Maximal cyclic electron flow rate is independent of PGRL1 in Chlamydomonas

Cyclic electron flow (CEF) is defined as a return of the reductants from the acceptor side of Photosystem I (PSI) to the pool of its donors via the cytochrome b6f. It is described to be complementary to the linear electron flow and essential for photosynthesis. However, despite many efforts aimed to...

Full description

Saved in:
Bibliographic Details
Published inBiochimica et biophysica acta. Bioenergetics Vol. 1860; no. 5; pp. 425 - 432
Main Authors Nawrocki, W.J., Bailleul, B., Cardol, P., Rappaport, F., Wollman, F.-A., Joliot, P.
Format Journal Article Web Resource
LanguageEnglish
Published Netherlands Elsevier B.V 01.05.2019
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Cyclic electron flow (CEF) is defined as a return of the reductants from the acceptor side of Photosystem I (PSI) to the pool of its donors via the cytochrome b6f. It is described to be complementary to the linear electron flow and essential for photosynthesis. However, despite many efforts aimed to characterize CEF, its pathway and its regulation modes remain equivocal, and its physiological significance is still not clear. Here we use novel spectroscopic to measure the rate of CEF at the onset of light in the green alga Chlamydomonas reinhardtii. The initial redox state of the photosynthetic chain or the oxygen concentration do not modify the initial maximal rate of CEF (60 electrons per second per PSI) but rather strongly influence its duration. Neither the maximal rate nor the duration of CEF are different in the pgrl1 mutant compared to the wild type, disqualifying PGRL1 as the ferredoxin-plastoquinone oxidoreductase involved in the CEF mechanism. [Display omitted] •The maximal rate of cyclic electron flow is independent of PGRL1 in vivo.•Oxygen availability modifies the duration, but not the maximal rate of CEF.•The rate of CEF is determined by the redox state of both PSI donor and acceptor side.
AbstractList Cyclic electron flow (CEF) is defined as a return of the reductants from the acceptor side of Photosystem I (PSI) to the pool of its donors via the cytochrome b6f. It is described to be complementary to the linear electron flow and essential for photosynthesis. However, despite many efforts aimed to characterize CEF, its pathway and its regulation modes remain equivocal, and its physiological significance is still not clear. Here we use novel spectroscopic to measure the rate of CEF at the onset of light in the green alga Chlamydomonas reinhardtii. The initial redox state of the photosynthetic chain or the oxygen concentration do not modify the initial maximal rate of CEF (60 electrons per second per PSI) but rather strongly influence its duration. Neither the maximal rate nor the duration of CEF are different in the pgrl1 mutant compared to the wild type, disqualifying PGRL1 as the ferredoxin-plastoquinone oxidoreductase involved in the CEF mechanism.
Cyclic electron flow (CEF) is defined as a return of the reductants from the acceptor side of Photosystem I (PSI) to the pool of its donors via the cytochrome b6f. It is described to be complementary to the linear electron flow and essential for photosynthesis. However, despite many efforts aimed to characterize CEF, its pathway and its regulation modes remain equivocal, and its physiological significance is still not clear. Here we use novel spectroscopic to measure the rate of CEF at the onset of light in the green alga Chlamydomonas reinhardtii. The initial redox state of the photosynthetic chain or the oxygen concentration do not modify the initial maximal rate of CEF (60 electrons per second per PSI) but rather strongly influence its duration. Neither the maximal rate nor the duration of CEF are different in the pgrl1 mutant compared to the wild type, disqualifying PGRL1 as the ferredoxin-plastoquinone oxidoreductase involved in the CEF mechanism.Cyclic electron flow (CEF) is defined as a return of the reductants from the acceptor side of Photosystem I (PSI) to the pool of its donors via the cytochrome b6f. It is described to be complementary to the linear electron flow and essential for photosynthesis. However, despite many efforts aimed to characterize CEF, its pathway and its regulation modes remain equivocal, and its physiological significance is still not clear. Here we use novel spectroscopic to measure the rate of CEF at the onset of light in the green alga Chlamydomonas reinhardtii. The initial redox state of the photosynthetic chain or the oxygen concentration do not modify the initial maximal rate of CEF (60 electrons per second per PSI) but rather strongly influence its duration. Neither the maximal rate nor the duration of CEF are different in the pgrl1 mutant compared to the wild type, disqualifying PGRL1 as the ferredoxin-plastoquinone oxidoreductase involved in the CEF mechanism.
Cyclic electron flow (CEF) is defined as a return of the reductants from the acceptor side of Photosystem I (PSI) to the pool of its donors via the cytochrome b6f. It is described to be complementary to the linear electron flow and essential for photosynthesis. However, despite many efforts aimed to characterize CEF, its pathway and its regulation modes remain equivocal, and its physiological significance is still not clear. Here we use novel spectroscopic to measure the rate of CEF at the onset of light in the green alga Chlamydomonas reinhardtii. The initial redox state of the photosynthetic chain or the oxygen concentration do not modify the initial maximal rate of CEF (60 electrons per second per PSI) but rather strongly influence its duration. Neither the maximal rate nor the duration of CEF are different in the pgrl1 mutant compared to the wild type, disqualifying PGRL1 as the ferredoxin-plastoquinone reductase involved in the CEF mechanism.
Cyclic electron flow (CEF) is defined as a return of the reductants from the acceptor side of Photosystem I (PSI) to the pool of its donors via the cytochrome b f. It is described to be complementary to the linear electron flow and essential for photosynthesis. However, despite many efforts aimed to characterize CEF, its pathway and its regulation modes remain equivocal, and its physiological significance is still not clear. Here we use novel spectroscopic to measure the rate of CEF at the onset of light in the green alga Chlamydomonas reinhardtii. The initial redox state of the photosynthetic chain or the oxygen concentration do not modify the initial maximal rate of CEF (60 electrons per second per PSI) but rather strongly influence its duration. Neither the maximal rate nor the duration of CEF are different in the pgrl1 mutant compared to the wild type, disqualifying PGRL1 as the ferredoxin-plastoquinone oxidoreductase involved in the CEF mechanism.
Cyclic electron flow (CEF) is defined as a return of the reductants from the acceptor side of Photosystem I (PSI) to the pool of its donors via the cytochrome b6f. It is described to be complementary to the linear electron flow and essential for photosynthesis. However, despite many efforts aimed to characterize CEF, its pathway and its regulation modes remain equivocal, and its physiological significance is still not clear. Here we use novel spectroscopic to measure the rate of CEF at the onset of light in the green alga Chlamydomonas reinhardtii. The initial redox state of the photosynthetic chain or the oxygen concentration do not modify the initial maximal rate of CEF (60 electrons per second per PSI) but rather strongly influence its duration. Neither the maximal rate nor the duration of CEF are different in the pgrl1 mutant compared to the wild type, disqualifying PGRL1 as the ferredoxin-plastoquinone oxidoreductase involved in the CEF mechanism. [Display omitted] •The maximal rate of cyclic electron flow is independent of PGRL1 in vivo.•Oxygen availability modifies the duration, but not the maximal rate of CEF.•The rate of CEF is determined by the redox state of both PSI donor and acceptor side.
Author Nawrocki, W.J.
Wollman, F.-A.
Cardol, P.
Rappaport, F.
Joliot, P.
Bailleul, B.
Author_xml – sequence: 1
  givenname: W.J.
  surname: Nawrocki
  fullname: Nawrocki, W.J.
  organization: Institut de Biologie Physico-Chimique, UMR 7141 CNRS-Sorbonne Université, 13 rue P. et M. Curie, 75005 Paris, France
– sequence: 2
  givenname: B.
  surname: Bailleul
  fullname: Bailleul, B.
  organization: Institut de Biologie Physico-Chimique, UMR 7141 CNRS-Sorbonne Université, 13 rue P. et M. Curie, 75005 Paris, France
– sequence: 3
  givenname: P.
  surname: Cardol
  fullname: Cardol, P.
  organization: Laboratoire de Génétique et Physiologie des Microalgues, Institut de Botanique, Université de Liège, 4, Chemin de la Vallée, B-4000 Liège, Belgium
– sequence: 4
  givenname: F.
  surname: Rappaport
  fullname: Rappaport, F.
  organization: Institut de Biologie Physico-Chimique, UMR 7141 CNRS-Sorbonne Université, 13 rue P. et M. Curie, 75005 Paris, France
– sequence: 5
  givenname: F.-A.
  surname: Wollman
  fullname: Wollman, F.-A.
  email: wollman@ibpc.fr
  organization: Institut de Biologie Physico-Chimique, UMR 7141 CNRS-Sorbonne Université, 13 rue P. et M. Curie, 75005 Paris, France
– sequence: 6
  givenname: P.
  surname: Joliot
  fullname: Joliot, P.
  organization: Institut de Biologie Physico-Chimique, UMR 7141 CNRS-Sorbonne Université, 13 rue P. et M. Curie, 75005 Paris, France
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30711358$$D View this record in MEDLINE/PubMed
https://hal.sorbonne-universite.fr/hal-02351657$$DView record in HAL
BookMark eNqFkkFvFCEYhompsdvqPzBmjnqY9QMGhvFg0mxsq1mjMXomDHzbsmGHFWZX99-XdVoPHuwFyJfneQN5OSMnQxyQkJcU5hSofLue973pfZwzoN0c6BygeUJmVLVdzaSAEzIDAFGzlqlTcpbzGorWMP6MnHJoKeVCzcinz-a335hQ2YMN3lYY0I4pDtUqxF9VMiNWPld-cLjFsgxjFVfV16tvS1qG1eI2mM3BxU0cTH5Onq5MyPjifj8nPy4_fF9c18svVx8XF8vaCiXG2vWy6R0w5YxtQXTUCVBWoaGWNs5y0yGnvWolRyc7KVeqb7nolGO2s9AIfk74lBs83qCOqfd6z3Q0fjrvwo02VveoGZNKMy4VV8V6M1m3JuhtKm9Ohz_O9cVSH2fAuKBStHta2NcTu03x5w7zqDc-WwzBDBh3ueQyWvCOt4-jtO1EAwxkQV_do7t-g-7vJR7KKMC7CbAp5pxwpa0fzejjMCbjg6agj83rtZ6a18fmNVBdmi9y84_8kP-I9n7SsDS295h0th4Hi86n8hO0i_7_AXfflcX0
CitedBy_id crossref_primary_10_1016_j_envexpbot_2021_104665
crossref_primary_10_1071_FP24185
crossref_primary_10_1042_BCJ20210802
crossref_primary_10_1016_j_tplants_2021_12_004
crossref_primary_10_1007_s00338_023_02370_y
crossref_primary_10_1093_plcell_koaf042
crossref_primary_10_1038_s41477_020_00828_3
crossref_primary_10_1093_plphys_kiae608
crossref_primary_10_1038_s42003_025_07904_4
crossref_primary_10_1042_BST20211246
crossref_primary_10_1038_s41467_021_24107_7
crossref_primary_10_3389_fmars_2022_932355
crossref_primary_10_3389_fpls_2022_919896
crossref_primary_10_1042_BCJ20180648
crossref_primary_10_1111_nph_19328
crossref_primary_10_1016_j_bbabio_2021_148380
crossref_primary_10_1016_j_plantsci_2021_111053
crossref_primary_10_3389_fmars_2019_00656
crossref_primary_10_3389_fpls_2019_01700
crossref_primary_10_3390_bios12020067
crossref_primary_10_1016_j_jphotobiol_2024_113060
crossref_primary_10_3389_fpls_2021_661863
crossref_primary_10_1016_j_bbabio_2021_148449
crossref_primary_10_1111_nph_16643
crossref_primary_10_1093_plphys_kiac055
crossref_primary_10_3390_cells10092329
crossref_primary_10_3390_plants11020195
crossref_primary_10_1016_j_bbabio_2022_148909
crossref_primary_10_1016_j_tplants_2023_03_018
crossref_primary_10_3390_ijms24108712
crossref_primary_10_1016_j_biortech_2021_125217
crossref_primary_10_1016_j_isci_2021_102059
crossref_primary_10_1111_ppl_13404
crossref_primary_10_1021_acs_chemrev_0c00712
crossref_primary_10_1007_s11120_022_00900_3
crossref_primary_10_1016_j_hpj_2023_06_009
crossref_primary_10_1093_plphys_kiac575
crossref_primary_10_1093_pcp_pcz174
crossref_primary_10_3390_ijms23094927
crossref_primary_10_3390_cells10113128
crossref_primary_10_3390_plants13152103
Cites_doi 10.1073/pnas.50.3.544
10.1073/pnas.102306999
10.1038/nplants.2016.31
10.1038/nature02598
10.1016/0005-2728(84)90036-7
10.1104/pp.15.00105
10.1146/annurev-arplant-043015-112002
10.1007/BF00029815
10.1074/jbc.M804546200
10.1074/jbc.M114.632588
10.1073/pnas.1207118109
10.1007/s11120-010-9579-z
10.1111/nph.14536
10.1038/ncomms2954
10.3389/fpls.2015.00540
10.1007/s11120-016-0223-4
10.1093/embo-reports/kvf047
10.1104/pp.17.00421
10.1073/pnas.1606685113
10.1038/174394a0
10.1146/annurev-arplant-043014-114744
10.1023/A:1010785912271
10.1105/tpc.111.086876
10.1105/tpc.110.080291
10.1104/pp.113.233593
10.1038/nature08885
10.1016/j.molcel.2012.11.030
10.1074/jbc.M111.301101
10.1073/pnas.0806896105
10.1073/pnas.1110518109
10.1016/S1360-1385(02)00006-7
10.1104/pp.104.048256
10.1073/pnas.49.4.567
10.1016/S0092-8674(02)00867-X
10.1146/annurev.genet.42.110807.091452
10.1016/j.bbabio.2013.07.012
10.1016/j.bbabio.2004.03.010
10.1016/S0005-2728(96)00112-0
10.1016/j.bbabio.2009.07.009
10.1016/j.bbabio.2007.07.007
10.1016/0014-5793(75)80359-0
10.1016/j.bbabio.2014.01.024
10.1016/0005-2728(94)00195-B
ContentType Journal Article
Web Resource
Copyright 2019
Copyright © 2019. Published by Elsevier B.V.
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: 2019
– notice: Copyright © 2019. Published by Elsevier B.V.
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID AAYXX
CITATION
NPM
7X8
7S9
L.6
1XC
VOOES
Q33
DOI 10.1016/j.bbabio.2019.01.004
DatabaseName CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
Université de Liège - Open Repository and Bibliography (ORBI)
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA
MEDLINE - Academic

PubMed


Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
Biology
EISSN 1879-2650
1872-8006
EndPage 432
ExternalDocumentID oai_orbi_ulg_ac_be_2268_236838
oai_HAL_hal_02351657v1
30711358
10_1016_j_bbabio_2019_01_004
S0005272818302524
Genre Journal Article
GroupedDBID ---
--K
--M
.~1
0R~
1B1
1RT
1~.
1~5
23N
4.4
457
4G.
53G
5GY
5RE
5VS
6I.
6J9
7-5
71M
8P~
9JM
AABVA
AACTN
AAEDW
AAFTH
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATLK
AAXUO
ABGRD
ABGSF
ABMAC
ABUDA
ABVKL
ABYKQ
ACDAQ
ACIUM
ACRLP
ADBBV
ADEZE
ADQTV
ADUVX
AEBSH
AEHWI
AEKER
AEQOU
AEXQZ
AFKWA
AFTJW
AFXIZ
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CBWCG
CS3
DOVZS
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
IXB
J1W
KOM
LX3
M41
MO0
N9A
O-L
O9-
OAUVE
OK1
OZT
P-8
P-9
PC.
Q38
ROL
RPZ
SCC
SDF
SDG
SDP
SES
SSA
SSU
SSZ
T5K
WH7
XPP
~G-
3O-
AAEDT
AAHBH
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABFNM
ABWVN
ABXDB
ACRPL
ADMUD
ADNMO
ADVLN
AEIPS
AFFNX
AFJKZ
AGCQF
AGHFR
AGQPQ
AGRNS
AIIUN
ANKPU
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
FEDTE
FGOYB
G-2
HLW
HVGLF
HZ~
R2-
SBG
SEW
SSH
WUQ
XJT
ZKB
NPM
7X8
7S9
L.6
1XC
ABEFU
ACVFH
ADCNI
AEUPX
AFPUW
AGRDE
AIGII
AKBMS
AKRWK
AKYEP
APXCP
EFKBS
OHT
SPCBC
UQL
VOOES
Q33
ID FETCH-LOGICAL-c585t-db64bd028dac70591d508c8ea1c14dc3a9e31b8763ed6966f8b73598d2c9c0453
IEDL.DBID IXB
ISSN 0005-2728
1879-2650
0304-4165
IngestDate Fri Aug 01 18:58:20 EDT 2025
Tue Aug 26 06:21:58 EDT 2025
Thu Jul 10 18:11:39 EDT 2025
Fri Jul 11 05:12:09 EDT 2025
Thu Apr 03 07:11:07 EDT 2025
Tue Jul 01 04:32:09 EDT 2025
Thu Apr 24 23:11:15 EDT 2025
Fri Feb 23 02:27:33 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords Photosystem I
Cytochrome b6f
Cyclic electron flow
Anoxia
Photosynthesis
photosystem I
cytochrome b6f
anoxia
cyclic electron flow
Language English
License Copyright © 2019. Published by Elsevier B.V.
Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c585t-db64bd028dac70591d508c8ea1c14dc3a9e31b8763ed6966f8b73598d2c9c0453
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
scopus-id:2-s2.0-85061637952
info:eu-repo/grantAgreement/EC/H2020/682580
ORCID 0000-0001-5124-3000
OpenAccessLink https://hal.sorbonne-universite.fr/hal-02351657
PMID 30711358
PQID 2179540206
PQPubID 23479
PageCount 8
ParticipantIDs liege_orbi_v2_oai_orbi_ulg_ac_be_2268_236838
hal_primary_oai_HAL_hal_02351657v1
proquest_miscellaneous_2221023937
proquest_miscellaneous_2179540206
pubmed_primary_30711358
crossref_citationtrail_10_1016_j_bbabio_2019_01_004
crossref_primary_10_1016_j_bbabio_2019_01_004
elsevier_sciencedirect_doi_10_1016_j_bbabio_2019_01_004
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-05-01
PublicationDateYYYYMMDD 2019-05-01
PublicationDate_xml – month: 05
  year: 2019
  text: 2019-05-01
  day: 01
PublicationDecade 2010
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle Biochimica et biophysica acta. Bioenergetics
PublicationTitleAlternate Biochim Biophys Acta Bioenerg
PublicationYear 2019
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References Jans, Mignolet, Houyoux, Cardol, Ghysels, Cuine, Cournac, Peltier, Remacle, Franck (bb0060) 2008; 105
Munekage, Hojo, Meurer, Endo, Tasaka, Shikanai (bb0190) 2002; 110
Alric (bb0215) 2015; 6
Fan, Fitzpatrick, Oguchi, Ma, Kou, Chow (bb0025) 2016; 129
Nawrocki, Santabarbara, Mosebach, Wollman, Rappaport (bb0130) 2016; 2
Godaux, Bailleul, Berne, Cardol (bb0080) 2015; 168
Bendall, Manasse (bb0020) 1995; 1229
Hertle, Blunder, Wunder, Pesaresi, Pribil, Armbruster, Leister (bb0045) 2013; 49
Eberhard, Finazzi, Wollman (bb0005) 2008; 42
Yamori, Shikanai (bb0185) 2016; 67
Drop, Webber-Birungi, Fusetti, Kouril, Redding, Boekema, Croce (bb0150) 2011; 286
Mitchell (bb0070) 1975; 59
Cleland, Bendall (bb0035) 1992; 34
Arnon, Allen, Whatley (bb0015) 1954; 174
Drop, Webber-Birungi, Yadav, Filipowicz-Szymanska, Fusetti, Boekema, Croce (bb0155) 2014; 1837
Alric, Lavergne, Rappaport (bb0075) 2010; 1797
Desplats, Mus, Cuine, Billon, Cournac, Peltier (bb0055) 2009; 284
Sacksteder, Kramer (bb0100) 2000; 66
Tagawa, Tsujimoto, Arnon (bb0030) 1963; 49
Takahashi, Clowez, Wollman, Vallon, Rappaport (bb0125) 2013; 4
Ilik, Pavlovic, Kouril, Alboresi, Morosinotto, Allahverdiyeva, Aro, Yamamoto, Shikanai (bb0160) 2017; 214
Chaux, Burlacot, Mekhalfi, Auroy, Blangy, Richaud, Peltier (bb0165) 2017; 174
Clowez, Godaux, Cardol, Wollman, Rappaport (bb0135) 2015; 290
Nandha, Finazzi, Joliot, Hald, Johnson (bb0180) 2007; 1767
Tolleter, Ghysels, Alric, Petroutsos, Tolstygina, Krawietz, Happe, Auroy, Adriano, Beyly, Cuine, Plet, Reiter, Genty, Cournac, Hippler, Peltier (bb0095) 2011; 23
Brettel (bb0115) 1997; 1318
Joliot, Beal, Joliot (bb0120) 2004; 1656
Joliot, Joliot (bb0105) 2002; 99
Forti, Caldiroli (bb0175) 2005; 137
Alric (bb0145) 2014; 1837
Johnson, Steinbeck, Dent, Takahashi, Richaud, Ozawa, Houille-Vernes, Petroutsos, Rappaport, Grossman, Niyogi, Hippler, Alric (bb0200) 2014; 165
Allen (bb0010) 2003; 8
Nawrocki, Tourasse, Taly, Rappaport, Wollman (bb0065) 2015; 66
Tagawa, Tsujimoto, Arnon (bb0085) 1963; 50
Iwai, Takizawa, Tokutsu, Okamuro, Takahashi, Minagawa (bb0205) 2010; 464
Yamamoto, Peng, Fukao, Shikanai (bb0050) 2011; 23
Bailleul, Cardol, Breyton, Finazzi (bb0110) 2010; 106
Houille-Vernes, Rappaport, Wollman, Alric, Johnson (bb0090) 2011; 108
Gerotto, Alboresi, Meneghesso, Jokel, Suorsa, Aro, Morosinotto (bb0170) 2016; 113
Munekage, Hashimoto, Miyake, Tomizawa, Endo, Tasaka, Shikanai (bb0195) 2004; 429
Moss, Bendall (bb0040) 1984; 767
Finazzi, Rappaport, Furia, Fleischmann, Rochaix, Zito, Forti (bb0140) 2002; 3
Terashima, Petroutsos, Hudig, Tolstygina, Trompelt, Gabelein, Fufezan, Kudla, Weinl, Finazzi, Hippler (bb0210) 2012; 109
Drop (10.1016/j.bbabio.2019.01.004_bb0150) 2011; 286
Joliot (10.1016/j.bbabio.2019.01.004_bb0120) 2004; 1656
Moss (10.1016/j.bbabio.2019.01.004_bb0040) 1984; 767
Alric (10.1016/j.bbabio.2019.01.004_bb0075) 2010; 1797
Iwai (10.1016/j.bbabio.2019.01.004_bb0205) 2010; 464
Bendall (10.1016/j.bbabio.2019.01.004_bb0020) 1995; 1229
Cleland (10.1016/j.bbabio.2019.01.004_bb0035) 1992; 34
Mitchell (10.1016/j.bbabio.2019.01.004_bb0070) 1975; 59
Godaux (10.1016/j.bbabio.2019.01.004_bb0080) 2015; 168
Joliot (10.1016/j.bbabio.2019.01.004_bb0105) 2002; 99
Finazzi (10.1016/j.bbabio.2019.01.004_bb0140) 2002; 3
Takahashi (10.1016/j.bbabio.2019.01.004_bb0125) 2013; 4
Yamori (10.1016/j.bbabio.2019.01.004_bb0185) 2016; 67
Desplats (10.1016/j.bbabio.2019.01.004_bb0055) 2009; 284
Forti (10.1016/j.bbabio.2019.01.004_bb0175) 2005; 137
Nandha (10.1016/j.bbabio.2019.01.004_bb0180) 2007; 1767
Munekage (10.1016/j.bbabio.2019.01.004_bb0190) 2002; 110
Gerotto (10.1016/j.bbabio.2019.01.004_bb0170) 2016; 113
Drop (10.1016/j.bbabio.2019.01.004_bb0155) 2014; 1837
Hertle (10.1016/j.bbabio.2019.01.004_bb0045) 2013; 49
Sacksteder (10.1016/j.bbabio.2019.01.004_bb0100) 2000; 66
Johnson (10.1016/j.bbabio.2019.01.004_bb0200) 2014; 165
Arnon (10.1016/j.bbabio.2019.01.004_bb0015) 1954; 174
Alric (10.1016/j.bbabio.2019.01.004_bb0145) 2014; 1837
Yamamoto (10.1016/j.bbabio.2019.01.004_bb0050) 2011; 23
Alric (10.1016/j.bbabio.2019.01.004_bb0215) 2015; 6
Tagawa (10.1016/j.bbabio.2019.01.004_bb0030) 1963; 49
Nawrocki (10.1016/j.bbabio.2019.01.004_bb0065) 2015; 66
Allen (10.1016/j.bbabio.2019.01.004_bb0010) 2003; 8
Houille-Vernes (10.1016/j.bbabio.2019.01.004_bb0090) 2011; 108
Tagawa (10.1016/j.bbabio.2019.01.004_bb0085) 1963; 50
Bailleul (10.1016/j.bbabio.2019.01.004_bb0110) 2010; 106
Tolleter (10.1016/j.bbabio.2019.01.004_bb0095) 2011; 23
Chaux (10.1016/j.bbabio.2019.01.004_bb0165) 2017; 174
Terashima (10.1016/j.bbabio.2019.01.004_bb0210) 2012; 109
Jans (10.1016/j.bbabio.2019.01.004_bb0060) 2008; 105
Clowez (10.1016/j.bbabio.2019.01.004_bb0135) 2015; 290
Ilik (10.1016/j.bbabio.2019.01.004_bb0160) 2017; 214
Eberhard (10.1016/j.bbabio.2019.01.004_bb0005) 2008; 42
Fan (10.1016/j.bbabio.2019.01.004_bb0025) 2016; 129
Brettel (10.1016/j.bbabio.2019.01.004_bb0115) 1997; 1318
Nawrocki (10.1016/j.bbabio.2019.01.004_bb0130) 2016; 2
Munekage (10.1016/j.bbabio.2019.01.004_bb0195) 2004; 429
References_xml – volume: 2
  start-page: 16031
  year: 2016
  ident: bb0130
  article-title: State transitions redistribute rather than dissipate energy between the two photosystems in Chlamydomonas
  publication-title: Nat. Plants
– volume: 113
  start-page: 12322
  year: 2016
  end-page: 12327
  ident: bb0170
  article-title: Flavodiiron proteins act as safety valve for electrons in Physcomitrella patens
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 23
  start-page: 2619
  year: 2011
  end-page: 2630
  ident: bb0095
  article-title: Control of hydrogen photoproduction by the proton gradient generated by cyclic electron flow in Chlamydomonas reinhardtii
  publication-title: Plant Cell
– volume: 108
  start-page: 20820
  year: 2011
  end-page: 20825
  ident: bb0090
  article-title: Plastid terminal oxidase 2 (PTOX2) is the major oxidase involved in chlororespiration in Chlamydomonas
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 137
  start-page: 492
  year: 2005
  end-page: 499
  ident: bb0175
  article-title: State transitions in Chlamydomonas reinhardtii. The role of the Mehler reaction in state 2-to-state 1 transition
  publication-title: Plant Physiol.
– volume: 105
  start-page: 20546
  year: 2008
  end-page: 20551
  ident: bb0060
  article-title: A type II NAD(P)H dehydrogenase mediates light-independent plastoquinone reduction in the chloroplast of Chlamydomonas
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 23
  start-page: 1480
  year: 2011
  end-page: 1493
  ident: bb0050
  article-title: An Src homology 3 domain-like fold protein forms a ferredoxin binding site for the chloroplast NADH dehydrogenase-like complex in Arabidopsis
  publication-title: Plant Cell
– volume: 66
  start-page: 49
  year: 2015
  end-page: 74
  ident: bb0065
  article-title: The plastid terminal oxidase: its elusive function points to multiple contributions to plastid physiology
  publication-title: Annu. Rev. Plant Biol.
– volume: 67
  start-page: 81
  year: 2016
  end-page: 106
  ident: bb0185
  article-title: Physiological functions of cyclic electron transport around photosystem I in sustaining photosynthesis and plant growth
  publication-title: Annu. Rev. Plant Biol.
– volume: 42
  start-page: 463
  year: 2008
  end-page: 515
  ident: bb0005
  article-title: The dynamics of photosynthesis
  publication-title: Annu. Rev. Genet.
– volume: 129
  start-page: 239
  year: 2016
  end-page: 251
  ident: bb0025
  article-title: Obstacles in the quantification of the cyclic electron flux around photosystem I in leaves of C3 plants
  publication-title: Photosynth. Res.
– volume: 34
  start-page: 409
  year: 1992
  end-page: 418
  ident: bb0035
  article-title: Photosystem I cyclic electron transport: measurement of ferredoxin-plastoquinone reductase activity
  publication-title: Photosynth. Res.
– volume: 49
  start-page: 511
  year: 2013
  end-page: 523
  ident: bb0045
  article-title: PGRL1 is the elusive ferredoxin-plastoquinone reductase in photosynthetic cyclic electron flow
  publication-title: Mol. Cell
– volume: 168
  start-page: 648
  year: 2015
  end-page: 658
  ident: bb0080
  article-title: Induction of photosynthetic carbon fixation in anoxia relies on hydrogenase activity and proton-gradient regulation-like1-mediated cyclic electron flow in
  publication-title: Plant Physiol.
– volume: 286
  start-page: 44878
  year: 2011
  end-page: 44887
  ident: bb0150
  article-title: Photosystem I of Chlamydomonas reinhardtii contains nine light-harvesting complexes (Lhca) located on one side of the core
  publication-title: J. Biol. Chem.
– volume: 6
  start-page: 540
  year: 2015
  ident: bb0215
  article-title: The plastoquinone pool, poised for cyclic electron flow?
  publication-title: Front. Plant Sci.
– volume: 59
  start-page: 137
  year: 1975
  end-page: 139
  ident: bb0070
  article-title: The protonmotive Q cycle: a general formulation
  publication-title: FEBS Lett.
– volume: 50
  start-page: 544
  year: 1963
  end-page: 549
  ident: bb0085
  article-title: Separation by monochromatic light of photosynthetic phosphorylation from oxygen evolution
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 66
  start-page: 145
  year: 2000
  end-page: 158
  ident: bb0100
  article-title: Dark-interval relaxation kinetics (DIRK) of absorbance changes as a quantitative probe of steady-state electron transfer
  publication-title: Photosynth. Res.
– volume: 1656
  start-page: 166
  year: 2004
  end-page: 176
  ident: bb0120
  article-title: Cyclic electron flow under saturating excitation of dark-adapted Arabidopsis leaves
  publication-title: Biochim. Biophys. Acta
– volume: 464
  start-page: 1210
  year: 2010
  end-page: 1213
  ident: bb0205
  article-title: Isolation of the elusive supercomplex that drives cyclic electron flow in photosynthesis
  publication-title: Nature
– volume: 109
  start-page: 17717
  year: 2012
  end-page: 17722
  ident: bb0210
  article-title: Calcium-dependent regulation of cyclic photosynthetic electron transfer by a CAS, ANR1, and PGRL1 complex
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 1837
  start-page: 825
  year: 2014
  end-page: 834
  ident: bb0145
  article-title: Redox and ATP control of photosynthetic cyclic electron flow in Chlamydomonas reinhardtii: (II) involvement of the PGR5-PGRL1 pathway under anaerobic conditions
  publication-title: Biochim. Biophys. Acta
– volume: 174
  start-page: 1825
  year: 2017
  end-page: 1836
  ident: bb0165
  article-title: Flavodiiron proteins promote fast and transient O
  publication-title: Plant Physiol.
– volume: 284
  start-page: 4148
  year: 2009
  end-page: 4157
  ident: bb0055
  article-title: Characterization of Nda2, a plastoquinone-reducing type II NAD(P)H dehydrogenase in chlamydomonas chloroplasts
  publication-title: J. Biol. Chem.
– volume: 99
  start-page: 10209
  year: 2002
  end-page: 10214
  ident: bb0105
  article-title: Cyclic electron transfer in plant leaf
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 290
  start-page: 8666
  year: 2015
  end-page: 8676
  ident: bb0135
  article-title: The involvement of hydrogen-producing and ATP-dependent NADPH-consuming pathways in setting the redox poise in the chloroplast of Chlamydomonas reinhardtii in anoxia
  publication-title: J. Biol. Chem.
– volume: 110
  start-page: 361
  year: 2002
  end-page: 371
  ident: bb0190
  article-title: PGR5 is involved in cyclic electron flow around photosystem I and is essential for photoprotection in Arabidopsis
  publication-title: Cell
– volume: 4
  start-page: 1954
  year: 2013
  ident: bb0125
  article-title: Cyclic electron flow is redox-controlled but independent of state transition
  publication-title: Nat. Commun.
– volume: 1767
  start-page: 1252
  year: 2007
  end-page: 1259
  ident: bb0180
  article-title: The role of PGR5 in the redox poising of photosynthetic electron transport
  publication-title: Biochim. Biophys. Acta
– volume: 174
  start-page: 394
  year: 1954
  end-page: 396
  ident: bb0015
  article-title: Photosynthesis by isolated chloroplasts
  publication-title: Nature
– volume: 1229
  start-page: 23
  year: 1995
  end-page: 38
  ident: bb0020
  article-title: Cyclic photophosphorylation and electron transport
  publication-title: Biochim. Biophys. Acta Bioenerg.
– volume: 767
  start-page: 389
  year: 1984
  end-page: 395
  ident: bb0040
  article-title: Cyclic electron transport in chloroplasts. The Q-cycle and the site of action of antimycin
  publication-title: Biochim. Biophys. Acta Bioenerg.
– volume: 8
  start-page: 15
  year: 2003
  end-page: 19
  ident: bb0010
  article-title: Cyclic, pseudocyclic and noncyclic photophosphorylation: new links in the chain
  publication-title: Trends Plant Sci.
– volume: 3
  start-page: 280
  year: 2002
  end-page: 285
  ident: bb0140
  article-title: Involvement of state transitions in the switch between linear and cyclic electron flow in Chlamydomonas reinhardtii
  publication-title: EMBO Rep.
– volume: 1318
  start-page: 322
  year: 1997
  end-page: 373
  ident: bb0115
  article-title: Electron transfer and arrangement of the redox cofactors in photosystem I
  publication-title: Biochim. Biophys. Acta Bioenerg.
– volume: 1797
  start-page: 44
  year: 2010
  end-page: 51
  ident: bb0075
  article-title: Redox and ATP control of photosynthetic cyclic electron flow in Chlamydomonas reinhardtii (I) aerobic conditions
  publication-title: Biochim. Biophys. Acta
– volume: 1837
  start-page: 63
  year: 2014
  end-page: 72
  ident: bb0155
  article-title: Light-harvesting complex II (LHCII) and its supramolecular organization in Chlamydomonas reinhardtii
  publication-title: Biochim. Biophys. Acta
– volume: 214
  start-page: 967
  year: 2017
  end-page: 972
  ident: bb0160
  article-title: Alternative electron transport mediated by flavodiiron proteins is operational in organisms from cyanobacteria up to gymnosperms
  publication-title: New Phytol.
– volume: 49
  start-page: 567
  year: 1963
  end-page: 572
  ident: bb0030
  article-title: Role of chloroplast ferredoxin in the energy conversion process of photosynthesis
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 165
  start-page: 438
  year: 2014
  end-page: 452
  ident: bb0200
  article-title: Proton gradient regulation 5-mediated cyclic electron flow under ATP- or redox-limited conditions: a study of DeltaATpase pgr5 and DeltarbcL pgr5 mutants in the green alga Chlamydomonas reinhardtii
  publication-title: Plant Physiol.
– volume: 429
  start-page: 579
  year: 2004
  ident: bb0195
  article-title: Cyclic electron flow around photosystem I is essential for photosynthesis
  publication-title: Nature
– volume: 106
  start-page: 179
  year: 2010
  end-page: 189
  ident: bb0110
  article-title: Electrochromism: a useful probe to study algal photosynthesis
  publication-title: Photosynth. Res.
– volume: 50
  start-page: 544
  year: 1963
  ident: 10.1016/j.bbabio.2019.01.004_bb0085
  article-title: Separation by monochromatic light of photosynthetic phosphorylation from oxygen evolution
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.50.3.544
– volume: 99
  start-page: 10209
  year: 2002
  ident: 10.1016/j.bbabio.2019.01.004_bb0105
  article-title: Cyclic electron transfer in plant leaf
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.102306999
– volume: 2
  start-page: 16031
  year: 2016
  ident: 10.1016/j.bbabio.2019.01.004_bb0130
  article-title: State transitions redistribute rather than dissipate energy between the two photosystems in Chlamydomonas
  publication-title: Nat. Plants
  doi: 10.1038/nplants.2016.31
– volume: 429
  start-page: 579
  year: 2004
  ident: 10.1016/j.bbabio.2019.01.004_bb0195
  article-title: Cyclic electron flow around photosystem I is essential for photosynthesis
  publication-title: Nature
  doi: 10.1038/nature02598
– volume: 767
  start-page: 389
  year: 1984
  ident: 10.1016/j.bbabio.2019.01.004_bb0040
  article-title: Cyclic electron transport in chloroplasts. The Q-cycle and the site of action of antimycin
  publication-title: Biochim. Biophys. Acta Bioenerg.
  doi: 10.1016/0005-2728(84)90036-7
– volume: 168
  start-page: 648
  year: 2015
  ident: 10.1016/j.bbabio.2019.01.004_bb0080
  article-title: Induction of photosynthetic carbon fixation in anoxia relies on hydrogenase activity and proton-gradient regulation-like1-mediated cyclic electron flow in Chlamydomonas reinhardtii
  publication-title: Plant Physiol.
  doi: 10.1104/pp.15.00105
– volume: 67
  start-page: 81
  year: 2016
  ident: 10.1016/j.bbabio.2019.01.004_bb0185
  article-title: Physiological functions of cyclic electron transport around photosystem I in sustaining photosynthesis and plant growth
  publication-title: Annu. Rev. Plant Biol.
  doi: 10.1146/annurev-arplant-043015-112002
– volume: 34
  start-page: 409
  year: 1992
  ident: 10.1016/j.bbabio.2019.01.004_bb0035
  article-title: Photosystem I cyclic electron transport: measurement of ferredoxin-plastoquinone reductase activity
  publication-title: Photosynth. Res.
  doi: 10.1007/BF00029815
– volume: 284
  start-page: 4148
  year: 2009
  ident: 10.1016/j.bbabio.2019.01.004_bb0055
  article-title: Characterization of Nda2, a plastoquinone-reducing type II NAD(P)H dehydrogenase in chlamydomonas chloroplasts
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M804546200
– volume: 290
  start-page: 8666
  year: 2015
  ident: 10.1016/j.bbabio.2019.01.004_bb0135
  article-title: The involvement of hydrogen-producing and ATP-dependent NADPH-consuming pathways in setting the redox poise in the chloroplast of Chlamydomonas reinhardtii in anoxia
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M114.632588
– volume: 109
  start-page: 17717
  year: 2012
  ident: 10.1016/j.bbabio.2019.01.004_bb0210
  article-title: Calcium-dependent regulation of cyclic photosynthetic electron transfer by a CAS, ANR1, and PGRL1 complex
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1207118109
– volume: 106
  start-page: 179
  year: 2010
  ident: 10.1016/j.bbabio.2019.01.004_bb0110
  article-title: Electrochromism: a useful probe to study algal photosynthesis
  publication-title: Photosynth. Res.
  doi: 10.1007/s11120-010-9579-z
– volume: 214
  start-page: 967
  year: 2017
  ident: 10.1016/j.bbabio.2019.01.004_bb0160
  article-title: Alternative electron transport mediated by flavodiiron proteins is operational in organisms from cyanobacteria up to gymnosperms
  publication-title: New Phytol.
  doi: 10.1111/nph.14536
– volume: 4
  start-page: 1954
  year: 2013
  ident: 10.1016/j.bbabio.2019.01.004_bb0125
  article-title: Cyclic electron flow is redox-controlled but independent of state transition
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms2954
– volume: 6
  start-page: 540
  year: 2015
  ident: 10.1016/j.bbabio.2019.01.004_bb0215
  article-title: The plastoquinone pool, poised for cyclic electron flow?
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2015.00540
– volume: 129
  start-page: 239
  year: 2016
  ident: 10.1016/j.bbabio.2019.01.004_bb0025
  article-title: Obstacles in the quantification of the cyclic electron flux around photosystem I in leaves of C3 plants
  publication-title: Photosynth. Res.
  doi: 10.1007/s11120-016-0223-4
– volume: 3
  start-page: 280
  year: 2002
  ident: 10.1016/j.bbabio.2019.01.004_bb0140
  article-title: Involvement of state transitions in the switch between linear and cyclic electron flow in Chlamydomonas reinhardtii
  publication-title: EMBO Rep.
  doi: 10.1093/embo-reports/kvf047
– volume: 174
  start-page: 1825
  issue: 3
  year: 2017
  ident: 10.1016/j.bbabio.2019.01.004_bb0165
  article-title: Flavodiiron proteins promote fast and transient O2 photoreduction in Chlamydomonas
  publication-title: Plant Physiol.
  doi: 10.1104/pp.17.00421
– volume: 113
  start-page: 12322
  year: 2016
  ident: 10.1016/j.bbabio.2019.01.004_bb0170
  article-title: Flavodiiron proteins act as safety valve for electrons in Physcomitrella patens
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1606685113
– volume: 174
  start-page: 394
  year: 1954
  ident: 10.1016/j.bbabio.2019.01.004_bb0015
  article-title: Photosynthesis by isolated chloroplasts
  publication-title: Nature
  doi: 10.1038/174394a0
– volume: 66
  start-page: 49
  year: 2015
  ident: 10.1016/j.bbabio.2019.01.004_bb0065
  article-title: The plastid terminal oxidase: its elusive function points to multiple contributions to plastid physiology
  publication-title: Annu. Rev. Plant Biol.
  doi: 10.1146/annurev-arplant-043014-114744
– volume: 66
  start-page: 145
  year: 2000
  ident: 10.1016/j.bbabio.2019.01.004_bb0100
  article-title: Dark-interval relaxation kinetics (DIRK) of absorbance changes as a quantitative probe of steady-state electron transfer
  publication-title: Photosynth. Res.
  doi: 10.1023/A:1010785912271
– volume: 23
  start-page: 2619
  year: 2011
  ident: 10.1016/j.bbabio.2019.01.004_bb0095
  article-title: Control of hydrogen photoproduction by the proton gradient generated by cyclic electron flow in Chlamydomonas reinhardtii
  publication-title: Plant Cell
  doi: 10.1105/tpc.111.086876
– volume: 23
  start-page: 1480
  year: 2011
  ident: 10.1016/j.bbabio.2019.01.004_bb0050
  article-title: An Src homology 3 domain-like fold protein forms a ferredoxin binding site for the chloroplast NADH dehydrogenase-like complex in Arabidopsis
  publication-title: Plant Cell
  doi: 10.1105/tpc.110.080291
– volume: 165
  start-page: 438
  year: 2014
  ident: 10.1016/j.bbabio.2019.01.004_bb0200
  article-title: Proton gradient regulation 5-mediated cyclic electron flow under ATP- or redox-limited conditions: a study of DeltaATpase pgr5 and DeltarbcL pgr5 mutants in the green alga Chlamydomonas reinhardtii
  publication-title: Plant Physiol.
  doi: 10.1104/pp.113.233593
– volume: 464
  start-page: 1210
  year: 2010
  ident: 10.1016/j.bbabio.2019.01.004_bb0205
  article-title: Isolation of the elusive supercomplex that drives cyclic electron flow in photosynthesis
  publication-title: Nature
  doi: 10.1038/nature08885
– volume: 49
  start-page: 511
  year: 2013
  ident: 10.1016/j.bbabio.2019.01.004_bb0045
  article-title: PGRL1 is the elusive ferredoxin-plastoquinone reductase in photosynthetic cyclic electron flow
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2012.11.030
– volume: 286
  start-page: 44878
  year: 2011
  ident: 10.1016/j.bbabio.2019.01.004_bb0150
  article-title: Photosystem I of Chlamydomonas reinhardtii contains nine light-harvesting complexes (Lhca) located on one side of the core
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M111.301101
– volume: 105
  start-page: 20546
  year: 2008
  ident: 10.1016/j.bbabio.2019.01.004_bb0060
  article-title: A type II NAD(P)H dehydrogenase mediates light-independent plastoquinone reduction in the chloroplast of Chlamydomonas
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.0806896105
– volume: 108
  start-page: 20820
  year: 2011
  ident: 10.1016/j.bbabio.2019.01.004_bb0090
  article-title: Plastid terminal oxidase 2 (PTOX2) is the major oxidase involved in chlororespiration in Chlamydomonas
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1110518109
– volume: 8
  start-page: 15
  year: 2003
  ident: 10.1016/j.bbabio.2019.01.004_bb0010
  article-title: Cyclic, pseudocyclic and noncyclic photophosphorylation: new links in the chain
  publication-title: Trends Plant Sci.
  doi: 10.1016/S1360-1385(02)00006-7
– volume: 137
  start-page: 492
  year: 2005
  ident: 10.1016/j.bbabio.2019.01.004_bb0175
  article-title: State transitions in Chlamydomonas reinhardtii. The role of the Mehler reaction in state 2-to-state 1 transition
  publication-title: Plant Physiol.
  doi: 10.1104/pp.104.048256
– volume: 49
  start-page: 567
  year: 1963
  ident: 10.1016/j.bbabio.2019.01.004_bb0030
  article-title: Role of chloroplast ferredoxin in the energy conversion process of photosynthesis
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.49.4.567
– volume: 110
  start-page: 361
  year: 2002
  ident: 10.1016/j.bbabio.2019.01.004_bb0190
  article-title: PGR5 is involved in cyclic electron flow around photosystem I and is essential for photoprotection in Arabidopsis
  publication-title: Cell
  doi: 10.1016/S0092-8674(02)00867-X
– volume: 42
  start-page: 463
  year: 2008
  ident: 10.1016/j.bbabio.2019.01.004_bb0005
  article-title: The dynamics of photosynthesis
  publication-title: Annu. Rev. Genet.
  doi: 10.1146/annurev.genet.42.110807.091452
– volume: 1837
  start-page: 63
  year: 2014
  ident: 10.1016/j.bbabio.2019.01.004_bb0155
  article-title: Light-harvesting complex II (LHCII) and its supramolecular organization in Chlamydomonas reinhardtii
  publication-title: Biochim. Biophys. Acta
  doi: 10.1016/j.bbabio.2013.07.012
– volume: 1656
  start-page: 166
  year: 2004
  ident: 10.1016/j.bbabio.2019.01.004_bb0120
  article-title: Cyclic electron flow under saturating excitation of dark-adapted Arabidopsis leaves
  publication-title: Biochim. Biophys. Acta
  doi: 10.1016/j.bbabio.2004.03.010
– volume: 1318
  start-page: 322
  year: 1997
  ident: 10.1016/j.bbabio.2019.01.004_bb0115
  article-title: Electron transfer and arrangement of the redox cofactors in photosystem I
  publication-title: Biochim. Biophys. Acta Bioenerg.
  doi: 10.1016/S0005-2728(96)00112-0
– volume: 1797
  start-page: 44
  year: 2010
  ident: 10.1016/j.bbabio.2019.01.004_bb0075
  article-title: Redox and ATP control of photosynthetic cyclic electron flow in Chlamydomonas reinhardtii (I) aerobic conditions
  publication-title: Biochim. Biophys. Acta
  doi: 10.1016/j.bbabio.2009.07.009
– volume: 1767
  start-page: 1252
  year: 2007
  ident: 10.1016/j.bbabio.2019.01.004_bb0180
  article-title: The role of PGR5 in the redox poising of photosynthetic electron transport
  publication-title: Biochim. Biophys. Acta
  doi: 10.1016/j.bbabio.2007.07.007
– volume: 59
  start-page: 137
  year: 1975
  ident: 10.1016/j.bbabio.2019.01.004_bb0070
  article-title: The protonmotive Q cycle: a general formulation
  publication-title: FEBS Lett.
  doi: 10.1016/0014-5793(75)80359-0
– volume: 1837
  start-page: 825
  year: 2014
  ident: 10.1016/j.bbabio.2019.01.004_bb0145
  article-title: Redox and ATP control of photosynthetic cyclic electron flow in Chlamydomonas reinhardtii: (II) involvement of the PGR5-PGRL1 pathway under anaerobic conditions
  publication-title: Biochim. Biophys. Acta
  doi: 10.1016/j.bbabio.2014.01.024
– volume: 1229
  start-page: 23
  issn: 0005-2728
  issue: 1
  year: 1995
  ident: 10.1016/j.bbabio.2019.01.004_bb0020
  article-title: Cyclic photophosphorylation and electron transport
  publication-title: Biochim. Biophys. Acta Bioenerg.
  doi: 10.1016/0005-2728(94)00195-B
RestrictionsOnAccess restricted access
SSID ssj0016423
ssj0000595
Score 2.4600134
Snippet Cyclic electron flow (CEF) is defined as a return of the reductants from the acceptor side of Photosystem I (PSI) to the pool of its donors via the cytochrome...
SourceID liege
hal
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 425
SubjectTerms Anoxia
Biochemistry, biophysics & molecular biology
Biochimie, biophysique & biologie moléculaire
Biologie végétale (sciences végétales, sylviculture, mycologie...)
Chemical Sciences
Chlamydomonas reinhardtii
Cyclic electron flow
Cytochrome b6f
electrons
Life Sciences
mutants
oxidoreductases
oxygen
Photosynthesis
Photosystem I
Phytobiology (plant sciences, forestry, mycology...)
reducing agents
Sciences du vivant
spectroscopy
Vegetal Biology
Title Maximal cyclic electron flow rate is independent of PGRL1 in Chlamydomonas
URI https://dx.doi.org/10.1016/j.bbabio.2019.01.004
https://www.ncbi.nlm.nih.gov/pubmed/30711358
https://www.proquest.com/docview/2179540206
https://www.proquest.com/docview/2221023937
https://hal.sorbonne-universite.fr/hal-02351657
http://orbi.ulg.ac.be/handle/2268/236838
Volume 1860
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELb6EIILgvJKgVVAHAldx05iH5cVZSmlQohKe7P8ShuUbqrubmEv_HZmnIeEBFTitrEm2mQ8sb-RZ76PkFdWSGONFklelD4BfJsl0nKZgD0V-dhpaUOB7Ek-O-VH82y-RaZ9LwyWVXZrf7umh9W6GznovHlwWVXY4zvO0gLZjBhs3ClygjIuQhPf_O1wkgD4ulNTw96rVPTtc6HGyxhtKmwBpDKQd3ZybX_YnrbPsU5yt8aT7L-D0bApHd4jdzs0GU_aB75Ptvxij9xq9SU3e-T2tJdze0COPukf1QUY242tKxv3-jdxWTffYySMiKtlXA2quKu4KePP778cUxiMp-cQORvXQNDq5UNyevju63SWdEIKiYVsYJU4k3PjAEk4bQvAU9QBLLPCa2opd5Zp6Rk1yE3nXQ75TylMgcx-LrXSAuZjj8jOoln4JyRGyTKXFVxSZrgdC61dnmkvXel4aTmPCOv9p2zHMo5iF7Xqy8m-qdbrCr2uxlSB1yOSDHddtiwbN9gX_dSo36JFwUZww50vYSaHP0Fy7dnkWOEYMv_QPCuuaUReh4lWzZWp1HUazMLvdX2mtFXGK4CtQqUsF0xE5EUfDwomFU9c9MI366WCfE9mmKHn_7BJMetGXsKIPG6DaXg8WIApZZnY_-_3fUru4FVbovmM7Kyu1v45wKiVGZHtNz_piOxOPnycnYzCV_MLWBwZ0Q
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Zb9NAEB71ECovCMrlci2IR6xm7bW9fiwRJS1phVAr5W21l1sjN66apJB_z4wvCQmoxFu0Gcv27Hj3G-3M9wG8tzI31mgZplnhQ8S3SZhbkYdoz2U6cjq3TYHsaTo5F8ezZLYB474Xhsoqu7W_XdOb1bob2e-8uX9dltTjO0qijNiMYty4I7EJ24gGMtJvOJp9HI4SEGB3cmrUfBXJvn-uKfIyRpuSegB53rB3dnptf9ifNi-pUHK7oqPsv6PRZlc6fAgPOjjJDtonfgQbfr4L91qByfUu7Ix7PbfHcHyif5ZXaGzXtiot6wVwWFHVPxgxRrBywcpBFnfJ6oJ9_fxtynGQjS8xdNauxqjViydwfvjpbDwJOyWF0GI6sAydSYVxCCWcthkCKu4Ql1npNbdcOBvr3MfcEDmddykmQIU0GVH7ucjmFkFf_BS25vXcPwdGmmUuyUTOYyPsSGrt0kT73BVOFFaIAOLef8p2NOOkdlGpvp7su2q9rsjrasQVej2AcLjquqXZuMM-66dG_RYuCneCO658hzM53ITYtScHU0VjRP3D0yS75QF8aCZa1TemVLdRY9b8XlUXSltlvELcKlUUpzKWAbzt40HhpNKRi577erVQmPDlCaXo6T9sIkq7iZgwgGdtMA2Physw53Ei9_77fd_AzuTsZKqmR6dfXsB9-qet13wJW8ublX-FmGppXjffzC8JDRpk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Maximal+cyclic+electron+flow+rate+is+independent+of+PGRL1+in+Chlamydomonas&rft.jtitle=Biochimica+et+biophysica+acta.+Bioenergetics&rft.au=Nawrocki%2C+W+J&rft.au=Bailleul%2C+B&rft.au=Cardol%2C+P&rft.au=Rappaport%2C+F&rft.date=2019-05-01&rft.issn=0005-2728&rft.volume=1860&rft.issue=5+p.425-432&rft.spage=425&rft.epage=432&rft_id=info:doi/10.1016%2Fj.bbabio.2019.01.004&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0005-2728&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0005-2728&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0005-2728&client=summon