Impact of microgravity and lunar gravity on murine skeletal and immune systems during space travel

Long-duration spaceflight creates a variety of stresses due to the unique environment, which can lead to compromised functioning of the skeletal and immune systems. However, the mechanisms by which organisms respond to this stress remain unclear. The present study aimed to investigate the impact of...

Full description

Saved in:
Bibliographic Details
Published inScientific reports Vol. 14; no. 1; pp. 28774 - 14
Main Authors Okamura, Yui, Gochi, Kei, Ishikawa, Tatsuya, Hayashi, Takuto, Fuseya, Sayaka, Suzuki, Riku, Kanai, Maho, Inoue, Yuri, Murakami, Yuka, Sadaki, Shunya, Jeon, Hyojung, Hayama, Mio, Ishii, Hiroto, Tsunakawa, Yuki, Ochi, Hiroki, Sato, Shingo, Hamada, Michito, Abe, Chikara, Morita, Hironobu, Okada, Risa, Shiba, Dai, Muratani, Masafumi, Shinohara, Masahiro, Akiyama, Taishin, Kudo, Takashi, Takahashi, Satoru
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 20.11.2024
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Long-duration spaceflight creates a variety of stresses due to the unique environment, which can lead to compromised functioning of the skeletal and immune systems. However, the mechanisms by which organisms respond to this stress remain unclear. The present study aimed to investigate the impact of three different gravitational loadings (microgravity, 1/6  g [lunar gravity], and 1  g ) on the behavior, bone, thymus, and spleen of mice housed for 25–35 days in the International Space Station. The bone density reduction under microgravity was mostly recovered by 1  g but only partially recovered by 1/6  g . Both 1  g and 1/6  g suppressed microgravity-induced changes in some osteoblast and osteoclast marker gene expression. Thymus atrophy induced by microgravity was half recovered by both 1  g and 1/6  g , but gene expression changes were not fully recovered by 1/6  g . While no histological changes were observed due to low gravity, alterations in gene expression were noted in the spleen. We found that in bone and thymus, lunar gravity reduced microgravity-induced histological alterations and partially reversed gene expression changes. This study highlighted organ-specific variations in responsiveness to gravity, serving as an animal test for establishing a molecular-level gravity threshold for maintaining a healthy state during future spaceflight.
AbstractList Long-duration spaceflight creates a variety of stresses due to the unique environment, which can lead to compromised functioning of the skeletal and immune systems. However, the mechanisms by which organisms respond to this stress remain unclear. The present study aimed to investigate the impact of three different gravitational loadings (microgravity, 1/6  g [lunar gravity], and 1  g ) on the behavior, bone, thymus, and spleen of mice housed for 25–35 days in the International Space Station. The bone density reduction under microgravity was mostly recovered by 1  g but only partially recovered by 1/6  g . Both 1  g and 1/6  g suppressed microgravity-induced changes in some osteoblast and osteoclast marker gene expression. Thymus atrophy induced by microgravity was half recovered by both 1  g and 1/6  g , but gene expression changes were not fully recovered by 1/6  g . While no histological changes were observed due to low gravity, alterations in gene expression were noted in the spleen. We found that in bone and thymus, lunar gravity reduced microgravity-induced histological alterations and partially reversed gene expression changes. This study highlighted organ-specific variations in responsiveness to gravity, serving as an animal test for establishing a molecular-level gravity threshold for maintaining a healthy state during future spaceflight.
Long-duration spaceflight creates a variety of stresses due to the unique environment, which can lead to compromised functioning of the skeletal and immune systems. However, the mechanisms by which organisms respond to this stress remain unclear. The present study aimed to investigate the impact of three different gravitational loadings (microgravity, 1/6 g [lunar gravity], and 1 g) on the behavior, bone, thymus, and spleen of mice housed for 25-35 days in the International Space Station. The bone density reduction under microgravity was mostly recovered by 1 g but only partially recovered by 1/6 g. Both 1 g and 1/6 g suppressed microgravity-induced changes in some osteoblast and osteoclast marker gene expression. Thymus atrophy induced by microgravity was half recovered by both 1 g and 1/6 g, but gene expression changes were not fully recovered by 1/6 g. While no histological changes were observed due to low gravity, alterations in gene expression were noted in the spleen. We found that in bone and thymus, lunar gravity reduced microgravity-induced histological alterations and partially reversed gene expression changes. This study highlighted organ-specific variations in responsiveness to gravity, serving as an animal test for establishing a molecular-level gravity threshold for maintaining a healthy state during future spaceflight.
Long-duration spaceflight creates a variety of stresses due to the unique environment, which can lead to compromised functioning of the skeletal and immune systems. However, the mechanisms by which organisms respond to this stress remain unclear. The present study aimed to investigate the impact of three different gravitational loadings (microgravity, 1/6 g [lunar gravity], and 1 g) on the behavior, bone, thymus, and spleen of mice housed for 25-35 days in the International Space Station. The bone density reduction under microgravity was mostly recovered by 1 g but only partially recovered by 1/6 g. Both 1 g and 1/6 g suppressed microgravity-induced changes in some osteoblast and osteoclast marker gene expression. Thymus atrophy induced by microgravity was half recovered by both 1 g and 1/6 g, but gene expression changes were not fully recovered by 1/6 g. While no histological changes were observed due to low gravity, alterations in gene expression were noted in the spleen. We found that in bone and thymus, lunar gravity reduced microgravity-induced histological alterations and partially reversed gene expression changes. This study highlighted organ-specific variations in responsiveness to gravity, serving as an animal test for establishing a molecular-level gravity threshold for maintaining a healthy state during future spaceflight.Long-duration spaceflight creates a variety of stresses due to the unique environment, which can lead to compromised functioning of the skeletal and immune systems. However, the mechanisms by which organisms respond to this stress remain unclear. The present study aimed to investigate the impact of three different gravitational loadings (microgravity, 1/6 g [lunar gravity], and 1 g) on the behavior, bone, thymus, and spleen of mice housed for 25-35 days in the International Space Station. The bone density reduction under microgravity was mostly recovered by 1 g but only partially recovered by 1/6 g. Both 1 g and 1/6 g suppressed microgravity-induced changes in some osteoblast and osteoclast marker gene expression. Thymus atrophy induced by microgravity was half recovered by both 1 g and 1/6 g, but gene expression changes were not fully recovered by 1/6 g. While no histological changes were observed due to low gravity, alterations in gene expression were noted in the spleen. We found that in bone and thymus, lunar gravity reduced microgravity-induced histological alterations and partially reversed gene expression changes. This study highlighted organ-specific variations in responsiveness to gravity, serving as an animal test for establishing a molecular-level gravity threshold for maintaining a healthy state during future spaceflight.
Long-duration spaceflight creates a variety of stresses due to the unique environment, which can lead to compromised functioning of the skeletal and immune systems. However, the mechanisms by which organisms respond to this stress remain unclear. The present study aimed to investigate the impact of three different gravitational loadings (microgravity, 1/6 g [lunar gravity], and 1 g) on the behavior, bone, thymus, and spleen of mice housed for 25–35 days in the International Space Station. The bone density reduction under microgravity was mostly recovered by 1 g but only partially recovered by 1/6 g. Both 1 g and 1/6 g suppressed microgravity-induced changes in some osteoblast and osteoclast marker gene expression. Thymus atrophy induced by microgravity was half recovered by both 1 g and 1/6 g, but gene expression changes were not fully recovered by 1/6 g. While no histological changes were observed due to low gravity, alterations in gene expression were noted in the spleen. We found that in bone and thymus, lunar gravity reduced microgravity-induced histological alterations and partially reversed gene expression changes. This study highlighted organ-specific variations in responsiveness to gravity, serving as an animal test for establishing a molecular-level gravity threshold for maintaining a healthy state during future spaceflight.
Abstract Long-duration spaceflight creates a variety of stresses due to the unique environment, which can lead to compromised functioning of the skeletal and immune systems. However, the mechanisms by which organisms respond to this stress remain unclear. The present study aimed to investigate the impact of three different gravitational loadings (microgravity, 1/6 g [lunar gravity], and 1 g) on the behavior, bone, thymus, and spleen of mice housed for 25–35 days in the International Space Station. The bone density reduction under microgravity was mostly recovered by 1 g but only partially recovered by 1/6 g. Both 1 g and 1/6 g suppressed microgravity-induced changes in some osteoblast and osteoclast marker gene expression. Thymus atrophy induced by microgravity was half recovered by both 1 g and 1/6 g, but gene expression changes were not fully recovered by 1/6 g. While no histological changes were observed due to low gravity, alterations in gene expression were noted in the spleen. We found that in bone and thymus, lunar gravity reduced microgravity-induced histological alterations and partially reversed gene expression changes. This study highlighted organ-specific variations in responsiveness to gravity, serving as an animal test for establishing a molecular-level gravity threshold for maintaining a healthy state during future spaceflight.
ArticleNumber 28774
Author Kudo, Takashi
Muratani, Masafumi
Gochi, Kei
Ishii, Hiroto
Jeon, Hyojung
Shiba, Dai
Ochi, Hiroki
Shinohara, Masahiro
Tsunakawa, Yuki
Okada, Risa
Suzuki, Riku
Takahashi, Satoru
Murakami, Yuka
Sato, Shingo
Hayashi, Takuto
Ishikawa, Tatsuya
Fuseya, Sayaka
Okamura, Yui
Abe, Chikara
Inoue, Yuri
Hayama, Mio
Kanai, Maho
Sadaki, Shunya
Akiyama, Taishin
Hamada, Michito
Morita, Hironobu
Author_xml – sequence: 1
  givenname: Yui
  surname: Okamura
  fullname: Okamura, Yui
  organization: Laboratory Animal Resource Center in Transborder Medical Research Center, and Department of Anatomy and Embryology, Institute of Medicine, University of Tsukuba, College of Medicine, School of Medicine and Health Sciences, University of Tsukuba
– sequence: 2
  givenname: Kei
  surname: Gochi
  fullname: Gochi, Kei
  organization: Department of Cellular Physiological Chemistry, Graduate School of Medical and Dental Sciences, Institute of Science Tokyo, Department of Rehabilitation for Movement Functions, Research Institute, National Rehabilitation Center for Persons with Disabilities
– sequence: 3
  givenname: Tatsuya
  surname: Ishikawa
  fullname: Ishikawa, Tatsuya
  organization: Laboratory for Immune Homeostasis, RIKEN Center for Integrative Medical Sciences, Immunobiology Laboratory, Graduate School of Medical Life Science, Yokohama City University
– sequence: 4
  givenname: Takuto
  surname: Hayashi
  fullname: Hayashi, Takuto
  organization: Laboratory Animal Resource Center in Transborder Medical Research Center, and Department of Anatomy and Embryology, Institute of Medicine, University of Tsukuba
– sequence: 5
  givenname: Sayaka
  surname: Fuseya
  fullname: Fuseya, Sayaka
  organization: Laboratory Animal Resource Center in Transborder Medical Research Center, and Department of Anatomy and Embryology, Institute of Medicine, University of Tsukuba, Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology
– sequence: 6
  givenname: Riku
  surname: Suzuki
  fullname: Suzuki, Riku
  organization: Laboratory Animal Resource Center in Transborder Medical Research Center, and Department of Anatomy and Embryology, Institute of Medicine, University of Tsukuba
– sequence: 7
  givenname: Maho
  surname: Kanai
  fullname: Kanai, Maho
  organization: Laboratory Animal Resource Center in Transborder Medical Research Center, and Department of Anatomy and Embryology, Institute of Medicine, University of Tsukuba
– sequence: 8
  givenname: Yuri
  surname: Inoue
  fullname: Inoue, Yuri
  organization: Laboratory Animal Resource Center in Transborder Medical Research Center, and Department of Anatomy and Embryology, Institute of Medicine, University of Tsukuba
– sequence: 9
  givenname: Yuka
  surname: Murakami
  fullname: Murakami, Yuka
  organization: Laboratory Animal Resource Center in Transborder Medical Research Center, and Department of Anatomy and Embryology, Institute of Medicine, University of Tsukuba, Ph.D. Program in Human Biology, School of Integrative and Global Majors, University of Tsukuba
– sequence: 10
  givenname: Shunya
  surname: Sadaki
  fullname: Sadaki, Shunya
  organization: Laboratory Animal Resource Center in Transborder Medical Research Center, and Department of Anatomy and Embryology, Institute of Medicine, University of Tsukuba, Ph.D. Program in Humanics, School of Integrative and Global Majors, University of Tsukuba
– sequence: 11
  givenname: Hyojung
  surname: Jeon
  fullname: Jeon, Hyojung
  organization: Laboratory Animal Resource Center in Transborder Medical Research Center, and Department of Anatomy and Embryology, Institute of Medicine, University of Tsukuba
– sequence: 12
  givenname: Mio
  surname: Hayama
  fullname: Hayama, Mio
  organization: Laboratory for Immune Homeostasis, RIKEN Center for Integrative Medical Sciences, Immunobiology Laboratory, Graduate School of Medical Life Science, Yokohama City University
– sequence: 13
  givenname: Hiroto
  surname: Ishii
  fullname: Ishii, Hiroto
  organization: Laboratory for Immune Homeostasis, RIKEN Center for Integrative Medical Sciences, Immunobiology Laboratory, Graduate School of Medical Life Science, Yokohama City University
– sequence: 14
  givenname: Yuki
  surname: Tsunakawa
  fullname: Tsunakawa, Yuki
  organization: Department of Rehabilitation for Movement Functions, Research Institute, National Rehabilitation Center for Persons with Disabilities
– sequence: 15
  givenname: Hiroki
  surname: Ochi
  fullname: Ochi, Hiroki
  organization: Department of Rehabilitation for Movement Functions, Research Institute, National Rehabilitation Center for Persons with Disabilities
– sequence: 16
  givenname: Shingo
  surname: Sato
  fullname: Sato, Shingo
  organization: Center for Innovative Cancer Treatment, Institute of Science Tokyo
– sequence: 17
  givenname: Michito
  surname: Hamada
  fullname: Hamada, Michito
  organization: Laboratory Animal Resource Center in Transborder Medical Research Center, and Department of Anatomy and Embryology, Institute of Medicine, University of Tsukuba, Mouse Epigenetics Project, ISS/Kibo Experiment, Japan Aerospace Exploration
– sequence: 18
  givenname: Chikara
  surname: Abe
  fullname: Abe, Chikara
  organization: Department of Physiology, Gifu University Graduate School of Medicine
– sequence: 19
  givenname: Hironobu
  surname: Morita
  fullname: Morita, Hironobu
  organization: Mouse Epigenetics Project, ISS/Kibo Experiment, Japan Aerospace Exploration, Department of Nutrition Management, Tokai Gakuin University
– sequence: 20
  givenname: Risa
  surname: Okada
  fullname: Okada, Risa
  organization: Space Environment Utilization Center, Human Spaceflight Technology Directorate, JAXA
– sequence: 21
  givenname: Dai
  surname: Shiba
  fullname: Shiba, Dai
  organization: Mouse Epigenetics Project, ISS/Kibo Experiment, Japan Aerospace Exploration, Space Environment Utilization Center, Human Spaceflight Technology Directorate, JAXA
– sequence: 22
  givenname: Masafumi
  surname: Muratani
  fullname: Muratani, Masafumi
  organization: Mouse Epigenetics Project, ISS/Kibo Experiment, Japan Aerospace Exploration, Department of Genome Biology, Transborder Medical Research Center, Institute of Medicine, University of Tsukuba
– sequence: 23
  givenname: Masahiro
  surname: Shinohara
  fullname: Shinohara, Masahiro
  organization: Department of Rehabilitation for Movement Functions, Research Institute, National Rehabilitation Center for Persons with Disabilities, Mouse Epigenetics Project, ISS/Kibo Experiment, Japan Aerospace Exploration
– sequence: 24
  givenname: Taishin
  surname: Akiyama
  fullname: Akiyama, Taishin
  organization: Laboratory for Immune Homeostasis, RIKEN Center for Integrative Medical Sciences, Immunobiology Laboratory, Graduate School of Medical Life Science, Yokohama City University, Mouse Epigenetics Project, ISS/Kibo Experiment, Japan Aerospace Exploration
– sequence: 25
  givenname: Takashi
  surname: Kudo
  fullname: Kudo, Takashi
  email: t-kudo@md.tsukuba.ac.jp
  organization: Laboratory Animal Resource Center in Transborder Medical Research Center, and Department of Anatomy and Embryology, Institute of Medicine, University of Tsukuba, Mouse Epigenetics Project, ISS/Kibo Experiment, Japan Aerospace Exploration
– sequence: 26
  givenname: Satoru
  surname: Takahashi
  fullname: Takahashi, Satoru
  email: satoruta@md.tsukuba.ac.jp
  organization: Laboratory Animal Resource Center in Transborder Medical Research Center, and Department of Anatomy and Embryology, Institute of Medicine, University of Tsukuba, Mouse Epigenetics Project, ISS/Kibo Experiment, Japan Aerospace Exploration
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39567640$$D View this record in MEDLINE/PubMed
BookMark eNp9Us1vFCEcnZgaW2v_AQ-GxIuXUT5n4GRM48cmTbzomTADrKwMrMA02f9eZqerbQ_lAnm89_Lg9142ZyEG0zSvEXyPIOEfMkVM8BZi2vaCINbCZ80FhpS1mGB8du983lzlvIN1MSwoEi-acyJY13cUXjTDZtqrsYBoweTGFLdJ3bpyACpo4OegEjghMYBpTi4YkH8bb4ryR5KbpnnBDrmYKQO9ULYgV1MDSpUa_6p5bpXP5upuv2x-fvn84_pbe_P96-b60007Ms5Ky3rcwx4ialRHettxTTUyA62gHlXHIdQdF5YgBQfRwY6IQVnNGSOWC44YuWw2q6-Oaif3yU0qHWRUTh6BmLZSpeJGb2QvmB4oUSPBnEIEB2QttVQLPAgqrK1eH1ev_TxMRo8m1Lf4B6YPb4L7JbfxViLEekF7Wh3e3Tmk-Gc2ucjJ5dF4r4KJc5YEEUQFZxBV6ttH1F2cU6h_dWRBQhEnlfXmfqR_WU6zrAS-EuoYc07GytEVVVxcEjovEZRLc-TaHFmbI4_NkYsUP5Ke3J8UkVWU98vMTfof-wnVX5Rx1Us
CitedBy_id crossref_primary_10_3389_fimmu_2024_1512578
Cites_doi 10.1038/s41598-019-56432-9
10.1016/j.patter.2020.100148
10.1016/j.amjcard.2005.01.033
10.1371/journal.pone.0075097
10.1371/journal.pone.0141650
10.1016/j.cell.2021.11.008
10.1038/s41598-021-88392-4
10.1038/s41526-020-0104-1
10.1038/s41598-017-10998-4
10.1038/d41586-022-02310-w
10.1002/jbmr.141
10.1016/j.bone.2015.12.057
10.1016/j.isci.2021.102773
10.1016/j.ophtha.2011.06.021
10.1096/fj.202000216R
10.3390/ijms19092546
10.1371/journal.pone.0061372
10.1093/bioinformatics/btp616
10.1038/s42003-023-04769-3
10.1038/s42003-023-05251-w
10.1002/eji.201142305
10.1016/j.imbio.2014.10.021
10.1111/sji.12618
10.3390/ijms20194791
10.1038/s41598-019-44067-9
10.1155/2012/574020
10.1038/srep39545
10.1038/s41598-019-50128-w
10.3389/fphys.2024.1321468
10.1038/s41598-021-96312-9
10.3390/ijms19123959
10.1538/expanim.15-0077
10.1096/fj.13-236356
10.1538/expanim.20-0102
10.1016/j.it.2013.06.004
10.1186/s12576-020-00744-3
10.18632/oncotarget.472
10.1096/fasebj.13.9.1031
10.1152/japplphysiol.01053.2002
ContentType Journal Article
Copyright The Author(s) 2024
2024. The Author(s).
The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
The Author(s) 2024 2024
Copyright_xml – notice: The Author(s) 2024
– notice: 2024. The Author(s).
– notice: The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: The Author(s) 2024 2024
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
88A
88E
88I
8FE
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2P
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOA
DOI 10.1038/s41598-024-79315-0
DatabaseName Springer Nature OA/Free Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni Edition)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Biological Science Collection
Health & Medical Collection (Alumni Edition)
Medical Database
Science Database
Biological Science Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
MEDLINE
MEDLINE - Academic
Publicly Available Content Database


Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 5
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2045-2322
EndPage 14
ExternalDocumentID oai_doaj_org_article_795db43ac3284010b1ff4f4d92b949ff
PMC11579474
39567640
10_1038_s41598_024_79315_0
Genre Journal Article
GrantInformation_xml – fundername: the Japan Science and Technology Agency
  grantid: JPMJPF2017
– fundername: Scientific Research on Innovative Area from MEXT
  grantid: 18H04965
– fundername: Japan Aerospace Exploration Agency
  grantid: 14YPTK-005512; 19YT000341; 20YT000259; 21YT000128
  funderid: http://dx.doi.org/10.13039/501100004020
– fundername: Japan Aerospace Exploration Agency
  grantid: 19YT000341
– fundername: Japan Aerospace Exploration Agency
  grantid: 21YT000128
– fundername: Japan Aerospace Exploration Agency
  grantid: 20YT000259
– fundername: Japan Aerospace Exploration Agency
  grantid: 14YPTK-005512
GroupedDBID 0R~
4.4
53G
5VS
7X7
88E
88I
8FE
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKDD
AASML
ABDBF
ABUWG
ACGFS
ACUHS
ADBBV
ADRAZ
AENEX
AEUYN
AFKRA
AFPKN
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
DWQXO
EBD
EBLON
EBS
ESX
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
KQ8
LK8
M1P
M2P
M48
M7P
M~E
NAO
OK1
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
RNT
RNTTT
RPM
SNYQT
UKHRP
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7XB
88A
8FK
AARCD
K9.
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c585t-572707014ea637f68d4d1eb4707dca6800d689f31a0b960639bafd8553f898153
IEDL.DBID M48
ISSN 2045-2322
IngestDate Wed Aug 27 01:26:00 EDT 2025
Thu Aug 21 18:33:01 EDT 2025
Fri Jul 11 02:51:35 EDT 2025
Wed Aug 13 09:13:23 EDT 2025
Mon Jul 21 05:55:20 EDT 2025
Tue Jul 01 03:23:40 EDT 2025
Thu Apr 24 23:01:44 EDT 2025
Mon Jul 21 06:09:31 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Spleen
Bone
Gene expression
Microgravity
Spaceflight
Thymus
Language English
License 2024. The Author(s).
Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c585t-572707014ea637f68d4d1eb4707dca6800d689f31a0b960639bafd8553f898153
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1038/s41598-024-79315-0
PMID 39567640
PQID 3131034183
PQPubID 2041939
PageCount 14
ParticipantIDs doaj_primary_oai_doaj_org_article_795db43ac3284010b1ff4f4d92b949ff
pubmedcentral_primary_oai_pubmedcentral_nih_gov_11579474
proquest_miscellaneous_3131498501
proquest_journals_3131034183
pubmed_primary_39567640
crossref_citationtrail_10_1038_s41598_024_79315_0
crossref_primary_10_1038_s41598_024_79315_0
springer_journals_10_1038_s41598_024_79315_0
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-11-20
PublicationDateYYYYMMDD 2024-11-20
PublicationDate_xml – month: 11
  year: 2024
  text: 2024-11-20
  day: 20
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Scientific reports
PublicationTitleAbbrev Sci Rep
PublicationTitleAlternate Sci Rep
PublicationYear 2024
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References WitzeALift off! Artemis Moon rocket launch kicks off new era of human explorationNature20226116436442022Natur.611..643W1:CAS:528:DC%2BB38XivFCls7fK10.1038/d41586-022-02310-w36385285
Yoshida, K. et al. Intergenerational effect of short-term spaceflight in mice. iScience24, 102773. https://doi.org/10.1016/j.isci.2021.102773 (2021).
MajumdarSNandiDThymic atrophy: experimental studies and therapeutic interventionsScand. J. Immunol.2018874141:STN:280:DC%2BC1M%2FjsFCruw%3D%3D10.1111/sji.1261828960415
ChataniMAcute transcriptional up-regulation specific to osteoblasts/osteoclasts in medaka fish immediately after exposure to microgravitySci. Rep.201662016NatSR...639545C1:CAS:528:DC%2BC28XitFGisLnL10.1038/srep39545280047975177882
GridleyDSChanges in mouse thymus and spleen after return from the STS-135 mission in spacePLoS One201382013PLoSO...875097G1:CAS:528:DC%2BC3sXhsFeitbjJ10.1371/journal.pone.0075097240693843777930
NovoselovaEGChanges in immune cell signalling, apoptosis and stress response functions in mice returned from the BION-M1 mission in spaceImmunobiology20152205005091:CAS:528:DC%2BC2cXhvVOnurbN10.1016/j.imbio.2014.10.02125468559
Takahashi, A. et al. Temporary loading prevents cancer progression and immune organ atrophy induced by hind-limb unloading in mice. Int. J. Mol. Sci.19. https://doi.org/10.3390/ijms19123959 (2018).
OkadaRTranscriptome analysis of gravitational effects on mouse skeletal muscles under microgravity and artificial 1 g onboard environmentSci. Rep.2021112021NatSR..11.9168O1:CAS:528:DC%2BB3MXhtVSrurbE10.1038/s41598-021-88392-4339110968080648
ShimboMGround-based assessment of JAXA mouse habitat cage unit by mouse phenotypic studiesExp. Anim.2016651751871:CAS:528:DC%2BC28XhvFSrurrL10.1538/expanim.15-0077268229344873486
PucaARussoGGiordanoAProperties of mechano-transduction via simulated microgravity and its effects on intracellular trafficking of VEGFR’sOncotarget2012342643410.18632/oncotarget.472225664813380577
Mao, X. W. et al. Impact of spaceflight and artificial gravity on the mouse retina: biochemical and proteomic analysis. Int. J. Mol. Sci.19. https://doi.org/10.3390/ijms19092546 (2018).
HorieKDown-regulation of GATA1-dependent erythrocyte-related genes in the spleens of mice exposed to a space travelSci. Rep.201992019NatSR...9.7654H1:CAS:528:DC%2BC1MXhtVagsbjN10.1038/s41598-019-44067-9311140146529412
AfshinnekooEFundamental biological features of spaceflight: advancing the field to enable deep-space explorationCell202118460021:CAS:528:DC%2BB3MXisFOht7zO10.1016/j.cell.2021.11.008348227858674844
LansiauxEUnderstanding the complexities of space anaemia in extended space missions: revelations from microgravitational odysseyFront. Physiol.20241510.3389/fphys.2024.13214683855025510976580
MatsumuraTMale mice, caged in the International Space Station for 35 days, sire healthy offspringSci. Rep.201992019NatSR...913733M1:CAS:528:DC%2BC1MXhvVKlu7vO10.1038/s41598-019-50128-w315514306760203
Rutter, L. et al. A new era for space life science: international standards for space omics processing. Patterns (N Y)1, 100148, https://doi.org/10.1016/j.patter.2020.100148 (2020).
VandenburghHChromiakJShanskyJDel TattoMLemaireJSpace travel directly induces skeletal muscle atrophyFASEB J.199913103110381:CAS:528:DyaK1MXjsVOlurY%3D10.1096/fasebj.13.9.103110336885
ShimomuraMAuthor Correction: Study of mouse behavior in different gravity environmentsSci. Rep.2021112021NatSR..1117563S1:CAS:528:DC%2BB3MXhvFehtb3F10.1038/s41598-021-96312-9344530688397713
DooleyJListonAMolecular control over thymic involution: from cytokines and microRNA to aging and adipose tissueEur. J. Immunol.201242107310791:CAS:528:DC%2BC38XmtFagsrg%3D10.1002/eji.20114230522539280
BouxseinMLGuidelines for assessment of bone microstructure in rodents using micro-computed tomographyJ. Bone Miner. Res.2010251468148610.1002/jbmr.14120533309
Ikeda, H. et al. Expression profile of cell cycle-related genes in human fibroblasts exposed simultaneously to radiation and simulated microgravity. Int. J. Mol. Sci.20. https://doi.org/10.3390/ijms20194791 (2019).
RobinsonMDMcCarthyDJSmythGKedgeR: a Bioconductor package for differential expression analysis of digital gene expression dataBioinformatics2010261391401:CAS:528:DC%2BD1MXhs1WlurvO10.1093/bioinformatics/btp61619910308
ShibaDDevelopment of new experimental platform ‘MARS’-Multiple Artificial-gravity Research System-to elucidate the impacts of micro/partial gravity on miceSci. Rep.201772017NatSR...710837S1:CAS:528:DC%2BC1cXhtlersrbP10.1038/s41598-017-10998-4288836155589811
MoritaHKajiHUetaYAbeCUnderstanding vestibular-related physiological functions could provide clues on adapting to a new gravitational environmentJ. Physiol. Sci.2020701710.1186/s12576-020-00744-3321690377069930
TateishiRHypergravity provokes a temporary reduction in CD4+CD8+ thymocyte number and a persistent decrease in medullary thymic epithelial cell frequency in micePLoS One2015101:CAS:528:DC%2BC2MXhvFKmtbnE10.1371/journal.pone.0141650265132424626100
ColucciSIrisin prevents microgravity-induced impairment of osteoblast differentiation in vitro during the space flight CRS-14 missionFASEB J.20203410096101061:CAS:528:DC%2BB3cXhtFCms7nF10.1096/fj.202000216R32539174
MaderTHOptic disc edema, globe flattening, choroidal folds, and hyperopic shifts observed in astronauts after long-duration space flightOphthalmology20111182058206910.1016/j.ophtha.2011.06.02121849212
HorieKImpact of spaceflight on the murine thymus and mitigation by exposure to artificial gravity during spaceflightSci. Rep.201992019NatSR...919866H1:CAS:528:DC%2BB3cXmtFWntw%3D%3D10.1038/s41598-019-56432-9318826946934594
VorselenDRoosWHMacKintoshFCWuiteGJvan LoonJJThe role of the cytoskeleton in sensing changes in gravity by nonspecialized cellsFASEB J.2014285365471:CAS:528:DC%2BC2cXisVGrtL8%3D10.1096/fj.13-23635624249634
Nunes-AlvesCNobregaCBeharSMCorreia-NevesMTolerance has its limits: how the thymus copes with infectionTrends Immunol.2013345025101:CAS:528:DC%2BC3sXhtFaks7fI10.1016/j.it.2013.06.00423871487
GrimmDThe impact of microgravity on bone in humansBone201687445610.1016/j.bone.2015.12.05727032715
YumotoANovel method for evaluating the health condition of mice in space through a video downlinkExp. Anim.2021702362441:CAS:528:DC%2BB3MXhtlCjtr3E10.1538/expanim.20-0102334876108150242
Gridley, D. S. et al. Genetic models in applied physiology: selected contribution: effects of spaceflight on immunity in the C57BL/6 mouse. II. Activation, cytokines, erythrocytes, and platelets. J. Appl. Physiol. (1985)94, 2095–2103. https://doi.org/10.1152/japplphysiol.01053.2002 (2003).
AkiyamaTHow does spaceflight affect the acquired immune system?NPJ Microgravity20206142020npjMG...6...14A1:CAS:528:DC%2BB3cXptVegtLs%3D10.1038/s41526-020-0104-1324118177206142
ShimizuRNrf2 alleviates spaceflight-induced immunosuppression and thrombotic microangiopathy in miceCommun. Biol.202368751:CAS:528:DC%2BB3sXhsl2qt7bJ10.1038/s42003-023-05251-w3762614910457343
BlaberEAMicrogravity induces pelvic bone loss through osteoclastic activity, osteocytic osteolysis, and osteoblastic cell cycle inhibition by CDKN1a/p21PLoS One201382013PLoSO...861372B1:CAS:528:DC%2BC3sXmvFaqsrk%3D10.1371/journal.pone.0061372236378193630201
de MeisJThymus atrophy and double-positive escape are common features in infectious diseasesJ. Parasitol. Res.2012201210.1155/2012/574020225182753307005
SummersRLMartinDSMeckJVColemanTGMechanism of spaceflight-induced changes in left ventricular massAm. J. Cardiol.2005951128113010.1016/j.amjcard.2005.01.03315842991
HayashiTLunar gravity prevents skeletal muscle atrophy but not myofiber type shift in miceCommun. Biol.202364241:CAS:528:DC%2BB3sXosVGgtb0%3D10.1038/s42003-023-04769-33708570010121599
M Chatani (79315_CR22) 2016; 6
K Horie (79315_CR14) 2019; 9
R Okada (79315_CR11) 2021; 11
RL Summers (79315_CR7) 2005; 95
R Tateishi (79315_CR32) 2015; 10
79315_CR24
J Dooley (79315_CR29) 2012; 42
D Shiba (79315_CR10) 2017; 7
H Vandenburgh (79315_CR3) 1999; 13
D Vorselen (79315_CR20) 2014; 28
DS Gridley (79315_CR25) 2013; 8
A Yumoto (79315_CR17) 2021; 70
EG Novoselova (79315_CR26) 2015; 220
S Colucci (79315_CR23) 2020; 34
MD Robinson (79315_CR39) 2010; 26
H Morita (79315_CR5) 2020; 70
K Horie (79315_CR13) 2019; 9
A Witze (79315_CR2) 2022; 611
S Majumdar (79315_CR28) 2018; 87
A Puca (79315_CR27) 2012; 3
E Lansiaux (79315_CR37) 2024; 15
ML Bouxsein (79315_CR38) 2010; 25
D Grimm (79315_CR4) 2016; 87
79315_CR16
C Nunes-Alves (79315_CR30) 2013; 34
79315_CR33
E Afshinnekoo (79315_CR8) 2021; 184
79315_CR12
79315_CR34
TH Mader (79315_CR6) 2011; 118
T Hayashi (79315_CR19) 2023; 6
M Shimomura (79315_CR18) 2021; 11
79315_CR1
M Shimbo (79315_CR9) 2016; 65
T Matsumura (79315_CR15) 2019; 9
T Akiyama (79315_CR35) 2020; 6
EA Blaber (79315_CR21) 2013; 8
R Shimizu (79315_CR36) 2023; 6
J de Meis (79315_CR31) 2012; 2012
References_xml – reference: TateishiRHypergravity provokes a temporary reduction in CD4+CD8+ thymocyte number and a persistent decrease in medullary thymic epithelial cell frequency in micePLoS One2015101:CAS:528:DC%2BC2MXhvFKmtbnE10.1371/journal.pone.0141650265132424626100
– reference: GrimmDThe impact of microgravity on bone in humansBone201687445610.1016/j.bone.2015.12.05727032715
– reference: ColucciSIrisin prevents microgravity-induced impairment of osteoblast differentiation in vitro during the space flight CRS-14 missionFASEB J.20203410096101061:CAS:528:DC%2BB3cXhtFCms7nF10.1096/fj.202000216R32539174
– reference: MajumdarSNandiDThymic atrophy: experimental studies and therapeutic interventionsScand. J. Immunol.2018874141:STN:280:DC%2BC1M%2FjsFCruw%3D%3D10.1111/sji.1261828960415
– reference: ShibaDDevelopment of new experimental platform ‘MARS’-Multiple Artificial-gravity Research System-to elucidate the impacts of micro/partial gravity on miceSci. Rep.201772017NatSR...710837S1:CAS:528:DC%2BC1cXhtlersrbP10.1038/s41598-017-10998-4288836155589811
– reference: WitzeALift off! Artemis Moon rocket launch kicks off new era of human explorationNature20226116436442022Natur.611..643W1:CAS:528:DC%2BB38XivFCls7fK10.1038/d41586-022-02310-w36385285
– reference: VandenburghHChromiakJShanskyJDel TattoMLemaireJSpace travel directly induces skeletal muscle atrophyFASEB J.199913103110381:CAS:528:DyaK1MXjsVOlurY%3D10.1096/fasebj.13.9.103110336885
– reference: de MeisJThymus atrophy and double-positive escape are common features in infectious diseasesJ. Parasitol. Res.2012201210.1155/2012/574020225182753307005
– reference: LansiauxEUnderstanding the complexities of space anaemia in extended space missions: revelations from microgravitational odysseyFront. Physiol.20241510.3389/fphys.2024.13214683855025510976580
– reference: HayashiTLunar gravity prevents skeletal muscle atrophy but not myofiber type shift in miceCommun. Biol.202364241:CAS:528:DC%2BB3sXosVGgtb0%3D10.1038/s42003-023-04769-33708570010121599
– reference: MatsumuraTMale mice, caged in the International Space Station for 35 days, sire healthy offspringSci. Rep.201992019NatSR...913733M1:CAS:528:DC%2BC1MXhvVKlu7vO10.1038/s41598-019-50128-w315514306760203
– reference: BlaberEAMicrogravity induces pelvic bone loss through osteoclastic activity, osteocytic osteolysis, and osteoblastic cell cycle inhibition by CDKN1a/p21PLoS One201382013PLoSO...861372B1:CAS:528:DC%2BC3sXmvFaqsrk%3D10.1371/journal.pone.0061372236378193630201
– reference: BouxseinMLGuidelines for assessment of bone microstructure in rodents using micro-computed tomographyJ. Bone Miner. Res.2010251468148610.1002/jbmr.14120533309
– reference: Yoshida, K. et al. Intergenerational effect of short-term spaceflight in mice. iScience24, 102773. https://doi.org/10.1016/j.isci.2021.102773 (2021).
– reference: AkiyamaTHow does spaceflight affect the acquired immune system?NPJ Microgravity20206142020npjMG...6...14A1:CAS:528:DC%2BB3cXptVegtLs%3D10.1038/s41526-020-0104-1324118177206142
– reference: RobinsonMDMcCarthyDJSmythGKedgeR: a Bioconductor package for differential expression analysis of digital gene expression dataBioinformatics2010261391401:CAS:528:DC%2BD1MXhs1WlurvO10.1093/bioinformatics/btp61619910308
– reference: MoritaHKajiHUetaYAbeCUnderstanding vestibular-related physiological functions could provide clues on adapting to a new gravitational environmentJ. Physiol. Sci.2020701710.1186/s12576-020-00744-3321690377069930
– reference: YumotoANovel method for evaluating the health condition of mice in space through a video downlinkExp. Anim.2021702362441:CAS:528:DC%2BB3MXhtlCjtr3E10.1538/expanim.20-0102334876108150242
– reference: GridleyDSChanges in mouse thymus and spleen after return from the STS-135 mission in spacePLoS One201382013PLoSO...875097G1:CAS:528:DC%2BC3sXhsFeitbjJ10.1371/journal.pone.0075097240693843777930
– reference: SummersRLMartinDSMeckJVColemanTGMechanism of spaceflight-induced changes in left ventricular massAm. J. Cardiol.2005951128113010.1016/j.amjcard.2005.01.03315842991
– reference: MaderTHOptic disc edema, globe flattening, choroidal folds, and hyperopic shifts observed in astronauts after long-duration space flightOphthalmology20111182058206910.1016/j.ophtha.2011.06.02121849212
– reference: ShimboMGround-based assessment of JAXA mouse habitat cage unit by mouse phenotypic studiesExp. Anim.2016651751871:CAS:528:DC%2BC28XhvFSrurrL10.1538/expanim.15-0077268229344873486
– reference: HorieKDown-regulation of GATA1-dependent erythrocyte-related genes in the spleens of mice exposed to a space travelSci. Rep.201992019NatSR...9.7654H1:CAS:528:DC%2BC1MXhtVagsbjN10.1038/s41598-019-44067-9311140146529412
– reference: Gridley, D. S. et al. Genetic models in applied physiology: selected contribution: effects of spaceflight on immunity in the C57BL/6 mouse. II. Activation, cytokines, erythrocytes, and platelets. J. Appl. Physiol. (1985)94, 2095–2103. https://doi.org/10.1152/japplphysiol.01053.2002 (2003).
– reference: HorieKImpact of spaceflight on the murine thymus and mitigation by exposure to artificial gravity during spaceflightSci. Rep.201992019NatSR...919866H1:CAS:528:DC%2BB3cXmtFWntw%3D%3D10.1038/s41598-019-56432-9318826946934594
– reference: NovoselovaEGChanges in immune cell signalling, apoptosis and stress response functions in mice returned from the BION-M1 mission in spaceImmunobiology20152205005091:CAS:528:DC%2BC2cXhvVOnurbN10.1016/j.imbio.2014.10.02125468559
– reference: Takahashi, A. et al. Temporary loading prevents cancer progression and immune organ atrophy induced by hind-limb unloading in mice. Int. J. Mol. Sci.19. https://doi.org/10.3390/ijms19123959 (2018).
– reference: AfshinnekooEFundamental biological features of spaceflight: advancing the field to enable deep-space explorationCell202118460021:CAS:528:DC%2BB3MXisFOht7zO10.1016/j.cell.2021.11.008348227858674844
– reference: Mao, X. W. et al. Impact of spaceflight and artificial gravity on the mouse retina: biochemical and proteomic analysis. Int. J. Mol. Sci.19. https://doi.org/10.3390/ijms19092546 (2018).
– reference: Rutter, L. et al. A new era for space life science: international standards for space omics processing. Patterns (N Y)1, 100148, https://doi.org/10.1016/j.patter.2020.100148 (2020).
– reference: Nunes-AlvesCNobregaCBeharSMCorreia-NevesMTolerance has its limits: how the thymus copes with infectionTrends Immunol.2013345025101:CAS:528:DC%2BC3sXhtFaks7fI10.1016/j.it.2013.06.00423871487
– reference: VorselenDRoosWHMacKintoshFCWuiteGJvan LoonJJThe role of the cytoskeleton in sensing changes in gravity by nonspecialized cellsFASEB J.2014285365471:CAS:528:DC%2BC2cXisVGrtL8%3D10.1096/fj.13-23635624249634
– reference: PucaARussoGGiordanoAProperties of mechano-transduction via simulated microgravity and its effects on intracellular trafficking of VEGFR’sOncotarget2012342643410.18632/oncotarget.472225664813380577
– reference: OkadaRTranscriptome analysis of gravitational effects on mouse skeletal muscles under microgravity and artificial 1 g onboard environmentSci. Rep.2021112021NatSR..11.9168O1:CAS:528:DC%2BB3MXhtVSrurbE10.1038/s41598-021-88392-4339110968080648
– reference: Ikeda, H. et al. Expression profile of cell cycle-related genes in human fibroblasts exposed simultaneously to radiation and simulated microgravity. Int. J. Mol. Sci.20. https://doi.org/10.3390/ijms20194791 (2019).
– reference: ShimomuraMAuthor Correction: Study of mouse behavior in different gravity environmentsSci. Rep.2021112021NatSR..1117563S1:CAS:528:DC%2BB3MXhvFehtb3F10.1038/s41598-021-96312-9344530688397713
– reference: ChataniMAcute transcriptional up-regulation specific to osteoblasts/osteoclasts in medaka fish immediately after exposure to microgravitySci. Rep.201662016NatSR...639545C1:CAS:528:DC%2BC28XitFGisLnL10.1038/srep39545280047975177882
– reference: ShimizuRNrf2 alleviates spaceflight-induced immunosuppression and thrombotic microangiopathy in miceCommun. Biol.202368751:CAS:528:DC%2BB3sXhsl2qt7bJ10.1038/s42003-023-05251-w3762614910457343
– reference: DooleyJListonAMolecular control over thymic involution: from cytokines and microRNA to aging and adipose tissueEur. J. Immunol.201242107310791:CAS:528:DC%2BC38XmtFagsrg%3D10.1002/eji.20114230522539280
– volume: 9
  year: 2019
  ident: 79315_CR14
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-019-56432-9
– ident: 79315_CR1
  doi: 10.1016/j.patter.2020.100148
– volume: 95
  start-page: 1128
  year: 2005
  ident: 79315_CR7
  publication-title: Am. J. Cardiol.
  doi: 10.1016/j.amjcard.2005.01.033
– volume: 8
  year: 2013
  ident: 79315_CR25
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0075097
– volume: 10
  year: 2015
  ident: 79315_CR32
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0141650
– volume: 184
  start-page: 6002
  year: 2021
  ident: 79315_CR8
  publication-title: Cell
  doi: 10.1016/j.cell.2021.11.008
– volume: 11
  year: 2021
  ident: 79315_CR11
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-021-88392-4
– volume: 6
  start-page: 14
  year: 2020
  ident: 79315_CR35
  publication-title: NPJ Microgravity
  doi: 10.1038/s41526-020-0104-1
– volume: 7
  year: 2017
  ident: 79315_CR10
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-017-10998-4
– volume: 611
  start-page: 643
  year: 2022
  ident: 79315_CR2
  publication-title: Nature
  doi: 10.1038/d41586-022-02310-w
– volume: 25
  start-page: 1468
  year: 2010
  ident: 79315_CR38
  publication-title: J. Bone Miner. Res.
  doi: 10.1002/jbmr.141
– volume: 87
  start-page: 44
  year: 2016
  ident: 79315_CR4
  publication-title: Bone
  doi: 10.1016/j.bone.2015.12.057
– ident: 79315_CR16
  doi: 10.1016/j.isci.2021.102773
– volume: 118
  start-page: 2058
  year: 2011
  ident: 79315_CR6
  publication-title: Ophthalmology
  doi: 10.1016/j.ophtha.2011.06.021
– volume: 34
  start-page: 10096
  year: 2020
  ident: 79315_CR23
  publication-title: FASEB J.
  doi: 10.1096/fj.202000216R
– ident: 79315_CR12
  doi: 10.3390/ijms19092546
– volume: 8
  year: 2013
  ident: 79315_CR21
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0061372
– volume: 26
  start-page: 139
  year: 2010
  ident: 79315_CR39
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btp616
– volume: 6
  start-page: 424
  year: 2023
  ident: 79315_CR19
  publication-title: Commun. Biol.
  doi: 10.1038/s42003-023-04769-3
– volume: 6
  start-page: 875
  year: 2023
  ident: 79315_CR36
  publication-title: Commun. Biol.
  doi: 10.1038/s42003-023-05251-w
– volume: 42
  start-page: 1073
  year: 2012
  ident: 79315_CR29
  publication-title: Eur. J. Immunol.
  doi: 10.1002/eji.201142305
– volume: 220
  start-page: 500
  year: 2015
  ident: 79315_CR26
  publication-title: Immunobiology
  doi: 10.1016/j.imbio.2014.10.021
– volume: 87
  start-page: 4
  year: 2018
  ident: 79315_CR28
  publication-title: Scand. J. Immunol.
  doi: 10.1111/sji.12618
– ident: 79315_CR33
  doi: 10.3390/ijms20194791
– volume: 9
  year: 2019
  ident: 79315_CR13
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-019-44067-9
– volume: 2012
  year: 2012
  ident: 79315_CR31
  publication-title: J. Parasitol. Res.
  doi: 10.1155/2012/574020
– volume: 6
  year: 2016
  ident: 79315_CR22
  publication-title: Sci. Rep.
  doi: 10.1038/srep39545
– volume: 9
  year: 2019
  ident: 79315_CR15
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-019-50128-w
– volume: 15
  year: 2024
  ident: 79315_CR37
  publication-title: Front. Physiol.
  doi: 10.3389/fphys.2024.1321468
– volume: 11
  year: 2021
  ident: 79315_CR18
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-021-96312-9
– ident: 79315_CR34
  doi: 10.3390/ijms19123959
– volume: 65
  start-page: 175
  year: 2016
  ident: 79315_CR9
  publication-title: Exp. Anim.
  doi: 10.1538/expanim.15-0077
– volume: 28
  start-page: 536
  year: 2014
  ident: 79315_CR20
  publication-title: FASEB J.
  doi: 10.1096/fj.13-236356
– volume: 70
  start-page: 236
  year: 2021
  ident: 79315_CR17
  publication-title: Exp. Anim.
  doi: 10.1538/expanim.20-0102
– volume: 34
  start-page: 502
  year: 2013
  ident: 79315_CR30
  publication-title: Trends Immunol.
  doi: 10.1016/j.it.2013.06.004
– volume: 70
  start-page: 17
  year: 2020
  ident: 79315_CR5
  publication-title: J. Physiol. Sci.
  doi: 10.1186/s12576-020-00744-3
– volume: 3
  start-page: 426
  year: 2012
  ident: 79315_CR27
  publication-title: Oncotarget
  doi: 10.18632/oncotarget.472
– volume: 13
  start-page: 1031
  year: 1999
  ident: 79315_CR3
  publication-title: FASEB J.
  doi: 10.1096/fasebj.13.9.1031
– ident: 79315_CR24
  doi: 10.1152/japplphysiol.01053.2002
SSID ssj0000529419
Score 2.4450755
Snippet Long-duration spaceflight creates a variety of stresses due to the unique environment, which can lead to compromised functioning of the skeletal and immune...
Abstract Long-duration spaceflight creates a variety of stresses due to the unique environment, which can lead to compromised functioning of the skeletal and...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 28774
SubjectTerms 631/250
631/337/2019
631/443/63
Animals
Atrophy
Bone
Bone and Bones - metabolism
Bone Density
Gene expression
Humanities and Social Sciences
Immune System
Male
Mice
Mice, Inbred C57BL
Microgravity
Moon
multidisciplinary
Science
Science (multidisciplinary)
Space Flight
Spaceflight
Spleen
Spleen - immunology
Spleen - metabolism
Thymus
Thymus gland
Thymus Gland - immunology
Thymus Gland - metabolism
Weightlessness - adverse effects
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LixQxEA6yIHgR37auEsGbhu10KunkqOKyCnpyYW8hT1yc7ZGdmYP_3krSM-74vHhNp6G63tVJfUXI8xQDeD0IxpWSDJzzzOcYmAko7ALg3qdyovvhozo5hfdn8uzKqK9yJ6zBAzfGHY1GRg_CBYGOFIsHz3OGDNEM3oDJuXhfjHlXiqmG6j0Y4GbukumFPlphpCrdZAMwVEkuWb8XiSpg_--yzF8vS_50YloD0fEtcnPOIOmrRvltci1Nd8j1NlPy213i39W-R7rM9KJctivzhTDTpm6KdLGZ3CXdriwnelH-tSe6-oLBB7Pwuum8dIzgWoMyp62PkaLjCYmuy7CixT1yevz205sTNg9SYAGrgTWTmKSgaXNITokxKx0h8uQBF2NwCmUSlTZZcNf7UtEI412OWkqRtdHoE--Tg2k5pYeEguPI-pj4OHLM5aRWUQeQDvOOPDrNO8K3TLVhRhkvwy4Wtp52C22bICwKwlZB2L4jL3bvfG0YG3_d_brIarez4GPXBdQaO2uN_ZfWdORwK2k7G-3KCl6GrgE6uY482z1GcytnKG5Ky03bA0bLHr_0QVOMHSUCa81RAVKo91Rmj9T9J9P55wrpXSCPDIzQkZdb7fpB15958eh_8OIxuTEUs-AcXeYhOVhfbtITzLTW_mk1qu-bXiLg
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Jb9UwELagCIkLYidQkJG4gdX42U7sEwJEVZDgRKV3s7xCxWtS3nLg3zPjLNVj6dWZSJPMao_nG0Jephik1wvBeNMoJp3zzOcYmAkgbARwrxNWdD9_aU5O5aelWo4HbpvxWuXkE4ujjn3AM_IjwXEilgQNfHPxk-HUKKyujiM0rpMbCF2GV7raZTufsWAVS3Iz9srUQh9tIF5hT9lCMlBMrli9F48KbP-_cs2_r0z-UTct4ej4Drk95pH07SD4u-Ra6u6Rm8NkyV_3if9Yuh9pn-k5XrnDKUOQb1PXRbradW5Np5W-o-d44p7o5geEIMjFC9EZ9o3A2gBoToduRgruJyS6xZFFqwfk9PjD1_cnbBynwALsCbZMQaoCBs5lco1oc6OjjDx5CYsxuAYkExttsuCu9rivEca7HLVSImujwTM-JAdd36XHhErHo1nExNuWQ0andBN1kMpB9pFbp3lF-PRTbRixxnHkxcqWmrfQdhCEBUHYIghbV-TV_M7FgLRxJfU7lNVMiSjZZaFff7Oj0QGtil4KFwQEYdh4ep6zzBJY90aanCtyOEnajqa7sZeKVpEX82MwOqykuC71u4FGGq1q-NJHg2LMnAjYcbaNBA71nsrssbr_pDv7XoC9EfjIyFZW5PWkXZd8_f9fPLn6M56SWwtUeM7BJR6Sg-16l55BJrX1z4u5_AbS6Roh
  priority: 102
  providerName: ProQuest
– databaseName: Springer Nature OA/Free Journals
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3Ni9UwEA_LiuBF_La6SgRvWmyaSZoc9eGyCnpyYW8laRJdfNsu7-Ow__3OpO2Tp6vgNZ3AtPOZTuY3jL2OoQNvalkKrVUJzvnSp9CVtkNhE4B7Fami--WrPjmFz2fq7IDVcy9MvrSfIS2zm55vh71bY6ChZrAaStQooUo8pt8i6HbS6oVe7P6rUOUKhJ36Yyppbti6F4MyVP9N-eWf1yR_q5XmEHR8j92dckf-fuT2PjuI_QN2e5wmefWQ-U-545EPiV_QNTuaLIQ5Nnd94Mtt71Z8Xhl6fkF_2SNf_8Swg_l3JjqnXhFcG0HM-djByNHldJFvaEzR8hE7Pf74bXFSTiMUyg7PAZtSYXqCRi0gOi2bpE2AIKIHXAyd0yiNoI1NUrjK01lGWu9SMErJZKxBb_iYHfZDH58yDk4EW4comkZgFqeMDqYD5TDjSI0zomBi_qhtN-GL05iLZZvr3NK0oyBaFESbBdFWBXuz23M5omv8k_oDyWpHScjYeWFYfW8nTUFaFTxI10kMvHjY9CIlSICsews2pYIdzZJuJ3Ndt1LQuDVA91awV7vHaGhUPXF9HLYjDVijKnzTJ6Ni7DiReMpsNCCHZk9l9ljdf9Kf_8hg3gR2ZKGBgr2dtesXX3__Fs_-j_w5u1OTAQiBbvGIHW5W2_gCs6mNf5nN5xpKRBgT
  priority: 102
  providerName: Springer Nature
Title Impact of microgravity and lunar gravity on murine skeletal and immune systems during space travel
URI https://link.springer.com/article/10.1038/s41598-024-79315-0
https://www.ncbi.nlm.nih.gov/pubmed/39567640
https://www.proquest.com/docview/3131034183
https://www.proquest.com/docview/3131498501
https://pubmed.ncbi.nlm.nih.gov/PMC11579474
https://doaj.org/article/795db43ac3284010b1ff4f4d92b949ff
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3di9QwEA_nHYIv4rfVc4ngm1Y3zUeTB5G95Y5z4Q5RF_atJE1yHu61uh_g_fdOknZldRV8KkynMM3MZGaazm8QeuFszYwsaE6E4DnT2uTG2zpXNSg7ALgPXTjRPTsXp1M2mfHZHurHHXULuNxZ2oV5UtPF_PWP79fvwOHfppZx-WYJQSg0ihUsB2sjPIcS_gAiUxkc9axL9xPWd6EYUV3vzO5Ht-JThPHflXv--Qvlb-eoMTyd3EG3u7wSj5Ih3EV7rrmHbqZJk9f3kXkfuyFx6_FV-AUvTB2C_BvrxuL5utEL3FPaBl-FL_AOL79CSIJliUyXoY8EaAngHKfuRgzbUe3wKowwmj9A05Pjz-PTvBuvkNdQI6xyDqkLODxhTgtaeiEts8QZBkRbawGaskIqT4kemlDnUGW0t5Jz6qWSsFM-RPtN27jHCDNNrCqsI2VJIMPjUlhZM64hG_GlliRDpF_Uqu6wx8MIjHkVz8CprJIiKlBEFRVRDTP0cvPMt4S88U_uo6CrDWdAzY6EdnFRdU4IvNwaRnVNIShDIWqI98wzEN0oprzP0GGv6aq3xIqSMIqNwdaXoeeb2-CE4WRFN65dJx6mJB_Cmz5KhrGRhEIFWgoGEsotk9kSdftOc_klAn0HICTFSpahV711_ZLr72vx5P_Yn6JbRXAAQmDLPET7q8XaPYNMa2UG6EY5KwfoYDSafJrA9ej4_MNHoI7FeBC_Xgyig_0ECjknkA
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaqrRBcEG9SChgJTmA1ju3EOSBEodUubVcItVJvwY5tqLpNyj6E-qf4jczksdXy6K1X25Emnqc9nvkIeeldKa1OBONpqpg0xjIbXMnyEpiNDdxjjxndg3E6PJKfjtXxGvnV18Lgs8reJjaG2tUl3pFvCY6IWBIk8N35D4aoUZhd7SE0WrHY8xc_4cg2ezv6CPx9lSS7O4cfhqxDFWAlhMZzpsBjg5xz6U0qspBqJx33VsKgK00KBLpU50FwE1sM70VuTXBaKRF0rjmiRIDJX5cCjjIDsr69M_78ZXmrg3kzyfOuOicWemsGHhKr2BLJQBW4YvGKB2yAAv4V3f79SPOPTG3jAHfvkNtd5Erft6J2l6z56h650WJZXtwndtTUW9I60DN85Ie4RhDhU1M5OllUZkr7kbqiZ3jH7-nsFJweRP_NohOsVIGxtoU6besnKRi80tM5giRNHpCja9nqh2RQ1ZV_TKg03OWJ8zzLOMSQSqdOl1IZiHdCZjSPCO83tSi77uYIsjEpmiy70EXLiAIYUTSMKOKIvF5-c9729rhy9TbyarkS-3I3A_X0W9GpOaxVzkphSgFuH466locggwTSbS7zECKy2XO66IzFrLgU7Yi8WE6DmmPuxlS-XrRrZK5VDH_6qBWMJSUCzrhZKoFCvSIyK6SuzlQn35tW4thqKZeZjMibXrou6fr_Xmxc_RvPyc3h4cF-sT8a7z0htxIUfs7BIG-SwXy68E8hjpvbZ53yUPL1uvX1N-SJVnY
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaqIhAXxJtAASPBCaKNYzuxDwgBZdWlUHGg0t6CHdtQsU3KPoT61_h1zDjJVsujt15tR5p4nvZ45iPkqXe1sCrnKSsKmQpjbGqDq1NdA7OxgXvmMaP78aDYOxTvp3K6RX4NtTD4rHKwidFQu7bGO_IRZ4iIJUACR6F_FvFpd_zq5EeKCFKYaR3gNDoR2fenP-H4tng52QVeP8vz8bvPb_fSHmEgrSFMXqYSvDfIPBPeFLwMhXLCMW8FDLraFECsK5QOnJnMYqjPtTXBKSl5UFoxRIwA83-p5JKhjpXTcn2_gxk0wXRfp5NxNVqAr8R6tlykoBRMptmGL4yQAf-Kc_9-rvlHzja6wvF1cq2PYenrTuhukC3f3CSXO1TL01vETmLlJW0DPcbnfohwBLE-NY2js1Vj5nQYaRt6jLf9ni6-g_uDc0BcdIQ1KzDWNVOnXSUlBdNXe7pEuKTZbXJ4IRt9h2w3bePvESoMczp3npUlg2hSqsKpWkgDkU8ojWIJYcOmVnXf5xzhNmZVzLdzVXWMqIARVWRElSXk-fqbk67Lx7mr3yCv1iuxQ3ccaOdfq17hYa10VnBTcwgA4NBrWQgiCCDdaqFDSMjOwOmqNxuL6kzIE_JkPQ0Kj1kc0_h21a0RWskM_vRuJxhrSjicdstCAIVqQ2Q2SN2caY6-xabi2HRJi1Ik5MUgXWd0_X8v7p__G4_JFdDS6sPkYP8BuZqj7DMGlnmHbC_nK_8QArqlfRQ1h5IvF62qvwE2sllG
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Impact+of+microgravity+and+lunar+gravity+on+murine+skeletal+and+immune+systems+during+space+travel&rft.jtitle=Scientific+reports&rft.au=Okamura%2C+Yui&rft.au=Gochi%2C+Kei&rft.au=Ishikawa%2C+Tatsuya&rft.au=Hayashi%2C+Takuto&rft.date=2024-11-20&rft.pub=Nature+Publishing+Group+UK&rft.eissn=2045-2322&rft.volume=14&rft.issue=1&rft_id=info:doi/10.1038%2Fs41598-024-79315-0&rft.externalDocID=10_1038_s41598_024_79315_0
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon