Intercellular propagation of extracellular signal-regulated kinase activation revealed by in vivo imaging of mouse skin
Extracellular signal-regulated kinase (ERK) is a key effector of many growth signalling pathways. In this study, we visualise epidermal ERK activity in living mice using an ERK FRET biosensor. Under steady-state conditions, the epidermis occasionally revealed bursts of ERK activation patterns where...
Saved in:
Published in | eLife Vol. 4; p. e05178 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
England
eLife Sciences Publications Ltd
10.02.2015
eLife Sciences Publications, Ltd |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Extracellular signal-regulated kinase (ERK) is a key effector of many growth signalling pathways. In this study, we visualise epidermal ERK activity in living mice using an ERK FRET biosensor. Under steady-state conditions, the epidermis occasionally revealed bursts of ERK activation patterns where ERK activity radially propagated from cell to cell. The frequency of this spatial propagation of radial ERK activity distribution (SPREAD) correlated with the rate of epidermal cell division. SPREADs and proliferation were stimulated by 12-O-tetradecanoylphorbol 13-acetate (TPA) in a manner dependent on EGF receptors and their cognate ligands. At the wounded skin, ERK activation propagated as trigger wave in parallel to the wound edge, suggesting that ERK activation propagation can be superimposed. Furthermore, by visualising the cell cycle, we found that SPREADs were associated with G2/M cell cycle progression. Our results provide new insights into how cell proliferation and transient ERK activity are synchronised in a living tissue.
Our skin is our largest organ; it provides a barrier that protects the underlying tissues and internal organs from the external environment and acts as one of our first lines of defense against infection. Both of these roles subject the skin to wear and tear and so it must constantly create new skin cells to replace those lost or damaged. However, if this renewal process goes awry it can lead to excessive cell growth or skin cancer. To avoid this, cells tightly regulate the pathways that stimulate skin renewal.
Skin renewal involves growth signals activating an enzyme called ERK. When and where the ERK enzyme is activated is normally tightly regulated, and many kinds of cancer have been linked to ERK becoming active at the wrong time or in the wrong place. Despite the importance of ERK in skin cells, a number of technical challenges have made it difficult to study how these signals are passed from cell to cell.
Hiratsuka et al. have now examined genetically altered mice that produce a fluorescent sensor molecule that makes it possible to see ERK activity in living skin cells. The skin of anesthetized mice was observed under a microscope, and time-lapse videos revealed occasional ‘firework-like’ bursts of ERK activity. At first the ERK enzyme was active in a small cluster of skin cells, then ERK activity was seen in the surrounding cells—appearing to spread outwards over the course of several minutes—before the activity stopped. Hiratsuka et al. named this pattern of activity a ‘Spatial Propagation of Radial ERK Activity Distribution’, or SPREAD for short.
By studying SPREADs in the skin on the ears and the back of these mice, Hiratsuka et al. learned that these bursts of ERK activity coincided with skin cell growth; the bursts happened more frequently in the areas where the skin cells were dividing. Applying a chemical that stimulates cell division to the skin of the mice triggered more bursts of ERK activity; whereas fewer bursts were observed if Hiratsuka et al. used other chemicals to block the activity of some of the signaling proteins that work upstream of ERK.
Further experiments suggested that SPREADs encourage cells to progress through the cycle of events that leads a cell to divide; blocking these bursts caused the cell to pause at the stage just before it would normally divide. Hiratsuka et al. also observed similar patterns of ERK activity moving out like waves from the edges of skin wounds. Further research using similar methods will reveal how growth signals are triggered and propagated in healthy and diseased tissues, not only in the skin but also other organs such as the liver, intestine, and muscles. |
---|---|
AbstractList | Extracellular signal-regulated kinase (ERK) is a key effector of many growth signalling pathways. In this study, we visualise epidermal ERK activity in living mice using an ERK FRET biosensor. Under steady-state conditions, the epidermis occasionally revealed bursts of ERK activation patterns where ERK activity radially propagated from cell to cell. The frequency of this spatial propagation of radial ERK activity distribution (SPREAD) correlated with the rate of epidermal cell division. SPREADs and proliferation were stimulated by 12-O-tetradecanoylphorbol 13-acetate (TPA) in a manner dependent on EGF receptors and their cognate ligands. At the wounded skin, ERK activation propagated as trigger wave in parallel to the wound edge, suggesting that ERK activation propagation can be superimposed. Furthermore, by visualising the cell cycle, we found that SPREADs were associated with G2/M cell cycle progression. Our results provide new insights into how cell proliferation and transient ERK activity are synchronised in a living tissue.
DOI:
http://dx.doi.org/10.7554/eLife.05178.001
Our skin is our largest organ; it provides a barrier that protects the underlying tissues and internal organs from the external environment and acts as one of our first lines of defense against infection. Both of these roles subject the skin to wear and tear and so it must constantly create new skin cells to replace those lost or damaged. However, if this renewal process goes awry it can lead to excessive cell growth or skin cancer. To avoid this, cells tightly regulate the pathways that stimulate skin renewal.
Skin renewal involves growth signals activating an enzyme called ERK. When and where the ERK enzyme is activated is normally tightly regulated, and many kinds of cancer have been linked to ERK becoming active at the wrong time or in the wrong place. Despite the importance of ERK in skin cells, a number of technical challenges have made it difficult to study how these signals are passed from cell to cell.
Hiratsuka et al. have now examined genetically altered mice that produce a fluorescent sensor molecule that makes it possible to see ERK activity in living skin cells. The skin of anesthetized mice was observed under a microscope, and time-lapse videos revealed occasional ‘firework-like’ bursts of ERK activity. At first the ERK enzyme was active in a small cluster of skin cells, then ERK activity was seen in the surrounding cells—appearing to spread outwards over the course of several minutes—before the activity stopped. Hiratsuka et al. named this pattern of activity a ‘Spatial Propagation of Radial ERK Activity Distribution’, or SPREAD for short.
By studying SPREADs in the skin on the ears and the back of these mice, Hiratsuka et al. learned that these bursts of ERK activity coincided with skin cell growth; the bursts happened more frequently in the areas where the skin cells were dividing. Applying a chemical that stimulates cell division to the skin of the mice triggered more bursts of ERK activity; whereas fewer bursts were observed if Hiratsuka et al. used other chemicals to block the activity of some of the signaling proteins that work upstream of ERK.
Further experiments suggested that SPREADs encourage cells to progress through the cycle of events that leads a cell to divide; blocking these bursts caused the cell to pause at the stage just before it would normally divide. Hiratsuka et al. also observed similar patterns of ERK activity moving out like waves from the edges of skin wounds. Further research using similar methods will reveal how growth signals are triggered and propagated in healthy and diseased tissues, not only in the skin but also other organs such as the liver, intestine, and muscles.
DOI:
http://dx.doi.org/10.7554/eLife.05178.002 Extracellular signal-regulated kinase (ERK) is a key effector of many growth signalling pathways. In this study, we visualise epidermal ERK activity in living mice using an ERK FRET biosensor. Under steady-state conditions, the epidermis occasionally revealed bursts of ERK activation patterns where ERK activity radially propagated from cell to cell. The frequency of this spatial propagation of radial ERK activity distribution (SPREAD) correlated with the rate of epidermal cell division. SPREADs and proliferation were stimulated by 12-O-tetradecanoylphorbol 13-acetate (TPA) in a manner dependent on EGF receptors and their cognate ligands. At the wounded skin, ERK activation propagated as trigger wave in parallel to the wound edge, suggesting that ERK activation propagation can be superimposed. Furthermore, by visualising the cell cycle, we found that SPREADs were associated with G2/M cell cycle progression. Our results provide new insights into how cell proliferation and transient ERK activity are synchronised in a living tissue.Extracellular signal-regulated kinase (ERK) is a key effector of many growth signalling pathways. In this study, we visualise epidermal ERK activity in living mice using an ERK FRET biosensor. Under steady-state conditions, the epidermis occasionally revealed bursts of ERK activation patterns where ERK activity radially propagated from cell to cell. The frequency of this spatial propagation of radial ERK activity distribution (SPREAD) correlated with the rate of epidermal cell division. SPREADs and proliferation were stimulated by 12-O-tetradecanoylphorbol 13-acetate (TPA) in a manner dependent on EGF receptors and their cognate ligands. At the wounded skin, ERK activation propagated as trigger wave in parallel to the wound edge, suggesting that ERK activation propagation can be superimposed. Furthermore, by visualising the cell cycle, we found that SPREADs were associated with G2/M cell cycle progression. Our results provide new insights into how cell proliferation and transient ERK activity are synchronised in a living tissue. Extracellular signal-regulated kinase (ERK) is a key effector of many growth signalling pathways. In this study, we visualise epidermal ERK activity in living mice using an ERK FRET biosensor. Under steady-state conditions, the epidermis occasionally revealed bursts of ERK activation patterns where ERK activity radially propagated from cell to cell. The frequency of this spatial propagation of radial ERK activity distribution (SPREAD) correlated with the rate of epidermal cell division. SPREADs and proliferation were stimulated by 12-O-tetradecanoylphorbol 13-acetate (TPA) in a manner dependent on EGF receptors and their cognate ligands. At the wounded skin, ERK activation propagated as trigger wave in parallel to the wound edge, suggesting that ERK activation propagation can be superimposed. Furthermore, by visualising the cell cycle, we found that SPREADs were associated with G2/M cell cycle progression. Our results provide new insights into how cell proliferation and transient ERK activity are synchronised in a living tissue. Our skin is our largest organ; it provides a barrier that protects the underlying tissues and internal organs from the external environment and acts as one of our first lines of defense against infection. Both of these roles subject the skin to wear and tear and so it must constantly create new skin cells to replace those lost or damaged. However, if this renewal process goes awry it can lead to excessive cell growth or skin cancer. To avoid this, cells tightly regulate the pathways that stimulate skin renewal. Skin renewal involves growth signals activating an enzyme called ERK. When and where the ERK enzyme is activated is normally tightly regulated, and many kinds of cancer have been linked to ERK becoming active at the wrong time or in the wrong place. Despite the importance of ERK in skin cells, a number of technical challenges have made it difficult to study how these signals are passed from cell to cell. Hiratsuka et al. have now examined genetically altered mice that produce a fluorescent sensor molecule that makes it possible to see ERK activity in living skin cells. The skin of anesthetized mice was observed under a microscope, and time-lapse videos revealed occasional ‘firework-like’ bursts of ERK activity. At first the ERK enzyme was active in a small cluster of skin cells, then ERK activity was seen in the surrounding cells—appearing to spread outwards over the course of several minutes—before the activity stopped. Hiratsuka et al. named this pattern of activity a ‘Spatial Propagation of Radial ERK Activity Distribution’, or SPREAD for short. By studying SPREADs in the skin on the ears and the back of these mice, Hiratsuka et al. learned that these bursts of ERK activity coincided with skin cell growth; the bursts happened more frequently in the areas where the skin cells were dividing. Applying a chemical that stimulates cell division to the skin of the mice triggered more bursts of ERK activity; whereas fewer bursts were observed if Hiratsuka et al. used other chemicals to block the activity of some of the signaling proteins that work upstream of ERK. Further experiments suggested that SPREADs encourage cells to progress through the cycle of events that leads a cell to divide; blocking these bursts caused the cell to pause at the stage just before it would normally divide. Hiratsuka et al. also observed similar patterns of ERK activity moving out like waves from the edges of skin wounds. Further research using similar methods will reveal how growth signals are triggered and propagated in healthy and diseased tissues, not only in the skin but also other organs such as the liver, intestine, and muscles. Extracellular signal-regulated kinase (ERK) is a key effector of many growth signalling pathways. In this study, we visualise epidermal ERK activity in living mice using an ERK FRET biosensor. Under steady-state conditions, the epidermis occasionally revealed bursts of ERK activation patterns where ERK activity radially propagated from cell to cell. The frequency of this spatial propagation of radial ERK activity distribution (SPREAD) correlated with the rate of epidermal cell division. SPREADs and proliferation were stimulated by 12-O-tetradecanoylphorbol 13-acetate (TPA) in a manner dependent on EGF receptors and their cognate ligands. At the wounded skin, ERK activation propagated as trigger wave in parallel to the wound edge, suggesting that ERK activation propagation can be superimposed. Furthermore, by visualising the cell cycle, we found that SPREADs were associated with G2/M cell cycle progression. Our results provide new insights into how cell proliferation and transient ERK activity are synchronised in a living tissue. Extracellular signal-regulated kinase (ERK) is a key effector of many growth signalling pathways. In this study, we visualise epidermal ERK activity in living mice using an ERK FRET biosensor. Under steady-state conditions, the epidermis occasionally revealed bursts of ERK activation patterns where ERK activity radially propagated from cell to cell. The frequency of this spatial propagation of radial ERK activity distribution (SPREAD) correlated with the rate of epidermal cell division. SPREADs and proliferation were stimulated by 12-O-tetradecanoylphorbol 13-acetate (TPA) in a manner dependent on EGF receptors and their cognate ligands. At the wounded skin, ERK activation propagated as trigger wave in parallel to the wound edge, suggesting that ERK activation propagation can be superimposed. Furthermore, by visualising the cell cycle, we found that SPREADs were associated with G2/M cell cycle progression. Our results provide new insights into how cell proliferation and transient ERK activity are synchronised in a living tissue.DOI: http://dx.doi.org/10.7554/eLife.05178.001 |
Author | Kamioka, Yuji Fujita, Yoshihisa Hiratsuka, Toru Naoki, Honda Matsuda, Michiyuki Aoki, Kazuhiro |
Author_xml | – sequence: 1 givenname: Toru surname: Hiratsuka fullname: Hiratsuka, Toru organization: Department of Pathology and Biology of Diseases, Graduate School of Medicine, Kyoto University, Kyoto, Japan – sequence: 2 givenname: Yoshihisa surname: Fujita fullname: Fujita, Yoshihisa organization: Department of Pathology and Biology of Diseases, Graduate School of Medicine, Kyoto University, Kyoto, Japan – sequence: 3 givenname: Honda surname: Naoki fullname: Naoki, Honda organization: Imaging Platform for Spatio-Temporal Information, Graduate School of Medicine, Kyoto University, Kyoto, Japan – sequence: 4 givenname: Kazuhiro surname: Aoki fullname: Aoki, Kazuhiro organization: Imaging Platform for Spatio-Temporal Information, Graduate School of Medicine, Kyoto University, Kyoto, Japan – sequence: 5 givenname: Yuji surname: Kamioka fullname: Kamioka, Yuji organization: Department of Pathology and Biology of Diseases, Graduate School of Medicine, Kyoto University, Kyoto, Japan – sequence: 6 givenname: Michiyuki surname: Matsuda fullname: Matsuda, Michiyuki organization: Department of Pathology and Biology of Diseases, Graduate School of Medicine, Kyoto University, Kyoto, Japan, Laboratory of Bioimaging and Cell Signaling, Kyoto University, Kyoto, Japan |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/25668746$$D View this record in MEDLINE/PubMed |
BookMark | eNptUk1v1DAUjFARLaUn7igSFySUYif-ygUJVXystBIXkLhZL_ZL8JK1FzsJ9N_j3W2rtsIXf7yZ0bzxe16c-OCxKF5Scik5Z-9w7Xq8JJxK9aQ4qwknFVHsx8m982lxkdKG5CWZUrR9VpzWXAglmTgr_qz8hNHgOM4jxHIXww4GmFzwZehL_DtFuCsmN3gYq4hDvk5oy1_OQ8ISzOSWIyfigjDmUnddOl8ubgml28Lg_LDX24Y541PmvSie9jAmvLjZz4vvnz5-u_pSrb9-Xl19WFeGKz5VhnU1Q9ZTbHOHgDXUxPSWcBCKUsasMbRXpqZMEms6ahveKmtsS2mNsjPNebE66toAG72L2Uy81gGcPjyEOGiIkzMjaqZsb4VAYLRlnYSWW2kYgQ7Q0IY0Wev9UWs3d1u0Bn1OZ3wg-rDi3U89hEWzppGiqbPAmxuBGH7PmCa9dWkfL3jMyWgqeO6j5pxn6OtH0E2YY44_o1ohOJGSqIx6dd_RnZXb_80AegSYGFKK2GvjpsNXZYNu1JTo_RjpwxjpwxhlzttHnFvZ_6H_ATsVzJs |
CitedBy_id | crossref_primary_10_1016_j_devcel_2024_11_001 crossref_primary_10_1038_s41598_021_83396_6 crossref_primary_10_1016_j_tibtech_2016_02_009 crossref_primary_10_1371_journal_pone_0162300 crossref_primary_10_1038_s41556_024_01413_y crossref_primary_10_15252_embj_2022111806 crossref_primary_10_1016_j_devcel_2020_05_011 crossref_primary_10_1146_annurev_bioeng_083120_111648 crossref_primary_10_1016_j_pbiomolbio_2025_01_003 crossref_primary_10_7554_eLife_60541 crossref_primary_10_1016_j_cdev_2025_203995 crossref_primary_10_1126_science_aao3048 crossref_primary_10_1247_csf_18013 crossref_primary_10_1073_pnas_2211142119 crossref_primary_10_1042_EBC20180015 crossref_primary_10_1002_wsbm_1479 crossref_primary_10_7554_eLife_71052 crossref_primary_10_1016_j_cbpa_2018_11_010 crossref_primary_10_1242_jcs_206995 crossref_primary_10_3390_chemosensors6020019 crossref_primary_10_7554_eLife_82863 crossref_primary_10_1016_j_bpj_2015_10_021 crossref_primary_10_1016_j_cell_2023_06_019 crossref_primary_10_1016_j_cels_2021_10_002 crossref_primary_10_1016_j_devcel_2017_07_014 crossref_primary_10_1016_j_cels_2020_02_005 crossref_primary_10_1016_j_molcel_2020_08_020 crossref_primary_10_1042_BCJ20220223 crossref_primary_10_3390_bios9020076 crossref_primary_10_1016_j_devcel_2021_05_007 crossref_primary_10_1101_cshperspect_a041499 crossref_primary_10_1101_gad_277137_115 crossref_primary_10_1016_j_devcel_2020_09_013 crossref_primary_10_1016_j_ceb_2017_11_002 crossref_primary_10_1021_jacs_2c02949 crossref_primary_10_1016_j_isci_2022_104130 crossref_primary_10_1038_s41586_020_03085_8 crossref_primary_10_7554_eLife_86727_3 crossref_primary_10_1073_pnas_2026123118 crossref_primary_10_1073_pnas_2410430122 crossref_primary_10_1091_mbc_E19_08_0474 crossref_primary_10_1016_j_celrep_2021_109550 crossref_primary_10_1038_s41556_021_00654_5 crossref_primary_10_7554_eLife_83444 crossref_primary_10_1016_j_bpj_2021_05_004 crossref_primary_10_1039_D2CP04357B crossref_primary_10_1016_j_celrep_2024_115193 crossref_primary_10_1038_s41467_018_04527_8 crossref_primary_10_1242_dev_199710 crossref_primary_10_1242_dev_202217 crossref_primary_10_3390_cells7090117 crossref_primary_10_1371_journal_pone_0167940 crossref_primary_10_1083_jcb_202207048 crossref_primary_10_1016_j_devcel_2022_08_008 crossref_primary_10_1016_j_ajpath_2020_09_012 crossref_primary_10_1038_s41556_023_01234_5 crossref_primary_10_1074_jbc_M115_662247 crossref_primary_10_1098_rsif_2018_0792 crossref_primary_10_1111_pin_12925 crossref_primary_10_1146_annurev_cellbio_013020_103810 crossref_primary_10_1007_s10911_025_09574_8 crossref_primary_10_1016_j_devcel_2016_08_010 crossref_primary_10_1073_pnas_2006965117 crossref_primary_10_7554_eLife_86727 crossref_primary_10_1038_s41592_019_0541_5 crossref_primary_10_1242_dev_172940 crossref_primary_10_3389_fsysb_2024_1333760 crossref_primary_10_1016_j_cels_2020_10_002 crossref_primary_10_1016_j_ydbio_2023_08_007 crossref_primary_10_1247_csf_18003 crossref_primary_10_1101_gad_294546_116 crossref_primary_10_1371_journal_pcbi_1012846 crossref_primary_10_1016_j_tibtech_2017_01_002 crossref_primary_10_1021_acs_nanolett_9b03411 crossref_primary_10_1016_j_molcel_2017_07_016 crossref_primary_10_1016_j_bpj_2016_01_037 crossref_primary_10_1073_pnas_2109057118 crossref_primary_10_7554_eLife_09652 crossref_primary_10_1016_j_ceb_2023_102217 crossref_primary_10_1002_ijch_201700117 crossref_primary_10_1016_j_ceb_2021_04_007 crossref_primary_10_1038_s41580_020_0255_7 crossref_primary_10_3892_etm_2023_12245 crossref_primary_10_1016_j_isci_2022_105136 crossref_primary_10_1155_2021_4883398 crossref_primary_10_1371_journal_pcbi_1009873 crossref_primary_10_1371_journal_pone_0164254 crossref_primary_10_1016_j_isci_2021_103074 crossref_primary_10_7554_eLife_78837 crossref_primary_10_1016_j_cels_2020_07_004 crossref_primary_10_1016_j_cub_2023_08_024 crossref_primary_10_1038_ncb3532 crossref_primary_10_26508_lsa_202101206 crossref_primary_10_3389_fmolb_2022_998475 crossref_primary_10_1093_hmg_ddw011 crossref_primary_10_1111_exd_13221 crossref_primary_10_1093_pnasnexus_pgac002 crossref_primary_10_3390_cancers11040513 crossref_primary_10_1016_j_ydbio_2024_07_014 crossref_primary_10_1083_jcb_202302095 crossref_primary_10_1247_csf_24064 crossref_primary_10_1016_j_celrep_2021_109689 crossref_primary_10_1242_dev_201231 crossref_primary_10_1016_j_devcel_2018_06_004 crossref_primary_10_1242_dev_202166 crossref_primary_10_7554_eLife_62196 crossref_primary_10_3168_jds_2023_24578 crossref_primary_10_1146_annurev_biophys_111521_102500 crossref_primary_10_15252_msb_20178174 crossref_primary_10_1038_s42003_024_05991_3 crossref_primary_10_1038_s41567_020_01037_7 crossref_primary_10_1016_j_isci_2018_11_025 crossref_primary_10_1016_j_cell_2021_11_005 crossref_primary_10_1016_j_omtn_2024_102120 crossref_primary_10_1083_jcb_201701158 crossref_primary_10_1016_j_celrep_2021_110181 crossref_primary_10_1083_jcb_201609124 crossref_primary_10_1073_pnas_2119187119 crossref_primary_10_14814_phy2_13033 crossref_primary_10_1016_j_jid_2022_12_002 crossref_primary_10_1038_s41598_022_17312_x crossref_primary_10_1016_j_devcel_2022_09_003 crossref_primary_10_1016_j_mrrev_2016_07_010 crossref_primary_10_1016_j_cellimm_2018_05_006 crossref_primary_10_1038_s41598_017_16714_6 crossref_primary_10_1073_pnas_2318871121 crossref_primary_10_1080_21541248_2018_1438024 crossref_primary_10_1016_j_biotechadv_2024_108466 crossref_primary_10_12688_f1000research_8090_1 crossref_primary_10_1016_j_devcel_2022_09_001 crossref_primary_10_1007_s00018_023_05007_z crossref_primary_10_1016_j_celrep_2024_114986 crossref_primary_10_1016_j_tips_2017_09_005 crossref_primary_10_1186_s13619_023_00180_9 crossref_primary_10_7554_eLife_35800 crossref_primary_10_7554_eLife_61092 crossref_primary_10_1103_PRXLife_1_013001 crossref_primary_10_1083_jcb_202305022 crossref_primary_10_1042_BCJ20210557 crossref_primary_10_1016_j_ceb_2024_102368 crossref_primary_10_1016_j_cell_2024_05_018 crossref_primary_10_1016_j_gde_2020_01_004 crossref_primary_10_7567_1347_4065_aafc1f crossref_primary_10_1021_acschembio_0c00333 crossref_primary_10_1007_s00424_016_1882_x crossref_primary_10_3389_fcell_2018_00111 crossref_primary_10_3390_s151026281 crossref_primary_10_1016_j_devcel_2020_09_030 crossref_primary_10_1016_j_semcdb_2021_07_003 crossref_primary_10_1111_jth_13725 crossref_primary_10_1242_dev_199767 crossref_primary_10_15252_embr_202357739 crossref_primary_10_1016_j_ajpath_2018_07_010 crossref_primary_10_1111_jth_13723 crossref_primary_10_1371_journal_pcbi_1011155 crossref_primary_10_1016_j_cell_2019_05_052 crossref_primary_10_2142_biophys_64_85 crossref_primary_10_1042_BCJ20230277 crossref_primary_10_1042_BCJ20230276 crossref_primary_10_1038_s41598_018_24899_7 crossref_primary_10_1038_s43586_022_00168_w |
Cites_doi | 10.1038/nprot.2009.175 10.1016/S0006-2952(02)01135-8 10.1074/jbc.M307745200 10.1093/emboj/17.24.7260 10.1016/j.bbamcr.2006.11.010 10.1111/j.1349-7006.2006.00244.x 10.1073/pnas.96.20.11335 10.1002/(SICI)1097-4644(19980501)69:23.0.CO;2-S 10.1038/nrm1838 10.1038/sj.onc.1210422 10.1038/ncb1398 10.1016/j.molcel.2011.04.017 10.1016/j.molcel.2012.11.002 10.1038/sj.onc.1208492 10.1247/csf.11045 10.1126/science.1242281 10.1146/annurev.bi.62.070193.002503 10.4161/cc.6.23.4998 10.1038/nrc3217 10.1016/0092-8674(95)90453-0 10.1084/jem.20112258 10.1016/j.molcel.2013.09.015 10.1016/j.cell.2007.12.033 10.1016/S0021-9258(19)88700-8 10.2353/ajpath.2008.070942 10.1038/nprot.2009.120 10.1016/0092-8674(93)90228-I 10.1126/science.282.5392.1281 10.1111/j.1432-0436.2007.00238.x 10.1083/jcb.200307137 10.1111/j.1365-2184.2006.00388.x |
ContentType | Journal Article |
Copyright | 2015, Hiratsuka et al. This work is licensed under the Creative Commons Attribution License ( https://creativecommons.org/licenses/by/3.0/ ) (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2015, Hiratsuka et al 2015 Hiratsuka et al |
Copyright_xml | – notice: 2015, Hiratsuka et al. This work is licensed under the Creative Commons Attribution License ( https://creativecommons.org/licenses/by/3.0/ ) (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2015, Hiratsuka et al 2015 Hiratsuka et al |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7X7 7XB 88E 88I 8FE 8FH 8FI 8FJ 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2P M7P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 5PM DOA |
DOI | 10.7554/eLife.05178 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Journals Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Database (Proquest) ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student ProQuest SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Proquest Medical Database Science Database Biological Science Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic CrossRef MEDLINE Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2050-084X |
ExternalDocumentID | oai_doaj_org_article_48dfd66ea4194b7a95d7c40abaec1303 PMC4337632 25668746 10_7554_eLife_05178 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: ; – fundername: ; grantid: No. 22113002 – fundername: ; grantid: Graduate Student Fellowship |
GroupedDBID | 53G 5VS 7X7 88E 88I 8FE 8FH 8FI 8FJ AAFWJ AAKDD AAYXX ABUWG ACGFO ACGOD ACPRK ADBBV ADRAZ AENEX AFKRA AFPKN ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI CCPQU CITATION DIK DWQXO EMOBN FYUFA GNUQQ GROUPED_DOAJ GX1 H13 HCIFZ HMCUK HYE IAO IEA IHR INH ISR ITC KQ8 LK8 M1P M2P M48 M7P M~E NQS OK1 PGMZT PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO RHI RNS RPM UKHRP CGR CUY CVF ECM EIF NPM 3V. 7XB 8FK K9. PJZUB PKEHL PPXIY PQEST PQGLB PQUKI PRINS Q9U 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c585t-c4b24e4f1e9178ae2a20cfd05a681144dcc1f8c21470dcb1d3598dcd9112e7bc3 |
IEDL.DBID | M48 |
ISSN | 2050-084X |
IngestDate | Wed Aug 27 01:25:49 EDT 2025 Thu Aug 21 18:15:56 EDT 2025 Fri Jul 11 00:54:22 EDT 2025 Fri Jul 25 11:55:37 EDT 2025 Thu Apr 03 07:06:12 EDT 2025 Thu Apr 24 23:03:00 EDT 2025 Tue Jul 01 03:10:25 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | mouse in vivo imaging cell biology cell cycle ERK epidermis |
Language | English |
License | http://creativecommons.org/licenses/by/4.0 This article is distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use and redistribution provided that the original author and source are credited. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c585t-c4b24e4f1e9178ae2a20cfd05a681144dcc1f8c21470dcb1d3598dcd9112e7bc3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.7554/eLife.05178 |
PMID | 25668746 |
PQID | 1966507708 |
PQPubID | 2045579 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_48dfd66ea4194b7a95d7c40abaec1303 pubmedcentral_primary_oai_pubmedcentral_nih_gov_4337632 proquest_miscellaneous_1654702555 proquest_journals_1966507708 pubmed_primary_25668746 crossref_citationtrail_10_7554_eLife_05178 crossref_primary_10_7554_eLife_05178 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2015-02-10 |
PublicationDateYYYYMMDD | 2015-02-10 |
PublicationDate_xml | – month: 02 year: 2015 text: 2015-02-10 day: 10 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: Cambridge |
PublicationTitle | eLife |
PublicationTitleAlternate | Elife |
PublicationYear | 2015 |
Publisher | eLife Sciences Publications Ltd eLife Sciences Publications, Ltd |
Publisher_xml | – name: eLife Sciences Publications Ltd – name: eLife Sciences Publications, Ltd |
References | Franzke (bib10) 2012; 209 Yuspa (bib31) 1994; 54 Tamemoto (bib27) 1992; 267 Blanpain (bib6) 2014; 344 Le Gall (bib16) 2003; 278 Torii (bib28) 2006; 97 Sakaue-Sawano (bib24) 2008; 132 Dangi (bib8) 2006; 39 Izumi (bib11) 1998; 17 Luetteke (bib17) 1993; 73 Rahmouni (bib21) 2006; 8 Kamioka (bib13) 2012; 37 Massagué (bib18) 1993; 62 Dethlefsen (bib9) 1998; 69 Sibilia (bib26) 2007; 75 Zwang (bib32) 2011; 42 Aoki (bib4) 2009; 4 Sahin (bib23) 2004; 164 Albeck (bib2) 2013; 49 Aoki (bib3) 2013; 52 Abel (bib1) 2009; 4 Kholodenko (bib15) 2006; 7 Pouysségur (bib20) 2002; 64 Khavari (bib14) 2007; 6 Arwert (bib5) 2012; 12 Roberts (bib22) 2007; 26 Yan (bib30) 2005; 24 Chambard (bib7) 2007; 1773 Jones (bib12) 1995; 80 Peschon (bib19) 1998; 282 Schneider (bib25) 2008; 173 Wright (bib29) 1999; 96 24140422 - Mol Cell. 2013 Nov 21;52(4):529-40 21596316 - Mol Cell. 2011 May 20;42(4):524-35 7813021 - Cell. 1995 Jan 13;80(1):83-93 16800820 - Cancer Sci. 2006 Aug;97(8):697-702 1400347 - J Biol Chem. 1992 Oct 5;267(28):20293-7 22277578 - Cell Struct Funct. 2012;37(1):65-73 24926024 - Science. 2014 Jun 13;344(6189):1242281 8477445 - Cell. 1993 Apr 23;73(2):263-78 18000402 - Cell Cycle. 2007 Dec 1;6(23):2928-31 18267078 - Cell. 2008 Feb 8;132(3):487-98 23219535 - Mol Cell. 2013 Jan 24;49(2):249-61 9812885 - Science. 1998 Nov 13;282(5392):1281-4 19834477 - Nat Protoc. 2009;4(11):1623-31 15735702 - Oncogene. 2005 May 5;24(20):3285-96 8118803 - Cancer Res. 1994 Mar 1;54(5):1178-89 9548562 - J Cell Biochem. 1998 May 1;69(2):143-53 22565824 - J Exp Med. 2012 Jun 4;209(6):1105-19 17188374 - Biochim Biophys Acta. 2007 Aug;1773(8):1299-310 16604064 - Nat Cell Biol. 2006 May;8(5):524-31 12213567 - Biochem Pharmacol. 2002 Sep;64(5-6):755-63 12947092 - J Biol Chem. 2003 Nov 14;278(46):45255-68 22362215 - Nat Rev Cancer. 2012 Mar;12(3):170-80 10500177 - Proc Natl Acad Sci U S A. 1999 Sep 28;96(20):11335-40 19713956 - Nat Protoc. 2009;4(9):1350-62 16482094 - Nat Rev Mol Cell Biol. 2006 Mar;7(3):165-76 17999740 - Differentiation. 2007 Nov;75(9):770-87 16872362 - Cell Prolif. 2006 Aug;39(4):261-79 8394682 - Annu Rev Biochem. 1993;62:515-41 9857183 - EMBO J. 1998 Dec 15;17(24):7260-72 17496923 - Oncogene. 2007 May 14;26(22):3291-310 18556782 - Am J Pathol. 2008 Jul;173(1):14-24 14993236 - J Cell Biol. 2004 Mar 1;164(5):769-79 |
References_xml | – volume: 4 start-page: 1623 year: 2009 ident: bib4 article-title: Visualization of small GTPase activity with fluorescence resonance energy transfer-based biosensors publication-title: Nature Protocols doi: 10.1038/nprot.2009.175 – volume: 64 start-page: 755 year: 2002 ident: bib20 article-title: Fidelity and spatio-temporal control in MAP kinase (ERKs) signalling publication-title: Biochemical Pharmacology doi: 10.1016/S0006-2952(02)01135-8 – volume: 278 start-page: 45255 year: 2003 ident: bib16 article-title: Regulated cell surface pro-EGF ectodomain shedding is a zinc metalloprotease-dependent process publication-title: The Journal of Biological Chemistry doi: 10.1074/jbc.M307745200 – volume: 17 start-page: 7260 year: 1998 ident: bib11 article-title: A metalloprotease-disintegrin, MDC9/meltrin-gamma/ADAM9 and PKCdelta are involved in TPA-induced ectodomain shedding of membrane-anchored heparin-binding EGF-like growth factor publication-title: The EMBO Journal doi: 10.1093/emboj/17.24.7260 – volume: 1773 start-page: 1299 year: 2007 ident: bib7 article-title: ERK implication in cell cycle regulation publication-title: Biochimica Et Biophysica Acta doi: 10.1016/j.bbamcr.2006.11.010 – volume: 97 start-page: 697 year: 2006 ident: bib28 article-title: ERK MAP kinase in G cell cycle progression and cancer publication-title: Cancer Science doi: 10.1111/j.1349-7006.2006.00244.x – volume: 96 start-page: 11335 year: 1999 ident: bib29 article-title: Mitogen-activated protein kinase kinase activity is required for the G(2)/M transition of the cell cycle in mammalian fibroblasts publication-title: Proceedings of the National Academy of Sciences of USA doi: 10.1073/pnas.96.20.11335 – volume: 69 start-page: 143 year: 1998 ident: bib9 article-title: Extracellular calcium influx stimulates metalloproteinase cleavage and secretion of heparin-binding EGF-like growth factor independently of protein kinase C publication-title: Journal of Cellular Biochemistry doi: 10.1002/(SICI)1097-4644(19980501)69:23.0.CO;2-S – volume: 7 start-page: 165 year: 2006 ident: bib15 article-title: Cell-signalling dynamics in time and space publication-title: Nature Reviews Molecular Cell Biology doi: 10.1038/nrm1838 – volume: 26 start-page: 3291 year: 2007 ident: bib22 article-title: Targeting the Raf-MEK-ERK mitogen-activated protein kinase cascade for the treatment of cancer publication-title: Oncogene doi: 10.1038/sj.onc.1210422 – volume: 8 start-page: 524 year: 2006 ident: bib21 article-title: Loss of the VHR dual-specific phosphatase causes cell-cycle arrest and senescence publication-title: Nature Cell Biology doi: 10.1038/ncb1398 – volume: 54 start-page: 1178 year: 1994 ident: bib31 article-title: The pathogenesis of squamous cell cancer: lessons learned from studies of skin carcinogenesis −− thirty-third G. H. A. Clowes Memorial Award Lecture publication-title: Cancer Research – volume: 42 start-page: 524 year: 2011 ident: bib32 article-title: Two phases of mitogenic signaling unveil roles for p53 and EGR1 in elimination of inconsistent growth signals publication-title: Molecular Cell doi: 10.1016/j.molcel.2011.04.017 – volume: 49 start-page: 249 year: 2013 ident: bib2 article-title: Frequency-modulated pulses of ERK activity transmit quantitative proliferation signals publication-title: Molecular Cell doi: 10.1016/j.molcel.2012.11.002 – volume: 24 start-page: 3285 year: 2005 ident: bib30 article-title: BRCA1-mediated G2/M cell cycle arrest requires ERK1/2 kinase activation publication-title: Oncogene doi: 10.1038/sj.onc.1208492 – volume: 37 start-page: 65 year: 2012 ident: bib13 article-title: Live imaging of protein kinase activities in transgenic mice expressing FRET biosensors publication-title: Cell Structure and Function doi: 10.1247/csf.11045 – volume: 344 start-page: 1242281 year: 2014 ident: bib6 article-title: Stem cell plasticity. Plasticity of epithelial stem cells in tissue regeneration publication-title: Science doi: 10.1126/science.1242281 – volume: 62 start-page: 515 year: 1993 ident: bib18 article-title: Membrane-anchored growth factors publication-title: Annual Review of Biochemistry doi: 10.1146/annurev.bi.62.070193.002503 – volume: 6 start-page: 2928 year: 2007 ident: bib14 article-title: Ras / Erk MAPK signaling in epidermal homeostasis and neoplasia publication-title: Cell Cycle doi: 10.4161/cc.6.23.4998 – volume: 12 start-page: 170 year: 2012 ident: bib5 article-title: Epithelial stem cells, wound healing and cancer publication-title: Nature Reviews Cancer doi: 10.1038/nrc3217 – volume: 80 start-page: 83 year: 1995 ident: bib12 article-title: Stem cell patterning and fate in human epidermis publication-title: Cell doi: 10.1016/0092-8674(95)90453-0 – volume: 209 start-page: 1105 year: 2012 ident: bib10 article-title: Epidermal ADAM17 maintains the skin barrier by regulating EGFR ligand-dependent terminal keratinocyte differentiation publication-title: The Journal of Experimental Medicine doi: 10.1084/jem.20112258 – volume: 52 start-page: 529 year: 2013 ident: bib3 article-title: Stochastic ERK activation induced by noise and cell-to-cell propagation regulates cell density-dependent proliferation publication-title: Molecular Cell doi: 10.1016/j.molcel.2013.09.015 – volume: 132 start-page: 487 year: 2008 ident: bib24 article-title: Visualizing spatiotemporal dynamics of multicellular cell-cycle progression publication-title: Cell doi: 10.1016/j.cell.2007.12.033 – volume: 267 start-page: 20293 year: 1992 ident: bib27 article-title: Biphasic activation of two mitogen-activated protein kinases during the cell cycle in mammalian cells publication-title: The Journal of Biological Chemistry doi: 10.1016/S0021-9258(19)88700-8 – volume: 173 start-page: 14 year: 2008 ident: bib25 article-title: Beyond wavy hairs: the epidermal growth factor receptor and its ligands in skin biology and pathology publication-title: The American Journal Of Pathology doi: 10.2353/ajpath.2008.070942 – volume: 4 start-page: 1350 year: 2009 ident: bib1 article-title: Multi-stage chemical carcinogenesis in mouse skin: fundamentals and applications publication-title: Nature Protocols doi: 10.1038/nprot.2009.120 – volume: 73 start-page: 263 year: 1993 ident: bib17 article-title: TGF alpha deficiency results in hair follicle and eye abnormalities in targeted and waved-1 mice publication-title: Cell doi: 10.1016/0092-8674(93)90228-I – volume: 282 start-page: 1281 year: 1998 ident: bib19 article-title: An essential role for ectodomain shedding in mammalian development publication-title: Science doi: 10.1126/science.282.5392.1281 – volume: 75 start-page: 770 year: 2007 ident: bib26 article-title: The epidermal growth factor receptor: from development to tumorigenesis publication-title: Differentiation doi: 10.1111/j.1432-0436.2007.00238.x – volume: 164 start-page: 769 year: 2004 ident: bib23 article-title: Distinct roles for ADAM10 and ADAM17 in ectodomain shedding of six EGFR ligands publication-title: The Journal of Cell Biology doi: 10.1083/jcb.200307137 – volume: 39 start-page: 261 year: 2006 ident: bib8 article-title: Activation of extracellular signal-regulated kinase ( ERK ) in G2 phase delays mitotic entry through p21 CIP1 publication-title: Cell Proliferation doi: 10.1111/j.1365-2184.2006.00388.x – reference: 16800820 - Cancer Sci. 2006 Aug;97(8):697-702 – reference: 22565824 - J Exp Med. 2012 Jun 4;209(6):1105-19 – reference: 10500177 - Proc Natl Acad Sci U S A. 1999 Sep 28;96(20):11335-40 – reference: 22277578 - Cell Struct Funct. 2012;37(1):65-73 – reference: 17999740 - Differentiation. 2007 Nov;75(9):770-87 – reference: 8118803 - Cancer Res. 1994 Mar 1;54(5):1178-89 – reference: 16482094 - Nat Rev Mol Cell Biol. 2006 Mar;7(3):165-76 – reference: 19713956 - Nat Protoc. 2009;4(9):1350-62 – reference: 1400347 - J Biol Chem. 1992 Oct 5;267(28):20293-7 – reference: 16872362 - Cell Prolif. 2006 Aug;39(4):261-79 – reference: 18000402 - Cell Cycle. 2007 Dec 1;6(23):2928-31 – reference: 12213567 - Biochem Pharmacol. 2002 Sep;64(5-6):755-63 – reference: 14993236 - J Cell Biol. 2004 Mar 1;164(5):769-79 – reference: 15735702 - Oncogene. 2005 May 5;24(20):3285-96 – reference: 16604064 - Nat Cell Biol. 2006 May;8(5):524-31 – reference: 18556782 - Am J Pathol. 2008 Jul;173(1):14-24 – reference: 9857183 - EMBO J. 1998 Dec 15;17(24):7260-72 – reference: 19834477 - Nat Protoc. 2009;4(11):1623-31 – reference: 23219535 - Mol Cell. 2013 Jan 24;49(2):249-61 – reference: 17188374 - Biochim Biophys Acta. 2007 Aug;1773(8):1299-310 – reference: 24140422 - Mol Cell. 2013 Nov 21;52(4):529-40 – reference: 8394682 - Annu Rev Biochem. 1993;62:515-41 – reference: 9548562 - J Cell Biochem. 1998 May 1;69(2):143-53 – reference: 8477445 - Cell. 1993 Apr 23;73(2):263-78 – reference: 21596316 - Mol Cell. 2011 May 20;42(4):524-35 – reference: 12947092 - J Biol Chem. 2003 Nov 14;278(46):45255-68 – reference: 24926024 - Science. 2014 Jun 13;344(6189):1242281 – reference: 9812885 - Science. 1998 Nov 13;282(5392):1281-4 – reference: 22362215 - Nat Rev Cancer. 2012 Mar;12(3):170-80 – reference: 18267078 - Cell. 2008 Feb 8;132(3):487-98 – reference: 7813021 - Cell. 1995 Jan 13;80(1):83-93 – reference: 17496923 - Oncogene. 2007 May 14;26(22):3291-310 |
SSID | ssj0000748819 |
Score | 2.4801643 |
Snippet | Extracellular signal-regulated kinase (ERK) is a key effector of many growth signalling pathways. In this study, we visualise epidermal ERK activity in living... |
SourceID | doaj pubmedcentral proquest pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | e05178 |
SubjectTerms | Acetic acid Animals Biosensors Cell Biology Cell cycle Cell Cycle - drug effects Cell division Cell Division - drug effects Cell proliferation Data analysis Ear Enzyme Activation - drug effects Epidermal growth factor Epidermis Epidermis - drug effects Epidermis - enzymology ERK Extracellular signal-regulated kinase Extracellular Signal-Regulated MAP Kinases - metabolism Extracellular Space - drug effects Extracellular Space - enzymology Fluorescence resonance energy transfer Frequency dependence Humans Hypotheses Imaging, Three-Dimensional in vivo imaging Ligands Matrix Metalloproteinase Inhibitors - pharmacology Mice, Transgenic Microscopy Propagation Receptor, Epidermal Growth Factor - metabolism Signal transduction Single-Cell Analysis Skin Skin - enzymology Spatial distribution Tetradecanoylphorbol Acetate - pharmacology Wound Healing - drug effects Wounds |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NS-UwEA8iCF7Er9XuqmThnYSubZo26XFXFJFlTyt4C_nEovbJ862L_70zSV95T4S97LWZpmlmMl9MfkPIhBXGQFRR5ZJXIedCNrlsQ5Xz0LjKOYcwZFht8au5uuHXt_XtUqsvrAlL8MBp4864dME1jdccwm0jdFs7YXmhjfYW9S9qX7B5S8FU1MECBLNs04U8ASbzzP_sgv-GiFRyxQRFpP6P3Mv3VZJLZudym2wN_iL9nta5Q9Z8v0s2UgfJ1z3yN2b0MPuO5aQUpgcFETebTgMFxTvT4yCWauiHfJa6z3tH77sebBjFqw0pMUsRzwkshqPmlXY9feleprR7jI2McD5ME3j6DO_tk5vLi9_nV_nQSyG3EBDMc8sN456H0kN8JrVnmhU2uKLWjYSQiDtryyAtdi0qnDWlQ2Q_Zx3oQuaFsdUnst5Pe39IqDU146IKlnHHW1ub0Iq2loVvmQfaKiOni-1VdgAax34XDwoCDuSFirxQkRcZmYzETwlf42OyH8inkQRBseMDEBU1iIr6l6hk5GjBZTWc1GcFGgicVCEK-MbXcRjOGHJH9x42VuGNL4HBV52RgyQU40rAZWyk4E1GxIq4rCx1daTv7iKON69Qu7PP_-PfvpBNcOXiZfuyOCLr89kffwzu0tycxJPxBidsGHw priority: 102 providerName: Directory of Open Access Journals – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3Na9VAEB-0Ingp9Tu2ygo9CWuTzSa7OYmKpYh4svBuYT81WJP2vdeW_vfObPKiT4rX7CQsO7PzlZnfAByK3FqMKkquZRm5VLrmuokll7H2pfeeYMio2uJrfXIqPy-qxZRwW01llRudmBS1HxzlyI9QUtCZUCrX784vOE2Nor-r0wiNu3CPoMuopEst1JxjQfOo0eKNbXkKDedR-NLF8JZwqfSWIUp4_bc5mf_WSv5lfI73YHfyGtn7kc0P4U7oH8H9cY7kzWO4Tnk9ysFTUSnDz6OaSEfOhshQ_S7NvEgFG-aML8cZ9MGzn12PloxRg8OYnmWE6oR2wzN7w7qeXXVXA-t-pXFG9D1KFgS2wveewOnxp28fT_g0UYE7DAvW3EkrZJCxCBilaROEEbmLPq9MrTEwkt65ImpHs4ty72zhCd_PO48aUQRlXfkUdvqhD8-BOVsJqcrohPSycZWNjUIO5KERAWnLDN5sjrd1E9w4Tb04azHsIF60iRdt4kUGhzPx-YiycTvZB-LTTELQ2OnBsPzeTjetldpHX9fByKKRVpmm8srJ3FgTHBnsDA42XG6n-7pq_0hXBq_nZbxpxB3TBzzYlvq-FIVgVQbPRqGYd4KOY62VrDNQW-KytdXtlb77kdC8ZUk6Xrz4_7b24QG6aqmZvsgPYGe9vAwv0R1a21dJ5n8DGLAPQw priority: 102 providerName: ProQuest |
Title | Intercellular propagation of extracellular signal-regulated kinase activation revealed by in vivo imaging of mouse skin |
URI | https://www.ncbi.nlm.nih.gov/pubmed/25668746 https://www.proquest.com/docview/1966507708 https://www.proquest.com/docview/1654702555 https://pubmed.ncbi.nlm.nih.gov/PMC4337632 https://doaj.org/article/48dfd66ea4194b7a95d7c40abaec1303 |
Volume | 4 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwdV1Zb9QwEB71eOEFgbgCZWWkPiFlyeHEzhOiqFWFoEKIlfYt8glRlyykS6H_nhnnULdaXmPHiTzXNyP7G4DjLNEas4o8ljz3MReyjGXl85j70ubWWqIho9MWF-X5gn9YFss9GJtxDht4tTO1o35Si241__vr5i0aPOLXucBo-MZ9bLybE9mU3IdDDEmCLPTTgPODSxaop2nV38-7-w7xASOokYJA8K3gFDj8dwHPu-cnbwWkswdwf0CS7F0v-oew59pH8CdU-KgaT8dLGS6KDiNsPlt7ho64U9MgHd1Qq7jru9E7yy6bFmMao6sOfaGWEb8TRhDL9A1rWnbdXK9Z8yM0NqL1qGzg2BW-9xgWZ6df35_HQ2-F2GCCsIkN1xl33KcO8zWpXKayxHibFKqUmCJxa0zqpaEuRok1OrXE9GeNRd-YOaFN_gQO2nXrngEzusi4yL3JuOWVKbSvRFXIxFWZw7l5BK_HTa3NQDxO_S9WNSYgJIw6CKMOwojgeJr8s-fb2D3thKQzTSGS7PBg3X2rB5urubTelqVTPK24FqoqrDA8UVo5Q6E7gqNRtvWoeDV6JAStQiT4jVfTMNocSUe1Dje2phtggpKxIoKnvSpMfzKqUgRiS0m2fnV7pG2-B15vnpO3z57_d80XcA_xWrhRnyZHcLDpfruXiIk2egb7YilmcHhyevH5yyxUFmbBBv4ByLwSHQ |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VVIheEG8MBRapXJBM7fXauz4gRKFVSkOEUCv1ZrwvalGckoRW-VP8RmZsxxBUces1u1mtdt7jmfkAtnikNUYVSahE4kMhVRaq3Ceh8JlNrLU0hoyqLcbZ8Eh8OE6P1-DXsheGyiqXOrFR1HZiKEe-jZyCzoSUkXpz9iMk1Cj6urqE0GjZ4sAtLjBkm73ef4_0fcH53u7hu2HYoQqEBl3jeWiE5sIJHzuMVFTpeMkj422UlpnC4EBYY2KvDOH3RNbo2NKMO2ssagXupDYJnnsN1kWCocwA1nd2x58-91kdNMgKbWzbCCjRVG-7UeXdK5qEpVZMX4MQcJlb-2915l_mbu8W3Oz8VPa2ZazbsObqO3C9Ra5c3IWLJpNIWX8qY2V4PCqmhshs4hkq_GnZL1KJSHkaTlvUe2fZt6pG28mopaJNCDOaI4WWyjK9YFXNzqvzCau-NwBKdB6lJxyb4f_uwdGVvPZ9GNST2j0EZnTKhUy84cKK3KTa5zJPVeRy7nBvEsDL5fMWphtwTjgbpwUGOkSLoqFF0dAigK1-81k71-PybTtEp34LDeNufphMvxadbBdCWW-zzJUizoWWZZ5aaURU6tIZchEC2FxSueg0xKz4w88BPO-XUbaJOmXt8GEL6jSTFPSlATxomaK_CbqqmZIiC0CusMvKVVdX6uqkmR8uErIq_NH_r_UMbgwPP46K0f744DFsoKPYtPLH0SYM5tOf7gk6Y3P9tJMABl-uWuh-A8j_TkQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIhAXxJtAASOVC1LYxHFi54AQUFYtrSoOVNpbiF8lomTL7tJq_xq_jhknG1hUcet17bUsz3syMx_ANk-0xqgii5XIfCykKmJV-iwWvrCZtZbGkFG1xWGxeyQ-TvLJBvxa9cJQWeVKJwZFbaeGcuQj5BR0JqRM1Mj3ZRGfdsZvTn_EhCBFX1pXcBodi-y75TmGb_PXeztI6xecjz98fr8b9wgDsUE3eREboblwwqcOoxZVO17zxHib5HWhMFAQ1pjUK0NYPok1OrU0784aixqCO6lNhudegasyy1OSMTmRQ34HTbNCa9u1BEo02iN30Hj3imZiqTUjGLACLnJw_63T_MvwjW_Bzd5jZW87FrsNG669A9c6DMvlXTgPOUXK_1NBK8PjUUUFcrOpZ_h-s3pYpGKR-iSeuWMCDXOWfWtatKKMmiu61DCjiVJosyzTS9a07Kw5m7Lme4BSovMoUeHYHP93D44u5a3vw2Y7bd1DYEbnXMjMGy6sKE2ufSnLXCWu5A73ZhG8XD1vZfpR54S4cVJhyEO0qAItqkCLCLaHzafdhI-Lt70jOg1baCx3-GE6O656Ka-Est4WhatFWgot6zK30oik1rUz5CxEsLWictXrinn1h7MjeD4so5QTderW4cNW1HMmKfzLI3jQMcVwE3RaCyVFEYFcY5e1q66vtM3XMElcZGRf-KP_X-sZXEdRqw72Dvcfww30GENPf5psweZi9tM9Qa9soZ8G9mfw5bLl7TdKQVEU |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Intercellular+propagation+of+extracellular+signal-regulated+kinase+activation+revealed+by+in+vivo+imaging+of+mouse+skin&rft.jtitle=eLife&rft.au=Hiratsuka%2C+Toru&rft.au=Fujita%2C+Yoshihisa&rft.au=Naoki%2C+Honda&rft.au=Aoki%2C+Kazuhiro&rft.date=2015-02-10&rft.eissn=2050-084X&rft.volume=4&rft.spage=e05178&rft_id=info:doi/10.7554%2FeLife.05178&rft_id=info%3Apmid%2F25668746&rft.externalDocID=25668746 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2050-084X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2050-084X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2050-084X&client=summon |