MicroRNAs regulate critical genes associated with multiple myeloma pathogenesis

Progress in understanding the biology of multiple myeloma (MM), a plasma cell malignancy, has been slow. The discovery of microRNAs (miRNAs), a class of small noncoding RNAs targeting multiple mRNAs, has revealed a new level of gene expression regulation. To determine whether miRNAs play a role in t...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the National Academy of Sciences - PNAS Vol. 105; no. 35; pp. 12885 - 12890
Main Authors Pichiorri, Flavia, Suh, Sung-Suk, Ladetto, Marco, Kuehl, Michael, Palumbo, Tiziana, Drandi, Daniela, Taccioli, Cristian, Zanesi, Nicola, Alder, Hansjuerg, Hagan, John P, Munker, Reinhold, Volinia, Stefano, Boccadoro, Mario, Garzon, Ramiro, Palumbo, Antonio, Aqeilan, Rami I, Croce, Carlo M
Format Journal Article
LanguageEnglish
Published United States National Academy of Sciences 02.09.2008
National Acad Sciences
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Progress in understanding the biology of multiple myeloma (MM), a plasma cell malignancy, has been slow. The discovery of microRNAs (miRNAs), a class of small noncoding RNAs targeting multiple mRNAs, has revealed a new level of gene expression regulation. To determine whether miRNAs play a role in the malignant transformation of plasma cells (PCs), we have used both miRNA microarrays and quantitative real time PCR to profile miRNA expression in MM-derived cell lines (n = 49) and CD138+ bone marrow PCs from subjects with MM (n = 16), monoclonal gammopathy of undetermined significance (MGUS) (n = 6), and normal donors (n = 6). We identified overexpression of miR-21, miR-106b~25 cluster, miR-181a and b in MM and MGUS samples with respect to healthy PCs. Selective up-regulation of miR-32 and miR-17~92 cluster was identified in MM subjects and cell lines but not in MGUS subjects or healthy PCs. Furthermore, two miRNAs, miR-19a and 19b, that are part of the miR-17~92 cluster, were shown to down regulate expression of SOCS-1, a gene frequently silenced in MM that plays a critical role as inhibitor of IL-6 growth signaling. We also identified p300-CBP-associated factor, a gene involved in p53 regulation, as a bona fide target of the miR106b~25 cluster, miR-181a and b, and miR-32. Xenograft studies using human MM cell lines treated with miR-19a and b, and miR-181a and b antagonists resulted in significant suppression of tumor growth in nude mice. In summary, we have described a MM miRNA signature, which includes miRNAs that modulate the expression of proteins critical to myeloma pathogenesis.
AbstractList Progress in understanding the biology of multiple myeloma (MM), a plasma cell malignancy, has been slow. The discovery of microRNAs (miRNAs), a class of small noncoding RNAs targeting multiple mRNAs, has revealed a new level of gene expression regulation. To determine whether miRNAs play a role in the malignant transformation of plasma cells (PCs), we have used both miRNA microarrays and quantitative real time PCR to profile miRNA expression in MM-derived cell lines (n = 49) and CD138+ bone marrow PCs from subjects with MM (n = 16), monoclonal gammopathy of undetermined significance (MGUS) (n = 6), and normal donors (n = 6). We identified overexpression of miR-21, miR-106b~25 cluster, miR-181a and b in MM and MGUS samples with respect to healthy PCs. Selective up-regulation of miR-32 and miR-17~92 cluster was identified in MM subjects and cell lines but not in MGUS subjects or healthy PCs. Furthermore, two miRNAs, miR-19a and 19b, that are part of the miR-17~92 cluster, were shown to down regulate expression of SOCS-1, a gene frequently silenced in MM that plays a critical role as inhibitor of IL-6 growth signaling. We also identified p300-CBP-associated factor, a gene involved in p53 regulation, as a bona fide target of the miR106b~25 cluster, miR-181a and b, and miR-32. Xenograft studies using human MM cell lines treated with miR-19a and b, and miR-181a and b antagonists resulted in significant suppression of tumor growth in nude mice. In summary, we have described a MM miRNA signature, which includes miRNAs that modulate the expression of proteins critical to myeloma pathogenesis.
Progress in understanding the biology of multiple myeloma (MM), a plasma cell malignancy, has been slow. The discovery of microRNAs (miRNAs), a class of small noncoding RNAs targeting multiple mRNAs, has revealed a new level of gene expression regulation. To determine whether miRNAs play a role in the malignant transformation of plasma cells (PCs), we have used both miRNA microarrays and quantitative real time PCR to profile miRNA expression in MM-derived cell lines (n = 49) and CD138+ bone marrow PCs from subjects with MM (n = 16), monoclonal gammopathy of undetermined significance (MGUS) (n = 6), and normal donors (n = 6). We identified overexpression of miR-21, miR-106b approximately 25 cluster, miR-181a and b in MM and MGUS samples with respect to healthy PCs. Selective up-regulation of miR-32 and miR-17 approximately 92 cluster was identified in MM subjects and cell lines but not in MGUS subjects or healthy PCs. Furthermore, two miRNAs, miR-19a and 19b, that are part of the miR-17 approximately 92 cluster, were shown to down regulate expression of SOCS-1, a gene frequently silenced in MM that plays a critical role as inhibitor of IL-6 growth signaling. We also identified p300-CBP-associated factor, a gene involved in p53 regulation, as a bona fide target of the miR106b approximately 25 cluster, miR-181a and b, and miR-32. Xenograft studies using human MM cell lines treated with miR-19a and b, and miR-181a and b antagonists resulted in significant suppression of tumor growth in nude mice. In summary, we have described a MM miRNA signature, which includes miRNAs that modulate the expression of proteins critical to myeloma pathogenesis.Progress in understanding the biology of multiple myeloma (MM), a plasma cell malignancy, has been slow. The discovery of microRNAs (miRNAs), a class of small noncoding RNAs targeting multiple mRNAs, has revealed a new level of gene expression regulation. To determine whether miRNAs play a role in the malignant transformation of plasma cells (PCs), we have used both miRNA microarrays and quantitative real time PCR to profile miRNA expression in MM-derived cell lines (n = 49) and CD138+ bone marrow PCs from subjects with MM (n = 16), monoclonal gammopathy of undetermined significance (MGUS) (n = 6), and normal donors (n = 6). We identified overexpression of miR-21, miR-106b approximately 25 cluster, miR-181a and b in MM and MGUS samples with respect to healthy PCs. Selective up-regulation of miR-32 and miR-17 approximately 92 cluster was identified in MM subjects and cell lines but not in MGUS subjects or healthy PCs. Furthermore, two miRNAs, miR-19a and 19b, that are part of the miR-17 approximately 92 cluster, were shown to down regulate expression of SOCS-1, a gene frequently silenced in MM that plays a critical role as inhibitor of IL-6 growth signaling. We also identified p300-CBP-associated factor, a gene involved in p53 regulation, as a bona fide target of the miR106b approximately 25 cluster, miR-181a and b, and miR-32. Xenograft studies using human MM cell lines treated with miR-19a and b, and miR-181a and b antagonists resulted in significant suppression of tumor growth in nude mice. In summary, we have described a MM miRNA signature, which includes miRNAs that modulate the expression of proteins critical to myeloma pathogenesis.
Progress in understanding the biology of multiple myeloma (MM), a plasma cell malignancy, has been slow. The discovery of microRNAs (miRNAs), a class of small noncoding RNAs targeting multiple mRNAs, has revealed a new level of gene expression regulation. To determine whether miRNAs play a role in the malignant transformation of plasma cells (PCs), we have used both miRNA microarrays and quantitative real time PCR to profile miRNA expression in MM-derived cell lines (n = 49) and CD138+ bone marrow PCs from subjects with MM (n = 16), monoclonal gammopathy of undetermined significance (MGUS) (n = 6), and normal donors (n = 6). We identified overexpression of miR-21, miR-106b∼25 cluster, miR-181a and b in MM and MGUS samples with respect to healthy PCs. Selective up-regulation of miR-32 and miR-17∼92 cluster was identified in MM subjects and cell lines but not in MGUS subjects or healthy PCs. Furthermore, two miRNAs, miR-19a and 19b, that are part of the miR-17∼92 cluster, were shown to down regulate expression of SOCS-1, a gene frequently silenced in MM that plays a critical role as inhibitor of IL-6 growth signaling. We also identified p300-CBP-associated factor, a gene involved in p53 regulation, as a bona fide target of the miR106b∼25 cluster, miR-181a and b, and miR-32. Xenograft studies using human MM cell lines treated with miR-19a and b, and miR-181a and b antagonists resulted in significant suppression of tumor growth in nude mice. In summary, we have described a MM miRNA signature, which includes miRNAs that modulate the expression of proteins critical to myeloma pathogenesis.
Progress in understanding the biology of multiple myeloma (MM), a plasma cell malignancy, has been slow. The discovery of microRNAs (miRNAs), a class of small noncoding RNAs targeting multiple mRNAs, has revealed a new level of gene expression regulation. To determine whether miRNAs play a role in the malignant transformation of plasma cells (PCs), we have used both miRNA microarrays and quantitative real time PCR to profile miRNA expression in MM-derived cell lines (n = 49) and CD138+ bone marrow PCs from subjects with MM (n = 16), monoclonal gammopathy of undetermined significance (MGUS) (n = 6), and normal donors (n = 6). We identified overexpression of miR-21, miR-106b approximately 25 cluster, miR-181a and b in MM and MGUS samples with respect to healthy PCs. Selective up-regulation of miR-32 and miR-17 approximately 92 cluster was identified in MM subjects and cell lines but not in MGUS subjects or healthy PCs. Furthermore, two miRNAs, miR-19a and 19b, that are part of the miR-17 approximately 92 cluster, were shown to down regulate expression of SOCS-1, a gene frequently silenced in MM that plays a critical role as inhibitor of IL-6 growth signaling. We also identified p300-CBP-associated factor, a gene involved in p53 regulation, as a bona fide target of the miR106b approximately 25 cluster, miR-181a and b, and miR-32. Xenograft studies using human MM cell lines treated with miR-19a and b, and miR-181a and b antagonists resulted in significant suppression of tumor growth in nude mice. In summary, we have described a MM miRNA signature, which includes miRNAs that modulate the expression of proteins critical to myeloma pathogenesis.
Progress in understanding the biology of multiple myeloma (MM), a plasma cell malignancy, has been slow. The discovery of microRNAs (miRNAs), a class of small noncoding RNAs targeting multiple mRNAs, has revealed a new level of gene expression regulation. To determine whether miRNAs play a role in the malignant transformation of plasma cells (PCs), we have used both miRNA microarrays and quantitative real time PCR to profile miRNA expression in MM-derived cell lines (n = 49) and CD138+ bone marrow PCs from subjects with MM (n = 16), monoclonal gammopathy of undetermined significance (MGUS) (n = 6), and normal donors (n = 6). We identified overexpression of miR-21, miR-106b~25 cluster, miR-181a and b in MM and MGUS samples with respect to healthy PCs. Selective up-regulation of miR-32 and miR-17~92 cluster was identified in MM subjects and cell lines but not in MGUS subjects or healthy PCs. Furthermore, two miRNAs, miR-19a and 19b, that are part of the miR-17~92 cluster, were shown to down regulate expression of SOCS-1, a gene frequently silenced in MM that plays a critical role as inhibitor of IL-6 growth signaling. We also identified p300-CBP-associated factor, a gene involved in p53 regulation, as a bona fide target of the miR106b~25 cluster, miR-181a and b, and miR-32. Xenograft studies using human MM cell lines treated with miR-19a and b, and miR-181a and b antagonists resulted in significant suppression of tumor growth in nude mice. In summary, we have described a MM miRNA signature, which includes miRNAs that modulate the expression of proteins critical to myeloma pathogenesis. [PUBLICATION ABSTRACT]
Progress in understanding the biology of multiple myeloma (MM), a plasma cell malignancy, has been slow. The discovery of microRNAs (miRNAs), a class of small noncoding RNAs targeting multiple mRNAs, has revealed a new level of gene expression regulation. To determine whether miRNAs play a role in the malignant transformation of plasma cells (PCs), we have used both miRNA microarrays and quantitative real time PCR to profile miRNA expression in MM-derived cell lines (n = 49) and CD138+ bone marrow PCs from subjects with MM (n = 16), monoclonal gammopathy of undetermined significance (MGUS) (n = 6), and normal donors (n = 6). We identified overexpression of miR-21, miR-106ba1/425 cluster, miR-181a and b in MM and MGUS samples with respect to healthy PCs. Selective up-regulation of miR-32 and miR-17a1/492 cluster was identified in MM subjects and cell lines but not in MGUS subjects or healthy PCs. Furthermore, two miRNAs, miR-19a and 19b, that are part of the miR-17a1/492 cluster, were shown to down regulate expression of SOCS-1, a gene frequently silenced in MM that plays a critical role as inhibitor of IL-6 growth signaling. We also identified p300-CBP-associated factor, a gene involved in p53 regulation, as a bona fide target of the miR106ba1/425 cluster, miR-181a and b, and miR-32. Xenograft studies using human MM cell lines treated with miR-19a and b, and miR-181a and b antagonists resulted in significant suppression of tumor growth in nude mice. In summary, we have described a MM miRNA signature, which includes miRNAs that modulate the expression of proteins critical to myeloma pathogenesis.
Progress in understanding the biology of multiple myeloma (MM), a plasma cell malignancy, has been slow. The discovery of microRNAs (miRNAs), a class of small noncoding RNAs targeting multiple mRNAs, has revealed a new level of gene expression regulation. To determine whether miRNAs play a role in the malignant transformation of plasma cells (PCs), we have used both miRNA microarrays and quantitative real time PCR to profile miRNA expression in MM-derived cell lines ( n = 49) and CD138+ bone marrow PCs from subjects with MM ( n = 16), monoclonal gammopathy of undetermined significance (MGUS) ( n = 6), and normal donors ( n = 6). We identified overexpression of miR-21 , miR-106b ∼ 25 cluster, miR-181a and b in MM and MGUS samples with respect to healthy PCs. Selective up-regulation of miR-32 and miR-17 ∼ 92 cluster was identified in MM subjects and cell lines but not in MGUS subjects or healthy PCs. Furthermore, two miRNAs, miR-19a and 19b , that are part of the miR-17 ∼ 92 cluster, were shown to down regulate expression of SOCS-1, a gene frequently silenced in MM that plays a critical role as inhibitor of IL-6 growth signaling. We also identified p300-CBP-associated factor, a gene involved in p53 regulation, as a bona fide target of the miR106b ∼ 25 cluster, miR-181a and b , and miR-32 . Xenograft studies using human MM cell lines treated with miR-19a and b , and miR-181a and b antagonists resulted in significant suppression of tumor growth in nude mice. In summary, we have described a MM miRNA signature, which includes miRNAs that modulate the expression of proteins critical to myeloma pathogenesis.
Progress in understanding the biology of multiple myeloma (MM), a plasma cell malignancy, has been slow. The discovery of microRNAs (miRNAs), a class of small noncoding RNAs targeting multiple mRNAs, has revealed a new level of gene expression regulation. To determine whether miRNAs play a role in the malignant transformation of plasma cells (PCs), we have used both miRNA microarrays and quantitative real time PCR to profile miRNA expression in MM-derived cell lines ( n = 49) and CD138+ bone marrow PCs from subjects with MM ( n = 16), monoclonal gammopathy of undetermined significance (MGUS) ( n = 6), and normal donors ( n = 6). We identified overexpression of miR-21 , miR-106b ∼ 25 cluster, miR-181a and b in MM and MGUS samples with respect to healthy PCs. Selective up-regulation of miR-32 and miR-17 ∼ 92 cluster was identified in MM subjects and cell lines but not in MGUS subjects or healthy PCs. Furthermore, two miRNAs, miR-19a and 19b , that are part of the miR-17 ∼ 92 cluster, were shown to down regulate expression of SOCS-1, a gene frequently silenced in MM that plays a critical role as inhibitor of IL-6 growth signaling. We also identified p300-CBP-associated factor, a gene involved in p53 regulation, as a bona fide target of the miR106b ∼ 25 cluster, miR-181a and b , and miR-32 . Xenograft studies using human MM cell lines treated with miR-19a and b , and miR-181a and b antagonists resulted in significant suppression of tumor growth in nude mice. In summary, we have described a MM miRNA signature, which includes miRNAs that modulate the expression of proteins critical to myeloma pathogenesis. PCAF SOCS-1 tumor suppressor gene MGUS plasma cells
Author Palumbo, Tiziana
Pichiorri, Flavia
Taccioli, Cristian
Suh, Sung-Suk
Palumbo, Antonio
Munker, Reinhold
Zanesi, Nicola
Garzon, Ramiro
Croce, Carlo M
Boccadoro, Mario
Alder, Hansjuerg
Kuehl, Michael
Volinia, Stefano
Ladetto, Marco
Hagan, John P
Aqeilan, Rami I
Drandi, Daniela
Author_xml – sequence: 1
  fullname: Pichiorri, Flavia
– sequence: 2
  fullname: Suh, Sung-Suk
– sequence: 3
  fullname: Ladetto, Marco
– sequence: 4
  fullname: Kuehl, Michael
– sequence: 5
  fullname: Palumbo, Tiziana
– sequence: 6
  fullname: Drandi, Daniela
– sequence: 7
  fullname: Taccioli, Cristian
– sequence: 8
  fullname: Zanesi, Nicola
– sequence: 9
  fullname: Alder, Hansjuerg
– sequence: 10
  fullname: Hagan, John P
– sequence: 11
  fullname: Munker, Reinhold
– sequence: 12
  fullname: Volinia, Stefano
– sequence: 13
  fullname: Boccadoro, Mario
– sequence: 14
  fullname: Garzon, Ramiro
– sequence: 15
  fullname: Palumbo, Antonio
– sequence: 16
  fullname: Aqeilan, Rami I
– sequence: 17
  fullname: Croce, Carlo M
BackLink https://www.ncbi.nlm.nih.gov/pubmed/18728182$$D View this record in MEDLINE/PubMed
BookMark eNqFkstvEzEQxi1URB9w5gSsOCBxSDt-re0LUlXxkgqVgJ4tx3ESR951anuB_vd4SWigB3Ly4fvNN55v5hgd9LF3CD3FcIpB0LN1b_IpSGgJEAz8ATrCoPCkZQoO0BEAERPJCDtExzmvAEBxCY_QIZaCSCzJEbr65G2KXz6f5ya5xRBMcY1NvnhrQrNwvcuNyTlaX4VZ88OXZdMNofh1cE1360LsTLM2ZRl_sz4_Rg_nJmT3ZPueoOt3b79dfJhcXr3_eHF-ObFc8jKxVlLMKLVyxoWQc4aJEQJjNjXS4JkTUweWCSqtEjOYMks4pq01FpQjgih6gt5sfNfDtHMz6_qSTNDr5DuTbnU0Xv-r9H6pF_G7JpwoEFANXm0NUrwZXC6689m6EEzv4pB1qzgAZ3gvyCQIhcl-x3FFRMoRfHkPXMUh9TWuymBKVQ2mQs__HvBusj-rq8DZBqj7yzm5-Q4BPR6HHo9D746jVvB7FdYXU3wcE_LhP3Wvt18ZhV0XrinX40hcz4cQivtZKtvsYSvybIOsconpjiGctVS1Y-AvNvrcRG0WyWd9_XUMBjCnnAHQXycv6UI
CitedBy_id crossref_primary_10_1111_bjh_12157
crossref_primary_10_1089_cbr_2023_0191
crossref_primary_10_1093_nar_gkp313
crossref_primary_10_1371_journal_pone_0078725
crossref_primary_10_1007_s10620_024_08517_3
crossref_primary_10_1007_s12013_013_9516_9
crossref_primary_10_1016_j_gde_2015_03_008
crossref_primary_10_1111_bjh_12394
crossref_primary_10_1016_j_semcancer_2017_09_007
crossref_primary_10_1586_14737159_2014_946906
crossref_primary_10_1182_asheducation_V2012_1_342_3798324
crossref_primary_10_1155_2013_269107
crossref_primary_10_1038_s41598_022_16448_0
crossref_primary_10_1371_journal_pgen_1006623
crossref_primary_10_3109_13506129_2011_588977
crossref_primary_10_1016_j_critrevonc_2020_103196
crossref_primary_10_1002_cbin_11104
crossref_primary_10_3390_ijms21207539
crossref_primary_10_1002_pmic_201000501
crossref_primary_10_1111_ejh_12120
crossref_primary_10_1111_ejh_12124
crossref_primary_10_1158_1541_7786_MCR_14_0703
crossref_primary_10_1016_j_leukres_2014_03_021
crossref_primary_10_18632_oncotarget_11032
crossref_primary_10_3390_ijms17122003
crossref_primary_10_1016_j_cyto_2016_07_019
crossref_primary_10_1016_j_jmoldx_2015_06_006
crossref_primary_10_1002_jcp_29013
crossref_primary_10_1016_j_canlet_2011_07_009
crossref_primary_10_1007_s12254_024_00962_0
crossref_primary_10_1038_leu_2013_344
crossref_primary_10_1016_j_jaci_2013_02_005
crossref_primary_10_1182_blood_2011_01_270140
crossref_primary_10_1007_s11010_013_1679_6
crossref_primary_10_1016_j_canlet_2012_02_038
crossref_primary_10_18632_oncotarget_2761
crossref_primary_10_1371_journal_pone_0026257
crossref_primary_10_1172_JCI64946
crossref_primary_10_1007_s13721_021_00292_9
crossref_primary_10_1038_leu_2014_155
crossref_primary_10_1021_acs_biomac_8b01553
crossref_primary_10_1097_CAD_0000000000000871
crossref_primary_10_1016_j_joen_2012_02_020
crossref_primary_10_1016_j_fertnstert_2009_01_069
crossref_primary_10_1007_s13277_016_5338_x
crossref_primary_10_1093_nar_gkr770
crossref_primary_10_1371_journal_pone_0089659
crossref_primary_10_1038_srep32174
crossref_primary_10_1038_nrd3179
crossref_primary_10_1074_jbc_M109_093005
crossref_primary_10_1155_2013_348212
crossref_primary_10_3390_jpm12091428
crossref_primary_10_3389_fonc_2021_698197
crossref_primary_10_1007_s00430_011_0223_0
crossref_primary_10_1007_s13277_015_3600_2
crossref_primary_10_3390_cells12071030
crossref_primary_10_1038_leu_2012_302
crossref_primary_10_1038_onc_2010_457
crossref_primary_10_1111_ejh_12205
crossref_primary_10_1586_ehm_12_51
crossref_primary_10_3390_cells10082142
crossref_primary_10_1158_1078_0432_CCR_12_2922
crossref_primary_10_18632_oncotarget_26444
crossref_primary_10_1186_s12865_015_0069_0
crossref_primary_10_1111_cas_13183
crossref_primary_10_1158_0008_5472_CAN_14_0994
crossref_primary_10_1098_rsob_190095
crossref_primary_10_1007_s00761_024_01664_2
crossref_primary_10_1038_leu_2015_124
crossref_primary_10_1155_2015_501262
crossref_primary_10_1371_journal_pone_0079752
crossref_primary_10_1007_s10495_009_0327_9
crossref_primary_10_1371_journal_pone_0029612
crossref_primary_10_1097_PPO_0b013e318258b75b
crossref_primary_10_1007_s13277_014_2544_2
crossref_primary_10_1038_s41419_017_0045_0
crossref_primary_10_1152_physiolgenomics_00122_2013
crossref_primary_10_3109_10428194_2010_525725
crossref_primary_10_1186_s13045_017_0461_8
crossref_primary_10_18632_oncotarget_14378
crossref_primary_10_18632_oncotarget_2546
crossref_primary_10_7717_peerj_2831
crossref_primary_10_3390_ph16010111
crossref_primary_10_1517_14712598_2013_799132
crossref_primary_10_4161_jkst_19573
crossref_primary_10_1007_s00432_015_1995_1
crossref_primary_10_3233_CBM_182182
crossref_primary_10_1242_jcs_087122
crossref_primary_10_1038_nrc3257
crossref_primary_10_3390_ph16010115
crossref_primary_10_1016_j_blre_2019_04_002
crossref_primary_10_1016_j_leukres_2012_08_021
crossref_primary_10_1016_j_leukres_2015_04_010
crossref_primary_10_1371_journal_pone_0016408
crossref_primary_10_3109_10428190903221010
crossref_primary_10_1016_j_molmed_2010_04_001
crossref_primary_10_2147_IJN_S325448
crossref_primary_10_1142_S0192415X17500392
crossref_primary_10_1186_s13619_016_0028_0
crossref_primary_10_1016_j_jtbi_2011_06_022
crossref_primary_10_1111_j_1365_2559_2011_03793_x
crossref_primary_10_1016_j_leukres_2017_07_003
crossref_primary_10_1016_j_mam_2010_05_001
crossref_primary_10_1002_iub_2211
crossref_primary_10_1002_jcp_25870
crossref_primary_10_1146_annurev_immunol_020711_075027
crossref_primary_10_1093_nar_gkp153
crossref_primary_10_1016_j_clml_2018_02_011
crossref_primary_10_1016_j_cyto_2016_01_015
crossref_primary_10_1093_abbs_gmu089
crossref_primary_10_3892_mmr_2015_3567
crossref_primary_10_1016_j_canlet_2012_01_044
crossref_primary_10_1158_1078_0432_CCR_16_0867
crossref_primary_10_1515_cclm_2015_1108
crossref_primary_10_3390_genes7100084
crossref_primary_10_1007_s13277_016_4988_z
crossref_primary_10_1371_journal_pone_0137294
crossref_primary_10_18632_oncotarget_21909
crossref_primary_10_1158_0008_5472_CAN_13_1748
crossref_primary_10_18632_oncotarget_5290
crossref_primary_10_1038_leu_2009_174
crossref_primary_10_1074_jbc_M109_051235
crossref_primary_10_2217_ijh_14_30
crossref_primary_10_1007_s00109_020_01897_9
crossref_primary_10_1016_j_canlet_2009_05_030
crossref_primary_10_1002_jcp_24669
crossref_primary_10_1002_gcc_20660
crossref_primary_10_1002_ijc_29489
crossref_primary_10_1093_nar_gks521
crossref_primary_10_1002_ajh_22025
crossref_primary_10_4161_auto_23117
crossref_primary_10_1016_j_gene_2016_10_009
crossref_primary_10_1007_s00281_014_0426_8
crossref_primary_10_1186_s12967_023_04034_5
crossref_primary_10_1186_1471_2105_11_495
crossref_primary_10_1111_odi_12464
crossref_primary_10_1186_s13148_017_0319_5
crossref_primary_10_1093_carcin_bgt044
crossref_primary_10_1007_s12288_018_1000_7
crossref_primary_10_1182_blood_2011_11_366062
crossref_primary_10_1080_10715762_2024_2320396
crossref_primary_10_1016_j_abb_2018_11_023
crossref_primary_10_1016_j_semcancer_2015_03_006
crossref_primary_10_1186_s12885_017_3141_8
crossref_primary_10_1016_j_canlet_2016_04_024
crossref_primary_10_1038_bcj_2011_51
crossref_primary_10_3109_10428194_2012_704030
crossref_primary_10_1186_s13045_016_0362_2
crossref_primary_10_3389_fphar_2021_631835
crossref_primary_10_1182_asheducation_2013_1_478
crossref_primary_10_1007_s12672_011_0072_8
crossref_primary_10_3389_fgene_2018_00311
crossref_primary_10_1155_2012_753407
crossref_primary_10_1038_leu_2013_194
crossref_primary_10_1111_j_1600_0609_2009_01348_x
crossref_primary_10_1074_jbc_M113_474643
crossref_primary_10_1016_j_bbrc_2012_03_048
crossref_primary_10_1016_j_canlet_2011_05_017
crossref_primary_10_3892_ol_2018_8157
crossref_primary_10_1586_ehm_10_13
crossref_primary_10_12659_MSM_892636
crossref_primary_10_1002_kjm2_12057
crossref_primary_10_3109_00365521_2013_800991
crossref_primary_10_1182_blood_2010_03_275925
crossref_primary_10_1042_CS20110005
crossref_primary_10_2174_2211536607666180821162403
crossref_primary_10_1016_j_ymthe_2019_01_012
crossref_primary_10_1182_blood_2009_08_237495
crossref_primary_10_1007_s11427_015_4969_2
crossref_primary_10_1038_leu_2012_269
crossref_primary_10_1038_bcj_2014_29
crossref_primary_10_1177_15330338231202391
crossref_primary_10_1182_blood_2019846782
crossref_primary_10_1111_jcmm_14592
crossref_primary_10_1155_2012_603830
crossref_primary_10_1182_asheducation_2010_1_295
crossref_primary_10_1074_jbc_M109_058065
crossref_primary_10_1016_j_semcancer_2021_03_014
crossref_primary_10_18632_oncotarget_10849
crossref_primary_10_1172_JCI61188
crossref_primary_10_3390_cancers11060887
crossref_primary_10_4103_MJBL_MJBL_41_23
crossref_primary_10_1155_2014_717919
crossref_primary_10_3892_ol_2020_11579
crossref_primary_10_1038_pcan_2016_50
crossref_primary_10_1016_j_prp_2023_154715
crossref_primary_10_1007_s00109_011_0775_x
crossref_primary_10_1016_j_sjbs_2023_103920
crossref_primary_10_1016_j_smim_2014_01_001
crossref_primary_10_1038_leu_2013_262
crossref_primary_10_1016_j_toxlet_2014_05_019
crossref_primary_10_3389_fimmu_2015_00019
crossref_primary_10_1002_eji_200939531
crossref_primary_10_1517_14712598_2013_793305
crossref_primary_10_1182_blood_2008_10_185686
crossref_primary_10_1016_j_prp_2023_154704
crossref_primary_10_18632_oncotarget_1747
crossref_primary_10_3390_ncrna5010013
crossref_primary_10_33590_emj_10312856
crossref_primary_10_18632_oncotarget_5681
crossref_primary_10_1186_1752_0509_8_82
crossref_primary_10_3390_ncrna5010009
crossref_primary_10_1371_journal_pone_0059532
crossref_primary_10_1038_s41375_019_0498_5
crossref_primary_10_1097_PPO_0b013e3181c51efa
crossref_primary_10_3390_cancers12102996
crossref_primary_10_1002_jbt_22057
crossref_primary_10_1002_path_5852
crossref_primary_10_1016_j_it_2009_03_008
crossref_primary_10_3892_mmr_2015_3280
crossref_primary_10_1021_ac202055m
crossref_primary_10_1093_neuonc_not018
crossref_primary_10_1158_1078_0432_CCR_12_2043
crossref_primary_10_1371_journal_pone_0123054
crossref_primary_10_3390_cancers13153650
crossref_primary_10_1038_leu_2011_147
crossref_primary_10_1097_MD_0000000000012081
crossref_primary_10_17116_terarkh2015877105_111
crossref_primary_10_1111_bjh_12828
crossref_primary_10_1111_imr_12050
crossref_primary_10_1089_ars_2013_5718
crossref_primary_10_1186_1471_2105_14_S7_S8
crossref_primary_10_4049_jimmunol_1101563
crossref_primary_10_1007_s12032_012_0210_3
crossref_primary_10_2147_PGPM_S350238
crossref_primary_10_3390_cancers12020320
crossref_primary_10_1002_jso_23312
crossref_primary_10_1016_j_ccr_2010_09_005
crossref_primary_10_1080_10428194_2018_1461861
crossref_primary_10_1038_bjc_2012_525
crossref_primary_10_1186_s12952_015_0035_7
crossref_primary_10_1038_nrdp_2017_46
crossref_primary_10_18632_oncotarget_3057
crossref_primary_10_3390_cancers11111738
crossref_primary_10_1016_j_joen_2017_08_022
crossref_primary_10_1038_bcj_2014_41
crossref_primary_10_3109_10428194_2011_591004
crossref_primary_10_1007_s12185_024_03812_1
crossref_primary_10_1021_pr201079y
crossref_primary_10_1089_jir_2016_0094
crossref_primary_10_1016_j_jinf_2013_07_016
crossref_primary_10_1002_jcb_29309
crossref_primary_10_1097_IN9_0000000000000005
crossref_primary_10_3390_cells11040752
crossref_primary_10_1158_0008_5472_CAN_09_1095
crossref_primary_10_18632_oncotarget_4398
crossref_primary_10_1053_j_seminoncol_2013_07_010
crossref_primary_10_1155_2012_794898
crossref_primary_10_1158_0008_5472_CAN_10_1001
crossref_primary_10_14694_EdBook_AM_2015_35_e493
crossref_primary_10_1002_jcp_22280
crossref_primary_10_1002_cncr_26297
crossref_primary_10_1017_S1462399411002122
crossref_primary_10_2147_CMAR_S251264
crossref_primary_10_1007_s12185_013_1291_2
crossref_primary_10_2217_fon_12_52
crossref_primary_10_1158_1078_0432_CCR_12_0191
crossref_primary_10_1186_s13045_019_0714_9
crossref_primary_10_1007_s10238_015_0355_4
crossref_primary_10_1155_2011_143132
crossref_primary_10_1158_1078_0432_CCR_10_1843
crossref_primary_10_3390_ncrna5020037
crossref_primary_10_1007_s12253_013_9707_0
crossref_primary_10_1155_2010_814609
crossref_primary_10_3390_cancers13164000
crossref_primary_10_3390_ijms20092302
crossref_primary_10_18632_oncotarget_5381
crossref_primary_10_3816_CLML_2010_n_053
crossref_primary_10_1016_j_biopha_2018_08_097
crossref_primary_10_1200_JCO_2009_24_0317
crossref_primary_10_1007_s00018_015_1940_0
crossref_primary_10_3389_fcell_2020_00143
crossref_primary_10_1155_2016_6504593
crossref_primary_10_1182_blood_2016_09_742296
crossref_primary_10_1016_j_heliyon_2020_e05669
crossref_primary_10_1016_j_leukres_2009_10_026
crossref_primary_10_1146_annurev_pathol_011110_130249
crossref_primary_10_3390_v15091808
crossref_primary_10_2119_molmed_2016_00136
crossref_primary_10_1038_bjc_2014_451
crossref_primary_10_1038_srep13350
crossref_primary_10_1016_j_trsl_2018_05_003
crossref_primary_10_1136_jclinpath_2017_204501
crossref_primary_10_3390_ijms21093084
crossref_primary_10_1179_1607845414Y_0000000163
crossref_primary_10_1053_j_seminhematol_2010_11_007
crossref_primary_10_1158_1078_0432_CCR_14_1437
crossref_primary_10_2217_epi_2019_0154
crossref_primary_10_1038_s41416_024_02752_1
crossref_primary_10_1038_leu_2009_274
crossref_primary_10_1053_j_seminhematol_2010_11_003
crossref_primary_10_7717_peerj_14949
crossref_primary_10_1016_j_bbrc_2012_09_059
crossref_primary_10_1007_s10522_010_9272_9
crossref_primary_10_1016_j_ejphar_2014_07_051
crossref_primary_10_1016_j_molcel_2009_09_044
crossref_primary_10_1371_journal_pone_0185028
crossref_primary_10_1007_s12015_016_9696_y
crossref_primary_10_1155_2014_521586
crossref_primary_10_1007_s12185_016_2048_5
crossref_primary_10_1186_1471_2164_11_514
crossref_primary_10_1371_journal_pone_0096670
crossref_primary_10_3390_ijms23031649
crossref_primary_10_1093_jmcb_mju017
crossref_primary_10_1007_s12575_009_9012_1
crossref_primary_10_1007_s12253_015_0035_4
crossref_primary_10_7314_APJCP_2013_14_2_835
crossref_primary_10_1074_jbc_M111_251793
crossref_primary_10_1371_journal_pone_0048474
crossref_primary_10_3892_ijmm_2017_3164
crossref_primary_10_5858_2009_0178_RS_1
crossref_primary_10_3390_epigenomes2030016
crossref_primary_10_1002_ijc_27724
crossref_primary_10_1016_j_jpsychires_2017_01_009
crossref_primary_10_1002_jcb_29280
crossref_primary_10_1158_0008_5472_CAN_11_1717
crossref_primary_10_1080_14740338_2023_2251384
crossref_primary_10_18632_oncotarget_1497
crossref_primary_10_1096_fj_09_131847
crossref_primary_10_1093_nar_gkx327
crossref_primary_10_3892_ol_2018_9843
crossref_primary_10_2147_OTT_S241627
crossref_primary_10_1016_j_bbrc_2011_05_118
crossref_primary_10_1038_s41375_018_0140_y
crossref_primary_10_1038_onc_2014_274
crossref_primary_10_3109_1061186X_2014_951653
crossref_primary_10_1038_leu_2011_53
crossref_primary_10_1074_jbc_M109_013862
crossref_primary_10_1182_blood_2009_01_198408
crossref_primary_10_1177_1010428317692234
crossref_primary_10_1186_1756_8722_7_40
crossref_primary_10_1016_j_expneurol_2011_11_010
crossref_primary_10_1016_j_jaut_2020_102472
crossref_primary_10_3390_ijms21218047
crossref_primary_10_1073_pnas_1103735108
crossref_primary_10_7717_peerj_15608
crossref_primary_10_18632_oncotarget_4769
crossref_primary_10_1016_j_canlet_2013_05_001
crossref_primary_10_1111_j_1600_6143_2011_03666_x
crossref_primary_10_1136_jclinpath_2015_203308
crossref_primary_10_1016_j_isjp_2018_12_001
crossref_primary_10_3390_cancers13061235
crossref_primary_10_1016_j_blre_2013_04_002
crossref_primary_10_3109_10428194_2010_487959
crossref_primary_10_1038_s41416_021_01602_8
crossref_primary_10_1016_j_expneurol_2013_12_007
crossref_primary_10_1007_s10555_017_9714_9
crossref_primary_10_18632_oncotarget_10125
crossref_primary_10_1038_s41408_018_0119_y
crossref_primary_10_1155_2015_341430
crossref_primary_10_1016_j_prp_2020_153317
crossref_primary_10_1002_jcla_23233
crossref_primary_10_1038_s41375_018_0161_6
crossref_primary_10_1038_srep31918
crossref_primary_10_3892_or_2017_5425
crossref_primary_10_1182_blood_2012_01_401794
crossref_primary_10_1186_s12943_017_0695_7
crossref_primary_10_3109_1354750X_2011_614961
crossref_primary_10_1038_s41408_019_0184_x
crossref_primary_10_1016_j_jve_2025_100586
crossref_primary_10_1016_j_tranon_2022_101532
crossref_primary_10_1186_1471_2164_15_172
crossref_primary_10_1002_eji_201243271
crossref_primary_10_1517_14712598_2013_796356
crossref_primary_10_1186_s13045_017_0538_4
crossref_primary_10_3390_biomedicines10112767
crossref_primary_10_1007_s13258_017_0518_7
crossref_primary_10_1038_leu_2016_325
crossref_primary_10_1182_blood_2014_08_551549
crossref_primary_10_1007_s10266_022_00762_0
crossref_primary_10_1155_2014_864058
crossref_primary_10_1186_s12885_019_6151_x
crossref_primary_10_1371_journal_pone_0069090
crossref_primary_10_3390_ijms232314765
crossref_primary_10_1093_carcin_bgs212
crossref_primary_10_1093_carcin_bgs333
crossref_primary_10_1002_mc_22175
crossref_primary_10_1186_1745_6150_6_23
crossref_primary_10_1080_1120009X_2016_1145375
crossref_primary_10_1016_j_achaem_2014_04_006
crossref_primary_10_1038_s41598_017_18186_0
crossref_primary_10_1080_15287394_2020_1749919
crossref_primary_10_1517_14728214_2012_713345
crossref_primary_10_1111_bph_14889
crossref_primary_10_1016_j_bbrc_2013_09_059
crossref_primary_10_1016_j_clml_2017_05_010
crossref_primary_10_1016_j_immuni_2015_04_022
crossref_primary_10_3390_cells13110948
crossref_primary_10_3389_fimmu_2024_1419951
crossref_primary_10_1016_j_mehy_2013_03_043
crossref_primary_10_1371_journal_pone_0190437
crossref_primary_10_1007_s12032_014_0094_5
crossref_primary_10_1186_s12885_015_1078_3
crossref_primary_10_3390_ijms161126001
crossref_primary_10_1016_j_jconrel_2015_08_011
crossref_primary_10_1186_2050_7771_2_10
crossref_primary_10_3390_cancers12020407
crossref_primary_10_1080_17474086_2018_1517041
crossref_primary_10_1371_journal_pone_0038496
crossref_primary_10_1182_blood_2014_11_568881
crossref_primary_10_1038_bjc_2012_587
crossref_primary_10_15324_kjcls_2015_47_4_292
crossref_primary_10_3389_fcimb_2017_00185
crossref_primary_10_1016_j_biocel_2012_05_011
crossref_primary_10_1186_s13045_017_0492_1
crossref_primary_10_1016_j_bbrc_2015_01_110
crossref_primary_10_1186_s43042_019_0021_6
crossref_primary_10_1073_pnas_0908441107
Cites_doi 10.1038/ncb1545
10.1182/blood.V99.5.1745
10.1038/ng1536
10.1056/NEJMoa050995
10.1182/blood-2002-06-1735
10.1016/j.cell.2008.02.019
10.1016/S1470-2045(03)01195-1
10.1182/blood.V77.3.587.587
10.1182/blood.V59.1.43.43
10.1073/pnas.0800135105
10.1056/NEJMra072367
10.1053/j.gastro.2007.05.022
10.1073/pnas.0510565103
10.1038/nprot.2008.14
10.1038/sj.cdd.4402090
10.1038/nrc2189
10.1182/blood-2007-07-098749
10.1038/nature03552
10.1158/0008-5472.CAN-05-0137
10.1532/IJH97.04107
10.1016/j.ccr.2008.02.013
10.1016/S0092-8674(03)01018-3
10.1189/jlb.70.3.348
10.1182/blood.V84.8.2412.2412
10.1126/science.1091903
10.1073/pnas.0403293101
10.1038/nrc1997
10.1016/j.hoc.2007.08.010
10.1016/j.beha.2007.08.004
10.1016/S0092-8674(04)00045-5
10.4161/cc.5.1.2281
10.1016/j.ejca.2005.12.026
10.1182/blood-2007-03-081133
10.1038/sj.onc.1210186
10.1038/nature03677
ContentType Journal Article
Copyright Copyright 2008 The National Academy of Sciences of the United States of America
Copyright National Academy of Sciences Sep 2, 2008
2008 by The National Academy of Sciences of the USA
Copyright_xml – notice: Copyright 2008 The National Academy of Sciences of the United States of America
– notice: Copyright National Academy of Sciences Sep 2, 2008
– notice: 2008 by The National Academy of Sciences of the USA
DBID FBQ
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7S9
L.6
7X8
5PM
DOI 10.1073/pnas.0806202105
DatabaseName AGRIS
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Virology and AIDS Abstracts
Oncogenes and Growth Factors Abstracts
Technology Research Database
Nucleic Acids Abstracts
Ecology Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Entomology Abstracts
Genetics Abstracts
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Immunology Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
DatabaseTitleList
AGRICOLA
MEDLINE - Academic

MEDLINE
Virology and AIDS Abstracts
Genetics Abstracts
CrossRef


Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: FBQ
  name: AGRIS
  url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 1091-6490
EndPage 12890
ExternalDocumentID PMC2529070
1548733021
18728182
10_1073_pnas_0806202105
105_35_12885
25463961
US201301535400
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
Feature
GrantInformation_xml – fundername: Intramural NIH HHS
  grantid: Z01 SC006581
GroupedDBID ---
-DZ
-~X
.55
.GJ
0R~
123
29P
2AX
2FS
2WC
3O-
4.4
53G
5RE
5VS
692
6TJ
79B
85S
AACGO
AAFWJ
AANCE
AAYJJ
ABBHK
ABOCM
ABPLY
ABPPZ
ABPTK
ABTLG
ABZEH
ACGOD
ACIWK
ACKIV
ACNCT
ACPRK
ADULT
ADZLD
AENEX
AEUPB
AEXZC
AFDAS
AFFNX
AFOSN
AFRAH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
AS~
BKOMP
CS3
D0L
DCCCD
DIK
DNJUQ
DOOOF
DU5
DWIUU
E3Z
EBS
EJD
F20
F5P
FBQ
FRP
GX1
HGD
HH5
HQ3
HTVGU
HYE
JAAYA
JBMMH
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSG
JSODD
JST
KQ8
L7B
LU7
MVM
N9A
NEJ
NHB
N~3
O9-
OK1
P-O
PNE
PQQKQ
R.V
RHF
RHI
RNA
RNS
RPM
RXW
SA0
SJN
TAE
TN5
UKR
VOH
VQA
W8F
WH7
WHG
WOQ
WOW
X7M
XFK
XSW
Y6R
YBH
YKV
YSK
ZA5
ZCA
ZCG
~02
~KM
ABXSQ
ACHIC
ADQXQ
ADXHL
AQVQM
H13
IPSME
-
02
0R
1AW
55
AAPBV
ABFLS
ADACO
AJYGW
AS
DZ
KM
PQEST
X
XHC
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7S9
L.6
7X8
5PM
ID FETCH-LOGICAL-c585t-cc831433c8d5778f412a77114ba8a1de7be0c4738c97d0b4c25136cac09e27293
ISSN 0027-8424
1091-6490
IngestDate Thu Aug 21 14:37:29 EDT 2025
Fri Jul 11 09:21:48 EDT 2025
Thu Jul 10 22:53:42 EDT 2025
Sun Aug 24 02:58:56 EDT 2025
Mon Jun 30 08:29:43 EDT 2025
Fri May 30 10:49:10 EDT 2025
Thu Apr 24 22:54:27 EDT 2025
Tue Jul 01 02:39:02 EDT 2025
Thu May 30 08:51:26 EDT 2019
Wed Nov 11 00:29:05 EST 2020
Thu May 29 08:42:47 EDT 2025
Wed Dec 27 19:18:31 EST 2023
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 35
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c585t-cc831433c8d5778f412a77114ba8a1de7be0c4738c97d0b4c25136cac09e27293
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-2
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
F.P. and S.S. contributed equally to this work.
Contributed by Carlo M. Croce, June 27, 2008
Author contributions: F.P., S.-S.S., M.K., T.P., D.D., C.T., N.Z., S.V., M.B., A.P., R.I.A., and C.M.C. designed research; F.P., S.-S.S., M.L., M.K., T.P., D.D., C.T., N.Z., H.A., J.P.H., R.M., S.V., and R.I.A. performed research; F.P., S.-S.S., M.L., M.K., T.P., D.D., C.T., H.A., J.P.H., R.M., S.V., M.B., R.G., A.P., R.I.A., and C.M.C. contributed new reagents/analytic tools; F.P., S.-S.S., M.K., C.T., H.A., S.V., R.G., A.P., R.I.A., and C.M.C. analyzed data; and F.P., R.G., and R.I.A. wrote the paper.
OpenAccessLink https://www.pnas.org/content/pnas/105/35/12885.full.pdf
PMID 18728182
PQID 201339433
PQPubID 42026
PageCount 6
ParticipantIDs proquest_miscellaneous_20212880
crossref_primary_10_1073_pnas_0806202105
proquest_miscellaneous_48079120
proquest_journals_201339433
jstor_primary_25463961
fao_agris_US201301535400
pubmedcentral_primary_oai_pubmedcentral_nih_gov_2529070
crossref_citationtrail_10_1073_pnas_0806202105
pnas_primary_105_35_12885
proquest_miscellaneous_69500541
pnas_primary_105_35_12885_fulltext
pubmed_primary_18728182
ProviderPackageCode RNA
PNE
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2008-09-02
PublicationDateYYYYMMDD 2008-09-02
PublicationDate_xml – month: 09
  year: 2008
  text: 2008-09-02
  day: 02
PublicationDecade 2000
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
PublicationTitle Proceedings of the National Academy of Sciences - PNAS
PublicationTitleAlternate Proc Natl Acad Sci U S A
PublicationYear 2008
Publisher National Academy of Sciences
National Acad Sciences
Publisher_xml – name: National Academy of Sciences
– name: National Acad Sciences
References Schiltz RL (e_1_3_3_23_2) 2000; 1470
e_1_3_3_17_2
e_1_3_3_16_2
e_1_3_3_19_2
e_1_3_3_18_2
e_1_3_3_13_2
e_1_3_3_36_2
e_1_3_3_12_2
e_1_3_3_37_2
e_1_3_3_15_2
e_1_3_3_34_2
e_1_3_3_14_2
e_1_3_3_35_2
e_1_3_3_32_2
e_1_3_3_33_2
e_1_3_3_11_2
e_1_3_3_30_2
e_1_3_3_10_2
e_1_3_3_31_2
Drach J (e_1_3_3_5_2) 1995; 55
e_1_3_3_6_2
e_1_3_3_8_2
e_1_3_3_7_2
Greenhalgh CJ (e_1_3_3_27_2) 2001; 70
e_1_3_3_28_2
e_1_3_3_9_2
e_1_3_3_29_2
e_1_3_3_24_2
e_1_3_3_26_2
e_1_3_3_25_2
e_1_3_3_2_2
e_1_3_3_20_2
e_1_3_3_1_2
e_1_3_3_4_2
e_1_3_3_22_2
e_1_3_3_3_2
e_1_3_3_21_2
References_xml – ident: e_1_3_3_24_2
  doi: 10.1038/ncb1545
– ident: e_1_3_3_32_2
  doi: 10.1182/blood.V99.5.1745
– ident: e_1_3_3_22_2
  doi: 10.1038/ng1536
– ident: e_1_3_3_8_2
  doi: 10.1056/NEJMoa050995
– volume: 55
  start-page: 3854
  year: 1995
  ident: e_1_3_3_5_2
  article-title: Multiple myeloma: High incidence of chromosomal aneuploidy as detected by interphase fluorescence in situ hybridization
  publication-title: Cancer Res
– ident: e_1_3_3_28_2
  doi: 10.1182/blood-2002-06-1735
– ident: e_1_3_3_19_2
  doi: 10.1016/j.cell.2008.02.019
– ident: e_1_3_3_15_2
  doi: 10.1016/S1470-2045(03)01195-1
– ident: e_1_3_3_29_2
  doi: 10.1182/blood.V77.3.587.587
– ident: e_1_3_3_6_2
  doi: 10.1182/blood.V59.1.43.43
– ident: e_1_3_3_31_2
  doi: 10.1073/pnas.0800135105
– ident: e_1_3_3_11_2
  doi: 10.1056/NEJMra072367
– ident: e_1_3_3_34_2
  doi: 10.1053/j.gastro.2007.05.022
– ident: e_1_3_3_30_2
  doi: 10.1073/pnas.0510565103
– ident: e_1_3_3_17_2
  doi: 10.1038/nprot.2008.14
– ident: e_1_3_3_35_2
  doi: 10.1038/sj.cdd.4402090
– volume: 1470
  start-page: M37
  year: 2000
  ident: e_1_3_3_23_2
  article-title: The PCAF acetylase complex as a potential tumor suppressor
  publication-title: Biochim Biophys Acta
– ident: e_1_3_3_3_2
  doi: 10.1038/nrc2189
– ident: e_1_3_3_9_2
  doi: 10.1182/blood-2007-07-098749
– ident: e_1_3_3_18_2
  doi: 10.1038/nature03552
– ident: e_1_3_3_33_2
  doi: 10.1158/0008-5472.CAN-05-0137
– ident: e_1_3_3_4_2
  doi: 10.1532/IJH97.04107
– ident: e_1_3_3_20_2
  doi: 10.1016/j.ccr.2008.02.013
– ident: e_1_3_3_21_2
  doi: 10.1016/S0092-8674(03)01018-3
– volume: 70
  start-page: 348
  year: 2001
  ident: e_1_3_3_27_2
  article-title: Negative regulation of cytokine signaling
  publication-title: J Leukoc Biol
  doi: 10.1189/jlb.70.3.348
– ident: e_1_3_3_25_2
  doi: 10.1182/blood.V84.8.2412.2412
– ident: e_1_3_3_16_2
  doi: 10.1126/science.1091903
– ident: e_1_3_3_37_2
  doi: 10.1073/pnas.0403293101
– ident: e_1_3_3_13_2
  doi: 10.1038/nrc1997
– ident: e_1_3_3_2_2
  doi: 10.1016/j.hoc.2007.08.010
– ident: e_1_3_3_7_2
  doi: 10.1016/j.beha.2007.08.004
– ident: e_1_3_3_10_2
  doi: 10.1016/S0092-8674(04)00045-5
– ident: e_1_3_3_26_2
  doi: 10.4161/cc.5.1.2281
– ident: e_1_3_3_1_2
  doi: 10.1016/j.ejca.2005.12.026
– ident: e_1_3_3_14_2
  doi: 10.1182/blood-2007-03-081133
– ident: e_1_3_3_12_2
  doi: 10.1038/sj.onc.1210186
– ident: e_1_3_3_36_2
  doi: 10.1038/nature03677
SSID ssj0009580
Score 2.482563
Snippet Progress in understanding the biology of multiple myeloma (MM), a plasma cell malignancy, has been slow. The discovery of microRNAs (miRNAs), a class of small...
SourceID pubmedcentral
proquest
pubmed
crossref
pnas
jstor
fao
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 12885
SubjectTerms Animals
antagonists
Apoptosis Regulatory Proteins - metabolism
Base Sequence
Bcl-2-Like Protein 11
Biological Sciences
Bone marrow
Cell growth
Cell Line, Tumor
Cell lines
Cells
Gene expression
Gene Expression Profiling
gene expression regulation
Gene Expression Regulation, Neoplastic
genes
Genes, Neoplasm
Health
Humans
interleukin-6
Membrane Proteins - metabolism
messenger RNA
Mice
Mice, Nude
microarray technology
MicroRNA
MicroRNAs - genetics
MicroRNAs - metabolism
Molecular Sequence Data
Monoclonal Gammopathy of Undetermined Significance
Multiple myeloma
Multiple Myeloma - genetics
Multiple Myeloma - pathology
myeloma
non-coding RNA
Oligonucleotides
p300-CBP Transcription Factors - metabolism
pathogenesis
Pathology
Plasma cells
Plasma Cells - metabolism
Plasma Cells - pathology
proteins
Proto-Oncogene Proteins - metabolism
quantitative polymerase chain reaction
Receptors, Interleukin-6 - metabolism
Repressor Proteins - metabolism
Reproducibility of Results
Reverse Transcriptase Polymerase Chain Reaction
Ribonucleic acid
RNA
Rodents
Signatures
STAT3 Transcription Factor - metabolism
Studies
Suppressor of Cytokine Signaling 1 Protein
Suppressor of Cytokine Signaling Proteins - metabolism
Transfection
Tumor cell line
Tumor Suppressor Protein p53 - metabolism
Tumors
Up-Regulation
Title MicroRNAs regulate critical genes associated with multiple myeloma pathogenesis
URI https://www.jstor.org/stable/25463961
http://www.pnas.org/content/105/35/12885.abstract
https://www.ncbi.nlm.nih.gov/pubmed/18728182
https://www.proquest.com/docview/201339433
https://www.proquest.com/docview/20212880
https://www.proquest.com/docview/48079120
https://www.proquest.com/docview/69500541
https://pubmed.ncbi.nlm.nih.gov/PMC2529070
Volume 105
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLa68cILYsBYGJcI8TBUpSTOxc7jhFZVqHQVbaW-WY7jrJW6BK0tErzxzzl24iStVm4vURWfuKnP13OxzwWhd56IJfaS1AnDKHBAQwiHU7h4aZQSIYQMM13tcxQNZsGneTjvdH62s0s2SU_8uDev5H-4CveArypL9h84W08KN-Az8BeuwGG4_hWPP6toui-jS7X1r1vKy64wrQtulBDr8mr1TZB5HT94-12uiluu6qouCk27XLcN1XGt2NYmjGBk9g0vmyyUSjSsu053PGp6Go-XYrEs7sos9v6Kf1vW0n-yXZTRQPmNM9nWeUJDmHKjWzqp9CFRNEdMcrHaj-83uxQ6pMJtb1yC--vQoMyX7slS2IKt4kRB2S60lsZu2IKdH7aEK6jSsr1Ppak9dUh6rxoAuaV6F-d83QOLOMLKsQ0bjWdO-UfXrD8bDtn0aj49Qg8weBo6NnTQrttMyyym6vVNdSjif9ibfsewOcp4YSJcVdlcIL3PhdmPxG2ZNtPH6FHlk9iXJcBOUEfmT9CJYa19UZUmf_8UXdeIsw3ibIM4W6PIbhBnK8TZBnF2hTi7jbhnaNa_mn4cOFVLDkeAX7lxhKA-WNi-oGlICM0CD3NCwKdOOOVeKkkiXREQn4qYpG4SCDCf_Uhw4YJIAD_OP0XHeZHLM2SDXUSFJ-EhEQQUJ7GX4oySjGfcTbHnW6hn1pOJql69apuyYjpugvhMrSprGGChi_qBr2WplsOkZ8Agxm9AkbLZBKvje1D94L24FjrVXKun0A0j4sizkKVnaaYOmR8yDUoLvT04xrIqistC5wYArBIia6a-2o9hRS30ph4FCa-O7Xgui60iwWoi9zCFKgsRe_g3FFEcKucMfsTzEnDNq1KiCsJhC5EdKNYEqv787ki-XOg69DjEMVgML_745ufoYSMTXqLjzd1WvgJbfpO81v-2XwFY83M
linkProvider ABC ChemistRy
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=MicroRNAs+regulate+critical+genes+associated+with+multiple+myeloma+pathogenesis&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Pichiorri%2C+Flavia&rft.au=Suh%2C+Sung-Suk&rft.au=Ladetto%2C+Marco&rft.au=Kuehl%2C+Michael&rft.date=2008-09-02&rft.issn=0027-8424&rft.eissn=1091-6490&rft.volume=105&rft.issue=35&rft.spage=12885&rft.epage=12890&rft_id=info:doi/10.1073%2Fpnas.0806202105&rft.externalDBID=NO_FULL_TEXT
thumbnail_m http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F105%2F35.cover.gif
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F105%2F35.cover.gif