Maximal cyclic electron flow rate is independent of PGRL1 in Chlamydomonas
Cyclic electron flow (CEF) is defined as a return of the reductants from the acceptor side of Photosystem I (PSI) to the pool of its donors via the cytochrome b6f. It is described to be complementary to the linear electron flow and essential for photosynthesis. However, despite many efforts aimed to...
Saved in:
Published in | Biochimica et biophysica acta. Bioenergetics Vol. 1860; no. 5; pp. 425 - 432 |
---|---|
Main Authors | , , , , , |
Format | Journal Article Web Resource |
Language | English |
Published |
Netherlands
Elsevier B.V
01.05.2019
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Cyclic electron flow (CEF) is defined as a return of the reductants from the acceptor side of Photosystem I (PSI) to the pool of its donors via the cytochrome b6f. It is described to be complementary to the linear electron flow and essential for photosynthesis. However, despite many efforts aimed to characterize CEF, its pathway and its regulation modes remain equivocal, and its physiological significance is still not clear. Here we use novel spectroscopic to measure the rate of CEF at the onset of light in the green alga Chlamydomonas reinhardtii. The initial redox state of the photosynthetic chain or the oxygen concentration do not modify the initial maximal rate of CEF (60 electrons per second per PSI) but rather strongly influence its duration. Neither the maximal rate nor the duration of CEF are different in the pgrl1 mutant compared to the wild type, disqualifying PGRL1 as the ferredoxin-plastoquinone oxidoreductase involved in the CEF mechanism.
[Display omitted]
•The maximal rate of cyclic electron flow is independent of PGRL1 in vivo.•Oxygen availability modifies the duration, but not the maximal rate of CEF.•The rate of CEF is determined by the redox state of both PSI donor and acceptor side. |
---|---|
AbstractList | Cyclic electron flow (CEF) is defined as a return of the reductants from the acceptor side of Photosystem I (PSI) to the pool of its donors via the cytochrome b6f. It is described to be complementary to the linear electron flow and essential for photosynthesis. However, despite many efforts aimed to characterize CEF, its pathway and its regulation modes remain equivocal, and its physiological significance is still not clear. Here we use novel spectroscopic to measure the rate of CEF at the onset of light in the green alga Chlamydomonas reinhardtii. The initial redox state of the photosynthetic chain or the oxygen concentration do not modify the initial maximal rate of CEF (60 electrons per second per PSI) but rather strongly influence its duration. Neither the maximal rate nor the duration of CEF are different in the pgrl1 mutant compared to the wild type, disqualifying PGRL1 as the ferredoxin-plastoquinone oxidoreductase involved in the CEF mechanism. Cyclic electron flow (CEF) is defined as a return of the reductants from the acceptor side of Photosystem I (PSI) to the pool of its donors via the cytochrome b6f. It is described to be complementary to the linear electron flow and essential for photosynthesis. However, despite many efforts aimed to characterize CEF, its pathway and its regulation modes remain equivocal, and its physiological significance is still not clear. Here we use novel spectroscopic to measure the rate of CEF at the onset of light in the green alga Chlamydomonas reinhardtii. The initial redox state of the photosynthetic chain or the oxygen concentration do not modify the initial maximal rate of CEF (60 electrons per second per PSI) but rather strongly influence its duration. Neither the maximal rate nor the duration of CEF are different in the pgrl1 mutant compared to the wild type, disqualifying PGRL1 as the ferredoxin-plastoquinone oxidoreductase involved in the CEF mechanism.Cyclic electron flow (CEF) is defined as a return of the reductants from the acceptor side of Photosystem I (PSI) to the pool of its donors via the cytochrome b6f. It is described to be complementary to the linear electron flow and essential for photosynthesis. However, despite many efforts aimed to characterize CEF, its pathway and its regulation modes remain equivocal, and its physiological significance is still not clear. Here we use novel spectroscopic to measure the rate of CEF at the onset of light in the green alga Chlamydomonas reinhardtii. The initial redox state of the photosynthetic chain or the oxygen concentration do not modify the initial maximal rate of CEF (60 electrons per second per PSI) but rather strongly influence its duration. Neither the maximal rate nor the duration of CEF are different in the pgrl1 mutant compared to the wild type, disqualifying PGRL1 as the ferredoxin-plastoquinone oxidoreductase involved in the CEF mechanism. Cyclic electron flow (CEF) is defined as a return of the reductants from the acceptor side of Photosystem I (PSI) to the pool of its donors via the cytochrome b6f. It is described to be complementary to the linear electron flow and essential for photosynthesis. However, despite many efforts aimed to characterize CEF, its pathway and its regulation modes remain equivocal, and its physiological significance is still not clear. Here we use novel spectroscopic to measure the rate of CEF at the onset of light in the green alga Chlamydomonas reinhardtii. The initial redox state of the photosynthetic chain or the oxygen concentration do not modify the initial maximal rate of CEF (60 electrons per second per PSI) but rather strongly influence its duration. Neither the maximal rate nor the duration of CEF are different in the pgrl1 mutant compared to the wild type, disqualifying PGRL1 as the ferredoxin-plastoquinone reductase involved in the CEF mechanism. Cyclic electron flow (CEF) is defined as a return of the reductants from the acceptor side of Photosystem I (PSI) to the pool of its donors via the cytochrome b f. It is described to be complementary to the linear electron flow and essential for photosynthesis. However, despite many efforts aimed to characterize CEF, its pathway and its regulation modes remain equivocal, and its physiological significance is still not clear. Here we use novel spectroscopic to measure the rate of CEF at the onset of light in the green alga Chlamydomonas reinhardtii. The initial redox state of the photosynthetic chain or the oxygen concentration do not modify the initial maximal rate of CEF (60 electrons per second per PSI) but rather strongly influence its duration. Neither the maximal rate nor the duration of CEF are different in the pgrl1 mutant compared to the wild type, disqualifying PGRL1 as the ferredoxin-plastoquinone oxidoreductase involved in the CEF mechanism. Cyclic electron flow (CEF) is defined as a return of the reductants from the acceptor side of Photosystem I (PSI) to the pool of its donors via the cytochrome b6f. It is described to be complementary to the linear electron flow and essential for photosynthesis. However, despite many efforts aimed to characterize CEF, its pathway and its regulation modes remain equivocal, and its physiological significance is still not clear. Here we use novel spectroscopic to measure the rate of CEF at the onset of light in the green alga Chlamydomonas reinhardtii. The initial redox state of the photosynthetic chain or the oxygen concentration do not modify the initial maximal rate of CEF (60 electrons per second per PSI) but rather strongly influence its duration. Neither the maximal rate nor the duration of CEF are different in the pgrl1 mutant compared to the wild type, disqualifying PGRL1 as the ferredoxin-plastoquinone oxidoreductase involved in the CEF mechanism. [Display omitted] •The maximal rate of cyclic electron flow is independent of PGRL1 in vivo.•Oxygen availability modifies the duration, but not the maximal rate of CEF.•The rate of CEF is determined by the redox state of both PSI donor and acceptor side. |
Author | Nawrocki, W.J. Wollman, F.-A. Cardol, P. Rappaport, F. Joliot, P. Bailleul, B. |
Author_xml | – sequence: 1 givenname: W.J. surname: Nawrocki fullname: Nawrocki, W.J. organization: Institut de Biologie Physico-Chimique, UMR 7141 CNRS-Sorbonne Université, 13 rue P. et M. Curie, 75005 Paris, France – sequence: 2 givenname: B. surname: Bailleul fullname: Bailleul, B. organization: Institut de Biologie Physico-Chimique, UMR 7141 CNRS-Sorbonne Université, 13 rue P. et M. Curie, 75005 Paris, France – sequence: 3 givenname: P. surname: Cardol fullname: Cardol, P. organization: Laboratoire de Génétique et Physiologie des Microalgues, Institut de Botanique, Université de Liège, 4, Chemin de la Vallée, B-4000 Liège, Belgium – sequence: 4 givenname: F. surname: Rappaport fullname: Rappaport, F. organization: Institut de Biologie Physico-Chimique, UMR 7141 CNRS-Sorbonne Université, 13 rue P. et M. Curie, 75005 Paris, France – sequence: 5 givenname: F.-A. surname: Wollman fullname: Wollman, F.-A. email: wollman@ibpc.fr organization: Institut de Biologie Physico-Chimique, UMR 7141 CNRS-Sorbonne Université, 13 rue P. et M. Curie, 75005 Paris, France – sequence: 6 givenname: P. surname: Joliot fullname: Joliot, P. organization: Institut de Biologie Physico-Chimique, UMR 7141 CNRS-Sorbonne Université, 13 rue P. et M. Curie, 75005 Paris, France |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30711358$$D View this record in MEDLINE/PubMed https://hal.sorbonne-universite.fr/hal-02351657$$DView record in HAL |
BookMark | eNqFkkFvFCEYhompsdvqPzBmjnqY9QMGhvFg0mxsq1mjMXomDHzbsmGHFWZX99-XdVoPHuwFyJfneQN5OSMnQxyQkJcU5hSofLue973pfZwzoN0c6BygeUJmVLVdzaSAEzIDAFGzlqlTcpbzGorWMP6MnHJoKeVCzcinz-a335hQ2YMN3lYY0I4pDtUqxF9VMiNWPld-cLjFsgxjFVfV16tvS1qG1eI2mM3BxU0cTH5Onq5MyPjifj8nPy4_fF9c18svVx8XF8vaCiXG2vWy6R0w5YxtQXTUCVBWoaGWNs5y0yGnvWolRyc7KVeqb7nolGO2s9AIfk74lBs83qCOqfd6z3Q0fjrvwo02VveoGZNKMy4VV8V6M1m3JuhtKm9Ohz_O9cVSH2fAuKBStHta2NcTu03x5w7zqDc-WwzBDBh3ueQyWvCOt4-jtO1EAwxkQV_do7t-g-7vJR7KKMC7CbAp5pxwpa0fzejjMCbjg6agj83rtZ6a18fmNVBdmi9y84_8kP-I9n7SsDS295h0th4Hi86n8hO0i_7_AXfflcX0 |
CitedBy_id | crossref_primary_10_1016_j_envexpbot_2021_104665 crossref_primary_10_1071_FP24185 crossref_primary_10_1042_BCJ20210802 crossref_primary_10_1016_j_tplants_2021_12_004 crossref_primary_10_1007_s00338_023_02370_y crossref_primary_10_1093_plcell_koaf042 crossref_primary_10_1038_s41477_020_00828_3 crossref_primary_10_1093_plphys_kiae608 crossref_primary_10_1038_s42003_025_07904_4 crossref_primary_10_1042_BST20211246 crossref_primary_10_1038_s41467_021_24107_7 crossref_primary_10_3389_fmars_2022_932355 crossref_primary_10_3389_fpls_2022_919896 crossref_primary_10_1042_BCJ20180648 crossref_primary_10_1111_nph_19328 crossref_primary_10_1016_j_bbabio_2021_148380 crossref_primary_10_1016_j_plantsci_2021_111053 crossref_primary_10_3389_fmars_2019_00656 crossref_primary_10_3389_fpls_2019_01700 crossref_primary_10_3390_bios12020067 crossref_primary_10_1016_j_jphotobiol_2024_113060 crossref_primary_10_3389_fpls_2021_661863 crossref_primary_10_1016_j_bbabio_2021_148449 crossref_primary_10_1111_nph_16643 crossref_primary_10_1093_plphys_kiac055 crossref_primary_10_3390_cells10092329 crossref_primary_10_3390_plants11020195 crossref_primary_10_1016_j_bbabio_2022_148909 crossref_primary_10_1016_j_tplants_2023_03_018 crossref_primary_10_3390_ijms24108712 crossref_primary_10_1016_j_biortech_2021_125217 crossref_primary_10_1016_j_isci_2021_102059 crossref_primary_10_1111_ppl_13404 crossref_primary_10_1021_acs_chemrev_0c00712 crossref_primary_10_1007_s11120_022_00900_3 crossref_primary_10_1016_j_hpj_2023_06_009 crossref_primary_10_1093_plphys_kiac575 crossref_primary_10_1093_pcp_pcz174 crossref_primary_10_3390_ijms23094927 crossref_primary_10_3390_cells10113128 crossref_primary_10_3390_plants13152103 |
Cites_doi | 10.1073/pnas.50.3.544 10.1073/pnas.102306999 10.1038/nplants.2016.31 10.1038/nature02598 10.1016/0005-2728(84)90036-7 10.1104/pp.15.00105 10.1146/annurev-arplant-043015-112002 10.1007/BF00029815 10.1074/jbc.M804546200 10.1074/jbc.M114.632588 10.1073/pnas.1207118109 10.1007/s11120-010-9579-z 10.1111/nph.14536 10.1038/ncomms2954 10.3389/fpls.2015.00540 10.1007/s11120-016-0223-4 10.1093/embo-reports/kvf047 10.1104/pp.17.00421 10.1073/pnas.1606685113 10.1038/174394a0 10.1146/annurev-arplant-043014-114744 10.1023/A:1010785912271 10.1105/tpc.111.086876 10.1105/tpc.110.080291 10.1104/pp.113.233593 10.1038/nature08885 10.1016/j.molcel.2012.11.030 10.1074/jbc.M111.301101 10.1073/pnas.0806896105 10.1073/pnas.1110518109 10.1016/S1360-1385(02)00006-7 10.1104/pp.104.048256 10.1073/pnas.49.4.567 10.1016/S0092-8674(02)00867-X 10.1146/annurev.genet.42.110807.091452 10.1016/j.bbabio.2013.07.012 10.1016/j.bbabio.2004.03.010 10.1016/S0005-2728(96)00112-0 10.1016/j.bbabio.2009.07.009 10.1016/j.bbabio.2007.07.007 10.1016/0014-5793(75)80359-0 10.1016/j.bbabio.2014.01.024 10.1016/0005-2728(94)00195-B |
ContentType | Journal Article Web Resource |
Copyright | 2019 Copyright © 2019. Published by Elsevier B.V. Distributed under a Creative Commons Attribution 4.0 International License |
Copyright_xml | – notice: 2019 – notice: Copyright © 2019. Published by Elsevier B.V. – notice: Distributed under a Creative Commons Attribution 4.0 International License |
DBID | AAYXX CITATION NPM 7X8 7S9 L.6 1XC VOOES Q33 |
DOI | 10.1016/j.bbabio.2019.01.004 |
DatabaseName | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) Université de Liège - Open Repository and Bibliography (ORBI) |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry Biology |
EISSN | 1879-2650 1872-8006 |
EndPage | 432 |
ExternalDocumentID | oai_orbi_ulg_ac_be_2268_236838 oai_HAL_hal_02351657v1 30711358 10_1016_j_bbabio_2019_01_004 S0005272818302524 |
Genre | Journal Article |
GroupedDBID | --- --K --M .~1 0R~ 1B1 1RT 1~. 1~5 23N 4.4 457 4G. 53G 5GY 5RE 5VS 6I. 6J9 7-5 71M 8P~ 9JM AABVA AACTN AAEDW AAFTH AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AATLK AAXUO ABGRD ABGSF ABMAC ABUDA ABVKL ABYKQ ACDAQ ACIUM ACRLP ADBBV ADEZE ADQTV ADUVX AEBSH AEHWI AEKER AEQOU AEXQZ AFKWA AFTJW AFXIZ AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CBWCG CS3 DOVZS EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA IHE IXB J1W KOM LX3 M41 MO0 N9A O-L O9- OAUVE OK1 OZT P-8 P-9 PC. Q38 ROL RPZ SCC SDF SDG SDP SES SSA SSU SSZ T5K WH7 XPP ~G- 3O- AAEDT AAHBH AAQXK AATTM AAXKI AAYWO AAYXX ABFNM ABWVN ABXDB ACRPL ADMUD ADNMO ADVLN AEIPS AFFNX AFJKZ AGCQF AGHFR AGQPQ AGRNS AIIUN ANKPU ASPBG AVWKF AZFZN BNPGV CITATION FEDTE FGOYB G-2 HLW HVGLF HZ~ R2- SBG SEW SSH WUQ XJT ZKB NPM 7X8 7S9 L.6 1XC ABEFU ACVFH ADCNI AEUPX AFPUW AGRDE AIGII AKBMS AKRWK AKYEP APXCP EFKBS OHT SPCBC UQL VOOES Q33 |
ID | FETCH-LOGICAL-c585t-db64bd028dac70591d508c8ea1c14dc3a9e31b8763ed6966f8b73598d2c9c0453 |
IEDL.DBID | IXB |
ISSN | 0005-2728 1879-2650 0304-4165 |
IngestDate | Fri Aug 01 18:58:20 EDT 2025 Tue Aug 26 06:21:58 EDT 2025 Thu Jul 10 18:11:39 EDT 2025 Fri Jul 11 05:12:09 EDT 2025 Thu Apr 03 07:11:07 EDT 2025 Tue Jul 01 04:32:09 EDT 2025 Thu Apr 24 23:11:15 EDT 2025 Fri Feb 23 02:27:33 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | Photosystem I Cytochrome b6f Cyclic electron flow Anoxia Photosynthesis photosystem I cytochrome b6f anoxia cyclic electron flow |
Language | English |
License | Copyright © 2019. Published by Elsevier B.V. Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c585t-db64bd028dac70591d508c8ea1c14dc3a9e31b8763ed6966f8b73598d2c9c0453 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 scopus-id:2-s2.0-85061637952 info:eu-repo/grantAgreement/EC/H2020/682580 |
ORCID | 0000-0001-5124-3000 |
OpenAccessLink | https://hal.sorbonne-universite.fr/hal-02351657 |
PMID | 30711358 |
PQID | 2179540206 |
PQPubID | 23479 |
PageCount | 8 |
ParticipantIDs | liege_orbi_v2_oai_orbi_ulg_ac_be_2268_236838 hal_primary_oai_HAL_hal_02351657v1 proquest_miscellaneous_2221023937 proquest_miscellaneous_2179540206 pubmed_primary_30711358 crossref_citationtrail_10_1016_j_bbabio_2019_01_004 crossref_primary_10_1016_j_bbabio_2019_01_004 elsevier_sciencedirect_doi_10_1016_j_bbabio_2019_01_004 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-05-01 |
PublicationDateYYYYMMDD | 2019-05-01 |
PublicationDate_xml | – month: 05 year: 2019 text: 2019-05-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Netherlands |
PublicationPlace_xml | – name: Netherlands |
PublicationTitle | Biochimica et biophysica acta. Bioenergetics |
PublicationTitleAlternate | Biochim Biophys Acta Bioenerg |
PublicationYear | 2019 |
Publisher | Elsevier B.V Elsevier |
Publisher_xml | – name: Elsevier B.V – name: Elsevier |
References | Jans, Mignolet, Houyoux, Cardol, Ghysels, Cuine, Cournac, Peltier, Remacle, Franck (bb0060) 2008; 105 Munekage, Hojo, Meurer, Endo, Tasaka, Shikanai (bb0190) 2002; 110 Alric (bb0215) 2015; 6 Fan, Fitzpatrick, Oguchi, Ma, Kou, Chow (bb0025) 2016; 129 Nawrocki, Santabarbara, Mosebach, Wollman, Rappaport (bb0130) 2016; 2 Godaux, Bailleul, Berne, Cardol (bb0080) 2015; 168 Bendall, Manasse (bb0020) 1995; 1229 Hertle, Blunder, Wunder, Pesaresi, Pribil, Armbruster, Leister (bb0045) 2013; 49 Eberhard, Finazzi, Wollman (bb0005) 2008; 42 Yamori, Shikanai (bb0185) 2016; 67 Drop, Webber-Birungi, Fusetti, Kouril, Redding, Boekema, Croce (bb0150) 2011; 286 Mitchell (bb0070) 1975; 59 Cleland, Bendall (bb0035) 1992; 34 Arnon, Allen, Whatley (bb0015) 1954; 174 Drop, Webber-Birungi, Yadav, Filipowicz-Szymanska, Fusetti, Boekema, Croce (bb0155) 2014; 1837 Alric, Lavergne, Rappaport (bb0075) 2010; 1797 Desplats, Mus, Cuine, Billon, Cournac, Peltier (bb0055) 2009; 284 Sacksteder, Kramer (bb0100) 2000; 66 Tagawa, Tsujimoto, Arnon (bb0030) 1963; 49 Takahashi, Clowez, Wollman, Vallon, Rappaport (bb0125) 2013; 4 Ilik, Pavlovic, Kouril, Alboresi, Morosinotto, Allahverdiyeva, Aro, Yamamoto, Shikanai (bb0160) 2017; 214 Chaux, Burlacot, Mekhalfi, Auroy, Blangy, Richaud, Peltier (bb0165) 2017; 174 Clowez, Godaux, Cardol, Wollman, Rappaport (bb0135) 2015; 290 Nandha, Finazzi, Joliot, Hald, Johnson (bb0180) 2007; 1767 Tolleter, Ghysels, Alric, Petroutsos, Tolstygina, Krawietz, Happe, Auroy, Adriano, Beyly, Cuine, Plet, Reiter, Genty, Cournac, Hippler, Peltier (bb0095) 2011; 23 Brettel (bb0115) 1997; 1318 Joliot, Beal, Joliot (bb0120) 2004; 1656 Joliot, Joliot (bb0105) 2002; 99 Forti, Caldiroli (bb0175) 2005; 137 Alric (bb0145) 2014; 1837 Johnson, Steinbeck, Dent, Takahashi, Richaud, Ozawa, Houille-Vernes, Petroutsos, Rappaport, Grossman, Niyogi, Hippler, Alric (bb0200) 2014; 165 Allen (bb0010) 2003; 8 Nawrocki, Tourasse, Taly, Rappaport, Wollman (bb0065) 2015; 66 Tagawa, Tsujimoto, Arnon (bb0085) 1963; 50 Iwai, Takizawa, Tokutsu, Okamuro, Takahashi, Minagawa (bb0205) 2010; 464 Yamamoto, Peng, Fukao, Shikanai (bb0050) 2011; 23 Bailleul, Cardol, Breyton, Finazzi (bb0110) 2010; 106 Houille-Vernes, Rappaport, Wollman, Alric, Johnson (bb0090) 2011; 108 Gerotto, Alboresi, Meneghesso, Jokel, Suorsa, Aro, Morosinotto (bb0170) 2016; 113 Munekage, Hashimoto, Miyake, Tomizawa, Endo, Tasaka, Shikanai (bb0195) 2004; 429 Moss, Bendall (bb0040) 1984; 767 Finazzi, Rappaport, Furia, Fleischmann, Rochaix, Zito, Forti (bb0140) 2002; 3 Terashima, Petroutsos, Hudig, Tolstygina, Trompelt, Gabelein, Fufezan, Kudla, Weinl, Finazzi, Hippler (bb0210) 2012; 109 Drop (10.1016/j.bbabio.2019.01.004_bb0150) 2011; 286 Joliot (10.1016/j.bbabio.2019.01.004_bb0120) 2004; 1656 Moss (10.1016/j.bbabio.2019.01.004_bb0040) 1984; 767 Alric (10.1016/j.bbabio.2019.01.004_bb0075) 2010; 1797 Iwai (10.1016/j.bbabio.2019.01.004_bb0205) 2010; 464 Bendall (10.1016/j.bbabio.2019.01.004_bb0020) 1995; 1229 Cleland (10.1016/j.bbabio.2019.01.004_bb0035) 1992; 34 Mitchell (10.1016/j.bbabio.2019.01.004_bb0070) 1975; 59 Godaux (10.1016/j.bbabio.2019.01.004_bb0080) 2015; 168 Joliot (10.1016/j.bbabio.2019.01.004_bb0105) 2002; 99 Finazzi (10.1016/j.bbabio.2019.01.004_bb0140) 2002; 3 Takahashi (10.1016/j.bbabio.2019.01.004_bb0125) 2013; 4 Yamori (10.1016/j.bbabio.2019.01.004_bb0185) 2016; 67 Desplats (10.1016/j.bbabio.2019.01.004_bb0055) 2009; 284 Forti (10.1016/j.bbabio.2019.01.004_bb0175) 2005; 137 Nandha (10.1016/j.bbabio.2019.01.004_bb0180) 2007; 1767 Munekage (10.1016/j.bbabio.2019.01.004_bb0190) 2002; 110 Gerotto (10.1016/j.bbabio.2019.01.004_bb0170) 2016; 113 Drop (10.1016/j.bbabio.2019.01.004_bb0155) 2014; 1837 Hertle (10.1016/j.bbabio.2019.01.004_bb0045) 2013; 49 Sacksteder (10.1016/j.bbabio.2019.01.004_bb0100) 2000; 66 Johnson (10.1016/j.bbabio.2019.01.004_bb0200) 2014; 165 Arnon (10.1016/j.bbabio.2019.01.004_bb0015) 1954; 174 Alric (10.1016/j.bbabio.2019.01.004_bb0145) 2014; 1837 Yamamoto (10.1016/j.bbabio.2019.01.004_bb0050) 2011; 23 Alric (10.1016/j.bbabio.2019.01.004_bb0215) 2015; 6 Tagawa (10.1016/j.bbabio.2019.01.004_bb0030) 1963; 49 Nawrocki (10.1016/j.bbabio.2019.01.004_bb0065) 2015; 66 Allen (10.1016/j.bbabio.2019.01.004_bb0010) 2003; 8 Houille-Vernes (10.1016/j.bbabio.2019.01.004_bb0090) 2011; 108 Tagawa (10.1016/j.bbabio.2019.01.004_bb0085) 1963; 50 Bailleul (10.1016/j.bbabio.2019.01.004_bb0110) 2010; 106 Tolleter (10.1016/j.bbabio.2019.01.004_bb0095) 2011; 23 Chaux (10.1016/j.bbabio.2019.01.004_bb0165) 2017; 174 Terashima (10.1016/j.bbabio.2019.01.004_bb0210) 2012; 109 Jans (10.1016/j.bbabio.2019.01.004_bb0060) 2008; 105 Clowez (10.1016/j.bbabio.2019.01.004_bb0135) 2015; 290 Ilik (10.1016/j.bbabio.2019.01.004_bb0160) 2017; 214 Eberhard (10.1016/j.bbabio.2019.01.004_bb0005) 2008; 42 Fan (10.1016/j.bbabio.2019.01.004_bb0025) 2016; 129 Brettel (10.1016/j.bbabio.2019.01.004_bb0115) 1997; 1318 Nawrocki (10.1016/j.bbabio.2019.01.004_bb0130) 2016; 2 Munekage (10.1016/j.bbabio.2019.01.004_bb0195) 2004; 429 |
References_xml | – volume: 2 start-page: 16031 year: 2016 ident: bb0130 article-title: State transitions redistribute rather than dissipate energy between the two photosystems in Chlamydomonas publication-title: Nat. Plants – volume: 113 start-page: 12322 year: 2016 end-page: 12327 ident: bb0170 article-title: Flavodiiron proteins act as safety valve for electrons in Physcomitrella patens publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 23 start-page: 2619 year: 2011 end-page: 2630 ident: bb0095 article-title: Control of hydrogen photoproduction by the proton gradient generated by cyclic electron flow in Chlamydomonas reinhardtii publication-title: Plant Cell – volume: 108 start-page: 20820 year: 2011 end-page: 20825 ident: bb0090 article-title: Plastid terminal oxidase 2 (PTOX2) is the major oxidase involved in chlororespiration in Chlamydomonas publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 137 start-page: 492 year: 2005 end-page: 499 ident: bb0175 article-title: State transitions in Chlamydomonas reinhardtii. The role of the Mehler reaction in state 2-to-state 1 transition publication-title: Plant Physiol. – volume: 105 start-page: 20546 year: 2008 end-page: 20551 ident: bb0060 article-title: A type II NAD(P)H dehydrogenase mediates light-independent plastoquinone reduction in the chloroplast of Chlamydomonas publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 23 start-page: 1480 year: 2011 end-page: 1493 ident: bb0050 article-title: An Src homology 3 domain-like fold protein forms a ferredoxin binding site for the chloroplast NADH dehydrogenase-like complex in Arabidopsis publication-title: Plant Cell – volume: 66 start-page: 49 year: 2015 end-page: 74 ident: bb0065 article-title: The plastid terminal oxidase: its elusive function points to multiple contributions to plastid physiology publication-title: Annu. Rev. Plant Biol. – volume: 67 start-page: 81 year: 2016 end-page: 106 ident: bb0185 article-title: Physiological functions of cyclic electron transport around photosystem I in sustaining photosynthesis and plant growth publication-title: Annu. Rev. Plant Biol. – volume: 42 start-page: 463 year: 2008 end-page: 515 ident: bb0005 article-title: The dynamics of photosynthesis publication-title: Annu. Rev. Genet. – volume: 129 start-page: 239 year: 2016 end-page: 251 ident: bb0025 article-title: Obstacles in the quantification of the cyclic electron flux around photosystem I in leaves of C3 plants publication-title: Photosynth. Res. – volume: 34 start-page: 409 year: 1992 end-page: 418 ident: bb0035 article-title: Photosystem I cyclic electron transport: measurement of ferredoxin-plastoquinone reductase activity publication-title: Photosynth. Res. – volume: 49 start-page: 511 year: 2013 end-page: 523 ident: bb0045 article-title: PGRL1 is the elusive ferredoxin-plastoquinone reductase in photosynthetic cyclic electron flow publication-title: Mol. Cell – volume: 168 start-page: 648 year: 2015 end-page: 658 ident: bb0080 article-title: Induction of photosynthetic carbon fixation in anoxia relies on hydrogenase activity and proton-gradient regulation-like1-mediated cyclic electron flow in publication-title: Plant Physiol. – volume: 286 start-page: 44878 year: 2011 end-page: 44887 ident: bb0150 article-title: Photosystem I of Chlamydomonas reinhardtii contains nine light-harvesting complexes (Lhca) located on one side of the core publication-title: J. Biol. Chem. – volume: 6 start-page: 540 year: 2015 ident: bb0215 article-title: The plastoquinone pool, poised for cyclic electron flow? publication-title: Front. Plant Sci. – volume: 59 start-page: 137 year: 1975 end-page: 139 ident: bb0070 article-title: The protonmotive Q cycle: a general formulation publication-title: FEBS Lett. – volume: 50 start-page: 544 year: 1963 end-page: 549 ident: bb0085 article-title: Separation by monochromatic light of photosynthetic phosphorylation from oxygen evolution publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 66 start-page: 145 year: 2000 end-page: 158 ident: bb0100 article-title: Dark-interval relaxation kinetics (DIRK) of absorbance changes as a quantitative probe of steady-state electron transfer publication-title: Photosynth. Res. – volume: 1656 start-page: 166 year: 2004 end-page: 176 ident: bb0120 article-title: Cyclic electron flow under saturating excitation of dark-adapted Arabidopsis leaves publication-title: Biochim. Biophys. Acta – volume: 464 start-page: 1210 year: 2010 end-page: 1213 ident: bb0205 article-title: Isolation of the elusive supercomplex that drives cyclic electron flow in photosynthesis publication-title: Nature – volume: 109 start-page: 17717 year: 2012 end-page: 17722 ident: bb0210 article-title: Calcium-dependent regulation of cyclic photosynthetic electron transfer by a CAS, ANR1, and PGRL1 complex publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 1837 start-page: 825 year: 2014 end-page: 834 ident: bb0145 article-title: Redox and ATP control of photosynthetic cyclic electron flow in Chlamydomonas reinhardtii: (II) involvement of the PGR5-PGRL1 pathway under anaerobic conditions publication-title: Biochim. Biophys. Acta – volume: 174 start-page: 1825 year: 2017 end-page: 1836 ident: bb0165 article-title: Flavodiiron proteins promote fast and transient O publication-title: Plant Physiol. – volume: 284 start-page: 4148 year: 2009 end-page: 4157 ident: bb0055 article-title: Characterization of Nda2, a plastoquinone-reducing type II NAD(P)H dehydrogenase in chlamydomonas chloroplasts publication-title: J. Biol. Chem. – volume: 99 start-page: 10209 year: 2002 end-page: 10214 ident: bb0105 article-title: Cyclic electron transfer in plant leaf publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 290 start-page: 8666 year: 2015 end-page: 8676 ident: bb0135 article-title: The involvement of hydrogen-producing and ATP-dependent NADPH-consuming pathways in setting the redox poise in the chloroplast of Chlamydomonas reinhardtii in anoxia publication-title: J. Biol. Chem. – volume: 110 start-page: 361 year: 2002 end-page: 371 ident: bb0190 article-title: PGR5 is involved in cyclic electron flow around photosystem I and is essential for photoprotection in Arabidopsis publication-title: Cell – volume: 4 start-page: 1954 year: 2013 ident: bb0125 article-title: Cyclic electron flow is redox-controlled but independent of state transition publication-title: Nat. Commun. – volume: 1767 start-page: 1252 year: 2007 end-page: 1259 ident: bb0180 article-title: The role of PGR5 in the redox poising of photosynthetic electron transport publication-title: Biochim. Biophys. Acta – volume: 174 start-page: 394 year: 1954 end-page: 396 ident: bb0015 article-title: Photosynthesis by isolated chloroplasts publication-title: Nature – volume: 1229 start-page: 23 year: 1995 end-page: 38 ident: bb0020 article-title: Cyclic photophosphorylation and electron transport publication-title: Biochim. Biophys. Acta Bioenerg. – volume: 767 start-page: 389 year: 1984 end-page: 395 ident: bb0040 article-title: Cyclic electron transport in chloroplasts. The Q-cycle and the site of action of antimycin publication-title: Biochim. Biophys. Acta Bioenerg. – volume: 8 start-page: 15 year: 2003 end-page: 19 ident: bb0010 article-title: Cyclic, pseudocyclic and noncyclic photophosphorylation: new links in the chain publication-title: Trends Plant Sci. – volume: 3 start-page: 280 year: 2002 end-page: 285 ident: bb0140 article-title: Involvement of state transitions in the switch between linear and cyclic electron flow in Chlamydomonas reinhardtii publication-title: EMBO Rep. – volume: 1318 start-page: 322 year: 1997 end-page: 373 ident: bb0115 article-title: Electron transfer and arrangement of the redox cofactors in photosystem I publication-title: Biochim. Biophys. Acta Bioenerg. – volume: 1797 start-page: 44 year: 2010 end-page: 51 ident: bb0075 article-title: Redox and ATP control of photosynthetic cyclic electron flow in Chlamydomonas reinhardtii (I) aerobic conditions publication-title: Biochim. Biophys. Acta – volume: 1837 start-page: 63 year: 2014 end-page: 72 ident: bb0155 article-title: Light-harvesting complex II (LHCII) and its supramolecular organization in Chlamydomonas reinhardtii publication-title: Biochim. Biophys. Acta – volume: 214 start-page: 967 year: 2017 end-page: 972 ident: bb0160 article-title: Alternative electron transport mediated by flavodiiron proteins is operational in organisms from cyanobacteria up to gymnosperms publication-title: New Phytol. – volume: 49 start-page: 567 year: 1963 end-page: 572 ident: bb0030 article-title: Role of chloroplast ferredoxin in the energy conversion process of photosynthesis publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 165 start-page: 438 year: 2014 end-page: 452 ident: bb0200 article-title: Proton gradient regulation 5-mediated cyclic electron flow under ATP- or redox-limited conditions: a study of DeltaATpase pgr5 and DeltarbcL pgr5 mutants in the green alga Chlamydomonas reinhardtii publication-title: Plant Physiol. – volume: 429 start-page: 579 year: 2004 ident: bb0195 article-title: Cyclic electron flow around photosystem I is essential for photosynthesis publication-title: Nature – volume: 106 start-page: 179 year: 2010 end-page: 189 ident: bb0110 article-title: Electrochromism: a useful probe to study algal photosynthesis publication-title: Photosynth. Res. – volume: 50 start-page: 544 year: 1963 ident: 10.1016/j.bbabio.2019.01.004_bb0085 article-title: Separation by monochromatic light of photosynthetic phosphorylation from oxygen evolution publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.50.3.544 – volume: 99 start-page: 10209 year: 2002 ident: 10.1016/j.bbabio.2019.01.004_bb0105 article-title: Cyclic electron transfer in plant leaf publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.102306999 – volume: 2 start-page: 16031 year: 2016 ident: 10.1016/j.bbabio.2019.01.004_bb0130 article-title: State transitions redistribute rather than dissipate energy between the two photosystems in Chlamydomonas publication-title: Nat. Plants doi: 10.1038/nplants.2016.31 – volume: 429 start-page: 579 year: 2004 ident: 10.1016/j.bbabio.2019.01.004_bb0195 article-title: Cyclic electron flow around photosystem I is essential for photosynthesis publication-title: Nature doi: 10.1038/nature02598 – volume: 767 start-page: 389 year: 1984 ident: 10.1016/j.bbabio.2019.01.004_bb0040 article-title: Cyclic electron transport in chloroplasts. The Q-cycle and the site of action of antimycin publication-title: Biochim. Biophys. Acta Bioenerg. doi: 10.1016/0005-2728(84)90036-7 – volume: 168 start-page: 648 year: 2015 ident: 10.1016/j.bbabio.2019.01.004_bb0080 article-title: Induction of photosynthetic carbon fixation in anoxia relies on hydrogenase activity and proton-gradient regulation-like1-mediated cyclic electron flow in Chlamydomonas reinhardtii publication-title: Plant Physiol. doi: 10.1104/pp.15.00105 – volume: 67 start-page: 81 year: 2016 ident: 10.1016/j.bbabio.2019.01.004_bb0185 article-title: Physiological functions of cyclic electron transport around photosystem I in sustaining photosynthesis and plant growth publication-title: Annu. Rev. Plant Biol. doi: 10.1146/annurev-arplant-043015-112002 – volume: 34 start-page: 409 year: 1992 ident: 10.1016/j.bbabio.2019.01.004_bb0035 article-title: Photosystem I cyclic electron transport: measurement of ferredoxin-plastoquinone reductase activity publication-title: Photosynth. Res. doi: 10.1007/BF00029815 – volume: 284 start-page: 4148 year: 2009 ident: 10.1016/j.bbabio.2019.01.004_bb0055 article-title: Characterization of Nda2, a plastoquinone-reducing type II NAD(P)H dehydrogenase in chlamydomonas chloroplasts publication-title: J. Biol. Chem. doi: 10.1074/jbc.M804546200 – volume: 290 start-page: 8666 year: 2015 ident: 10.1016/j.bbabio.2019.01.004_bb0135 article-title: The involvement of hydrogen-producing and ATP-dependent NADPH-consuming pathways in setting the redox poise in the chloroplast of Chlamydomonas reinhardtii in anoxia publication-title: J. Biol. Chem. doi: 10.1074/jbc.M114.632588 – volume: 109 start-page: 17717 year: 2012 ident: 10.1016/j.bbabio.2019.01.004_bb0210 article-title: Calcium-dependent regulation of cyclic photosynthetic electron transfer by a CAS, ANR1, and PGRL1 complex publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1207118109 – volume: 106 start-page: 179 year: 2010 ident: 10.1016/j.bbabio.2019.01.004_bb0110 article-title: Electrochromism: a useful probe to study algal photosynthesis publication-title: Photosynth. Res. doi: 10.1007/s11120-010-9579-z – volume: 214 start-page: 967 year: 2017 ident: 10.1016/j.bbabio.2019.01.004_bb0160 article-title: Alternative electron transport mediated by flavodiiron proteins is operational in organisms from cyanobacteria up to gymnosperms publication-title: New Phytol. doi: 10.1111/nph.14536 – volume: 4 start-page: 1954 year: 2013 ident: 10.1016/j.bbabio.2019.01.004_bb0125 article-title: Cyclic electron flow is redox-controlled but independent of state transition publication-title: Nat. Commun. doi: 10.1038/ncomms2954 – volume: 6 start-page: 540 year: 2015 ident: 10.1016/j.bbabio.2019.01.004_bb0215 article-title: The plastoquinone pool, poised for cyclic electron flow? publication-title: Front. Plant Sci. doi: 10.3389/fpls.2015.00540 – volume: 129 start-page: 239 year: 2016 ident: 10.1016/j.bbabio.2019.01.004_bb0025 article-title: Obstacles in the quantification of the cyclic electron flux around photosystem I in leaves of C3 plants publication-title: Photosynth. Res. doi: 10.1007/s11120-016-0223-4 – volume: 3 start-page: 280 year: 2002 ident: 10.1016/j.bbabio.2019.01.004_bb0140 article-title: Involvement of state transitions in the switch between linear and cyclic electron flow in Chlamydomonas reinhardtii publication-title: EMBO Rep. doi: 10.1093/embo-reports/kvf047 – volume: 174 start-page: 1825 issue: 3 year: 2017 ident: 10.1016/j.bbabio.2019.01.004_bb0165 article-title: Flavodiiron proteins promote fast and transient O2 photoreduction in Chlamydomonas publication-title: Plant Physiol. doi: 10.1104/pp.17.00421 – volume: 113 start-page: 12322 year: 2016 ident: 10.1016/j.bbabio.2019.01.004_bb0170 article-title: Flavodiiron proteins act as safety valve for electrons in Physcomitrella patens publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1606685113 – volume: 174 start-page: 394 year: 1954 ident: 10.1016/j.bbabio.2019.01.004_bb0015 article-title: Photosynthesis by isolated chloroplasts publication-title: Nature doi: 10.1038/174394a0 – volume: 66 start-page: 49 year: 2015 ident: 10.1016/j.bbabio.2019.01.004_bb0065 article-title: The plastid terminal oxidase: its elusive function points to multiple contributions to plastid physiology publication-title: Annu. Rev. Plant Biol. doi: 10.1146/annurev-arplant-043014-114744 – volume: 66 start-page: 145 year: 2000 ident: 10.1016/j.bbabio.2019.01.004_bb0100 article-title: Dark-interval relaxation kinetics (DIRK) of absorbance changes as a quantitative probe of steady-state electron transfer publication-title: Photosynth. Res. doi: 10.1023/A:1010785912271 – volume: 23 start-page: 2619 year: 2011 ident: 10.1016/j.bbabio.2019.01.004_bb0095 article-title: Control of hydrogen photoproduction by the proton gradient generated by cyclic electron flow in Chlamydomonas reinhardtii publication-title: Plant Cell doi: 10.1105/tpc.111.086876 – volume: 23 start-page: 1480 year: 2011 ident: 10.1016/j.bbabio.2019.01.004_bb0050 article-title: An Src homology 3 domain-like fold protein forms a ferredoxin binding site for the chloroplast NADH dehydrogenase-like complex in Arabidopsis publication-title: Plant Cell doi: 10.1105/tpc.110.080291 – volume: 165 start-page: 438 year: 2014 ident: 10.1016/j.bbabio.2019.01.004_bb0200 article-title: Proton gradient regulation 5-mediated cyclic electron flow under ATP- or redox-limited conditions: a study of DeltaATpase pgr5 and DeltarbcL pgr5 mutants in the green alga Chlamydomonas reinhardtii publication-title: Plant Physiol. doi: 10.1104/pp.113.233593 – volume: 464 start-page: 1210 year: 2010 ident: 10.1016/j.bbabio.2019.01.004_bb0205 article-title: Isolation of the elusive supercomplex that drives cyclic electron flow in photosynthesis publication-title: Nature doi: 10.1038/nature08885 – volume: 49 start-page: 511 year: 2013 ident: 10.1016/j.bbabio.2019.01.004_bb0045 article-title: PGRL1 is the elusive ferredoxin-plastoquinone reductase in photosynthetic cyclic electron flow publication-title: Mol. Cell doi: 10.1016/j.molcel.2012.11.030 – volume: 286 start-page: 44878 year: 2011 ident: 10.1016/j.bbabio.2019.01.004_bb0150 article-title: Photosystem I of Chlamydomonas reinhardtii contains nine light-harvesting complexes (Lhca) located on one side of the core publication-title: J. Biol. Chem. doi: 10.1074/jbc.M111.301101 – volume: 105 start-page: 20546 year: 2008 ident: 10.1016/j.bbabio.2019.01.004_bb0060 article-title: A type II NAD(P)H dehydrogenase mediates light-independent plastoquinone reduction in the chloroplast of Chlamydomonas publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.0806896105 – volume: 108 start-page: 20820 year: 2011 ident: 10.1016/j.bbabio.2019.01.004_bb0090 article-title: Plastid terminal oxidase 2 (PTOX2) is the major oxidase involved in chlororespiration in Chlamydomonas publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1110518109 – volume: 8 start-page: 15 year: 2003 ident: 10.1016/j.bbabio.2019.01.004_bb0010 article-title: Cyclic, pseudocyclic and noncyclic photophosphorylation: new links in the chain publication-title: Trends Plant Sci. doi: 10.1016/S1360-1385(02)00006-7 – volume: 137 start-page: 492 year: 2005 ident: 10.1016/j.bbabio.2019.01.004_bb0175 article-title: State transitions in Chlamydomonas reinhardtii. The role of the Mehler reaction in state 2-to-state 1 transition publication-title: Plant Physiol. doi: 10.1104/pp.104.048256 – volume: 49 start-page: 567 year: 1963 ident: 10.1016/j.bbabio.2019.01.004_bb0030 article-title: Role of chloroplast ferredoxin in the energy conversion process of photosynthesis publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.49.4.567 – volume: 110 start-page: 361 year: 2002 ident: 10.1016/j.bbabio.2019.01.004_bb0190 article-title: PGR5 is involved in cyclic electron flow around photosystem I and is essential for photoprotection in Arabidopsis publication-title: Cell doi: 10.1016/S0092-8674(02)00867-X – volume: 42 start-page: 463 year: 2008 ident: 10.1016/j.bbabio.2019.01.004_bb0005 article-title: The dynamics of photosynthesis publication-title: Annu. Rev. Genet. doi: 10.1146/annurev.genet.42.110807.091452 – volume: 1837 start-page: 63 year: 2014 ident: 10.1016/j.bbabio.2019.01.004_bb0155 article-title: Light-harvesting complex II (LHCII) and its supramolecular organization in Chlamydomonas reinhardtii publication-title: Biochim. Biophys. Acta doi: 10.1016/j.bbabio.2013.07.012 – volume: 1656 start-page: 166 year: 2004 ident: 10.1016/j.bbabio.2019.01.004_bb0120 article-title: Cyclic electron flow under saturating excitation of dark-adapted Arabidopsis leaves publication-title: Biochim. Biophys. Acta doi: 10.1016/j.bbabio.2004.03.010 – volume: 1318 start-page: 322 year: 1997 ident: 10.1016/j.bbabio.2019.01.004_bb0115 article-title: Electron transfer and arrangement of the redox cofactors in photosystem I publication-title: Biochim. Biophys. Acta Bioenerg. doi: 10.1016/S0005-2728(96)00112-0 – volume: 1797 start-page: 44 year: 2010 ident: 10.1016/j.bbabio.2019.01.004_bb0075 article-title: Redox and ATP control of photosynthetic cyclic electron flow in Chlamydomonas reinhardtii (I) aerobic conditions publication-title: Biochim. Biophys. Acta doi: 10.1016/j.bbabio.2009.07.009 – volume: 1767 start-page: 1252 year: 2007 ident: 10.1016/j.bbabio.2019.01.004_bb0180 article-title: The role of PGR5 in the redox poising of photosynthetic electron transport publication-title: Biochim. Biophys. Acta doi: 10.1016/j.bbabio.2007.07.007 – volume: 59 start-page: 137 year: 1975 ident: 10.1016/j.bbabio.2019.01.004_bb0070 article-title: The protonmotive Q cycle: a general formulation publication-title: FEBS Lett. doi: 10.1016/0014-5793(75)80359-0 – volume: 1837 start-page: 825 year: 2014 ident: 10.1016/j.bbabio.2019.01.004_bb0145 article-title: Redox and ATP control of photosynthetic cyclic electron flow in Chlamydomonas reinhardtii: (II) involvement of the PGR5-PGRL1 pathway under anaerobic conditions publication-title: Biochim. Biophys. Acta doi: 10.1016/j.bbabio.2014.01.024 – volume: 1229 start-page: 23 issn: 0005-2728 issue: 1 year: 1995 ident: 10.1016/j.bbabio.2019.01.004_bb0020 article-title: Cyclic photophosphorylation and electron transport publication-title: Biochim. Biophys. Acta Bioenerg. doi: 10.1016/0005-2728(94)00195-B |
RestrictionsOnAccess | restricted access |
SSID | ssj0016423 ssj0000595 |
Score | 2.4600134 |
Snippet | Cyclic electron flow (CEF) is defined as a return of the reductants from the acceptor side of Photosystem I (PSI) to the pool of its donors via the cytochrome... |
SourceID | liege hal proquest pubmed crossref elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 425 |
SubjectTerms | Anoxia Biochemistry, biophysics & molecular biology Biochimie, biophysique & biologie moléculaire Biologie végétale (sciences végétales, sylviculture, mycologie...) Chemical Sciences Chlamydomonas reinhardtii Cyclic electron flow Cytochrome b6f electrons Life Sciences mutants oxidoreductases oxygen Photosynthesis Photosystem I Phytobiology (plant sciences, forestry, mycology...) reducing agents Sciences du vivant spectroscopy Vegetal Biology |
Title | Maximal cyclic electron flow rate is independent of PGRL1 in Chlamydomonas |
URI | https://dx.doi.org/10.1016/j.bbabio.2019.01.004 https://www.ncbi.nlm.nih.gov/pubmed/30711358 https://www.proquest.com/docview/2179540206 https://www.proquest.com/docview/2221023937 https://hal.sorbonne-universite.fr/hal-02351657 http://orbi.ulg.ac.be/handle/2268/236838 |
Volume | 1860 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELb6EIILgvJKgVVAHAldx05iH5cVZSmlQohKe7P8ShuUbqrubmEv_HZmnIeEBFTitrEm2mQ8sb-RZ76PkFdWSGONFklelD4BfJsl0nKZgD0V-dhpaUOB7Ek-O-VH82y-RaZ9LwyWVXZrf7umh9W6GznovHlwWVXY4zvO0gLZjBhs3ClygjIuQhPf_O1wkgD4ulNTw96rVPTtc6HGyxhtKmwBpDKQd3ZybX_YnrbPsU5yt8aT7L-D0bApHd4jdzs0GU_aB75Ptvxij9xq9SU3e-T2tJdze0COPukf1QUY242tKxv3-jdxWTffYySMiKtlXA2quKu4KePP778cUxiMp-cQORvXQNDq5UNyevju63SWdEIKiYVsYJU4k3PjAEk4bQvAU9QBLLPCa2opd5Zp6Rk1yE3nXQ75TylMgcx-LrXSAuZjj8jOoln4JyRGyTKXFVxSZrgdC61dnmkvXel4aTmPCOv9p2zHMo5iF7Xqy8m-qdbrCr2uxlSB1yOSDHddtiwbN9gX_dSo36JFwUZww50vYSaHP0Fy7dnkWOEYMv_QPCuuaUReh4lWzZWp1HUazMLvdX2mtFXGK4CtQqUsF0xE5EUfDwomFU9c9MI366WCfE9mmKHn_7BJMetGXsKIPG6DaXg8WIApZZnY_-_3fUru4FVbovmM7Kyu1v45wKiVGZHtNz_piOxOPnycnYzCV_MLWBwZ0Q |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Zb9NAEB71ECovCMrlci2IR6xm7bW9fiwRJS1phVAr5W21l1sjN66apJB_z4wvCQmoxFu0Gcv27Hj3G-3M9wG8tzI31mgZplnhQ8S3SZhbkYdoz2U6cjq3TYHsaTo5F8ezZLYB474Xhsoqu7W_XdOb1bob2e-8uX9dltTjO0qijNiMYty4I7EJ24gGMtJvOJp9HI4SEGB3cmrUfBXJvn-uKfIyRpuSegB53rB3dnptf9ifNi-pUHK7oqPsv6PRZlc6fAgPOjjJDtonfgQbfr4L91qByfUu7Ix7PbfHcHyif5ZXaGzXtiot6wVwWFHVPxgxRrBywcpBFnfJ6oJ9_fxtynGQjS8xdNauxqjViydwfvjpbDwJOyWF0GI6sAydSYVxCCWcthkCKu4Ql1npNbdcOBvr3MfcEDmddykmQIU0GVH7ucjmFkFf_BS25vXcPwdGmmUuyUTOYyPsSGrt0kT73BVOFFaIAOLef8p2NOOkdlGpvp7su2q9rsjrasQVej2AcLjquqXZuMM-66dG_RYuCneCO658hzM53ITYtScHU0VjRP3D0yS75QF8aCZa1TemVLdRY9b8XlUXSltlvELcKlUUpzKWAbzt40HhpNKRi577erVQmPDlCaXo6T9sIkq7iZgwgGdtMA2Physw53Ei9_77fd_AzuTsZKqmR6dfXsB9-qet13wJW8ublX-FmGppXjffzC8JDRpk |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Maximal+cyclic+electron+flow+rate+is+independent+of+PGRL1+in+Chlamydomonas&rft.jtitle=Biochimica+et+biophysica+acta.+Bioenergetics&rft.au=Nawrocki%2C+W+J&rft.au=Bailleul%2C+B&rft.au=Cardol%2C+P&rft.au=Rappaport%2C+F&rft.date=2019-05-01&rft.issn=0005-2728&rft.volume=1860&rft.issue=5+p.425-432&rft.spage=425&rft.epage=432&rft_id=info:doi/10.1016%2Fj.bbabio.2019.01.004&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0005-2728&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0005-2728&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0005-2728&client=summon |