MicroRNAs regulate critical genes associated with multiple myeloma pathogenesis
Progress in understanding the biology of multiple myeloma (MM), a plasma cell malignancy, has been slow. The discovery of microRNAs (miRNAs), a class of small noncoding RNAs targeting multiple mRNAs, has revealed a new level of gene expression regulation. To determine whether miRNAs play a role in t...
Saved in:
Published in | Proceedings of the National Academy of Sciences - PNAS Vol. 105; no. 35; pp. 12885 - 12890 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
National Academy of Sciences
02.09.2008
National Acad Sciences |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Progress in understanding the biology of multiple myeloma (MM), a plasma cell malignancy, has been slow. The discovery of microRNAs (miRNAs), a class of small noncoding RNAs targeting multiple mRNAs, has revealed a new level of gene expression regulation. To determine whether miRNAs play a role in the malignant transformation of plasma cells (PCs), we have used both miRNA microarrays and quantitative real time PCR to profile miRNA expression in MM-derived cell lines (n = 49) and CD138+ bone marrow PCs from subjects with MM (n = 16), monoclonal gammopathy of undetermined significance (MGUS) (n = 6), and normal donors (n = 6). We identified overexpression of miR-21, miR-106b~25 cluster, miR-181a and b in MM and MGUS samples with respect to healthy PCs. Selective up-regulation of miR-32 and miR-17~92 cluster was identified in MM subjects and cell lines but not in MGUS subjects or healthy PCs. Furthermore, two miRNAs, miR-19a and 19b, that are part of the miR-17~92 cluster, were shown to down regulate expression of SOCS-1, a gene frequently silenced in MM that plays a critical role as inhibitor of IL-6 growth signaling. We also identified p300-CBP-associated factor, a gene involved in p53 regulation, as a bona fide target of the miR106b~25 cluster, miR-181a and b, and miR-32. Xenograft studies using human MM cell lines treated with miR-19a and b, and miR-181a and b antagonists resulted in significant suppression of tumor growth in nude mice. In summary, we have described a MM miRNA signature, which includes miRNAs that modulate the expression of proteins critical to myeloma pathogenesis. |
---|---|
AbstractList | Progress in understanding the biology of multiple myeloma (MM), a plasma cell malignancy, has been slow. The discovery of microRNAs (miRNAs), a class of small noncoding RNAs targeting multiple mRNAs, has revealed a new level of gene expression regulation. To determine whether miRNAs play a role in the malignant transformation of plasma cells (PCs), we have used both miRNA microarrays and quantitative real time PCR to profile miRNA expression in MM-derived cell lines (n = 49) and CD138+ bone marrow PCs from subjects with MM (n = 16), monoclonal gammopathy of undetermined significance (MGUS) (n = 6), and normal donors (n = 6). We identified overexpression of miR-21, miR-106b~25 cluster, miR-181a and b in MM and MGUS samples with respect to healthy PCs. Selective up-regulation of miR-32 and miR-17~92 cluster was identified in MM subjects and cell lines but not in MGUS subjects or healthy PCs. Furthermore, two miRNAs, miR-19a and 19b, that are part of the miR-17~92 cluster, were shown to down regulate expression of SOCS-1, a gene frequently silenced in MM that plays a critical role as inhibitor of IL-6 growth signaling. We also identified p300-CBP-associated factor, a gene involved in p53 regulation, as a bona fide target of the miR106b~25 cluster, miR-181a and b, and miR-32. Xenograft studies using human MM cell lines treated with miR-19a and b, and miR-181a and b antagonists resulted in significant suppression of tumor growth in nude mice. In summary, we have described a MM miRNA signature, which includes miRNAs that modulate the expression of proteins critical to myeloma pathogenesis. Progress in understanding the biology of multiple myeloma (MM), a plasma cell malignancy, has been slow. The discovery of microRNAs (miRNAs), a class of small noncoding RNAs targeting multiple mRNAs, has revealed a new level of gene expression regulation. To determine whether miRNAs play a role in the malignant transformation of plasma cells (PCs), we have used both miRNA microarrays and quantitative real time PCR to profile miRNA expression in MM-derived cell lines (n = 49) and CD138+ bone marrow PCs from subjects with MM (n = 16), monoclonal gammopathy of undetermined significance (MGUS) (n = 6), and normal donors (n = 6). We identified overexpression of miR-21, miR-106b approximately 25 cluster, miR-181a and b in MM and MGUS samples with respect to healthy PCs. Selective up-regulation of miR-32 and miR-17 approximately 92 cluster was identified in MM subjects and cell lines but not in MGUS subjects or healthy PCs. Furthermore, two miRNAs, miR-19a and 19b, that are part of the miR-17 approximately 92 cluster, were shown to down regulate expression of SOCS-1, a gene frequently silenced in MM that plays a critical role as inhibitor of IL-6 growth signaling. We also identified p300-CBP-associated factor, a gene involved in p53 regulation, as a bona fide target of the miR106b approximately 25 cluster, miR-181a and b, and miR-32. Xenograft studies using human MM cell lines treated with miR-19a and b, and miR-181a and b antagonists resulted in significant suppression of tumor growth in nude mice. In summary, we have described a MM miRNA signature, which includes miRNAs that modulate the expression of proteins critical to myeloma pathogenesis.Progress in understanding the biology of multiple myeloma (MM), a plasma cell malignancy, has been slow. The discovery of microRNAs (miRNAs), a class of small noncoding RNAs targeting multiple mRNAs, has revealed a new level of gene expression regulation. To determine whether miRNAs play a role in the malignant transformation of plasma cells (PCs), we have used both miRNA microarrays and quantitative real time PCR to profile miRNA expression in MM-derived cell lines (n = 49) and CD138+ bone marrow PCs from subjects with MM (n = 16), monoclonal gammopathy of undetermined significance (MGUS) (n = 6), and normal donors (n = 6). We identified overexpression of miR-21, miR-106b approximately 25 cluster, miR-181a and b in MM and MGUS samples with respect to healthy PCs. Selective up-regulation of miR-32 and miR-17 approximately 92 cluster was identified in MM subjects and cell lines but not in MGUS subjects or healthy PCs. Furthermore, two miRNAs, miR-19a and 19b, that are part of the miR-17 approximately 92 cluster, were shown to down regulate expression of SOCS-1, a gene frequently silenced in MM that plays a critical role as inhibitor of IL-6 growth signaling. We also identified p300-CBP-associated factor, a gene involved in p53 regulation, as a bona fide target of the miR106b approximately 25 cluster, miR-181a and b, and miR-32. Xenograft studies using human MM cell lines treated with miR-19a and b, and miR-181a and b antagonists resulted in significant suppression of tumor growth in nude mice. In summary, we have described a MM miRNA signature, which includes miRNAs that modulate the expression of proteins critical to myeloma pathogenesis. Progress in understanding the biology of multiple myeloma (MM), a plasma cell malignancy, has been slow. The discovery of microRNAs (miRNAs), a class of small noncoding RNAs targeting multiple mRNAs, has revealed a new level of gene expression regulation. To determine whether miRNAs play a role in the malignant transformation of plasma cells (PCs), we have used both miRNA microarrays and quantitative real time PCR to profile miRNA expression in MM-derived cell lines (n = 49) and CD138+ bone marrow PCs from subjects with MM (n = 16), monoclonal gammopathy of undetermined significance (MGUS) (n = 6), and normal donors (n = 6). We identified overexpression of miR-21, miR-106b∼25 cluster, miR-181a and b in MM and MGUS samples with respect to healthy PCs. Selective up-regulation of miR-32 and miR-17∼92 cluster was identified in MM subjects and cell lines but not in MGUS subjects or healthy PCs. Furthermore, two miRNAs, miR-19a and 19b, that are part of the miR-17∼92 cluster, were shown to down regulate expression of SOCS-1, a gene frequently silenced in MM that plays a critical role as inhibitor of IL-6 growth signaling. We also identified p300-CBP-associated factor, a gene involved in p53 regulation, as a bona fide target of the miR106b∼25 cluster, miR-181a and b, and miR-32. Xenograft studies using human MM cell lines treated with miR-19a and b, and miR-181a and b antagonists resulted in significant suppression of tumor growth in nude mice. In summary, we have described a MM miRNA signature, which includes miRNAs that modulate the expression of proteins critical to myeloma pathogenesis. Progress in understanding the biology of multiple myeloma (MM), a plasma cell malignancy, has been slow. The discovery of microRNAs (miRNAs), a class of small noncoding RNAs targeting multiple mRNAs, has revealed a new level of gene expression regulation. To determine whether miRNAs play a role in the malignant transformation of plasma cells (PCs), we have used both miRNA microarrays and quantitative real time PCR to profile miRNA expression in MM-derived cell lines (n = 49) and CD138+ bone marrow PCs from subjects with MM (n = 16), monoclonal gammopathy of undetermined significance (MGUS) (n = 6), and normal donors (n = 6). We identified overexpression of miR-21, miR-106b approximately 25 cluster, miR-181a and b in MM and MGUS samples with respect to healthy PCs. Selective up-regulation of miR-32 and miR-17 approximately 92 cluster was identified in MM subjects and cell lines but not in MGUS subjects or healthy PCs. Furthermore, two miRNAs, miR-19a and 19b, that are part of the miR-17 approximately 92 cluster, were shown to down regulate expression of SOCS-1, a gene frequently silenced in MM that plays a critical role as inhibitor of IL-6 growth signaling. We also identified p300-CBP-associated factor, a gene involved in p53 regulation, as a bona fide target of the miR106b approximately 25 cluster, miR-181a and b, and miR-32. Xenograft studies using human MM cell lines treated with miR-19a and b, and miR-181a and b antagonists resulted in significant suppression of tumor growth in nude mice. In summary, we have described a MM miRNA signature, which includes miRNAs that modulate the expression of proteins critical to myeloma pathogenesis. Progress in understanding the biology of multiple myeloma (MM), a plasma cell malignancy, has been slow. The discovery of microRNAs (miRNAs), a class of small noncoding RNAs targeting multiple mRNAs, has revealed a new level of gene expression regulation. To determine whether miRNAs play a role in the malignant transformation of plasma cells (PCs), we have used both miRNA microarrays and quantitative real time PCR to profile miRNA expression in MM-derived cell lines (n = 49) and CD138+ bone marrow PCs from subjects with MM (n = 16), monoclonal gammopathy of undetermined significance (MGUS) (n = 6), and normal donors (n = 6). We identified overexpression of miR-21, miR-106b~25 cluster, miR-181a and b in MM and MGUS samples with respect to healthy PCs. Selective up-regulation of miR-32 and miR-17~92 cluster was identified in MM subjects and cell lines but not in MGUS subjects or healthy PCs. Furthermore, two miRNAs, miR-19a and 19b, that are part of the miR-17~92 cluster, were shown to down regulate expression of SOCS-1, a gene frequently silenced in MM that plays a critical role as inhibitor of IL-6 growth signaling. We also identified p300-CBP-associated factor, a gene involved in p53 regulation, as a bona fide target of the miR106b~25 cluster, miR-181a and b, and miR-32. Xenograft studies using human MM cell lines treated with miR-19a and b, and miR-181a and b antagonists resulted in significant suppression of tumor growth in nude mice. In summary, we have described a MM miRNA signature, which includes miRNAs that modulate the expression of proteins critical to myeloma pathogenesis. [PUBLICATION ABSTRACT] Progress in understanding the biology of multiple myeloma (MM), a plasma cell malignancy, has been slow. The discovery of microRNAs (miRNAs), a class of small noncoding RNAs targeting multiple mRNAs, has revealed a new level of gene expression regulation. To determine whether miRNAs play a role in the malignant transformation of plasma cells (PCs), we have used both miRNA microarrays and quantitative real time PCR to profile miRNA expression in MM-derived cell lines (n = 49) and CD138+ bone marrow PCs from subjects with MM (n = 16), monoclonal gammopathy of undetermined significance (MGUS) (n = 6), and normal donors (n = 6). We identified overexpression of miR-21, miR-106ba1/425 cluster, miR-181a and b in MM and MGUS samples with respect to healthy PCs. Selective up-regulation of miR-32 and miR-17a1/492 cluster was identified in MM subjects and cell lines but not in MGUS subjects or healthy PCs. Furthermore, two miRNAs, miR-19a and 19b, that are part of the miR-17a1/492 cluster, were shown to down regulate expression of SOCS-1, a gene frequently silenced in MM that plays a critical role as inhibitor of IL-6 growth signaling. We also identified p300-CBP-associated factor, a gene involved in p53 regulation, as a bona fide target of the miR106ba1/425 cluster, miR-181a and b, and miR-32. Xenograft studies using human MM cell lines treated with miR-19a and b, and miR-181a and b antagonists resulted in significant suppression of tumor growth in nude mice. In summary, we have described a MM miRNA signature, which includes miRNAs that modulate the expression of proteins critical to myeloma pathogenesis. Progress in understanding the biology of multiple myeloma (MM), a plasma cell malignancy, has been slow. The discovery of microRNAs (miRNAs), a class of small noncoding RNAs targeting multiple mRNAs, has revealed a new level of gene expression regulation. To determine whether miRNAs play a role in the malignant transformation of plasma cells (PCs), we have used both miRNA microarrays and quantitative real time PCR to profile miRNA expression in MM-derived cell lines ( n = 49) and CD138+ bone marrow PCs from subjects with MM ( n = 16), monoclonal gammopathy of undetermined significance (MGUS) ( n = 6), and normal donors ( n = 6). We identified overexpression of miR-21 , miR-106b ∼ 25 cluster, miR-181a and b in MM and MGUS samples with respect to healthy PCs. Selective up-regulation of miR-32 and miR-17 ∼ 92 cluster was identified in MM subjects and cell lines but not in MGUS subjects or healthy PCs. Furthermore, two miRNAs, miR-19a and 19b , that are part of the miR-17 ∼ 92 cluster, were shown to down regulate expression of SOCS-1, a gene frequently silenced in MM that plays a critical role as inhibitor of IL-6 growth signaling. We also identified p300-CBP-associated factor, a gene involved in p53 regulation, as a bona fide target of the miR106b ∼ 25 cluster, miR-181a and b , and miR-32 . Xenograft studies using human MM cell lines treated with miR-19a and b , and miR-181a and b antagonists resulted in significant suppression of tumor growth in nude mice. In summary, we have described a MM miRNA signature, which includes miRNAs that modulate the expression of proteins critical to myeloma pathogenesis. Progress in understanding the biology of multiple myeloma (MM), a plasma cell malignancy, has been slow. The discovery of microRNAs (miRNAs), a class of small noncoding RNAs targeting multiple mRNAs, has revealed a new level of gene expression regulation. To determine whether miRNAs play a role in the malignant transformation of plasma cells (PCs), we have used both miRNA microarrays and quantitative real time PCR to profile miRNA expression in MM-derived cell lines ( n = 49) and CD138+ bone marrow PCs from subjects with MM ( n = 16), monoclonal gammopathy of undetermined significance (MGUS) ( n = 6), and normal donors ( n = 6). We identified overexpression of miR-21 , miR-106b ∼ 25 cluster, miR-181a and b in MM and MGUS samples with respect to healthy PCs. Selective up-regulation of miR-32 and miR-17 ∼ 92 cluster was identified in MM subjects and cell lines but not in MGUS subjects or healthy PCs. Furthermore, two miRNAs, miR-19a and 19b , that are part of the miR-17 ∼ 92 cluster, were shown to down regulate expression of SOCS-1, a gene frequently silenced in MM that plays a critical role as inhibitor of IL-6 growth signaling. We also identified p300-CBP-associated factor, a gene involved in p53 regulation, as a bona fide target of the miR106b ∼ 25 cluster, miR-181a and b , and miR-32 . Xenograft studies using human MM cell lines treated with miR-19a and b , and miR-181a and b antagonists resulted in significant suppression of tumor growth in nude mice. In summary, we have described a MM miRNA signature, which includes miRNAs that modulate the expression of proteins critical to myeloma pathogenesis. PCAF SOCS-1 tumor suppressor gene MGUS plasma cells |
Author | Palumbo, Tiziana Pichiorri, Flavia Taccioli, Cristian Suh, Sung-Suk Palumbo, Antonio Munker, Reinhold Zanesi, Nicola Garzon, Ramiro Croce, Carlo M Boccadoro, Mario Alder, Hansjuerg Kuehl, Michael Volinia, Stefano Ladetto, Marco Hagan, John P Aqeilan, Rami I Drandi, Daniela |
Author_xml | – sequence: 1 fullname: Pichiorri, Flavia – sequence: 2 fullname: Suh, Sung-Suk – sequence: 3 fullname: Ladetto, Marco – sequence: 4 fullname: Kuehl, Michael – sequence: 5 fullname: Palumbo, Tiziana – sequence: 6 fullname: Drandi, Daniela – sequence: 7 fullname: Taccioli, Cristian – sequence: 8 fullname: Zanesi, Nicola – sequence: 9 fullname: Alder, Hansjuerg – sequence: 10 fullname: Hagan, John P – sequence: 11 fullname: Munker, Reinhold – sequence: 12 fullname: Volinia, Stefano – sequence: 13 fullname: Boccadoro, Mario – sequence: 14 fullname: Garzon, Ramiro – sequence: 15 fullname: Palumbo, Antonio – sequence: 16 fullname: Aqeilan, Rami I – sequence: 17 fullname: Croce, Carlo M |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/18728182$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkstvEzEQxi1URB9w5gSsOCBxSDt-re0LUlXxkgqVgJ4tx3ESR951anuB_vd4SWigB3Ly4fvNN55v5hgd9LF3CD3FcIpB0LN1b_IpSGgJEAz8ATrCoPCkZQoO0BEAERPJCDtExzmvAEBxCY_QIZaCSCzJEbr65G2KXz6f5ya5xRBMcY1NvnhrQrNwvcuNyTlaX4VZ88OXZdMNofh1cE1360LsTLM2ZRl_sz4_Rg_nJmT3ZPueoOt3b79dfJhcXr3_eHF-ObFc8jKxVlLMKLVyxoWQc4aJEQJjNjXS4JkTUweWCSqtEjOYMks4pq01FpQjgih6gt5sfNfDtHMz6_qSTNDr5DuTbnU0Xv-r9H6pF_G7JpwoEFANXm0NUrwZXC6689m6EEzv4pB1qzgAZ3gvyCQIhcl-x3FFRMoRfHkPXMUh9TWuymBKVQ2mQs__HvBusj-rq8DZBqj7yzm5-Q4BPR6HHo9D746jVvB7FdYXU3wcE_LhP3Wvt18ZhV0XrinX40hcz4cQivtZKtvsYSvybIOsconpjiGctVS1Y-AvNvrcRG0WyWd9_XUMBjCnnAHQXycv6UI |
CitedBy_id | crossref_primary_10_1111_bjh_12157 crossref_primary_10_1089_cbr_2023_0191 crossref_primary_10_1093_nar_gkp313 crossref_primary_10_1371_journal_pone_0078725 crossref_primary_10_1007_s10620_024_08517_3 crossref_primary_10_1007_s12013_013_9516_9 crossref_primary_10_1016_j_gde_2015_03_008 crossref_primary_10_1111_bjh_12394 crossref_primary_10_1016_j_semcancer_2017_09_007 crossref_primary_10_1586_14737159_2014_946906 crossref_primary_10_1182_asheducation_V2012_1_342_3798324 crossref_primary_10_1155_2013_269107 crossref_primary_10_1038_s41598_022_16448_0 crossref_primary_10_1371_journal_pgen_1006623 crossref_primary_10_3109_13506129_2011_588977 crossref_primary_10_1016_j_critrevonc_2020_103196 crossref_primary_10_1002_cbin_11104 crossref_primary_10_3390_ijms21207539 crossref_primary_10_1002_pmic_201000501 crossref_primary_10_1111_ejh_12120 crossref_primary_10_1111_ejh_12124 crossref_primary_10_1158_1541_7786_MCR_14_0703 crossref_primary_10_1016_j_leukres_2014_03_021 crossref_primary_10_18632_oncotarget_11032 crossref_primary_10_3390_ijms17122003 crossref_primary_10_1016_j_cyto_2016_07_019 crossref_primary_10_1016_j_jmoldx_2015_06_006 crossref_primary_10_1002_jcp_29013 crossref_primary_10_1016_j_canlet_2011_07_009 crossref_primary_10_1007_s12254_024_00962_0 crossref_primary_10_1038_leu_2013_344 crossref_primary_10_1016_j_jaci_2013_02_005 crossref_primary_10_1182_blood_2011_01_270140 crossref_primary_10_1007_s11010_013_1679_6 crossref_primary_10_1016_j_canlet_2012_02_038 crossref_primary_10_18632_oncotarget_2761 crossref_primary_10_1371_journal_pone_0026257 crossref_primary_10_1172_JCI64946 crossref_primary_10_1007_s13721_021_00292_9 crossref_primary_10_1038_leu_2014_155 crossref_primary_10_1021_acs_biomac_8b01553 crossref_primary_10_1097_CAD_0000000000000871 crossref_primary_10_1016_j_joen_2012_02_020 crossref_primary_10_1016_j_fertnstert_2009_01_069 crossref_primary_10_1007_s13277_016_5338_x crossref_primary_10_1093_nar_gkr770 crossref_primary_10_1371_journal_pone_0089659 crossref_primary_10_1038_srep32174 crossref_primary_10_1038_nrd3179 crossref_primary_10_1074_jbc_M109_093005 crossref_primary_10_1155_2013_348212 crossref_primary_10_3390_jpm12091428 crossref_primary_10_3389_fonc_2021_698197 crossref_primary_10_1007_s00430_011_0223_0 crossref_primary_10_1007_s13277_015_3600_2 crossref_primary_10_3390_cells12071030 crossref_primary_10_1038_leu_2012_302 crossref_primary_10_1038_onc_2010_457 crossref_primary_10_1111_ejh_12205 crossref_primary_10_1586_ehm_12_51 crossref_primary_10_3390_cells10082142 crossref_primary_10_1158_1078_0432_CCR_12_2922 crossref_primary_10_18632_oncotarget_26444 crossref_primary_10_1186_s12865_015_0069_0 crossref_primary_10_1111_cas_13183 crossref_primary_10_1158_0008_5472_CAN_14_0994 crossref_primary_10_1098_rsob_190095 crossref_primary_10_1007_s00761_024_01664_2 crossref_primary_10_1038_leu_2015_124 crossref_primary_10_1155_2015_501262 crossref_primary_10_1371_journal_pone_0079752 crossref_primary_10_1007_s10495_009_0327_9 crossref_primary_10_1371_journal_pone_0029612 crossref_primary_10_1097_PPO_0b013e318258b75b crossref_primary_10_1007_s13277_014_2544_2 crossref_primary_10_1038_s41419_017_0045_0 crossref_primary_10_1152_physiolgenomics_00122_2013 crossref_primary_10_3109_10428194_2010_525725 crossref_primary_10_1186_s13045_017_0461_8 crossref_primary_10_18632_oncotarget_14378 crossref_primary_10_18632_oncotarget_2546 crossref_primary_10_7717_peerj_2831 crossref_primary_10_3390_ph16010111 crossref_primary_10_1517_14712598_2013_799132 crossref_primary_10_4161_jkst_19573 crossref_primary_10_1007_s00432_015_1995_1 crossref_primary_10_3233_CBM_182182 crossref_primary_10_1242_jcs_087122 crossref_primary_10_1038_nrc3257 crossref_primary_10_3390_ph16010115 crossref_primary_10_1016_j_blre_2019_04_002 crossref_primary_10_1016_j_leukres_2012_08_021 crossref_primary_10_1016_j_leukres_2015_04_010 crossref_primary_10_1371_journal_pone_0016408 crossref_primary_10_3109_10428190903221010 crossref_primary_10_1016_j_molmed_2010_04_001 crossref_primary_10_2147_IJN_S325448 crossref_primary_10_1142_S0192415X17500392 crossref_primary_10_1186_s13619_016_0028_0 crossref_primary_10_1016_j_jtbi_2011_06_022 crossref_primary_10_1111_j_1365_2559_2011_03793_x crossref_primary_10_1016_j_leukres_2017_07_003 crossref_primary_10_1016_j_mam_2010_05_001 crossref_primary_10_1002_iub_2211 crossref_primary_10_1002_jcp_25870 crossref_primary_10_1146_annurev_immunol_020711_075027 crossref_primary_10_1093_nar_gkp153 crossref_primary_10_1016_j_clml_2018_02_011 crossref_primary_10_1016_j_cyto_2016_01_015 crossref_primary_10_1093_abbs_gmu089 crossref_primary_10_3892_mmr_2015_3567 crossref_primary_10_1016_j_canlet_2012_01_044 crossref_primary_10_1158_1078_0432_CCR_16_0867 crossref_primary_10_1515_cclm_2015_1108 crossref_primary_10_3390_genes7100084 crossref_primary_10_1007_s13277_016_4988_z crossref_primary_10_1371_journal_pone_0137294 crossref_primary_10_18632_oncotarget_21909 crossref_primary_10_1158_0008_5472_CAN_13_1748 crossref_primary_10_18632_oncotarget_5290 crossref_primary_10_1038_leu_2009_174 crossref_primary_10_1074_jbc_M109_051235 crossref_primary_10_2217_ijh_14_30 crossref_primary_10_1007_s00109_020_01897_9 crossref_primary_10_1016_j_canlet_2009_05_030 crossref_primary_10_1002_jcp_24669 crossref_primary_10_1002_gcc_20660 crossref_primary_10_1002_ijc_29489 crossref_primary_10_1093_nar_gks521 crossref_primary_10_1002_ajh_22025 crossref_primary_10_4161_auto_23117 crossref_primary_10_1016_j_gene_2016_10_009 crossref_primary_10_1007_s00281_014_0426_8 crossref_primary_10_1186_s12967_023_04034_5 crossref_primary_10_1186_1471_2105_11_495 crossref_primary_10_1111_odi_12464 crossref_primary_10_1186_s13148_017_0319_5 crossref_primary_10_1093_carcin_bgt044 crossref_primary_10_1007_s12288_018_1000_7 crossref_primary_10_1182_blood_2011_11_366062 crossref_primary_10_1080_10715762_2024_2320396 crossref_primary_10_1016_j_abb_2018_11_023 crossref_primary_10_1016_j_semcancer_2015_03_006 crossref_primary_10_1186_s12885_017_3141_8 crossref_primary_10_1016_j_canlet_2016_04_024 crossref_primary_10_1038_bcj_2011_51 crossref_primary_10_3109_10428194_2012_704030 crossref_primary_10_1186_s13045_016_0362_2 crossref_primary_10_3389_fphar_2021_631835 crossref_primary_10_1182_asheducation_2013_1_478 crossref_primary_10_1007_s12672_011_0072_8 crossref_primary_10_3389_fgene_2018_00311 crossref_primary_10_1155_2012_753407 crossref_primary_10_1038_leu_2013_194 crossref_primary_10_1111_j_1600_0609_2009_01348_x crossref_primary_10_1074_jbc_M113_474643 crossref_primary_10_1016_j_bbrc_2012_03_048 crossref_primary_10_1016_j_canlet_2011_05_017 crossref_primary_10_3892_ol_2018_8157 crossref_primary_10_1586_ehm_10_13 crossref_primary_10_12659_MSM_892636 crossref_primary_10_1002_kjm2_12057 crossref_primary_10_3109_00365521_2013_800991 crossref_primary_10_1182_blood_2010_03_275925 crossref_primary_10_1042_CS20110005 crossref_primary_10_2174_2211536607666180821162403 crossref_primary_10_1016_j_ymthe_2019_01_012 crossref_primary_10_1182_blood_2009_08_237495 crossref_primary_10_1007_s11427_015_4969_2 crossref_primary_10_1038_leu_2012_269 crossref_primary_10_1038_bcj_2014_29 crossref_primary_10_1177_15330338231202391 crossref_primary_10_1182_blood_2019846782 crossref_primary_10_1111_jcmm_14592 crossref_primary_10_1155_2012_603830 crossref_primary_10_1182_asheducation_2010_1_295 crossref_primary_10_1074_jbc_M109_058065 crossref_primary_10_1016_j_semcancer_2021_03_014 crossref_primary_10_18632_oncotarget_10849 crossref_primary_10_1172_JCI61188 crossref_primary_10_3390_cancers11060887 crossref_primary_10_4103_MJBL_MJBL_41_23 crossref_primary_10_1155_2014_717919 crossref_primary_10_3892_ol_2020_11579 crossref_primary_10_1038_pcan_2016_50 crossref_primary_10_1016_j_prp_2023_154715 crossref_primary_10_1007_s00109_011_0775_x crossref_primary_10_1016_j_sjbs_2023_103920 crossref_primary_10_1016_j_smim_2014_01_001 crossref_primary_10_1038_leu_2013_262 crossref_primary_10_1016_j_toxlet_2014_05_019 crossref_primary_10_3389_fimmu_2015_00019 crossref_primary_10_1002_eji_200939531 crossref_primary_10_1517_14712598_2013_793305 crossref_primary_10_1182_blood_2008_10_185686 crossref_primary_10_1016_j_prp_2023_154704 crossref_primary_10_18632_oncotarget_1747 crossref_primary_10_3390_ncrna5010013 crossref_primary_10_33590_emj_10312856 crossref_primary_10_18632_oncotarget_5681 crossref_primary_10_1186_1752_0509_8_82 crossref_primary_10_3390_ncrna5010009 crossref_primary_10_1371_journal_pone_0059532 crossref_primary_10_1038_s41375_019_0498_5 crossref_primary_10_1097_PPO_0b013e3181c51efa crossref_primary_10_3390_cancers12102996 crossref_primary_10_1002_jbt_22057 crossref_primary_10_1002_path_5852 crossref_primary_10_1016_j_it_2009_03_008 crossref_primary_10_3892_mmr_2015_3280 crossref_primary_10_1021_ac202055m crossref_primary_10_1093_neuonc_not018 crossref_primary_10_1158_1078_0432_CCR_12_2043 crossref_primary_10_1371_journal_pone_0123054 crossref_primary_10_3390_cancers13153650 crossref_primary_10_1038_leu_2011_147 crossref_primary_10_1097_MD_0000000000012081 crossref_primary_10_17116_terarkh2015877105_111 crossref_primary_10_1111_bjh_12828 crossref_primary_10_1111_imr_12050 crossref_primary_10_1089_ars_2013_5718 crossref_primary_10_1186_1471_2105_14_S7_S8 crossref_primary_10_4049_jimmunol_1101563 crossref_primary_10_1007_s12032_012_0210_3 crossref_primary_10_2147_PGPM_S350238 crossref_primary_10_3390_cancers12020320 crossref_primary_10_1002_jso_23312 crossref_primary_10_1016_j_ccr_2010_09_005 crossref_primary_10_1080_10428194_2018_1461861 crossref_primary_10_1038_bjc_2012_525 crossref_primary_10_1186_s12952_015_0035_7 crossref_primary_10_1038_nrdp_2017_46 crossref_primary_10_18632_oncotarget_3057 crossref_primary_10_3390_cancers11111738 crossref_primary_10_1016_j_joen_2017_08_022 crossref_primary_10_1038_bcj_2014_41 crossref_primary_10_3109_10428194_2011_591004 crossref_primary_10_1007_s12185_024_03812_1 crossref_primary_10_1021_pr201079y crossref_primary_10_1089_jir_2016_0094 crossref_primary_10_1016_j_jinf_2013_07_016 crossref_primary_10_1002_jcb_29309 crossref_primary_10_1097_IN9_0000000000000005 crossref_primary_10_3390_cells11040752 crossref_primary_10_1158_0008_5472_CAN_09_1095 crossref_primary_10_18632_oncotarget_4398 crossref_primary_10_1053_j_seminoncol_2013_07_010 crossref_primary_10_1155_2012_794898 crossref_primary_10_1158_0008_5472_CAN_10_1001 crossref_primary_10_14694_EdBook_AM_2015_35_e493 crossref_primary_10_1002_jcp_22280 crossref_primary_10_1002_cncr_26297 crossref_primary_10_1017_S1462399411002122 crossref_primary_10_2147_CMAR_S251264 crossref_primary_10_1007_s12185_013_1291_2 crossref_primary_10_2217_fon_12_52 crossref_primary_10_1158_1078_0432_CCR_12_0191 crossref_primary_10_1186_s13045_019_0714_9 crossref_primary_10_1007_s10238_015_0355_4 crossref_primary_10_1155_2011_143132 crossref_primary_10_1158_1078_0432_CCR_10_1843 crossref_primary_10_3390_ncrna5020037 crossref_primary_10_1007_s12253_013_9707_0 crossref_primary_10_1155_2010_814609 crossref_primary_10_3390_cancers13164000 crossref_primary_10_3390_ijms20092302 crossref_primary_10_18632_oncotarget_5381 crossref_primary_10_3816_CLML_2010_n_053 crossref_primary_10_1016_j_biopha_2018_08_097 crossref_primary_10_1200_JCO_2009_24_0317 crossref_primary_10_1007_s00018_015_1940_0 crossref_primary_10_3389_fcell_2020_00143 crossref_primary_10_1155_2016_6504593 crossref_primary_10_1182_blood_2016_09_742296 crossref_primary_10_1016_j_heliyon_2020_e05669 crossref_primary_10_1016_j_leukres_2009_10_026 crossref_primary_10_1146_annurev_pathol_011110_130249 crossref_primary_10_3390_v15091808 crossref_primary_10_2119_molmed_2016_00136 crossref_primary_10_1038_bjc_2014_451 crossref_primary_10_1038_srep13350 crossref_primary_10_1016_j_trsl_2018_05_003 crossref_primary_10_1136_jclinpath_2017_204501 crossref_primary_10_3390_ijms21093084 crossref_primary_10_1179_1607845414Y_0000000163 crossref_primary_10_1053_j_seminhematol_2010_11_007 crossref_primary_10_1158_1078_0432_CCR_14_1437 crossref_primary_10_2217_epi_2019_0154 crossref_primary_10_1038_s41416_024_02752_1 crossref_primary_10_1038_leu_2009_274 crossref_primary_10_1053_j_seminhematol_2010_11_003 crossref_primary_10_7717_peerj_14949 crossref_primary_10_1016_j_bbrc_2012_09_059 crossref_primary_10_1007_s10522_010_9272_9 crossref_primary_10_1016_j_ejphar_2014_07_051 crossref_primary_10_1016_j_molcel_2009_09_044 crossref_primary_10_1371_journal_pone_0185028 crossref_primary_10_1007_s12015_016_9696_y crossref_primary_10_1155_2014_521586 crossref_primary_10_1007_s12185_016_2048_5 crossref_primary_10_1186_1471_2164_11_514 crossref_primary_10_1371_journal_pone_0096670 crossref_primary_10_3390_ijms23031649 crossref_primary_10_1093_jmcb_mju017 crossref_primary_10_1007_s12575_009_9012_1 crossref_primary_10_1007_s12253_015_0035_4 crossref_primary_10_7314_APJCP_2013_14_2_835 crossref_primary_10_1074_jbc_M111_251793 crossref_primary_10_1371_journal_pone_0048474 crossref_primary_10_3892_ijmm_2017_3164 crossref_primary_10_5858_2009_0178_RS_1 crossref_primary_10_3390_epigenomes2030016 crossref_primary_10_1002_ijc_27724 crossref_primary_10_1016_j_jpsychires_2017_01_009 crossref_primary_10_1002_jcb_29280 crossref_primary_10_1158_0008_5472_CAN_11_1717 crossref_primary_10_1080_14740338_2023_2251384 crossref_primary_10_18632_oncotarget_1497 crossref_primary_10_1096_fj_09_131847 crossref_primary_10_1093_nar_gkx327 crossref_primary_10_3892_ol_2018_9843 crossref_primary_10_2147_OTT_S241627 crossref_primary_10_1016_j_bbrc_2011_05_118 crossref_primary_10_1038_s41375_018_0140_y crossref_primary_10_1038_onc_2014_274 crossref_primary_10_3109_1061186X_2014_951653 crossref_primary_10_1038_leu_2011_53 crossref_primary_10_1074_jbc_M109_013862 crossref_primary_10_1182_blood_2009_01_198408 crossref_primary_10_1177_1010428317692234 crossref_primary_10_1186_1756_8722_7_40 crossref_primary_10_1016_j_expneurol_2011_11_010 crossref_primary_10_1016_j_jaut_2020_102472 crossref_primary_10_3390_ijms21218047 crossref_primary_10_1073_pnas_1103735108 crossref_primary_10_7717_peerj_15608 crossref_primary_10_18632_oncotarget_4769 crossref_primary_10_1016_j_canlet_2013_05_001 crossref_primary_10_1111_j_1600_6143_2011_03666_x crossref_primary_10_1136_jclinpath_2015_203308 crossref_primary_10_1016_j_isjp_2018_12_001 crossref_primary_10_3390_cancers13061235 crossref_primary_10_1016_j_blre_2013_04_002 crossref_primary_10_3109_10428194_2010_487959 crossref_primary_10_1038_s41416_021_01602_8 crossref_primary_10_1016_j_expneurol_2013_12_007 crossref_primary_10_1007_s10555_017_9714_9 crossref_primary_10_18632_oncotarget_10125 crossref_primary_10_1038_s41408_018_0119_y crossref_primary_10_1155_2015_341430 crossref_primary_10_1016_j_prp_2020_153317 crossref_primary_10_1002_jcla_23233 crossref_primary_10_1038_s41375_018_0161_6 crossref_primary_10_1038_srep31918 crossref_primary_10_3892_or_2017_5425 crossref_primary_10_1182_blood_2012_01_401794 crossref_primary_10_1186_s12943_017_0695_7 crossref_primary_10_3109_1354750X_2011_614961 crossref_primary_10_1038_s41408_019_0184_x crossref_primary_10_1016_j_jve_2025_100586 crossref_primary_10_1016_j_tranon_2022_101532 crossref_primary_10_1186_1471_2164_15_172 crossref_primary_10_1002_eji_201243271 crossref_primary_10_1517_14712598_2013_796356 crossref_primary_10_1186_s13045_017_0538_4 crossref_primary_10_3390_biomedicines10112767 crossref_primary_10_1007_s13258_017_0518_7 crossref_primary_10_1038_leu_2016_325 crossref_primary_10_1182_blood_2014_08_551549 crossref_primary_10_1007_s10266_022_00762_0 crossref_primary_10_1155_2014_864058 crossref_primary_10_1186_s12885_019_6151_x crossref_primary_10_1371_journal_pone_0069090 crossref_primary_10_3390_ijms232314765 crossref_primary_10_1093_carcin_bgs212 crossref_primary_10_1093_carcin_bgs333 crossref_primary_10_1002_mc_22175 crossref_primary_10_1186_1745_6150_6_23 crossref_primary_10_1080_1120009X_2016_1145375 crossref_primary_10_1016_j_achaem_2014_04_006 crossref_primary_10_1038_s41598_017_18186_0 crossref_primary_10_1080_15287394_2020_1749919 crossref_primary_10_1517_14728214_2012_713345 crossref_primary_10_1111_bph_14889 crossref_primary_10_1016_j_bbrc_2013_09_059 crossref_primary_10_1016_j_clml_2017_05_010 crossref_primary_10_1016_j_immuni_2015_04_022 crossref_primary_10_3390_cells13110948 crossref_primary_10_3389_fimmu_2024_1419951 crossref_primary_10_1016_j_mehy_2013_03_043 crossref_primary_10_1371_journal_pone_0190437 crossref_primary_10_1007_s12032_014_0094_5 crossref_primary_10_1186_s12885_015_1078_3 crossref_primary_10_3390_ijms161126001 crossref_primary_10_1016_j_jconrel_2015_08_011 crossref_primary_10_1186_2050_7771_2_10 crossref_primary_10_3390_cancers12020407 crossref_primary_10_1080_17474086_2018_1517041 crossref_primary_10_1371_journal_pone_0038496 crossref_primary_10_1182_blood_2014_11_568881 crossref_primary_10_1038_bjc_2012_587 crossref_primary_10_15324_kjcls_2015_47_4_292 crossref_primary_10_3389_fcimb_2017_00185 crossref_primary_10_1016_j_biocel_2012_05_011 crossref_primary_10_1186_s13045_017_0492_1 crossref_primary_10_1016_j_bbrc_2015_01_110 crossref_primary_10_1186_s43042_019_0021_6 crossref_primary_10_1073_pnas_0908441107 |
Cites_doi | 10.1038/ncb1545 10.1182/blood.V99.5.1745 10.1038/ng1536 10.1056/NEJMoa050995 10.1182/blood-2002-06-1735 10.1016/j.cell.2008.02.019 10.1016/S1470-2045(03)01195-1 10.1182/blood.V77.3.587.587 10.1182/blood.V59.1.43.43 10.1073/pnas.0800135105 10.1056/NEJMra072367 10.1053/j.gastro.2007.05.022 10.1073/pnas.0510565103 10.1038/nprot.2008.14 10.1038/sj.cdd.4402090 10.1038/nrc2189 10.1182/blood-2007-07-098749 10.1038/nature03552 10.1158/0008-5472.CAN-05-0137 10.1532/IJH97.04107 10.1016/j.ccr.2008.02.013 10.1016/S0092-8674(03)01018-3 10.1189/jlb.70.3.348 10.1182/blood.V84.8.2412.2412 10.1126/science.1091903 10.1073/pnas.0403293101 10.1038/nrc1997 10.1016/j.hoc.2007.08.010 10.1016/j.beha.2007.08.004 10.1016/S0092-8674(04)00045-5 10.4161/cc.5.1.2281 10.1016/j.ejca.2005.12.026 10.1182/blood-2007-03-081133 10.1038/sj.onc.1210186 10.1038/nature03677 |
ContentType | Journal Article |
Copyright | Copyright 2008 The National Academy of Sciences of the United States of America Copyright National Academy of Sciences Sep 2, 2008 2008 by The National Academy of Sciences of the USA |
Copyright_xml | – notice: Copyright 2008 The National Academy of Sciences of the United States of America – notice: Copyright National Academy of Sciences Sep 2, 2008 – notice: 2008 by The National Academy of Sciences of the USA |
DBID | FBQ AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7S9 L.6 7X8 5PM |
DOI | 10.1073/pnas.0806202105 |
DatabaseName | AGRIS CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Immunology Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts AGRICOLA AGRICOLA - Academic MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Virology and AIDS Abstracts Oncogenes and Growth Factors Abstracts Technology Research Database Nucleic Acids Abstracts Ecology Abstracts Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Entomology Abstracts Genetics Abstracts Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Immunology Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts AGRICOLA AGRICOLA - Academic MEDLINE - Academic |
DatabaseTitleList | AGRICOLA MEDLINE - Academic MEDLINE Virology and AIDS Abstracts Genetics Abstracts CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: FBQ name: AGRIS url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
EISSN | 1091-6490 |
EndPage | 12890 |
ExternalDocumentID | PMC2529070 1548733021 18728182 10_1073_pnas_0806202105 105_35_12885 25463961 US201301535400 |
Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural Feature |
GrantInformation_xml | – fundername: Intramural NIH HHS grantid: Z01 SC006581 |
GroupedDBID | --- -DZ -~X .55 .GJ 0R~ 123 29P 2AX 2FS 2WC 3O- 4.4 53G 5RE 5VS 692 6TJ 79B 85S AACGO AAFWJ AANCE AAYJJ ABBHK ABOCM ABPLY ABPPZ ABPTK ABTLG ABZEH ACGOD ACIWK ACKIV ACNCT ACPRK ADULT ADZLD AENEX AEUPB AEXZC AFDAS AFFNX AFOSN AFRAH ALMA_UNASSIGNED_HOLDINGS ASUFR AS~ BKOMP CS3 D0L DCCCD DIK DNJUQ DOOOF DU5 DWIUU E3Z EBS EJD F20 F5P FBQ FRP GX1 HGD HH5 HQ3 HTVGU HYE JAAYA JBMMH JENOY JHFFW JKQEH JLS JLXEF JPM JSG JSODD JST KQ8 L7B LU7 MVM N9A NEJ NHB N~3 O9- OK1 P-O PNE PQQKQ R.V RHF RHI RNA RNS RPM RXW SA0 SJN TAE TN5 UKR VOH VQA W8F WH7 WHG WOQ WOW X7M XFK XSW Y6R YBH YKV YSK ZA5 ZCA ZCG ~02 ~KM ABXSQ ACHIC ADQXQ ADXHL AQVQM H13 IPSME - 02 0R 1AW 55 AAPBV ABFLS ADACO AJYGW AS DZ KM PQEST X XHC AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7S9 L.6 7X8 5PM |
ID | FETCH-LOGICAL-c585t-cc831433c8d5778f412a77114ba8a1de7be0c4738c97d0b4c25136cac09e27293 |
ISSN | 0027-8424 1091-6490 |
IngestDate | Thu Aug 21 14:37:29 EDT 2025 Fri Jul 11 09:21:48 EDT 2025 Thu Jul 10 22:53:42 EDT 2025 Sun Aug 24 02:58:56 EDT 2025 Mon Jun 30 08:29:43 EDT 2025 Fri May 30 10:49:10 EDT 2025 Thu Apr 24 22:54:27 EDT 2025 Tue Jul 01 02:39:02 EDT 2025 Thu May 30 08:51:26 EDT 2019 Wed Nov 11 00:29:05 EST 2020 Thu May 29 08:42:47 EDT 2025 Wed Dec 27 19:18:31 EST 2023 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 35 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c585t-cc831433c8d5778f412a77114ba8a1de7be0c4738c97d0b4c25136cac09e27293 |
Notes | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-2 content type line 23 ObjectType-Article-1 ObjectType-Feature-2 F.P. and S.S. contributed equally to this work. Contributed by Carlo M. Croce, June 27, 2008 Author contributions: F.P., S.-S.S., M.K., T.P., D.D., C.T., N.Z., S.V., M.B., A.P., R.I.A., and C.M.C. designed research; F.P., S.-S.S., M.L., M.K., T.P., D.D., C.T., N.Z., H.A., J.P.H., R.M., S.V., and R.I.A. performed research; F.P., S.-S.S., M.L., M.K., T.P., D.D., C.T., H.A., J.P.H., R.M., S.V., M.B., R.G., A.P., R.I.A., and C.M.C. contributed new reagents/analytic tools; F.P., S.-S.S., M.K., C.T., H.A., S.V., R.G., A.P., R.I.A., and C.M.C. analyzed data; and F.P., R.G., and R.I.A. wrote the paper. |
OpenAccessLink | https://www.pnas.org/content/pnas/105/35/12885.full.pdf |
PMID | 18728182 |
PQID | 201339433 |
PQPubID | 42026 |
PageCount | 6 |
ParticipantIDs | proquest_miscellaneous_20212880 crossref_primary_10_1073_pnas_0806202105 proquest_miscellaneous_48079120 proquest_journals_201339433 jstor_primary_25463961 fao_agris_US201301535400 pubmedcentral_primary_oai_pubmedcentral_nih_gov_2529070 crossref_citationtrail_10_1073_pnas_0806202105 pnas_primary_105_35_12885 proquest_miscellaneous_69500541 pnas_primary_105_35_12885_fulltext pubmed_primary_18728182 |
ProviderPackageCode | RNA PNE CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2008-09-02 |
PublicationDateYYYYMMDD | 2008-09-02 |
PublicationDate_xml | – month: 09 year: 2008 text: 2008-09-02 day: 02 |
PublicationDecade | 2000 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Washington |
PublicationTitle | Proceedings of the National Academy of Sciences - PNAS |
PublicationTitleAlternate | Proc Natl Acad Sci U S A |
PublicationYear | 2008 |
Publisher | National Academy of Sciences National Acad Sciences |
Publisher_xml | – name: National Academy of Sciences – name: National Acad Sciences |
References | Schiltz RL (e_1_3_3_23_2) 2000; 1470 e_1_3_3_17_2 e_1_3_3_16_2 e_1_3_3_19_2 e_1_3_3_18_2 e_1_3_3_13_2 e_1_3_3_36_2 e_1_3_3_12_2 e_1_3_3_37_2 e_1_3_3_15_2 e_1_3_3_34_2 e_1_3_3_14_2 e_1_3_3_35_2 e_1_3_3_32_2 e_1_3_3_33_2 e_1_3_3_11_2 e_1_3_3_30_2 e_1_3_3_10_2 e_1_3_3_31_2 Drach J (e_1_3_3_5_2) 1995; 55 e_1_3_3_6_2 e_1_3_3_8_2 e_1_3_3_7_2 Greenhalgh CJ (e_1_3_3_27_2) 2001; 70 e_1_3_3_28_2 e_1_3_3_9_2 e_1_3_3_29_2 e_1_3_3_24_2 e_1_3_3_26_2 e_1_3_3_25_2 e_1_3_3_2_2 e_1_3_3_20_2 e_1_3_3_1_2 e_1_3_3_4_2 e_1_3_3_22_2 e_1_3_3_3_2 e_1_3_3_21_2 |
References_xml | – ident: e_1_3_3_24_2 doi: 10.1038/ncb1545 – ident: e_1_3_3_32_2 doi: 10.1182/blood.V99.5.1745 – ident: e_1_3_3_22_2 doi: 10.1038/ng1536 – ident: e_1_3_3_8_2 doi: 10.1056/NEJMoa050995 – volume: 55 start-page: 3854 year: 1995 ident: e_1_3_3_5_2 article-title: Multiple myeloma: High incidence of chromosomal aneuploidy as detected by interphase fluorescence in situ hybridization publication-title: Cancer Res – ident: e_1_3_3_28_2 doi: 10.1182/blood-2002-06-1735 – ident: e_1_3_3_19_2 doi: 10.1016/j.cell.2008.02.019 – ident: e_1_3_3_15_2 doi: 10.1016/S1470-2045(03)01195-1 – ident: e_1_3_3_29_2 doi: 10.1182/blood.V77.3.587.587 – ident: e_1_3_3_6_2 doi: 10.1182/blood.V59.1.43.43 – ident: e_1_3_3_31_2 doi: 10.1073/pnas.0800135105 – ident: e_1_3_3_11_2 doi: 10.1056/NEJMra072367 – ident: e_1_3_3_34_2 doi: 10.1053/j.gastro.2007.05.022 – ident: e_1_3_3_30_2 doi: 10.1073/pnas.0510565103 – ident: e_1_3_3_17_2 doi: 10.1038/nprot.2008.14 – ident: e_1_3_3_35_2 doi: 10.1038/sj.cdd.4402090 – volume: 1470 start-page: M37 year: 2000 ident: e_1_3_3_23_2 article-title: The PCAF acetylase complex as a potential tumor suppressor publication-title: Biochim Biophys Acta – ident: e_1_3_3_3_2 doi: 10.1038/nrc2189 – ident: e_1_3_3_9_2 doi: 10.1182/blood-2007-07-098749 – ident: e_1_3_3_18_2 doi: 10.1038/nature03552 – ident: e_1_3_3_33_2 doi: 10.1158/0008-5472.CAN-05-0137 – ident: e_1_3_3_4_2 doi: 10.1532/IJH97.04107 – ident: e_1_3_3_20_2 doi: 10.1016/j.ccr.2008.02.013 – ident: e_1_3_3_21_2 doi: 10.1016/S0092-8674(03)01018-3 – volume: 70 start-page: 348 year: 2001 ident: e_1_3_3_27_2 article-title: Negative regulation of cytokine signaling publication-title: J Leukoc Biol doi: 10.1189/jlb.70.3.348 – ident: e_1_3_3_25_2 doi: 10.1182/blood.V84.8.2412.2412 – ident: e_1_3_3_16_2 doi: 10.1126/science.1091903 – ident: e_1_3_3_37_2 doi: 10.1073/pnas.0403293101 – ident: e_1_3_3_13_2 doi: 10.1038/nrc1997 – ident: e_1_3_3_2_2 doi: 10.1016/j.hoc.2007.08.010 – ident: e_1_3_3_7_2 doi: 10.1016/j.beha.2007.08.004 – ident: e_1_3_3_10_2 doi: 10.1016/S0092-8674(04)00045-5 – ident: e_1_3_3_26_2 doi: 10.4161/cc.5.1.2281 – ident: e_1_3_3_1_2 doi: 10.1016/j.ejca.2005.12.026 – ident: e_1_3_3_14_2 doi: 10.1182/blood-2007-03-081133 – ident: e_1_3_3_12_2 doi: 10.1038/sj.onc.1210186 – ident: e_1_3_3_36_2 doi: 10.1038/nature03677 |
SSID | ssj0009580 |
Score | 2.482563 |
Snippet | Progress in understanding the biology of multiple myeloma (MM), a plasma cell malignancy, has been slow. The discovery of microRNAs (miRNAs), a class of small... |
SourceID | pubmedcentral proquest pubmed crossref pnas jstor fao |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 12885 |
SubjectTerms | Animals antagonists Apoptosis Regulatory Proteins - metabolism Base Sequence Bcl-2-Like Protein 11 Biological Sciences Bone marrow Cell growth Cell Line, Tumor Cell lines Cells Gene expression Gene Expression Profiling gene expression regulation Gene Expression Regulation, Neoplastic genes Genes, Neoplasm Health Humans interleukin-6 Membrane Proteins - metabolism messenger RNA Mice Mice, Nude microarray technology MicroRNA MicroRNAs - genetics MicroRNAs - metabolism Molecular Sequence Data Monoclonal Gammopathy of Undetermined Significance Multiple myeloma Multiple Myeloma - genetics Multiple Myeloma - pathology myeloma non-coding RNA Oligonucleotides p300-CBP Transcription Factors - metabolism pathogenesis Pathology Plasma cells Plasma Cells - metabolism Plasma Cells - pathology proteins Proto-Oncogene Proteins - metabolism quantitative polymerase chain reaction Receptors, Interleukin-6 - metabolism Repressor Proteins - metabolism Reproducibility of Results Reverse Transcriptase Polymerase Chain Reaction Ribonucleic acid RNA Rodents Signatures STAT3 Transcription Factor - metabolism Studies Suppressor of Cytokine Signaling 1 Protein Suppressor of Cytokine Signaling Proteins - metabolism Transfection Tumor cell line Tumor Suppressor Protein p53 - metabolism Tumors Up-Regulation |
Title | MicroRNAs regulate critical genes associated with multiple myeloma pathogenesis |
URI | https://www.jstor.org/stable/25463961 http://www.pnas.org/content/105/35/12885.abstract https://www.ncbi.nlm.nih.gov/pubmed/18728182 https://www.proquest.com/docview/201339433 https://www.proquest.com/docview/20212880 https://www.proquest.com/docview/48079120 https://www.proquest.com/docview/69500541 https://pubmed.ncbi.nlm.nih.gov/PMC2529070 |
Volume | 105 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLa68cILYsBYGJcI8TBUpSTOxc7jhFZVqHQVbaW-WY7jrJW6BK0tErzxzzl24iStVm4vURWfuKnP13OxzwWhd56IJfaS1AnDKHBAQwiHU7h4aZQSIYQMM13tcxQNZsGneTjvdH62s0s2SU_8uDev5H-4CveArypL9h84W08KN-Az8BeuwGG4_hWPP6toui-jS7X1r1vKy64wrQtulBDr8mr1TZB5HT94-12uiluu6qouCk27XLcN1XGt2NYmjGBk9g0vmyyUSjSsu053PGp6Go-XYrEs7sos9v6Kf1vW0n-yXZTRQPmNM9nWeUJDmHKjWzqp9CFRNEdMcrHaj-83uxQ6pMJtb1yC--vQoMyX7slS2IKt4kRB2S60lsZu2IKdH7aEK6jSsr1Ppak9dUh6rxoAuaV6F-d83QOLOMLKsQ0bjWdO-UfXrD8bDtn0aj49Qg8weBo6NnTQrttMyyym6vVNdSjif9ibfsewOcp4YSJcVdlcIL3PhdmPxG2ZNtPH6FHlk9iXJcBOUEfmT9CJYa19UZUmf_8UXdeIsw3ibIM4W6PIbhBnK8TZBnF2hTi7jbhnaNa_mn4cOFVLDkeAX7lxhKA-WNi-oGlICM0CD3NCwKdOOOVeKkkiXREQn4qYpG4SCDCf_Uhw4YJIAD_OP0XHeZHLM2SDXUSFJ-EhEQQUJ7GX4oySjGfcTbHnW6hn1pOJql69apuyYjpugvhMrSprGGChi_qBr2WplsOkZ8Agxm9AkbLZBKvje1D94L24FjrVXKun0A0j4sizkKVnaaYOmR8yDUoLvT04xrIqistC5wYArBIia6a-2o9hRS30ph4FCa-O7Xgui60iwWoi9zCFKgsRe_g3FFEcKucMfsTzEnDNq1KiCsJhC5EdKNYEqv787ki-XOg69DjEMVgML_745ufoYSMTXqLjzd1WvgJbfpO81v-2XwFY83M |
linkProvider | ABC ChemistRy |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=MicroRNAs+regulate+critical+genes+associated+with+multiple+myeloma+pathogenesis&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Pichiorri%2C+Flavia&rft.au=Suh%2C+Sung-Suk&rft.au=Ladetto%2C+Marco&rft.au=Kuehl%2C+Michael&rft.date=2008-09-02&rft.issn=0027-8424&rft.eissn=1091-6490&rft.volume=105&rft.issue=35&rft.spage=12885&rft.epage=12890&rft_id=info:doi/10.1073%2Fpnas.0806202105&rft.externalDBID=NO_FULL_TEXT |
thumbnail_m | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F105%2F35.cover.gif |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F105%2F35.cover.gif |