High-throughput determination of high-quality interdiffusion coefficients in metallic solids: a review
Accurate interdiffusion coefficients of composition and temperature dependence are significantly important for understanding different materials processes. However, the high-throughput determination of high-quality interdiffusion coefficients, especially in multicomponent systems, has been sustainin...
Saved in:
Published in | Journal of materials science Vol. 55; no. 24; pp. 10303 - 10338 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
01.08.2020
Springer Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Accurate interdiffusion coefficients of composition and temperature dependence are significantly important for understanding different materials processes. However, the high-throughput determination of high-quality interdiffusion coefficients, especially in multicomponent systems, has been sustaining as a challenge in materials community. This review dealt with a comprehensive summarization of the recent progress in this field, aiming at advancing a scientific routine for realizing the high-throughput determination of high-quality interdiffusion coefficients in metallic solids. First, an introduction of traditional Matano-based approaches and their recent development was given. Second, the numerical inverse methods were described, with a focus on the recently developed pragmatic numerical inverse method and related public toolkits. Potential strategies for resolving the problems about accuracy and uniqueness of the solutions to the numerical inverse methods were highlighted. The combination of numerical inverse method and diffusion multiple technique was highly proposed for high-throughput determination of interdiffusion coefficients in metallic solids with any number of components. After that, the case studies on the high-throughput determination of interdiffusivity matrices in the real Ni-based, high-entropy/high-entropy superalloys were demonstrated. Discussion on the substitution of Re in Ni-based single-crystal superalloys and the sluggish diffusion in high-entropy/high-entropy superalloys was also carried out. Fourth, the general idea for the uncertainty quantification was proposed in order to obtain high-quality interdiffusion coefficients, followed by the introduction of recent progress on the uncertainty quantification in both Matano-based methods and numerical inverse methods. Finally, the conclusions were drawn, and the future trends in diffusion community were also pointed out. |
---|---|
AbstractList | Accurate interdiffusion coefficients of composition and temperature dependence are significantly important for understanding different materials processes. However, the high-throughput determination of high-quality interdiffusion coefficients, especially in multicomponent systems, has been sustaining as a challenge in materials community. This review dealt with a comprehensive summarization of the recent progress in this field, aiming at advancing a scientific routine for realizing the high-throughput determination of high-quality interdiffusion coefficients in metallic solids. First, an introduction of traditional Matano-based approaches and their recent development was given. Second, the numerical inverse methods were described, with a focus on the recently developed pragmatic numerical inverse method and related public toolkits. Potential strategies for resolving the problems about accuracy and uniqueness of the solutions to the numerical inverse methods were highlighted. The combination of numerical inverse method and diffusion multiple technique was highly proposed for high-throughput determination of interdiffusion coefficients in metallic solids with any number of components. After that, the case studies on the high-throughput determination of interdiffusivity matrices in the real Ni-based, high-entropy/high-entropy superalloys were demonstrated. Discussion on the substitution of Re in Ni-based single-crystal superalloys and the sluggish diffusion in high-entropy/high-entropy superalloys was also carried out. Fourth, the general idea for the uncertainty quantification was proposed in order to obtain high-quality interdiffusion coefficients, followed by the introduction of recent progress on the uncertainty quantification in both Matano-based methods and numerical inverse methods. Finally, the conclusions were drawn, and the future trends in diffusion community were also pointed out. Accurate interdiffusion coefficients of composition and temperature dependence are significantly important for understanding different materials processes. However, the high-throughput determination of high-quality interdiffusion coefficients, especially in multicomponent systems, has been sustaining as a challenge in materials community. This review dealt with a comprehensive summarization of the recent progress in this field, aiming at advancing a scientific routine for realizing the high-throughput determination of high-quality interdiffusion coefficients in metallic solids. First, an introduction of traditional Matano-based approaches and their recent development was given. Second, the numerical inverse methods were described, with a focus on the recently developed pragmatic numerical inverse method and related public toolkits. Potential strategies for resolving the problems about accuracy and uniqueness of the solutions to the numerical inverse methods were highlighted. The combination of numerical inverse method and diffusion multiple technique was highly proposed for high-throughput determination of interdiffusion coefficients in metallic solids with any number of components. After that, the case studies on the high-throughput determination of interdiffusivity matrices in the real Ni-based, high-entropy/high-entropy superalloys were demonstrated. Discussion on the substitution of Re in Ni-based single-crystal superalloys and the sluggish diffusion in high-entropy/high-entropy superalloys was also carried out. Fourth, the general idea for the uncertainty quantification was proposed in order to obtain high-quality interdiffusion coefficients, followed by the introduction of recent progress on the uncertainty quantification in both Matano-based methods and numerical inverse methods. Finally, the conclusions were drawn, and the future trends in diffusion community were also pointed out.Accurate interdiffusion coefficients of composition and temperature dependence are significantly important for understanding different materials processes. However, the high-throughput determination of high-quality interdiffusion coefficients, especially in multicomponent systems, has been sustaining as a challenge in materials community. This review dealt with a comprehensive summarization of the recent progress in this field, aiming at advancing a scientific routine for realizing the high-throughput determination of high-quality interdiffusion coefficients in metallic solids. First, an introduction of traditional Matano-based approaches and their recent development was given. Second, the numerical inverse methods were described, with a focus on the recently developed pragmatic numerical inverse method and related public toolkits. Potential strategies for resolving the problems about accuracy and uniqueness of the solutions to the numerical inverse methods were highlighted. The combination of numerical inverse method and diffusion multiple technique was highly proposed for high-throughput determination of interdiffusion coefficients in metallic solids with any number of components. After that, the case studies on the high-throughput determination of interdiffusivity matrices in the real Ni-based, high-entropy/high-entropy superalloys were demonstrated. Discussion on the substitution of Re in Ni-based single-crystal superalloys and the sluggish diffusion in high-entropy/high-entropy superalloys was also carried out. Fourth, the general idea for the uncertainty quantification was proposed in order to obtain high-quality interdiffusion coefficients, followed by the introduction of recent progress on the uncertainty quantification in both Matano-based methods and numerical inverse methods. Finally, the conclusions were drawn, and the future trends in diffusion community were also pointed out. |
Audience | Academic |
Author | Zhang, Lijun Zhong, Jing Chen, Li |
Author_xml | – sequence: 1 givenname: Jing surname: Zhong fullname: Zhong, Jing organization: State Key Laboratory of Powder Metallurgy, Central South University – sequence: 2 givenname: Li surname: Chen fullname: Chen, Li organization: State Key Laboratory of Powder Metallurgy, Central South University – sequence: 3 givenname: Lijun orcidid: 0000-0002-5969-2406 surname: Zhang fullname: Zhang, Lijun email: lijun.zhang@csu.edu.cn organization: State Key Laboratory of Powder Metallurgy, Central South University |
BookMark | eNqFkktv1DAUhS1URKeFP8AqEhtYpPgRP8ICqaqAVqqExGNtOY6duErsqe0U-u_xNEVouhjkhWXf7xz7Xp0TcOSDNwC8RvAMQcjfJwQFJTXEsIaNgLRGz8AGUU7qciJHYAMhxjVuGDoGJyndQAgpx-gFOCZYEEYE2gB76YaxzmMMyzBul1z1Jps4O6-yC74Kthp3wO2iJpfvK-dLtXfWLmlX1sFY67QzPqdSq2aT1TQ5XaUwuT59qFQVzZ0zv16C51ZNybx63E_Bz8-fflxc1tdfv1xdnF_Xmgqaa90rY2HfCi0wNpo0TOuG2dInU33baY4YsoxyK6DukNXQWMW7VmMmOsYwJqfg4-q7XbrZ9Lp8LKpJbqObVbyXQTm5X_FulEO4kxwT2nJWDN4-GsRwu5iU5eySNtOkvAlLkpjyhjCBkfg_2hCOMG04L-ibJ-hNWKIvk5AECc5Qyyg7ROEGCk4ayNtCna3UoCYjnbehNKLL6s3sdEmIdeX-nGFabHFLi-DdnqAw2fzOg1pSklffv-2zYmV1DClFY6V2-SEK5RE3SQTlLnpyjZ4s0ZMP0ZOoSPET6d-pHxSRVZQK7AcT_7V8QPUHZq3sPQ |
CitedBy_id | crossref_primary_10_1016_j_actamat_2023_119296 crossref_primary_10_1016_j_calphad_2023_102632 crossref_primary_10_1016_j_calphad_2025_102811 crossref_primary_10_3390_pr9040698 crossref_primary_10_1007_s10853_021_06823_z crossref_primary_10_1016_j_calphad_2024_102659 crossref_primary_10_1016_j_matlet_2024_137596 crossref_primary_10_1039_D1CP03562B crossref_primary_10_1557_s43577_022_00284_8 crossref_primary_10_3390_met11050809 crossref_primary_10_1016_j_calphad_2024_102697 crossref_primary_10_2174_1871530322666220411082656 crossref_primary_10_1016_j_mtla_2021_101046 crossref_primary_10_1016_j_scriptamat_2022_114639 crossref_primary_10_1016_j_ssi_2021_115559 crossref_primary_10_1007_s10853_022_06948_9 crossref_primary_10_1007_s11661_021_06224_6 crossref_primary_10_1038_s41524_021_00500_0 crossref_primary_10_1016_j_actamat_2022_118547 crossref_primary_10_1016_j_jallcom_2021_158645 crossref_primary_10_1016_j_calphad_2024_102794 crossref_primary_10_1016_S1003_6326_24_66673_2 crossref_primary_10_3390_molecules28020744 crossref_primary_10_3390_cryst13010046 crossref_primary_10_1016_j_calphad_2021_102286 crossref_primary_10_1016_j_commatsci_2022_111590 crossref_primary_10_1109_TPEL_2022_3142286 crossref_primary_10_1016_j_calphad_2021_102388 crossref_primary_10_1016_j_scriptamat_2022_114760 crossref_primary_10_1016_j_molliq_2024_125966 crossref_primary_10_1016_j_vacuum_2021_110238 crossref_primary_10_1016_j_jallcom_2021_162711 crossref_primary_10_1016_j_matchar_2021_111450 crossref_primary_10_1016_j_calphad_2023_102626 crossref_primary_10_1016_j_jallcom_2023_169205 crossref_primary_10_1515_ijmr_2021_8226 crossref_primary_10_1146_annurev_matsci_081720_092213 crossref_primary_10_1134_S0025654424606013 crossref_primary_10_1016_j_jallcom_2021_158596 crossref_primary_10_3390_ma15010113 crossref_primary_10_1080_14786435_2023_2237900 |
Cites_doi | 10.1016/j.intermet.2015.11.007 10.1016/j.actamat.2020.02.042 10.1007/s11665-014-1255-6 10.1016/j.actamat.2017.12.052 10.1002/andp.19053220806 10.1007/BF00729354 10.1361/105497100770340057 10.1137/1.9780898717921 10.1016/j.actamat.2019.12.051 10.1016/j.scriptamat.2019.07.013 10.1016/j.calphad.2003.11.004 10.1016/j.calphad.2017.12.001 10.1016/S1359-6454(99)00287-6 10.1016/j.jallcom.2015.05.030 10.1016/j.calphad.2017.01.008 10.4028/www.scientific.net/DF.17.69 10.1016/S1359-6454(99)00010-5 10.1016/B978-0-12-804287-8.00006-3 10.1016/j.actamat.2012.01.035 10.1007/s11669-014-0331-9 10.3390/met8010016 10.1103/PhysRevB.76.174203 10.1016/j.actamat.2008.04.017 10.1016/0001-6160(69)90131-X 10.4028/b-jYzuy6 10.1080/14786435.2019.1619027 10.3139/146.110428 10.2320/matertrans1989.41.1372 10.1007/s11664-016-5145-6 10.1016/0001-6160(86)90165-3 10.1016/j.scriptamat.2015.02.027 10.1179/174951509X466986 10.4028/www.scientific.net/DDF.383.23 10.1016/S1369-7021(05)71122-6 10.1016/j.calphad.2018.03.010 10.1007/s11661-018-05107-7 10.1080/14786440509463331 10.1016/j.actamat.2018.12.033 10.1016/B978-0-12-804548-0.00006-2 10.1080/14786435.2013.769692 10.1016/j.corsci.2018.05.013 10.1016/j.jmst.2019.12.038 10.1007/s11661-015-2988-z 10.1016/j.jallcom.2013.03.024 10.1007/s11669-018-0680-x 10.1016/j.calphad.2015.06.001 10.1016/j.jallcom.2013.05.046 10.1016/j.actamat.2007.11.031 10.1080/01418610108216635 10.1016/j.jallcom.2016.07.239 10.1063/1.1722419 10.1007/s11669-018-0699-z 10.1016/j.actamat.2019.05.017 10.5334/jors.255 10.1038/s41524-019-0173-4 10.1016/j.actamat.2012.05.023 10.1016/j.actamat.2019.12.054 10.1016/j.intermet.2010.06.003 10.1063/1.4931806 10.1016/0001-6160(87)90083-6 10.1016/j.calphad.2019.03.012 10.1080/14786435.2016.1255368 10.1007/978-3-319-48206-4 10.1016/j.actamat.2010.03.002 10.1007/s11669-017-0562-7 10.1016/j.intermet.2012.11.012 10.1557/mrs.2016.61 10.1557/mrc.2019.59 10.1016/j.calphad.2016.07.003 10.1007/s11661-018-4669-1 10.1016/j.scriptamat.2014.07.016 10.4028/www.scientific.net/DDF.297-301.1218 10.1016/j.jallcom.2017.10.108 10.1016/j.calphad.2017.12.004 10.1016/j.jallcom.2014.09.139 10.1016/j.actamat.2012.02.032 10.1134/S0031918X13010122 10.1007/s11669-019-00753-9 10.4028/www.scientific.net/DDF.237-240.420 10.1016/j.scriptamat.2013.11.033 10.1063/1.4946894 10.1557/mrc.2016.21 10.1086/670067 10.1162/neco.1995.7.2.219 10.1088/0022-3727/42/5/055301 10.1016/S1359-6454(02)00144-1 10.1016/j.jallcom.2019.03.286 10.1016/S1359-6454(02)00358-0 10.1038/s41598-018-22992-5 10.1016/j.jallcom.2019.05.224 10.1016/j.scriptamat.2017.03.026 10.1016/j.jmst.2018.02.003 10.2298/JMMB140323018L 10.4028/www.scientific.net/DDF.383.36 10.1088/0305-4608/10/3/009 10.1088/0965-0393/17/7/073001 10.1016/j.actamat.2013.04.058 10.1201/b10905-2 10.1063/1.351745 10.1016/0036-9748(74)90311-1 10.1016/j.actamat.2018.11.007 10.1179/174328408X369348 10.1016/j.jallcom.2016.03.046 10.1103/PhysRevLett.86.2050 10.1016/j.petrol.2018.11.011 10.1016/S1359-6454(03)00276-3 10.1007/BF02811561 10.1007/s11661-999-0045-5 10.1007/s11669-017-0569-0 10.1016/j.yrtph.2006.06.008 10.1007/s11669-005-0003-x 10.1007/s11669-017-0579-y 10.1016/j.jallcom.2015.10.120 10.1007/s10853-019-03821-0 10.4028/www.scientific.net/DF.13.136 10.2320/matertrans1960.21.601 10.1016/0025-5416(81)90084-7 10.1016/0364-5916(85)90021-5 10.3139/146.111381 10.1007/s11669-016-0486-7 10.1038/317314a0 10.1080/10408436.2017.1397500 10.1088/0266-5611/14/1/009 10.1002/adem.200300567 10.1016/j.scriptamat.2018.01.002 10.1007/BF01702804 10.1016/j.scriptamat.2011.10.025 10.1021/ja01587a006 10.1002/bbpc.19620660412 10.1016/S0079-6425(03)00033-1 10.1016/B978-008044629-5/50006-9 10.1007/s11669-008-9341-9 10.1016/0370-2693(87)91197-X 10.1115/1.4040554 10.1016/S1359-6454(03)00105-8 10.3390/ma10080961 10.1016/j.calphad.2019.101636 10.1016/j.scriptamat.2019.11.044 10.2140/camcos.2010.5.65 10.3184/096034008X386625 10.1557/jmr.2017.44 10.1007/978-0-387-71887-3 10.1016/j.jallcom.2016.07.003 10.1002/pssa.2210200129 10.1103/PhysRevB.4.1111 10.1016/j.jallcom.2018.12.300 10.1016/j.scriptamat.2015.03.021 10.1016/j.actamat.2010.08.032 10.1007/s11669-018-0657-9 |
ContentType | Journal Article |
Copyright | Springer Science+Business Media, LLC, part of Springer Nature 2020 COPYRIGHT 2020 Springer Springer Science+Business Media, LLC, part of Springer Nature 2020. Copyright Springer Nature B.V. Aug 2020 |
Copyright_xml | – notice: Springer Science+Business Media, LLC, part of Springer Nature 2020 – notice: COPYRIGHT 2020 Springer – notice: Springer Science+Business Media, LLC, part of Springer Nature 2020. – notice: Copyright Springer Nature B.V. Aug 2020 |
DBID | AAYXX CITATION ISR 8FE 8FG ABJCF AFKRA BENPR BGLVJ CCPQU D1I DWQXO HCIFZ KB. L6V M7S PDBOC PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS 7X8 7S9 L.6 5PM |
DOI | 10.1007/s10853-020-04805-1 |
DatabaseName | CrossRef Gale In Context: Science ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central UK/Ireland ProQuest Central Technology Collection ProQuest One ProQuest Materials Science Collection ProQuest Central SciTech Premium Collection Materials Science Database ProQuest Engineering Collection Engineering Database Materials Science Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering collection MEDLINE - Academic AGRICOLA AGRICOLA - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef ProQuest Materials Science Collection Engineering Database Technology Collection ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition Materials Science Collection SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest One Academic UKI Edition ProQuest Central Korea Materials Science & Engineering Collection Materials Science Database ProQuest One Academic ProQuest Central (New) ProQuest One Academic (New) Engineering Collection MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | ProQuest Materials Science Collection ProQuest Materials Science Collection MEDLINE - Academic AGRICOLA |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1573-4803 |
EndPage | 10338 |
ExternalDocumentID | PMC7235976 A625619295 10_1007_s10853_020_04805_1 |
GrantInformation_xml | – fundername: Fundamental Research Funds for the Central Universities of Central South University grantid: Grant No. 2018zzts129 – fundername: National Key Research and Development Program of China grantid: Grant No. 2016YFB0301101 – fundername: Youth Talent Project of Innovation-driven Plan at Central South University grantid: Grant No. 2019XZ027 – fundername: ; grantid: Grant No. 2016YFB0301101 – fundername: ; grantid: Grant No. 2018zzts129 – fundername: ; grantid: Grant No. 2019XZ027 |
GroupedDBID | -XW -Y2 -~C -~X .4S .86 .DC .VR 06C 06D 0R~ 0VY 199 1N0 1SB 2.D 203 29K 29L 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 53G 5GY 5QI 5VS 67Z 6NX 6TJ 78A 8FE 8FG 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHBH AAHNG AAIAL AAIKT AAJBT AAJKR AANZL AAPKM AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBRH ABBXA ABDBE ABDBF ABDEX ABDPE ABDZT ABECU ABFSG ABFTD ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABRTQ ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFO ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACREN ACSTC ACUHS ACZOJ ADHHG ADHIR ADHKG ADIMF ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEGXH AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AEZWR AFBBN AFDZB AFEXP AFGCZ AFHIU AFKRA AFLOW AFOHR AFQWF AFWTZ AFYQB AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGQPQ AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHPBZ AHSBF AHWEU AHYZX AI. AIAGR AIAKS AIGIU AIIXL AILAN AITGF AIXLP AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ARCSS ARMRJ ASPBG ATHPR AVWKF AXYYD AYFIA AYJHY AZFZN B-. B0M BA0 BBWZM BDATZ BENPR BGLVJ BGNMA BSONS CAG CCPQU COF CS3 CSCUP D-I D1I DDRTE DL5 DNIVK DPUIP DU5 EAD EAP EAS EBLON EBS EDO EIOEI EJD EMK EPL ESBYG ESX FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC G-Y G-Z GGCAI GGRSB GJIRD GNWQR GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IAO IGS IHE IJ- IKXTQ ISR ITC ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KB. KDC KOV KOW L6V LAK LLZTM M4Y M7S MA- MK~ N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P0- P19 P2P P9N PDBOC PF- PHGZM PHGZT PQGLB PT4 PT5 PTHSS QF4 QM1 QN7 QO4 QOK QOR QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCG SCLPG SCM SDH SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 T9H TAE TEORI TN5 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW VH1 W23 W48 W4F WH7 WJK WK8 YLTOR Z45 ZE2 ZMTXR ZY4 ~02 ~8M ~EX AAYXX ACMFV CITATION AEIIB PMFND DWQXO PKEHL PQEST PQQKQ PQUKI PRINS 7X8 7S9 L.6 5PM |
ID | FETCH-LOGICAL-c585t-cdaef0d98c822ec346cc46f1086ad9bc7161f657f80cb1fc0efa7b9c268b66223 |
IEDL.DBID | BENPR |
ISSN | 0022-2461 |
IngestDate | Thu Aug 21 13:36:08 EDT 2025 Fri Jul 11 01:02:09 EDT 2025 Mon Jul 21 11:39:14 EDT 2025 Fri Jul 25 08:56:31 EDT 2025 Fri Jul 25 11:06:41 EDT 2025 Tue Jun 10 20:59:12 EDT 2025 Fri Jun 27 05:14:19 EDT 2025 Tue Jul 01 05:04:24 EDT 2025 Thu Apr 24 23:11:41 EDT 2025 Mon Jul 21 06:06:36 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 24 |
Language | English |
License | This article is made available via the PMC Open Access Subset for unrestricted research re-use and secondary analysis in any form or by any means with acknowledgement of the original source. These permissions are granted for the duration of the World Health Organization (WHO) declaration of COVID-19 as a global pandemic. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c585t-cdaef0d98c822ec346cc46f1086ad9bc7161f657f80cb1fc0efa7b9c268b66223 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0002-5969-2406 |
OpenAccessLink | https://pubmed.ncbi.nlm.nih.gov/PMC7235976 |
PMID | 32836381 |
PQID | 2408734079 |
PQPubID | 2043599 |
PageCount | 36 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_7235976 proquest_miscellaneous_2574368218 proquest_miscellaneous_2437125477 proquest_journals_3187619656 proquest_journals_2408734079 gale_infotracacademiconefile_A625619295 gale_incontextgauss_ISR_A625619295 crossref_citationtrail_10_1007_s10853_020_04805_1 crossref_primary_10_1007_s10853_020_04805_1 springer_journals_10_1007_s10853_020_04805_1 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-08-01 |
PublicationDateYYYYMMDD | 2020-08-01 |
PublicationDate_xml | – month: 08 year: 2020 text: 2020-08-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | Journal of materials science |
PublicationTitleAbbrev | J Mater Sci |
PublicationYear | 2020 |
Publisher | Springer US Springer Springer Nature B.V |
Publisher_xml | – name: Springer US – name: Springer – name: Springer Nature B.V |
References | V Verma (4805_CR133) 2017; 38 CS Fuller (4805_CR42) 1956; 27 K Kulkarni (4805_CR131) 2015; 5 R Bouchet (4805_CR91) 2003; 27 JS Kirkaldy (4805_CR34) 1987 S Hallström (4805_CR23) 2011; 59 CM Eastman (4805_CR95) 2019; 40 W Kucza (4805_CR50) 2012; 66 W Chen (4805_CR53) 2016; 6 J Dąbrowa (4805_CR130) 2019; 783 H Barda (4805_CR6) 2020; 186 I Steinbach (4805_CR16) 2009; 17 W Chen (4805_CR121) 2018; 383 4805_CR30 JV Beck (4805_CR87) 1985 S Chen (4805_CR102) 2019; 791 N Esakkiraja (4805_CR40) 2018; 147 H Xu (4805_CR86) 2017; 46 R Wang (4805_CR101) 2018; 34 YL Keung (4805_CR88) 1998; 14 S Konishi (4805_CR113) 2008 JE Morral (4805_CR78) 2014; 35 MG Mohan (4805_CR136) 2020; 178 H Xu (4805_CR99) 2019; 798 Z Zhu (4805_CR118) 2012; 60 R McElreath (4805_CR145) 2016 A Borgenstam (4805_CR12) 2000; 21 A Agrawal (4805_CR60) 2016; 4 Y Lin (4805_CR124) 2019; 66 Z Chen (4805_CR94) 2019; 7 M Wei (4805_CR48) 2018; 8 JJ de Pablo (4805_CR61) 2019; 5 4805_CR156 H Xu (4805_CR47) 2015; 644 WJ Boettinger (4805_CR57) 2017; 38 C Wagner (4805_CR37) 1969; 17 W Sutherland (4805_CR10) 1905; 9 F Sauer (4805_CR36) 1962; 66 D Kuang (4805_CR65) 2016; 107 LJ Zhang (4805_CR31) 2017; 13 4805_CR150 S Santra (4805_CR81) 2015; 46 MS Thompson (4805_CR38) 1986; 34 J Chen (4805_CR142) 2015; 50 T Helander (4805_CR22) 1999; 47 DL McDowell (4805_CR59) 2016; 41 A Einstein (4805_CR11) 1905; 17 L Kaufman (4805_CR25) 1970 F Girosi (4805_CR115) 1995; 7 N Esakkiraja (4805_CR41) 2019; 99 K Cheng (4805_CR76) 2014; 76 D Gaertner (4805_CR106) 2019; 166 IV Belova (4805_CR83) 2019; 172 J Cermak (4805_CR75) 2003; 51 M Vaidya (4805_CR134) 2016; 688 L Zhang (4805_CR27) 2008; 56 L Zhu (4805_CR93) 2019; 50 J Chen (4805_CR8) 2018; 49 L Zhang (4805_CR9) 2010; 58 I Steinbach (4805_CR18) 2012; 60 L Zhang (4805_CR28) 2010; 101 A Tarantola (4805_CR89) 2005 National Research Council (4805_CR154) 2008 T Poggio (4805_CR114) 1985; 317 X Wu (4805_CR146) 2020; 188 C Matano (4805_CR33) 1933; 8 J Chen (4805_CR68) 2015; 621 B Jönsson (4805_CR21) 1992; 83 J Zhong (4805_CR58) 2020; 48 K Cheng (4805_CR46) 2013; 579 J-W Yeh (4805_CR126) 2004; 6 J Li (4805_CR64) 2014; 50 B Million (4805_CR161) 1981; 50 J Chen (4805_CR110) 2018; 60 Ü Ugaste (4805_CR66) 2013; 114 R Oruganti (4805_CR138) 2019; 141 A Ben Abdellah (4805_CR55) 2007; 76 D Rohrberg (4805_CR80) 2008; 25 J Chen (4805_CR122) 2016; 688 N Warnken (4805_CR3) 2009; 3 W Chen (4805_CR52) 2014; 90–91 Y Wang (4805_CR72) 2018; 61 B Tas Kavakbasi (4805_CR84) 2018; 383 S Jung (4805_CR140) 1992; 11 B Bocklund (4805_CR155) 2019; 9 S Wen (4805_CR111) 2017; 32 H Fujita (4805_CR92) 1956; 78 A Paul (4805_CR128) 2017; 135 D Foreman-Mackey (4805_CR148) 2013; 125 D Liu (4805_CR45) 2013; 566 C Wang (4805_CR71) 2018; 39 W Bai (4805_CR73) 2019; 65 Q Li (4805_CR100) 2017; 8 RC Reed (4805_CR116) 2008 KM Day (4805_CR74) 2005; 26 E Rabkin (4805_CR85) 2002; 50 MSA Karunaratne (4805_CR143) 2003; 51 P Shewmon (4805_CR2) 2016 Q Chen (4805_CR13) 2014; 23 S Santra (4805_CR82) 2015; 103 JR Manning (4805_CR98) 1971; 4 A Tripathi (4805_CR70) 2018; 39 J Andersson (4805_CR20) 1992; 72 B Sundman (4805_CR26) 1985; 9 JE Morral (4805_CR77) 1984; 18 A Takeuchi (4805_CR104) 2000; 41 J Wang (4805_CR44) 2016; 54 K-W Moon (4805_CR69) 2016; 37 IV Belova (4805_CR109) 2017; 97 J Zhong (4805_CR54) 2018; 60 S Rothman (4805_CR162) 1980; 10 A Takeuchi (4805_CR105) 2010; 18 IV Belova (4805_CR107) 2001; 81 K-Y Tsai (4805_CR127) 2013; 61 W Kucza (4805_CR103) 2018; 731 B Million (4805_CR160) 1971; 21 RF Sekerka (4805_CR79) 2004; 49 BF Dyson (4805_CR119) 1987; 35 W Zhong (4805_CR96) 2020; 189 Q Zhang (4805_CR51) 2013; 34 W Chen (4805_CR32) 2017; 10 TR Covington (4805_CR149) 2007; 47 Y Cui (4805_CR159) 2008; 29 H Chang (4805_CR67) 2015; 106 4805_CR144 W Chen (4805_CR129) 2017; 38 4805_CR14 4805_CR15 X Xia (4805_CR4) 2019; 54 D Whittle (4805_CR63) 1974; 8 L Zhang (4805_CR24) 2016; 70 S Deng (4805_CR112) 2017; 56 J Lechelle (4805_CR56) 2012; 17 J-C Zhao (4805_CR62) 2005; 8 N Ta (4805_CR5) 2018; 139 T Yamamoto (4805_CR139) 1980; 21 Y Lin (4805_CR125) 2018; 39 M Rappaz (4805_CR90) 2010 JR Manning (4805_CR97) 1970; 1 R Bouchet (4805_CR49) 2002; 50 P Honarmandi (4805_CR158) 2019; 164 J Chen (4805_CR123) 2016; 657 T Ustad (4805_CR141) 1973; 20 F Wang (4805_CR153) 2001; 86 NH Paulson (4805_CR157) 2019; 174 IV Belova (4805_CR108) 2010; 297–301 WJ Boettinger (4805_CR1) 2000; 48 M Vaidya (4805_CR135) 2018; 146 H Lu (4805_CR147) 2019; 174 4805_CR7 BF Dyson (4805_CR120) 2009; 25 J Dąbrowa (4805_CR132) 2016; 674 A Yeh (4805_CR137) 2015; 1 J Goodman (4805_CR152) 2010; 5 A Paul (4805_CR39) 2013; 93 L Zhang (4805_CR19) 2012; 60 4805_CR29 A Ma (4805_CR117) 2008; 56 AG Nikitin (4805_CR43) 2009; 42 MA Dayananda (4805_CR35) 1999; 30 S Duane (4805_CR151) 1987; 195 I Bellemans (4805_CR17) 2018; 43 |
References_xml | – volume: 17 start-page: 1 year: 2012 ident: 4805_CR56 publication-title: Diffus Fund – volume: 83 start-page: 349 year: 1992 ident: 4805_CR21 publication-title: Z Metallkd – volume: 70 start-page: 72 year: 2016 ident: 4805_CR24 publication-title: Intermetallics doi: 10.1016/j.intermet.2015.11.007 – volume: 188 start-page: 665 year: 2020 ident: 4805_CR146 publication-title: Acta Mater doi: 10.1016/j.actamat.2020.02.042 – volume: 23 start-page: 4193 year: 2014 ident: 4805_CR13 publication-title: J Mater Eng Perform doi: 10.1007/s11665-014-1255-6 – volume: 146 start-page: 211 year: 2018 ident: 4805_CR135 publication-title: Acta Mater doi: 10.1016/j.actamat.2017.12.052 – volume: 17 start-page: 549 year: 1905 ident: 4805_CR11 publication-title: Ann Phys doi: 10.1002/andp.19053220806 – volume: 11 start-page: 1333 year: 1992 ident: 4805_CR140 publication-title: J Mater Sci Lett doi: 10.1007/BF00729354 – volume: 21 start-page: 269 year: 2000 ident: 4805_CR12 publication-title: J Phase Equilib doi: 10.1361/105497100770340057 – volume-title: Inverse problem theory and methods for model parameter estimation year: 2005 ident: 4805_CR89 doi: 10.1137/1.9780898717921 – volume: 186 start-page: 242 year: 2020 ident: 4805_CR6 publication-title: Acta Mater doi: 10.1016/j.actamat.2019.12.051 – volume: 172 start-page: 110 year: 2019 ident: 4805_CR83 publication-title: Scripta Mater doi: 10.1016/j.scriptamat.2019.07.013 – volume: 27 start-page: 295 year: 2003 ident: 4805_CR91 publication-title: Calphad doi: 10.1016/j.calphad.2003.11.004 – volume: 60 start-page: 106 year: 2018 ident: 4805_CR110 publication-title: Calphad doi: 10.1016/j.calphad.2017.12.001 – volume: 48 start-page: 43 year: 2000 ident: 4805_CR1 publication-title: Acta Mater doi: 10.1016/S1359-6454(99)00287-6 – volume: 644 start-page: 687 year: 2015 ident: 4805_CR47 publication-title: J Alloys Compd doi: 10.1016/j.jallcom.2015.05.030 – volume-title: Integrated computational materials engineering: a transformational discipline for improved competitiveness and national security year: 2008 ident: 4805_CR154 – volume: 56 start-page: 230 year: 2017 ident: 4805_CR112 publication-title: Calphad doi: 10.1016/j.calphad.2017.01.008 – ident: 4805_CR7 doi: 10.4028/www.scientific.net/DF.17.69 – volume: 47 start-page: 1141 year: 1999 ident: 4805_CR22 publication-title: Acta Mater doi: 10.1016/S1359-6454(99)00010-5 – ident: 4805_CR14 doi: 10.1016/B978-0-12-804287-8.00006-3 – volume: 60 start-page: 2689 year: 2012 ident: 4805_CR18 publication-title: Acta Mater doi: 10.1016/j.actamat.2012.01.035 – volume: 35 start-page: 666 year: 2014 ident: 4805_CR78 publication-title: J Phase Equilib Diffus doi: 10.1007/s11669-014-0331-9 – volume: 8 start-page: 16 year: 2017 ident: 4805_CR100 publication-title: Metals doi: 10.3390/met8010016 – volume: 76 start-page: 174203 year: 2007 ident: 4805_CR55 publication-title: Phys Rev B doi: 10.1103/PhysRevB.76.174203 – volume: 56 start-page: 3940 year: 2008 ident: 4805_CR27 publication-title: Acta Mater doi: 10.1016/j.actamat.2008.04.017 – volume: 17 start-page: 99 year: 1969 ident: 4805_CR37 publication-title: Acta Metall doi: 10.1016/0001-6160(69)90131-X – ident: 4805_CR15 doi: 10.4028/b-jYzuy6 – volume: 99 start-page: 2236 year: 2019 ident: 4805_CR41 publication-title: Philos Mag doi: 10.1080/14786435.2019.1619027 – volume: 101 start-page: 1461 year: 2010 ident: 4805_CR28 publication-title: Int J Mater Res doi: 10.3139/146.110428 – volume: 41 start-page: 1372 year: 2000 ident: 4805_CR104 publication-title: Mater Trans JIM doi: 10.2320/matertrans1989.41.1372 – volume: 46 start-page: 2119 year: 2017 ident: 4805_CR86 publication-title: J Electron Mater doi: 10.1007/s11664-016-5145-6 – volume: 34 start-page: 2201 year: 1986 ident: 4805_CR38 publication-title: Acta Metall doi: 10.1016/0001-6160(86)90165-3 – volume: 103 start-page: 18 year: 2015 ident: 4805_CR82 publication-title: Scripta Mater doi: 10.1016/j.scriptamat.2015.02.027 – volume: 3 start-page: 40 year: 2009 ident: 4805_CR3 publication-title: Int Heat Treat Surf Eng doi: 10.1179/174951509X466986 – volume: 383 start-page: 23 year: 2018 ident: 4805_CR84 publication-title: Defect Diffus Forum doi: 10.4028/www.scientific.net/DDF.383.23 – volume: 8 start-page: 28 year: 2005 ident: 4805_CR62 publication-title: Mater Today doi: 10.1016/S1369-7021(05)71122-6 – volume: 61 start-page: 165 year: 2018 ident: 4805_CR72 publication-title: Calphad doi: 10.1016/j.calphad.2018.03.010 – volume: 50 start-page: 1409 year: 2019 ident: 4805_CR93 publication-title: Metall Mater Trans A doi: 10.1007/s11661-018-05107-7 – volume: 9 start-page: 781 year: 1905 ident: 4805_CR10 publication-title: Lond Edinb Dublin Philos Mag J Sci doi: 10.1080/14786440509463331 – volume: 166 start-page: 357 year: 2019 ident: 4805_CR106 publication-title: Acta Mater doi: 10.1016/j.actamat.2018.12.033 – ident: 4805_CR30 doi: 10.1016/B978-0-12-804548-0.00006-2 – volume-title: Numerical modeling in materials science and engineering year: 2010 ident: 4805_CR90 – volume: 93 start-page: 2297 year: 2013 ident: 4805_CR39 publication-title: Philos Mag doi: 10.1080/14786435.2013.769692 – volume: 1 start-page: 107 year: 2015 ident: 4805_CR137 publication-title: Int J Min Met Mater – volume: 139 start-page: 355 year: 2018 ident: 4805_CR5 publication-title: Corros Sci doi: 10.1016/j.corsci.2018.05.013 – volume: 48 start-page: 163 year: 2020 ident: 4805_CR58 publication-title: J Mater Sci Technol doi: 10.1016/j.jmst.2019.12.038 – volume: 46 start-page: 3887 year: 2015 ident: 4805_CR81 publication-title: Metall Mater Trans A doi: 10.1007/s11661-015-2988-z – volume: 566 start-page: 156 year: 2013 ident: 4805_CR45 publication-title: J Alloys Compd doi: 10.1016/j.jallcom.2013.03.024 – volume-title: The superalloys: fundamentals and applications year: 2008 ident: 4805_CR116 – volume: 39 start-page: 841 year: 2018 ident: 4805_CR70 publication-title: J Phase Equilib Diffus doi: 10.1007/s11669-018-0680-x – volume: 50 start-page: 118 year: 2015 ident: 4805_CR142 publication-title: Calphad doi: 10.1016/j.calphad.2015.06.001 – volume-title: Diffusion in the condensed state year: 1987 ident: 4805_CR34 – volume: 579 start-page: 124 year: 2013 ident: 4805_CR46 publication-title: J Alloys Compd doi: 10.1016/j.jallcom.2013.05.046 – volume: 56 start-page: 1657 year: 2008 ident: 4805_CR117 publication-title: Acta Mater doi: 10.1016/j.actamat.2007.11.031 – volume: 81 start-page: 1749 year: 2001 ident: 4805_CR107 publication-title: Philos Mag A doi: 10.1080/01418610108216635 – volume: 688 start-page: 994 year: 2016 ident: 4805_CR134 publication-title: J Alloys Compd doi: 10.1016/j.jallcom.2016.07.239 – volume: 27 start-page: 544 year: 1956 ident: 4805_CR42 publication-title: J Appl Phys doi: 10.1063/1.1722419 – volume: 39 start-page: 944 year: 2018 ident: 4805_CR125 publication-title: J Phase Equilib Diffus doi: 10.1007/s11669-018-0699-z – volume: 174 start-page: 9 year: 2019 ident: 4805_CR157 publication-title: Acta Mater doi: 10.1016/j.actamat.2019.05.017 – volume: 7 start-page: 13 year: 2019 ident: 4805_CR94 publication-title: J Open Res Softw doi: 10.5334/jors.255 – volume: 5 start-page: 41 year: 2019 ident: 4805_CR61 publication-title: NPJ Comput Mater doi: 10.1038/s41524-019-0173-4 – volume: 18 start-page: 1251 year: 1984 ident: 4805_CR77 publication-title: Metall – volume: 60 start-page: 4888 year: 2012 ident: 4805_CR118 publication-title: Acta Mater doi: 10.1016/j.actamat.2012.05.023 – volume: 189 start-page: 214 year: 2020 ident: 4805_CR96 publication-title: Acta Mater doi: 10.1016/j.actamat.2019.12.054 – volume: 18 start-page: 1779 year: 2010 ident: 4805_CR105 publication-title: Intermetallics doi: 10.1016/j.intermet.2010.06.003 – volume: 5 start-page: 097162 year: 2015 ident: 4805_CR131 publication-title: AIP Adv doi: 10.1063/1.4931806 – volume: 35 start-page: 2355 year: 1987 ident: 4805_CR119 publication-title: Acta Metall doi: 10.1016/0001-6160(87)90083-6 – volume: 65 start-page: 299 year: 2019 ident: 4805_CR73 publication-title: Calphad doi: 10.1016/j.calphad.2019.03.012 – volume: 97 start-page: 230 year: 2017 ident: 4805_CR109 publication-title: Philos Mag doi: 10.1080/14786435.2016.1255368 – volume-title: Diffusion in solids year: 2016 ident: 4805_CR2 doi: 10.1007/978-3-319-48206-4 – volume: 58 start-page: 3664 year: 2010 ident: 4805_CR9 publication-title: Acta Mater doi: 10.1016/j.actamat.2010.03.002 – volume: 38 start-page: 750 year: 2017 ident: 4805_CR57 publication-title: J Phase Equilib Diffus doi: 10.1007/s11669-017-0562-7 – volume: 34 start-page: 132 year: 2013 ident: 4805_CR51 publication-title: Intermetallics doi: 10.1016/j.intermet.2012.11.012 – volume: 41 start-page: 326 year: 2016 ident: 4805_CR59 publication-title: MRS Bull doi: 10.1557/mrs.2016.61 – volume-title: Statistical rethinking: a Bayesian course with examples in R and Stan year: 2016 ident: 4805_CR145 – volume: 9 start-page: 618 year: 2019 ident: 4805_CR155 publication-title: MRS Commun doi: 10.1557/mrc.2019.59 – volume: 54 start-page: 134 year: 2016 ident: 4805_CR44 publication-title: Calphad doi: 10.1016/j.calphad.2016.07.003 – volume: 49 start-page: 2999 year: 2018 ident: 4805_CR8 publication-title: Metall Mater Trans A doi: 10.1007/s11661-018-4669-1 – volume: 90–91 start-page: 53 year: 2014 ident: 4805_CR52 publication-title: Scripta Mater doi: 10.1016/j.scriptamat.2014.07.016 – volume: 297–301 start-page: 1218 year: 2010 ident: 4805_CR108 publication-title: Defect Diffus Forum doi: 10.4028/www.scientific.net/DDF.297-301.1218 – volume: 731 start-page: 920 year: 2018 ident: 4805_CR103 publication-title: J Alloys Compd doi: 10.1016/j.jallcom.2017.10.108 – volume: 60 start-page: 177 year: 2018 ident: 4805_CR54 publication-title: Calphad doi: 10.1016/j.calphad.2017.12.004 – volume: 621 start-page: 428 year: 2015 ident: 4805_CR68 publication-title: J Alloys Compd doi: 10.1016/j.jallcom.2014.09.139 – volume: 60 start-page: 2702 year: 2012 ident: 4805_CR19 publication-title: Acta Mater doi: 10.1016/j.actamat.2012.02.032 – volume: 114 start-page: 54 year: 2013 ident: 4805_CR66 publication-title: Phys Met Metallogr doi: 10.1134/S0031918X13010122 – volume: 40 start-page: 542 year: 2019 ident: 4805_CR95 publication-title: J Phase Equilib Diffus doi: 10.1007/s11669-019-00753-9 – ident: 4805_CR144 doi: 10.4028/www.scientific.net/DDF.237-240.420 – volume: 76 start-page: 5 year: 2014 ident: 4805_CR76 publication-title: Scripta Mater doi: 10.1016/j.scriptamat.2013.11.033 – volume: 4 start-page: 053208 year: 2016 ident: 4805_CR60 publication-title: APL Mater doi: 10.1063/1.4946894 – volume: 6 start-page: 295 year: 2016 ident: 4805_CR53 publication-title: MRS Commun doi: 10.1557/mrc.2016.21 – volume: 125 start-page: 306 year: 2013 ident: 4805_CR148 publication-title: Publ Astron Soc Pac doi: 10.1086/670067 – volume: 7 start-page: 219 year: 1995 ident: 4805_CR115 publication-title: Neural Comput doi: 10.1162/neco.1995.7.2.219 – volume: 42 start-page: 055301 year: 2009 ident: 4805_CR43 publication-title: J Phys D: Appl Phys doi: 10.1088/0022-3727/42/5/055301 – volume: 50 start-page: 3229 year: 2002 ident: 4805_CR85 publication-title: Acta Mater doi: 10.1016/S1359-6454(02)00144-1 – volume: 791 start-page: 255 year: 2019 ident: 4805_CR102 publication-title: J Alloys Compd doi: 10.1016/j.jallcom.2019.03.286 – volume: 50 start-page: 4887 year: 2002 ident: 4805_CR49 publication-title: Acta Mater doi: 10.1016/S1359-6454(02)00358-0 – volume: 8 start-page: 5071 year: 2018 ident: 4805_CR48 publication-title: Sci Rep doi: 10.1038/s41598-018-22992-5 – volume: 798 start-page: 26 year: 2019 ident: 4805_CR99 publication-title: J Alloys Compd doi: 10.1016/j.jallcom.2019.05.224 – volume: 135 start-page: 153 year: 2017 ident: 4805_CR128 publication-title: Scripta Mater doi: 10.1016/j.scriptamat.2017.03.026 – volume: 34 start-page: 1791 year: 2018 ident: 4805_CR101 publication-title: J Mater Sci Technol doi: 10.1016/j.jmst.2018.02.003 – volume: 50 start-page: 93 year: 2014 ident: 4805_CR64 publication-title: J Min Metall B doi: 10.2298/JMMB140323018L – volume: 383 start-page: 36 year: 2018 ident: 4805_CR121 publication-title: Defect Diffus Forum doi: 10.4028/www.scientific.net/DDF.383.36 – volume: 10 start-page: 383 year: 1980 ident: 4805_CR162 publication-title: J Phys F doi: 10.1088/0305-4608/10/3/009 – volume: 17 start-page: 073001 year: 2009 ident: 4805_CR16 publication-title: Model Simul Mater Sci Eng doi: 10.1088/0965-0393/17/7/073001 – volume: 61 start-page: 4887 year: 2013 ident: 4805_CR127 publication-title: Acta Mater doi: 10.1016/j.actamat.2013.04.058 – ident: 4805_CR150 doi: 10.1201/b10905-2 – volume: 72 start-page: 1350 year: 1992 ident: 4805_CR20 publication-title: J Appl Phys doi: 10.1063/1.351745 – volume: 8 start-page: 883 year: 1974 ident: 4805_CR63 publication-title: Scripta Metall doi: 10.1016/0036-9748(74)90311-1 – volume: 164 start-page: 636 year: 2019 ident: 4805_CR158 publication-title: Acta Mater doi: 10.1016/j.actamat.2018.11.007 – volume: 25 start-page: 213 year: 2009 ident: 4805_CR120 publication-title: Mater Sci Tech-Lond doi: 10.1179/174328408X369348 – volume: 674 start-page: 455 year: 2016 ident: 4805_CR132 publication-title: J Alloys Compd doi: 10.1016/j.jallcom.2016.03.046 – volume: 86 start-page: 2050 year: 2001 ident: 4805_CR153 publication-title: Phys Rev Lett doi: 10.1103/PhysRevLett.86.2050 – volume: 174 start-page: 189 year: 2019 ident: 4805_CR147 publication-title: J Petro Sci Eng doi: 10.1016/j.petrol.2018.11.011 – volume: 51 start-page: 4411 year: 2003 ident: 4805_CR75 publication-title: Acta Mater doi: 10.1016/S1359-6454(03)00276-3 – volume: 1 start-page: 499 year: 1970 ident: 4805_CR97 publication-title: Metall Mater Trans B doi: 10.1007/BF02811561 – volume: 30 start-page: 535 year: 1999 ident: 4805_CR35 publication-title: Metall Mater Trans A doi: 10.1007/s11661-999-0045-5 – volume: 38 start-page: 457 year: 2017 ident: 4805_CR129 publication-title: J Phase Equilib Diffus doi: 10.1007/s11669-017-0569-0 – volume: 47 start-page: 1 year: 2007 ident: 4805_CR149 publication-title: Regul Toxicol Pharm doi: 10.1016/j.yrtph.2006.06.008 – volume: 26 start-page: 579 year: 2005 ident: 4805_CR74 publication-title: J Phase Equilib Diffus doi: 10.1007/s11669-005-0003-x – volume: 38 start-page: 445 year: 2017 ident: 4805_CR133 publication-title: J Phase Equilib Diffus doi: 10.1007/s11669-017-0579-y – volume: 657 start-page: 457 year: 2016 ident: 4805_CR123 publication-title: J Alloys Compd doi: 10.1016/j.jallcom.2015.10.120 – volume: 54 start-page: 13368 year: 2019 ident: 4805_CR4 publication-title: J Mater Sci doi: 10.1007/s10853-019-03821-0 – volume: 13 start-page: 136 year: 2017 ident: 4805_CR31 publication-title: Diffus Found doi: 10.4028/www.scientific.net/DF.13.136 – volume: 21 start-page: 601 year: 1980 ident: 4805_CR139 publication-title: Trans JIM doi: 10.2320/matertrans1960.21.601 – volume: 50 start-page: 43 year: 1981 ident: 4805_CR161 publication-title: Mater Sci Eng doi: 10.1016/0025-5416(81)90084-7 – volume: 9 start-page: 153 year: 1985 ident: 4805_CR26 publication-title: Calphad doi: 10.1016/0364-5916(85)90021-5 – volume: 107 start-page: 597 year: 2016 ident: 4805_CR65 publication-title: Int J Mater Res doi: 10.3139/146.111381 – volume: 37 start-page: 402 year: 2016 ident: 4805_CR69 publication-title: J Phase Equilib Diffus doi: 10.1007/s11669-016-0486-7 – volume: 317 start-page: 314 year: 1985 ident: 4805_CR114 publication-title: Nature doi: 10.1038/317314a0 – volume: 43 start-page: 417 year: 2018 ident: 4805_CR17 publication-title: Crit Rev Solid State doi: 10.1080/10408436.2017.1397500 – volume: 14 start-page: 83 year: 1998 ident: 4805_CR88 publication-title: Inverse Prob doi: 10.1088/0266-5611/14/1/009 – volume: 6 start-page: 299 year: 2004 ident: 4805_CR126 publication-title: Adv Eng Mater doi: 10.1002/adem.200300567 – volume: 147 start-page: 79 year: 2018 ident: 4805_CR40 publication-title: Scripta Mater doi: 10.1016/j.scriptamat.2018.01.002 – volume: 8 start-page: 109 year: 1933 ident: 4805_CR33 publication-title: Jpn J Appl Phys – volume: 21 start-page: 161 year: 1971 ident: 4805_CR160 publication-title: Czech J Phys doi: 10.1007/BF01702804 – volume-title: Computer calculation of phase diagrams year: 1970 ident: 4805_CR25 – volume: 66 start-page: 151 year: 2012 ident: 4805_CR50 publication-title: Scr Mater doi: 10.1016/j.scriptamat.2011.10.025 – volume: 78 start-page: 1099 year: 1956 ident: 4805_CR92 publication-title: J Am Chem Soc doi: 10.1021/ja01587a006 – volume: 66 start-page: 353 year: 1962 ident: 4805_CR36 publication-title: Zeitschrift für Elektrochemie, Berichte der Bunsengesellschaft für physikalische Chemie doi: 10.1002/bbpc.19620660412 – volume: 49 start-page: 511 year: 2004 ident: 4805_CR79 publication-title: Prog Mater Sci doi: 10.1016/S0079-6425(03)00033-1 – ident: 4805_CR29 doi: 10.1016/B978-008044629-5/50006-9 – volume: 29 start-page: 312 year: 2008 ident: 4805_CR159 publication-title: J Phase Equilib Diffus doi: 10.1007/s11669-008-9341-9 – ident: 4805_CR156 – volume: 195 start-page: 216 year: 1987 ident: 4805_CR151 publication-title: Phys Lett B doi: 10.1016/0370-2693(87)91197-X – volume: 141 start-page: 011001 year: 2019 ident: 4805_CR138 publication-title: J Eng Mater Technol doi: 10.1115/1.4040554 – volume: 51 start-page: 2905 year: 2003 ident: 4805_CR143 publication-title: Acta Mater doi: 10.1016/S1359-6454(03)00105-8 – volume: 10 start-page: 961 year: 2017 ident: 4805_CR32 publication-title: Materials doi: 10.3390/ma10080961 – volume: 66 start-page: 101636 year: 2019 ident: 4805_CR124 publication-title: Calphad doi: 10.1016/j.calphad.2019.101636 – volume: 178 start-page: 227 year: 2020 ident: 4805_CR136 publication-title: Scripta Mater doi: 10.1016/j.scriptamat.2019.11.044 – volume: 5 start-page: 65 year: 2010 ident: 4805_CR152 publication-title: CAMCoS doi: 10.2140/camcos.2010.5.65 – volume: 25 start-page: 247 year: 2008 ident: 4805_CR80 publication-title: Mater High Temp doi: 10.3184/096034008X386625 – volume: 32 start-page: 2188 year: 2017 ident: 4805_CR111 publication-title: J Mater Res doi: 10.1557/jmr.2017.44 – volume-title: Information criteria and statistical modeling year: 2008 ident: 4805_CR113 doi: 10.1007/978-0-387-71887-3 – volume: 688 start-page: 320 year: 2016 ident: 4805_CR122 publication-title: J Alloys Compd doi: 10.1016/j.jallcom.2016.07.003 – volume: 20 start-page: 285 year: 1973 ident: 4805_CR141 publication-title: Phys Stat Sol (a) doi: 10.1002/pssa.2210200129 – volume: 4 start-page: 1111 year: 1971 ident: 4805_CR98 publication-title: Phys Rev B doi: 10.1103/PhysRevB.4.1111 – volume: 783 start-page: 193 year: 2019 ident: 4805_CR130 publication-title: J Alloys Compd doi: 10.1016/j.jallcom.2018.12.300 – volume: 106 start-page: 13 year: 2015 ident: 4805_CR67 publication-title: Scripta Mater doi: 10.1016/j.scriptamat.2015.03.021 – volume: 59 start-page: 53 year: 2011 ident: 4805_CR23 publication-title: Acta Mater doi: 10.1016/j.actamat.2010.08.032 – volume: 39 start-page: 437 year: 2018 ident: 4805_CR71 publication-title: J Phase Equilib Diffus doi: 10.1007/s11669-018-0657-9 – volume-title: Inverse heat conduction: ill-posed problem year: 1985 ident: 4805_CR87 |
SSID | ssj0005721 |
Score | 2.5098267 |
SecondaryResourceType | review_article |
Snippet | Accurate interdiffusion coefficients of composition and temperature dependence are significantly important for understanding different materials processes.... |
SourceID | pubmedcentral proquest gale crossref springer |
SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 10303 |
SubjectTerms | 1000th Issue Case studies Characterization and Evaluation of Materials Chemistry and Materials Science Classical Mechanics Coefficients Crystallography and Scattering Methods Diffusion Entropy fields Heat resistant alloys High entropy alloys Interdiffusion Inverse method Materials Science Mathematical analysis Nickel base alloys Numerical methods Polymer Sciences Single crystals Solid Mechanics Superalloys temperature Temperature dependence Toolkits Uncertainty |
SummonAdditionalLinks | – databaseName: SpringerLink Journals (ICM) dbid: U2A link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELaqcikHxKOIQEEGIfVQLOVlO-a2QlSlUjlAV-rNSsY2rFSSqtkc-PfMZJ3dbimVuMazSdbjx_fFM98w9l67YKQEEFWZB1EqHMa1VEbg3pa6oFxTjKUTzr6qk3l5eiEvYlJYP0W7T0eS40p9I9kNtxZBdIfyoKVAzvNAInenQK55PtsEdug8mzTCSS0tpsrcfY-t7ej2ovx3oOSt09JxEzp-zB5F9MhnK3c_YTu-fcoe3tAUfMYCRW6IWH7nalhyNwW8kAt4FzgpFItVMuVvTnIR11QlZaDPZhw6P2pKUHgFtvFfHsH55QI4DtGF6z_ymq-SXfbZ_Pjz-acTEYspCEBGsBTgah9SZypASOChKBVAqQIVWqqdaQB5UxaU1KFKockCpD7UujGQq6pRCkHEc7bbdq1_wXgwCKKKwsusCGUDlXFO62CCycDg5TRh2dSnFqLSOBW8uLQbjWTyg0U_2NEPNkvY0fo3VyudjXut35GrLAlYtBQh86Me-t5--f7NzpDQESk0MmGH0Sh0-HioY8IB_gnSvNqyPJhcbuMU7i1pv-kC-a65sxnXQvoChHA4YW_XzTg36cClbn030C0KjQCy1PoeG6mpCAAirYTprdG27gdSAN9uaRc_RyVwnRdICPENPkzjcvOC_-69l_9n_ort5eOMoajHA7a7vB78a0Riy-bNOPH-AEDJK1Q priority: 102 providerName: Springer Nature |
Title | High-throughput determination of high-quality interdiffusion coefficients in metallic solids: a review |
URI | https://link.springer.com/article/10.1007/s10853-020-04805-1 https://www.proquest.com/docview/2408734079 https://www.proquest.com/docview/3187619656 https://www.proquest.com/docview/2437125477 https://www.proquest.com/docview/2574368218 https://pubmed.ncbi.nlm.nih.gov/PMC7235976 |
Volume | 55 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lj9MwELbY9gIHxFMElsogJA5gkacdc0EtancBUaGFSsvJSvyASktSNs2Bf89M6rR0gZ4qZZw08YztGXvm-wh5JoyTWaY1y9PYsZSDGRcZlwzWttA4bsqko074OOeni_T9eXbuN9wan1bZz4ndRG1qjXvkr8D2MOIG9-PN6idD1ig8XfUUGkdkCFNwng_IcDKdfzrbJXmIOOrxwhE5zZfN-OI5WKoYhk9YV52xaG9pujpB_500eeXktFuQZrfITe9J0vFG9bfJNVvdITf-wBe8SxxmcTBPxbNq19T0yS-oDlo7imjFbFNY-YsidMQlMqa0uIVGdW07fAlMtQAZ_WHBUb9YagrmujTNa1rQTeHLPbKYTb-8PWWeWIFpiA7WTJvCutDIXIN7YHWScq1T7pB0qTCy1BBDRY5nwuWhLiOnQ-sKUUod87zkHByK-2RQ1ZV9QKiT4FAlic2ixKWlzqUxQjjpZKQlXA4DEvV9qrRHHUfyiwu1w0tGPSjQg-r0oKKAvNjes9pgbhxs_RRVpRDMosJsmW9F2zTq3eczNYbgDgNEmQXkuW_kavh7XfjiA_gIxL_aa3ncq1z54dwoxIETCcS-8p_inW0G5MlWDOMUD1-KytYtPiIR4EymQhxokwkkBACvKyBiz9q2_YBo4PuSavm9QwUXcQLBIbzBy94udy_4_957ePh7HpHrcTdCMOPxmAzWl619DF7YuhyRo3x2MiLD8WwymePvydcP05EfgCBdxOPfAPc00g |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Jb9QwFLaqcgAOiFUEChgE4gAW2WzHSAhVwDBDlwO0Um9u4gVGKsnQTIT6p_iNvJdlhikwt15jZ_Pb7fe-R8hTab3i3BiWpbFnqQA2zrlQDGxbaL2wRdK2TtjbF-PD9NMRP9ogv4ZaGEyrHHRiq6htZXCP_BXwHkbc4H68nf1g2DUKT1eHFhodW-y4s58QstVvJu-Bvs_iePTh4N2Y9V0FmAHXeM6MzZ0PrcoM2EZnklQYkwqPHYdyqwoDAUTkBZc-C00ReRM6n8tCmVhkhRAxAh2Ayr-UJmDJsTJ99HGZUiLjaEAnR5y2vkinL9UDw8gwWMMqbs6iFUN43hz8naJ57py2NX-j6-Ra77fS7Y7RbpANV94kV_9AM7xFPOaMsL7xz6yZUzuk2iDxaeUpYiOzrozzjCJQxSn2Z2lww46ayrVoFpjYAWP0u4Ow4GRqKAjH1NavaU67Mpvb5PBCFvwO2Syr0t0l1Ctw35LE8SjxaWEyZa2UXnkVGQWXw4BEw5pq02OcY6uNE71EZ0Y6aKCDbumgo4C8WNwz6xA-1s5-gqTSCJ1RYm7O17ypaz358llvQyiJ4ajiAXneT_IVvN7kfakD_ASiba3M3BpIrnvlUWtEnZMJRNrqn8NLSQjI48UwaAU86slLVzX4iESC65pKuWYOl9h-AHy8gMgVblusA2KPr46U028tBrmMEwhF4QteDny5_MD_r9699f_ziFweH-zt6t3J_s59ciVupQVzLbfI5vy0cQ_A_5sXD1uho-T4oqX8N7FGbNE |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaqIiE4IMpDBEoxCMQBrOZpx5V6WFFWXQoVAlbqzU38gJVKsmoSof4rfiIzeex2S6nEodf17K7j8Xhm4vm-IeSlME4midYsjUPHYg7bOEu4ZODbfOO4yaO2dcKnQ74_jT8cJUdr5PeAhWmr3YcryQ7TgCxNRb09N277HPAN3AzD1Acx0QkL-rLKA3v2C5K2aneyBxp-FYbj99_e7bO-rwDTEBzXTJvMOt_IVIN3tDqKudYxd9hzKDMy15BCBI4nwqW-zgOnfesykUsd8jTnPESqAzj0b8SIPgYLmoajZVGJCIOBnxyZ2nqYzuVzXnGFFx3C30WaF25qWwc4vkvu9JErHXVbbYOs2eIeuX2Oz_A-cVg1wvrWP_OmpmYotkH109JRZEdmHZDzjCJVxSl2aGnwlR3VpW35LLC0A8boTwuJwclMUzCPmal2aEY7oM0DMr2WBX9I1ouysI8IdRICuCiySRC5ONepNEYIJ50MtISPfY8Ew5oq3bOcY7ONE7XkZ0Y9KNCDavWgAo-8WXxn3nF8XCn9AlWlkDyjwOqc71lTVWry9YsaQTKJCalMPPK6F3Il_L3OerADPATyba1Ibg4qV_3xUSnknRMR5Nry0mE4h_HtE4TiHnm-GIZzAS97ssKWDf5EJCB4jYW4QiYR2IAAojyPiJXdtlgHZB9fHSlmP1oWchFGkIzCDN4O-3I5wX-v3uP_E39Gbn7eG6uPk8ODJ-RW2BoPFl9ukvX6tLFPISCs863WBik5vm6j_wOnkG3q |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=High-throughput+determination+of+high-quality+interdiffusion+coefficients+in+metallic+solids%3A+a+review&rft.jtitle=Journal+of+materials+science&rft.au=Zhong%2C+Jing&rft.au=Chen%2C+Li&rft.au=Zhang%2C+Lijun&rft.date=2020-08-01&rft.pub=Springer&rft.issn=0022-2461&rft.volume=55&rft.issue=24&rft.spage=10303&rft_id=info:doi/10.1007%2Fs10853-020-04805-1&rft.externalDocID=A625619295 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-2461&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-2461&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-2461&client=summon |