CellMemory: hierarchical interpretation of out-of-distribution cells using bottlenecked transformer
Machine learning methods, especially Transformer architectures, have been widely employed in single-cell omics studies. However, interpretability and accurate representation of out-of-distribution (OOD) cells remains challenging. Inspired by the global workspace theory in cognitive neuroscience, we...
Saved in:
Published in | Genome Biology Vol. 26; no. 1; pp. 178 - 37 |
---|---|
Main Authors | , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
BioMed Central
23.06.2025
BMC |
Subjects | |
Online Access | Get full text |
ISSN | 1474-760X 1474-7596 1474-760X |
DOI | 10.1186/s13059-025-03638-y |
Cover
Loading…
Abstract | Machine learning methods, especially Transformer architectures, have been widely employed in single-cell omics studies. However, interpretability and accurate representation of out-of-distribution (OOD) cells remains challenging. Inspired by the global workspace theory in cognitive neuroscience, we introduce CellMemory, a bottlenecked Transformer with improved generalizability designed for the hierarchical interpretation of OOD cells. Without pre-training, CellMemory outperforms existing single-cell foundation models and accurately deciphers spatial transcriptomics at high resolution. Leveraging its robust representations, we further elucidate malignant cells and their founder cells across patients, providing reliable characterizations of the cellular changes caused by the disease. |
---|---|
AbstractList | Machine learning methods, especially Transformer architectures, have been widely employed in single-cell omics studies. However, interpretability and accurate representation of out-of-distribution (OOD) cells remains challenging. Inspired by the global workspace theory in cognitive neuroscience, we introduce CellMemory, a bottlenecked Transformer with improved generalizability designed for the hierarchical interpretation of OOD cells. Without pre-training, CellMemory outperforms existing single-cell foundation models and accurately deciphers spatial transcriptomics at high resolution. Leveraging its robust representations, we further elucidate malignant cells and their founder cells across patients, providing reliable characterizations of the cellular changes caused by the disease. Abstract Machine learning methods, especially Transformer architectures, have been widely employed in single-cell omics studies. However, interpretability and accurate representation of out-of-distribution (OOD) cells remains challenging. Inspired by the global workspace theory in cognitive neuroscience, we introduce CellMemory, a bottlenecked Transformer with improved generalizability designed for the hierarchical interpretation of OOD cells. Without pre-training, CellMemory outperforms existing single-cell foundation models and accurately deciphers spatial transcriptomics at high resolution. Leveraging its robust representations, we further elucidate malignant cells and their founder cells across patients, providing reliable characterizations of the cellular changes caused by the disease. Machine learning methods, especially Transformer architectures, have been widely employed in single-cell omics studies. However, interpretability and accurate representation of out-of-distribution (OOD) cells remains challenging. Inspired by the global workspace theory in cognitive neuroscience, we introduce CellMemory, a bottlenecked Transformer with improved generalizability designed for the hierarchical interpretation of OOD cells. Without pre-training, CellMemory outperforms existing single-cell foundation models and accurately deciphers spatial transcriptomics at high resolution. Leveraging its robust representations, we further elucidate malignant cells and their founder cells across patients, providing reliable characterizations of the cellular changes caused by the disease.Machine learning methods, especially Transformer architectures, have been widely employed in single-cell omics studies. However, interpretability and accurate representation of out-of-distribution (OOD) cells remains challenging. Inspired by the global workspace theory in cognitive neuroscience, we introduce CellMemory, a bottlenecked Transformer with improved generalizability designed for the hierarchical interpretation of OOD cells. Without pre-training, CellMemory outperforms existing single-cell foundation models and accurately deciphers spatial transcriptomics at high resolution. Leveraging its robust representations, we further elucidate malignant cells and their founder cells across patients, providing reliable characterizations of the cellular changes caused by the disease. |
ArticleNumber | 178 |
Author | Jiang, Lan Zhang, Xuegong Hu, Yiwen Li, Yun Zou, James Liu, Dianbo Chen, Yanjie Kellis, Manolis Zhu, He Wang, Qifei Li, Guochao Chen, Jinfeng Li, Yue Wang, Yuwei |
Author_xml | – sequence: 1 givenname: Qifei surname: Wang fullname: Wang, Qifei – sequence: 2 givenname: He surname: Zhu fullname: Zhu, He – sequence: 3 givenname: Yiwen surname: Hu fullname: Hu, Yiwen – sequence: 4 givenname: Yanjie surname: Chen fullname: Chen, Yanjie – sequence: 5 givenname: Yuwei surname: Wang fullname: Wang, Yuwei – sequence: 6 givenname: Guochao surname: Li fullname: Li, Guochao – sequence: 7 givenname: Yun surname: Li fullname: Li, Yun – sequence: 8 givenname: Jinfeng surname: Chen fullname: Chen, Jinfeng – sequence: 9 givenname: Xuegong surname: Zhang fullname: Zhang, Xuegong – sequence: 10 givenname: James surname: Zou fullname: Zou, James – sequence: 11 givenname: Manolis surname: Kellis fullname: Kellis, Manolis – sequence: 12 givenname: Yue surname: Li fullname: Li, Yue – sequence: 13 givenname: Dianbo surname: Liu fullname: Liu, Dianbo – sequence: 14 givenname: Lan surname: Jiang fullname: Jiang, Lan |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/40551223$$D View this record in MEDLINE/PubMed |
BookMark | eNpdkkuLFDEURoOMOA_9Ay6kwI2b0rxT5UaGxsfAiBsFdyGV3HSnrUraJCX0v7e6exxmXOV1cri5-S7RWUwREHpJ8FtCOvmuEIZF32IqWswk69r9E3RBuOKtkvjn2YP5ObosZYsx6TmVz9A5x0IQStkFsisYx68wpbx_32wCZJPtJlgzNiFWyLsM1dSQYpN8k-baJt-6UGoOw3zctsv10swlxHUzpFpHiGB_gWtqNrH4lCfIz9FTb8YCL-7GK_Tj08fvqy_t7bfPN6vr29aKTtR2IJJT5fpOSW487Yizkg3LYqDUU2Vtj00vGe57poyh2DtnhJMUMxAUG8yu0M3J65LZ6l0Ok8l7nUzQx42U19rkGuwIGhMAPyw61yuOgZgOrCV-EEooTkAurg8n124eJnAW4vKg8ZH08UkMG71OfzShpGOdPBje3Bly-j1DqXoK5dAuEyHNRbOl_5JxdkRf_4du05zj0qsDpaTAnHcL9ephSfe1_PvMBaAnwOZUSgZ_jxCsD4nRp8ToJTH6mBi9Z38BVUK1aA |
Cites_doi | 10.1038/s42256-022-00534-z 10.1038/s42255-022-00657-y 10.1038/s41580-024-00756-6 10.1038/s41467-019-09234-6 10.1038/s41588-021-00911-1 10.1038/s41592-024-02353-z 10.1038/s41587-019-0332-7 10.1101/2024.04.02.587824 10.1126/science.abl4896 10.1038/s42255-023-00876-x 10.1038/s41587-023-01657-3 10.1126/science.aah4573 10.1038/s41467-023-43630-3 10.1038/s41418-018-0202-8 10.1016/j.cell.2019.01.031 10.1038/s41592-018-0229-2 10.1038/s41587-021-01001-7 10.1038/s41467-023-43458-x 10.15252/msb.20209620 10.1038/s41467-022-32052-2 10.1038/s41586-018-0436-0 10.1038/s41590-022-01167-5 10.1038/s41586-022-05208-9 10.1016/j.cell.2021.04.048 10.1038/s41572-019-0063-6 10.1126/science.aaw1219 10.1126/science.abl5197 10.1126/science.1254257 10.1002/qub2.69 10.1016/j.ccell.2023.01.001 10.1002/cam4.4547 10.3892/etm.2021.9736 10.1016/j.cell.2022.04.003 10.1038/nmeth.2764 10.1016/j.ccell.2022.10.008 10.1126/science.ade9516 10.1084/jem.20232028 10.1038/s41586-019-1434-6 10.1038/s41586-022-04918-4 10.1126/science.aau5324 10.1145/3586074 10.1186/s13059-022-02683-1 10.1038/s41593-021-00872-y 10.1038/s41586-023-06252-9 10.1038/s41419-020-2488-y 10.1038/s42255-022-00531-x 10.5281/zenodo.15511926 10.1101/2023.11.28.568918 10.1038/s41592-021-01336-8 10.1182/asheducation-2015.1.225 10.1038/s41467-023-35923-4 10.1016/j.cell.2024.03.010 10.1016/j.cels.2021.05.006 10.1073/pnas.95.24.14529 10.1016/j.xcrm.2024.101489 10.1016/j.devcel.2022.04.016 10.1016/j.cell.2024.03.009 10.1038/s41588-023-01523-7 10.1038/s41588-019-0531-7 10.1038/s41591-023-02327-2 10.1038/35057062 10.1038/s41576-022-00532-2 10.1038/s41586-023-06812-z 10.1038/s41592-024-02201-0 10.1016/j.cell.2018.06.021 10.1038/s41587-022-01483-z 10.1038/s41392-021-00824-9 10.1101/2024.06.30.601119 10.1126/science.adg0934 10.5281/zenodo.15511819 10.1038/s41467-021-26770-2 10.1038/s41586-023-06139-9 10.1038/s41592-023-02035-2 10.1038/s42003-020-01464-5 10.1016/j.celrep.2021.109915 10.1038/s41587-021-00830-w 10.1038/s41592-021-01264-7 10.1038/s41586-023-06837-4 |
ContentType | Journal Article |
Copyright | 2025. The Author(s). 2025. This work is licensed under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. The Author(s) 2025 2025 |
Copyright_xml | – notice: 2025. The Author(s). – notice: 2025. This work is licensed under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: The Author(s) 2025 2025 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7X7 7XB 88E 8FE 8FH 8FI 8FJ 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M7P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS 7X8 5PM DOA |
DOI | 10.1186/s13059-025-03638-y |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Database (Proquest) ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection PML(ProQuest Medical Library) Biological Science Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | Publicly Available Content Database MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Open Access Full Text url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1474-760X |
EndPage | 37 |
ExternalDocumentID | oai_doaj_org_article_01eefba96d9740e1a8ecc1fb575741e6 PMC12183866 40551223 10_1186_s13059_025_03638_y |
Genre | Journal Article |
GroupedDBID | --- 0R~ 29H 4.4 53G 5GY 5VS 7X7 88E 8FE 8FH 8FI 8FJ AAFWJ AAHBH AAJSJ AASML AAYXX ABUWG ACGFO ACGFS ACJQM ACPRK ADBBV ADUKV AEGXH AFKRA AFPKN AHBYD AIAGR ALIPV ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH AOIAM AOIJS BAPOH BAWUL BBNVY BCNDV BENPR BFQNJ BHPHI BMC BPHCQ BVXVI C6C CCPQU CITATION EBD EBLON EBS EMOBN FYUFA GROUPED_DOAJ GX1 HCIFZ HMCUK IAO IGS IHR ISR ITC KPI LK8 M1P M7P PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO ROL RPM RSV SJN SOJ SV3 UKHRP CGR CUY CVF ECM EIF NPM 3V. 7XB 8FK AZQEC DWQXO GNUQQ K9. PJZUB PKEHL PPXIY PQEST PQGLB PQUKI PRINS 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c585t-b16427d98764af281dc63b764b22f27cc90a96309937aa20fdda5d6203e520a03 |
IEDL.DBID | DOA |
ISSN | 1474-760X 1474-7596 |
IngestDate | Wed Aug 27 01:27:34 EDT 2025 Thu Aug 21 18:26:34 EDT 2025 Fri Jul 11 17:01:31 EDT 2025 Sat Aug 23 12:29:39 EDT 2025 Fri Jun 27 02:12:28 EDT 2025 Thu Jul 03 08:34:52 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | 2025. The Author(s). Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c585t-b16427d98764af281dc63b764b22f27cc90a96309937aa20fdda5d6203e520a03 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | https://doaj.org/article/01eefba96d9740e1a8ecc1fb575741e6 |
PMID | 40551223 |
PQID | 3227650448 |
PQPubID | 2040232 |
PageCount | 37 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_01eefba96d9740e1a8ecc1fb575741e6 pubmedcentral_primary_oai_pubmedcentral_nih_gov_12183866 proquest_miscellaneous_3223634366 proquest_journals_3227650448 pubmed_primary_40551223 crossref_primary_10_1186_s13059_025_03638_y |
PublicationCentury | 2000 |
PublicationDate | 2025-06-23 |
PublicationDateYYYYMMDD | 2025-06-23 |
PublicationDate_xml | – month: 06 year: 2025 text: 2025-06-23 day: 23 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: London |
PublicationTitle | Genome Biology |
PublicationTitleAlternate | Genome Biol |
PublicationYear | 2025 |
Publisher | BioMed Central BMC |
Publisher_xml | – name: BioMed Central – name: BMC |
References | 3638_CR36 E Dann (3638_CR58) 2023; 55 3638_CR39 SZ Wu (3638_CR49) 2021; 53 QH Nguyen (3638_CR50) 2028; 2018 3638_CR33 AC Villani (3638_CR57) 2017; 356 F Yang (3638_CR18) 2022; 4 3638_CR100 H Chen (3638_CR42) 2021; 37 RC Jones (3638_CR2) 2022; 376 3638_CR25 3638_CR24 NL Jorstad (3638_CR30) 2023; 382 3638_CR23 3638_CR22 P van Galen (3638_CR63) 2019; 176 C Xu (3638_CR8) 2021; 17 T Kumar (3638_CR31) 2023; 620 S He (3638_CR40) 2022; 40 L Sikkema (3638_CR1) 2023; 29 G Novakovsky (3638_CR10) 2023; 24 3638_CR13 C De Donno (3638_CR6) 2023; 20 3638_CR16 Y Chen (3638_CR61) 2020; 11 3638_CR15 PA Northcott (3638_CR65) 2019; 5 3638_CR19 3638_CR94 3638_CR93 3638_CR96 3638_CR95 K Hrovatin (3638_CR29) 2023; 5 MD Luecken (3638_CR37) 2022; 19 3638_CR97 3638_CR12 3638_CR11 K Liu (3638_CR82) 2024; 187 3638_CR99 Y Chen (3638_CR72) 2022; 13 X Liu (3638_CR81) 2023; 41 RS Negrin (3638_CR62) 2015; 2015 Z Qin (3638_CR83) 2024; 221 Z Wang (3638_CR73) 2021; 12 ES Lander (3638_CR3) 2001; 409 R Sandberg (3638_CR4) 2014; 11 3638_CR85 3638_CR84 TC Lu (3638_CR32) 2023; 380 3638_CR87 3638_CR86 J Dohmen (3638_CR70) 2022; 23 3638_CR89 3638_CR88 JR Moffitt (3638_CR41) 2018; 362 R Lopez (3638_CR38) 2018; 15 3638_CR90 3638_CR92 D van Bruggen (3638_CR53) 2022; 57 V Hovestadt (3638_CR69) 2019; 572 A Janesick (3638_CR48) 2023; 14 S Jessa (3638_CR66) 2019; 51 SG Rodriques (3638_CR47) 2019; 363 Y Deng (3638_CR76) 2024; 5 XL Hao (3638_CR77) 2019; 26 X Liu (3638_CR79) 2020; 3 Z Yao (3638_CR56) 2023; 624 F Klein (3638_CR64) 2022; 23 L Zhang (3638_CR71) 2022; 7 S Dehaene (3638_CR21) 1998; 95 S Salcher (3638_CR34) 2022; 40 JM Granja (3638_CR60) 2019; 37 Y Zhou (3638_CR98) 2019; 10 H Aliee (3638_CR43) 2021; 12 T Biancalani (3638_CR44) 2021; 18 P Zhong (3638_CR51) 2021; 21 Y Hao (3638_CR7) 2021; 184 BJ Baars (3638_CR20) 1997; 4 A Szałata (3638_CR14) 2024; 21 KA Aldinger (3638_CR68) 2021; 24 J Chen (3638_CR26) 2023; 14 AP Patel (3638_CR75) 2014; 344 CV Theodoris (3638_CR17) 2023; 618 M Lotfollahi (3638_CR9) 2022; 40 S Mages (3638_CR46) 2023; 41 M Lotfollahi (3638_CR5) 2024; 187 A Zeisel (3638_CR55) 2018; 174 KS Smith (3638_CR67) 2022; 609 M Nomura (3638_CR80) 2023; 14 J Liang (3638_CR78) 2022; 11 TB Alexander (3638_CR59) 2018; 562 L Steuernagel (3638_CR35) 2022; 4 Q Fournier (3638_CR91) 2021; 55 DM Cable (3638_CR45) 2022; 40 AJC Russell (3638_CR52) 2024; 625 C Domínguez Conde (3638_CR27) 2022; 376 A Chen (3638_CR54) 2022; 185 M Fasolino (3638_CR28) 2022; 4 L Garcia-Alonso (3638_CR74) 2022; 607 |
References_xml | – ident: 3638_CR90 – volume: 4 start-page: 852 year: 2022 ident: 3638_CR18 publication-title: Nat Mach Intell doi: 10.1038/s42256-022-00534-z – volume: 4 start-page: 1402 year: 2022 ident: 3638_CR35 publication-title: Nat Metab doi: 10.1038/s42255-022-00657-y – ident: 3638_CR11 doi: 10.1038/s41580-024-00756-6 – volume: 10 start-page: 1523 year: 2019 ident: 3638_CR98 publication-title: Nat Commun doi: 10.1038/s41467-019-09234-6 – volume: 53 start-page: 1334 year: 2021 ident: 3638_CR49 publication-title: Nat Genet doi: 10.1038/s41588-021-00911-1 – volume: 21 start-page: 1430 year: 2024 ident: 3638_CR14 publication-title: Nat Methods doi: 10.1038/s41592-024-02353-z – volume: 37 start-page: 1458 year: 2019 ident: 3638_CR60 publication-title: Nat Biotechnol doi: 10.1038/s41587-019-0332-7 – ident: 3638_CR23 – ident: 3638_CR84 doi: 10.1101/2024.04.02.587824 – volume: 376 start-page: eabl4896 year: 2022 ident: 3638_CR2 publication-title: Science doi: 10.1126/science.abl4896 – volume: 5 start-page: 1615 year: 2023 ident: 3638_CR29 publication-title: Nat Metab doi: 10.1038/s42255-023-00876-x – volume: 41 start-page: 1465 year: 2023 ident: 3638_CR46 publication-title: Nat Biotechnol doi: 10.1038/s41587-023-01657-3 – ident: 3638_CR89 – volume: 356 start-page: eaah4573 year: 2017 ident: 3638_CR57 publication-title: Science doi: 10.1126/science.aah4573 – volume: 14 start-page: 8095 year: 2023 ident: 3638_CR80 publication-title: Nat Commun doi: 10.1038/s41467-023-43630-3 – ident: 3638_CR12 – volume: 26 start-page: 1235 year: 2019 ident: 3638_CR77 publication-title: Cell Death Differ doi: 10.1038/s41418-018-0202-8 – volume: 176 start-page: 1265 year: 2019 ident: 3638_CR63 publication-title: Cell doi: 10.1016/j.cell.2019.01.031 – ident: 3638_CR95 – volume: 15 start-page: 1053 year: 2018 ident: 3638_CR38 publication-title: Nat Methods doi: 10.1038/s41592-018-0229-2 – volume: 40 start-page: 121 year: 2022 ident: 3638_CR9 publication-title: Nat Biotechnol doi: 10.1038/s41587-021-01001-7 – volume: 14 start-page: 8353 year: 2023 ident: 3638_CR48 publication-title: Nat Commun doi: 10.1038/s41467-023-43458-x – volume: 17 start-page: e9620 year: 2021 ident: 3638_CR8 publication-title: Mol Syst Biol doi: 10.15252/msb.20209620 – volume: 13 start-page: 4557 year: 2022 ident: 3638_CR72 publication-title: Nat Commun doi: 10.1038/s41467-022-32052-2 – volume: 4 start-page: 292 year: 1997 ident: 3638_CR20 publication-title: J Conscious Stud – volume: 562 start-page: 373 year: 2018 ident: 3638_CR59 publication-title: Nature doi: 10.1038/s41586-018-0436-0 – volume: 23 start-page: 505 year: 2022 ident: 3638_CR64 publication-title: Nat Immunol doi: 10.1038/s41590-022-01167-5 – volume: 609 start-page: 1012 year: 2022 ident: 3638_CR67 publication-title: Nature doi: 10.1038/s41586-022-05208-9 – volume: 184 start-page: 3573 year: 2021 ident: 3638_CR7 publication-title: Cell doi: 10.1016/j.cell.2021.04.048 – volume: 5 start-page: 11 year: 2019 ident: 3638_CR65 publication-title: Nat Rev Dis Primers doi: 10.1038/s41572-019-0063-6 – volume: 363 start-page: 1463 year: 2019 ident: 3638_CR47 publication-title: Science doi: 10.1126/science.aaw1219 – volume: 376 start-page: eabl5197 year: 2022 ident: 3638_CR27 publication-title: Science doi: 10.1126/science.abl5197 – volume: 344 start-page: 1396 year: 2014 ident: 3638_CR75 publication-title: Science doi: 10.1126/science.1254257 – ident: 3638_CR15 doi: 10.1002/qub2.69 – volume: 41 start-page: 272 year: 2023 ident: 3638_CR81 publication-title: Cancer Cell doi: 10.1016/j.ccell.2023.01.001 – volume: 11 start-page: 2244 year: 2022 ident: 3638_CR78 publication-title: Cancer Med doi: 10.1002/cam4.4547 – ident: 3638_CR96 – volume: 21 start-page: 305 year: 2021 ident: 3638_CR51 publication-title: Exp Ther Med doi: 10.3892/etm.2021.9736 – volume: 185 start-page: 1777 year: 2022 ident: 3638_CR54 publication-title: Cell doi: 10.1016/j.cell.2022.04.003 – volume: 11 start-page: 22 year: 2014 ident: 3638_CR4 publication-title: Nat Methods doi: 10.1038/nmeth.2764 – ident: 3638_CR19 – volume: 40 start-page: 1503 year: 2022 ident: 3638_CR34 publication-title: Cancer Cell doi: 10.1016/j.ccell.2022.10.008 – volume: 382 start-page: eade9516 year: 2023 ident: 3638_CR30 publication-title: Science doi: 10.1126/science.ade9516 – volume: 221 start-page: e20232028 year: 2024 ident: 3638_CR83 publication-title: J Exp Med doi: 10.1084/jem.20232028 – volume: 572 start-page: 74 year: 2019 ident: 3638_CR69 publication-title: Nature doi: 10.1038/s41586-019-1434-6 – volume: 607 start-page: 540 year: 2022 ident: 3638_CR74 publication-title: Nature doi: 10.1038/s41586-022-04918-4 – volume: 362 start-page: eaau5324 year: 2018 ident: 3638_CR41 publication-title: Science doi: 10.1126/science.aau5324 – volume: 55 start-page: 1 year: 2021 ident: 3638_CR91 publication-title: ACM Comput Surveys doi: 10.1145/3586074 – volume: 23 start-page: 123 year: 2022 ident: 3638_CR70 publication-title: Genome Biol doi: 10.1186/s13059-022-02683-1 – volume: 2018 start-page: 9 year: 2028 ident: 3638_CR50 publication-title: Nat Commun – volume: 24 start-page: 1163 year: 2021 ident: 3638_CR68 publication-title: Nat Neurosci doi: 10.1038/s41593-021-00872-y – ident: 3638_CR93 – ident: 3638_CR87 – ident: 3638_CR88 – ident: 3638_CR13 – volume: 620 start-page: 181 year: 2023 ident: 3638_CR31 publication-title: Nature doi: 10.1038/s41586-023-06252-9 – volume: 11 start-page: 291 year: 2020 ident: 3638_CR61 publication-title: Cell Death Dis doi: 10.1038/s41419-020-2488-y – volume: 4 start-page: 284 year: 2022 ident: 3638_CR28 publication-title: Nat Metab doi: 10.1038/s42255-022-00531-x – ident: 3638_CR36 – ident: 3638_CR94 – ident: 3638_CR100 doi: 10.5281/zenodo.15511926 – ident: 3638_CR25 doi: 10.1101/2023.11.28.568918 – volume: 19 start-page: 41 year: 2022 ident: 3638_CR37 publication-title: Nat Methods doi: 10.1038/s41592-021-01336-8 – volume: 2015 start-page: 225 year: 2015 ident: 3638_CR62 publication-title: Hematol Am Soc Hematol Educ Program doi: 10.1182/asheducation-2015.1.225 – ident: 3638_CR33 – volume: 14 start-page: 223 year: 2023 ident: 3638_CR26 publication-title: Nat Commun doi: 10.1038/s41467-023-35923-4 – volume: 187 start-page: 2428 year: 2024 ident: 3638_CR82 publication-title: Cell doi: 10.1016/j.cell.2024.03.010 – volume: 12 start-page: 706 year: 2021 ident: 3638_CR43 publication-title: Cell Syst doi: 10.1016/j.cels.2021.05.006 – volume: 95 start-page: 14529 year: 1998 ident: 3638_CR21 publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.95.24.14529 – volume: 5 start-page: 101489 year: 2024 ident: 3638_CR76 publication-title: Cell Rep Med doi: 10.1016/j.xcrm.2024.101489 – volume: 57 start-page: 1421 year: 2022 ident: 3638_CR53 publication-title: Dev Cell doi: 10.1016/j.devcel.2022.04.016 – ident: 3638_CR22 – volume: 187 start-page: 2343 year: 2024 ident: 3638_CR5 publication-title: Cell doi: 10.1016/j.cell.2024.03.009 – ident: 3638_CR85 – volume: 55 start-page: 1998 year: 2023 ident: 3638_CR58 publication-title: Nat Genet doi: 10.1038/s41588-023-01523-7 – volume: 51 start-page: 1702 year: 2019 ident: 3638_CR66 publication-title: Nat Genet doi: 10.1038/s41588-019-0531-7 – volume: 29 start-page: 1563 year: 2023 ident: 3638_CR1 publication-title: Nat Med doi: 10.1038/s41591-023-02327-2 – volume: 409 start-page: 860 year: 2001 ident: 3638_CR3 publication-title: Nature doi: 10.1038/35057062 – volume: 24 start-page: 125 year: 2023 ident: 3638_CR10 publication-title: Nat Rev Genet doi: 10.1038/s41576-022-00532-2 – ident: 3638_CR92 – volume: 624 start-page: 317 year: 2023 ident: 3638_CR56 publication-title: Nature doi: 10.1038/s41586-023-06812-z – ident: 3638_CR16 doi: 10.1038/s41592-024-02201-0 – volume: 174 start-page: 999 year: 2018 ident: 3638_CR55 publication-title: Cell doi: 10.1016/j.cell.2018.06.021 – volume: 40 start-page: 1794 year: 2022 ident: 3638_CR40 publication-title: Nat Biotechnol doi: 10.1038/s41587-022-01483-z – volume: 7 start-page: 9 year: 2022 ident: 3638_CR71 publication-title: Signal Transduct Target Ther doi: 10.1038/s41392-021-00824-9 – ident: 3638_CR39 doi: 10.1101/2024.06.30.601119 – volume: 380 start-page: eadg0934 year: 2023 ident: 3638_CR32 publication-title: Science doi: 10.1126/science.adg0934 – ident: 3638_CR86 – ident: 3638_CR99 doi: 10.5281/zenodo.15511819 – volume: 12 start-page: 6500 year: 2021 ident: 3638_CR73 publication-title: Nat Commun doi: 10.1038/s41467-021-26770-2 – volume: 618 start-page: 616 year: 2023 ident: 3638_CR17 publication-title: Nature doi: 10.1038/s41586-023-06139-9 – ident: 3638_CR97 – volume: 20 start-page: 1683 year: 2023 ident: 3638_CR6 publication-title: Nat Methods doi: 10.1038/s41592-023-02035-2 – volume: 3 start-page: 728 year: 2020 ident: 3638_CR79 publication-title: Commun Biol doi: 10.1038/s42003-020-01464-5 – volume: 37 start-page: 109915 year: 2021 ident: 3638_CR42 publication-title: Cell Rep doi: 10.1016/j.celrep.2021.109915 – volume: 40 start-page: 517 year: 2022 ident: 3638_CR45 publication-title: Nat Biotechnol doi: 10.1038/s41587-021-00830-w – volume: 18 start-page: 1352 year: 2021 ident: 3638_CR44 publication-title: Nat Methods doi: 10.1038/s41592-021-01264-7 – ident: 3638_CR24 – volume: 625 start-page: 101 year: 2024 ident: 3638_CR52 publication-title: Nature doi: 10.1038/s41586-023-06837-4 |
SSID | ssj0019426 ssj0017866 |
Score | 2.4761412 |
Snippet | Machine learning methods, especially Transformer architectures, have been widely employed in single-cell omics studies. However, interpretability and accurate... Abstract Machine learning methods, especially Transformer architectures, have been widely employed in single-cell omics studies. However, interpretability and... |
SourceID | doaj pubmedcentral proquest pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database |
StartPage | 178 |
SubjectTerms | Accuracy Annotations Cell culture Cells Consciousness Datasets Genes Humans Information dissemination Lung cancer Machine Learning Memory Methodology Neurosciences Single-Cell Analysis - methods Transcriptome Transcriptomics |
SummonAdditionalLinks | – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3Ni9UwEA-6InhZ1u-6q0TwJmHTpE1TL6KLyyLoyYV3C_nqurC063t9h_ff70yaPq2It7YJZZiv_CaZzBDyTkRZBoAFrHVBscoBhmud5MzZWvLAvdU-ZVt8VxeX1ddVvcobbpucVjn7xOSow-Bxj_wUFK8BNAHRxMfbXwy7RuHpam6hcZ88wNJlGHw1q33AVTYasUp-aSsxXTXCBMS6VfMNGq1ON-DI65ZhZ1c819Rst1ilUjH_fyHQvxMp_1iZzo_IYYaU9NOkA4_Jvdg_IQ-nJpO7p8SfxZubb5hQu_tAsfN1OjsA0dDrRcIhHTo6bEc2dCxgNd3cCIvi1v6GYn78FcW-Y7BMRTD9QMcZ88b1M3J5_uXH2QXLrRWYh_hgZA6iJNGEFnxhZTsBoNUr6eDFCdGJxvuWWzBNjujFWsG7EGwdlOAy1oJbLp-Tg37o40tCY6g6J-vYSIg1ta4B0rXedSIKeNaxLMj7mZXmdqqgYVLkoZWZGG-A8SYx3uwK8hm5vZ-J1a_Th2F9ZbIxGV7G2DkgMEA0xGNpNShi2TmAngCQoirIySwrk01yY34rUEHe7ofBmJCNto_DNs0BMiqp4BcvJtHuKQFkC-BIyILohdAXpC5H-uufqWB3iTgUdPHV_-k6Jo9E0kHFhDwhB-N6G18D5Bndm6TXd9Bk_rw priority: 102 providerName: ProQuest |
Title | CellMemory: hierarchical interpretation of out-of-distribution cells using bottlenecked transformer |
URI | https://www.ncbi.nlm.nih.gov/pubmed/40551223 https://www.proquest.com/docview/3227650448 https://www.proquest.com/docview/3223634366 https://pubmed.ncbi.nlm.nih.gov/PMC12183866 https://doaj.org/article/01eefba96d9740e1a8ecc1fb575741e6 |
Volume | 26 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Na9wwEB3ahEIvpUk_4jZZVOitiMiSLcu9dUNCKDSU0MDSi5AsqQ0Eu2S9h_33Hcn2EpdCL70Y2zL2-I2keWONZwDecy9yh7SA1tZJWljkcLUVjFpTCuZYY1SToi2u5OVN8XlVrh6U-ooxYUN64AG4U5Z7H6yppUPmy3xuFD40DxZpBhpDn5Jto82bnKlx_aBGwzP9IqPk6Rpn6rKmsXRrXLhUdDszQylb_98o5p-Rkg9Mz8VzeDZyRvJpkPUAHvn2EJ4MVSS3L6A583d3X2LE7PYjiaWt0-IAYk9uZxGFpAuk2_S0C9TFdLljpSsSv92vSQyA_0FiYTG0Qx7HtiP9RGr9_Uu4uTj_dnZJx9oJtEEHoKcW3SBeuRonu8IEjqy0kcLigeU88KppaoaYChbpiTGcBedM6SRnwpecGSZewV7btf4IiHdFsKL0lUBnUqkSOVvd2MA9x33l8ww-TFDqX0OKDJ1cCyX1ALxG4HUCXm8zWEa0d1fG9NbpBCpdj0rX_1J6BseTrvQ45tYap6YK-Sb6mxm82zXjaIkwmtZ3m3QNilEIibd4Pah2JwlSV2Q_XGSgZkqfiTpvaW9_pozceSSaSso3_-Pl3sJTnnqqpFwcw15_v_EnyHx6u4DH1apawP7y_Orr9SJ1edxeL7__BoMaBwk |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9QwEB2VIgQXxDcpBYwEJ2TVsRPHQUIICtWWfpxaaW8mjp1SqUra3axQ_hS_kbGTLAQhbr0lcRSNxs-eN_HYD-A1dyK2SAtobqykiUEOlxvBqClSwSwrC1WGaotjOTtNvs7T-Qb8HPfC-LLKcU4ME7VtSv-PfAeBlyGbwGziw-UV9apRfnV1lNDoYXHguh-Ysi3f73_G_n3D-d6Xk90ZHVQFaInUuKUGEwSeWcy1ZVJUHPlaKYXBG8N5xbOyzFmBqGQ-cBcFZ5W1RWolZ8KlnBVM4HdvwE0MvMyXEGbzdYIXZ8pzo-EmT3i_tckXPKa5HHfsKLmzxMCR5tQryfp1VEW7SVQM4gH_Yrx_F27-EQn37sHdgcKSjz3m7sOGqx_ArV7UsnsI5a67uDjyBbzdO-KVtsNaBUKBnE8KHElTkWbV0qai1p_eOwhvEb-UsCS-Hv-MeJ0zDIsOpxpL2pFju8UjOL0Wpz-Gzbqp3VMgziaVEanLBOa2SqVIIfPSVNxxvFYujuDt6Ep92Z_YoUOmo6TuHa_R8To4XncRfPLeXr_pT9sOD5rFmR4Gr2axc5VBAy1mX8zFhULgx5VBqouEzMkItse-0sMUsNS_ARvBq3UzDl7vxqJ2zSq8g2YkQuInnvRdu7YEmTSSMS4iUJNOn5g6banPv4cDwmPPexGLW_-36yXcnp0cHerD_eODZ3CHBzxKysU2bLaLlXuOdKs1LwLGCXy77kH1C315Ojw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=CellMemory%3A+hierarchical+interpretation+of+out-of-distribution+cells+using+bottlenecked+transformer&rft.jtitle=Genome+biology&rft.au=Qifei+Wang&rft.au=He+Zhu&rft.au=Yiwen+Hu&rft.au=Yanjie+Chen&rft.date=2025-06-23&rft.pub=BMC&rft.eissn=1474-760X&rft.volume=26&rft.issue=1&rft.spage=1&rft.epage=37&rft_id=info:doi/10.1186%2Fs13059-025-03638-y&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_01eefba96d9740e1a8ecc1fb575741e6 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1474-760X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1474-760X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1474-760X&client=summon |