Intercellular propagation of extracellular signal-regulated kinase activation revealed by in vivo imaging of mouse skin

Extracellular signal-regulated kinase (ERK) is a key effector of many growth signalling pathways. In this study, we visualise epidermal ERK activity in living mice using an ERK FRET biosensor. Under steady-state conditions, the epidermis occasionally revealed bursts of ERK activation patterns where...

Full description

Saved in:
Bibliographic Details
Published ineLife Vol. 4; p. e05178
Main Authors Hiratsuka, Toru, Fujita, Yoshihisa, Naoki, Honda, Aoki, Kazuhiro, Kamioka, Yuji, Matsuda, Michiyuki
Format Journal Article
LanguageEnglish
Published England eLife Sciences Publications Ltd 10.02.2015
eLife Sciences Publications, Ltd
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Extracellular signal-regulated kinase (ERK) is a key effector of many growth signalling pathways. In this study, we visualise epidermal ERK activity in living mice using an ERK FRET biosensor. Under steady-state conditions, the epidermis occasionally revealed bursts of ERK activation patterns where ERK activity radially propagated from cell to cell. The frequency of this spatial propagation of radial ERK activity distribution (SPREAD) correlated with the rate of epidermal cell division. SPREADs and proliferation were stimulated by 12-O-tetradecanoylphorbol 13-acetate (TPA) in a manner dependent on EGF receptors and their cognate ligands. At the wounded skin, ERK activation propagated as trigger wave in parallel to the wound edge, suggesting that ERK activation propagation can be superimposed. Furthermore, by visualising the cell cycle, we found that SPREADs were associated with G2/M cell cycle progression. Our results provide new insights into how cell proliferation and transient ERK activity are synchronised in a living tissue. Our skin is our largest organ; it provides a barrier that protects the underlying tissues and internal organs from the external environment and acts as one of our first lines of defense against infection. Both of these roles subject the skin to wear and tear and so it must constantly create new skin cells to replace those lost or damaged. However, if this renewal process goes awry it can lead to excessive cell growth or skin cancer. To avoid this, cells tightly regulate the pathways that stimulate skin renewal. Skin renewal involves growth signals activating an enzyme called ERK. When and where the ERK enzyme is activated is normally tightly regulated, and many kinds of cancer have been linked to ERK becoming active at the wrong time or in the wrong place. Despite the importance of ERK in skin cells, a number of technical challenges have made it difficult to study how these signals are passed from cell to cell. Hiratsuka et al. have now examined genetically altered mice that produce a fluorescent sensor molecule that makes it possible to see ERK activity in living skin cells. The skin of anesthetized mice was observed under a microscope, and time-lapse videos revealed occasional ‘firework-like’ bursts of ERK activity. At first the ERK enzyme was active in a small cluster of skin cells, then ERK activity was seen in the surrounding cells—appearing to spread outwards over the course of several minutes—before the activity stopped. Hiratsuka et al. named this pattern of activity a ‘Spatial Propagation of Radial ERK Activity Distribution’, or SPREAD for short. By studying SPREADs in the skin on the ears and the back of these mice, Hiratsuka et al. learned that these bursts of ERK activity coincided with skin cell growth; the bursts happened more frequently in the areas where the skin cells were dividing. Applying a chemical that stimulates cell division to the skin of the mice triggered more bursts of ERK activity; whereas fewer bursts were observed if Hiratsuka et al. used other chemicals to block the activity of some of the signaling proteins that work upstream of ERK. Further experiments suggested that SPREADs encourage cells to progress through the cycle of events that leads a cell to divide; blocking these bursts caused the cell to pause at the stage just before it would normally divide. Hiratsuka et al. also observed similar patterns of ERK activity moving out like waves from the edges of skin wounds. Further research using similar methods will reveal how growth signals are triggered and propagated in healthy and diseased tissues, not only in the skin but also other organs such as the liver, intestine, and muscles.
AbstractList Extracellular signal-regulated kinase (ERK) is a key effector of many growth signalling pathways. In this study, we visualise epidermal ERK activity in living mice using an ERK FRET biosensor. Under steady-state conditions, the epidermis occasionally revealed bursts of ERK activation patterns where ERK activity radially propagated from cell to cell. The frequency of this spatial propagation of radial ERK activity distribution (SPREAD) correlated with the rate of epidermal cell division. SPREADs and proliferation were stimulated by 12-O-tetradecanoylphorbol 13-acetate (TPA) in a manner dependent on EGF receptors and their cognate ligands. At the wounded skin, ERK activation propagated as trigger wave in parallel to the wound edge, suggesting that ERK activation propagation can be superimposed. Furthermore, by visualising the cell cycle, we found that SPREADs were associated with G2/M cell cycle progression. Our results provide new insights into how cell proliferation and transient ERK activity are synchronised in a living tissue. DOI: http://dx.doi.org/10.7554/eLife.05178.001 Our skin is our largest organ; it provides a barrier that protects the underlying tissues and internal organs from the external environment and acts as one of our first lines of defense against infection. Both of these roles subject the skin to wear and tear and so it must constantly create new skin cells to replace those lost or damaged. However, if this renewal process goes awry it can lead to excessive cell growth or skin cancer. To avoid this, cells tightly regulate the pathways that stimulate skin renewal. Skin renewal involves growth signals activating an enzyme called ERK. When and where the ERK enzyme is activated is normally tightly regulated, and many kinds of cancer have been linked to ERK becoming active at the wrong time or in the wrong place. Despite the importance of ERK in skin cells, a number of technical challenges have made it difficult to study how these signals are passed from cell to cell. Hiratsuka et al. have now examined genetically altered mice that produce a fluorescent sensor molecule that makes it possible to see ERK activity in living skin cells. The skin of anesthetized mice was observed under a microscope, and time-lapse videos revealed occasional ‘firework-like’ bursts of ERK activity. At first the ERK enzyme was active in a small cluster of skin cells, then ERK activity was seen in the surrounding cells—appearing to spread outwards over the course of several minutes—before the activity stopped. Hiratsuka et al. named this pattern of activity a ‘Spatial Propagation of Radial ERK Activity Distribution’, or SPREAD for short. By studying SPREADs in the skin on the ears and the back of these mice, Hiratsuka et al. learned that these bursts of ERK activity coincided with skin cell growth; the bursts happened more frequently in the areas where the skin cells were dividing. Applying a chemical that stimulates cell division to the skin of the mice triggered more bursts of ERK activity; whereas fewer bursts were observed if Hiratsuka et al. used other chemicals to block the activity of some of the signaling proteins that work upstream of ERK. Further experiments suggested that SPREADs encourage cells to progress through the cycle of events that leads a cell to divide; blocking these bursts caused the cell to pause at the stage just before it would normally divide. Hiratsuka et al. also observed similar patterns of ERK activity moving out like waves from the edges of skin wounds. Further research using similar methods will reveal how growth signals are triggered and propagated in healthy and diseased tissues, not only in the skin but also other organs such as the liver, intestine, and muscles. DOI: http://dx.doi.org/10.7554/eLife.05178.002
Extracellular signal-regulated kinase (ERK) is a key effector of many growth signalling pathways. In this study, we visualise epidermal ERK activity in living mice using an ERK FRET biosensor. Under steady-state conditions, the epidermis occasionally revealed bursts of ERK activation patterns where ERK activity radially propagated from cell to cell. The frequency of this spatial propagation of radial ERK activity distribution (SPREAD) correlated with the rate of epidermal cell division. SPREADs and proliferation were stimulated by 12-O-tetradecanoylphorbol 13-acetate (TPA) in a manner dependent on EGF receptors and their cognate ligands. At the wounded skin, ERK activation propagated as trigger wave in parallel to the wound edge, suggesting that ERK activation propagation can be superimposed. Furthermore, by visualising the cell cycle, we found that SPREADs were associated with G2/M cell cycle progression. Our results provide new insights into how cell proliferation and transient ERK activity are synchronised in a living tissue.Extracellular signal-regulated kinase (ERK) is a key effector of many growth signalling pathways. In this study, we visualise epidermal ERK activity in living mice using an ERK FRET biosensor. Under steady-state conditions, the epidermis occasionally revealed bursts of ERK activation patterns where ERK activity radially propagated from cell to cell. The frequency of this spatial propagation of radial ERK activity distribution (SPREAD) correlated with the rate of epidermal cell division. SPREADs and proliferation were stimulated by 12-O-tetradecanoylphorbol 13-acetate (TPA) in a manner dependent on EGF receptors and their cognate ligands. At the wounded skin, ERK activation propagated as trigger wave in parallel to the wound edge, suggesting that ERK activation propagation can be superimposed. Furthermore, by visualising the cell cycle, we found that SPREADs were associated with G2/M cell cycle progression. Our results provide new insights into how cell proliferation and transient ERK activity are synchronised in a living tissue.
Extracellular signal-regulated kinase (ERK) is a key effector of many growth signalling pathways. In this study, we visualise epidermal ERK activity in living mice using an ERK FRET biosensor. Under steady-state conditions, the epidermis occasionally revealed bursts of ERK activation patterns where ERK activity radially propagated from cell to cell. The frequency of this spatial propagation of radial ERK activity distribution (SPREAD) correlated with the rate of epidermal cell division. SPREADs and proliferation were stimulated by 12-O-tetradecanoylphorbol 13-acetate (TPA) in a manner dependent on EGF receptors and their cognate ligands. At the wounded skin, ERK activation propagated as trigger wave in parallel to the wound edge, suggesting that ERK activation propagation can be superimposed. Furthermore, by visualising the cell cycle, we found that SPREADs were associated with G2/M cell cycle progression. Our results provide new insights into how cell proliferation and transient ERK activity are synchronised in a living tissue. Our skin is our largest organ; it provides a barrier that protects the underlying tissues and internal organs from the external environment and acts as one of our first lines of defense against infection. Both of these roles subject the skin to wear and tear and so it must constantly create new skin cells to replace those lost or damaged. However, if this renewal process goes awry it can lead to excessive cell growth or skin cancer. To avoid this, cells tightly regulate the pathways that stimulate skin renewal. Skin renewal involves growth signals activating an enzyme called ERK. When and where the ERK enzyme is activated is normally tightly regulated, and many kinds of cancer have been linked to ERK becoming active at the wrong time or in the wrong place. Despite the importance of ERK in skin cells, a number of technical challenges have made it difficult to study how these signals are passed from cell to cell. Hiratsuka et al. have now examined genetically altered mice that produce a fluorescent sensor molecule that makes it possible to see ERK activity in living skin cells. The skin of anesthetized mice was observed under a microscope, and time-lapse videos revealed occasional ‘firework-like’ bursts of ERK activity. At first the ERK enzyme was active in a small cluster of skin cells, then ERK activity was seen in the surrounding cells—appearing to spread outwards over the course of several minutes—before the activity stopped. Hiratsuka et al. named this pattern of activity a ‘Spatial Propagation of Radial ERK Activity Distribution’, or SPREAD for short. By studying SPREADs in the skin on the ears and the back of these mice, Hiratsuka et al. learned that these bursts of ERK activity coincided with skin cell growth; the bursts happened more frequently in the areas where the skin cells were dividing. Applying a chemical that stimulates cell division to the skin of the mice triggered more bursts of ERK activity; whereas fewer bursts were observed if Hiratsuka et al. used other chemicals to block the activity of some of the signaling proteins that work upstream of ERK. Further experiments suggested that SPREADs encourage cells to progress through the cycle of events that leads a cell to divide; blocking these bursts caused the cell to pause at the stage just before it would normally divide. Hiratsuka et al. also observed similar patterns of ERK activity moving out like waves from the edges of skin wounds. Further research using similar methods will reveal how growth signals are triggered and propagated in healthy and diseased tissues, not only in the skin but also other organs such as the liver, intestine, and muscles.
Extracellular signal-regulated kinase (ERK) is a key effector of many growth signalling pathways. In this study, we visualise epidermal ERK activity in living mice using an ERK FRET biosensor. Under steady-state conditions, the epidermis occasionally revealed bursts of ERK activation patterns where ERK activity radially propagated from cell to cell. The frequency of this spatial propagation of radial ERK activity distribution (SPREAD) correlated with the rate of epidermal cell division. SPREADs and proliferation were stimulated by 12-O-tetradecanoylphorbol 13-acetate (TPA) in a manner dependent on EGF receptors and their cognate ligands. At the wounded skin, ERK activation propagated as trigger wave in parallel to the wound edge, suggesting that ERK activation propagation can be superimposed. Furthermore, by visualising the cell cycle, we found that SPREADs were associated with G2/M cell cycle progression. Our results provide new insights into how cell proliferation and transient ERK activity are synchronised in a living tissue.
Extracellular signal-regulated kinase (ERK) is a key effector of many growth signalling pathways. In this study, we visualise epidermal ERK activity in living mice using an ERK FRET biosensor. Under steady-state conditions, the epidermis occasionally revealed bursts of ERK activation patterns where ERK activity radially propagated from cell to cell. The frequency of this spatial propagation of radial ERK activity distribution (SPREAD) correlated with the rate of epidermal cell division. SPREADs and proliferation were stimulated by 12-O-tetradecanoylphorbol 13-acetate (TPA) in a manner dependent on EGF receptors and their cognate ligands. At the wounded skin, ERK activation propagated as trigger wave in parallel to the wound edge, suggesting that ERK activation propagation can be superimposed. Furthermore, by visualising the cell cycle, we found that SPREADs were associated with G2/M cell cycle progression. Our results provide new insights into how cell proliferation and transient ERK activity are synchronised in a living tissue.DOI: http://dx.doi.org/10.7554/eLife.05178.001
Author Kamioka, Yuji
Fujita, Yoshihisa
Hiratsuka, Toru
Naoki, Honda
Matsuda, Michiyuki
Aoki, Kazuhiro
Author_xml – sequence: 1
  givenname: Toru
  surname: Hiratsuka
  fullname: Hiratsuka, Toru
  organization: Department of Pathology and Biology of Diseases, Graduate School of Medicine, Kyoto University, Kyoto, Japan
– sequence: 2
  givenname: Yoshihisa
  surname: Fujita
  fullname: Fujita, Yoshihisa
  organization: Department of Pathology and Biology of Diseases, Graduate School of Medicine, Kyoto University, Kyoto, Japan
– sequence: 3
  givenname: Honda
  surname: Naoki
  fullname: Naoki, Honda
  organization: Imaging Platform for Spatio-Temporal Information, Graduate School of Medicine, Kyoto University, Kyoto, Japan
– sequence: 4
  givenname: Kazuhiro
  surname: Aoki
  fullname: Aoki, Kazuhiro
  organization: Imaging Platform for Spatio-Temporal Information, Graduate School of Medicine, Kyoto University, Kyoto, Japan
– sequence: 5
  givenname: Yuji
  surname: Kamioka
  fullname: Kamioka, Yuji
  organization: Department of Pathology and Biology of Diseases, Graduate School of Medicine, Kyoto University, Kyoto, Japan
– sequence: 6
  givenname: Michiyuki
  surname: Matsuda
  fullname: Matsuda, Michiyuki
  organization: Department of Pathology and Biology of Diseases, Graduate School of Medicine, Kyoto University, Kyoto, Japan, Laboratory of Bioimaging and Cell Signaling, Kyoto University, Kyoto, Japan
BackLink https://www.ncbi.nlm.nih.gov/pubmed/25668746$$D View this record in MEDLINE/PubMed
BookMark eNptUk1v1DAUjFARLaUn7igSFySUYif-ygUJVXystBIXkLhZL_ZL8JK1FzsJ9N_j3W2rtsIXf7yZ0bzxe16c-OCxKF5Scik5Z-9w7Xq8JJxK9aQ4qwknFVHsx8m982lxkdKG5CWZUrR9VpzWXAglmTgr_qz8hNHgOM4jxHIXww4GmFzwZehL_DtFuCsmN3gYq4hDvk5oy1_OQ8ISzOSWIyfigjDmUnddOl8ubgml28Lg_LDX24Y541PmvSie9jAmvLjZz4vvnz5-u_pSrb9-Xl19WFeGKz5VhnU1Q9ZTbHOHgDXUxPSWcBCKUsasMbRXpqZMEms6ahveKmtsS2mNsjPNebE66toAG72L2Uy81gGcPjyEOGiIkzMjaqZsb4VAYLRlnYSWW2kYgQ7Q0IY0Wev9UWs3d1u0Bn1OZ3wg-rDi3U89hEWzppGiqbPAmxuBGH7PmCa9dWkfL3jMyWgqeO6j5pxn6OtH0E2YY44_o1ohOJGSqIx6dd_RnZXb_80AegSYGFKK2GvjpsNXZYNu1JTo_RjpwxjpwxhlzttHnFvZ_6H_ATsVzJs
CitedBy_id crossref_primary_10_1016_j_devcel_2024_11_001
crossref_primary_10_1038_s41598_021_83396_6
crossref_primary_10_1016_j_tibtech_2016_02_009
crossref_primary_10_1371_journal_pone_0162300
crossref_primary_10_1038_s41556_024_01413_y
crossref_primary_10_15252_embj_2022111806
crossref_primary_10_1016_j_devcel_2020_05_011
crossref_primary_10_1146_annurev_bioeng_083120_111648
crossref_primary_10_1016_j_pbiomolbio_2025_01_003
crossref_primary_10_7554_eLife_60541
crossref_primary_10_1016_j_cdev_2025_203995
crossref_primary_10_1126_science_aao3048
crossref_primary_10_1247_csf_18013
crossref_primary_10_1073_pnas_2211142119
crossref_primary_10_1042_EBC20180015
crossref_primary_10_1002_wsbm_1479
crossref_primary_10_7554_eLife_71052
crossref_primary_10_1016_j_cbpa_2018_11_010
crossref_primary_10_1242_jcs_206995
crossref_primary_10_3390_chemosensors6020019
crossref_primary_10_7554_eLife_82863
crossref_primary_10_1016_j_bpj_2015_10_021
crossref_primary_10_1016_j_cell_2023_06_019
crossref_primary_10_1016_j_cels_2021_10_002
crossref_primary_10_1016_j_devcel_2017_07_014
crossref_primary_10_1016_j_cels_2020_02_005
crossref_primary_10_1016_j_molcel_2020_08_020
crossref_primary_10_1042_BCJ20220223
crossref_primary_10_3390_bios9020076
crossref_primary_10_1016_j_devcel_2021_05_007
crossref_primary_10_1101_cshperspect_a041499
crossref_primary_10_1101_gad_277137_115
crossref_primary_10_1016_j_devcel_2020_09_013
crossref_primary_10_1016_j_ceb_2017_11_002
crossref_primary_10_1021_jacs_2c02949
crossref_primary_10_1016_j_isci_2022_104130
crossref_primary_10_1038_s41586_020_03085_8
crossref_primary_10_7554_eLife_86727_3
crossref_primary_10_1073_pnas_2026123118
crossref_primary_10_1073_pnas_2410430122
crossref_primary_10_1091_mbc_E19_08_0474
crossref_primary_10_1016_j_celrep_2021_109550
crossref_primary_10_1038_s41556_021_00654_5
crossref_primary_10_7554_eLife_83444
crossref_primary_10_1016_j_bpj_2021_05_004
crossref_primary_10_1039_D2CP04357B
crossref_primary_10_1016_j_celrep_2024_115193
crossref_primary_10_1038_s41467_018_04527_8
crossref_primary_10_1242_dev_199710
crossref_primary_10_1242_dev_202217
crossref_primary_10_3390_cells7090117
crossref_primary_10_1371_journal_pone_0167940
crossref_primary_10_1083_jcb_202207048
crossref_primary_10_1016_j_devcel_2022_08_008
crossref_primary_10_1016_j_ajpath_2020_09_012
crossref_primary_10_1038_s41556_023_01234_5
crossref_primary_10_1074_jbc_M115_662247
crossref_primary_10_1098_rsif_2018_0792
crossref_primary_10_1111_pin_12925
crossref_primary_10_1146_annurev_cellbio_013020_103810
crossref_primary_10_1007_s10911_025_09574_8
crossref_primary_10_1016_j_devcel_2016_08_010
crossref_primary_10_1073_pnas_2006965117
crossref_primary_10_7554_eLife_86727
crossref_primary_10_1038_s41592_019_0541_5
crossref_primary_10_1242_dev_172940
crossref_primary_10_3389_fsysb_2024_1333760
crossref_primary_10_1016_j_cels_2020_10_002
crossref_primary_10_1016_j_ydbio_2023_08_007
crossref_primary_10_1247_csf_18003
crossref_primary_10_1101_gad_294546_116
crossref_primary_10_1371_journal_pcbi_1012846
crossref_primary_10_1016_j_tibtech_2017_01_002
crossref_primary_10_1021_acs_nanolett_9b03411
crossref_primary_10_1016_j_molcel_2017_07_016
crossref_primary_10_1016_j_bpj_2016_01_037
crossref_primary_10_1073_pnas_2109057118
crossref_primary_10_7554_eLife_09652
crossref_primary_10_1016_j_ceb_2023_102217
crossref_primary_10_1002_ijch_201700117
crossref_primary_10_1016_j_ceb_2021_04_007
crossref_primary_10_1038_s41580_020_0255_7
crossref_primary_10_3892_etm_2023_12245
crossref_primary_10_1016_j_isci_2022_105136
crossref_primary_10_1155_2021_4883398
crossref_primary_10_1371_journal_pcbi_1009873
crossref_primary_10_1371_journal_pone_0164254
crossref_primary_10_1016_j_isci_2021_103074
crossref_primary_10_7554_eLife_78837
crossref_primary_10_1016_j_cels_2020_07_004
crossref_primary_10_1016_j_cub_2023_08_024
crossref_primary_10_1038_ncb3532
crossref_primary_10_26508_lsa_202101206
crossref_primary_10_3389_fmolb_2022_998475
crossref_primary_10_1093_hmg_ddw011
crossref_primary_10_1111_exd_13221
crossref_primary_10_1093_pnasnexus_pgac002
crossref_primary_10_3390_cancers11040513
crossref_primary_10_1016_j_ydbio_2024_07_014
crossref_primary_10_1083_jcb_202302095
crossref_primary_10_1247_csf_24064
crossref_primary_10_1016_j_celrep_2021_109689
crossref_primary_10_1242_dev_201231
crossref_primary_10_1016_j_devcel_2018_06_004
crossref_primary_10_1242_dev_202166
crossref_primary_10_7554_eLife_62196
crossref_primary_10_3168_jds_2023_24578
crossref_primary_10_1146_annurev_biophys_111521_102500
crossref_primary_10_15252_msb_20178174
crossref_primary_10_1038_s42003_024_05991_3
crossref_primary_10_1038_s41567_020_01037_7
crossref_primary_10_1016_j_isci_2018_11_025
crossref_primary_10_1016_j_cell_2021_11_005
crossref_primary_10_1016_j_omtn_2024_102120
crossref_primary_10_1083_jcb_201701158
crossref_primary_10_1016_j_celrep_2021_110181
crossref_primary_10_1083_jcb_201609124
crossref_primary_10_1073_pnas_2119187119
crossref_primary_10_14814_phy2_13033
crossref_primary_10_1016_j_jid_2022_12_002
crossref_primary_10_1038_s41598_022_17312_x
crossref_primary_10_1016_j_devcel_2022_09_003
crossref_primary_10_1016_j_mrrev_2016_07_010
crossref_primary_10_1016_j_cellimm_2018_05_006
crossref_primary_10_1038_s41598_017_16714_6
crossref_primary_10_1073_pnas_2318871121
crossref_primary_10_1080_21541248_2018_1438024
crossref_primary_10_1016_j_biotechadv_2024_108466
crossref_primary_10_12688_f1000research_8090_1
crossref_primary_10_1016_j_devcel_2022_09_001
crossref_primary_10_1007_s00018_023_05007_z
crossref_primary_10_1016_j_celrep_2024_114986
crossref_primary_10_1016_j_tips_2017_09_005
crossref_primary_10_1186_s13619_023_00180_9
crossref_primary_10_7554_eLife_35800
crossref_primary_10_7554_eLife_61092
crossref_primary_10_1103_PRXLife_1_013001
crossref_primary_10_1083_jcb_202305022
crossref_primary_10_1042_BCJ20210557
crossref_primary_10_1016_j_ceb_2024_102368
crossref_primary_10_1016_j_cell_2024_05_018
crossref_primary_10_1016_j_gde_2020_01_004
crossref_primary_10_7567_1347_4065_aafc1f
crossref_primary_10_1021_acschembio_0c00333
crossref_primary_10_1007_s00424_016_1882_x
crossref_primary_10_3389_fcell_2018_00111
crossref_primary_10_3390_s151026281
crossref_primary_10_1016_j_devcel_2020_09_030
crossref_primary_10_1016_j_semcdb_2021_07_003
crossref_primary_10_1111_jth_13725
crossref_primary_10_1242_dev_199767
crossref_primary_10_15252_embr_202357739
crossref_primary_10_1016_j_ajpath_2018_07_010
crossref_primary_10_1111_jth_13723
crossref_primary_10_1371_journal_pcbi_1011155
crossref_primary_10_1016_j_cell_2019_05_052
crossref_primary_10_2142_biophys_64_85
crossref_primary_10_1042_BCJ20230277
crossref_primary_10_1042_BCJ20230276
crossref_primary_10_1038_s41598_018_24899_7
crossref_primary_10_1038_s43586_022_00168_w
Cites_doi 10.1038/nprot.2009.175
10.1016/S0006-2952(02)01135-8
10.1074/jbc.M307745200
10.1093/emboj/17.24.7260
10.1016/j.bbamcr.2006.11.010
10.1111/j.1349-7006.2006.00244.x
10.1073/pnas.96.20.11335
10.1002/(SICI)1097-4644(19980501)69:23.0.CO;2-S
10.1038/nrm1838
10.1038/sj.onc.1210422
10.1038/ncb1398
10.1016/j.molcel.2011.04.017
10.1016/j.molcel.2012.11.002
10.1038/sj.onc.1208492
10.1247/csf.11045
10.1126/science.1242281
10.1146/annurev.bi.62.070193.002503
10.4161/cc.6.23.4998
10.1038/nrc3217
10.1016/0092-8674(95)90453-0
10.1084/jem.20112258
10.1016/j.molcel.2013.09.015
10.1016/j.cell.2007.12.033
10.1016/S0021-9258(19)88700-8
10.2353/ajpath.2008.070942
10.1038/nprot.2009.120
10.1016/0092-8674(93)90228-I
10.1126/science.282.5392.1281
10.1111/j.1432-0436.2007.00238.x
10.1083/jcb.200307137
10.1111/j.1365-2184.2006.00388.x
ContentType Journal Article
Copyright 2015, Hiratsuka et al. This work is licensed under the Creative Commons Attribution License ( https://creativecommons.org/licenses/by/3.0/ ) (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2015, Hiratsuka et al 2015 Hiratsuka et al
Copyright_xml – notice: 2015, Hiratsuka et al. This work is licensed under the Creative Commons Attribution License ( https://creativecommons.org/licenses/by/3.0/ ) (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2015, Hiratsuka et al 2015 Hiratsuka et al
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
88E
88I
8FE
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2P
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOA
DOI 10.7554/eLife.05178
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Journals
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Database (Proquest)
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
ProQuest SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
Proquest Medical Database
Science Database
Biological Science Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
CrossRef
MEDLINE

Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2050-084X
ExternalDocumentID oai_doaj_org_article_48dfd66ea4194b7a95d7c40abaec1303
PMC4337632
25668746
10_7554_eLife_05178
Genre Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: ;
– fundername: ;
  grantid: No. 22113002
– fundername: ;
  grantid: Graduate Student Fellowship
GroupedDBID 53G
5VS
7X7
88E
88I
8FE
8FH
8FI
8FJ
AAFWJ
AAKDD
AAYXX
ABUWG
ACGFO
ACGOD
ACPRK
ADBBV
ADRAZ
AENEX
AFKRA
AFPKN
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
CCPQU
CITATION
DIK
DWQXO
EMOBN
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
H13
HCIFZ
HMCUK
HYE
IAO
IEA
IHR
INH
ISR
ITC
KQ8
LK8
M1P
M2P
M48
M7P
M~E
NQS
OK1
PGMZT
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
RHI
RNS
RPM
UKHRP
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7XB
8FK
K9.
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
PRINS
Q9U
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c585t-c4b24e4f1e9178ae2a20cfd05a681144dcc1f8c21470dcb1d3598dcd9112e7bc3
IEDL.DBID M48
ISSN 2050-084X
IngestDate Wed Aug 27 01:25:49 EDT 2025
Thu Aug 21 18:15:56 EDT 2025
Fri Jul 11 00:54:22 EDT 2025
Fri Jul 25 11:55:37 EDT 2025
Thu Apr 03 07:06:12 EDT 2025
Thu Apr 24 23:03:00 EDT 2025
Tue Jul 01 03:10:25 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords mouse
in vivo imaging
cell biology
cell cycle
ERK
epidermis
Language English
License http://creativecommons.org/licenses/by/4.0
This article is distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use and redistribution provided that the original author and source are credited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c585t-c4b24e4f1e9178ae2a20cfd05a681144dcc1f8c21470dcb1d3598dcd9112e7bc3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.7554/eLife.05178
PMID 25668746
PQID 1966507708
PQPubID 2045579
ParticipantIDs doaj_primary_oai_doaj_org_article_48dfd66ea4194b7a95d7c40abaec1303
pubmedcentral_primary_oai_pubmedcentral_nih_gov_4337632
proquest_miscellaneous_1654702555
proquest_journals_1966507708
pubmed_primary_25668746
crossref_citationtrail_10_7554_eLife_05178
crossref_primary_10_7554_eLife_05178
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2015-02-10
PublicationDateYYYYMMDD 2015-02-10
PublicationDate_xml – month: 02
  year: 2015
  text: 2015-02-10
  day: 10
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
– name: Cambridge
PublicationTitle eLife
PublicationTitleAlternate Elife
PublicationYear 2015
Publisher eLife Sciences Publications Ltd
eLife Sciences Publications, Ltd
Publisher_xml – name: eLife Sciences Publications Ltd
– name: eLife Sciences Publications, Ltd
References Franzke (bib10) 2012; 209
Yuspa (bib31) 1994; 54
Tamemoto (bib27) 1992; 267
Blanpain (bib6) 2014; 344
Le Gall (bib16) 2003; 278
Torii (bib28) 2006; 97
Sakaue-Sawano (bib24) 2008; 132
Dangi (bib8) 2006; 39
Izumi (bib11) 1998; 17
Luetteke (bib17) 1993; 73
Rahmouni (bib21) 2006; 8
Kamioka (bib13) 2012; 37
Massagué (bib18) 1993; 62
Dethlefsen (bib9) 1998; 69
Sibilia (bib26) 2007; 75
Zwang (bib32) 2011; 42
Aoki (bib4) 2009; 4
Sahin (bib23) 2004; 164
Albeck (bib2) 2013; 49
Aoki (bib3) 2013; 52
Abel (bib1) 2009; 4
Kholodenko (bib15) 2006; 7
Pouysségur (bib20) 2002; 64
Khavari (bib14) 2007; 6
Arwert (bib5) 2012; 12
Roberts (bib22) 2007; 26
Yan (bib30) 2005; 24
Chambard (bib7) 2007; 1773
Jones (bib12) 1995; 80
Peschon (bib19) 1998; 282
Schneider (bib25) 2008; 173
Wright (bib29) 1999; 96
24140422 - Mol Cell. 2013 Nov 21;52(4):529-40
21596316 - Mol Cell. 2011 May 20;42(4):524-35
7813021 - Cell. 1995 Jan 13;80(1):83-93
16800820 - Cancer Sci. 2006 Aug;97(8):697-702
1400347 - J Biol Chem. 1992 Oct 5;267(28):20293-7
22277578 - Cell Struct Funct. 2012;37(1):65-73
24926024 - Science. 2014 Jun 13;344(6189):1242281
8477445 - Cell. 1993 Apr 23;73(2):263-78
18000402 - Cell Cycle. 2007 Dec 1;6(23):2928-31
18267078 - Cell. 2008 Feb 8;132(3):487-98
23219535 - Mol Cell. 2013 Jan 24;49(2):249-61
9812885 - Science. 1998 Nov 13;282(5392):1281-4
19834477 - Nat Protoc. 2009;4(11):1623-31
15735702 - Oncogene. 2005 May 5;24(20):3285-96
8118803 - Cancer Res. 1994 Mar 1;54(5):1178-89
9548562 - J Cell Biochem. 1998 May 1;69(2):143-53
22565824 - J Exp Med. 2012 Jun 4;209(6):1105-19
17188374 - Biochim Biophys Acta. 2007 Aug;1773(8):1299-310
16604064 - Nat Cell Biol. 2006 May;8(5):524-31
12213567 - Biochem Pharmacol. 2002 Sep;64(5-6):755-63
12947092 - J Biol Chem. 2003 Nov 14;278(46):45255-68
22362215 - Nat Rev Cancer. 2012 Mar;12(3):170-80
10500177 - Proc Natl Acad Sci U S A. 1999 Sep 28;96(20):11335-40
19713956 - Nat Protoc. 2009;4(9):1350-62
16482094 - Nat Rev Mol Cell Biol. 2006 Mar;7(3):165-76
17999740 - Differentiation. 2007 Nov;75(9):770-87
16872362 - Cell Prolif. 2006 Aug;39(4):261-79
8394682 - Annu Rev Biochem. 1993;62:515-41
9857183 - EMBO J. 1998 Dec 15;17(24):7260-72
17496923 - Oncogene. 2007 May 14;26(22):3291-310
18556782 - Am J Pathol. 2008 Jul;173(1):14-24
14993236 - J Cell Biol. 2004 Mar 1;164(5):769-79
References_xml – volume: 4
  start-page: 1623
  year: 2009
  ident: bib4
  article-title: Visualization of small GTPase activity with fluorescence resonance energy transfer-based biosensors
  publication-title: Nature Protocols
  doi: 10.1038/nprot.2009.175
– volume: 64
  start-page: 755
  year: 2002
  ident: bib20
  article-title: Fidelity and spatio-temporal control in MAP kinase (ERKs) signalling
  publication-title: Biochemical Pharmacology
  doi: 10.1016/S0006-2952(02)01135-8
– volume: 278
  start-page: 45255
  year: 2003
  ident: bib16
  article-title: Regulated cell surface pro-EGF ectodomain shedding is a zinc metalloprotease-dependent process
  publication-title: The Journal of Biological Chemistry
  doi: 10.1074/jbc.M307745200
– volume: 17
  start-page: 7260
  year: 1998
  ident: bib11
  article-title: A metalloprotease-disintegrin, MDC9/meltrin-gamma/ADAM9 and PKCdelta are involved in TPA-induced ectodomain shedding of membrane-anchored heparin-binding EGF-like growth factor
  publication-title: The EMBO Journal
  doi: 10.1093/emboj/17.24.7260
– volume: 1773
  start-page: 1299
  year: 2007
  ident: bib7
  article-title: ERK implication in cell cycle regulation
  publication-title: Biochimica Et Biophysica Acta
  doi: 10.1016/j.bbamcr.2006.11.010
– volume: 97
  start-page: 697
  year: 2006
  ident: bib28
  article-title: ERK MAP kinase in G cell cycle progression and cancer
  publication-title: Cancer Science
  doi: 10.1111/j.1349-7006.2006.00244.x
– volume: 96
  start-page: 11335
  year: 1999
  ident: bib29
  article-title: Mitogen-activated protein kinase kinase activity is required for the G(2)/M transition of the cell cycle in mammalian fibroblasts
  publication-title: Proceedings of the National Academy of Sciences of USA
  doi: 10.1073/pnas.96.20.11335
– volume: 69
  start-page: 143
  year: 1998
  ident: bib9
  article-title: Extracellular calcium influx stimulates metalloproteinase cleavage and secretion of heparin-binding EGF-like growth factor independently of protein kinase C
  publication-title: Journal of Cellular Biochemistry
  doi: 10.1002/(SICI)1097-4644(19980501)69:23.0.CO;2-S
– volume: 7
  start-page: 165
  year: 2006
  ident: bib15
  article-title: Cell-signalling dynamics in time and space
  publication-title: Nature Reviews Molecular Cell Biology
  doi: 10.1038/nrm1838
– volume: 26
  start-page: 3291
  year: 2007
  ident: bib22
  article-title: Targeting the Raf-MEK-ERK mitogen-activated protein kinase cascade for the treatment of cancer
  publication-title: Oncogene
  doi: 10.1038/sj.onc.1210422
– volume: 8
  start-page: 524
  year: 2006
  ident: bib21
  article-title: Loss of the VHR dual-specific phosphatase causes cell-cycle arrest and senescence
  publication-title: Nature Cell Biology
  doi: 10.1038/ncb1398
– volume: 54
  start-page: 1178
  year: 1994
  ident: bib31
  article-title: The pathogenesis of squamous cell cancer: lessons learned from studies of skin carcinogenesis −− thirty-third G. H. A. Clowes Memorial Award Lecture
  publication-title: Cancer Research
– volume: 42
  start-page: 524
  year: 2011
  ident: bib32
  article-title: Two phases of mitogenic signaling unveil roles for p53 and EGR1 in elimination of inconsistent growth signals
  publication-title: Molecular Cell
  doi: 10.1016/j.molcel.2011.04.017
– volume: 49
  start-page: 249
  year: 2013
  ident: bib2
  article-title: Frequency-modulated pulses of ERK activity transmit quantitative proliferation signals
  publication-title: Molecular Cell
  doi: 10.1016/j.molcel.2012.11.002
– volume: 24
  start-page: 3285
  year: 2005
  ident: bib30
  article-title: BRCA1-mediated G2/M cell cycle arrest requires ERK1/2 kinase activation
  publication-title: Oncogene
  doi: 10.1038/sj.onc.1208492
– volume: 37
  start-page: 65
  year: 2012
  ident: bib13
  article-title: Live imaging of protein kinase activities in transgenic mice expressing FRET biosensors
  publication-title: Cell Structure and Function
  doi: 10.1247/csf.11045
– volume: 344
  start-page: 1242281
  year: 2014
  ident: bib6
  article-title: Stem cell plasticity. Plasticity of epithelial stem cells in tissue regeneration
  publication-title: Science
  doi: 10.1126/science.1242281
– volume: 62
  start-page: 515
  year: 1993
  ident: bib18
  article-title: Membrane-anchored growth factors
  publication-title: Annual Review of Biochemistry
  doi: 10.1146/annurev.bi.62.070193.002503
– volume: 6
  start-page: 2928
  year: 2007
  ident: bib14
  article-title: Ras / Erk MAPK signaling in epidermal homeostasis and neoplasia
  publication-title: Cell Cycle
  doi: 10.4161/cc.6.23.4998
– volume: 12
  start-page: 170
  year: 2012
  ident: bib5
  article-title: Epithelial stem cells, wound healing and cancer
  publication-title: Nature Reviews Cancer
  doi: 10.1038/nrc3217
– volume: 80
  start-page: 83
  year: 1995
  ident: bib12
  article-title: Stem cell patterning and fate in human epidermis
  publication-title: Cell
  doi: 10.1016/0092-8674(95)90453-0
– volume: 209
  start-page: 1105
  year: 2012
  ident: bib10
  article-title: Epidermal ADAM17 maintains the skin barrier by regulating EGFR ligand-dependent terminal keratinocyte differentiation
  publication-title: The Journal of Experimental Medicine
  doi: 10.1084/jem.20112258
– volume: 52
  start-page: 529
  year: 2013
  ident: bib3
  article-title: Stochastic ERK activation induced by noise and cell-to-cell propagation regulates cell density-dependent proliferation
  publication-title: Molecular Cell
  doi: 10.1016/j.molcel.2013.09.015
– volume: 132
  start-page: 487
  year: 2008
  ident: bib24
  article-title: Visualizing spatiotemporal dynamics of multicellular cell-cycle progression
  publication-title: Cell
  doi: 10.1016/j.cell.2007.12.033
– volume: 267
  start-page: 20293
  year: 1992
  ident: bib27
  article-title: Biphasic activation of two mitogen-activated protein kinases during the cell cycle in mammalian cells
  publication-title: The Journal of Biological Chemistry
  doi: 10.1016/S0021-9258(19)88700-8
– volume: 173
  start-page: 14
  year: 2008
  ident: bib25
  article-title: Beyond wavy hairs: the epidermal growth factor receptor and its ligands in skin biology and pathology
  publication-title: The American Journal Of Pathology
  doi: 10.2353/ajpath.2008.070942
– volume: 4
  start-page: 1350
  year: 2009
  ident: bib1
  article-title: Multi-stage chemical carcinogenesis in mouse skin: fundamentals and applications
  publication-title: Nature Protocols
  doi: 10.1038/nprot.2009.120
– volume: 73
  start-page: 263
  year: 1993
  ident: bib17
  article-title: TGF alpha deficiency results in hair follicle and eye abnormalities in targeted and waved-1 mice
  publication-title: Cell
  doi: 10.1016/0092-8674(93)90228-I
– volume: 282
  start-page: 1281
  year: 1998
  ident: bib19
  article-title: An essential role for ectodomain shedding in mammalian development
  publication-title: Science
  doi: 10.1126/science.282.5392.1281
– volume: 75
  start-page: 770
  year: 2007
  ident: bib26
  article-title: The epidermal growth factor receptor: from development to tumorigenesis
  publication-title: Differentiation
  doi: 10.1111/j.1432-0436.2007.00238.x
– volume: 164
  start-page: 769
  year: 2004
  ident: bib23
  article-title: Distinct roles for ADAM10 and ADAM17 in ectodomain shedding of six EGFR ligands
  publication-title: The Journal of Cell Biology
  doi: 10.1083/jcb.200307137
– volume: 39
  start-page: 261
  year: 2006
  ident: bib8
  article-title: Activation of extracellular signal-regulated kinase ( ERK ) in G2 phase delays mitotic entry through p21 CIP1
  publication-title: Cell Proliferation
  doi: 10.1111/j.1365-2184.2006.00388.x
– reference: 16800820 - Cancer Sci. 2006 Aug;97(8):697-702
– reference: 22565824 - J Exp Med. 2012 Jun 4;209(6):1105-19
– reference: 10500177 - Proc Natl Acad Sci U S A. 1999 Sep 28;96(20):11335-40
– reference: 22277578 - Cell Struct Funct. 2012;37(1):65-73
– reference: 17999740 - Differentiation. 2007 Nov;75(9):770-87
– reference: 8118803 - Cancer Res. 1994 Mar 1;54(5):1178-89
– reference: 16482094 - Nat Rev Mol Cell Biol. 2006 Mar;7(3):165-76
– reference: 19713956 - Nat Protoc. 2009;4(9):1350-62
– reference: 1400347 - J Biol Chem. 1992 Oct 5;267(28):20293-7
– reference: 16872362 - Cell Prolif. 2006 Aug;39(4):261-79
– reference: 18000402 - Cell Cycle. 2007 Dec 1;6(23):2928-31
– reference: 12213567 - Biochem Pharmacol. 2002 Sep;64(5-6):755-63
– reference: 14993236 - J Cell Biol. 2004 Mar 1;164(5):769-79
– reference: 15735702 - Oncogene. 2005 May 5;24(20):3285-96
– reference: 16604064 - Nat Cell Biol. 2006 May;8(5):524-31
– reference: 18556782 - Am J Pathol. 2008 Jul;173(1):14-24
– reference: 9857183 - EMBO J. 1998 Dec 15;17(24):7260-72
– reference: 19834477 - Nat Protoc. 2009;4(11):1623-31
– reference: 23219535 - Mol Cell. 2013 Jan 24;49(2):249-61
– reference: 17188374 - Biochim Biophys Acta. 2007 Aug;1773(8):1299-310
– reference: 24140422 - Mol Cell. 2013 Nov 21;52(4):529-40
– reference: 8394682 - Annu Rev Biochem. 1993;62:515-41
– reference: 9548562 - J Cell Biochem. 1998 May 1;69(2):143-53
– reference: 8477445 - Cell. 1993 Apr 23;73(2):263-78
– reference: 21596316 - Mol Cell. 2011 May 20;42(4):524-35
– reference: 12947092 - J Biol Chem. 2003 Nov 14;278(46):45255-68
– reference: 24926024 - Science. 2014 Jun 13;344(6189):1242281
– reference: 9812885 - Science. 1998 Nov 13;282(5392):1281-4
– reference: 22362215 - Nat Rev Cancer. 2012 Mar;12(3):170-80
– reference: 18267078 - Cell. 2008 Feb 8;132(3):487-98
– reference: 7813021 - Cell. 1995 Jan 13;80(1):83-93
– reference: 17496923 - Oncogene. 2007 May 14;26(22):3291-310
SSID ssj0000748819
Score 2.4801643
Snippet Extracellular signal-regulated kinase (ERK) is a key effector of many growth signalling pathways. In this study, we visualise epidermal ERK activity in living...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage e05178
SubjectTerms Acetic acid
Animals
Biosensors
Cell Biology
Cell cycle
Cell Cycle - drug effects
Cell division
Cell Division - drug effects
Cell proliferation
Data analysis
Ear
Enzyme Activation - drug effects
Epidermal growth factor
Epidermis
Epidermis - drug effects
Epidermis - enzymology
ERK
Extracellular signal-regulated kinase
Extracellular Signal-Regulated MAP Kinases - metabolism
Extracellular Space - drug effects
Extracellular Space - enzymology
Fluorescence resonance energy transfer
Frequency dependence
Humans
Hypotheses
Imaging, Three-Dimensional
in vivo imaging
Ligands
Matrix Metalloproteinase Inhibitors - pharmacology
Mice, Transgenic
Microscopy
Propagation
Receptor, Epidermal Growth Factor - metabolism
Signal transduction
Single-Cell Analysis
Skin
Skin - enzymology
Spatial distribution
Tetradecanoylphorbol Acetate - pharmacology
Wound Healing - drug effects
Wounds
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NS-UwEA8iCF7Er9XuqmThnYSubZo26XFXFJFlTyt4C_nEovbJ862L_70zSV95T4S97LWZpmlmMl9MfkPIhBXGQFRR5ZJXIedCNrlsQ5Xz0LjKOYcwZFht8au5uuHXt_XtUqsvrAlL8MBp4864dME1jdccwm0jdFs7YXmhjfYW9S9qX7B5S8FU1MECBLNs04U8ASbzzP_sgv-GiFRyxQRFpP6P3Mv3VZJLZudym2wN_iL9nta5Q9Z8v0s2UgfJ1z3yN2b0MPuO5aQUpgcFETebTgMFxTvT4yCWauiHfJa6z3tH77sebBjFqw0pMUsRzwkshqPmlXY9feleprR7jI2McD5ME3j6DO_tk5vLi9_nV_nQSyG3EBDMc8sN456H0kN8JrVnmhU2uKLWjYSQiDtryyAtdi0qnDWlQ2Q_Zx3oQuaFsdUnst5Pe39IqDU146IKlnHHW1ub0Iq2loVvmQfaKiOni-1VdgAax34XDwoCDuSFirxQkRcZmYzETwlf42OyH8inkQRBseMDEBU1iIr6l6hk5GjBZTWc1GcFGgicVCEK-MbXcRjOGHJH9x42VuGNL4HBV52RgyQU40rAZWyk4E1GxIq4rCx1daTv7iKON69Qu7PP_-PfvpBNcOXiZfuyOCLr89kffwzu0tycxJPxBidsGHw
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3Na9VAEB-0Ingp9Tu2ygo9CWuTzSa7OYmKpYh4svBuYT81WJP2vdeW_vfObPKiT4rX7CQsO7PzlZnfAByK3FqMKkquZRm5VLrmuokll7H2pfeeYMio2uJrfXIqPy-qxZRwW01llRudmBS1HxzlyI9QUtCZUCrX784vOE2Nor-r0wiNu3CPoMuopEst1JxjQfOo0eKNbXkKDedR-NLF8JZwqfSWIUp4_bc5mf_WSv5lfI73YHfyGtn7kc0P4U7oH8H9cY7kzWO4Tnk9ysFTUSnDz6OaSEfOhshQ_S7NvEgFG-aML8cZ9MGzn12PloxRg8OYnmWE6oR2wzN7w7qeXXVXA-t-pXFG9D1KFgS2wveewOnxp28fT_g0UYE7DAvW3EkrZJCxCBilaROEEbmLPq9MrTEwkt65ImpHs4ty72zhCd_PO48aUQRlXfkUdvqhD8-BOVsJqcrohPSycZWNjUIO5KERAWnLDN5sjrd1E9w4Tb04azHsIF60iRdt4kUGhzPx-YiycTvZB-LTTELQ2OnBsPzeTjetldpHX9fByKKRVpmm8srJ3FgTHBnsDA42XG6n-7pq_0hXBq_nZbxpxB3TBzzYlvq-FIVgVQbPRqGYd4KOY62VrDNQW-KytdXtlb77kdC8ZUk6Xrz4_7b24QG6aqmZvsgPYGe9vAwv0R1a21dJ5n8DGLAPQw
  priority: 102
  providerName: ProQuest
Title Intercellular propagation of extracellular signal-regulated kinase activation revealed by in vivo imaging of mouse skin
URI https://www.ncbi.nlm.nih.gov/pubmed/25668746
https://www.proquest.com/docview/1966507708
https://www.proquest.com/docview/1654702555
https://pubmed.ncbi.nlm.nih.gov/PMC4337632
https://doaj.org/article/48dfd66ea4194b7a95d7c40abaec1303
Volume 4
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwdV1Zb9QwEB71eOEFgbgCZWWkPiFlyeHEzhOiqFWFoEKIlfYt8glRlyykS6H_nhnnULdaXmPHiTzXNyP7G4DjLNEas4o8ljz3MReyjGXl85j70ubWWqIho9MWF-X5gn9YFss9GJtxDht4tTO1o35Si241__vr5i0aPOLXucBo-MZ9bLybE9mU3IdDDEmCLPTTgPODSxaop2nV38-7-w7xASOokYJA8K3gFDj8dwHPu-cnbwWkswdwf0CS7F0v-oew59pH8CdU-KgaT8dLGS6KDiNsPlt7ho64U9MgHd1Qq7jru9E7yy6bFmMao6sOfaGWEb8TRhDL9A1rWnbdXK9Z8yM0NqL1qGzg2BW-9xgWZ6df35_HQ2-F2GCCsIkN1xl33KcO8zWpXKayxHibFKqUmCJxa0zqpaEuRok1OrXE9GeNRd-YOaFN_gQO2nXrngEzusi4yL3JuOWVKbSvRFXIxFWZw7l5BK_HTa3NQDxO_S9WNSYgJIw6CKMOwojgeJr8s-fb2D3thKQzTSGS7PBg3X2rB5urubTelqVTPK24FqoqrDA8UVo5Q6E7gqNRtvWoeDV6JAStQiT4jVfTMNocSUe1Dje2phtggpKxIoKnvSpMfzKqUgRiS0m2fnV7pG2-B15vnpO3z57_d80XcA_xWrhRnyZHcLDpfruXiIk2egb7YilmcHhyevH5yyxUFmbBBv4ByLwSHQ
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VVIheEG8MBRapXJBM7fXauz4gRKFVSkOEUCv1ZrwvalGckoRW-VP8RmZsxxBUces1u1mtdt7jmfkAtnikNUYVSahE4kMhVRaq3Ceh8JlNrLU0hoyqLcbZ8Eh8OE6P1-DXsheGyiqXOrFR1HZiKEe-jZyCzoSUkXpz9iMk1Cj6urqE0GjZ4sAtLjBkm73ef4_0fcH53u7hu2HYoQqEBl3jeWiE5sIJHzuMVFTpeMkj422UlpnC4EBYY2KvDOH3RNbo2NKMO2ssagXupDYJnnsN1kWCocwA1nd2x58-91kdNMgKbWzbCCjRVG-7UeXdK5qEpVZMX4MQcJlb-2915l_mbu8W3Oz8VPa2ZazbsObqO3C9Ra5c3IWLJpNIWX8qY2V4PCqmhshs4hkq_GnZL1KJSHkaTlvUe2fZt6pG28mopaJNCDOaI4WWyjK9YFXNzqvzCau-NwBKdB6lJxyb4f_uwdGVvPZ9GNST2j0EZnTKhUy84cKK3KTa5zJPVeRy7nBvEsDL5fMWphtwTjgbpwUGOkSLoqFF0dAigK1-81k71-PybTtEp34LDeNufphMvxadbBdCWW-zzJUizoWWZZ5aaURU6tIZchEC2FxSueg0xKz4w88BPO-XUbaJOmXt8GEL6jSTFPSlATxomaK_CbqqmZIiC0CusMvKVVdX6uqkmR8uErIq_NH_r_UMbgwPP46K0f744DFsoKPYtPLH0SYM5tOf7gk6Y3P9tJMABl-uWuh-A8j_TkQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIhAXxJtAASOVC1LYxHFi54AQUFYtrSoOVNpbiF8lomTL7tJq_xq_jhknG1hUcet17bUsz3syMx_ANk-0xqgii5XIfCykKmJV-iwWvrCZtZbGkFG1xWGxeyQ-TvLJBvxa9cJQWeVKJwZFbaeGcuQj5BR0JqRM1Mj3ZRGfdsZvTn_EhCBFX1pXcBodi-y75TmGb_PXeztI6xecjz98fr8b9wgDsUE3eREboblwwqcOoxZVO17zxHib5HWhMFAQ1pjUK0NYPok1OrU0784aixqCO6lNhudegasyy1OSMTmRQ34HTbNCa9u1BEo02iN30Hj3imZiqTUjGLACLnJw_63T_MvwjW_Bzd5jZW87FrsNG669A9c6DMvlXTgPOUXK_1NBK8PjUUUFcrOpZ_h-s3pYpGKR-iSeuWMCDXOWfWtatKKMmiu61DCjiVJosyzTS9a07Kw5m7Lme4BSovMoUeHYHP93D44u5a3vw2Y7bd1DYEbnXMjMGy6sKE2ufSnLXCWu5A73ZhG8XD1vZfpR54S4cVJhyEO0qAItqkCLCLaHzafdhI-Lt70jOg1baCx3-GE6O656Ka-Est4WhatFWgot6zK30oik1rUz5CxEsLWictXrinn1h7MjeD4so5QTderW4cNW1HMmKfzLI3jQMcVwE3RaCyVFEYFcY5e1q66vtM3XMElcZGRf-KP_X-sZXEdRqw72Dvcfww30GENPf5psweZi9tM9Qa9soZ8G9mfw5bLl7TdKQVEU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Intercellular+propagation+of+extracellular+signal-regulated+kinase+activation+revealed+by+in+vivo+imaging+of+mouse+skin&rft.jtitle=eLife&rft.au=Hiratsuka%2C+Toru&rft.au=Fujita%2C+Yoshihisa&rft.au=Naoki%2C+Honda&rft.au=Aoki%2C+Kazuhiro&rft.date=2015-02-10&rft.eissn=2050-084X&rft.volume=4&rft.spage=e05178&rft_id=info:doi/10.7554%2FeLife.05178&rft_id=info%3Apmid%2F25668746&rft.externalDocID=25668746
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2050-084X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2050-084X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2050-084X&client=summon