatic levels. Remarkably, a strong correlation was observed between P uptake, biomass, various antioxidant system parameters and P rates and sources. Soluble P fertilizers considerably enhanced the total plant performances under salt stress compared with control plants grown under salinity and P deficiency (C+). Indeed, salt-stressed and fertilized plants exhibited a robust antioxidant system revealed by the increase in enzymatic activities of Catalase (CAT) and Ascorbate peroxidase (APX) and a significant accumulation of Proline, total polyphenols content (TPC) and soluble sugars (SS) as well as increased biomass, Chlorophyll content (CCI), leaf protein content and P uptake compared to unfertilized plants. Compared to OrthoP fertilizers at 45 ppm P, Poly-B fertilizer showed significant positive responses at 30 ppm P where the increase reached + 18.2% in protein content, + 156.8% in shoot biomass, + 93% in CCI, + 84% in shoot P content, + 51% in CAT activity, + 79% in APX activity, + 93% in TPC and + 40% in SS compared to C+. This implies that PolyP fertilizers might be an alternative for the suitable management of phosphorus fertilization under salinity.
AbstractList By 2050, the predicted global population is set to reach 9.6 billion highlighting the urgent need to increase crop productivity to meet the growing demand for food. This is becoming increasingly challenging when soils are saline and/or deficient in phosphorus (P). The synergic effect of P deficiency and salinity causes a series of secondary stresses including oxidative stress. Reactive Oxygen Species (ROS) production and oxidative damage in plants caused either by P limitation or by salt stress may restrict the overall plant performances leading to a decline in crop yield. However, the P application in adequate forms and doses could positively impact the growth of plants and enhances their tolerance to salinity. In our investigation, we evaluated the effect of different P fertilizers forms (Ortho-A, Ortho-B and Poly-B) and increasing P rates (0, 30 and 45 ppm) on the plant's antioxidant system and P uptake of durum wheat (Karim cultivar) grown under salinity (EC = 3.003 dS/m). Our results demonstrated that salinity caused a series of variations in the antioxidant capacity of wheat plants, at both, enzymatic and non-enzymatic levels. Remarkably, a strong correlation was observed between P uptake, biomass, various antioxidant system parameters and P rates and sources. Soluble P fertilizers considerably enhanced the total plant performances under salt stress compared with control plants grown under salinity and P deficiency (C+). Indeed, salt-stressed and fertilized plants exhibited a robust antioxidant system revealed by the increase in enzymatic activities of Catalase (CAT) and Ascorbate peroxidase (APX) and a significant accumulation of Proline, total polyphenols content (TPC) and soluble sugars (SS) as well as increased biomass, Chlorophyll content (CCI), leaf protein content and P uptake compared to unfertilized plants. Compared to OrthoP fertilizers at 45 ppm P, Poly-B fertilizer showed significant positive responses at 30 ppm P where the increase reached + 18.2% in protein content, + 156.8% in shoot biomass, + 93% in CCI, + 84% in shoot P content, + 51% in CAT activity, + 79% in APX activity, + 93% in TPC and + 40% in SS compared to C+. This implies that PolyP fertilizers might be an alternative for the suitable management of phosphorus fertilization under salinity. The predicted global population is set to reach 9.6 billion by 2050, which highlights an urgent need to increase crop productivity to meet the growing demand for food and nutrition 1. Nevertheless, this is becoming increasingly challenging due to changing climatic conditions 2. Arid and semi-arid regions are characterized by high evapotranspiration levels that surpass precipitation, limiting water passage through the profile and, therefore, the soil's capacity to leach salts 3. This often causes soil salinity and results in low fertility of salt-affected soil 4. Soil salinity is the accumulation of soluble salts on the soil surface or in subsurface layers 5. Consequently, the increased levels of toxic ions such as sodium and chlorine (Na + and Cl −) negatively impact plant growth and yield by limiting water uptake and causing ion toxicity, which can lead to nutrient imbalances 6. This has a significant effect on the root's capacity to absorb water and results in stomatal closure altering CO 2 assimilation 7
By 2050, the predicted global population is set to reach 9.6 billion highlighting the urgent need to increase crop productivity to meet the growing demand for food. This is becoming increasingly challenging when soils are saline and/or deficient in phosphorus (P). The synergic effect of P deficiency and salinity causes a series of secondary stresses including oxidative stress. Reactive Oxygen Species (ROS) production and oxidative damage in plants caused either by P limitation or by salt stress may restrict the overall plant performances leading to a decline in crop yield. However, the P application in adequate forms and doses could positively impact the growth of plants and enhances their tolerance to salinity. In our investigation, we evaluated the effect of different P fertilizers forms (Ortho-A, Ortho-B and Poly-B) and increasing P rates (0, 30 and 45 ppm) on the plant's antioxidant system and P uptake of durum wheat (Karim cultivar) grown under salinity (EC = 3.003 dS/m). Our results demonstrated that salinity caused a series of variations in the antioxidant capacity of wheat plants, at both, enzymatic and non-enzymatic levels. Remarkably, a strong correlation was observed between P uptake, biomass, various antioxidant system parameters and P rates and sources. Soluble P fertilizers considerably enhanced the total plant performances under salt stress compared with control plants grown under salinity and P deficiency (C+). Indeed, salt-stressed and fertilized plants exhibited a robust antioxidant system revealed by the increase in enzymatic activities of Catalase (CAT) and Ascorbate peroxidase (APX) and a significant accumulation of Proline, total polyphenols content (TPC) and soluble sugars (SS) as well as increased biomass, Chlorophyll content (CCI), leaf protein content and P uptake compared to unfertilized plants. Compared to OrthoP fertilizers at 45 ppm P, Poly-B fertilizer showed significant positive responses at 30 ppm P where the increase reached + 18.2% in protein content, + 156.8% in shoot biomass, + 93% in CCI, + 84% in shoot P content, + 51% in CAT activity, + 79% in APX activity, + 93% in TPC and + 40% in SS compared to C+. This implies that PolyP fertilizers might be an alternative for the suitable management of phosphorus fertilization under salinity.
By 2050, the predicted global population is set to reach 9.6 billion highlighting the urgent need to increase crop productivity to meet the growing demand for food. This is becoming increasingly challenging when soils are saline and/or deficient in phosphorus (P). The synergic effect of P deficiency and salinity causes a series of secondary stresses including oxidative stress. Reactive Oxygen Species (ROS) production and oxidative damage in plants caused either by P limitation or by salt stress may restrict the overall plant performances leading to a decline in crop yield. However, the P application in adequate forms and doses could positively impact the growth of plants and enhances their tolerance to salinity. In our investigation, we evaluated the effect of different P fertilizers forms (Ortho-A, Ortho-B and Poly-B) and increasing P rates (0, 30 and 45 ppm) on the plant's antioxidant system and P uptake of durum wheat (Karim cultivar) grown under salinity (EC = 3.003 dS/m). Our results demonstrated that salinity caused a series of variations in the antioxidant capacity of wheat plants, at both, enzymatic and non-enzymatic levels. Remarkably, a strong correlation was observed between P uptake, biomass, various antioxidant system parameters and P rates and sources. Soluble P fertilizers considerably enhanced the total plant performances under salt stress compared with control plants grown under salinity and P deficiency (C+). Indeed, salt-stressed and fertilized plants exhibited a robust antioxidant system revealed by the increase in enzymatic activities of Catalase (CAT) and Ascorbate peroxidase (APX) and a significant accumulation of Proline, total polyphenols content (TPC) and soluble sugars (SS) as well as increased biomass, Chlorophyll content (CCI), leaf protein content and P uptake compared to unfertilized plants. Compared to OrthoP fertilizers at 45 ppm P, Poly-B fertilizer showed significant positive responses at 30 ppm P where the increase reached + 18.2% in protein content, + 156.8% in shoot biomass, + 93% in CCI, + 84% in shoot P content, + 51% in CAT activity, + 79% in APX activity, + 93% in TPC and + 40% in SS compared to C+. This implies that PolyP fertilizers might be an alternative for the suitable management of phosphorus fertilization under salinity.By 2050, the predicted global population is set to reach 9.6 billion highlighting the urgent need to increase crop productivity to meet the growing demand for food. This is becoming increasingly challenging when soils are saline and/or deficient in phosphorus (P). The synergic effect of P deficiency and salinity causes a series of secondary stresses including oxidative stress. Reactive Oxygen Species (ROS) production and oxidative damage in plants caused either by P limitation or by salt stress may restrict the overall plant performances leading to a decline in crop yield. However, the P application in adequate forms and doses could positively impact the growth of plants and enhances their tolerance to salinity. In our investigation, we evaluated the effect of different P fertilizers forms (Ortho-A, Ortho-B and Poly-B) and increasing P rates (0, 30 and 45 ppm) on the plant's antioxidant system and P uptake of durum wheat (Karim cultivar) grown under salinity (EC = 3.003 dS/m). Our results demonstrated that salinity caused a series of variations in the antioxidant capacity of wheat plants, at both, enzymatic and non-enzymatic levels. Remarkably, a strong correlation was observed between P uptake, biomass, various antioxidant system parameters and P rates and sources. Soluble P fertilizers considerably enhanced the total plant performances under salt stress compared with control plants grown under salinity and P deficiency (C+). Indeed, salt-stressed and fertilized plants exhibited a robust antioxidant system revealed by the increase in enzymatic activities of Catalase (CAT) and Ascorbate peroxidase (APX) and a significant accumulation of Proline, total polyphenols content (TPC) and soluble sugars (SS) as well as increased biomass, Chlorophyll content (CCI), leaf protein content and P uptake compared to unfertilized plants. Compared to OrthoP fertilizers at 45 ppm P, Poly-B fertilizer showed significant positive responses at 30 ppm P where the increase reached + 18.2% in protein content, + 156.8% in shoot biomass, + 93% in CCI, + 84% in shoot P content, + 51% in CAT activity, + 79% in APX activity, + 93% in TPC and + 40% in SS compared to C+. This implies that PolyP fertilizers might be an alternative for the suitable management of phosphorus fertilization under salinity.
Abstract By 2050, the predicted global population is set to reach 9.6 billion highlighting the urgent need to increase crop productivity to meet the growing demand for food. This is becoming increasingly challenging when soils are saline and/or deficient in phosphorus (P). The synergic effect of P deficiency and salinity causes a series of secondary stresses including oxidative stress. Reactive Oxygen Species (ROS) production and oxidative damage in plants caused either by P limitation or by salt stress may restrict the overall plant performances leading to a decline in crop yield. However, the P application in adequate forms and doses could positively impact the growth of plants and enhances their tolerance to salinity. In our investigation, we evaluated the effect of different P fertilizers forms (Ortho-A, Ortho-B and Poly-B) and increasing P rates (0, 30 and 45 ppm) on the plant's antioxidant system and P uptake of durum wheat (Karim cultivar) grown under salinity (EC = 3.003 dS/m). Our results demonstrated that salinity caused a series of variations in the antioxidant capacity of wheat plants, at both, enzymatic and non-enzymatic levels. Remarkably, a strong correlation was observed between P uptake, biomass, various antioxidant system parameters and P rates and sources. Soluble P fertilizers considerably enhanced the total plant performances under salt stress compared with control plants grown under salinity and P deficiency (C+). Indeed, salt-stressed and fertilized plants exhibited a robust antioxidant system revealed by the increase in enzymatic activities of Catalase (CAT) and Ascorbate peroxidase (APX) and a significant accumulation of Proline, total polyphenols content (TPC) and soluble sugars (SS) as well as increased biomass, Chlorophyll content (CCI), leaf protein content and P uptake compared to unfertilized plants. Compared to OrthoP fertilizers at 45 ppm P, Poly-B fertilizer showed significant positive responses at 30 ppm P where the increase reached + 18.2% in protein content, + 156.8% in shoot biomass, + 93% in CCI, + 84% in shoot P content, + 51% in CAT activity, + 79% in APX activity, + 93% in TPC and + 40% in SS compared to C+. This implies that PolyP fertilizers might be an alternative for the suitable management of phosphorus fertilization under salinity.
By 2050, the predicted global population is set to reach 9.6 billion highlighting the urgent need to increase crop productivity to meet the growing demand for food. This is becoming increasingly challenging when soils are saline and/or deficient in phosphorus (P). The synergic effect of P deficiency and salinity causes a series of secondary stresses including oxidative stress. Reactive Oxygen Species (ROS) production and oxidative damage in plants caused either by P limitation or by salt stress may restrict the overall plant performances leading to a decline in crop yield. However, the P application in adequate forms and doses could positively impact the growth of plants and enhances their tolerance to salinity. In our investigation, we evaluated the effect of different P fertilizers forms (Ortho-A, Ortho-B and Poly-B) and increasing P rates (0, 30 and 45 ppm) on the plant's antioxidant system and P uptake of durum wheat (Karim cultivar) grown under salinity (EC = 3.003 dS/m). Our results demonstrated that salinity caused a series of variations in the antioxidant capacity of wheat plants, at both, enzymatic and non-enzymatic levels. Remarkably, a strong correlation was observed between P uptake, biomass, various antioxidant system parameters and P rates and sources. Soluble P fertilizers considerably enhanced the total plant performances under salt stress compared with control plants grown under salinity and P deficiency (C+). Indeed, salt-stressed and fertilized plants exhibited a robust antioxidant system revealed by the increase in enzymatic activities of Catalase (CAT) and Ascorbate peroxidase (APX) and a significant accumulation of Proline, total polyphenols content (TPC) and soluble sugars (SS) as well as increased biomass, Chlorophyll content (CCI), leaf protein content and P uptake compared to unfertilized plants. Compared to OrthoP fertilizers at 45 ppm P, Poly-B fertilizer showed significant positive responses at 30 ppm P where the increase reached + 18.2% in protein content, + 156.8% in shoot biomass, + 93% in CCI, + 84% in shoot P content, + 51% in CAT activity, + 79% in APX activity, + 93% in TPC and + 40% in SS compared to C+. This implies that PolyP fertilizers might be an alternative for the suitable management of phosphorus fertilization under salinity.
ArticleNumber 11212
Author Colinet, Gilles
Latique, Salma
Mayane, Asmae
Loudari, Aicha
Oukarroum, Abdallah
Author_xml – sequence: 1
  givenname: Aicha
  orcidid: 0000-0001-7478-4707
  surname: Loudari
  fullname: Loudari, Aicha
  email: aicha.loudari@um6p.ma, aicha.loudari@gmail.com
  organization: Plant Stress Physiology Laboratory, Mohammed VI Polytechnic University (UM6P)-AgroBioSciences, Terra Research Center, Liege University-Gembloux Agro Bio Tech Faculty
– sequence: 2
  givenname: Salma
  orcidid: 0000-0001-9620-5892
  surname: Latique
  fullname: Latique, Salma
  organization: Plant Stress Physiology Laboratory, Mohammed VI Polytechnic University (UM6P)-AgroBioSciences
– sequence: 3
  givenname: Asmae
  surname: Mayane
  fullname: Mayane, Asmae
  organization: Plant Stress Physiology Laboratory, Mohammed VI Polytechnic University (UM6P)-AgroBioSciences
– sequence: 4
  givenname: Gilles
  orcidid: 0000-0002-1850-5504
  surname: Colinet
  fullname: Colinet, Gilles
  organization: Terra Research Center, Liege University-Gembloux Agro Bio Tech Faculty
– sequence: 5
  givenname: Abdallah
  orcidid: 0000-0002-1942-5610
  surname: Oukarroum
  fullname: Oukarroum, Abdallah
  email: abdallah.oukarroum@um6p.ma, abdallah.oukarroum@gmail.com
  organization: Plant Stress Physiology Laboratory, Mohammed VI Polytechnic University (UM6P)-AgroBioSciences, High Throughput Multidisciplinary Research Laboratory, Mohammed VI Polytechnic University (UM6P)
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37433920$$D View this record in MEDLINE/PubMed
BookMark eNp9Uk1v1DAQjVARLaV_gAOyxIVLwF9J7BNCFR-VKsEBzpZjT3ZdZeNgJy27v57Zj8K2h0aWbU3ee543My-LkyEOUBSvGX3PqFAfsmSVViXlohRKUtyfFWecyqrkgvOTo_tpcZHzDcWv4loy_aI4FY0UQnN6Vmx-xH49LmMel3YC0kGaQh82kEhYjdZNmUxLIDBs1is7BUfs4AlmUh5HphD_BI8ncRY5YVqT2JG7JdiJjD3GM1mkeDeQefAonG0fBgS9Kp53ts9wcTjPi19fPv-8_FZef_96dfnpunSVqqYSOu1V45XjleS61r5itaUV67wEXLxhVNfKA1NtwxphOwqsRqeessZL78V5cbXX9dHemDGFlU1rE20wu0BMC2PRtevBCNZ1XrMKhK4lB6kb79q26pRzwCQ0qPVxrzXO7Qq8g2FKtn8g-vDPEJZmEW8N9kzUjEpUEHuFPsAC8PU2mFu-Y-7uc4_pONOC4bxWRqBTyZH17vBuir9nyJNZheygx-pCnLPhStRcc0Qj9O0j6E2c04AV3qKqWuEmEPXm2Mg_B_eTgQC1B7gUc07QGWwsNjxufYUeDW09KbOfQ4NzaHZzaLba_BH1Xv1J0qEuGcHDAtL_tJ9g_QXsX_Gp
CitedBy_id crossref_primary_10_1007_s10343_025_01113_z
crossref_primary_10_1007_s00284_024_03805_7
crossref_primary_10_48130_bpr_0024_0027
crossref_primary_10_1016_j_microb_2024_100112
crossref_primary_10_3390_ph16121698
crossref_primary_10_1186_s12870_025_06123_7
crossref_primary_10_1080_17429145_2024_2327378
crossref_primary_10_3390_horticulturae10030226
crossref_primary_10_1021_acsomega_4c10415
crossref_primary_10_1007_s00344_024_11508_3
Cites_doi 10.1007/s41207-016-0012-7
10.1016/j.plaphy.2019.12.007
10.1007/BF00018060
10.3390/ijms22179326
10.1073/pnas.252637799
10.1007/s12298-017-0462-7
10.1111/pce.12199
10.1016/j.atherosclerosis.2012.09.038
10.1016/j.plantsci.2019.05.018
10.1111/j.1399-3054.2008.01200.x
10.3390/ijms23041995
10.7717/peerj.11463
10.3390/biology11020191
10.3390/molecules24010155
10.4081/ija.2020.1662
10.3389/fpls.2021.646221
10.1016/S0176-1617(00)80254-0
10.1080/17429145.2012.718376
10.1080/01904167.2020.1730902
10.3390/ijms21228695
10.3389/fpls.2018.00393
10.3906/bot-1911-15
10.5772/intechopen.102873
10.1016/j.geoderma.2022.116281
10.1002/jpln.202100439
10.3389/fpls.2016.00276
10.1016/j.plaphy.2017.04.017
10.18052/www.scipress.com/ILNS.72.7
10.1016/0003-2697(87)90489-1
10.1016/j.xinn.2020.100017
10.3389/fpls.2020.615942
10.2136/sssaj1999.6351055x
10.1016/j.plaphy.2019.03.005
10.3389/fpls.2022.1038672
10.1186/s12870-022-03683-w
10.1186/s12284-020-00422-3
10.1111/jac.12181
10.1016/j.bbabio.2004.09.009
10.3390/agronomy11081491
10.1016/j.envexpbot.2008.09.008
10.3390/agronomy8080155
10.1186/s13068-018-1275-9
10.1016/j.envpol.2018.04.036
10.3389/fpls.2015.01092
10.1007/BF02542169
10.3390/ijms23095161
10.17221/410-PSE
10.1111/are.13284
10.1007/s11368-019-02375-7
10.1093/jxb/err457
10.1007/s11738-007-0025-6
10.1016/j.envexpbot.2019.02.012
10.1038/s41580-020-0230-3
10.3390/ijms21155208
10.1111/ppl.13185
10.3390/plants10010118
10.1016/j.rhisph.2021.100319
10.1093/jxb/eri053
10.1016/j.bcab.2020.101635
10.3390/plants8070192
10.1007/s00344-019-10057-4
10.1016/j.stress.2022.100111
10.3389/fpls.2019.00080
10.1016/j.tplants.2016.08.002
10.3390/w14182804
10.3390/ijms23158397
10.1016/0167-8809(92)90151-Z
10.1016/j.stress.2022.100121
10.1016/j.cub.2014.03.034
10.3389/fpls.2021.679916
10.3390/plants11212836
10.2478/v10055-010-0004-x
10.1016/j.micres.2022.127094
10.3390/agronomy9080447
10.3389/fpls.2021.660409
10.3390/agronomy11020265
10.3390/plants11020216
10.3390/agriculture10080334
10.1111/jfbc.14054
10.1007/s00344-019-10018-x
10.1016/j.indcrop.2015.12.032
10.1016/j.plaphy.2014.04.007
10.18805/ijare.v0iOF.4573
10.1078/0176-1617-01050
10.1104/pp.17.00791
10.1016/j.envexpbot.2021.104762
10.1016/j.plaphy.2013.03.004
10.1111/sum.12526
10.1021/ac60111a017
10.3389/fenvs.2014.00053
10.3390/ijms22168995
10.21273/HORTSCI13411-18
10.1016/B978-0-12-387692-8.00003-5
10.1007/978-3-319-13368-3_4
10.1104/pp.113.233478
10.1080/17429145.2020.1841842
10.7150/ijbs.12096
10.1016/0003-2697(76)90527-3
10.1016/j.cj.2021.03.005
10.1104/pp.17.01624
10.1071/FP19002
10.18393/ejss.319198
10.1079/9781780647296.0024
10.1371/journal.pone.0246944
10.1046/j.1365-3040.2000.00524.x
10.3390/agronomy11081552
10.1073/pnas.81.15.4903
10.9734/IJPSS/2018/44822
10.1080/11263504.2020.1810808
10.1007/s00344-014-9429-x
10.3389/fpls.2022.1017282
10.1016/j.agwat.2021.107257
10.1093/jxb/erv056
10.1016/j.envexpbot.2019.03.024
10.1007/s10725-014-0013-y
10.1016/j.jenvman.2021.112142
10.1080/15324982.2021.1959464
10.1016/j.envexpbot.2014.08.005
10.1016/j.scitotenv.2021.146267
10.3389/fpls.2019.00856
10.3390/ijms19030647
ContentType Journal Article
Web Resource
Copyright The Author(s) 2023
2023. The Author(s).
The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2023
– notice: 2023. The Author(s).
– notice: The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
NPM
3V.
7X7
7XB
88A
88E
88I
8FE
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2P
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
Q9U
7X8
Q33
5PM
DOA
DOI 10.1038/s41598-023-38403-3
DatabaseName Springer Nature OA Free Journals
CrossRef
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability (subscription)
ProQuest Central UK/Ireland
ProQuest Central Essentials - QC
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
Medical Database
Science Database
Biological Science Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central Basic
MEDLINE - Academic
Université de Liège - Open Repository and Bibliography (ORBI)
PubMed Central (Full Participant titles)
DOAJ Open Access Full Text
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList

MEDLINE - Academic


Publicly Available Content Database
PubMed
CrossRef
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2045-2322
EndPage 17
ExternalDocumentID oai_doaj_org_article_31ffd915e39642e497dcbb5f8cce14e7
PMC10336104
oai_orbi_ulg_ac_be_2268_305142
37433920
10_1038_s41598_023_38403_3
Genre Journal Article
GrantInformation_xml – fundername: SoilPhorLife project
– fundername: ;
GroupedDBID 0R~
3V.
4.4
53G
5VS
7X7
88A
88E
88I
8FE
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKDD
ABDBF
ABUWG
ACGFS
ACSMW
ACUHS
ADBBV
ADRAZ
AENEX
AEUYN
AFKRA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
DWQXO
EBD
EBLON
EBS
ESX
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
KQ8
LK8
M0L
M1P
M2P
M48
M7P
M~E
NAO
OK1
PIMPY
PQQKQ
PROAC
PSQYO
RNT
RNTTT
RPM
SNYQT
UKHRP
AASML
AAYXX
AFPKN
CITATION
PHGZM
PHGZT
NPM
7XB
8FK
AARCD
K9.
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
Q9U
7X8
Q33
5PM
PUEGO
ID FETCH-LOGICAL-c585t-ef9d87d8c2542969d516a051fd4ed4e2710968de18b7173af0e16529d017d4dd3
IEDL.DBID M48
ISSN 2045-2322
IngestDate Wed Aug 27 01:25:40 EDT 2025
Thu Aug 21 18:37:09 EDT 2025
Fri Jul 25 15:25:41 EDT 2025
Fri Jul 11 13:20:07 EDT 2025
Wed Aug 13 04:20:20 EDT 2025
Thu Apr 03 06:55:10 EDT 2025
Thu Apr 24 22:59:36 EDT 2025
Tue Jul 01 04:25:02 EDT 2025
Fri Feb 21 02:37:33 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License 2023. The Author(s).
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c585t-ef9d87d8c2542969d516a051fd4ed4e2710968de18b7173af0e16529d017d4dd3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
SoilPhorLife 1
scopus-id:2-s2.0-85164383366
ORCID 0000-0002-1942-5610
0000-0001-9620-5892
0000-0002-1850-5504
0000-0001-7478-4707
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1038/s41598-023-38403-3
PMID 37433920
PQID 2835688353
PQPubID 2041939
PageCount 17
ParticipantIDs doaj_primary_oai_doaj_org_article_31ffd915e39642e497dcbb5f8cce14e7
pubmedcentral_primary_oai_pubmedcentral_nih_gov_10336104
liege_orbi_v2_oai_orbi_ulg_ac_be_2268_305142
proquest_miscellaneous_2836292305
proquest_journals_2835688353
pubmed_primary_37433920
crossref_citationtrail_10_1038_s41598_023_38403_3
crossref_primary_10_1038_s41598_023_38403_3
springer_journals_10_1038_s41598_023_38403_3
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-07-11
PublicationDateYYYYMMDD 2023-07-11
PublicationDate_xml – month: 07
  year: 2023
  text: 2023-07-11
  day: 11
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Scientific reports
PublicationTitleAbbrev Sci Rep
PublicationTitleAlternate Sci Rep
PublicationYear 2023
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References Zribi, Mbarki, Metoui, Trabelsi, Zribi, Ksouri (CR68) 2021; 155
Oidaira, Sano, Koshiba, Ushimaru (CR65) 2000; 156
Mohamed, El-Sayed, Rady, Caruso, Sekara, Abdelhamid (CR40) 2021; 9
Bechtaoui, Rabiu, Raklami, Oufdou, Hafidi, Jemo (CR107) 2021; 12
Pereira da Silva, Prado, Wadt, Moda, Caione (CR8) 2020; 43
Rewald, Raveh, Gendler, Ephrath, Rachmilevitch (CR80) 2012; 63
Carstensen, Herdean, Schmidt, Sharma, Spetea, Pribil (CR30) 2018; 177
Kohler, Hernández, Caravaca, Roldán (CR47) 2009; 65
Rivero, Mestre, Mittler, Rubio, Garcia-Sanchez, Martinez (CR92) 2014; 37
Duvauchelle (CR55) 2011
Phang, Shao, Liao, Yan, Lam (CR81) 2009; 135
Grattan, Grieve (CR84) 1992; 38
Šamec, Karalija, Šola, Vujčić Bok, Salopek-Sondi (CR116) 2021; 10
Shabala, Munns (CR4) 2017
Beyer, Fridovich (CR62) 1987; 161
Rezzouk, Gracia-Romero, Kefauver, Nieto-Taladriz, Serret, Araus (CR26) 2022; 259
Bargaz, Nassar, Rady, Gaballah, Thompson, Brestic (CR67) 2016; 202
Loudari, Mayane, Zeroual, Colinet, Oukarroum (CR32) 2022
Shaheen, Naseer, Ashraf, Akram (CR103) 2013; 8
Bates, Waldren, Teare (CR56) 1973; 39
Kumari, Bhatnagar, Mehla, Vashistha (CR25) 2022; 6
Xie, Yang, Gao, Yao, Wang (CR34) 2022; 14
Sharma, Jha, Dubey (CR23) 2019
Kao (CR13) 2017; 66
Pastuszak, Dziurka, Hornyák, Szczerba, Kopeć, Płażek (CR11) 2022; 23
Manaa, Goussi, Derbali, Cantamessa, Abdelly, Barbato (CR10) 2019; 162
Chen, Gao, Xie, Niu, Yang, Fang, Tian, Liu (CR124) 2017; 48
Aleksza, Horváth, Sándor, Szabados (CR121) 2017; 175
Das, Roychoudhury (CR113) 2014; 2
Kiani, Arzani, MirmohammadyMaibody, a. M. (CR122) 2021
Khan, Ahmad, Shah, Ahmad, Ghani, Nawaz (CR50) 2013; 82
Chtouki, Naciri, Garré, Nguyen, Zeroual, Oukarroum (CR44) 2022; 185
Wang, Gao, Hu, Chu (CR52) 2019
Singh, Singh, Khanna (CR83) 2016; 50
García-Ortiz, Recio-Rodríguez, Rodríguez-Sánchez, Patino-Alonso, Agudo-Conde, Rodríguez-Martín (CR95) 2012; 225
Oukarroum, Bussotti, Goltsev, Kalaji (CR18) 2015; 109
Gao, Ouyang, Wang, Xu, Tang, Chen (CR99) 2008; 54
Stiller, Garrison, Gurdyumov, Kenner, Yasmin, Yates, Song (CR120) 2021; 22
Khourchi, Elhaissoufi, Loum, Ibnyasser, Haddine, Ghani (CR46) 2022; 262
Shoukat, Abideen, Ahmed, Gulzar, Nielsen (CR72) 2019; 162
CR54
Wahid, Fahad, Danish, Adnan, Yue, Saud (CR45) 2020; 10
Loudari, Benadis, Naciri, Soulaimani, Zeroual, Gharous (CR48) 2020; 15
Garg, Kim, Owens, Ranwala, Choi, Kochian, Wu (CR104) 2002; 99
Talbi, Houmani, Kouas, Slama, Ksouri, Abdelly (CR49) 2014; 33
Gao, Wang, Shah, Chu (CR53) 2020; 20
Meng, Chen, Wang, Huang, Ye, Chen (CR35) 2021; 16
Khourchi, Delaplace, Bargaz (CR51) 2023; 429
Bouras, Choukr-Allah, Amouaouch, Bouaziz, Devkota, El Mouttaqi (CR33) 2022; 11
Chandlee, Scandalios (CR63) 1984; 81
Ahanger, Mir, Alyemeni, Ahmad (CR19) 2020; 147
Oukaltouma, El Moukhtari, Lahrizi, Mouradi, Farissi, Willems, Qaddoury, Bekkaoui, Ghoulam (CR28) 2021; 16
Savicka, Škute (CR57) 2010; 56
Bouras, Bouaziz, Bouazzama, Hirich, Choukr-Allah (CR41) 2021; 11
Bradford (CR60) 1976; 72
UlAibdin, Nafees, Rizwan, Ahmad, Ali, Obaid, Alsubeie, Darwish, Abeed (CR2) 2023
DuBois, Gilles, Hamilton, Rebers, Smith (CR59) 1956; 28
Ahanger, Agarwal (CR89) 2017; 115
Demiral (CR90) 2017; 6
Akyol, Yilmaz, Uzilday, Uzilday, Türkan (CR24) 2020; 44
Reyes Jara, Gómez Lobato, Civello, Martínez (CR118) 2022; 46
Amin, Rasool, Mir, Wani, Masoodi, Ahmad (CR127) 2021; 171
Loudari, Mayane, Naciri, Zeroual, Colinet, Oukarroum (CR31) 2022; 6
Rangseekaew, Barros-Rodríguez, Pathom-aree, Manzanera (CR108) 2022; 11
Nadarajah (CR12) 2020; 21
Tejera, Campos, Sanjuan, Lluch (CR61) 2004; 161
Ben Rejeb, Abdelly, Savouré (CR109) 2014; 80
Agrawal, Sen, Chatterjee, Rai, Yadav, Singh, Rai, Tripathi, Müller (CR126) 2015
Dekker, Boekema (CR71) 2005; 1706
Mittler (CR20) 2017; 22
Dey, Banerjee, Sharma, Maity, Etesami, Shaw, Huang, Huang, Chen (CR106) 2021; 11
Jaleel, Gopi, Manivannan, Panneerselvam (CR64) 2007; 29
Dias, Lima, Gheyi, Melo, Silva, Soares, Paiva, Silva (CR5) 2022; 36
Khourchi, Oukarroum, Tika, Delaplace, Bargaz (CR42) 2022; 22
Chen, Shabala, Niu, Chen, Shabala, Meinke, Venkataraman, Pareek, Xu, Zhou (CR1) 2021; 9
Nouman, Anwar, Gull, Newton, Rosa, Domínguez-Perles (CR14) 2016; 83
Noctor, Mhamdi, Foyer (CR17) 2014; 164
Reid, Mimura, Ohsumi, Walker, Smith (CR86) 2000; 23
Zhao, Zhang, Song, Zhu, Shabala (CR37) 2020; 1
Fabiańska, Bucher, Häusler (CR128) 2019; 286
Beji, Hamdi, Kesraoui, Seffen (CR97) 2017; 2
Keisham, Mukherjee, Bhatla (CR91) 2018; 19
Rady, El-Shewy, Seif El-Yazal, Abdelaal (CR43) 2018; 72
Taga, Miller, Pratt (CR58) 1984; 61
Sharma, Kumar, Shahzad, Ramakrishnan, Singh Sidhu, Bali (CR70) 2020; 39
Duarte, Santos, Marques, Cašador (CR73) 2013; 67
Nsarellah, Amamou, Taghouti, Annicchiarico (CR27) 2011; 3
AbdElgawad, Zinta, Hegab, Pandey, Asard, Abuelsoud (CR125) 2016; 7
You, Chan (CR21) 2015; 6
Sies, Jones (CR66) 2020; 21
Ahanger, Tomar, Tittal, Argal, Agarwal (CR115) 2017; 23
Wang, Xu, Gong, Yang, Zhang, Li (CR119) 2019; 24
Belouchrani, Latati, Ounane, Drouiche, Lounici (CR39) 2020; 39
Fahad, Hussain, Matloob, Khan, Khaliq, Saud (CR77) 2015; 75
Behdad, Mohsenzadeh, Azizi (CR78) 2021; 17
El-Mejjaouy, Lahrir, Naciri, Zeroual, Mercatoris, Dumont (CR75) 2022; 194
Hessini, Issaoui, Ferchichi, Saif, Abdelly, Siddique (CR9) 2019; 139
Hasanuzzaman, Raihan, Masud, Rahman, Nowroz, Rahman (CR16) 2021; 22
Guo, Ahmad, Zhao, Zhao, Zhong, Wang, Li (CR98) 2022; 11
Nemeskéri, Neményi, Bőcs, Pék, Helyes (CR74) 2019; 11
Schieber, Chandel (CR110) 2014; 24
Rodríguez-Martín, Gutiérrez, Torrijos, Nanos (CR96) 2018; 239
Jeandet, Formela-Luboińska, Labudda, Morkunas (CR112) 2022; 23
Lotfi, Ghassemi-Golezani, Pessarakli (CR7) 2020; 26
Arif, Islam, Robin (CR3) 2019
Singh, Mehta, Yadav, Nagar, Ghosh, Roy, Chakraborty, Singh (CR22) 2022; 23
Kasote, Katyare, Hegde, Bae (CR123) 2015; 11
Chaves, Costa, Saibo (CR69) 2011; 57
Hussain, Hussain, Khaliq, Ashraf, Anjum, Men, Wang (CR15) 2018; 9
Hasanuzzaman, Bhuyan, Parvin, Bhuiyan, Anee, Nahar, Hossen, Zulfiqar, Alam, Fujita (CR114) 2020; 21
Khan, Islam, Azom, Amin (CR38) 2018; 25
Chakraborty, Prasad, Bhatta, Torbert (CR29) 2021; 779
Van der Ploeg, Bohm, Kirkham (CR94) 1999; 63
Hernández, Munné-Bosch (CR105) 2015; 66
Rubio, Linares-Rueda, García-Sánchez, Fernández (CR87) 2005; 56
Muhammad, Shalmani, Ali, Yang, Ahmad, Li (CR36) 2021; 11
Slimani, Arraouadi, Hajlaoui (CR6) 2022; 2
Tang, Niu, Wei, Chen, Chen (CR82) 2019; 10
Latique, Mrid, Kabach, Kchikich, Sammama, Yasri, Nhiri, El Kaoua, Douira, Selmaoui (CR100) 2021; 11
Pratyusha (CR117) 2022
Isayenkov, Maathuis (CR85) 2019; 10
De Bauw, Vandamme, Lupembe, Mwakasege, Senthilkumar, Dramé, Merckx (CR93) 2019; 46
Sun, Ren, Zhao, Ji, Huang (CR101) 2018; 11
Guo, Zhang, Liu, Hou, Liu, Zhao (CR111) 2020; 13
Abbas, Chen, Khan, Feng, Palta, Siddique (CR76) 2018; 8
Rahimi, Nazari, Javadi, Samadi, da Silva (CR88) 2021; 285
Altuntas, Dasgan, Akhoundnejad (CR79) 2018; 53
Kumar, Li, Yang, Huang, Ji, Liu, Ke, Hou (CR102) 2021; 12
SV Isayenkov (38403_CR85) 2019; 10
MA Demiral (38403_CR90) 2017; 6
H Tang (38403_CR82) 2019; 10
AS Dias (38403_CR5) 2022; 36
JM Chandlee (38403_CR63) 1984; 81
N Nsarellah (38403_CR27) 2011; 3
JA Rodríguez-Martín (38403_CR96) 2018; 239
N Slimani (38403_CR6) 2022; 2
J Kohler (38403_CR47) 2009; 65
A Stiller (38403_CR120) 2021; 22
H Oidaira (38403_CR65) 2000; 156
K Das (38403_CR113) 2014; 2
M Guo (38403_CR111) 2020; 13
J Wang (38403_CR119) 2019; 24
WF Beyer Jr (38403_CR62) 1987; 161
RM Rivero (38403_CR92) 2014; 37
P De Bauw (38403_CR93) 2019; 46
M Keisham (38403_CR91) 2018; 19
AS Belouchrani (38403_CR39) 2020; 39
R Beji (38403_CR97) 2017; 2
B Duarte (38403_CR73) 2013; 67
TH Phang (38403_CR81) 2009; 135
MA Ahanger (38403_CR19) 2020; 147
G Pereira da Silva (38403_CR8) 2020; 43
J Pastuszak (38403_CR11) 2022; 23
S Kumar (38403_CR102) 2021; 12
HA Hussain (38403_CR15) 2018; 9
N Bechtaoui (38403_CR107) 2021; 12
A Behdad (38403_CR78) 2021; 17
J You (38403_CR21) 2015; 6
A Khan (38403_CR50) 2013; 82
C Zhao (38403_CR37) 2020; 1
S Gao (38403_CR99) 2008; 54
A Sharma (38403_CR70) 2020; 39
AK Garg (38403_CR104) 2002; 99
A Singh (38403_CR22) 2022; 23
X Meng (38403_CR35) 2021; 16
RR Van der Ploeg (38403_CR94) 1999; 63
CH Kao (38403_CR13) 2017; 66
D Duvauchelle (38403_CR55) 2011
K Ben Rejeb (38403_CR109) 2014; 80
S Pratyusha (38403_CR117) 2022
MA Ahanger (38403_CR89) 2017; 115
L García-Ortiz (38403_CR95) 2012; 225
I Hernández (38403_CR105) 2015; 66
Y Gao (38403_CR53) 2020; 20
R Lotfi (38403_CR7) 2020; 26
A Manaa (38403_CR10) 2019; 162
M Schieber (38403_CR110) 2014; 24
38403_CR54
K Hessini (38403_CR9) 2019; 139
P Jeandet (38403_CR112) 2022; 23
T Chen (38403_CR1) 2021; 9
R Mittler (38403_CR20) 2017; 22
S Khourchi (38403_CR51) 2023; 429
C Agrawal (38403_CR126) 2015
R Kiani (38403_CR122) 2021
I Muhammad (38403_CR36) 2021; 11
W Xie (38403_CR34) 2022; 14
S Khourchi (38403_CR46) 2022; 262
Y El-Mejjaouy (38403_CR75) 2022; 194
D Chakraborty (38403_CR29) 2021; 779
A Loudari (38403_CR48) 2020; 15
D Aleksza (38403_CR121) 2017; 175
E Nemeskéri (38403_CR74) 2019; 11
MM Bradford (38403_CR60) 1976; 72
S Latique (38403_CR100) 2021; 11
M DuBois (38403_CR59) 1956; 28
P Rangseekaew (38403_CR108) 2022; 11
Z UlAibdin (38403_CR2) 2023
FZ Rezzouk (38403_CR26) 2022; 259
NA Tejera (38403_CR61) 2004; 161
MR Arif (38403_CR3) 2019
M Hasanuzzaman (38403_CR114) 2020; 21
S Shaheen (38403_CR103) 2013; 8
MA Ahanger (38403_CR115) 2017; 23
MM Chaves (38403_CR69) 2011; 57
N Singh (38403_CR83) 2016; 50
A Carstensen (38403_CR30) 2018; 177
K Oukaltouma (38403_CR28) 2021; 16
X-M Sun (38403_CR101) 2018; 11
M Chtouki (38403_CR44) 2022; 185
JP Dekker (38403_CR71) 2005; 1706
G Noctor (38403_CR17) 2014; 164
HI Mohamed (38403_CR40) 2021; 9
M Savicka (38403_CR57) 2010; 56
AM Reyes Jara (38403_CR118) 2022; 46
X Guo (38403_CR98) 2022; 11
P Sharma (38403_CR23) 2019
A Loudari (38403_CR31) 2022; 6
MS Taga (38403_CR58) 1984; 61
CA Jaleel (38403_CR64) 2007; 29
H Bouras (38403_CR41) 2021; 11
SR Grattan (38403_CR84) 1992; 38
R Kumari (38403_CR25) 2022; 6
KK Nadarajah (38403_CR12) 2020; 21
M Hasanuzzaman (38403_CR16) 2021; 22
S-J Chen (38403_CR124) 2017; 48
H AbdElgawad (38403_CR125) 2016; 7
H Sies (38403_CR66) 2020; 21
S Fahad (38403_CR77) 2015; 75
DM Kasote (38403_CR123) 2015; 11
A Loudari (38403_CR32) 2022
O Zribi (38403_CR68) 2021; 155
S Shabala (38403_CR4) 2017
F Wahid (38403_CR45) 2020; 10
I Fabiańska (38403_CR128) 2019; 286
L Rubio (38403_CR87) 2005; 56
B Rewald (38403_CR80) 2012; 63
W Nouman (38403_CR14) 2016; 83
X Wang (38403_CR52) 2019
E Shoukat (38403_CR72) 2019; 162
S Khourchi (38403_CR42) 2022; 22
E Rahimi (38403_CR88) 2021; 285
TY Akyol (38403_CR24) 2020; 44
G Abbas (38403_CR76) 2018; 8
MM Rady (38403_CR43) 2018; 72
D Šamec (38403_CR116) 2021; 10
A Oukarroum (38403_CR18) 2015; 109
MZ Khan (38403_CR38) 2018; 25
H Bouras (38403_CR33) 2022; 11
A Bargaz (38403_CR67) 2016; 202
LS Bates (38403_CR56) 1973; 39
I Amin (38403_CR127) 2021; 171
OZ Talbi (38403_CR49) 2014; 33
RJ Reid (38403_CR86) 2000; 23
G Dey (38403_CR106) 2021; 11
O Altuntas (38403_CR79) 2018; 53
References_xml – volume: 2
  start-page: 2
  year: 2017
  ident: CR97
  article-title: Effects of salts on phosphorus adsorption in alkalize Tunisian soil
  publication-title: Euro-Mediterr. J. Environ. Integr.
  doi: 10.1007/s41207-016-0012-7
– volume: 147
  start-page: 31
  year: 2020
  end-page: 42
  ident: CR19
  article-title: Combined effects of brassinosteroid and kinetin mitigates salinity stress in tomato through the modulation of antioxidant and osmolyte metabolism
  publication-title: Plant Physiol. Biochem.
  doi: 10.1016/j.plaphy.2019.12.007
– volume: 39
  start-page: 205
  year: 1973
  end-page: 207
  ident: CR56
  article-title: Rapid determination of free proline for water-stress studies
  publication-title: Plant Soil
  doi: 10.1007/BF00018060
– volume: 22
  start-page: 9326
  issue: 17
  year: 2021
  ident: CR16
  article-title: Regulation of reactive oxygen species and antioxidant defence in plants under salinity
  publication-title: Int. J. Mol. Sci.
  doi: 10.3390/ijms22179326
– volume: 99
  start-page: 15898
  issue: 25
  year: 2002
  end-page: 15903
  ident: CR104
  article-title: Trehalose accumulation in rice plants confers high tolerance levels to different abiotic stresses
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.252637799
– volume: 23
  start-page: 731
  year: 2017
  end-page: 744
  ident: CR115
  article-title: Plant growth under water/salt stress: ROS production, antioxidants and significance of added potassium under such conditions
  publication-title: Physiol. Mol. Biol. Plants
  doi: 10.1007/s12298-017-0462-7
– ident: CR54
– volume: 37
  start-page: 1059
  issue: 5
  year: 2014
  end-page: 1073
  ident: CR92
  article-title: The combined effect of salinity and heat reveals a specific physiological, biochemical and molecular response in tomato plants
  publication-title: Plant Cell Environ.
  doi: 10.1111/pce.12199
– year: 2011
  ident: CR55
  publication-title: Plant Materials Collection Guide
– volume: 225
  start-page: 497
  issue: 2
  year: 2012
  end-page: 503
  ident: CR95
  article-title: Sodium and potassium intake present a J-shaped relationship with arterial stiffness and carotid intima-media thickness
  publication-title: Atherosclerosis
  doi: 10.1016/j.atherosclerosis.2012.09.038
– volume: 286
  start-page: 57
  year: 2019
  end-page: 67
  ident: CR128
  article-title: Intracellular phosphate homeostasis—A short way from metabolism to signaling
  publication-title: Plant Sci.
  doi: 10.1016/j.plantsci.2019.05.018
– volume: 135
  start-page: 412
  issue: 4
  year: 2009
  end-page: 425
  ident: CR81
  article-title: High external phosphate (Pi) increases sodium ion uptake and reduces salt tolerance of ‘Pi-tolerant’ soybean
  publication-title: Physiol. Plant.
  doi: 10.1111/j.1399-3054.2008.01200.x
– volume: 23
  start-page: 1995
  issue: 4
  year: 2022
  ident: CR22
  article-title: How to cope with the challenges of environmental stresses in the era of global climate change: An update on ROS stave off in plants
  publication-title: Int. J. Mol. Sci.
  doi: 10.3390/ijms23041995
– volume: 9
  year: 2021
  ident: CR40
  article-title: Coupling effects of phosphorus fertilization source and rate on growth and ion accumulation of common bean under salinity stress
  publication-title: PeerJ
  doi: 10.7717/peerj.11463
– volume: 11
  start-page: 191
  year: 2022
  ident: CR108
  article-title: Plant beneficial deep-sea actinobacterium, MT1.1T promote growth of tomato ( ) under salinity stress
  publication-title: Biology
  doi: 10.3390/biology11020191
– volume: 24
  start-page: 155
  year: 2019
  ident: CR119
  article-title: Biosynthesis, chemistry, and pharmacology of polyphenols from species: A review
  publication-title: Molecules
  doi: 10.3390/molecules24010155
– volume: 16
  start-page: 1
  year: 2021
  end-page: 13
  ident: CR28
  article-title: Phosphorus deficiency enhances water deficit impact on some morphological and physiological traits in four faba bean ( L.) varieties
  publication-title: Ital. J. Agron.
  doi: 10.4081/ija.2020.1662
– year: 2021
  ident: CR122
  article-title: Polyphenols, flavonoids, and antioxidant activity involved in salt tolerance in wheat, and their amphidiploids
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2021.646221
– volume: 156
  start-page: 811
  issue: 5–6
  year: 2000
  end-page: 813
  ident: CR65
  article-title: Enhancement of antioxidative enzyme activities in chilled rice seedlings
  publication-title: J. Plant Physiol.
  doi: 10.1016/S0176-1617(00)80254-0
– volume: 8
  start-page: 85
  year: 2013
  end-page: 96
  ident: CR103
  article-title: Salt stress affects water relations, photosynthesis, and oxidative defense mechanisms in L
  publication-title: J. Plant Interact.
  doi: 10.1080/17429145.2012.718376
– volume: 43
  start-page: 1485
  issue: 10
  year: 2020
  end-page: 1497
  ident: CR8
  article-title: Accuracy of nutritional diagnostics for phosphorus considering five standards by the method of diagnosing nutritional composition in sugarcane
  publication-title: J. Plant Nutr.
  doi: 10.1080/01904167.2020.1730902
– volume: 21
  start-page: 8695
  year: 2020
  ident: CR114
  article-title: Regulation of ROS metabolism in plants under environmental stress: A review of recent experimental evidence
  publication-title: Int. J. Mol. Sci.
  doi: 10.3390/ijms21228695
– volume: 9
  start-page: 393
  year: 2018
  ident: CR15
  article-title: Chilling and drought stresses in crop plants: Implications, cross talk, and potential management opportunities
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2018.00393
– volume: 44
  start-page: 1
  issue: 1
  year: 2020
  end-page: 13
  ident: CR24
  article-title: Plant response to salinity: An analysis of ROS formation, signaling, and antioxidant defense
  publication-title: Turk. J. Bot.
  doi: 10.3906/bot-1911-15
– year: 2022
  ident: CR117
  article-title: Phenolic compounds in the plant development and defense: An overview, plant stress physiology—Perspectives in agriculture
  publication-title: IntechOpen
  doi: 10.5772/intechopen.102873
– volume: 429
  year: 2023
  ident: CR51
  article-title: Polyphosphate fertilizer use efficiency strongly relies on soil physicochemical properties and root-microbial activities
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2022.116281
– volume: 185
  start-page: 603
  year: 2022
  end-page: 611
  ident: CR44
  article-title: Phosphorus fertilizer form and application frequency affect soil P availability, chickpea yield, and P use efficiency under drip fertigation
  publication-title: J. Plant Nutr. Soil Sci.
  doi: 10.1002/jpln.202100439
– volume: 7
  start-page: 276
  year: 2016
  ident: CR125
  article-title: High salinity induces different oxidative stress and antioxidant responses in maize seedlings organs
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2016.00276
– volume: 115
  start-page: 449
  year: 2017
  end-page: 460
  ident: CR89
  article-title: Salinity stress induced alterations in antioxidant metabolism and nitrogen assimilation in wheat ( L.) as influenced by potassium supplementation
  publication-title: Plant Physiol. Biochem.
  doi: 10.1016/j.plaphy.2017.04.017
– volume: 72
  start-page: 7
  year: 2018
  end-page: 20
  ident: CR43
  article-title: Response of salt-stressed common bean plant performances to foliar application of phosphorus (MAP)
  publication-title: Int. Lett. Nat. Sci.
  doi: 10.18052/www.scipress.com/ILNS.72.7
– volume: 161
  start-page: 559
  issue: 2
  year: 1987
  end-page: 566
  ident: CR62
  article-title: Assaying for superoxide dismutase activity: Some large consequences of minor changes in conditions
  publication-title: Anal. Biochem.
  doi: 10.1016/0003-2697(87)90489-1
– volume: 1
  issue: 1
  year: 2020
  ident: CR37
  article-title: Mechanisms of plant responses and adaptation to soil salinity
  publication-title: Innovation
  doi: 10.1016/j.xinn.2020.100017
– volume: 11
  year: 2021
  ident: CR36
  article-title: Mechanisms regulating the dynamics of photosynthesis under abiotic stresses
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2020.615942
– volume: 63
  start-page: 1055
  issue: 5
  year: 1999
  end-page: 1062
  ident: CR94
  article-title: On the origin of the theory of plant nutrition and the law of minimum
  publication-title: Soil Sci. Soc. Am. J.
  doi: 10.2136/sssaj1999.6351055x
– volume: 139
  start-page: 171
  year: 2019
  end-page: 178
  ident: CR9
  article-title: Interactive effects of salinity and nitrogen forms on plant growth, photosynthesis and osmotic adjustment in maize
  publication-title: Plant Physiol. Biochem.
  doi: 10.1016/j.plaphy.2019.03.005
– volume: 3
  start-page: 34
  year: 2011
  end-page: 40
  ident: CR27
  article-title: Adaptation of Moroccan durum wheat varieties from different breeding eras
  publication-title: J. Plant Breed. Crop Sci.
– volume: 66
  start-page: 87
  year: 2017
  end-page: 93
  ident: CR13
  article-title: Mechanisms of salt tolerance in rice plants: Cell wall-related genes and expansins
  publication-title: J. Taiwan Agric. Res
– year: 2022
  ident: CR32
  article-title: Photosynthetic performance and nutrient uptake under salt stress: Differential responses of wheat plants to contrasting phosphorus forms and rates
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2022.1038672
– volume: 22
  start-page: 1
  issue: 1
  year: 2022
  end-page: 15
  ident: CR42
  article-title: Polyphosphate application influences morpho-physiological root traits involved in P acquisition and durum wheat growth performance
  publication-title: BMC Plant Biol.
  doi: 10.1186/s12870-022-03683-w
– volume: 13
  start-page: 61
  year: 2020
  ident: CR111
  article-title: OsProDH negatively regulates thermotolerance in rice by modulating proline metabolism and reactive oxygen species scavenging
  publication-title: Rice
  doi: 10.1186/s12284-020-00422-3
– volume: 202
  start-page: 497
  issue: 6
  year: 2016
  end-page: 507
  ident: CR67
  article-title: Improved salinity tolerance by phosphorus fertilizer in two recombinant inbred lines contrasting in their P-efficiency
  publication-title: J. Agron. Crop Sci.
  doi: 10.1111/jac.12181
– volume: 1706
  start-page: 12
  issue: 1–2
  year: 2005
  end-page: 39
  ident: CR71
  article-title: Supramolecular organization of thylakoid membrane proteins in green plants
  publication-title: Biochim. Biophys. Acta (BBA) Bioenergetics
  doi: 10.1016/j.bbabio.2004.09.009
– volume: 11
  start-page: 1491
  issue: 8
  year: 2021
  ident: CR41
  article-title: How phosphorus fertilization alleviates the effect of salinity on sugar beet ( L.) productivity and quality
  publication-title: Agronomy
  doi: 10.3390/agronomy11081491
– volume: 65
  start-page: 245
  issue: 2–3
  year: 2009
  end-page: 252
  ident: CR47
  article-title: Induction of antioxidant enzymes is involved in the greater effectiveness of a PGPR versus AM fungi with respect to increasing the tolerance of lettuce to severe salt stress
  publication-title: Environ. Exp. Bot.
  doi: 10.1016/j.envexpbot.2008.09.008
– volume: 8
  start-page: 155
  issue: 8
  year: 2018
  ident: CR76
  article-title: Salinity and low phosphorus differentially affect shoot and root traits in two wheat cultivars with contrasting tolerance to salt
  publication-title: Agronomy
  doi: 10.3390/agronomy8080155
– volume: 11
  start-page: 272
  year: 2018
  ident: CR101
  article-title: Microalgae for the production of lipid and carotenoids: A review with focus on stress regulation and adaptation
  publication-title: Biotechnol. Biofuels
  doi: 10.1186/s13068-018-1275-9
– volume: 239
  start-page: 438
  year: 2018
  end-page: 447
  ident: CR96
  article-title: Wood and bark of as archives of heavy metal pollution in the Mediterranean Region
  publication-title: Environ. Pollut.
  doi: 10.1016/j.envpol.2018.04.036
– volume: 6
  start-page: 1092
  year: 2015
  ident: CR21
  article-title: ROS regulation during abiotic stress responses in crop plants
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2015.01092
– volume: 61
  start-page: 928
  year: 1984
  end-page: 931
  ident: CR58
  article-title: Chia seeds as a source of natural lipid antioxidants
  publication-title: J. Am. Oil Chem. Soc.
  doi: 10.1007/BF02542169
– volume: 23
  start-page: 5161
  year: 2022
  ident: CR112
  article-title: The role of sugars in plant responses to stress and their regulatory function during development
  publication-title: Int. J. Mol. Sci.
  doi: 10.3390/ijms23095161
– volume: 54
  start-page: 374
  year: 2008
  end-page: 381
  ident: CR99
  article-title: Effects of salt stress on growth, antioxidant enzyme and phenylalanine ammonia-lyase activities in L. seedlings
  publication-title: Plant Soil Environ.
  doi: 10.17221/410-PSE
– volume: 48
  start-page: 4608
  year: 2017
  end-page: 4622
  ident: CR124
  article-title: Effect of l-ascorbyl-2-polyphosphate supplementation on growth performance, body composition, antioxidative capacity and salinity stress tolerance of juvenile Pacific white shrimp,
  publication-title: Aquac. Res.
  doi: 10.1111/are.13284
– volume: 20
  start-page: 1
  year: 2020
  end-page: 11
  ident: CR53
  article-title: Polyphosphate fertilizers increased maize ( L.) P, Fe, Zn, and Mn uptake by decreasing P fixation and mobilizing microelements in calcareous soil
  publication-title: J. Soils Sediments
  doi: 10.1007/s11368-019-02375-7
– volume: 63
  start-page: 2717
  issue: 7
  year: 2012
  end-page: 2727
  ident: CR80
  article-title: Phenotypic plasticity and water flux rates of citrus root orders under salinity
  publication-title: J. Exp. Bot.
  doi: 10.1093/jxb/err457
– volume: 29
  start-page: 205
  year: 2007
  end-page: 209
  ident: CR64
  article-title: Responses of antioxidant defense system of (L.) G. Don. to paclobutrazol treatment under salinity
  publication-title: Acta Physiol. Plant.
  doi: 10.1007/s11738-007-0025-6
– volume: 162
  start-page: 103
  year: 2019
  end-page: 114
  ident: CR10
  article-title: Salinity tolerance of quinoa ( Willd.) as assessed by chloroplast ultrastructure and photosynthetic performance
  publication-title: Environ. Exp. Bot.
  doi: 10.1016/j.envexpbot.2019.02.012
– volume: 21
  start-page: 363
  year: 2020
  end-page: 383
  ident: CR66
  article-title: Reactive oxygen species (ROS) as pleiotropic physiological signalling agents
  publication-title: Nat. Rev. Mol. Cell Biol.
  doi: 10.1038/s41580-020-0230-3
– volume: 21
  start-page: 5208
  issue: 15
  year: 2020
  ident: CR12
  article-title: ROS homeostasis in abiotic stress tolerance in plants
  publication-title: Int. J. Mol. Sci.
  doi: 10.3390/ijms21155208
– volume: 171
  start-page: 578
  year: 2021
  end-page: 594
  ident: CR127
  article-title: Ion homeostasis for salinity tolerance in plants: A molecular approach
  publication-title: Physiol. Plant.
  doi: 10.1111/ppl.13185
– volume: 10
  start-page: 118
  year: 2021
  ident: CR116
  article-title: The role of polyphenols in abiotic stress response: The influence of molecular structure
  publication-title: Plants
  doi: 10.3390/plants10010118
– volume: 17
  year: 2021
  ident: CR78
  article-title: Growth, leaf gas exchange and physiological parameters of two L. populations subjected to salt stress condition
  publication-title: Rhizosphere
  doi: 10.1016/j.rhisph.2021.100319
– volume: 56
  start-page: 613
  issue: 412
  year: 2005
  end-page: 622
  ident: CR87
  article-title: Physiological evidence for a sodium-dependent high-affinity phosphate and nitrate transport at the plasma membrane of leaf and root cells of L
  publication-title: J. Exp. Bot.
  doi: 10.1093/jxb/eri053
– volume: 26
  year: 2020
  ident: CR7
  article-title: Salicylic acid regulates photosynthetic electron transfer and stomatal conductance of mung bean ( L.) under salinity stress
  publication-title: Biocatal. Agric. Biotechnol.
  doi: 10.1016/j.bcab.2020.101635
– year: 2019
  ident: CR3
  article-title: Salinity stress alters root morphology and root hair traits in
  publication-title: Plants
  doi: 10.3390/plants8070192
– volume: 39
  start-page: 1205
  issue: 3
  year: 2020
  end-page: 1210
  ident: CR39
  article-title: Study of the interaction salinity: Phosphorus fertilization on sorghum
  publication-title: J. Plant Growth Regul.
  doi: 10.1007/s00344-019-10057-4
– volume: 6
  year: 2022
  ident: CR25
  article-title: Potential of organic amendments (AM fungi, PGPR, vermicompost and seaweeds) in combating salt stress—A review
  publication-title: Plant Stress
  doi: 10.1016/j.stress.2022.100111
– volume: 10
  start-page: 80
  year: 2019
  ident: CR85
  article-title: Plant salinity stress: Many unanswered questions remain
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2019.00080
– volume: 22
  start-page: 11
  issue: 1
  year: 2017
  end-page: 19
  ident: CR20
  article-title: ROS are good
  publication-title: Trends Plant Sci.
  doi: 10.1016/j.tplants.2016.08.002
– volume: 14
  start-page: 2804
  issue: 18
  year: 2022
  ident: CR34
  article-title: The effect and influence mechanism of soil salinity on phosphorus availability in coastal salt-affected soils
  publication-title: Water
  doi: 10.3390/w14182804
– volume: 23
  start-page: 8397
  issue: 15
  year: 2022
  ident: CR11
  article-title: Physiological and biochemical parameters of salinity resistance of three durum wheat genotypes
  publication-title: Int. J. Mol. Sci.
  doi: 10.3390/ijms23158397
– volume: 38
  start-page: 275
  issue: 4
  year: 1992
  end-page: 300
  ident: CR84
  article-title: Mineral element acquisition and growth response of plants grown in saline environments
  publication-title: Agric. Ecosyst. Environ.
  doi: 10.1016/0167-8809(92)90151-Z
– volume: 6
  year: 2022
  ident: CR31
  article-title: Root morphological and anatomical responses to increasing phosphorus concentration of wheat plants grown under salinity
  publication-title: Plant Stress
  doi: 10.1016/j.stress.2022.100121
– volume: 24
  start-page: R453
  year: 2014
  end-page: R462
  ident: CR110
  article-title: ROS function in redox signaling and oxidative stress
  publication-title: Curr. Biol. CB
  doi: 10.1016/j.cub.2014.03.034
– volume: 12
  year: 2021
  ident: CR107
  article-title: Phosphate-dependent regulation of growth and stresses management in plants
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2021.679916
– start-page: 93
  year: 2019
  end-page: 136
  ident: CR23
  article-title: Oxidative stress and antioxidative defense system in plants growing under abiotic stresses
  publication-title: Handbook of Plant and Crop Stress
– volume: 11
  start-page: 2836
  year: 2022
  ident: CR98
  article-title: Effect of salt stress on growth and physiological properties of asparagus seedlings
  publication-title: Plants
  doi: 10.3390/plants11212836
– volume: 56
  start-page: 26
  issue: 1
  year: 2010
  end-page: 33
  ident: CR57
  article-title: Effects of high temperature on malondialdehyde content, superoxide production and growth changes in wheat seedlings ( L.)
  publication-title: Ekologija
  doi: 10.2478/v10055-010-0004-x
– volume: 262
  year: 2022
  ident: CR46
  article-title: Phosphate solubilizing bacteria can significantly contribute to enhance P availability from polyphosphates and their use efficiency in wheat
  publication-title: Microbiol. Res.
  doi: 10.1016/j.micres.2022.127094
– volume: 11
  start-page: 586
  issue: 3
  year: 2019
  ident: CR74
  article-title: Physiological factors and their relationship with the productivity of processing tomato under different water supplies
  publication-title: Water
  doi: 10.3390/agronomy9080447
– volume: 12
  year: 2021
  ident: CR102
  article-title: Effect of salt stress on growth, physiological parameters, and ionic concentration of water dropwort ( ) cultivars
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2021.660409
– volume: 11
  start-page: 265
  year: 2021
  ident: CR100
  article-title: Foliar application of water extracts improves salinity tolerance in wheat ( L.)
  publication-title: Agronomy
  doi: 10.3390/agronomy11020265
– volume: 11
  start-page: 216
  issue: 2
  year: 2022
  ident: CR33
  article-title: How does quinoa ( Willd.) respond to phosphorus fertilization and irrigation water salinity?
  publication-title: Plants
  doi: 10.3390/plants11020216
– volume: 2
  start-page: 9
  issue: 04
  year: 2022
  end-page: 19
  ident: CR6
  article-title: Biochemical and physiological behavior against salt stress effect on two quinoa accessions ( Willd.)
  publication-title: Int. J. Agric. Animal Prod. (IJAAP)
– volume: 10
  start-page: 334
  issue: 8
  year: 2020
  ident: CR45
  article-title: Sustainable management with Mycorrhizae and phosphate solubilizing bacteria for enhanced phosphorus uptake in calcareous soils
  publication-title: Agriculture
  doi: 10.3390/agriculture10080334
– volume: 82
  start-page: 281
  issue: 2
  year: 2013
  end-page: 287
  ident: CR50
  article-title: Amelioration of salinity stress in wheat ( L.) by foliar application of phosphorus
  publication-title: Phyton (Buenos Aires)
– volume: 46
  year: 2022
  ident: CR118
  article-title: Phenylalanine ammonia lyase is more relevant than Chalcone synthase and Chalcone isomerase in the biosynthesis of flavonoids during postharvest senescence of broccoli
  publication-title: J. Food Biochem.
  doi: 10.1111/jfbc.14054
– volume: 39
  start-page: 509
  year: 2020
  end-page: 531
  ident: CR70
  article-title: Photosynthetic response of plants under different abiotic stresses: A review
  publication-title: J. Plant Growth Regul.
  doi: 10.1007/s00344-019-10018-x
– volume: 83
  start-page: 166
  year: 2016
  end-page: 176
  ident: CR14
  article-title: Profiling of polyphenolics, nutrients and antioxidant potential of germplasm’s leaves from seven cultivars of Lam
  publication-title: Ind. Crops Prod.
  doi: 10.1016/j.indcrop.2015.12.032
– volume: 80
  start-page: 278
  year: 2014
  end-page: 284
  ident: CR109
  article-title: How reactive oxygen species and proline face stress together
  publication-title: Plant Physiol. Biochem.
  doi: 10.1016/j.plaphy.2014.04.007
– volume: 50
  start-page: 567
  issue: 6
  year: 2016
  end-page: 572
  ident: CR83
  article-title: Growth of lentil ( Medikus) as influenced by phosphorus, rhizobium and plant growth promoting rhizobacteria
  publication-title: Indian J. Agric. Res.
  doi: 10.18805/ijare.v0iOF.4573
– volume: 161
  start-page: 329
  issue: 3
  year: 2004
  end-page: 338
  ident: CR61
  article-title: Nitrogenase and antioxidant enzyme activities in nodules formed by isogenic strains with varying tolerance to salt stress
  publication-title: J. Plant Physiol.
  doi: 10.1078/0176-1617-01050
– volume: 175
  start-page: 555
  year: 2017
  end-page: 567
  ident: CR121
  article-title: Proline accumulation is regulated by transcription factors associated with phosphate starvation1[OPEN]
  publication-title: Plant Physiol.
  doi: 10.1104/pp.17.00791
– volume: 194
  year: 2022
  ident: CR75
  article-title: How far can chlorophyll a fluorescence detect phosphorus status in wheat leaves ( L.)
  publication-title: Environ. Exp. Bot.
  doi: 10.1016/j.envexpbot.2021.104762
– volume: 67
  start-page: 178
  year: 2013
  end-page: 188
  ident: CR73
  article-title: Ecophysiological adaptations of two halophytes to salt stress: Photosynthesis, PS II photochemistry and antioxidant feedback—Implications for resilience in climate change
  publication-title: Plant Physiol. Biochem.
  doi: 10.1016/j.plaphy.2013.03.004
– year: 2019
  ident: CR52
  article-title: Comparison of the hydrolysis characteristics of three polyphosphates and their effects on soil P and micronutrient availability
  publication-title: Soil Use Manag.
  doi: 10.1111/sum.12526
– volume: 28
  start-page: 350
  issue: 3
  year: 1956
  end-page: 356
  ident: CR59
  article-title: Colorimetric method for determination of sugars and related substances
  publication-title: Anal. Chem.
  doi: 10.1021/ac60111a017
– volume: 2
  start-page: 53
  year: 2014
  ident: CR113
  article-title: Reactive oxygen species (ROS) and response of antioxidants as ROS-scavengers during environmental stress in plants
  publication-title: Front. Environ. Sci.
  doi: 10.3389/fenvs.2014.00053
– volume: 22
  start-page: 8995
  year: 2021
  ident: CR120
  article-title: From fighting critters to saving lives: Polyphenols in plant defense and human health
  publication-title: Int. J. Mol. Sci.
  doi: 10.3390/ijms22168995
– volume: 53
  start-page: 1820
  issue: 12
  year: 2018
  end-page: 1826
  ident: CR79
  article-title: Silicon-induced salinity tolerance improves photosynthesis, leaf water status, membrane stability, and growth in pepper ( L.)
  publication-title: HortScience
  doi: 10.21273/HORTSCI13411-18
– volume: 57
  start-page: 49
  year: 2011
  end-page: 104
  ident: CR69
  article-title: Recent advances in photosynthesis under drought and salinity
  publication-title: Adv. Bot. Res.
  doi: 10.1016/B978-0-12-387692-8.00003-5
– start-page: 79
  year: 2015
  end-page: 113
  ident: CR126
  article-title: Signal perception and mechanism of salt toxicity/tolerance in photosynthetic organisms: cyanobacteria to plants
  publication-title: Stress Responses in Plants: Mechanisms of Toxicity and Tolerance
  doi: 10.1007/978-3-319-13368-3_4
– volume: 164
  start-page: 1636
  issue: 4
  year: 2014
  end-page: 1648
  ident: CR17
  article-title: The roles of reactive oxygen metabolism in drought: Not so cut and dried
  publication-title: Plant Physiol.
  doi: 10.1104/pp.113.233478
– volume: 15
  start-page: 398
  issue: 1
  year: 2020
  end-page: 405
  ident: CR48
  article-title: Salt stress affects mineral nutrition in shoots and roots and chlorophyll a fluorescence of tomato plants grown in hydroponic culture
  publication-title: J. Plant Interact.
  doi: 10.1080/17429145.2020.1841842
– volume: 11
  start-page: 982
  year: 2015
  end-page: 991
  ident: CR123
  article-title: Significance of antioxidant potential of plants and its relevance to therapeutic applications
  publication-title: Int. J. Biol. Sci.
  doi: 10.7150/ijbs.12096
– volume: 72
  start-page: 248
  issue: 1–2
  year: 1976
  end-page: 254
  ident: CR60
  article-title: A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding
  publication-title: Anal. Biochem.
  doi: 10.1016/0003-2697(76)90527-3
– volume: 9
  start-page: 506
  issue: 3
  year: 2021
  end-page: 520
  ident: CR1
  article-title: Molecular mechanisms of salinity tolerance in rice
  publication-title: Crop J.
  doi: 10.1016/j.cj.2021.03.005
– volume: 177
  start-page: 271
  issue: 1
  year: 2018
  end-page: 284
  ident: CR30
  article-title: The impacts of phosphorus deficiency on the photosynthetic electron transport chain
  publication-title: Plant Physiol.
  doi: 10.1104/pp.17.01624
– volume: 46
  start-page: 1009
  issue: 11
  year: 2019
  end-page: 1022
  ident: CR93
  article-title: Anatomical root responses of rice to combined phosphorus and water stress—Relations to tolerance and breeding opportunities
  publication-title: Funct. Plant Biol.
  doi: 10.1071/FP19002
– volume: 6
  start-page: 357
  issue: 4
  year: 2017
  end-page: 364
  ident: CR90
  article-title: Effect of salt stress on the concentration of nitrogen and phosphorus in root and leaf of strawberry plant
  publication-title: Eurasian J. Soil Sci.
  doi: 10.18393/ejss.319198
– start-page: 24
  year: 2017
  end-page: 63
  ident: CR4
  article-title: Salinity stress: Physiological constraints and adaptive mechanisms
  publication-title: Plant Stress Physiology
  doi: 10.1079/9781780647296.0024
– volume: 16
  issue: 2
  year: 2021
  ident: CR35
  article-title: Effects of phosphorus deficiency on the absorption of mineral nutrients, photosynthetic system performance and antioxidant metabolism in
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0246944
– volume: 23
  start-page: 223
  issue: 2
  year: 2000
  end-page: 228
  ident: CR86
  article-title: Phosphate uptake in Chara: Membrane transport via Na/Pi cotransport
  publication-title: Plant Cell Environ.
  doi: 10.1046/j.1365-3040.2000.00524.x
– volume: 11
  start-page: 1552
  year: 2021
  ident: CR106
  article-title: Management of phosphorus in salinity-stressed agriculture for sustainable crop production by salt-tolerant phosphate-solubilizing bacteria—A review
  publication-title: Agronomy
  doi: 10.3390/agronomy11081552
– volume: 81
  start-page: 4903
  issue: 15
  year: 1984
  end-page: 4907
  ident: CR63
  article-title: Regulation of Cat1 gene expression in the scutellum of maize during early sporophytic development
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.81.15.4903
– volume: 25
  start-page: 1
  issue: 2
  year: 2018
  end-page: 9
  ident: CR38
  article-title: Short-term influence of salinity on uptake of phosphorus by
  publication-title: Int. J. Plant Soil Sci.
  doi: 10.9734/IJPSS/2018/44822
– volume: 155
  start-page: 935
  issue: 4
  year: 2021
  end-page: 943
  ident: CR68
  article-title: Salinity and phosphorus availability differentially affect plant growth, leaf morphology, water relations, solutes accumulation and antioxidant capacity in
  publication-title: Plant Biosyst.
  doi: 10.1080/11263504.2020.1810808
– volume: 33
  start-page: 860
  issue: 4
  year: 2014
  end-page: 870
  ident: CR49
  article-title: Comparative study of the interactive effects of salinity and phosphorus availability in wild ( ) and cultivated barley ( )
  publication-title: J. Plant Growth Regul.
  doi: 10.1007/s00344-014-9429-x
– year: 2023
  ident: CR2
  article-title: Combined effect of Zinc lysine and biochar on growth and physiology of wheat ( L.) to alleviate salinity stress
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2022.1017282
– volume: 259
  year: 2022
  ident: CR26
  article-title: Durum wheat ideotypes in Mediterranean environments differing in water and temperature conditions
  publication-title: Agric. Water Manag.
  doi: 10.1016/j.agwat.2021.107257
– volume: 66
  start-page: 2889
  year: 2015
  end-page: 2900
  ident: CR105
  article-title: Linking phosphorus availability with photo-oxidative stress in plants
  publication-title: J. Exp. Bot.
  doi: 10.1093/jxb/erv056
– volume: 162
  start-page: 504
  year: 2019
  end-page: 514
  ident: CR72
  article-title: Changes in growth and photosynthesis linked with intensity and duration of salinity in
  publication-title: Environ. Exp. Bot.
  doi: 10.1016/j.envexpbot.2019.03.024
– volume: 75
  start-page: 391
  issue: 2
  year: 2015
  end-page: 404
  ident: CR77
  article-title: Phytohormones and plant responses to salinity stress: A review
  publication-title: Plant Growth Regul.
  doi: 10.1007/s10725-014-0013-y
– volume: 285
  year: 2021
  ident: CR88
  article-title: Potassium-enriched clinoptilolite zeolite mitigates the adverse impacts of salinity stress in perennial ryegrass ( L.) by increasing silicon absorption and improving the K/Na ratio
  publication-title: J. Environ. Manag.
  doi: 10.1016/j.jenvman.2021.112142
– volume: 36
  start-page: 163
  issue: 2
  year: 2022
  end-page: 180
  ident: CR5
  article-title: Effect of combined potassium-phosphorus fertilization on gas exchange, antioxidant activity and fruit production of West Indian cherry under salt stress
  publication-title: Arid Land Res. Manag.
  doi: 10.1080/15324982.2021.1959464
– volume: 109
  start-page: 80
  year: 2015
  end-page: 88
  ident: CR18
  article-title: Correlation between reactive oxygen species production and photochemistry of photosystems I and II in L. plants under salt stress
  publication-title: Environ. Exp. Bot.
  doi: 10.1016/j.envexpbot.2014.08.005
– volume: 779
  year: 2021
  ident: CR29
  article-title: Understanding the environmental impact of phosphorus in acidic soils receiving repeated poultry litter applications
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2021.146267
– volume: 10
  start-page: 856
  year: 2019
  ident: CR82
  article-title: Phosphorus limitation improved salt tolerance in maize through tissue mass density increase, osmolytes accumulation, and Na+ uptake inhibition
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2019.00856
– volume: 19
  start-page: 647
  issue: 3
  year: 2018
  ident: CR91
  article-title: Mechanisms of sodium transport in plants—Progresses and challenges
  publication-title: Int. J. Mol. Sci.
  doi: 10.3390/ijms19030647
– volume: 83
  start-page: 166
  year: 2016
  ident: 38403_CR14
  publication-title: Ind. Crops Prod.
  doi: 10.1016/j.indcrop.2015.12.032
– volume: 286
  start-page: 57
  year: 2019
  ident: 38403_CR128
  publication-title: Plant Sci.
  doi: 10.1016/j.plantsci.2019.05.018
– volume: 16
  start-page: 1
  year: 2021
  ident: 38403_CR28
  publication-title: Ital. J. Agron.
  doi: 10.4081/ija.2020.1662
– volume: 16
  issue: 2
  year: 2021
  ident: 38403_CR35
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0246944
– volume: 147
  start-page: 31
  year: 2020
  ident: 38403_CR19
  publication-title: Plant Physiol. Biochem.
  doi: 10.1016/j.plaphy.2019.12.007
– volume: 9
  start-page: 393
  year: 2018
  ident: 38403_CR15
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2018.00393
– volume: 3
  start-page: 34
  year: 2011
  ident: 38403_CR27
  publication-title: J. Plant Breed. Crop Sci.
– volume-title: Plant Materials Collection Guide
  year: 2011
  ident: 38403_CR55
– volume: 39
  start-page: 509
  year: 2020
  ident: 38403_CR70
  publication-title: J. Plant Growth Regul.
  doi: 10.1007/s00344-019-10018-x
– year: 2022
  ident: 38403_CR32
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2022.1038672
– volume: 72
  start-page: 7
  year: 2018
  ident: 38403_CR43
  publication-title: Int. Lett. Nat. Sci.
  doi: 10.18052/www.scipress.com/ILNS.72.7
– volume: 262
  year: 2022
  ident: 38403_CR46
  publication-title: Microbiol. Res.
  doi: 10.1016/j.micres.2022.127094
– volume: 161
  start-page: 329
  issue: 3
  year: 2004
  ident: 38403_CR61
  publication-title: J. Plant Physiol.
  doi: 10.1078/0176-1617-01050
– volume: 15
  start-page: 398
  issue: 1
  year: 2020
  ident: 38403_CR48
  publication-title: J. Plant Interact.
  doi: 10.1080/17429145.2020.1841842
– volume: 12
  year: 2021
  ident: 38403_CR107
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2021.679916
– volume: 10
  start-page: 118
  year: 2021
  ident: 38403_CR116
  publication-title: Plants
  doi: 10.3390/plants10010118
– volume: 109
  start-page: 80
  year: 2015
  ident: 38403_CR18
  publication-title: Environ. Exp. Bot.
  doi: 10.1016/j.envexpbot.2014.08.005
– volume: 155
  start-page: 935
  issue: 4
  year: 2021
  ident: 38403_CR68
  publication-title: Plant Biosyst.
  doi: 10.1080/11263504.2020.1810808
– ident: 38403_CR54
– volume: 28
  start-page: 350
  issue: 3
  year: 1956
  ident: 38403_CR59
  publication-title: Anal. Chem.
  doi: 10.1021/ac60111a017
– volume: 185
  start-page: 603
  year: 2022
  ident: 38403_CR44
  publication-title: J. Plant Nutr. Soil Sci.
  doi: 10.1002/jpln.202100439
– volume: 194
  year: 2022
  ident: 38403_CR75
  publication-title: Environ. Exp. Bot.
  doi: 10.1016/j.envexpbot.2021.104762
– year: 2019
  ident: 38403_CR3
  publication-title: Plants
  doi: 10.3390/plants8070192
– volume: 66
  start-page: 87
  year: 2017
  ident: 38403_CR13
  publication-title: J. Taiwan Agric. Res
– volume: 21
  start-page: 363
  year: 2020
  ident: 38403_CR66
  publication-title: Nat. Rev. Mol. Cell Biol.
  doi: 10.1038/s41580-020-0230-3
– volume: 21
  start-page: 5208
  issue: 15
  year: 2020
  ident: 38403_CR12
  publication-title: Int. J. Mol. Sci.
  doi: 10.3390/ijms21155208
– volume: 63
  start-page: 1055
  issue: 5
  year: 1999
  ident: 38403_CR94
  publication-title: Soil Sci. Soc. Am. J.
  doi: 10.2136/sssaj1999.6351055x
– volume: 67
  start-page: 178
  year: 2013
  ident: 38403_CR73
  publication-title: Plant Physiol. Biochem.
  doi: 10.1016/j.plaphy.2013.03.004
– volume: 2
  start-page: 9
  issue: 04
  year: 2022
  ident: 38403_CR6
  publication-title: Int. J. Agric. Animal Prod. (IJAAP)
– volume: 139
  start-page: 171
  year: 2019
  ident: 38403_CR9
  publication-title: Plant Physiol. Biochem.
  doi: 10.1016/j.plaphy.2019.03.005
– start-page: 93
  volume-title: Handbook of Plant and Crop Stress
  year: 2019
  ident: 38403_CR23
– volume: 171
  start-page: 578
  year: 2021
  ident: 38403_CR127
  publication-title: Physiol. Plant.
  doi: 10.1111/ppl.13185
– year: 2022
  ident: 38403_CR117
  publication-title: IntechOpen
  doi: 10.5772/intechopen.102873
– volume: 37
  start-page: 1059
  issue: 5
  year: 2014
  ident: 38403_CR92
  publication-title: Plant Cell Environ.
  doi: 10.1111/pce.12199
– volume: 11
  start-page: 982
  year: 2015
  ident: 38403_CR123
  publication-title: Int. J. Biol. Sci.
  doi: 10.7150/ijbs.12096
– volume: 22
  start-page: 1
  issue: 1
  year: 2022
  ident: 38403_CR42
  publication-title: BMC Plant Biol.
  doi: 10.1186/s12870-022-03683-w
– volume: 11
  start-page: 1552
  year: 2021
  ident: 38403_CR106
  publication-title: Agronomy
  doi: 10.3390/agronomy11081552
– volume: 177
  start-page: 271
  issue: 1
  year: 2018
  ident: 38403_CR30
  publication-title: Plant Physiol.
  doi: 10.1104/pp.17.01624
– volume: 29
  start-page: 205
  year: 2007
  ident: 38403_CR64
  publication-title: Acta Physiol. Plant.
  doi: 10.1007/s11738-007-0025-6
– volume: 156
  start-page: 811
  issue: 5–6
  year: 2000
  ident: 38403_CR65
  publication-title: J. Plant Physiol.
  doi: 10.1016/S0176-1617(00)80254-0
– volume: 22
  start-page: 11
  issue: 1
  year: 2017
  ident: 38403_CR20
  publication-title: Trends Plant Sci.
  doi: 10.1016/j.tplants.2016.08.002
– volume: 14
  start-page: 2804
  issue: 18
  year: 2022
  ident: 38403_CR34
  publication-title: Water
  doi: 10.3390/w14182804
– volume: 65
  start-page: 245
  issue: 2–3
  year: 2009
  ident: 38403_CR47
  publication-title: Environ. Exp. Bot.
  doi: 10.1016/j.envexpbot.2008.09.008
– start-page: 79
  volume-title: Stress Responses in Plants: Mechanisms of Toxicity and Tolerance
  year: 2015
  ident: 38403_CR126
  doi: 10.1007/978-3-319-13368-3_4
– volume: 24
  start-page: 155
  year: 2019
  ident: 38403_CR119
  publication-title: Molecules
  doi: 10.3390/molecules24010155
– volume: 20
  start-page: 1
  year: 2020
  ident: 38403_CR53
  publication-title: J. Soils Sediments
  doi: 10.1007/s11368-019-02375-7
– volume: 115
  start-page: 449
  year: 2017
  ident: 38403_CR89
  publication-title: Plant Physiol. Biochem.
  doi: 10.1016/j.plaphy.2017.04.017
– volume: 46
  start-page: 1009
  issue: 11
  year: 2019
  ident: 38403_CR93
  publication-title: Funct. Plant Biol.
  doi: 10.1071/FP19002
– volume: 2
  start-page: 2
  year: 2017
  ident: 38403_CR97
  publication-title: Euro-Mediterr. J. Environ. Integr.
  doi: 10.1007/s41207-016-0012-7
– volume: 44
  start-page: 1
  issue: 1
  year: 2020
  ident: 38403_CR24
  publication-title: Turk. J. Bot.
  doi: 10.3906/bot-1911-15
– volume: 285
  year: 2021
  ident: 38403_CR88
  publication-title: J. Environ. Manag.
  doi: 10.1016/j.jenvman.2021.112142
– volume: 56
  start-page: 26
  issue: 1
  year: 2010
  ident: 38403_CR57
  publication-title: Ekologija
  doi: 10.2478/v10055-010-0004-x
– volume: 225
  start-page: 497
  issue: 2
  year: 2012
  ident: 38403_CR95
  publication-title: Atherosclerosis
  doi: 10.1016/j.atherosclerosis.2012.09.038
– volume: 54
  start-page: 374
  year: 2008
  ident: 38403_CR99
  publication-title: Plant Soil Environ.
  doi: 10.17221/410-PSE
– volume: 11
  start-page: 272
  year: 2018
  ident: 38403_CR101
  publication-title: Biotechnol. Biofuels
  doi: 10.1186/s13068-018-1275-9
– volume: 25
  start-page: 1
  issue: 2
  year: 2018
  ident: 38403_CR38
  publication-title: Int. J. Plant Soil Sci.
  doi: 10.9734/IJPSS/2018/44822
– volume: 82
  start-page: 281
  issue: 2
  year: 2013
  ident: 38403_CR50
  publication-title: Phyton (Buenos Aires)
– volume: 8
  start-page: 85
  year: 2013
  ident: 38403_CR103
  publication-title: J. Plant Interact.
  doi: 10.1080/17429145.2012.718376
– year: 2023
  ident: 38403_CR2
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2022.1017282
– year: 2019
  ident: 38403_CR52
  publication-title: Soil Use Manag.
  doi: 10.1111/sum.12526
– volume: 23
  start-page: 731
  year: 2017
  ident: 38403_CR115
  publication-title: Physiol. Mol. Biol. Plants
  doi: 10.1007/s12298-017-0462-7
– volume: 63
  start-page: 2717
  issue: 7
  year: 2012
  ident: 38403_CR80
  publication-title: J. Exp. Bot.
  doi: 10.1093/jxb/err457
– volume: 1706
  start-page: 12
  issue: 1–2
  year: 2005
  ident: 38403_CR71
  publication-title: Biochim. Biophys. Acta (BBA) Bioenergetics
  doi: 10.1016/j.bbabio.2004.09.009
– volume: 26
  year: 2020
  ident: 38403_CR7
  publication-title: Biocatal. Agric. Biotechnol.
  doi: 10.1016/j.bcab.2020.101635
– volume: 10
  start-page: 334
  issue: 8
  year: 2020
  ident: 38403_CR45
  publication-title: Agriculture
  doi: 10.3390/agriculture10080334
– volume: 56
  start-page: 613
  issue: 412
  year: 2005
  ident: 38403_CR87
  publication-title: J. Exp. Bot.
  doi: 10.1093/jxb/eri053
– volume: 6
  year: 2022
  ident: 38403_CR25
  publication-title: Plant Stress
  doi: 10.1016/j.stress.2022.100111
– volume: 13
  start-page: 61
  year: 2020
  ident: 38403_CR111
  publication-title: Rice
  doi: 10.1186/s12284-020-00422-3
– volume: 23
  start-page: 1995
  issue: 4
  year: 2022
  ident: 38403_CR22
  publication-title: Int. J. Mol. Sci.
  doi: 10.3390/ijms23041995
– volume: 1
  issue: 1
  year: 2020
  ident: 38403_CR37
  publication-title: Innovation
  doi: 10.1016/j.xinn.2020.100017
– volume: 239
  start-page: 438
  year: 2018
  ident: 38403_CR96
  publication-title: Environ. Pollut.
  doi: 10.1016/j.envpol.2018.04.036
– volume: 259
  year: 2022
  ident: 38403_CR26
  publication-title: Agric. Water Manag.
  doi: 10.1016/j.agwat.2021.107257
– volume: 11
  year: 2021
  ident: 38403_CR36
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2020.615942
– volume: 39
  start-page: 1205
  issue: 3
  year: 2020
  ident: 38403_CR39
  publication-title: J. Plant Growth Regul.
  doi: 10.1007/s00344-019-10057-4
– volume: 19
  start-page: 647
  issue: 3
  year: 2018
  ident: 38403_CR91
  publication-title: Int. J. Mol. Sci.
  doi: 10.3390/ijms19030647
– volume: 23
  start-page: 223
  issue: 2
  year: 2000
  ident: 38403_CR86
  publication-title: Plant Cell Environ.
  doi: 10.1046/j.1365-3040.2000.00524.x
– volume: 9
  start-page: 506
  issue: 3
  year: 2021
  ident: 38403_CR1
  publication-title: Crop J.
  doi: 10.1016/j.cj.2021.03.005
– volume: 21
  start-page: 8695
  year: 2020
  ident: 38403_CR114
  publication-title: Int. J. Mol. Sci.
  doi: 10.3390/ijms21228695
– volume: 61
  start-page: 928
  year: 1984
  ident: 38403_CR58
  publication-title: J. Am. Oil Chem. Soc.
  doi: 10.1007/BF02542169
– volume: 12
  year: 2021
  ident: 38403_CR102
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2021.660409
– volume: 39
  start-page: 205
  year: 1973
  ident: 38403_CR56
  publication-title: Plant Soil
  doi: 10.1007/BF00018060
– volume: 175
  start-page: 555
  year: 2017
  ident: 38403_CR121
  publication-title: Plant Physiol.
  doi: 10.1104/pp.17.00791
– volume: 24
  start-page: R453
  year: 2014
  ident: 38403_CR110
  publication-title: Curr. Biol. CB
  doi: 10.1016/j.cub.2014.03.034
– volume: 11
  start-page: 1491
  issue: 8
  year: 2021
  ident: 38403_CR41
  publication-title: Agronomy
  doi: 10.3390/agronomy11081491
– volume: 10
  start-page: 856
  year: 2019
  ident: 38403_CR82
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2019.00856
– volume: 7
  start-page: 276
  year: 2016
  ident: 38403_CR125
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2016.00276
– volume: 9
  year: 2021
  ident: 38403_CR40
  publication-title: PeerJ
  doi: 10.7717/peerj.11463
– volume: 11
  start-page: 2836
  year: 2022
  ident: 38403_CR98
  publication-title: Plants
  doi: 10.3390/plants11212836
– volume: 22
  start-page: 8995
  year: 2021
  ident: 38403_CR120
  publication-title: Int. J. Mol. Sci.
  doi: 10.3390/ijms22168995
– volume: 429
  year: 2023
  ident: 38403_CR51
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2022.116281
– volume: 8
  start-page: 155
  issue: 8
  year: 2018
  ident: 38403_CR76
  publication-title: Agronomy
  doi: 10.3390/agronomy8080155
– volume: 50
  start-page: 567
  issue: 6
  year: 2016
  ident: 38403_CR83
  publication-title: Indian J. Agric. Res.
  doi: 10.18805/ijare.v0iOF.4573
– volume: 162
  start-page: 103
  year: 2019
  ident: 38403_CR10
  publication-title: Environ. Exp. Bot.
  doi: 10.1016/j.envexpbot.2019.02.012
– volume: 6
  year: 2022
  ident: 38403_CR31
  publication-title: Plant Stress
  doi: 10.1016/j.stress.2022.100121
– volume: 6
  start-page: 1092
  year: 2015
  ident: 38403_CR21
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2015.01092
– volume: 22
  start-page: 9326
  issue: 17
  year: 2021
  ident: 38403_CR16
  publication-title: Int. J. Mol. Sci.
  doi: 10.3390/ijms22179326
– volume: 80
  start-page: 278
  year: 2014
  ident: 38403_CR109
  publication-title: Plant Physiol. Biochem.
  doi: 10.1016/j.plaphy.2014.04.007
– volume: 11
  start-page: 216
  issue: 2
  year: 2022
  ident: 38403_CR33
  publication-title: Plants
  doi: 10.3390/plants11020216
– volume: 202
  start-page: 497
  issue: 6
  year: 2016
  ident: 38403_CR67
  publication-title: J. Agron. Crop Sci.
  doi: 10.1111/jac.12181
– volume: 23
  start-page: 5161
  year: 2022
  ident: 38403_CR112
  publication-title: Int. J. Mol. Sci.
  doi: 10.3390/ijms23095161
– volume: 46
  year: 2022
  ident: 38403_CR118
  publication-title: J. Food Biochem.
  doi: 10.1111/jfbc.14054
– volume: 161
  start-page: 559
  issue: 2
  year: 1987
  ident: 38403_CR62
  publication-title: Anal. Biochem.
  doi: 10.1016/0003-2697(87)90489-1
– volume: 36
  start-page: 163
  issue: 2
  year: 2022
  ident: 38403_CR5
  publication-title: Arid Land Res. Manag.
  doi: 10.1080/15324982.2021.1959464
– year: 2021
  ident: 38403_CR122
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2021.646221
– volume: 11
  start-page: 586
  issue: 3
  year: 2019
  ident: 38403_CR74
  publication-title: Water
  doi: 10.3390/agronomy9080447
– volume: 135
  start-page: 412
  issue: 4
  year: 2009
  ident: 38403_CR81
  publication-title: Physiol. Plant.
  doi: 10.1111/j.1399-3054.2008.01200.x
– start-page: 24
  volume-title: Plant Stress Physiology
  year: 2017
  ident: 38403_CR4
  doi: 10.1079/9781780647296.0024
– volume: 48
  start-page: 4608
  year: 2017
  ident: 38403_CR124
  publication-title: Aquac. Res.
  doi: 10.1111/are.13284
– volume: 6
  start-page: 357
  issue: 4
  year: 2017
  ident: 38403_CR90
  publication-title: Eurasian J. Soil Sci.
  doi: 10.18393/ejss.319198
– volume: 43
  start-page: 1485
  issue: 10
  year: 2020
  ident: 38403_CR8
  publication-title: J. Plant Nutr.
  doi: 10.1080/01904167.2020.1730902
– volume: 779
  year: 2021
  ident: 38403_CR29
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2021.146267
– volume: 2
  start-page: 53
  year: 2014
  ident: 38403_CR113
  publication-title: Front. Environ. Sci.
  doi: 10.3389/fenvs.2014.00053
– volume: 11
  start-page: 265
  year: 2021
  ident: 38403_CR100
  publication-title: Agronomy
  doi: 10.3390/agronomy11020265
– volume: 38
  start-page: 275
  issue: 4
  year: 1992
  ident: 38403_CR84
  publication-title: Agric. Ecosyst. Environ.
  doi: 10.1016/0167-8809(92)90151-Z
– volume: 17
  year: 2021
  ident: 38403_CR78
  publication-title: Rhizosphere
  doi: 10.1016/j.rhisph.2021.100319
– volume: 99
  start-page: 15898
  issue: 25
  year: 2002
  ident: 38403_CR104
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.252637799
– volume: 57
  start-page: 49
  year: 2011
  ident: 38403_CR69
  publication-title: Adv. Bot. Res.
  doi: 10.1016/B978-0-12-387692-8.00003-5
– volume: 164
  start-page: 1636
  issue: 4
  year: 2014
  ident: 38403_CR17
  publication-title: Plant Physiol.
  doi: 10.1104/pp.113.233478
– volume: 81
  start-page: 4903
  issue: 15
  year: 1984
  ident: 38403_CR63
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.81.15.4903
– volume: 72
  start-page: 248
  issue: 1–2
  year: 1976
  ident: 38403_CR60
  publication-title: Anal. Biochem.
  doi: 10.1016/0003-2697(76)90527-3
– volume: 53
  start-page: 1820
  issue: 12
  year: 2018
  ident: 38403_CR79
  publication-title: HortScience
  doi: 10.21273/HORTSCI13411-18
– volume: 162
  start-page: 504
  year: 2019
  ident: 38403_CR72
  publication-title: Environ. Exp. Bot.
  doi: 10.1016/j.envexpbot.2019.03.024
– volume: 11
  start-page: 191
  year: 2022
  ident: 38403_CR108
  publication-title: Biology
  doi: 10.3390/biology11020191
– volume: 66
  start-page: 2889
  year: 2015
  ident: 38403_CR105
  publication-title: J. Exp. Bot.
  doi: 10.1093/jxb/erv056
– volume: 33
  start-page: 860
  issue: 4
  year: 2014
  ident: 38403_CR49
  publication-title: J. Plant Growth Regul.
  doi: 10.1007/s00344-014-9429-x
– volume: 23
  start-page: 8397
  issue: 15
  year: 2022
  ident: 38403_CR11
  publication-title: Int. J. Mol. Sci.
  doi: 10.3390/ijms23158397
– volume: 75
  start-page: 391
  issue: 2
  year: 2015
  ident: 38403_CR77
  publication-title: Plant Growth Regul.
  doi: 10.1007/s10725-014-0013-y
– volume: 10
  start-page: 80
  year: 2019
  ident: 38403_CR85
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2019.00080
RestrictionsOnAccess open access
SSID ssj0000529419
Score 2.460034
Snippet By 2050, the predicted global population is set to reach 9.6 billion highlighting the urgent need to increase crop productivity to meet the growing demand for...
Abstract By 2050, the predicted global population is set to reach 9.6 billion highlighting the urgent need to increase crop productivity to meet the growing...
SourceID doaj
pubmedcentral
liege
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 11212
SubjectTerms 631/449
631/449/1736
631/449/2661
Abiotic stress
Agriculture & agronomie
Agriculture & agronomy
Antioxidants
Ascorbic acid
Biologie végétale (sciences végétales, sylviculture, mycologie...)
Biomass
Chlorophyll
Crop production
Crop yield
Cultivars
Enzymatic activity
Fertilization
Fertilizers
Humanities and Social Sciences
L-Ascorbate peroxidase
Life sciences
multidisciplinary
Nutrient content
Orthophosphate
Oxidative stress
Phosphorus
Phytobiology (plant sciences, forestry, mycology...)
Plant growth
Polyphenols
Polyphosphate
Polyps
Reactive oxygen species
Saline soils
Salinity
Salinity effects
Salts
Science
Science (multidisciplinary)
Sciences du vivant
Wheat
SummonAdditionalLinks – databaseName: DOAJ Open Access Full Text
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3dq9MwFA9yQfBF_LZ6lQi-abnNR7PkUcXLRVB88MJ9C82XG5RurJu6_fWek3Zz8_NFKO1o0yw5OWl-h3POL4Q8VzwaGbUvua5CKV0MpXM1GCtKJ-W1qXxAQ_H9B3VxKd9d1VcHW31hTNhADzwI7kywlIJhdRQGoHKUZhI81Ja095HJmPPIYc07MKYGVm9uJDNjlkwl9FkPKxVmk3FRCjBq4Hy0EmXCfgCoLbqqf4c2fw2a_Mlzmhek81vk5ogk6auhB7fJtdjdIdeHvSU3d8n247zdLKbzfjEFOEkTxk-3s21c0iExsqcA_WjstptM2kqbLtBu3pWHd2DQvs0CXKmHNdUDYKfzRL_i95suWoygoZ_RjKeYibakfYNplqvNPXJ5_vbTm4ty3Gih9GAtrMqYTNCToD3H3auUCTVTDczWFGSEg2O8ptIhMu3Qad-kKjIFEg4wnYMMQdwnJ9DC-JBQw12Y1M7z6KNkvHHJAEiQ8DcpSZFCQdhO6NaPLOS4GUZrszdcaDsMlIWBsnmgrCjIi_07i4GD46-lX-NY7ksif3a-AVplR62y_9KqgrzMmgAvuZn9wnMt-fe6hVq8ddECcNVWIH88L8jpTmHs-A3oLTLZKQ0naNKz_WOYveiSabo4X-cyigPGruqCPBj0a99wAeAO0GtVEH2keUc9O37SzaaZIRxEIwAXS-jGTkl_tOvPonv0P0T3mNzgOMuQfJSdkpPVch2fAHBbuad5jn4H8WNBcA
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3da9swEBdbymAvY99z1w0N9raZ2pKsyE9jHS1lsFLGCn0Ttj6agLG9OFmX_PW7kx132UfB2MGWHUl3J_1Op7sj5K1kLhdOmZipxMaidDYuywyUFam8NCpPjEVF8cuZPL0Qny-zy2HBrRu2VW7HxDBQ28bgGvkhxgWTCk78Q_s9xqxRaF0dUmjcJXswBKtsQvaOjs_Ov46rLGjHEmk-eMskXB12MGOhVxnjMQflBs47M1II3A9AtUKT9b9Q59-bJ_-woIaJ6eQheTAgSvqxZ4FH5I6rH5N7fY7J9ROyOW-qdTtrunYGsJJ63EddzTduQXsHyY4CBKSu3qxD8FZa1JbWTR3_fgeI93Nu4UoNzK0GgDttPL3GcZy2Fe6koVeozlP0SFvQrkB3y-X6Kbk4Of726TQeEi7EBrSGZex8btXUKsMwi5XMbZbKAqTWW-HgYLhvUyrrUlWi8b7wiUsl9LAFsbbCWv6MTKCG7gWhOSvtNCsNc8aJlBWlzwEsCPgb7wX3NiLpttO1GaKRY1KMSgerOFe6J5QGQulAKM0j8m58p-1jcdxa-ghpOZbEONrhRrO40oNYap56b_M0czwHRcyJfGoN8KpXxrhUuGlE3gdOgJfKuf7BwlfC71UFXzG6dBoArNIc48iziBxsGUYPY0Gnbzg3Im_GxyDFaJopatesQhnJAGsnWUSe9_w1VpwDyAMUm0RE7XDeTst2n9TzWYgUDl3DAR8LaMaWSW_q9f-u27-9GS_JfYbyg-FF0wMyWS5W7hVAs2X5epC_X-4jOWs
  priority: 102
  providerName: ProQuest
– databaseName: Springer Nature OA Free Journals
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3di9QwEA_nieCL-H3VUyL4psU2SbPJoy4eh6D44MG9hTYftwulXba76u5f70z6oaunIJS2tEk3TWaa3-zM_ELIS8m8Fl7ZlKnMpaLyLq2qAowVqYK0SmfWoaH48ZM8vxAfLovLI8LGXJgYtB8pLeNneowOe9PBRIPJYIynHGwS2N8gN5G6Hfny53I-_a-CniuR6yE_JuPqmqoHc1Ck6gdoWqOT-jqc-We45G8-0zgVnd0ldwYMSd_2rb5Hjnxzn9zqV5XcPSD7z229Wy3abrUAIEkDRk7Xy71f0z4lsqMA-qhv9rtI10rLxtGmbdJfr8BwfV86OFILs6kFqE7bQL_hl5uuaoydoVdowFPMQVvTrsQEy83uIbk4e_9lfp4OSyykFuyETeqDdmrmlGW4bpXUrshlCXoanPCwMYzUlMr5XFXori9D5nMJPexAkZ1wjj8ix9BCf0KoZpWbFZVl3nqRs7IKGuCBgJ8JQfDgEpKPnW7swD-Oy2DUJvrBuTL9QBkYKBMHyvCEvJrqrHr2jX-WfodjOZVE5ux4oV1fmUGSDM9DcDovPNdgenmhZ86CdAZlrc-FnyXkdZQEqFQtzVcWnxLPtzU8xZrKG4CsynBkjmcJOR0Fxgza3xnksJMKdtCkF9Nt0Ft0xpSNb7exjGSArrMiIY97-ZoazgHWAW7NEqIOJO_gzQ7vNMtF5AaHruGAiAW8xiikP9v196578n_Fn5LbDPUJCUbzU3K8WW_9MwBnm-p51MYfvHI1wQ
  priority: 102
  providerName: Springer Nature
Title Polyphosphate fertilizer impacts the enzymatic and non-enzymatic antioxidant capacity of wheat plants grown under salinity
URI https://link.springer.com/article/10.1038/s41598-023-38403-3
https://www.ncbi.nlm.nih.gov/pubmed/37433920
https://www.proquest.com/docview/2835688353
https://www.proquest.com/docview/2836292305
http://orbi.ulg.ac.be/handle/2268/305142
https://pubmed.ncbi.nlm.nih.gov/PMC10336104
https://doaj.org/article/31ffd915e39642e497dcbb5f8cce14e7
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwELb2ISQuiDeBpTISNwg0tuPYB4S61a5WlXa1Air1ZiV-bCtFSekDtv31jJ20UCickKqkcuzUGc9kvul4ZhB6zYmVzAodE9E1MSusiYsiBWOFC8e1kF1tvKF4ecUvhmwwSkcHaFPuqCXgfK9p5-tJDWflu9uvq48g8B-akHHxfg5KyAeKERpTsFfgeIiOQTNxz-WXLdxvcn0TyRLZxs7sH7qjn0Iaf4CtpXdg78Ogf26l_M2fGtTU-X10r8WXuNcwxAN0YKuH6E5TcXL1CK2v63I1Hdfz6RhAJnZ-V3U5WdsZbsIl5xgAIbbVehVSueK8Mriqq_jXFljK24mBM9agaTXAeFw7_N2_1fG09Ptq8I037rGPT5vhee6DLxerx2h4fvalfxG35RdiDTbEIrZOGpEZoYmvacWlSROegww7wyx8iN_FyYWxiSi8Kz93XZtwoLABITfMGPoEHcEM7TOEJSlMlhaaWG1ZQvLCSYAODH7GOUadiVCyIbrSbW5yXyKjVMFHToVqFkrBQqmwUIpG6M12zLTJzPHP3qd-Lbc9fVbt0FDPblQrpIomzhmZpJZKMMssk5nRwLlOaG0TZrMIvQ2cAIOKifpGwl3C92UJd9GqsArgrFDUZ5UnETrZMIzaMLby-e24gANM6dX2Msi0d9Tkla2XoQ8ngLy7aYSeNvy1nTgFyAeYthshscN5O0-2e6WajEPecCANBbTM4DE2TPpzXn8n3fP_QboX6C7xUuZTkiYn6GgxW9qXAOcWRQcdZqOsg457vcHnAZxPz66uP0Frn_c74S-STpDiH4tHTok
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELfGJgQviG8CA4wETxAtsZPUfkCIwaaObdWENmlvXuKPtVKUlKZltH8UfyN3-egoH3ubVKVV4ri2787-nc93R8jrhFkZWaF9JgLjR5k1fpbFoKwkwiVayEAbVBQPB0n_JPpyGp-ukZ-dLwweq-zmxHqiNqXGPfItjAuWCLjwD-NvPmaNQutql0KjYYt9O78Ala16v_cZ6PuGsd2d4099v80q4GuAxlPfOmlEzwjNMFVTIk0cJimwpjORhQ_Dw4mJMDYUGVqoUxfYMImZNMC7JjKGQ703yAbADAlStLG9Mzj6utzVQbtZFMrWOyfgYquCFRK92Bj3OShTcF1ZAetEAQCMczSR_wvl_n1Y8w-Lbb0Q7t4ld1oESz82LHePrNniPrnZ5LScPyCLozKfj4dlNR4CjKUOz23no4Wd0MYhs6IAOaktFvM6WCxNC0OLsvB_vwPM8mNk4JtqWMs1KAq0dPQC1w06zvHkDj3H7QOKHnATWqXo3jmdPyQn10KKR2QdWmifECpZZnpxppnVNgpZmjkJ4CSCv3Eu4s54JOwGXek2-jkm4chVbYXnQjWEUkAoVRNKcY-8Xb4zbmJ_XFl6G2m5LIlxu-sb5eRctdOA4qFzRoax5RIUPxvJntEgG05obcPI9jzyruYEeCkbqe-srqX-PcuhFq0yqwAwC8Uxbj3zyGbHMKqdeyp1KSkeebV8DLMGmoLSwpazukzCANsHsUceN_y1bDgHUAmoOfCIWOG8lZ6tPilGwzoyOQwNBzweQTc6Jr1s1_-H7unV3XhJbvWPDw_Uwd5g_xm5zVCWMLRpuEnWp5OZfQ6wcJq9aGWRkrPrFv9ftQx1kg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELdGJxAviG8CA4wETxA1sZPUeUCIsVUbg6pCTNqbl_hjrRQlpR-M9k_jr-POSTrKx94mVWmVOK7tO_t-5_PdEfIyYSaNjFA-E4H2o9xoP89jUFYSYRMl0kBpVBQ_D5KD4-jjSXyyRX62vjB4rLJdE91CrSuFe-RdjAuWCLjwrm2ORQz3-u8m33zMIIWW1jadRs0iR2Z5Durb7O3hHtD6FWP9_a8fDvwmw4CvACbPfWNTLXpaKIZpm5JUx2GSAZtaHRn4MDyomAhtQpGjtTqzgQmTmKUa-FhHWnOo9xrZ7oFUFB2yvbs_GH5Z7_CgDS0K08ZTJ-CiOwNpiR5tjPscFCu4bkhDlzQAQHKB5vJ_Id6_D27-Yb11QrF_m9xq0Cx9X7PfHbJlyrvkep3fcnmPrIZVsZyMqtlkBJCWWjzDXYxXZkpr58wZBfhJTblausCxNCs1LavS__0OMM6PsYZvqkCuK1AaaGXpOcoQOinwFA89w60Eit5wUzrL0NVzvrxPjq-EFA9IB1poHhGaslz34lwxo0wUsiy3KQCVCP7G2ohb7ZGwHXSpmkjomJCjkM4iz4WsCSWBUNIRSnKPvF6_M6njgFxaehdpuS6JMbzdjWp6JpslQfLQWp2GseEpKIEmSntawTyxQikTRqbnkTeOE-ClfCy_M1eL-70ooBYlcyMBPAvJMYY988hOyzCyWYdm8mLWeOTF-jGsIGgWykpTLVyZhAHOD2KPPKz5a91wDgATEHTgEbHBeRs923xSjkcuSjkMDQdsHkE3Wia9aNf_h-7x5d14Tm7AtJefDgdHT8hNhlMJo5yGO6Qzny7MU0CI8_xZMxUpOb3q2f8LDbJ5vg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Polyphosphate+fertilizer+impacts+the+enzymatic+and+non-enzymatic+antioxidant+capacity+of+wheat+plants+grown+under+salinity&rft.jtitle=Scientific+reports&rft.au=Aicha+Loudari&rft.au=Salma+Latique&rft.au=Asmae+Mayane&rft.au=Gilles+Colinet&rft.date=2023-07-11&rft.pub=Nature+Portfolio&rft.eissn=2045-2322&rft.volume=13&rft.issue=1&rft.spage=1&rft.epage=17&rft_id=info:doi/10.1038%2Fs41598-023-38403-3&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_31ffd915e39642e497dcbb5f8cce14e7
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon