Lactate-utilizing bacteria, isolated from human feces, that produce butyrate as a major fermentation product
The microbial community of the human colon contains many bacteria that produce lactic acid, but lactate is normally detected only at low concentrations (<5 mM) in feces from healthy individuals. It is not clear, however, which bacteria are mainly responsible for lactate utilization in the human c...
Saved in:
Published in | Applied and Environmental Microbiology Vol. 70; no. 10; pp. 5810 - 5817 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Washington, DC
American Society for Microbiology
01.10.2004
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The microbial community of the human colon contains many bacteria that produce lactic acid, but lactate is normally detected only at low concentrations (<5 mM) in feces from healthy individuals. It is not clear, however, which bacteria are mainly responsible for lactate utilization in the human colon. Here, bacteria able to utilize lactate and produce butyrate were identified among isolates obtained from 10(-8) dilutions of fecal samples from five different subjects. Out of nine such strains identified, four were found to be related to Eubacterium hallii and two to Anaerostipes caccae, while the remaining three represent a new species within clostridial cluster XIVa based on their 16S rRNA sequences. Significant ability to utilize lactate was not detected in the butyrate-producing species Roseburia intestinalis, Eubacterium rectale, or Faecalibacterium prausnitzii. Whereas E. hallii and A. caccae strains used both D- and L-lactate, the remaining strains used only the D form. Addition of glucose to batch cultures prevented lactate utilization until the glucose became exhausted. However, when two E. hallii strains and one A. caccae strain were grown in separate cocultures with a starch-utilizing Bifidobacterium adolescentis isolate, with starch as the carbohydrate energy source, the L-lactate produced by B. adolescentis became undetectable and butyrate was formed. Such cross-feeding may help to explain the reported butyrogenic effect of certain dietary substrates, including resistant starch. The abundance of E. hallii in particular in the colonic ecosystem suggests that these bacteria play important roles in preventing lactate accumulation. |
---|---|
AbstractList | The microbial community of the human colon contains many bacteria that produce lactic acid, but lactate is normally detected only at low concentrations (<5 mM) in feces from healthy individuals. It is not clear, however, which bacteria are mainly responsible for lactate utilization in the human colon. Here, bacteria able to utilize lactate and produce butyrate were identified among isolates obtained from 10(-8) dilutions of fecal samples from five different subjects. Out of nine such strains identified, four were found to be related to Eubacterium hallii and two to Anaerostipes caccae, while the remaining three represent a new species within clostridial cluster XIVa based on their 16S rRNA sequences. Significant ability to utilize lactate was not detected in the butyrate-producing species Roseburia intestinalis, Eubacterium rectale, or Faecalibacterium prausnitzii. Whereas E. hallii and A. caccae strains used both D- and L-lactate, the remaining strains used only the d form. Addition of glucose to batch cultures prevented lactate utilization until the glucose became exhausted. However, when two E. hallii strains and one A. caccae strain were grown in separate cocultures with a starch-utilizing Bifidobacterium adolescentis isolate, with starch as the carbohydrate energy source, the L-lactate produced by B. adolescentis became undetectable and butyrate was formed. Such cross-feeding may help to explain the reported butyrogenic effect of certain dietary substrates, including resistant starch. The abundance of E. hallii in particular in the colonic ecosystem suggests that these bacteria play important roles in preventing lactate accumulation.The microbial community of the human colon contains many bacteria that produce lactic acid, but lactate is normally detected only at low concentrations (<5 mM) in feces from healthy individuals. It is not clear, however, which bacteria are mainly responsible for lactate utilization in the human colon. Here, bacteria able to utilize lactate and produce butyrate were identified among isolates obtained from 10(-8) dilutions of fecal samples from five different subjects. Out of nine such strains identified, four were found to be related to Eubacterium hallii and two to Anaerostipes caccae, while the remaining three represent a new species within clostridial cluster XIVa based on their 16S rRNA sequences. Significant ability to utilize lactate was not detected in the butyrate-producing species Roseburia intestinalis, Eubacterium rectale, or Faecalibacterium prausnitzii. Whereas E. hallii and A. caccae strains used both D- and L-lactate, the remaining strains used only the d form. Addition of glucose to batch cultures prevented lactate utilization until the glucose became exhausted. However, when two E. hallii strains and one A. caccae strain were grown in separate cocultures with a starch-utilizing Bifidobacterium adolescentis isolate, with starch as the carbohydrate energy source, the L-lactate produced by B. adolescentis became undetectable and butyrate was formed. Such cross-feeding may help to explain the reported butyrogenic effect of certain dietary substrates, including resistant starch. The abundance of E. hallii in particular in the colonic ecosystem suggests that these bacteria play important roles in preventing lactate accumulation. The microbial community of the human colon contains many bacteria that produce lactic acid, but lactate is normally detected only at low concentrations (<5 mM) in feces from healthy individuals. It is not clear, however, which bacteria are mainly responsible for lactate utilization in the human colon. Here, bacteria able to utilize lactate and produce butyrate were identified among isolates obtained from 10 super(-8) dilutions of fecal samples from five different subjects. Out of nine such strains identified, four were found to be related to Eubacterium hallii and two to Anaerostipes caccae, while the remaining three represent a new species within clostridial cluster XIVa based on their 16S rRNA sequences. Significant ability to utilize lactate was not detected in the butyrate-producing species Roseburia intestinalis, Eubacterium rectale, or Faecalibacterium prausnitzii. Whereas E. hallii and A. caccae strains used both D- and L-lactate, the remaining strains used only the D form. Addition of glucose to batch cultures prevented lactate utilization until the glucose became exhausted. However, when two E. hallii strains and one A. caccae strain were grown in separate cocultures with a starch-utilizing Bifidobacterium adolescentis isolate, with starch as the carbohydrate energy source, the L- lactate produced by B. adolescentis became undetectable and butyrate was formed. Such cross-feeding may help to explain the reported butyrogenic effect of certain dietary substrates, including resistant starch. The abundance of E. hallii in particular in the colonic ecosystem suggests that these bacteria play important roles in preventing lactate accumulation. The microbial community of the human colon contains many bacteria that produce lactic acid, but lactate is normally detected only at low concentrations (<5 mM) in feces from healthy individuals. It is not clear, however, which bacteria are mainly responsible for lactate utilization in the human colon. Here, bacteria able to utilize lactate and produce butyrate were identified among isolates obtained from 10(-8) dilutions of fecal samples from five different subjects. Out of nine such strains identified, four were found to be related to Eubacterium hallii and two to Anaerostipes caccae, while the remaining three represent a new species within clostridial cluster XIVa based on their 16S rRNA sequences. Significant ability to utilize lactate was not detected in the butyrate-producing species Roseburia intestinalis, Eubacterium rectale, or Faecalibacterium prausnitzii. Whereas E. hallii and A. caccae strains used both D- and L-lactate, the remaining strains used only the d form. Addition of glucose to batch cultures prevented lactate utilization until the glucose became exhausted. However, when two E. hallii strains and one A. caccae strain were grown in separate cocultures with a starch-utilizing Bifidobacterium adolescentis isolate, with starch as the carbohydrate energy source, the L-lactate produced by B. adolescentis became undetectable and butyrate was formed. Such cross-feeding may help to explain the reported butyrogenic effect of certain dietary substrates, including resistant starch. The abundance of E. hallii in particular in the colonic ecosystem suggests that these bacteria play important roles in preventing lactate accumulation. The microbial community of the human colon contains many bacteria that produce lactic acid, but lactate is normally detected only at low concentrations (<5 mM) in feces from healthy individuals. It is not clear, however, which bacteria are mainly responsible for lactate utilization in the human colon. Here, bacteria able to utilize lactate and produce butyrate were identified among isolates obtained from 10 −8 dilutions of fecal samples from five different subjects. Out of nine such strains identified, four were found to be related to Eubacterium hallii and two to Anaerostipes caccae , while the remaining three represent a new species within clostridial cluster XIVa based on their 16S rRNA sequences. Significant ability to utilize lactate was not detected in the butyrate-producing species Roseburia intestinalis , Eubacterium rectale , or Faecalibacterium prausnitzii . Whereas E. hallii and A. caccae strains used both d - and l -lactate, the remaining strains used only the d form. Addition of glucose to batch cultures prevented lactate utilization until the glucose became exhausted. However, when two E. hallii strains and one A. caccae strain were grown in separate cocultures with a starch-utilizing Bifidobacterium adolescentis isolate, with starch as the carbohydrate energy source, the l -lactate produced by B. adolescentis became undetectable and butyrate was formed. Such cross-feeding may help to explain the reported butyrogenic effect of certain dietary substrates, including resistant starch. The abundance of E. hallii in particular in the colonic ecosystem suggests that these bacteria play important roles in preventing lactate accumulation. Classifications Services AEM Citing Articles Google Scholar PubMed Related Content Social Bookmarking CiteULike Delicious Digg Facebook Google+ Mendeley Reddit StumbleUpon Twitter current issue Spotlights in the Current Issue AEM About AEM Subscribers Authors Reviewers Advertisers Inquiries from the Press Permissions & Commercial Reprints ASM Journals Public Access Policy AEM RSS Feeds 1752 N Street N.W. • Washington DC 20036 202.737.3600 • 202.942.9355 fax • journals@asmusa.org Print ISSN: 0099-2240 Online ISSN: 1098-5336 Copyright © 2014 by the American Society for Microbiology. For an alternate route to AEM .asm.org, visit: AEM The microbial community of the human colon contains many bacteria that produce lactic acid, but lactate is normally detected only at low concentrations (<5 mM) in feces from healthy individuals. It is not clear, however, which bacteria are mainly responsible for lactate utilization in the human colon. Here, bacteria able to utilize lactate and produce butyrate were identified among isolates obtained from 10-8 dilutions of fecal samples from five different subjects. Out of nine such strains identified, four were found to be related to Eubacterium hallii and two to Anaerostipes caccae, while the remaining three represent a new species within clostridial cluster XIVa based on their 16S rRNA sequences. Significant ability to utilize lactate was not detected in the butyrate-producing species Roseburia intestinalis, Eubacterium rectale, or Faecalibacterium prausnitzii. Whereas E. hallii and A. caccae strains used both D- and L-lactate, the remaining strains used only the D form. Addition of glucose to batch cultures prevented lactate utilization until the glucose became exhausted. However, when two E. hallii strains and one A. caccae strain were grown in separate cocultures with a starch-utilizing Bifidobacterium adolescentis isolate, with starch as the carbohydrate energy source, the L-lactate produced by B. adolescentis became undetectable and butyrate was formed. Such cross-feeding may help to explain the reported butyrogenic effect of certain dietary substrates, including resistant starch. The abundance of E. hallii in particular in the colonic ecosystem suggests that these bacteria play important roles in preventing lactate accumulation. [PUBLICATION ABSTRACT] |
Author | Louis, P Flint, H.J Duncan, S.H |
AuthorAffiliation | Microbial Genetics Group, Rowett Research Institute, Bucksburn, Aberdeen, United Kingdom |
AuthorAffiliation_xml | – name: Microbial Genetics Group, Rowett Research Institute, Bucksburn, Aberdeen, United Kingdom |
Author_xml | – sequence: 1 fullname: Duncan, S.H – sequence: 2 fullname: Louis, P – sequence: 3 fullname: Flint, H.J |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=16200454$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/15466518$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkktv1DAUhS3Uik4LfwEsJFg1g-0kjr0AqarKQxrEArq2bhxnxqMkHuwEVH49N5qBPjZlYzvxd6587j2n5GgIgyOEcrbkXKi3F1dflhWe2bJUnGW4VEvBWPGELDjTKivzXB6RBWNaZ0IU7IScprRlSDCpnpITXhZSllwtSLcCO8Losmn0nf_thzWt8Y-LHs6pT6HDu4a2MfR0M_Uw0NZZl87puIGR7mJoJutoPY03EUEKiQLtYRsicrF3A5b2YTiA4zNy3EKX3PPDfkauP1x9v_yUrb5-_Hx5scpsqcoxq1xeMZBat1prV7dtrRqWW95olTsh8oI5JcBWjSsK4A0rWhCgZAvKykLXNj8j7_Z1d1Pdu8biOyJ0Zhd9D_HGBPDm_s3gN2YdfppSCM5z1L856GP4Mbk0mt4n67oOBhemZKTUeclZ8SiIXdY8F_JRkFcVl1xXCL56AG7DFAfslhGs1IVC_wi9uOvvn7G_Y0Xg9QGAZKFrIwzWp1tOzmEp5_erPWdjSCm69hZhZk6awaSZis2fc9LmpTKzGKXvH0it308bO-q7_ylwcLrx680vH52B1Btw_R0coZd7qIVgYB3RxPU3wXiO0UYAh_UHEyfvkA |
CODEN | AEMIDF |
CitedBy_id | crossref_primary_10_1038_s41598_024_54769_4 crossref_primary_10_3390_nu15092178 crossref_primary_10_1016_j_bcdf_2023_100388 crossref_primary_10_1007_s00253_023_12436_0 crossref_primary_10_1111_j_1462_2920_2009_02066_x crossref_primary_10_1002_jat_4207 crossref_primary_10_1016_j_foodres_2022_111327 crossref_primary_10_1111_1751_7915_14165 crossref_primary_10_3920_bm2015_0062 crossref_primary_10_1111_1574_6976_12022 crossref_primary_10_2147_HMER_S254195 crossref_primary_10_1128_mSystems_00051_17 crossref_primary_10_5851_kosfa_2024_e100 crossref_primary_10_1039_C7FO01302G crossref_primary_10_4236_fns_2013_411A005 crossref_primary_10_1016_j_anaerobe_2012_11_006 crossref_primary_10_1016_j_dld_2023_06_015 crossref_primary_10_1080_19490976_2023_2263934 crossref_primary_10_1007_s11306_014_0677_3 crossref_primary_10_3390_nu17010151 crossref_primary_10_1017_S1368980021002524 crossref_primary_10_1038_s41598_023_27907_7 crossref_primary_10_1016_j_chom_2024_05_019 crossref_primary_10_1111_j_1365_2672_2006_03084_x crossref_primary_10_1002_mnfr_202001051 crossref_primary_10_1515_aoas_2016_0092 crossref_primary_10_1093_ecco_jcc_jjx153 crossref_primary_10_1111_j_1462_2920_2011_02533_x crossref_primary_10_1186_2049_2618_2_24 crossref_primary_10_1128_AEM_00701_06 crossref_primary_10_3748_wjg_v26_i46_7338 crossref_primary_10_1016_j_foodhyd_2022_108096 crossref_primary_10_3390_md19040183 crossref_primary_10_1186_s12866_024_03579_9 crossref_primary_10_1007_s00253_014_5624_8 crossref_primary_10_1016_j_chom_2011_10_002 crossref_primary_10_3382_ps_2009_00236 crossref_primary_10_1007_s11274_013_1489_8 crossref_primary_10_1016_j_psyneuen_2019_104469 crossref_primary_10_4056_sigs_5281010 crossref_primary_10_1016_j_arr_2009_10_004 crossref_primary_10_1007_s11332_023_01132_1 crossref_primary_10_1002_jsfa_13037 crossref_primary_10_1002_mrc_2511 crossref_primary_10_1016_j_apcbee_2012_06_031 crossref_primary_10_1016_j_foodchem_2020_127179 crossref_primary_10_1371_journal_pone_0169851 crossref_primary_10_1371_journal_pone_0077772 crossref_primary_10_1016_j_carbpol_2018_11_088 crossref_primary_10_12938_bmfh_18_020 crossref_primary_10_1038_s41467_023_38110_7 crossref_primary_10_3389_fmolb_2022_841223 crossref_primary_10_1111_j_1462_2920_2009_01931_x crossref_primary_10_1007_s10482_018_1040_x crossref_primary_10_1016_j_csbj_2023_03_050 crossref_primary_10_1016_j_biortech_2017_09_199 crossref_primary_10_1016_j_foodres_2013_10_005 crossref_primary_10_3389_fimmu_2017_00788 crossref_primary_10_3389_fgstr_2022_966957 crossref_primary_10_1021_pr2003598 crossref_primary_10_1007_s00248_008_9366_y crossref_primary_10_1007_s10068_024_01626_9 crossref_primary_10_3390_ijerph13111088 crossref_primary_10_1111_j_1365_2036_2005_02615_x crossref_primary_10_1089_thy_2017_0395 crossref_primary_10_1016_j_nut_2021_111439 crossref_primary_10_3389_fbioe_2020_00550 crossref_primary_10_1002_jobm_200610210 crossref_primary_10_2337_db12_0526 crossref_primary_10_1371_journal_pone_0231197 crossref_primary_10_1007_s11274_013_1499_6 crossref_primary_10_1016_j_foodres_2016_08_025 crossref_primary_10_1002_jpen_2188 crossref_primary_10_1111_j_1574_6941_2011_01222_x crossref_primary_10_1136_gutjnl_2020_323297 crossref_primary_10_1016_j_copbio_2024_103073 crossref_primary_10_1016_j_lwt_2024_116152 crossref_primary_10_1111_1462_2920_16368 crossref_primary_10_1590_S1516_35982010001300049 crossref_primary_10_3390_nu12010017 crossref_primary_10_1016_j_jff_2024_106467 crossref_primary_10_4161_gmic_27651 crossref_primary_10_1016_j_carbpol_2019_115460 crossref_primary_10_1016_j_carbpol_2023_121187 crossref_primary_10_3390_microorganisms10020452 crossref_primary_10_3390_ijms22052763 crossref_primary_10_1016_j_anifeedsci_2021_114822 crossref_primary_10_1038_s41598_021_98958_x crossref_primary_10_1371_journal_pone_0250874 crossref_primary_10_1038_s41598_017_11509_1 crossref_primary_10_1016_j_jshs_2022_09_002 crossref_primary_10_3390_ijerph16203922 crossref_primary_10_1080_19490976_2017_1406584 crossref_primary_10_1186_s12970_019_0329_0 crossref_primary_10_1080_19490976_2020_1840766 crossref_primary_10_1155_2022_6264170 crossref_primary_10_3390_ani12060695 crossref_primary_10_3920_BM2012_0012 crossref_primary_10_1080_1745039X_2013_830519 crossref_primary_10_1016_j_jff_2020_104289 crossref_primary_10_1616_1476_2137_14685 crossref_primary_10_1186_1476_511X_10_126 crossref_primary_10_1038_ismej_2012_43 crossref_primary_10_18632_oncotarget_5906 crossref_primary_10_1017_S0954422410000247 crossref_primary_10_1038_s41598_022_13640_0 crossref_primary_10_1186_s40168_021_01105_x crossref_primary_10_3390_microorganisms8040573 crossref_primary_10_3389_fmicb_2022_933152 crossref_primary_10_1016_j_isci_2024_110455 crossref_primary_10_1016_j_lwt_2007_11_007 crossref_primary_10_1128_mBio_02566_18 crossref_primary_10_1111_j_1462_2920_2007_01281_x crossref_primary_10_1111_jam_12415 crossref_primary_10_1016_j_ijbiomac_2024_130700 crossref_primary_10_3390_sports9100143 crossref_primary_10_1038_s41598_024_69685_w crossref_primary_10_3168_jds_2015_9913 crossref_primary_10_1016_j_biotechadv_2012_12_009 crossref_primary_10_1111_j_1574_6976_2011_00270_x crossref_primary_10_1016_j_biortech_2013_03_063 crossref_primary_10_1039_D3FO02829A crossref_primary_10_1080_08905436_2023_2237136 crossref_primary_10_1016_j_ijfoodmicro_2016_10_019 crossref_primary_10_1016_j_bpg_2013_04_004 crossref_primary_10_1038_s41380_022_01456_3 crossref_primary_10_1002_1873_3468_12353 crossref_primary_10_1038_s41396_022_01255_2 crossref_primary_10_1007_s10096_022_04435_2 crossref_primary_10_1021_acsomega_3c05846 crossref_primary_10_1186_s12866_018_1373_7 crossref_primary_10_3389_fmed_2022_841281 crossref_primary_10_1089_ast_2009_0438 crossref_primary_10_1016_j_fshw_2023_03_048 crossref_primary_10_3390_fermentation8010010 crossref_primary_10_3390_microorganisms8101513 crossref_primary_10_1017_S0007114516002816 crossref_primary_10_1016_j_fbio_2023_103006 crossref_primary_10_1002_bit_27301 crossref_primary_10_1016_j_biochi_2010_02_015 crossref_primary_10_1016_j_micpath_2020_104344 crossref_primary_10_5665_sleep_6176 crossref_primary_10_1016_j_anaerobe_2012_09_002 crossref_primary_10_1016_j_foodchem_2023_135440 crossref_primary_10_3389_fmicb_2017_00095 crossref_primary_10_3389_fvets_2015_00075 crossref_primary_10_1021_acsomega_2c08128 crossref_primary_10_3389_fnut_2021_795848 crossref_primary_10_1128_mSystems_00645_20 crossref_primary_10_1017_S0007114509991796 crossref_primary_10_1002_nbm_1418 crossref_primary_10_1016_j_anaerobe_2016_02_003 crossref_primary_10_1007_s10068_024_01608_x crossref_primary_10_3389_fmicb_2016_00979 crossref_primary_10_1128_mbio_01857_21 crossref_primary_10_1016_j_livsci_2017_09_015 crossref_primary_10_1093_jambio_lxae254 crossref_primary_10_1128_Spectrum_01176_21 crossref_primary_10_1016_j_scispo_2021_11_007 crossref_primary_10_1111_1348_0421_12249 crossref_primary_10_1071_AN23299 crossref_primary_10_3390_vetsci8050081 crossref_primary_10_1021_jf402137r crossref_primary_10_1038_s41467_025_56375_y crossref_primary_10_1371_journal_pone_0054335 crossref_primary_10_3390_microorganisms13040706 crossref_primary_10_1002_ajp_23003 crossref_primary_10_1093_carcin_bgy009 crossref_primary_10_1038_s41598_019_47953_4 crossref_primary_10_1111_j_1574_6941_2008_00595_x crossref_primary_10_3390_microorganisms9112293 crossref_primary_10_1111_j_1574_6941_2012_01330_x crossref_primary_10_1021_jf904508g crossref_primary_10_1007_s00253_014_5744_1 crossref_primary_10_1038_nrgastro_2012_156 crossref_primary_10_1002_mnfr_201600609 crossref_primary_10_1017_S0007114519002319 crossref_primary_10_1016_j_jtbi_2010_05_040 crossref_primary_10_1515_ijfe_2016_0008 crossref_primary_10_1016_j_ijbiomac_2020_04_248 crossref_primary_10_3920_BM2022_0054 crossref_primary_10_1016_S0007_9960_07_91318_8 crossref_primary_10_1016_j_biteb_2020_100596 crossref_primary_10_1038_srep07485 crossref_primary_10_1016_j_foodres_2018_11_010 crossref_primary_10_1155_2012_493717 crossref_primary_10_3390_nu14081647 crossref_primary_10_1016_j_foodres_2024_115420 crossref_primary_10_1021_jf304643k crossref_primary_10_1007_s12602_023_10118_x crossref_primary_10_1016_j_copbio_2019_03_009 crossref_primary_10_1017_S000711450747249X crossref_primary_10_1080_08910600500430730 crossref_primary_10_1134_S0006297917090012 crossref_primary_10_1080_10934529_2016_1212558 crossref_primary_10_1016_S0003_9098_25_00772_6 crossref_primary_10_1007_s00253_023_12527_y crossref_primary_10_3389_fphys_2017_00319 crossref_primary_10_1016_j_celrep_2019_02_090 crossref_primary_10_1016_j_bcdf_2020_100229 crossref_primary_10_1017_S0029665114001463 crossref_primary_10_1016_j_lwt_2024_117291 crossref_primary_10_1016_j_carbpol_2014_11_029 crossref_primary_10_1111_jpn_12918 crossref_primary_10_1016_j_jff_2014_10_029 crossref_primary_10_1371_journal_pone_0098115 crossref_primary_10_3390_nu8050317 crossref_primary_10_1016_j_envpol_2022_118961 crossref_primary_10_3390_nu15092090 crossref_primary_10_1002_mnfr_200500126 crossref_primary_10_3839_jabc_2018_024 crossref_primary_10_1186_s40168_018_0583_4 crossref_primary_10_1002_mnfr_201300441 crossref_primary_10_3390_microorganisms12061138 crossref_primary_10_1017_S0043933914000919 crossref_primary_10_1186_s13073_017_0421_5 crossref_primary_10_1186_s40168_016_0185_y crossref_primary_10_18632_oncotarget_21921 crossref_primary_10_1016_j_ijfoodmicro_2015_08_004 crossref_primary_10_1111_1574_6941_12124 crossref_primary_10_1038_s41598_020_64834_3 crossref_primary_10_1016_j_phanu_2016_02_001 crossref_primary_10_1016_j_biotechadv_2019_03_008 crossref_primary_10_1016_S0399_8320_10_70016_6 crossref_primary_10_1017_S0007114512004205 crossref_primary_10_1080_19490976_2021_1897212 crossref_primary_10_1017_S2040174418000624 crossref_primary_10_2527_jas_2008_1118 crossref_primary_10_3390_jcm8020173 crossref_primary_10_1016_j_biortech_2019_02_100 crossref_primary_10_1016_j_psj_2023_103000 crossref_primary_10_1128_AEM_01616_15 crossref_primary_10_1016_j_nantod_2022_101662 crossref_primary_10_1111_j_1751_7915_2008_00064_x crossref_primary_10_3390_nu11061350 crossref_primary_10_1016_j_maturitas_2013_02_004 crossref_primary_10_1007_s00203_012_0822_1 crossref_primary_10_1016_j_foodchem_2024_140664 crossref_primary_10_1016_j_jaci_2023_10_001 crossref_primary_10_3389_fnut_2022_948131 crossref_primary_10_1093_jn_136_5_1198 crossref_primary_10_3389_fimmu_2024_1389920 crossref_primary_10_1042_CS20180891 crossref_primary_10_3920_BM2020_0005 crossref_primary_10_3389_fmicb_2020_01642 crossref_primary_10_3389_fendo_2020_00125 crossref_primary_10_1017_S0029665112002881 crossref_primary_10_1016_j_psyneuen_2023_106309 crossref_primary_10_1039_C7FO01919J crossref_primary_10_1016_j_micpath_2015_10_018 crossref_primary_10_1113_JP280955 crossref_primary_10_1007_s11888_017_0389_y crossref_primary_10_1016_j_jaci_2017_05_054 crossref_primary_10_1128_AEM_00508_07 crossref_primary_10_1016_j_jpba_2013_02_032 crossref_primary_10_1080_19490976_2020_1760711 crossref_primary_10_1177_2058739219833542 crossref_primary_10_3390_ani13010007 crossref_primary_10_1039_D1FO03920B crossref_primary_10_1080_19490976_2021_1965698 crossref_primary_10_1016_j_foodres_2016_02_004 crossref_primary_10_1371_journal_pone_0241037 crossref_primary_10_1002_adfm_202302728 crossref_primary_10_1016_j_neuropharm_2024_110266 crossref_primary_10_3389_fphar_2022_869606 crossref_primary_10_1007_s11892_013_0409_5 crossref_primary_10_1017_S0954422414000213 crossref_primary_10_1021_acsomega_8b01360 crossref_primary_10_1111_jpn_13428 crossref_primary_10_1111_pai_12232 crossref_primary_10_3390_ijms25031806 crossref_primary_10_3390_app122312302 crossref_primary_10_5713_ab_21_0485 crossref_primary_10_1002_bies_201300073 crossref_primary_10_1128_AEM_00325_08 crossref_primary_10_3382_ps_pey195 crossref_primary_10_3389_fimmu_2016_00290 crossref_primary_10_1038_s41396_023_01501_1 crossref_primary_10_1038_s41467_021_25081_w crossref_primary_10_1111_asj_12817 crossref_primary_10_1111_j_1469_0691_2008_02070_x crossref_primary_10_1016_j_jff_2020_104333 crossref_primary_10_1016_j_jff_2017_03_001 crossref_primary_10_1007_s10096_019_03721_w crossref_primary_10_1128_AEM_01296_06 crossref_primary_10_1371_journal_pone_0216072 crossref_primary_10_1093_dnares_dsu013 crossref_primary_10_1016_j_chom_2023_08_004 crossref_primary_10_1016_j_copbio_2009_01_002 crossref_primary_10_1093_femsle_fnab015 crossref_primary_10_1111_jpn_13419 crossref_primary_10_1073_pnas_1922719117 crossref_primary_10_1128_msystems_00724_19 crossref_primary_10_1017_S1751731113000062 crossref_primary_10_1038_s41591_018_0324_z crossref_primary_10_1093_bbb_zbab029 crossref_primary_10_1007_s12602_023_10111_4 crossref_primary_10_1360_SSV_2021_0430 crossref_primary_10_3389_fmicb_2016_00047 crossref_primary_10_1016_j_psj_2024_103635 crossref_primary_10_1007_s12010_016_1999_6 crossref_primary_10_2174_2215083808666220623161236 crossref_primary_10_3390_cells9122701 crossref_primary_10_3389_fmicb_2023_1301727 crossref_primary_10_1080_19490976_2020_1736974 crossref_primary_10_1111_j_1471_0307_2009_00528_x crossref_primary_10_1111_obr_12484 crossref_primary_10_1128_mBio_00338_12 crossref_primary_10_1152_physrev_00045_2009 crossref_primary_10_1080_10408398_2019_1599812 crossref_primary_10_3389_fnut_2021_700571 crossref_primary_10_1183_13993003_00280_2017 crossref_primary_10_1111_j_1574_6941_2011_01086_x crossref_primary_10_1016_j_jevs_2017_11_006 crossref_primary_10_1371_journal_pone_0029913 crossref_primary_10_1016_j_cgh_2013_12_032 crossref_primary_10_1016_j_nut_2011_07_018 crossref_primary_10_3389_fnut_2022_1031502 crossref_primary_10_3390_nu8040205 crossref_primary_10_1186_s13068_017_0788_y crossref_primary_10_2152_jmi_63_27 crossref_primary_10_1016_j_foodres_2021_110716 crossref_primary_10_1186_s12916_016_0698_z crossref_primary_10_1016_j_foodhyd_2022_108061 crossref_primary_10_1093_bbb_zbae112 crossref_primary_10_3389_faquc_2024_1450537 crossref_primary_10_3389_fmicb_2023_1242856 crossref_primary_10_1016_S0399_8320_10_70003_8 crossref_primary_10_3390_plants11172232 crossref_primary_10_1111_j_1574_6941_2010_00915_x crossref_primary_10_1016_j_anaerobe_2023_102752 crossref_primary_10_1152_ajpendo_00391_2018 crossref_primary_10_1186_s12934_019_1085_1 crossref_primary_10_1111_j_1472_765X_2009_02674_x crossref_primary_10_1016_j_ijbiomac_2020_03_195 crossref_primary_10_1186_s12974_021_02303_y crossref_primary_10_1111_1462_2920_15269 crossref_primary_10_1016_j_biopha_2018_05_052 crossref_primary_10_1017_S0954422413000152 crossref_primary_10_1007_s00203_025_04263_w crossref_primary_10_1016_j_heliyon_2024_e35980 crossref_primary_10_3390_biomedicines12020457 crossref_primary_10_1007_s00203_017_1459_x crossref_primary_10_1186_s40168_024_01863_4 crossref_primary_10_1016_j_ijfoodmicro_2010_02_030 crossref_primary_10_1038_s41579_019_0264_8 crossref_primary_10_3390_ijms26072951 crossref_primary_10_3389_frmbi_2023_1194516 crossref_primary_10_1016_j_biortech_2020_124157 crossref_primary_10_1099_ijsem_0_003698 crossref_primary_10_1128_aem_01019_23 crossref_primary_10_1017_S0029665120008022 crossref_primary_10_1017_S0007114509992807 crossref_primary_10_1080_19490976_2021_2013764 crossref_primary_10_1371_journal_pone_0079353 crossref_primary_10_1111_j_1365_2672_2007_03322_x crossref_primary_10_1111_j_1574_6941_2011_01085_x crossref_primary_10_3389_fmicb_2022_1103836 crossref_primary_10_1093_jas_skac087 crossref_primary_10_1128_microbiolspec_BAD_0019_2017 crossref_primary_10_1038_s41598_024_72230_4 crossref_primary_10_1038_s41577_024_01014_8 crossref_primary_10_3390_ani10010017 crossref_primary_10_1007_s13197_014_1662_6 crossref_primary_10_1007_s10068_012_0130_1 crossref_primary_10_1016_j_ijfoodmicro_2011_03_003 crossref_primary_10_3382_ps_pez244 crossref_primary_10_3390_microorganisms8101584 crossref_primary_10_1016_j_foodres_2020_109660 crossref_primary_10_1016_j_anaerobe_2013_09_011 crossref_primary_10_1016_j_anaerobe_2013_09_012 crossref_primary_10_1016_j_neubiorev_2020_02_003 crossref_primary_10_1111_jpn_13866 crossref_primary_10_1099_mgen_0_000399 crossref_primary_10_1111_j_1472_765X_2007_02129_x crossref_primary_10_4161_gmic_23998 crossref_primary_10_1021_jf303940r crossref_primary_10_1111_j_1365_2672_2006_02943_x crossref_primary_10_3389_fmicb_2018_00224 crossref_primary_10_1007_s12602_017_9366_7 crossref_primary_10_1016_j_crmicr_2023_100214 crossref_primary_10_1016_j_immuni_2018_10_013 crossref_primary_10_3389_fmicb_2018_02627 crossref_primary_10_1038_srep19171 crossref_primary_10_3390_microorganisms7100376 crossref_primary_10_1093_femsec_fiad107 crossref_primary_10_1016_j_foodres_2012_07_033 crossref_primary_10_3390_microorganisms8020304 crossref_primary_10_1111_1462_2920_15362 crossref_primary_10_3382_ps_pex297 crossref_primary_10_1016_j_beem_2021_101504 crossref_primary_10_1111_1462_2920_14271 crossref_primary_10_1016_j_anaerobe_2010_04_006 crossref_primary_10_1093_femsec_fiy045 crossref_primary_10_2527_jas_2005_748 crossref_primary_10_3390_nutraceuticals3040035 crossref_primary_10_3389_fnut_2022_812469 crossref_primary_10_1016_j_ijpx_2021_100087 crossref_primary_10_3390_nu14163384 crossref_primary_10_3382_ps_2009_00495 crossref_primary_10_1016_j_phrs_2012_10_020 crossref_primary_10_3389_fnut_2018_00080 crossref_primary_10_1080_19490976_2024_2323752 crossref_primary_10_1371_journal_pcbi_1010108 crossref_primary_10_1016_j_micpath_2017_07_034 crossref_primary_10_1016_j_carbpol_2021_118986 crossref_primary_10_1264_jsme2_ME14176 crossref_primary_10_1038_s41598_019_50187_z crossref_primary_10_1099_mic_0_000412 crossref_primary_10_1016_j_jff_2022_105161 crossref_primary_10_1111_j_1751_7915_2010_00244_x crossref_primary_10_1099_ijs_0_055061_0 crossref_primary_10_3389_fmolb_2021_656204 crossref_primary_10_3390_ani10112149 crossref_primary_10_1016_j_anifeedsci_2024_116175 crossref_primary_10_1093_cid_civ994 crossref_primary_10_1155_2017_3831972 crossref_primary_10_3389_fmicb_2024_1337368 crossref_primary_10_1016_j_ijpharm_2018_11_020 crossref_primary_10_1016_j_resmic_2005_09_002 crossref_primary_10_1038_srep18507 crossref_primary_10_3390_molecules26030703 crossref_primary_10_1007_s12020_017_1433_z crossref_primary_10_3389_fmicb_2024_1292004 crossref_primary_10_3945_ajcn_112_035717 crossref_primary_10_1016_j_prerep_2024_100002 crossref_primary_10_1111_1462_2920_13316 crossref_primary_10_1016_j_jnutbio_2024_109699 crossref_primary_10_1016_j_anaerobe_2014_03_009 crossref_primary_10_3389_fphys_2017_01064 crossref_primary_10_1111_j_1440_1746_2008_05490_x crossref_primary_10_1007_s11306_017_1206_y crossref_primary_10_1155_2020_3936247 crossref_primary_10_1016_j_tifs_2020_01_009 crossref_primary_10_1186_s42523_022_00183_y crossref_primary_10_1038_s12276_020_0473_2 crossref_primary_10_3389_fimmu_2021_683068 crossref_primary_10_1128_msystems_00521_19 crossref_primary_10_1038_ncomms4615 crossref_primary_10_1128_AEM_01206_17 crossref_primary_10_1016_j_biortech_2020_124595 crossref_primary_10_3390_nu15112563 crossref_primary_10_1128_AEM_00179_11 crossref_primary_10_3390_foods10071631 crossref_primary_10_1111_1462_2920_12599 crossref_primary_10_1042_BCJ20210263 crossref_primary_10_1111_1348_0421_12723 crossref_primary_10_1128_mSphere_00047_17 crossref_primary_10_1080_19490976_2020_1869503 crossref_primary_10_1038_s41522_020_0127_0 crossref_primary_10_1016_j_celrep_2023_113336 crossref_primary_10_1039_C7FO00197E crossref_primary_10_1080_19490976_2023_2221758 crossref_primary_10_1007_s00394_022_02840_z crossref_primary_10_1016_j_anaerobe_2017_08_013 crossref_primary_10_1111_1574_6941_12186 crossref_primary_10_1016_j_anifeedsci_2023_115822 crossref_primary_10_1093_nutrit_nuu016 crossref_primary_10_1017_S0007114513000597 crossref_primary_10_12938_bmfh_2023_069 crossref_primary_10_3389_fcimb_2017_00526 crossref_primary_10_1016_j_biortech_2019_01_004 crossref_primary_10_1016_j_bbrc_2019_08_049 crossref_primary_10_1128_spectrum_02202_21 crossref_primary_10_1021_acs_jafc_7b02860 crossref_primary_10_1016_j_jpsychires_2023_01_045 crossref_primary_10_1186_s12866_018_1213_9 crossref_primary_10_1038_ismej_2007_29 crossref_primary_10_1111_jfpp_13620 crossref_primary_10_1111_j_1574_6968_2009_01514_x crossref_primary_10_1128_AEM_00146_06 crossref_primary_10_1099_ijsem_0_003041 crossref_primary_10_3389_ti_2022_10728 crossref_primary_10_1055_a_2190_3847 crossref_primary_10_3390_nu10080988 crossref_primary_10_3390_pathogens10020235 crossref_primary_10_1038_s41396_021_00937_7 crossref_primary_10_1128_AEM_03343_15 crossref_primary_10_1186_s40168_018_0590_5 crossref_primary_10_1038_ismej_2011_212 crossref_primary_10_1186_s12915_015_0224_3 crossref_primary_10_3390_nu13082837 crossref_primary_10_3389_fbioe_2023_1173656 crossref_primary_10_3390_life14121703 crossref_primary_10_1155_2014_872725 crossref_primary_10_1016_j_foodres_2020_109354 crossref_primary_10_1038_srep14360 crossref_primary_10_3390_nu6031115 crossref_primary_10_1021_acs_jafc_1c06000 crossref_primary_10_1016_j_anaerobe_2022_102680 crossref_primary_10_1016_j_chom_2018_11_006 crossref_primary_10_1002_fsn3_1909 crossref_primary_10_1080_19490976_2022_2155018 crossref_primary_10_1016_j_anifeedsci_2010_09_006 crossref_primary_10_1021_acs_jafc_8b01253 crossref_primary_10_3748_wjg_v22_i42_9257 crossref_primary_10_1128_mbio_03801_21 crossref_primary_10_1016_j_jcmgh_2019_01_003 crossref_primary_10_1016_j_micpath_2021_105272 crossref_primary_10_1186_s40104_020_0427_5 crossref_primary_10_1093_jn_136_1_70 crossref_primary_10_1111_1574_6941_12041 crossref_primary_10_1007_s00726_010_0556_9 crossref_primary_10_1016_j_copbio_2013_12_012 crossref_primary_10_1017_S0007114514001275 crossref_primary_10_1007_s00702_019_02083_z crossref_primary_10_1016_j_bcdf_2013_09_008 crossref_primary_10_1021_acsmaterialslett_3c00749 crossref_primary_10_1002_mnfr_201200594 crossref_primary_10_1016_j_endmts_2024_100195 crossref_primary_10_1186_s13020_020_00417_8 crossref_primary_10_1016_j_biortech_2022_128368 crossref_primary_10_1080_19490976_2019_1613124 crossref_primary_10_1128_AEM_72_2_1006_1012_2006 crossref_primary_10_1016_j_cgh_2018_07_012 crossref_primary_10_1038_s41575_024_01017_9 crossref_primary_10_1093_jas_sky082 crossref_primary_10_1016_j_ijfoodmicro_2014_09_006 crossref_primary_10_1186_s40104_019_0413_y crossref_primary_10_1038_s41467_021_22938_y crossref_primary_10_1021_acsomega_1c00302 crossref_primary_10_1016_j_tifs_2020_02_026 crossref_primary_10_1038_s41467_024_52953_8 crossref_primary_10_1111_j_1574_6968_2012_02593_x crossref_primary_10_3390_i7020059 crossref_primary_10_1016_j_micpath_2019_103764 crossref_primary_10_1186_s12866_024_03680_z crossref_primary_10_3920_BM2019_0064 crossref_primary_10_3389_fmed_2022_1077275 crossref_primary_10_1264_jsme2_ME17059 crossref_primary_10_1093_femsle_fnv176 crossref_primary_10_1016_j_bbih_2025_100946 crossref_primary_10_3389_fmicb_2016_00185 crossref_primary_10_1007_s00394_019_01908_7 crossref_primary_10_3923_ijps_2010_749_755 crossref_primary_10_1111_jvim_14695 crossref_primary_10_1016_j_metabol_2017_04_014 crossref_primary_10_3920_BM2009_0025 crossref_primary_10_1111_1758_2229_12369 crossref_primary_10_1016_j_copbio_2019_10_008 crossref_primary_10_3389_fmicb_2021_726447 crossref_primary_10_1080_00071660903394455 crossref_primary_10_12938_bmfh_2022_048 crossref_primary_10_3390_nu7085309 crossref_primary_10_1007_s13197_021_05327_7 crossref_primary_10_3920_BM2009_0029 crossref_primary_10_1097_MIB_0000000000000776 crossref_primary_10_1371_journal_pone_0188634 crossref_primary_10_3389_fnut_2021_708096 crossref_primary_10_1007_s00253_018_9234_8 crossref_primary_10_1016_j_tvjl_2010_03_003 crossref_primary_10_1093_jas_skad211 crossref_primary_10_1111_j_1574_6968_2006_00629_x crossref_primary_10_1039_D3FO03898J crossref_primary_10_1042_CS20171330 crossref_primary_10_1155_2017_1829685 crossref_primary_10_1097_MCG_0000000000000153 crossref_primary_10_1111_j_1439_0396_2010_01000_x crossref_primary_10_1038_s41366_020_0572_0 crossref_primary_10_3390_cancers15205019 crossref_primary_10_1128_mSystems_00185_19 crossref_primary_10_3390_nu16244421 crossref_primary_10_1039_c3fo60206k crossref_primary_10_1128_msystems_00646_22 crossref_primary_10_1021_acs_jafc_3c09815 crossref_primary_10_1111_1751_7915_12844 crossref_primary_10_3390_microorganisms8050677 crossref_primary_10_1016_j_conbuildmat_2019_07_129 crossref_primary_10_3390_children10060945 crossref_primary_10_1016_j_energy_2019_04_182 crossref_primary_10_3382_ps_pex218 crossref_primary_10_1186_1471_2180_10_321 crossref_primary_10_1016_j_ijhydene_2021_12_177 crossref_primary_10_1111_jam_15036 crossref_primary_10_1519_JSC_0000000000003814 crossref_primary_10_1128_AEM_71_7_3692_3700_2005 crossref_primary_10_3390_foods12050938 crossref_primary_10_3390_microorganisms7110561 crossref_primary_10_1007_s13668_019_0257_2 crossref_primary_10_1016_j_brainresbull_2024_111130 crossref_primary_10_1016_j_foodres_2025_116271 crossref_primary_10_3390_ijms21020635 crossref_primary_10_1017_S0007114511003825 crossref_primary_10_1073_pnas_0904847106 crossref_primary_10_4014_jmb_2402_02021 crossref_primary_10_1016_j_csbj_2021_12_006 crossref_primary_10_1128_mBio_00770_17 crossref_primary_10_1016_j_jnutbio_2023_109370 crossref_primary_10_1016_j_livsci_2010_06_039 crossref_primary_10_1099_ijsem_0_005129 crossref_primary_10_3389_fnut_2020_00165 crossref_primary_10_1021_acs_jafc_0c08197 crossref_primary_10_1186_s12866_024_03235_2 crossref_primary_10_1128_AEM_02568_10 crossref_primary_10_3390_microorganisms9030604 crossref_primary_10_1007_s12080_020_00466_7 crossref_primary_10_1016_j_mimet_2021_106230 crossref_primary_10_3390_foods11244113 crossref_primary_10_3390_microorganisms8020146 crossref_primary_10_1021_acs_jafc_8b01055 crossref_primary_10_1111_1462_2920_13589 crossref_primary_10_4166_kjg_2013_62_4_191 crossref_primary_10_1016_j_nutres_2025_02_006 crossref_primary_10_1080_19490976_2021_1880241 crossref_primary_10_1111_1462_2920_15886 crossref_primary_10_3389_fmicb_2024_1451054 crossref_primary_10_1016_j_bbadis_2019_165534 crossref_primary_10_1016_j_neuint_2016_06_011 crossref_primary_10_1099_mgen_0_000739 crossref_primary_10_1016_j_cej_2024_150854 crossref_primary_10_1016_j_carbpol_2024_122284 crossref_primary_10_1128_AEM_00876_09 crossref_primary_10_1080_19490976_2022_2138661 crossref_primary_10_1021_acs_jafc_0c08187 crossref_primary_10_3390_genes8120350 crossref_primary_10_3390_nu13041115 crossref_primary_10_3390_foods13203267 crossref_primary_10_1017_S1751731118000058 crossref_primary_10_1371_journal_pone_0294273 crossref_primary_10_1038_s41391_022_00536_3 crossref_primary_10_1080_15502783_2024_2382165 crossref_primary_10_3389_fmicb_2019_00091 crossref_primary_10_3390_ijms252212086 crossref_primary_10_1039_D4FO00325J crossref_primary_10_5713_ajas_17_0733 crossref_primary_10_1007_s00203_024_04030_3 crossref_primary_10_1016_j_carbpol_2015_09_046 crossref_primary_10_1099_jmm_0_000568 crossref_primary_10_1007_s00394_024_03408_9 crossref_primary_10_1007_s00253_015_6725_8 crossref_primary_10_1016_j_lwt_2014_10_032 crossref_primary_10_1080_1745039X_2024_2312700 crossref_primary_10_1016_j_anaerobe_2008_07_002 crossref_primary_10_1007_s12257_008_0054_z crossref_primary_10_1053_j_gastro_2019_06_048 crossref_primary_10_1111_j_1574_6968_2009_01750_x crossref_primary_10_4161_gmic_19897 crossref_primary_10_1038_s41598_021_02754_6 crossref_primary_10_3390_ijms24065859 crossref_primary_10_14271_DMS_21264_DE crossref_primary_10_2527_jas_2016_1302 crossref_primary_10_1128_JB_01147_07 crossref_primary_10_3390_nu10020144 crossref_primary_10_1161_HYPERTENSIONAHA_115_06672 crossref_primary_10_1038_s41564_019_0649_5 crossref_primary_10_1186_s40168_023_01565_3 crossref_primary_10_3389_fmicb_2018_03146 crossref_primary_10_1016_j_foodhyd_2022_107987 crossref_primary_10_1038_s41598_019_43426_w crossref_primary_10_1002_hep_29892 crossref_primary_10_3390_nu11020217 crossref_primary_10_3390_foods12051023 crossref_primary_10_17221_63_2021_CJAS crossref_primary_10_1038_npjbiofilms_2016_9 crossref_primary_10_1111_1751_7915_12126 crossref_primary_10_1016_j_foodres_2021_110490 crossref_primary_10_3390_nu12092512 crossref_primary_10_1038_nutd_2011_8 crossref_primary_10_7717_peerj_1140 crossref_primary_10_1111_j_1462_2920_2007_01369_x crossref_primary_10_1177_17562848221115320 crossref_primary_10_4161_gmic_28203 crossref_primary_10_1194_jlr_R036012 crossref_primary_10_3390_ijms24076755 crossref_primary_10_3389_fvets_2020_572142 crossref_primary_10_1007_s00394_015_0852_y crossref_primary_10_1002_cbf_4108 crossref_primary_10_1007_s40265_015_0422_x crossref_primary_10_1017_gmb_2022_3 crossref_primary_10_1016_j_lfs_2021_120179 crossref_primary_10_1016_j_watres_2023_120399 crossref_primary_10_1186_s12866_024_03536_6 crossref_primary_10_3389_fmicb_2016_00713 crossref_primary_10_1038_s41522_022_00275_2 crossref_primary_10_1186_s40168_015_0079_4 crossref_primary_10_1007_s00253_014_6312_4 crossref_primary_10_1016_j_carbpol_2017_04_014 crossref_primary_10_1007_s10620_020_06112_w crossref_primary_10_3390_nu14204398 crossref_primary_10_1016_j_cmet_2017_05_008 crossref_primary_10_1038_srep06328 crossref_primary_10_1017_S0029665121003694 crossref_primary_10_1016_j_anaerobe_2012_04_014 crossref_primary_10_1093_molbev_msab279 crossref_primary_10_1128_mBio_00889_14 crossref_primary_10_1016_j_foodhyd_2010_02_006 crossref_primary_10_3389_fimmu_2021_777665 crossref_primary_10_1016_j_anaerobe_2018_04_018 crossref_primary_10_12938_bmfh_2023_002 crossref_primary_10_1016_j_vas_2022_100244 crossref_primary_10_1016_j_jclepro_2025_144691 crossref_primary_10_3389_fnut_2022_921137 crossref_primary_10_1038_s41467_023_40336_4 crossref_primary_10_1111_j_1574_6968_2010_02057_x crossref_primary_10_1080_10408398_2023_2272769 crossref_primary_10_1016_j_chom_2022_04_001 crossref_primary_10_1111_mmi_14905 crossref_primary_10_1134_S0022093024070019 crossref_primary_10_1371_journal_pone_0113864 crossref_primary_10_1002_mnfr_201800607 crossref_primary_10_1016_j_fbio_2024_105329 crossref_primary_10_1016_j_ijpharm_2020_119648 crossref_primary_10_1016_j_ijfoodmicro_2008_02_013 crossref_primary_10_1039_D4FO01635A crossref_primary_10_1099_mic_0_001377 crossref_primary_10_1016_j_foodres_2019_108848 crossref_primary_10_1016_j_renene_2019_03_029 crossref_primary_10_1016_j_resmic_2008_08_002 crossref_primary_10_1016_S2095_3119_15_61236_9 crossref_primary_10_1111_j_1462_2920_2008_01815_x crossref_primary_10_1016_j_ijpharm_2021_120977 crossref_primary_10_1016_j_kim_2008_11_002 crossref_primary_10_1016_j_ijbiomac_2025_141967 crossref_primary_10_1186_s13568_023_01614_y crossref_primary_10_1007_s00248_017_1037_4 crossref_primary_10_1111_j_1365_2036_2012_05007_x crossref_primary_10_1371_journal_pone_0248584 crossref_primary_10_3382_japr_2013_00742 crossref_primary_10_3390_biomedicines11082267 crossref_primary_10_1038_s41598_022_23784_8 crossref_primary_10_1007_s00394_016_1332_8 crossref_primary_10_1016_j_bcdf_2022_100328 crossref_primary_10_1016_j_aninu_2024_04_009 crossref_primary_10_1016_j_mib_2013_06_003 crossref_primary_10_1111_j_1740_0929_2009_00645_x crossref_primary_10_1111_j_1574_6941_2008_00528_x crossref_primary_10_3390_nu9070767 crossref_primary_10_1016_j_jbiosc_2010_09_005 crossref_primary_10_1128_msystems_01484_21 crossref_primary_10_1186_s12902_023_01432_0 crossref_primary_10_3390_vetsci7030092 crossref_primary_10_1080_10408398_2021_1958744 crossref_primary_10_1080_19490976_2023_2192151 crossref_primary_10_1186_s12934_015_0229_1 crossref_primary_10_3390_nu10070862 crossref_primary_10_1007_s00436_022_07728_9 crossref_primary_10_3390_nu13020482 crossref_primary_10_1128_msystems_01124_20 crossref_primary_10_1088_1755_1315_663_1_012008 crossref_primary_10_1155_2019_4572764 crossref_primary_10_1038_nrmicro_2017_50 crossref_primary_10_1002_jsfa_6030 crossref_primary_10_1007_s00284_022_02825_5 crossref_primary_10_1111_asj_70027 crossref_primary_10_1042_BCJ20160510 crossref_primary_10_1111_j_1574_6941_2010_01014_x crossref_primary_10_3390_microorganisms7080239 crossref_primary_10_3390_nu10020179 crossref_primary_10_1089_met_2022_0071 crossref_primary_10_3920_BM2016_0142 crossref_primary_10_3389_fvets_2023_1050414 crossref_primary_10_1111_eci_13201 crossref_primary_10_1111_j_1574_6941_2008_00625_x crossref_primary_10_1016_j_bcab_2019_101446 crossref_primary_10_1371_journal_pbio_3001743 crossref_primary_10_3389_fendo_2024_1329954 crossref_primary_10_1016_j_clim_2017_03_001 crossref_primary_10_1016_j_biortech_2022_127448 crossref_primary_10_1016_j_phrs_2019_02_018 crossref_primary_10_1128_MMBR_00017_08 crossref_primary_10_3390_ani11123417 crossref_primary_10_1007_s00253_019_10312_4 crossref_primary_10_1038_ismej_2017_196 crossref_primary_10_1038_s41467_022_33313_w crossref_primary_10_1007_s10534_019_00195_3 crossref_primary_10_1016_j_jff_2023_105710 crossref_primary_10_1089_thy_2020_0193 crossref_primary_10_3390_cancers13194947 |
Cites_doi | 10.1016/S0016-5085(88)80078-7 10.1111/j.1365-2672.1986.tb01073.x 10.1093/ajcn/25.12.1324 10.1128/AEM.65.11.4848-4854.1999 10.1051/rnd:2002006 10.1128/aem.61.9.3202-3207.1995 10.1111/j.1574-6968.2002.tb11467.x 10.1078/0723-2020-00096 10.3109/00365529409090473 10.1111/j.1472-765X.1995.tb00435.x 10.1111/j.1348-0421.2002.tb02731.x 10.1016/S0025-6196(11)63729-4 10.1128/JB.183.5.1748-1754.2001 10.1128/AEM.69.7.4320-4324.2003 10.1128/aem.42.4.649-655.1981 10.1128/AEM.66.4.1654-1661.2000 10.1128/jcm.35.12.3181-3185.1997 10.1128/AEM.65.11.4799-4807.1999 10.1093/jn/132.8.2229 10.1093/ajcn/55.1.70 10.2527/jas1976.434910x 10.1128/AEM.68.10.5186-5190.2002 10.1016/S0022-2836(05)80360-2 10.1128/AEM.64.9.3336-3345.1998 10.1128/JB.173.2.697-703.1991 10.1111/j.1574-6941.2002.tb00904.x 10.1046/j.1365-2672.2002.01679.x 10.1007/BF02691358 10.1093/jn/133.10.3187 10.1016/S0580-9517(08)70504-X 10.1146/annurev.mi.33.100179.000245 10.1073/pnas.75.10.4801 10.1128/JB.186.7.2099-2106.2004 10.1177/000456326900600108 10.1017/S000711459900166X 10.1128/AEM.69.2.1136-1142.2003 10.1152/physrev.2001.81.3.1031 10.1128/AEM.68.6.2982-2990.2002 10.1111/j.1472-765X.1989.tb00278.x 10.1097/00004836-200307000-00012 10.1079/BJN19960177 10.1006/anae.1997.0125 10.1128/aem.34.5.529-533.1977 10.1128/aem.59.1.255-259.1993 10.1111/j.1574-6968.1990.tb03960.x 10.1111/j.1348-0421.1989.tb01992.x |
ContentType | Journal Article |
Copyright | 2005 INIST-CNRS Copyright American Society for Microbiology Oct 2004 Copyright © 2004, American Society for Microbiology 2004 |
Copyright_xml | – notice: 2005 INIST-CNRS – notice: Copyright American Society for Microbiology Oct 2004 – notice: Copyright © 2004, American Society for Microbiology 2004 |
DBID | FBQ AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 7QL 7QO 7SN 7SS 7ST 7T7 7TM 7U9 8FD C1K FR3 H94 M7N P64 RC3 SOI 7S9 L.6 7X8 5PM |
DOI | 10.1128/AEM.70.10.5810-5817.2004 |
DatabaseName | AGRIS CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Bacteriology Abstracts (Microbiology B) Biotechnology Research Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Environment Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Nucleic Acids Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts Environment Abstracts AGRICOLA AGRICOLA - Academic MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Virology and AIDS Abstracts Technology Research Database Nucleic Acids Abstracts Ecology Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Entomology Abstracts Genetics Abstracts Biotechnology Research Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Engineering Research Database Industrial and Applied Microbiology Abstracts (Microbiology A) Environment Abstracts AGRICOLA AGRICOLA - Academic MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Engineering Research Database MEDLINE CrossRef AGRICOLA Virology and AIDS Abstracts |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: FBQ name: AGRIS url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Economics Engineering Biology Chemistry |
EISSN | 1098-5336 |
EndPage | 5817 |
ExternalDocumentID | PMC522113 810865021 15466518 16200454 10_1128_AEM_70_10_5810_5817_2004 aem_70_10_5810 US201300958111 |
Genre | Research Support, Non-U.S. Gov't Journal Article Feature |
GroupedDBID | --- -~X .55 .GJ 0R~ 23M 2WC 39C 3O- 4.4 53G 5GY 5RE 5VS 6J9 85S AAZTW ABOGM ABPPZ ABTAH ACBTR ACGFO ACIWK ACNCT ACPRK ADBBV ADUKH AENEX AFFNX AFRAH AGCDD AGVNZ AI. ALMA_UNASSIGNED_HOLDINGS AOIJS BAWUL BKOMP BTFSW C1A CS3 D0L DIK E.- E3Z EBS EJD F5P FBQ GX1 H13 HYE HZ~ H~9 K-O KQ8 L7B MVM NEJ O9- OHT P2P PQQKQ RHI RNS RPM RSF RXW TAE TAF TN5 TR2 TWZ UHB VH1 W8F WH7 WHG WOQ X6Y X7M XJT YV5 ZCG ZGI ZXP ZY4 ~02 ~KM AAGFI AAYXX ADXHL CITATION IQODW CGR CUY CVF ECM EIF NPM 7QL 7QO 7SN 7SS 7ST 7T7 7TM 7U9 8FD C1K FR3 H94 M7N P64 RC3 SOI 7S9 L.6 7X8 5PM |
ID | FETCH-LOGICAL-c585t-7e370a699f999ebffb8d03c1d983e22340e82ac7de44a1d04fa2a86fa8c649bc3 |
ISSN | 0099-2240 |
IngestDate | Thu Aug 21 13:49:35 EDT 2025 Fri Jul 11 09:43:00 EDT 2025 Fri Jul 11 09:02:14 EDT 2025 Fri Jul 11 16:39:55 EDT 2025 Mon Jun 30 10:32:36 EDT 2025 Wed Mar 05 08:03:04 EST 2025 Mon Jul 21 09:14:38 EDT 2025 Tue Jul 01 00:46:25 EDT 2025 Thu Apr 24 22:55:13 EDT 2025 Wed May 18 15:27:48 EDT 2016 Thu Apr 03 09:45:40 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Keywords | Human Lactates Bacteria Colon Feces Fermentation Butyrate |
Language | English |
License | CC BY 4.0 |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c585t-7e370a699f999ebffb8d03c1d983e22340e82ac7de44a1d04fa2a86fa8c649bc3 |
Notes | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-2 content type line 23 ObjectType-Article-1 ObjectType-Feature-2 Corresponding author. Mailing address: Microbial Genetics Group, Rowett Research Institute, Greenburn Rd., Bucksburn, Aberdeen AB21 9SB, United Kingdom. Phone: 01224 712751. Fax: 01224 716687. E-mail: hjf@rri.sari.ac.uk. |
OpenAccessLink | http://doi.org/10.1128/AEM.70.10.5810-5817.2004 |
PMID | 15466518 |
PQID | 205948223 |
PQPubID | 42251 |
PageCount | 8 |
ParticipantIDs | highwire_asm_aem_70_10_5810 crossref_primary_10_1128_AEM_70_10_5810_5817_2004 proquest_miscellaneous_46691326 proquest_miscellaneous_66935104 pascalfrancis_primary_16200454 fao_agris_US201300958111 proquest_journals_205948223 crossref_citationtrail_10_1128_AEM_70_10_5810_5817_2004 pubmedcentral_primary_oai_pubmedcentral_nih_gov_522113 pubmed_primary_15466518 proquest_miscellaneous_17716197 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2004-10-01 |
PublicationDateYYYYMMDD | 2004-10-01 |
PublicationDate_xml | – month: 10 year: 2004 text: 2004-10-01 day: 01 |
PublicationDecade | 2000 |
PublicationPlace | Washington, DC |
PublicationPlace_xml | – name: Washington, DC – name: United States – name: Washington |
PublicationTitle | Applied and Environmental Microbiology |
PublicationTitleAlternate | Appl Environ Microbiol |
PublicationYear | 2004 |
Publisher | American Society for Microbiology |
Publisher_xml | – name: American Society for Microbiology |
References | e_1_3_2_26_2 e_1_3_2_49_2 (e_1_3_2_14_2) 1995 e_1_3_2_28_2 e_1_3_2_41_2 e_1_3_2_43_2 (e_1_3_2_32_2) 1999; 3 e_1_3_2_22_2 e_1_3_2_45_2 (e_1_3_2_10_2) 2002; 13 e_1_3_2_24_2 (e_1_3_2_44_2) 1997 e_1_3_2_47_2 (e_1_3_2_59_2) 1991; 65 e_1_3_2_9_2 e_1_3_2_7_2 e_1_3_2_18_2 e_1_3_2_54_2 e_1_3_2_31_2 e_1_3_2_52_2 e_1_3_2_5_2 e_1_3_2_12_2 e_1_3_2_33_2 e_1_3_2_58_2 e_1_3_2_35_2 e_1_3_2_56_2 (e_1_3_2_3_2) 1997 (e_1_3_2_17_2) 2002 e_1_3_2_50_2 e_1_3_2_27_2 e_1_3_2_48_2 e_1_3_2_29_2 (e_1_3_2_20_2) 1983 (e_1_3_2_37_2) 1996; 1 e_1_3_2_40_2 e_1_3_2_21_2 e_1_3_2_42_2 e_1_3_2_23_2 e_1_3_2_25_2 e_1_3_2_46_2 e_1_3_2_15_2 e_1_3_2_38_2 e_1_3_2_8_2 e_1_3_2_6_2 e_1_3_2_19_2 (e_1_3_2_39_2) 1986; 2 e_1_3_2_30_2 e_1_3_2_53_2 e_1_3_2_51_2 e_1_3_2_11_2 e_1_3_2_34_2 e_1_3_2_57_2 e_1_3_2_4_2 e_1_3_2_13_2 e_1_3_2_36_2 e_1_3_2_55_2 e_1_3_2_2_2 (e_1_3_2_16_2) 2002 9399516 - J Clin Microbiol. 1997 Dec;35(12):3181-5 12067385 - J Appl Microbiol. 2002;93(1):157-62 10388668 - Appl Environ Microbiol. 1999 Jul;65(7):2807-12 11427691 - Physiol Rev. 2001 Jul;81(3):1031-64 16887612 - Anaerobe. 1997 Dec;3(6):373-81 2231712 - J Mol Biol. 1990 Oct 5;215(3):403-10 12811208 - J Clin Gastroenterol. 2003 Jul;37(1):42-7 12324374 - Appl Environ Microbiol. 2002 Oct;68(10):5186-90 1309475 - Am J Clin Nutr. 1992 Jan;55(1):70-7 12571040 - Appl Environ Microbiol. 2003 Feb;69(2):1136-42 386919 - Annu Rev Microbiol. 1979;33:1-20 2547140 - Microbiol Immunol. 1989;33(5):435-40 10543789 - Appl Environ Microbiol. 1999 Nov;65(11):4799-807 12508881 - Int J Syst Evol Microbiol. 2002 Nov;52(Pt 6):2141-6 12361264 - Int J Syst Evol Microbiol. 2002 Sep;52(Pt 5):1615-20 12363017 - Microbiol Immunol. 2002;46(8):535-48 9726880 - Appl Environ Microbiol. 1998 Sep;64(9):3336-45 12839823 - Appl Environ Microbiol. 2003 Jul;69(7):4320-4 10742256 - Appl Environ Microbiol. 2000 Apr;66(4):1654-61 15028695 - J Bacteriol. 2004 Apr;186(7):2099-106 563214 - Appl Environ Microbiol. 1977 Nov;34(5):529-33 368799 - Proc Natl Acad Sci U S A. 1978 Oct;75(10):4801-5 14519808 - J Nutr. 2003 Oct;133(10):3187-90 789319 - J Anim Sci. 1976 Oct;43(4):910-29 12480096 - FEMS Microbiol Lett. 2002 Dec 17;217(2):133-9 16345862 - Appl Environ Microbiol. 1981 Oct;42(4):649-55 7766117 - Lett Appl Microbiol. 1995 Apr;20(4):232-6 8439152 - Appl Environ Microbiol. 1993 Jan;59(1):255-9 19709182 - FEMS Microbiol Ecol. 2002 Jan 1;39(1):33-9 7696135 - Integr Physiol Behav Sci. 1994 Oct-Dec;29(4):383-94 10673915 - Br J Nutr. 1999 Nov;82(5):419-26 10543795 - Appl Environ Microbiol. 1999 Nov;65(11):4848-54 11160107 - J Bacteriol. 2001 Mar;183(5):1748-54 4565349 - Am J Clin Nutr. 1972 Dec;25(12):1324-8 12039758 - Appl Environ Microbiol. 2002 Jun;68(6):2982-90 1987160 - J Bacteriol. 1991 Jan;173(2):697-703 9581587 - Mayo Clin Proc. 1998 May;73(5):451-6 8209186 - Scand J Gastroenterol. 1994 Mar;29(3):255-9 2423494 - J Appl Bacteriol. 1986 Mar;60(3):195-201 3181680 - Gastroenterology. 1988 Dec;95(6):1564-8 12163667 - J Nutr. 2002 Aug;132(8):2229-34 9917526 - Int J Mol Med. 1999 Feb;3(2):175-9 7574628 - Appl Environ Microbiol. 1995 Sep;61(9):3202-7 12086188 - Syst Appl Microbiol. 2002 Apr;25(1):46-51 8695600 - Br J Nutr. 1996 May;75(5):733-47 |
References_xml | – ident: e_1_3_2_55_2 doi: 10.1016/S0016-5085(88)80078-7 – ident: e_1_3_2_36_2 doi: 10.1111/j.1365-2672.1986.tb01073.x – ident: e_1_3_2_11_2 doi: 10.1093/ajcn/25.12.1324 – ident: e_1_3_2_56_2 doi: 10.1128/AEM.65.11.4848-4854.1999 – ident: e_1_3_2_8_2 doi: 10.1051/rnd:2002006 – ident: e_1_3_2_40_2 doi: 10.1128/aem.61.9.3202-3207.1995 – volume: 3 start-page: 175 year: 1999 ident: e_1_3_2_32_2 publication-title: Int. J. Mol. Med. – start-page: 2141 year: 2002 ident: e_1_3_2_17_2 publication-title: Int. J. Syst. E – ident: e_1_3_2_41_2 doi: 10.1111/j.1574-6968.2002.tb11467.x – ident: e_1_3_2_47_2 doi: 10.1078/0723-2020-00096 – ident: e_1_3_2_30_2 doi: 10.3109/00365529409090473 – ident: e_1_3_2_43_2 doi: 10.1111/j.1472-765X.1995.tb00435.x – ident: e_1_3_2_25_2 doi: 10.1111/j.1348-0421.2002.tb02731.x – ident: e_1_3_2_54_2 doi: 10.1016/S0025-6196(11)63729-4 – volume: 1 start-page: 269 year: 1996 ident: e_1_3_2_37_2 publication-title: Gastrointestinal microbiology – ident: e_1_3_2_45_2 doi: 10.1128/JB.183.5.1748-1754.2001 – ident: e_1_3_2_29_2 doi: 10.1128/AEM.69.7.4320-4324.2003 – volume: 65 start-page: 2807 year: 1991 ident: e_1_3_2_59_2 publication-title: Appl. Environ. Microbiol. – ident: e_1_3_2_13_2 doi: 10.1128/aem.42.4.649-655.1981 – ident: e_1_3_2_5_2 doi: 10.1128/AEM.66.4.1654-1661.2000 – ident: e_1_3_2_33_2 doi: 10.1128/jcm.35.12.3181-3185.1997 – start-page: 1245 year: 1997 ident: e_1_3_2_3_2 publication-title: Handbook of microbiological media, 2nd ed. – ident: e_1_3_2_50_2 doi: 10.1128/AEM.65.11.4799-4807.1999 – ident: e_1_3_2_53_2 doi: 10.1093/jn/132.8.2229 – ident: e_1_3_2_57_2 doi: 10.1093/ajcn/55.1.70 – ident: e_1_3_2_49_2 doi: 10.2527/jas1976.434910x – ident: e_1_3_2_18_2 doi: 10.1128/AEM.68.10.5186-5190.2002 – ident: e_1_3_2_2_2 doi: 10.1016/S0022-2836(05)80360-2 – start-page: 1 year: 2002 ident: e_1_3_2_16_2 publication-title: Int. J. Syst. E – ident: e_1_3_2_22_2 doi: 10.1128/AEM.64.9.3336-3345.1998 – ident: e_1_3_2_58_2 doi: 10.1128/JB.173.2.697-703.1991 – ident: e_1_3_2_28_2 doi: 10.1111/j.1574-6941.2002.tb00904.x – start-page: 3 year: 1983 ident: e_1_3_2_20_2 publication-title: Human intestinal microflora in health and disease – ident: e_1_3_2_48_2 doi: 10.1046/j.1365-2672.2002.01679.x – ident: e_1_3_2_12_2 doi: 10.1007/BF02691358 – ident: e_1_3_2_24_2 doi: 10.1093/jn/133.10.3187 – ident: e_1_3_2_4_2 – ident: e_1_3_2_27_2 doi: 10.1016/S0580-9517(08)70504-X – ident: e_1_3_2_31_2 doi: 10.1146/annurev.mi.33.100179.000245 – ident: e_1_3_2_9_2 doi: 10.1073/pnas.75.10.4801 – start-page: 101 year: 1995 ident: e_1_3_2_14_2 publication-title: Human colonic bacteria: role in nutrition, physiology and pathology – ident: e_1_3_2_35_2 doi: 10.1128/JB.186.7.2099-2106.2004 – volume: 2 start-page: 1364 year: 1986 ident: e_1_3_2_39_2 publication-title: Bergey's manual of systematic bacteriology – ident: e_1_3_2_52_2 doi: 10.1177/000456326900600108 – ident: e_1_3_2_34_2 doi: 10.1017/S000711459900166X – ident: e_1_3_2_19_2 doi: 10.1128/AEM.69.2.1136-1142.2003 – ident: e_1_3_2_51_2 doi: 10.1152/physrev.2001.81.3.1031 – start-page: 246 year: 1997 ident: e_1_3_2_44_2 publication-title: The rumen microbial ecosystem, 2nd ed. – ident: e_1_3_2_23_2 doi: 10.1128/AEM.68.6.2982-2990.2002 – ident: e_1_3_2_42_2 doi: 10.1111/j.1472-765X.1989.tb00278.x – ident: e_1_3_2_7_2 doi: 10.1097/00004836-200307000-00012 – ident: e_1_3_2_15_2 doi: 10.1079/BJN19960177 – ident: e_1_3_2_38_2 doi: 10.1006/anae.1997.0125 – volume: 13 start-page: 251 year: 2002 ident: e_1_3_2_10_2 publication-title: Technol. – ident: e_1_3_2_46_2 doi: 10.1128/aem.34.5.529-533.1977 – ident: e_1_3_2_26_2 doi: 10.1128/aem.59.1.255-259.1993 – ident: e_1_3_2_21_2 doi: 10.1111/j.1574-6968.1990.tb03960.x – ident: e_1_3_2_6_2 doi: 10.1111/j.1348-0421.1989.tb01992.x – reference: 11160107 - J Bacteriol. 2001 Mar;183(5):1748-54 – reference: 12480096 - FEMS Microbiol Lett. 2002 Dec 17;217(2):133-9 – reference: 9399516 - J Clin Microbiol. 1997 Dec;35(12):3181-5 – reference: 10543795 - Appl Environ Microbiol. 1999 Nov;65(11):4848-54 – reference: 386919 - Annu Rev Microbiol. 1979;33:1-20 – reference: 789319 - J Anim Sci. 1976 Oct;43(4):910-29 – reference: 12324374 - Appl Environ Microbiol. 2002 Oct;68(10):5186-90 – reference: 9917526 - Int J Mol Med. 1999 Feb;3(2):175-9 – reference: 12361264 - Int J Syst Evol Microbiol. 2002 Sep;52(Pt 5):1615-20 – reference: 10673915 - Br J Nutr. 1999 Nov;82(5):419-26 – reference: 9726880 - Appl Environ Microbiol. 1998 Sep;64(9):3336-45 – reference: 12839823 - Appl Environ Microbiol. 2003 Jul;69(7):4320-4 – reference: 1309475 - Am J Clin Nutr. 1992 Jan;55(1):70-7 – reference: 8209186 - Scand J Gastroenterol. 1994 Mar;29(3):255-9 – reference: 16887612 - Anaerobe. 1997 Dec;3(6):373-81 – reference: 8695600 - Br J Nutr. 1996 May;75(5):733-47 – reference: 10742256 - Appl Environ Microbiol. 2000 Apr;66(4):1654-61 – reference: 2423494 - J Appl Bacteriol. 1986 Mar;60(3):195-201 – reference: 12039758 - Appl Environ Microbiol. 2002 Jun;68(6):2982-90 – reference: 7696135 - Integr Physiol Behav Sci. 1994 Oct-Dec;29(4):383-94 – reference: 563214 - Appl Environ Microbiol. 1977 Nov;34(5):529-33 – reference: 12163667 - J Nutr. 2002 Aug;132(8):2229-34 – reference: 10388668 - Appl Environ Microbiol. 1999 Jul;65(7):2807-12 – reference: 2231712 - J Mol Biol. 1990 Oct 5;215(3):403-10 – reference: 12363017 - Microbiol Immunol. 2002;46(8):535-48 – reference: 19709182 - FEMS Microbiol Ecol. 2002 Jan 1;39(1):33-9 – reference: 368799 - Proc Natl Acad Sci U S A. 1978 Oct;75(10):4801-5 – reference: 7574628 - Appl Environ Microbiol. 1995 Sep;61(9):3202-7 – reference: 4565349 - Am J Clin Nutr. 1972 Dec;25(12):1324-8 – reference: 1987160 - J Bacteriol. 1991 Jan;173(2):697-703 – reference: 12571040 - Appl Environ Microbiol. 2003 Feb;69(2):1136-42 – reference: 8439152 - Appl Environ Microbiol. 1993 Jan;59(1):255-9 – reference: 2547140 - Microbiol Immunol. 1989;33(5):435-40 – reference: 3181680 - Gastroenterology. 1988 Dec;95(6):1564-8 – reference: 12508881 - Int J Syst Evol Microbiol. 2002 Nov;52(Pt 6):2141-6 – reference: 14519808 - J Nutr. 2003 Oct;133(10):3187-90 – reference: 12086188 - Syst Appl Microbiol. 2002 Apr;25(1):46-51 – reference: 7766117 - Lett Appl Microbiol. 1995 Apr;20(4):232-6 – reference: 11427691 - Physiol Rev. 2001 Jul;81(3):1031-64 – reference: 15028695 - J Bacteriol. 2004 Apr;186(7):2099-106 – reference: 12811208 - J Clin Gastroenterol. 2003 Jul;37(1):42-7 – reference: 10543789 - Appl Environ Microbiol. 1999 Nov;65(11):4799-807 – reference: 16345862 - Appl Environ Microbiol. 1981 Oct;42(4):649-55 – reference: 9581587 - Mayo Clin Proc. 1998 May;73(5):451-6 – reference: 12067385 - J Appl Microbiol. 2002;93(1):157-62 |
SSID | ssj0004068 |
Score | 2.413172 |
Snippet | The microbial community of the human colon contains many bacteria that produce lactic acid, but lactate is normally detected only at low concentrations (<5 mM)... Classifications Services AEM Citing Articles Google Scholar PubMed Related Content Social Bookmarking CiteULike Delicious Digg Facebook Google+ Mendeley Reddit... |
SourceID | pubmedcentral proquest pubmed pascalfrancis crossref highwire fao |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 5810 |
SubjectTerms | Acids Adult Anaerostipes cacae Anaerostipes caccae Bacteria Bacteria - classification Bacteria - genetics Bacteria - isolation & purification Bacteria - metabolism Bacteriology Base Sequence Bifidobacterium adolescentis Biological and medical sciences biosynthesis Butyrates Butyrates - metabolism butyric acid Carbon Carbon - metabolism chemistry classification colon DNA, Bacterial DNA, Bacterial - genetics Electron Transport Energy sources Eubacterium Eubacterium - classification Eubacterium - genetics Eubacterium - isolation & purification Eubacterium - metabolism Eubacterium hallii Eubacterium rectale Faecalibacterium prausnitzii Feces Feces - microbiology Female Fermentation Fundamental and applied biological sciences. Psychology genetics Humans intestinal microorganisms isolation & purification lactic acid Lactic Acid - chemistry Lactic Acid - metabolism metabolism Metabolism. Enzymes Microbial Ecology microbial physiology Microbiology Models, Biological Phylogeny RNA, Bacterial RNA, Bacterial - genetics RNA, Ribosomal, 16S RNA, Ribosomal, 16S - genetics Starch Stereoisomerism |
Title | Lactate-utilizing bacteria, isolated from human feces, that produce butyrate as a major fermentation product |
URI | http://aem.asm.org/content/70/10/5810.abstract https://www.ncbi.nlm.nih.gov/pubmed/15466518 https://www.proquest.com/docview/205948223 https://www.proquest.com/docview/17716197 https://www.proquest.com/docview/46691326 https://www.proquest.com/docview/66935104 https://pubmed.ncbi.nlm.nih.gov/PMC522113 |
Volume | 70 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF6FIgQcEIRHTaHsgVvr4PeujxUqiqoWIdFIvZn1ercNShwUO4f21zNje_2ARCpcrMSe9Vqez-OZ9cw3hHzkjlQM3A47jZi2A3gn2bFkzJYe87gbySyTuDRw8TWazoKzq_BqNPrRy1ralOlE3m2tK_kfrcI-0CtWyf6DZtuTwg74DfqFLWgYtvfS8bmQ6CvaMMVifodBf1qTL1ce4RwmF-hQViUkdTM-rRq7UN6IEpOzMlDtUbopb5EyApvOiKOl-Llag-R62dQl5Y3gYBnfuK-48N6rlsNilHlH7tTzk2Wz1DppP06drzY1w8G3DkXzmgdhOjkbrEcEbWZba2Pj2EZHoW9j6-YgBktOz2KGvPmrzF-23bJ7WK1wcnoxYbjkMMFxNkpXMX73NmtzDGffPfwqCy4kd7H4-6EHgYRv1nNM5awTccNTitdscr08_mnXVAMH5oEWqx61NGbWigIeLl13RdkWtvyZfdtzZy6fk2dNHEJPalC9ICOVj8mjujPp7Zg8NgXrxZg87XFWviSLv0BHDeiOqYEcRcjRCnK0gtwxRcDRBnDUAI6KggpaAY72AdcIlq_I7Mvp5eep3bTssCXEnaXNlM8cEcWxhsBDpVqnPHN86WYx9xV4ooGjuCcky1QQCDdzAi08wSMtuIyCOJX-a7KXr3K1TyiPuYbYOtZOpINQe2nshEgO5QSZjKSnLMKMHhLZ8NljW5VFUsW1Hk9AgwnDHIsENYgbhl1XA4u47chfNafLPcbsg6oTcQ2v3mQILYscGP0nolgmQi17p7DI4QAS3YyRV_FfwnCDkaSxLQVMiTRKcMMs8qE9CoYfv-aJXK02ReIyBtFazHZLBHD3XAjPdkuAgA8vZbiGNzUmu6sLYXTocotEA7S2AkhLPzySz28qenqI6FzXf7v7hh2QJ53heEf2yvVGvQfXvkwPq6fzN5Vr8lQ |
linkProvider | National Library of Medicine |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Lactate-utilizing+bacteria%2C+isolated+from+human+feces%2C+that+produce+butyrate+as+a+major+fermentation+product&rft.jtitle=Applied+and+environmental+microbiology&rft.au=Duncan%2C+S.H&rft.au=Louis%2C+P&rft.au=Flint%2C+H.J&rft.date=2004-10-01&rft.issn=0099-2240&rft.volume=70&rft.issue=10&rft.spage=5810&rft.epage=5817&rft_id=info:doi/10.1128%2FAEM.70.10.5810-5817.2004&rft.externalDocID=US201300958111 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0099-2240&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0099-2240&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0099-2240&client=summon |