Peroxiredoxin 2: An Important Element of the Antioxidant Defense of the Erythrocyte

Peroxiredoxin 2 (Prdx2) is the third most abundant erythrocyte protein. It was known previously as calpromotin since its binding to the membrane stimulates the calcium-dependent potassium channel. Prdx2 is present mostly in cytosol in the form of non-covalent dimers but may associate into doughnut-l...

Full description

Saved in:
Bibliographic Details
Published inAntioxidants Vol. 12; no. 5; p. 1012
Main Authors Sadowska-Bartosz, Izabela, Bartosz, Grzegorz
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 27.04.2023
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Peroxiredoxin 2 (Prdx2) is the third most abundant erythrocyte protein. It was known previously as calpromotin since its binding to the membrane stimulates the calcium-dependent potassium channel. Prdx2 is present mostly in cytosol in the form of non-covalent dimers but may associate into doughnut-like decamers and other oligomers. Prdx2 reacts rapidly with hydrogen peroxide (k > 107 M−1 s−1). It is the main erythrocyte antioxidant that removes hydrogen peroxide formed endogenously by hemoglobin autoxidation. Prdx2 also reduces other peroxides including lipid, urate, amino acid, and protein hydroperoxides and peroxynitrite. Oxidized Prdx2 can be reduced at the expense of thioredoxin but also of other thiols, especially glutathione. Further reactions of Prdx2 with oxidants lead to hyperoxidation (formation of sulfinyl or sulfonyl derivatives of the peroxidative cysteine). The sulfinyl derivative can be reduced by sulfiredoxin. Circadian oscillations in the level of hyperoxidation of erythrocyte Prdx2 were reported. The protein can be subject to post-translational modifications; some of them, such as phosphorylation, nitration, and acetylation, increase its activity. Prdx2 can also act as a chaperone for hemoglobin and erythrocyte membrane proteins, especially during the maturation of erythrocyte precursors. The extent of Prdx2 oxidation is increased in various diseases and can be an index of oxidative stress.
AbstractList Peroxiredoxin 2 (Prdx2) is the third most abundant erythrocyte protein. It was known previously as calpromotin since its binding to the membrane stimulates the calcium-dependent potassium channel. Prdx2 is present mostly in cytosol in the form of non-covalent dimers but may associate into doughnut-like decamers and other oligomers. Prdx2 reacts rapidly with hydrogen peroxide (k > 10 M s ). It is the main erythrocyte antioxidant that removes hydrogen peroxide formed endogenously by hemoglobin autoxidation. Prdx2 also reduces other peroxides including lipid, urate, amino acid, and protein hydroperoxides and peroxynitrite. Oxidized Prdx2 can be reduced at the expense of thioredoxin but also of other thiols, especially glutathione. Further reactions of Prdx2 with oxidants lead to hyperoxidation (formation of sulfinyl or sulfonyl derivatives of the peroxidative cysteine). The sulfinyl derivative can be reduced by sulfiredoxin. Circadian oscillations in the level of hyperoxidation of erythrocyte Prdx2 were reported. The protein can be subject to post-translational modifications; some of them, such as phosphorylation, nitration, and acetylation, increase its activity. Prdx2 can also act as a chaperone for hemoglobin and erythrocyte membrane proteins, especially during the maturation of erythrocyte precursors. The extent of Prdx2 oxidation is increased in various diseases and can be an index of oxidative stress.
Peroxiredoxin 2 (Prdx2) is the third most abundant erythrocyte protein. It was known previously as calpromotin since its binding to the membrane stimulates the calcium-dependent potassium channel. Prdx2 is present mostly in cytosol in the form of non-covalent dimers but may associate into doughnut-like decamers and other oligomers. Prdx2 reacts rapidly with hydrogen peroxide (k > 10[sup.7] M[sup.−1] s[sup.−1]). It is the main erythrocyte antioxidant that removes hydrogen peroxide formed endogenously by hemoglobin autoxidation. Prdx2 also reduces other peroxides including lipid, urate, amino acid, and protein hydroperoxides and peroxynitrite. Oxidized Prdx2 can be reduced at the expense of thioredoxin but also of other thiols, especially glutathione. Further reactions of Prdx2 with oxidants lead to hyperoxidation (formation of sulfinyl or sulfonyl derivatives of the peroxidative cysteine). The sulfinyl derivative can be reduced by sulfiredoxin. Circadian oscillations in the level of hyperoxidation of erythrocyte Prdx2 were reported. The protein can be subject to post-translational modifications; some of them, such as phosphorylation, nitration, and acetylation, increase its activity. Prdx2 can also act as a chaperone for hemoglobin and erythrocyte membrane proteins, especially during the maturation of erythrocyte precursors. The extent of Prdx2 oxidation is increased in various diseases and can be an index of oxidative stress.
Peroxiredoxin 2 (Prdx2) is the third most abundant erythrocyte protein. It was known previously as calpromotin since its binding to the membrane stimulates the calcium-dependent potassium channel. Prdx2 is present mostly in cytosol in the form of non-covalent dimers but may associate into doughnut-like decamers and other oligomers. Prdx2 reacts rapidly with hydrogen peroxide (k > 107 M−1 s−1). It is the main erythrocyte antioxidant that removes hydrogen peroxide formed endogenously by hemoglobin autoxidation. Prdx2 also reduces other peroxides including lipid, urate, amino acid, and protein hydroperoxides and peroxynitrite. Oxidized Prdx2 can be reduced at the expense of thioredoxin but also of other thiols, especially glutathione. Further reactions of Prdx2 with oxidants lead to hyperoxidation (formation of sulfinyl or sulfonyl derivatives of the peroxidative cysteine). The sulfinyl derivative can be reduced by sulfiredoxin. Circadian oscillations in the level of hyperoxidation of erythrocyte Prdx2 were reported. The protein can be subject to post-translational modifications; some of them, such as phosphorylation, nitration, and acetylation, increase its activity. Prdx2 can also act as a chaperone for hemoglobin and erythrocyte membrane proteins, especially during the maturation of erythrocyte precursors. The extent of Prdx2 oxidation is increased in various diseases and can be an index of oxidative stress.
Peroxiredoxin 2 (Prdx2) is the third most abundant erythrocyte protein. It was known previously as calpromotin since its binding to the membrane stimulates the calcium-dependent potassium channel. Prdx2 is present mostly in cytosol in the form of non-covalent dimers but may associate into doughnut-like decamers and other oligomers. Prdx2 reacts rapidly with hydrogen peroxide (k > 10 7 M −1 s −1 ). It is the main erythrocyte antioxidant that removes hydrogen peroxide formed endogenously by hemoglobin autoxidation. Prdx2 also reduces other peroxides including lipid, urate, amino acid, and protein hydroperoxides and peroxynitrite. Oxidized Prdx2 can be reduced at the expense of thioredoxin but also of other thiols, especially glutathione. Further reactions of Prdx2 with oxidants lead to hyperoxidation (formation of sulfinyl or sulfonyl derivatives of the peroxidative cysteine). The sulfinyl derivative can be reduced by sulfiredoxin. Circadian oscillations in the level of hyperoxidation of erythrocyte Prdx2 were reported. The protein can be subject to post-translational modifications; some of them, such as phosphorylation, nitration, and acetylation, increase its activity. Prdx2 can also act as a chaperone for hemoglobin and erythrocyte membrane proteins, especially during the maturation of erythrocyte precursors. The extent of Prdx2 oxidation is increased in various diseases and can be an index of oxidative stress.
Peroxiredoxin 2 (Prdx2) is the third most abundant erythrocyte protein. It was known previously as calpromotin since its binding to the membrane stimulates the calcium-dependent potassium channel. Prdx2 is present mostly in cytosol in the form of non-covalent dimers but may associate into doughnut-like decamers and other oligomers. Prdx2 reacts rapidly with hydrogen peroxide (k > 10⁷ M⁻¹ s⁻¹). It is the main erythrocyte antioxidant that removes hydrogen peroxide formed endogenously by hemoglobin autoxidation. Prdx2 also reduces other peroxides including lipid, urate, amino acid, and protein hydroperoxides and peroxynitrite. Oxidized Prdx2 can be reduced at the expense of thioredoxin but also of other thiols, especially glutathione. Further reactions of Prdx2 with oxidants lead to hyperoxidation (formation of sulfinyl or sulfonyl derivatives of the peroxidative cysteine). The sulfinyl derivative can be reduced by sulfiredoxin. Circadian oscillations in the level of hyperoxidation of erythrocyte Prdx2 were reported. The protein can be subject to post-translational modifications; some of them, such as phosphorylation, nitration, and acetylation, increase its activity. Prdx2 can also act as a chaperone for hemoglobin and erythrocyte membrane proteins, especially during the maturation of erythrocyte precursors. The extent of Prdx2 oxidation is increased in various diseases and can be an index of oxidative stress.
Peroxiredoxin 2 (Prdx2) is the third most abundant erythrocyte protein. It was known previously as calpromotin since its binding to the membrane stimulates the calcium-dependent potassium channel. Prdx2 is present mostly in cytosol in the form of non-covalent dimers but may associate into doughnut-like decamers and other oligomers. Prdx2 reacts rapidly with hydrogen peroxide (k > 107 M-1 s-1). It is the main erythrocyte antioxidant that removes hydrogen peroxide formed endogenously by hemoglobin autoxidation. Prdx2 also reduces other peroxides including lipid, urate, amino acid, and protein hydroperoxides and peroxynitrite. Oxidized Prdx2 can be reduced at the expense of thioredoxin but also of other thiols, especially glutathione. Further reactions of Prdx2 with oxidants lead to hyperoxidation (formation of sulfinyl or sulfonyl derivatives of the peroxidative cysteine). The sulfinyl derivative can be reduced by sulfiredoxin. Circadian oscillations in the level of hyperoxidation of erythrocyte Prdx2 were reported. The protein can be subject to post-translational modifications; some of them, such as phosphorylation, nitration, and acetylation, increase its activity. Prdx2 can also act as a chaperone for hemoglobin and erythrocyte membrane proteins, especially during the maturation of erythrocyte precursors. The extent of Prdx2 oxidation is increased in various diseases and can be an index of oxidative stress.Peroxiredoxin 2 (Prdx2) is the third most abundant erythrocyte protein. It was known previously as calpromotin since its binding to the membrane stimulates the calcium-dependent potassium channel. Prdx2 is present mostly in cytosol in the form of non-covalent dimers but may associate into doughnut-like decamers and other oligomers. Prdx2 reacts rapidly with hydrogen peroxide (k > 107 M-1 s-1). It is the main erythrocyte antioxidant that removes hydrogen peroxide formed endogenously by hemoglobin autoxidation. Prdx2 also reduces other peroxides including lipid, urate, amino acid, and protein hydroperoxides and peroxynitrite. Oxidized Prdx2 can be reduced at the expense of thioredoxin but also of other thiols, especially glutathione. Further reactions of Prdx2 with oxidants lead to hyperoxidation (formation of sulfinyl or sulfonyl derivatives of the peroxidative cysteine). The sulfinyl derivative can be reduced by sulfiredoxin. Circadian oscillations in the level of hyperoxidation of erythrocyte Prdx2 were reported. The protein can be subject to post-translational modifications; some of them, such as phosphorylation, nitration, and acetylation, increase its activity. Prdx2 can also act as a chaperone for hemoglobin and erythrocyte membrane proteins, especially during the maturation of erythrocyte precursors. The extent of Prdx2 oxidation is increased in various diseases and can be an index of oxidative stress.
Audience Academic
Author Bartosz, Grzegorz
Sadowska-Bartosz, Izabela
AuthorAffiliation 1 Laboratory of Analytical Biochemistry, Institute of Food Technology and Nutrition, College of Natural Sciences, University of Rzeszow, 4 Zelwerowicza St., 35-601 Rzeszow, Poland
2 Department of Bioenergetics, Food Analysis and Microbiology, Institute of Food Technology and Nutrition, College of Natural Sciences, University of Rzeszów, 4 Zelwerowicza St., 35-601 Rzeszow, Poland; gbartosz@ur.edu.pl
AuthorAffiliation_xml – name: 1 Laboratory of Analytical Biochemistry, Institute of Food Technology and Nutrition, College of Natural Sciences, University of Rzeszow, 4 Zelwerowicza St., 35-601 Rzeszow, Poland
– name: 2 Department of Bioenergetics, Food Analysis and Microbiology, Institute of Food Technology and Nutrition, College of Natural Sciences, University of Rzeszów, 4 Zelwerowicza St., 35-601 Rzeszow, Poland; gbartosz@ur.edu.pl
Author_xml – sequence: 1
  givenname: Izabela
  orcidid: 0000-0001-9035-6833
  surname: Sadowska-Bartosz
  fullname: Sadowska-Bartosz, Izabela
– sequence: 2
  givenname: Grzegorz
  orcidid: 0000-0002-0347-0740
  surname: Bartosz
  fullname: Bartosz, Grzegorz
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37237878$$D View this record in MEDLINE/PubMed
BookMark eNqNkt1v0zAUxSM0xMbYK4-oEi-8dPgj_uIFVaNApUkgsXfLsW9aV0lcnHRa_3tu6LqtCCQSKY59z_3ZPjovi5MudVAUrym55NyQ964bYrqjjAhKKHtWnDGi5JQbRk-e_J8WF32_JvgYyjUxL4pTrhhXWumz4sd3yOkuZgj47Sbsw2TWTRbtJuUB6ZN5Ay3gmOrJsAKsjRvGMJY-QQ1dD4fSPO-GVU5-N8Cr4nntmh4u7sfz4ubz_Obq6_T625fF1ex66oUWw1RIbSoqmAiCshA0aGqI4dKwIGrKOA3gpMN5rYNwnlMQxhMvHHXAq5qfF4s9NiS3tpscW5d3Nrlofy-kvLQuD9E3YIXiPpQylMTpUjhWOSO8KIMzsuRcVMj6uGdttlULweOds2uOoMeVLq7sMt1aShgVSgokvLsn5PRzC_1g29h7aBrXQdr2lmmtJFHasP-QMkLQC6ZQ-vYP6Tptc4euoooaJksj2aNq6fCysasTntGPUDtTgmgtjRxZl39R4RugjR6TVUdcP2p489SUBzcO6UFBuRf4nPo-Q219HBxGZPQoNmiOHXNqj3P6eJCHtgP5Hw2_AKV5598
CitedBy_id crossref_primary_10_3389_fphys_2024_1499308
crossref_primary_10_1016_j_jpba_2024_116247
crossref_primary_10_1016_j_abb_2024_110121
crossref_primary_10_3389_fimmu_2024_1367432
crossref_primary_10_3390_antiox13091070
crossref_primary_10_3390_gels10120772
crossref_primary_10_1007_s00018_024_05563_y
crossref_primary_10_3390_cimb46060349
crossref_primary_10_1002_ctm2_70166
crossref_primary_10_1007_s00109_023_02368_7
crossref_primary_10_3390_antiox13060629
crossref_primary_10_1016_j_molstruc_2024_138817
Cites_doi 10.1016/j.freeradbiomed.2019.07.004
10.1089/ars.2017.7488
10.1155/2019/3435174
10.1016/j.cell.2016.05.006
10.1073/pnas.1419682112
10.1093/oxfordjournals.jbchem.a022451
10.1089/ars.2010.3624
10.1089/ars.2008.2049
10.1016/j.molmed.2005.10.006
10.1080/10715760701625075
10.1080/10715762.2016.1241995
10.1021/bi00906a038
10.1016/j.biochi.2011.02.005
10.1073/pnas.0307446101
10.3324/haematol.2013.084533
10.1016/j.bbadis.2016.11.019
10.1042/BJ20130030
10.1073/pnas.0905387106
10.1089/ars.2016.6922
10.3390/ijms231810735
10.1016/j.jchromb.2015.06.007
10.1016/j.jmb.2010.07.022
10.1016/S0021-9258(19)36688-8
10.1111/j.1582-4934.2008.00478.x
10.1016/j.freeradbiomed.2003.08.019
10.1267/ahc.15.685
10.1002/pmic.201800311
10.1182/blood.V90.12.4973
10.1016/j.redox.2021.101980
10.1096/fj.14-250050
10.1089/ars.2010.3564
10.1006/abio.1996.9939
10.1016/0005-2795(81)90021-0
10.1016/j.freeradbiomed.2020.07.007
10.1074/jbc.M113.544957
10.1002/med.10051
10.1016/j.freeradbiomed.2006.10.042
10.1016/j.freeradbiomed.2019.07.016
10.1016/j.febslet.2009.05.029
10.1039/c7ib00039a
10.1021/ic1007389
10.1172/JCI113230
10.1016/j.jprot.2015.06.014
10.1038/nchembio.935
10.1016/j.freeradbiomed.2018.04.274
10.1016/S0021-9258(18)55157-7
10.1111/trf.13039
10.1073/pnas.0803749105
10.1038/263336a0
10.1002/prca.201500128
10.1016/j.pathophys.2017.04.003
10.1016/j.cell.2004.05.002
10.1074/jbc.RA117.001690
10.14348/molcells.2016.2325
10.1074/jbc.M505362200
10.3390/antiox10020206
10.1016/j.freeradbiomed.2018.10.450
10.1074/jbc.271.26.15315
10.1016/j.molcel.2011.11.027
10.1016/j.ab.2019.02.026
10.1007/s12975-019-00714-x
10.1182/blood.V73.1.334.334
10.3389/fphys.2020.00357
10.1021/bi000034j
10.1016/j.freeradbiomed.2014.09.025
10.2478/s11658-011-0032-x
10.3390/antiox8020029
10.3390/ijms20225769
10.1021/acs.jproteome.7b00025
10.1074/jbc.M113.539213
10.1111/j.1742-4658.2009.06985.x
10.1039/b901735f
10.1016/j.freeradbiomed.2009.11.021
10.1016/j.abb.2015.10.021
10.2741/4770
10.1074/jbc.M110.172460
10.1182/blood-2006-09-048728
10.1038/nchembio.1722
10.1016/j.bcmd.2009.03.002
10.1016/j.freeradbiomed.2019.09.010
10.1074/jbc.M112.433755
10.1111/j.1753-4887.2012.00476.x
10.1126/science.1080405
10.1016/j.redox.2019.101399
10.1016/j.freeradbiomed.2012.05.020
10.1089/ars.2017.7214
10.1007/s00436-021-07051-9
10.1182/blood-2002-08-2548
10.1038/nature09702
10.1111/j.1537-2995.2010.03032.x
10.1074/jbc.M610330200
10.1016/j.abb.2023.109569
10.1021/bi012173m
10.1042/bj2560751
10.1073/pnas.0705904104
10.1016/j.ab.2019.02.019
10.1016/j.biocel.2012.04.008
10.1016/j.bbrc.2019.08.108
10.1371/journal.pone.0092411
10.1093/acprof:oso/9780198717478.001.0001
10.1006/bbrc.1999.1107
10.1074/jbc.M511082200
10.1074/jbc.M111.232355
10.1021/bi00380a041
10.1002/elps.1150180807
10.1079/BJN19820059
10.1016/j.freeradbiomed.2014.08.004
10.1006/bbrc.1997.6278
10.1074/jbc.M700339200
10.1042/bj1550493
10.14348/molcells.2016.2330
10.1016/j.freeradbiomed.2014.10.009
10.1007/s00232-013-9569-0
10.1042/bj3120699
10.1023/A:1016036617585
10.1096/fj.13-227298
10.1080/13510002.1997.11747085
10.1074/jbc.M704369200
10.14814/phy2.14745
10.1016/S0021-9258(18)90956-7
10.1016/j.freeradbiomed.2012.10.543
10.1002/(SICI)1096-8652(199710)56:2<100::AID-AJH5>3.0.CO;2-2
10.1016/S0168-8227(99)00037-6
10.1016/j.micron.2006.04.010
10.1016/j.freeradbiomed.2018.10.407
10.1038/nature11088
10.3109/10715762.2015.1028402
10.1073/pnas.1915275117
10.1080/15216540600936549
10.1016/S0891-5849(99)00051-9
10.1021/acs.chemrestox.5b00132
10.1007/s12975-021-00980-8
10.1186/s12967-019-2076-z
10.1016/j.abb.2017.02.012
10.1002/prca.200780058
10.3324/haematol.2013.090076
10.1089/ars.2010.3393
10.1016/j.abb.2008.11.017
10.1016/0005-2736(79)90348-1
10.1016/S0009-8981(03)00200-6
10.1021/bi5013222
10.3109/10715762.2012.756138
10.3390/ijms18091932
10.1016/j.neurobiolaging.2007.06.012
10.1515/BC.2002.040
10.1074/jbc.M115.692798
10.1021/bi9003556
10.1021/bi00612a031
10.1007/BF00201829
10.1016/j.freeradbiomed.2009.08.022
10.3390/ijms21218033
10.1016/j.jmb.2017.12.020
10.1016/j.redox.2021.102073
10.1002/prca.201600121
10.3390/antiox11122486
10.1016/j.bbagen.2013.08.001
10.1146/annurev-biochem-060208-092442
10.1074/jbc.274.20.13908
10.1042/BJ20101156
10.1182/blood.V71.2.512.512
10.1089/ars.2014.5950
10.1021/bi801718d
10.1002/pmic.201300177
10.1016/j.freeradbiomed.2005.02.026
10.1096/fj.201801150R
10.1002/prca.201400035
10.14348/molcells.2016.2368
10.1097/TA.0000000000002730
10.1007/BF00188176
10.1016/j.bbagen.2012.11.020
10.1074/jbc.M409482200
10.1016/j.redox.2017.12.008
10.1016/S0969-2126(00)00147-7
10.1021/tx060146x
10.1016/j.bbrc.2012.08.113
10.1186/s12974-018-1118-4
10.1016/j.bbamem.2019.183172
10.1016/j.jbc.2021.100494
10.1016/j.bcmd.2008.02.008
10.1155/2023/5781180
10.1016/S1357-2725(98)00044-2
10.1016/j.freeradbiomed.2013.08.002
10.1089/ars.2008.2081
10.1089/152308601300185250
10.1371/journal.pone.0208316
10.1016/S0304-4165(01)00188-X
10.1016/S0021-9258(18)47038-X
10.1083/jcb.200606005
10.1089/ars.2009.2701
10.1016/0022-2836(69)90425-2
10.1074/jbc.M116.767657
10.1016/j.freeradbiomed.2010.05.003
10.1038/nature06415
10.1021/bi8002956
10.1074/jbc.M113.460881
10.1006/bbrc.1994.1214
10.1074/jbc.R111.283432
10.1073/pnas.1401100111
10.1046/j.1432-1033.2003.03393.x
10.1038/nchembio.1695
10.1096/fj.202200052R
10.1038/nature02075
10.1126/science.1095569
ContentType Journal Article
Copyright COPYRIGHT 2023 MDPI AG
2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2023 by the authors. 2023
Copyright_xml – notice: COPYRIGHT 2023 MDPI AG
– notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2023 by the authors. 2023
DBID AAYXX
CITATION
NPM
7QR
7T5
7TO
8FD
8FE
8FH
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FR3
GNUQQ
H94
HCIFZ
LK8
M7P
P64
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
7X8
7S9
L.6
5PM
DOA
DOI 10.3390/antiox12051012
DatabaseName CrossRef
PubMed
Chemoreception Abstracts
Immunology Abstracts
Oncogenes and Growth Factors Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection
Biological Sciences
Biological Science Database
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
Oncogenes and Growth Factors Abstracts
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central
ProQuest One Applied & Life Sciences
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
ProQuest Central (New)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Biological Science Database
ProQuest SciTech Collection
Biotechnology and BioEngineering Abstracts
ProQuest One Academic UKI Edition
Immunology Abstracts
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList PubMed

CrossRef
Publicly Available Content Database


AGRICOLA
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2076-3921
ExternalDocumentID oai_doaj_org_article_573cd46d40a845a2ba95c54da964335b
PMC10215765
A750886967
37237878
10_3390_antiox12051012
Genre Journal Article
Review
GroupedDBID 53G
5VS
8FE
8FH
AADQD
AAFWJ
AAHBH
AAYXX
ADBBV
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BBNVY
BCNDV
BENPR
BHPHI
CCPQU
CITATION
GROUPED_DOAJ
HCIFZ
HYE
IAO
IHR
ITC
KQ8
LK8
M48
M7P
MODMG
M~E
OK1
PGMZT
PHGZM
PHGZT
PIMPY
PROAC
RPM
NPM
PMFND
7QR
7T5
7TO
8FD
ABUWG
AZQEC
DWQXO
FR3
GNUQQ
H94
P64
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
7X8
7S9
L.6
5PM
PUEGO
ID FETCH-LOGICAL-c585t-5689b1525d512dd8e819093692d5f1231dea6a369f8d5ac31e59c0c5a1ae3bf3
IEDL.DBID BENPR
ISSN 2076-3921
IngestDate Wed Aug 27 01:30:47 EDT 2025
Thu Aug 21 18:37:53 EDT 2025
Fri Jul 11 04:28:36 EDT 2025
Fri Jul 11 11:17:19 EDT 2025
Fri Jul 25 12:11:10 EDT 2025
Tue Jun 17 21:25:30 EDT 2025
Tue Jun 10 20:29:12 EDT 2025
Thu Jan 02 22:51:32 EST 2025
Thu Apr 24 22:59:45 EDT 2025
Tue Jul 01 02:20:41 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords peroxiredoxin
antioxidant
calpromotin
thioredoxin
glutathione
hydrogen peroxide
erythrocyte
Language English
License https://creativecommons.org/licenses/by/4.0
Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c585t-5689b1525d512dd8e819093692d5f1231dea6a369f8d5ac31e59c0c5a1ae3bf3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0001-9035-6833
0000-0002-0347-0740
OpenAccessLink https://www.proquest.com/docview/2819264962?pq-origsite=%requestingapplication%
PMID 37237878
PQID 2819264962
PQPubID 2032435
ParticipantIDs doaj_primary_oai_doaj_org_article_573cd46d40a845a2ba95c54da964335b
pubmedcentral_primary_oai_pubmedcentral_nih_gov_10215765
proquest_miscellaneous_2887607892
proquest_miscellaneous_2820019027
proquest_journals_2819264962
gale_infotracmisc_A750886967
gale_infotracacademiconefile_A750886967
pubmed_primary_37237878
crossref_citationtrail_10_3390_antiox12051012
crossref_primary_10_3390_antiox12051012
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-04-27
PublicationDateYYYYMMDD 2023-04-27
PublicationDate_xml – month: 04
  year: 2023
  text: 2023-04-27
  day: 27
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Antioxidants
PublicationTitleAlternate Antioxidants (Basel)
PublicationYear 2023
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References ref_137
Lu (ref_203) 2018; 15
ref_136
Flatt (ref_197) 2020; 11
Peskin (ref_128) 2010; 432
Dietz (ref_68) 2009; 583
Tiwari (ref_170) 2021; 120
(ref_17) 2014; 63
Nagy (ref_115) 2011; 286
Ishida (ref_119) 2019; 518
May (ref_21) 2001; 1528
Chen (ref_188) 2017; 11
ref_134
Winterbourn (ref_155) 1987; 80
Burillo (ref_207) 2014; 8
Sadvakassova (ref_198) 2021; 9
Ferru (ref_182) 2014; 99
Ghashghaeinia (ref_16) 2012; 17
Edgar (ref_172) 2012; 485
Abruzzo (ref_210) 2019; 17
Lee (ref_161) 2003; 101
Bayer (ref_183) 2015; 55
Meotti (ref_124) 2011; 286
Chang (ref_63) 2004; 279
Rabilloud (ref_81) 1995; 312
Stacey (ref_135) 2009; 47
Johnson (ref_164) 2010; 48
Kakorin (ref_88) 2008; 47
Melo (ref_168) 2023; 739
Soethoudt (ref_146) 2014; 77
Fukuda (ref_166) 1982; 15
Peng (ref_206) 2023; 2023
Lu (ref_201) 2019; 33
Hofmann (ref_45) 2002; 383
Plishker (ref_33) 1992; 267
Ogasawara (ref_79) 2015; 997
Xia (ref_204) 2022; 13
Netto (ref_44) 1996; 271
Rhee (ref_53) 2012; 287
ref_150
Tzounakas (ref_189) 2016; 10
Bayer (ref_152) 2013; 27
Trindade (ref_130) 2006; 19
Pastore (ref_15) 2003; 333
Detterich (ref_191) 2019; 141
Kettle (ref_9) 1997; 3
Kumsta (ref_67) 2009; 48
Phalen (ref_73) 2006; 175
Nagababu (ref_98) 2013; 47
Moore (ref_34) 1991; 266
Meissner (ref_84) 2007; 38
Selvaggio (ref_153) 2018; 15
Feliciano (ref_200) 2017; 1863
Kirkman (ref_31) 1999; 274
ref_148
Stuhlmeier (ref_178) 2003; 270
Pearson (ref_156) 2021; 43
Song (ref_18) 2019; 2019
Low (ref_14) 2007; 109
Waugh (ref_104) 1987; 26
Matte (ref_94) 2010; 49
Santo (ref_11) 2016; 2
Romero (ref_129) 2006; 58
Moon (ref_175) 2005; 280
Fourquet (ref_69) 2008; 10
Mueller (ref_112) 1997; 245
Peskin (ref_55) 2016; 291
Rhee (ref_78) 2011; 15
Maiorino (ref_121) 2013; 1830
Yao (ref_131) 2010; 49
Muralidharan (ref_142) 2019; 573
Cheah (ref_190) 2014; 28
Alayash (ref_13) 2001; 3
Nagababu (ref_163) 2004; 6
Shau (ref_38) 1994; 40
Richardson (ref_132) 2003; 35
Allen (ref_37) 1979; 551
Poynton (ref_154) 2014; 1840
Oh (ref_157) 2022; 36
Bolduc (ref_118) 2018; 293
Peskin (ref_59) 2013; 288
Melo (ref_103) 2018; 120
Nakamura (ref_167) 1998; 30
Lim (ref_106) 1994; 199
Halliwell (ref_5) 2012; 70
Liu (ref_145) 2012; 8
Biondani (ref_97) 2008; 2
Winterbourn (ref_72) 2015; 11
Hall (ref_48) 2010; 402
Jeong (ref_62) 2006; 281
Lee (ref_176) 2007; 282
Radi (ref_10) 2004; 101
Rinalducci (ref_91) 2011; 93
Jang (ref_158) 2004; 117
Han (ref_180) 2012; 426
Demarest (ref_23) 2019; 572
Bian (ref_205) 2020; 11
Svensson (ref_151) 1988; 256
Chae (ref_43) 1999; 45
Mueller (ref_27) 1997; 90
Bayer (ref_100) 2016; 50
Fang (ref_77) 2007; 104
Carvalho (ref_110) 2017; 292
Peskin (ref_117) 2020; 158
Franco (ref_195) 2014; 99
Littlechild (ref_82) 2000; 8
Johnson (ref_64) 2008; 451
Holmgren (ref_25) 1978; 17
Harper (ref_185) 2015; 22
Lowther (ref_65) 2011; 15
Ng (ref_113) 2007; 41
Nelson (ref_114) 2008; 47
Karplus (ref_71) 2015; 80
Peskin (ref_108) 2007; 282
Reddy (ref_173) 2011; 469
Connor (ref_202) 2017; 24
Ogusucu (ref_107) 2007; 42
Rinalducci (ref_187) 2011; 51
Low (ref_42) 2008; 10
Rocha (ref_99) 2015; 49
Engelman (ref_141) 2013; 288
Kim (ref_174) 2013; 82
Winterbourn (ref_111) 1999; 27
Jeong (ref_143) 2012; 53
Bruskov (ref_149) 2002; 384
Basu (ref_179) 2015; 128
Matthews (ref_4) 2017; 9
Wood (ref_89) 2002; 41
Day (ref_74) 2012; 45
Basu (ref_192) 2013; 13
Daiber (ref_12) 2018; 28
Haruyama (ref_105) 2018; 430
Peskin (ref_56) 2021; 86
Poole (ref_50) 2016; 39
Rocha (ref_96) 2008; 41
Teixeira (ref_86) 2015; 112
Sobotta (ref_57) 2015; 11
Gromer (ref_26) 2004; 24
Pantaleo (ref_162) 2014; 76
Parmigiani (ref_140) 2008; 105
Seidel (ref_125) 2014; 289
Peskin (ref_133) 2019; 145
Rocha (ref_93) 2009; 43
Biteau (ref_60) 2003; 425
Ogasawara (ref_90) 2012; 44
Rocha (ref_196) 2020; 1862
Budanov (ref_61) 2004; 304
Scott (ref_28) 1991; 118
Rhee (ref_47) 2016; 39
Peskin (ref_116) 2021; 296
Ogata (ref_165) 1991; 86
Gebicki (ref_127) 2016; 595
Koncarevic (ref_171) 2009; 106
Vielfort (ref_177) 2016; 166
Yoshida (ref_208) 2009; 30
Alfaro (ref_8) 2019; 130
Zerez (ref_22) 1988; 71
Hall (ref_49) 2009; 276
Winterbourn (ref_2) 1976; 155
Randall (ref_138) 2014; 289
Randall (ref_139) 2019; 141
Harris (ref_35) 1969; 46
Link (ref_76) 1997; 18
Forcina (ref_122) 2019; 19
Moore (ref_193) 1997; 56
Wood (ref_41) 2003; 300
Cho (ref_160) 2010; 12
Winterbourn (ref_109) 2016; 39
Veal (ref_75) 2018; 28
Cho (ref_159) 2014; 111
Oh (ref_184) 2020; 89
Walder (ref_102) 1984; 259
Wagner (ref_19) 2013; 65
Pace (ref_144) 2018; 129
Pace (ref_54) 2013; 453
Manta (ref_46) 2009; 484
Ma (ref_181) 2019; 24
Nelson (ref_66) 2018; 28
Cordray (ref_120) 2007; 282
Verdoy (ref_169) 2020; 34
Chae (ref_52) 1994; 269
Harris (ref_36) 1981; 670
Prado (ref_126) 2015; 28
Talwar (ref_87) 2020; 117
Kitano (ref_85) 1999; 126
Rhee (ref_51) 2005; 38
ref_194
Cohen (ref_29) 1963; 2
ref_199
Kang (ref_70) 2005; 11
Kristensen (ref_39) 1999; 262
Gaetani (ref_30) 1989; 73
Bryk (ref_80) 2017; 16
Amen (ref_186) 2017; 621
Cha (ref_40) 2000; 39
Stolwijk (ref_123) 2021; 46
Moore (ref_92) 1997; 232
Evans (ref_20) 1982; 47
Sharma (ref_101) 2013; 246
ref_1
ref_3
Reed (ref_209) 2009; 13
Roch (ref_24) 2019; 4
Perkins (ref_58) 2014; 53
Lew (ref_32) 1976; 263
Hall (ref_83) 2011; 15
ref_7
Matte (ref_95) 2013; 55
ref_6
Haraldsen (ref_147) 2009; 7
References_xml – volume: 141
  start-page: 408
  year: 2019
  ident: ref_191
  article-title: Erythrocyte and plasma oxidative stress appears to be compensated in patients with sickle cell disease during a period of relative health, despite the presence of known oxidative agents
  publication-title: Free Radic. Biol. Med.
  doi: 10.1016/j.freeradbiomed.2019.07.004
– volume: 28
  start-page: 735
  year: 2018
  ident: ref_12
  article-title: Environmental Stressors and Their Impact on Health and Disease with Focus on Oxidative Stress
  publication-title: Antioxid. Redox Signal.
  doi: 10.1089/ars.2017.7488
– volume: 2019
  start-page: 3435174
  year: 2019
  ident: ref_18
  article-title: Uric Acid Provides Protective Role in Red Blood Cells by Antioxidant Defense: A Hypothetical Analysis
  publication-title: Oxid. Med. Cell. Longev.
  doi: 10.1155/2019/3435174
– volume: 166
  start-page: 140
  year: 2016
  ident: ref_177
  article-title: Lifespan Control by Redox-Dependent Recruitment of Chaperones to Misfolded Proteins
  publication-title: Cell
  doi: 10.1016/j.cell.2016.05.006
– volume: 112
  start-page: E616
  year: 2015
  ident: ref_86
  article-title: Mitochondrial peroxiredoxin functions as crucial chaperone reservoir in Leishmania infantum
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1419682112
– volume: 2
  start-page: 245
  year: 2016
  ident: ref_11
  article-title: Free radicals: From health to disease
  publication-title: React. Oxyg. Species
– volume: 126
  start-page: 313
  year: 1999
  ident: ref_85
  article-title: Stimulation of peroxidase activity by decamerization related to ionic strength: AhpC protein from Amphibacillus xylanus
  publication-title: J. Biochem. (Tokyo)
  doi: 10.1093/oxfordjournals.jbchem.a022451
– volume: 15
  start-page: 795
  year: 2011
  ident: ref_83
  article-title: Structure-based insights into the catalytic power and conformational dexterity of peroxiredoxins
  publication-title: Antioxid. Redox. Signal.
  doi: 10.1089/ars.2010.3624
– volume: 10
  start-page: 1565
  year: 2008
  ident: ref_69
  article-title: The dual functions of thiol-based peroxidases in H2O2 scavenging and signaling
  publication-title: Antioxid. Redox Signal.
  doi: 10.1089/ars.2008.2049
– volume: 11
  start-page: 571
  year: 2005
  ident: ref_70
  article-title: 2-Cys peroxiredoxin function in intracellular signal transduction: Therapeutic implications
  publication-title: Trends Mol. Med.
  doi: 10.1016/j.molmed.2005.10.006
– volume: 41
  start-page: 1201
  year: 2007
  ident: ref_113
  article-title: The rate of cellular hydrogen peroxide removal shows dependency on GSH: Mathematical insight into in vivo H2O2 and GPx concentrations
  publication-title: Free Radic. Res.
  doi: 10.1080/10715760701625075
– volume: 50
  start-page: 1329
  year: 2016
  ident: ref_100
  article-title: Interactions between peroxiredoxin 2, hemichrome and the erythrocyte membrane
  publication-title: Free Radic. Res.
  doi: 10.1080/10715762.2016.1241995
– volume: 2
  start-page: 1420
  year: 1963
  ident: ref_29
  article-title: Glutathione peroxidase: The primary agent for the elimination of hydrogen peroxide in erythrocytes
  publication-title: Biochemistry
  doi: 10.1021/bi00906a038
– volume: 93
  start-page: 845
  year: 2011
  ident: ref_91
  article-title: Oxidative stress-dependent oligomeric status of erythrocyte peroxiredoxin II (PrxII) during storage under standard blood banking conditions
  publication-title: Biochimie
  doi: 10.1016/j.biochi.2011.02.005
– volume: 101
  start-page: 4003
  year: 2004
  ident: ref_10
  article-title: Nitric oxide, oxidants, and protein tyrosine nitration
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0307446101
– volume: 99
  start-page: 570
  year: 2014
  ident: ref_182
  article-title: Thalassemic erythrocytes release microparticles loaded with hemichromes by redox activation of p72Syk kinase
  publication-title: Haematologica
  doi: 10.3324/haematol.2013.084533
– volume: 1863
  start-page: 621
  year: 2017
  ident: ref_200
  article-title: Evening and morning peroxiredoxin-2 redox/oligomeric state changes in obstructive sleep apnea red blood cells: Correlation with polysomnographic and metabolic parameters
  publication-title: Biochim. Biophys. Acta Mol. Basis Dis.
  doi: 10.1016/j.bbadis.2016.11.019
– volume: 453
  start-page: 475
  year: 2013
  ident: ref_54
  article-title: Hyperoxidized peroxiredoxin 2 interacts with the protein disulfide- isomerase ERp46
  publication-title: Biochem. J.
  doi: 10.1042/BJ20130030
– volume: 106
  start-page: 13323
  year: 2009
  ident: ref_171
  article-title: The malarial parasite Plasmodium falciparum imports the human protein peroxiredoxin 2 for peroxide detoxification
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0905387106
– volume: 28
  start-page: 521
  year: 2018
  ident: ref_66
  article-title: Experimentally Dissecting the Origins of Peroxiredoxin Catalysis
  publication-title: Antioxid. Redox Signal.
  doi: 10.1089/ars.2016.6922
– ident: ref_134
  doi: 10.3390/ijms231810735
– volume: 997
  start-page: 136
  year: 2015
  ident: ref_79
  article-title: A simple high performance liquid chromatography method for quantitatively determining the reduced form of peroxiredoxin 2 and the mass spectrometric analysis of its oxidative status
  publication-title: J. Chromatogr. B Analyt. Technol. Biomed. Life Sci.
  doi: 10.1016/j.jchromb.2015.06.007
– volume: 402
  start-page: 194
  year: 2010
  ident: ref_48
  article-title: Structural evidence that peroxiredoxin catalytic power is based on transition-state stabilization
  publication-title: J. Mol. Biol.
  doi: 10.1016/j.jmb.2010.07.022
– volume: 267
  start-page: 21839
  year: 1992
  ident: ref_33
  article-title: Calcium-activated potassium transport and high molecular weight forms of calpromotin
  publication-title: J. Biol. Chem.
  doi: 10.1016/S0021-9258(19)36688-8
– volume: 13
  start-page: 2019
  year: 2009
  ident: ref_209
  article-title: Proteomic identification of nitrated brain proteins in early Alzheimer’s disease inferior parietal lobule
  publication-title: J. Cell. Mol. Med.
  doi: 10.1111/j.1582-4934.2008.00478.x
– volume: 35
  start-page: 1538
  year: 2003
  ident: ref_132
  article-title: Methionine oxidation by peroxymonocarbonate, a reactive oxygen species formed from CO2/bicarbonate and hydrogen peroxide
  publication-title: Free Radic. Biol. Med.
  doi: 10.1016/j.freeradbiomed.2003.08.019
– volume: 15
  start-page: 685
  year: 1982
  ident: ref_166
  article-title: Catalase activity of erythrocytes from beagle dogs: An appearance of hereditary acatalasemia
  publication-title: Acta Histochem. Cytochem.
  doi: 10.1267/ahc.15.685
– volume: 19
  start-page: e1800311
  year: 2019
  ident: ref_122
  article-title: GPX4 at the Crossroads of Lipid Homeostasis and Ferroptosis
  publication-title: Proteomics
  doi: 10.1002/pmic.201800311
– volume: 90
  start-page: 4973
  year: 1997
  ident: ref_27
  article-title: Direct evidence for catalase as the predominant H2O2-removing enzyme in human erythrocytes
  publication-title: Blood
  doi: 10.1182/blood.V90.12.4973
– volume: 43
  start-page: 101980
  year: 2021
  ident: ref_156
  article-title: Peroxiredoxin 2 oxidation reveals hydrogen peroxide generation within erythrocytes during high-dose vitamin C administration
  publication-title: Redox Biol.
  doi: 10.1016/j.redox.2021.101980
– volume: 28
  start-page: 3205
  year: 2014
  ident: ref_190
  article-title: Increased basal oxidation of peroxiredoxin 2 and limited peroxiredoxin recycling in glucose-6-phosphate dehydrogenase-deficient erythrocytes from newborn infants
  publication-title: FASEB J.
  doi: 10.1096/fj.14-250050
– volume: 15
  start-page: 99
  year: 2011
  ident: ref_65
  article-title: Reduction of cysteine sulfinic acid in eukaryotic, typical 2-Cys peroxiredoxins by sulfiredoxin
  publication-title: Antioxid. Redox Signal.
  doi: 10.1089/ars.2010.3564
– volume: 245
  start-page: 55
  year: 1997
  ident: ref_112
  article-title: Determination of catalase activity at physiological hydrogen peroxide concentrations
  publication-title: Anal. Biochem.
  doi: 10.1006/abio.1996.9939
– volume: 670
  start-page: 285
  year: 1981
  ident: ref_36
  article-title: Further studies on the characterization of cylindrin and torin, two extrinsic proteins of the erythrocyte membrane
  publication-title: Biochim. Biophys. Acta
  doi: 10.1016/0005-2795(81)90021-0
– volume: 158
  start-page: 115
  year: 2020
  ident: ref_117
  article-title: Intra-dimer cooperativity between the active site cysteines during the oxidation of peroxiredoxin 2
  publication-title: Free Radic. Biol. Med.
  doi: 10.1016/j.freeradbiomed.2020.07.007
– volume: 289
  start-page: 21937
  year: 2014
  ident: ref_125
  article-title: Uric acid and thiocyanate as competing substrates of lactoperoxidase
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M113.544957
– volume: 24
  start-page: 40
  year: 2004
  ident: ref_26
  article-title: The thioredoxin system--from science to clinic
  publication-title: Med. Res. Rev.
  doi: 10.1002/med.10051
– volume: 42
  start-page: 326
  year: 2007
  ident: ref_107
  article-title: Reactions of yeast thioredoxin peroxidases I and II with hydrogen peroxide and peroxynitrite: Rate constants by competitive kinetics
  publication-title: Free Radic. Biol. Med.
  doi: 10.1016/j.freeradbiomed.2006.10.042
– volume: 141
  start-page: 492
  year: 2019
  ident: ref_139
  article-title: Unraveling the effects of peroxiredoxin 2 nitration; role of C-terminal tyrosine 193
  publication-title: Free Radic. Biol. Med.
  doi: 10.1016/j.freeradbiomed.2019.07.016
– volume: 583
  start-page: 1809
  year: 2009
  ident: ref_68
  article-title: The oligomeric conformation of peroxiredoxins links redox state to function
  publication-title: FEBS Lett.
  doi: 10.1016/j.febslet.2009.05.029
– volume: 9
  start-page: 519
  year: 2017
  ident: ref_4
  article-title: Microfluidic analysis of red blood cell deformability as a means to assess hemin-induced oxidative stress resulting from, Plasmodium falciparum intraerythrocytic parasitism
  publication-title: Integr. Biol.
  doi: 10.1039/c7ib00039a
– volume: 49
  start-page: 11287
  year: 2010
  ident: ref_131
  article-title: Kinetics and mechanism of peroxymonocarbonate formation
  publication-title: Inorg. Chem.
  doi: 10.1021/ic1007389
– volume: 80
  start-page: 1486
  year: 1987
  ident: ref_155
  article-title: Human red cells scavenge extracellular hydrogen peroxide and inhibit formation of hypochlorous acid and hydroxyl radical
  publication-title: J. Clin. Investig.
  doi: 10.1172/JCI113230
– volume: 128
  start-page: 469
  year: 2015
  ident: ref_179
  article-title: Hemoglobin interacting proteins and implications of spectrin hemoglobin interaction
  publication-title: J. Proteomics
  doi: 10.1016/j.jprot.2015.06.014
– volume: 8
  start-page: 486
  year: 2012
  ident: ref_145
  article-title: Adenanthin targets peroxiredoxin I and II to induce differentiation of leukemic cells
  publication-title: Nat. Chem. Biol.
  doi: 10.1038/nchembio.935
– volume: 120
  start-page: 583
  year: 2018
  ident: ref_103
  article-title: Role of peroxiredoxin 2 in erythrocyte antioxidant defense: Peroxidase and chaperone
  publication-title: Free Radic. Biol. Med.
  doi: 10.1016/j.freeradbiomed.2018.04.274
– volume: 266
  start-page: 18964
  year: 1991
  ident: ref_34
  article-title: Reconstitution of Ca2+-dependent K+ transport in erythrocyte membrane vesicles requires a cytoplasmic protein
  publication-title: J. Biol. Chem.
  doi: 10.1016/S0021-9258(18)55157-7
– volume: 55
  start-page: 1909
  year: 2015
  ident: ref_183
  article-title: Accumulation of oxidized peroxiredoxin 2 in red blood cells and its prevention
  publication-title: Transfusion
  doi: 10.1111/trf.13039
– volume: 105
  start-page: 9633
  year: 2008
  ident: ref_140
  article-title: HDAC6 is a specific deacetylase of peroxiredoxins and is involved in redox regulation
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0803749105
– volume: 263
  start-page: 336
  year: 1976
  ident: ref_32
  article-title: Variable Ca sensitivity of a K-selective channel in intact red-cell membranes
  publication-title: Nature
  doi: 10.1038/263336a0
– volume: 10
  start-page: 791
  year: 2016
  ident: ref_189
  article-title: Donor-variation effect on red blood cell storage lesion: A close relationship emerges
  publication-title: Proteom. Clin. Appl.
  doi: 10.1002/prca.201500128
– volume: 24
  start-page: 169
  year: 2017
  ident: ref_202
  article-title: Variations in the cerebrospinal fluid proteome following traumatic brain injury and subarachnoid hemorrhage
  publication-title: Pathophysiology
  doi: 10.1016/j.pathophys.2017.04.003
– volume: 117
  start-page: 625
  year: 2004
  ident: ref_158
  article-title: Two enzymes in one; two yeast peroxiredoxins display oxidative stress-dependent switching from a peroxidase to a molecular chaperone function
  publication-title: Cell
  doi: 10.1016/j.cell.2004.05.002
– volume: 293
  start-page: 11901
  year: 2018
  ident: ref_118
  article-title: Novel hyperoxidation resistance motifs in 2-Cys peroxiredoxins
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.RA117.001690
– volume: 39
  start-page: 26
  year: 2016
  ident: ref_109
  article-title: Kinetic Approaches to Measuring Peroxiredoxin Reactivity
  publication-title: Mol. Cells
  doi: 10.14348/molcells.2016.2325
– volume: 280
  start-page: 28775
  year: 2005
  ident: ref_175
  article-title: Oxidative stress-dependent structural and functional switching of a human 2-Cys peroxiredoxin isotype II that enhances HeLa cell resistance to H2O2-induced cell death
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M505362200
– ident: ref_137
  doi: 10.3390/antiox10020206
– volume: 130
  start-page: 163
  year: 2019
  ident: ref_8
  article-title: Cancer-associated fibroblasts modify lung cancer metabolism involving ROS and TGF-β signaling
  publication-title: Free Radic. Biol. Med.
  doi: 10.1016/j.freeradbiomed.2018.10.450
– volume: 271
  start-page: 15315
  year: 1996
  ident: ref_44
  article-title: Removal of hydrogen peroxide by thiol-specific antioxidant enzyme (TSA) is involved with its antioxidant properties. TSA possesses thiol peroxidase activity
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.271.26.15315
– volume: 4
  start-page: e126376
  year: 2019
  ident: ref_24
  article-title: Transition to 37 °C reveals importance of NADPH in mitigating oxidative stress in stored RBCs
  publication-title: J. Clin. Investig.
– volume: 45
  start-page: 398
  year: 2012
  ident: ref_74
  article-title: Inactivation of a peroxiredoxin by hydrogen peroxide is critical for thioredoxin-mediated repair of oxidized proteins and cell survival
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2011.11.027
– volume: 573
  start-page: 37
  year: 2019
  ident: ref_142
  article-title: Glycation profile of minor abundant erythrocyte proteome across varying glycemic index in diabetes mellitus
  publication-title: Anal. Biochem.
  doi: 10.1016/j.ab.2019.02.026
– volume: 11
  start-page: 288
  year: 2020
  ident: ref_205
  article-title: Intracerebral Hemorrhage-Induced Brain Injury in Rats: The Role of Extracellular Peroxiredoxin 2
  publication-title: Transl. Stroke Res.
  doi: 10.1007/s12975-019-00714-x
– volume: 73
  start-page: 334
  year: 1989
  ident: ref_30
  article-title: Catalase and glutathione peroxidase are equally active in detoxification of hydrogen peroxide in human erythrocytes
  publication-title: Blood
  doi: 10.1182/blood.V73.1.334.334
– volume: 11
  start-page: 357
  year: 2020
  ident: ref_197
  article-title: Expression of South East Asian Ovalocytic Band 3 Disrupts Erythroblast Cytokinesis and Reticulocyte Maturation
  publication-title: Front. Physiol.
  doi: 10.3389/fphys.2020.00357
– volume: 39
  start-page: 6944
  year: 2000
  ident: ref_40
  article-title: Interaction of human thiol-specific antioxidant protein 1 with erythrocyte plasma membrane
  publication-title: Biochemistry
  doi: 10.1021/bi000034j
– volume: 77
  start-page: 331
  year: 2014
  ident: ref_146
  article-title: Interaction of adenanthin with glutathione and thiol enzymes: Selectivity for thioredoxin reductase and inhibition of peroxiredoxin recycling
  publication-title: Free Radic. Biol. Med.
  doi: 10.1016/j.freeradbiomed.2014.09.025
– volume: 17
  start-page: 11
  year: 2012
  ident: ref_16
  article-title: Potential roles of the NFκB and glutathione pathways in mature human erythrocytes
  publication-title: Cell. Mol. Biol. Lett.
  doi: 10.2478/s11658-011-0032-x
– ident: ref_136
  doi: 10.3390/antiox8020029
– ident: ref_3
  doi: 10.3390/ijms20225769
– volume: 16
  start-page: 2752
  year: 2017
  ident: ref_80
  article-title: Quantitative Analysis of Human Red Blood Cell Proteome
  publication-title: J. Proteome Res.
  doi: 10.1021/acs.jproteome.7b00025
– volume: 289
  start-page: 15536
  year: 2014
  ident: ref_138
  article-title: Nitration transforms a sensitive peroxiredoxin 2 into a more active and robust peroxidase
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M113.539213
– volume: 276
  start-page: 2469
  year: 2009
  ident: ref_49
  article-title: Typical 2-Cys peroxiredoxins--structures, mechanisms and functions
  publication-title: FEBS J.
  doi: 10.1111/j.1742-4658.2009.06985.x
– volume: 7
  start-page: 3040
  year: 2009
  ident: ref_147
  article-title: Identification of conoidin A as a covalent inhibitor of peroxiredoxin II
  publication-title: Org. Biomol. Chem.
  doi: 10.1039/b901735f
– volume: 48
  start-page: 519
  year: 2010
  ident: ref_164
  article-title: The effects of disruption of genes for peroxiredoxin-2, glutathione peroxidase-1, and catalase on erythrocyte oxidative metabolism
  publication-title: Free Radic. Biol. Med.
  doi: 10.1016/j.freeradbiomed.2009.11.021
– volume: 595
  start-page: 33
  year: 2016
  ident: ref_127
  article-title: Oxidative stress, free radicals and protein peroxides
  publication-title: Arch. Biochem. Biophys.
  doi: 10.1016/j.abb.2015.10.021
– volume: 24
  start-page: 1085
  year: 2019
  ident: ref_181
  article-title: Interactions between human hemoglobin subunits and peroxiredoxin 2
  publication-title: Front. Biosci.
  doi: 10.2741/4770
– volume: 286
  start-page: 12901
  year: 2011
  ident: ref_124
  article-title: Urate as a physiological substrate for myeloperoxidase: Implications for hyperuricemia and inflammation
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M110.172460
– volume: 109
  start-page: 2611
  year: 2007
  ident: ref_14
  article-title: Peroxiredoxin 2 functions as a noncatalytic scavenger of low-level hydrogen peroxide in the erythrocyte
  publication-title: Blood
  doi: 10.1182/blood-2006-09-048728
– volume: 11
  start-page: 5
  year: 2015
  ident: ref_72
  article-title: Redox biology: Signaling via a peroxiredoxin sensor
  publication-title: Nat. Chem. Biol.
  doi: 10.1038/nchembio.1722
– volume: 43
  start-page: 68
  year: 2009
  ident: ref_93
  article-title: Linkage of cytosolic peroxiredoxin 2 to erythrocyte membrane imposed by hydrogen peroxide-induced oxidative stress
  publication-title: Blood Cells Mol. Dis.
  doi: 10.1016/j.bcmd.2009.03.002
– volume: 145
  start-page: 1
  year: 2019
  ident: ref_133
  article-title: Enhanced hyperoxidation of peroxiredoxin 2 and peroxiredoxin 3 in the presence of bicarbonate/CO2
  publication-title: Free Radic. Biol. Med.
  doi: 10.1016/j.freeradbiomed.2019.09.010
– volume: 288
  start-page: 11312
  year: 2013
  ident: ref_141
  article-title: Multilevel regulation of 2-Cys peroxiredoxin reaction cycle by S-nitrosylation
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M112.433755
– volume: 70
  start-page: 257
  year: 2012
  ident: ref_5
  article-title: Free radicals and antioxidants: Updating a personal view
  publication-title: Nutr. Rev.
  doi: 10.1111/j.1753-4887.2012.00476.x
– volume: 300
  start-page: 650
  year: 2003
  ident: ref_41
  article-title: Peroxiredoxin evolution and the regulation of hydrogen peroxide signaling
  publication-title: Science
  doi: 10.1126/science.1080405
– volume: 34
  start-page: 101399
  year: 2020
  ident: ref_169
  article-title: Redox regulation of nitrosyl-hemoglobin in human erythrocytes
  publication-title: Redox Biol.
  doi: 10.1016/j.redox.2019.101399
– volume: 53
  start-page: 447
  year: 2012
  ident: ref_143
  article-title: Role of sulfiredoxin as a regulator of peroxiredoxin function and regulation of its expression
  publication-title: Free Radic. Biol. Med.
  doi: 10.1016/j.freeradbiomed.2012.05.020
– volume: 28
  start-page: 574
  year: 2018
  ident: ref_75
  article-title: Hyperoxidation of Peroxiredoxins: Gain or Loss of Function?
  publication-title: Antioxid. Redox Signal.
  doi: 10.1089/ars.2017.7214
– volume: 120
  start-page: 423
  year: 2021
  ident: ref_170
  article-title: Redox interactome in malaria parasite Plasmodium falciparum
  publication-title: Parasitol. Res.
  doi: 10.1007/s00436-021-07051-9
– volume: 101
  start-page: 5033
  year: 2003
  ident: ref_161
  article-title: Peroxiredoxin II is essential for sustaining life span of erythrocytes in mice
  publication-title: Blood
  doi: 10.1182/blood-2002-08-2548
– volume: 469
  start-page: 498
  year: 2011
  ident: ref_173
  article-title: Circadian clocks in human red blood cells
  publication-title: Nature
  doi: 10.1038/nature09702
– volume: 51
  start-page: 1439
  year: 2011
  ident: ref_187
  article-title: Peroxiredoxin-2 as a candidate biomarker to test oxidative stress levels of stored red blood cells under blood bank conditions
  publication-title: Transfusion
  doi: 10.1111/j.1537-2995.2010.03032.x
– volume: 282
  start-page: 22011
  year: 2007
  ident: ref_176
  article-title: Human peroxiredoxin 1 and 2 are not duplicate proteins: The unique presence of CYS83 in Prx1 underscores the structural and functional differences between Prx1 and Prx2
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M610330200
– volume: 118
  start-page: 7
  year: 1991
  ident: ref_28
  article-title: Erythrocyte defense against hydrogen peroxide: Preeminent importance of catalase
  publication-title: J. Lab. Clin. Med.
– volume: 739
  start-page: 109569
  year: 2023
  ident: ref_168
  article-title: Inhibition of erythrocyte’s catalase, glutathione peroxidase or peroxiredoxin 2-Impact on cytosol and membrane
  publication-title: Arch. Biochem. Biophys.
  doi: 10.1016/j.abb.2023.109569
– volume: 41
  start-page: 5493
  year: 2002
  ident: ref_89
  article-title: Dimers to doughnuts: Redox-sensitive oligomerization of 2-cysteine peroxiredoxins
  publication-title: Biochemistry
  doi: 10.1021/bi012173m
– volume: 256
  start-page: 751
  year: 1988
  ident: ref_151
  article-title: Myeloperoxidase oxidation states involved in myeloperoxidase-oxidase oxidation of thiols
  publication-title: Biochem. J.
  doi: 10.1042/bj2560751
– volume: 104
  start-page: 18742
  year: 2007
  ident: ref_77
  article-title: S-nitrosylation of peroxiredoxin 2 promotes oxidative stress-induced neuronal cell death in Parkinson’s disease
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0705904104
– volume: 572
  start-page: 1
  year: 2019
  ident: ref_23
  article-title: Assessment of NAD+ metabolism in human cell cultures, erythrocytes, cerebrospinal fluid and primate skeletal muscle
  publication-title: Anal. Biochem.
  doi: 10.1016/j.ab.2019.02.019
– volume: 44
  start-page: 1072
  year: 2012
  ident: ref_90
  article-title: Structural and functional analysis of native peroxiredoxin 2 in human red blood cells
  publication-title: Int. J. Biochem. Cell Biol.
  doi: 10.1016/j.biocel.2012.04.008
– volume: 518
  start-page: 685
  year: 2019
  ident: ref_119
  article-title: Differential oxidation processes of peroxiredoxin 2 dependent on the reaction with several peroxides in human red blood cells
  publication-title: Biochem. Biophys. Res. Commun.
  doi: 10.1016/j.bbrc.2019.08.108
– ident: ref_148
  doi: 10.1371/journal.pone.0092411
– ident: ref_6
  doi: 10.1093/acprof:oso/9780198717478.001.0001
– volume: 262
  start-page: 127
  year: 1999
  ident: ref_39
  article-title: Properties of thiol-specific anti-oxidant protein or calpromotin in solution
  publication-title: Biochem. Biophys. Res. Commun.
  doi: 10.1006/bbrc.1999.1107
– volume: 281
  start-page: 14400
  year: 2006
  ident: ref_62
  article-title: Molecular mechanism of the reduction of cysteine sulfinic acid of peroxiredoxin to cysteine by mammalian sulfiredoxin
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M511082200
– volume: 286
  start-page: 18048
  year: 2011
  ident: ref_115
  article-title: Model for the exceptional reactivity of peroxiredoxins 2 and 3 with hydrogen peroxide: A kinetic and computational study
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M111.232355
– volume: 26
  start-page: 1777
  year: 1987
  ident: ref_104
  article-title: Partial characterization of the copolymerization reaction of erythrocyte membrane band 3 with hemichromes
  publication-title: Biochemistry
  doi: 10.1021/bi00380a041
– volume: 18
  start-page: 1259
  year: 1997
  ident: ref_76
  article-title: Comparing the predicted and observed properties of proteins encoded in the genome of Escherichia coli K-12
  publication-title: Electrophoresis
  doi: 10.1002/elps.1150180807
– volume: 47
  start-page: 473
  year: 1982
  ident: ref_20
  article-title: The distribution of ascorbic acid between various cellular components of blood, in normal individuals, and its relation to the plasma concentration
  publication-title: Br. J. Nutr.
  doi: 10.1079/BJN19820059
– volume: 76
  start-page: 80
  year: 2014
  ident: ref_162
  article-title: The novel role of peroxiredoxin-2 in red cell membrane protein homeostasis and senescence
  publication-title: Free Radic. Biol. Med.
  doi: 10.1016/j.freeradbiomed.2014.08.004
– volume: 232
  start-page: 294
  year: 1997
  ident: ref_92
  article-title: Protein 7.2b of human erythrocyte membranes binds to calpromotin
  publication-title: Biochem. Biophys. Res. Commun.
  doi: 10.1006/bbrc.1997.6278
– ident: ref_1
– volume: 282
  start-page: 11885
  year: 2007
  ident: ref_108
  article-title: The high reactivity of peroxiredoxin 2 with H2O2 is not reflected in its reaction with other oxidants and thiol reagents
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M700339200
– volume: 155
  start-page: 493
  year: 1976
  ident: ref_2
  article-title: Reactions involving superoxide and normal and unstable haemoglobins
  publication-title: Biochem. J.
  doi: 10.1042/bj1550493
– volume: 39
  start-page: 53
  year: 2016
  ident: ref_50
  article-title: Distribution and Features of the Six Classes of Peroxiredoxins
  publication-title: Mol. Cells
  doi: 10.14348/molcells.2016.2330
– volume: 80
  start-page: 183
  year: 2015
  ident: ref_71
  article-title: A primer on peroxiredoxin biochemistry
  publication-title: Free Radic. Biol. Med.
  doi: 10.1016/j.freeradbiomed.2014.10.009
– volume: 246
  start-page: 591
  year: 2013
  ident: ref_101
  article-title: Identification of human erythrocyte cytosolic proteins associated with plasma membrane during thermal stress
  publication-title: J. Membr. Biol.
  doi: 10.1007/s00232-013-9569-0
– volume: 312
  start-page: 699
  year: 1995
  ident: ref_81
  article-title: Early events in erythroid differentiation: Accumulation of the acidic peroxiredoxin
  publication-title: Biochem. J.
  doi: 10.1042/bj3120699
– volume: 384
  start-page: 181
  year: 2002
  ident: ref_149
  article-title: Heat-induced generation of reactive oxygen species in water
  publication-title: Dokl. Biochem. Biophys.
  doi: 10.1023/A:1016036617585
– volume: 27
  start-page: 3315
  year: 2013
  ident: ref_152
  article-title: Neutrophil-mediated oxidation of erythrocyte peroxiredoxin 2 as a potential marker of oxidative stress in inflammation
  publication-title: FASEB J.
  doi: 10.1096/fj.13-227298
– volume: 3
  start-page: 3
  year: 1997
  ident: ref_9
  article-title: Myeloperoxidase: A key regulator of neutrophil oxidant production
  publication-title: Redox Rep.
  doi: 10.1080/13510002.1997.11747085
– volume: 282
  start-page: 32623
  year: 2007
  ident: ref_120
  article-title: Oxidation of 2-Cys-peroxiredoxins by arachidonic acid peroxide metabolites of lipoxygenases and cyclooxygenase-2
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M704369200
– volume: 9
  start-page: e14745
  year: 2021
  ident: ref_198
  article-title: Active hematopoiesis triggers exosomal release of PRDX2 that promotes osteoclast formation
  publication-title: Physiol. Rep.
  doi: 10.14814/phy2.14745
– volume: 259
  start-page: 10238
  year: 1984
  ident: ref_102
  article-title: The interaction of hemoglobin with the cytoplasmic domain of band 3 of the human erythrocyte membrane
  publication-title: J. Biol. Chem.
  doi: 10.1016/S0021-9258(18)90956-7
– volume: 55
  start-page: 27
  year: 2013
  ident: ref_95
  article-title: Membrane association of peroxiredoxin-2 in red cells is mediated by the N-terminal cytoplasmic domain of band 3
  publication-title: Free Radic. Biol. Med.
  doi: 10.1016/j.freeradbiomed.2012.10.543
– volume: 56
  start-page: 100
  year: 1997
  ident: ref_193
  article-title: Calpromotin, a cytoplasmic protein, is associated with the formation of dense cells in sickle cell anemia
  publication-title: Am. J. Hematol.
  doi: 10.1002/(SICI)1096-8652(199710)56:2<100::AID-AJH5>3.0.CO;2-2
– volume: 45
  start-page: 101
  year: 1999
  ident: ref_43
  article-title: Characterization of three isoforms of mammalian peroxiredoxin that reduce peroxides in the presence of thioredoxin
  publication-title: Diabetes Res. Clin. Pract.
  doi: 10.1016/S0168-8227(99)00037-6
– volume: 38
  start-page: 29
  year: 2007
  ident: ref_84
  article-title: Formation, TEM study and 3D reconstruction of the human erythrocyte peroxiredoxin-2 dodecahedral higher-order assembly
  publication-title: Micron
  doi: 10.1016/j.micron.2006.04.010
– volume: 129
  start-page: 383
  year: 2018
  ident: ref_144
  article-title: Peroxiredoxin interaction with the cytoskeletal-regulatory protein CRMP2: Investigation of a putative redox relay
  publication-title: Free Radic. Biol. Med.
  doi: 10.1016/j.freeradbiomed.2018.10.407
– volume: 485
  start-page: 459
  year: 2012
  ident: ref_172
  article-title: Peroxiredoxins are conserved markers of circadian rhythms
  publication-title: Nature
  doi: 10.1038/nature11088
– volume: 49
  start-page: 990
  year: 2015
  ident: ref_99
  article-title: Peroxiredoxin 2, glutathione peroxidase, and catalase in the cytosol and membrane of erythrocytes under H2O2-induced oxidative stress
  publication-title: Free Radic. Res.
  doi: 10.3109/10715762.2015.1028402
– volume: 117
  start-page: 16313
  year: 2020
  ident: ref_87
  article-title: Real-time monitoring of peroxiredoxin oligomerization dynamics in living cells
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1915275117
– volume: 58
  start-page: 572
  year: 2006
  ident: ref_129
  article-title: Red blood cells in the metabolism of nitric oxide-derived peroxynitrite
  publication-title: IUBMB Life
  doi: 10.1080/15216540600936549
– volume: 27
  start-page: 322
  year: 1999
  ident: ref_111
  article-title: Reactivity of biologically important thiol compounds with superoxide and hydrogen peroxide
  publication-title: Free Radic. Biol. Med.
  doi: 10.1016/S0891-5849(99)00051-9
– volume: 28
  start-page: 1556
  year: 2015
  ident: ref_126
  article-title: Chemical Characterization of Urate Hydroperoxide, A Pro-oxidant Intermediate Generated by Urate Oxidation in Inflammatory and Photoinduced Processes
  publication-title: Chem. Res. Toxicol.
  doi: 10.1021/acs.chemrestox.5b00132
– volume: 13
  start-page: 655
  year: 2022
  ident: ref_204
  article-title: The Fate of Erythrocytes after Cerebral Hemorrhage
  publication-title: Transl. Stroke Res.
  doi: 10.1007/s12975-021-00980-8
– volume: 17
  start-page: 332
  year: 2019
  ident: ref_210
  article-title: Plasma peroxiredoxin changes and inflammatory cytokines support the involvement of neuro-inflammation and oxidative stress in Autism Spectrum Disorder
  publication-title: J. Transl. Med.
  doi: 10.1186/s12967-019-2076-z
– volume: 621
  start-page: 31
  year: 2017
  ident: ref_186
  article-title: N-acetylcysteine improves the quality of red blood cells stored for transfusion
  publication-title: Arch. Biochem. Biophys.
  doi: 10.1016/j.abb.2017.02.012
– volume: 2
  start-page: 706
  year: 2008
  ident: ref_97
  article-title: Heat-shock protein-27, -70 and peroxiredoxin-II show molecular chaperone function in sickle red cells: Evidence from transgenic sickle cell mouse model
  publication-title: Proteom. Clin. Appl.
  doi: 10.1002/prca.200780058
– volume: 86
  start-page: 84
  year: 2021
  ident: ref_56
  article-title: The Enigma of 2-Cys Peroxiredoxins: What Are Their Roles?
  publication-title: Biochemistry
– volume: 99
  start-page: 267
  year: 2014
  ident: ref_195
  article-title: Resveratrol accelerates erythroid maturation by activation of FoxO3 and ameliorates anemia in beta-thalassemic mice
  publication-title: Haematologica
  doi: 10.3324/haematol.2013.090076
– volume: 15
  start-page: 781
  year: 2011
  ident: ref_78
  article-title: Multiple functions of peroxiredoxins: Peroxidases, sensors and regulators of the intracellular messenger H2O2, and protein chaperones
  publication-title: Antioxid. Redox Signal.
  doi: 10.1089/ars.2010.3393
– volume: 484
  start-page: 146
  year: 2009
  ident: ref_46
  article-title: The peroxidase and peroxynitrite reductase activity of human erythrocyte peroxiredoxin 2
  publication-title: Arch. Biochem. Biophys.
  doi: 10.1016/j.abb.2008.11.017
– volume: 551
  start-page: 1
  year: 1979
  ident: ref_37
  article-title: Calcium-induced erythrocyte membrane changes. The role of adsorption of cytosol proteins and proteases
  publication-title: Biochim. Biophys. Acta
  doi: 10.1016/0005-2736(79)90348-1
– volume: 333
  start-page: 19
  year: 2003
  ident: ref_15
  article-title: Analysis of glutathione: Implication in redox and detoxification
  publication-title: Clin. Chim. Acta
  doi: 10.1016/S0009-8981(03)00200-6
– volume: 53
  start-page: 7693
  year: 2014
  ident: ref_58
  article-title: Tuning of peroxiredoxin catalysis for various physiological roles
  publication-title: Biochemistry
  doi: 10.1021/bi5013222
– volume: 47
  start-page: 164
  year: 2013
  ident: ref_98
  article-title: Role of peroxiredoxin-2 in protecting RBCs from hydrogen peroxide-induced oxidative stress
  publication-title: Free Radic. Res.
  doi: 10.3109/10715762.2012.756138
– ident: ref_7
  doi: 10.3390/ijms18091932
– volume: 30
  start-page: 174
  year: 2009
  ident: ref_208
  article-title: Hydroxyoctadecadienoic acid and oxidatively modified peroxiredoxins in the blood of Alzheimer’s disease patients and their potential as biomarkers
  publication-title: Neurobiol. Aging
  doi: 10.1016/j.neurobiolaging.2007.06.012
– volume: 383
  start-page: 347
  year: 2002
  ident: ref_45
  article-title: Peroxiredoxins
  publication-title: Biol. Chem.
  doi: 10.1515/BC.2002.040
– volume: 291
  start-page: 3053
  year: 2016
  ident: ref_55
  article-title: Glutathionylation of the active site cysteines of peroxiredoxin 2 and recycling by glutaredoxin
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M115.692798
– volume: 48
  start-page: 4666
  year: 2009
  ident: ref_67
  article-title: Redox-regulated chaperones
  publication-title: Biochemistry
  doi: 10.1021/bi9003556
– volume: 17
  start-page: 4071
  year: 1978
  ident: ref_25
  article-title: Tissue distribution and subcellular localization of bovine thioredoxin determined by radioimmunoassay
  publication-title: Biochemistry
  doi: 10.1021/bi00612a031
– volume: 86
  start-page: 331
  year: 1991
  ident: ref_165
  article-title: Acatalasemia
  publication-title: Hum Genet.
  doi: 10.1007/BF00201829
– volume: 47
  start-page: 1468
  year: 2009
  ident: ref_135
  article-title: Chloramines and hypochlorous acid oxidize erythrocyte peroxiredoxin 2
  publication-title: Free Radic. Biol. Med.
  doi: 10.1016/j.freeradbiomed.2009.08.022
– ident: ref_150
  doi: 10.3390/ijms21218033
– volume: 430
  start-page: 602
  year: 2018
  ident: ref_105
  article-title: Negatively Charged Lipids Are Essential for Functional and Structural Switch of Human 2-Cys Peroxiredoxin II
  publication-title: J. Mol. Biol.
  doi: 10.1016/j.jmb.2017.12.020
– volume: 46
  start-page: 102073
  year: 2021
  ident: ref_123
  article-title: Red blood cells contain enzymatically active GPx4 whose abundance anticorrelates with hemolysis during blood bank storage
  publication-title: Redox Biol.
  doi: 10.1016/j.redox.2021.102073
– volume: 11
  start-page: 1600121
  year: 2017
  ident: ref_188
  article-title: Identification of potential protein quality markers in pathogen inactivated and gamma-irradiated red cell concentrates
  publication-title: Proteom. Clin. Appl.
  doi: 10.1002/prca.201600121
– ident: ref_199
  doi: 10.3390/antiox11122486
– volume: 1840
  start-page: 906
  year: 2014
  ident: ref_154
  article-title: Peroxiredoxins as biomarkers of oxidative stress
  publication-title: Biochim. Biophys. Acta
  doi: 10.1016/j.bbagen.2013.08.001
– volume: 82
  start-page: 323
  year: 2013
  ident: ref_174
  article-title: Molecular chaperone functions in protein folding and proteostasis
  publication-title: Annu. Rev. Biochem.
  doi: 10.1146/annurev-biochem-060208-092442
– volume: 274
  start-page: 13908
  year: 1999
  ident: ref_31
  article-title: Mechanisms of protection of catalase by NADPH. Kinetics and stoichiometry
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.274.20.13908
– volume: 432
  start-page: 313
  year: 2010
  ident: ref_128
  article-title: Removal of amino acid, peptide and protein hydroperoxides by reaction with peroxiredoxins 2 and 3
  publication-title: Biochem. J.
  doi: 10.1042/BJ20101156
– volume: 63
  start-page: 753
  year: 2014
  ident: ref_17
  article-title: A monitoring of allantoin, uric acid, and malondialdehyde levels in plasma and erythrocytes after ten minutes of running activity
  publication-title: Physiol. Res.
– volume: 71
  start-page: 512
  year: 1988
  ident: ref_22
  article-title: Decreased erythrocyte nicotinamide adenine dinucleotide redox potential and abnormal pyridine nucleotide content in sickle cell disease
  publication-title: Blood
  doi: 10.1182/blood.V71.2.512.512
– volume: 22
  start-page: 294
  year: 2015
  ident: ref_185
  article-title: Peroxiredoxin-2 recycling is inhibited during erythrocyte storage
  publication-title: Antioxid. Redox Signal.
  doi: 10.1089/ars.2014.5950
– volume: 47
  start-page: 12860
  year: 2008
  ident: ref_114
  article-title: Cysteine pKa values for the bacterial peroxiredoxin AhpC
  publication-title: Biochemistry
  doi: 10.1021/bi801718d
– volume: 13
  start-page: 3233
  year: 2013
  ident: ref_192
  article-title: 2D DIGE based proteomics study of erythrocyte cytosol in sickle cell disease: Altered proteostasis and oxidative stress
  publication-title: Proteomics
  doi: 10.1002/pmic.201300177
– volume: 38
  start-page: 1543
  year: 2005
  ident: ref_51
  article-title: Peroxiredoxins: A historical overview and speculative preview of novel mechanisms and emerging concepts in cell signaling
  publication-title: Free Radic. Biol. Med.
  doi: 10.1016/j.freeradbiomed.2005.02.026
– volume: 33
  start-page: 3051
  year: 2019
  ident: ref_201
  article-title: Peroxiredoxin 1/2 protects brain against H2O2-induced apoptosis after subarachnoid hemorrhage
  publication-title: FASEB J.
  doi: 10.1096/fj.201801150R
– volume: 8
  start-page: 626
  year: 2014
  ident: ref_207
  article-title: Label-free proteomic analysis of red blood cell membrane fractions from abdominal aortic aneurysm patients
  publication-title: Proteom. Clin. Appl.
  doi: 10.1002/prca.201400035
– volume: 39
  start-page: 1
  year: 2016
  ident: ref_47
  article-title: Overview on Peroxiredoxin
  publication-title: Mol. Cells
  doi: 10.14348/molcells.2016.2368
– volume: 89
  start-page: 344
  year: 2020
  ident: ref_184
  article-title: Damage to red blood cells during whole blood storage
  publication-title: J. Trauma Acute Care Surg.
  doi: 10.1097/TA.0000000000002730
– volume: 40
  start-page: 129
  year: 1994
  ident: ref_38
  article-title: Cloning and sequence analysis of candidate human natural killer enhancing factor genes
  publication-title: Immunogenetics
  doi: 10.1007/BF00188176
– volume: 1830
  start-page: 3289
  year: 2013
  ident: ref_121
  article-title: Glutathione peroxidases
  publication-title: Biochim. Biophys. Acta
  doi: 10.1016/j.bbagen.2012.11.020
– volume: 279
  start-page: 50994
  year: 2004
  ident: ref_63
  article-title: Characterization of mammalian sulfiredoxin and its reactivation of hyperoxidized peroxiredoxin through reduction of cysteine sulfinic acid in the active site to cysteine
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M409482200
– volume: 15
  start-page: 297
  year: 2018
  ident: ref_153
  article-title: Mapping the phenotypic repertoire of the cytoplasmic 2-Cys peroxiredoxin-Thioredoxin system. 1. Understanding commonalities and differences among cell types
  publication-title: Redox Biol.
  doi: 10.1016/j.redox.2017.12.008
– volume: 6
  start-page: 967
  year: 2004
  ident: ref_163
  article-title: Heme degradation by reactive oxygen species
  publication-title: Antioxid. Redox Signal.
– volume: 8
  start-page: 605
  year: 2000
  ident: ref_82
  article-title: Crystal structure of decameric 2-Cys peroxiredoxin from human erythrocytes at 1.7 A resolution
  publication-title: Structure
  doi: 10.1016/S0969-2126(00)00147-7
– volume: 19
  start-page: 1475
  year: 2006
  ident: ref_130
  article-title: A role for peroxymonocarbonate in the stimulation of biothiol peroxidation by the bicarbonate/carbon dioxide pair
  publication-title: Chem. Res. Toxicol.
  doi: 10.1021/tx060146x
– volume: 426
  start-page: 427
  year: 2012
  ident: ref_180
  article-title: Peroxiredoxin II is essential for preventing hemolytic anemia from oxidative stress through maintaining hemoglobin stability
  publication-title: Biochem. Biophys. Res. Commun.
  doi: 10.1016/j.bbrc.2012.08.113
– volume: 15
  start-page: 87
  year: 2018
  ident: ref_203
  article-title: Peroxiredoxin 2 activates microglia by interacting with Toll-like receptor 4 after subarachnoid hemorrhage
  publication-title: J. Neuroinflamm.
  doi: 10.1186/s12974-018-1118-4
– volume: 1862
  start-page: 183172
  year: 2020
  ident: ref_196
  article-title: Linkage of typically cytosolic peroxidases to erythrocyte membrane—A possible mechanism of protection in Hereditary Spherocytosis
  publication-title: Biochim. Biophys. Acta Biomembr.
  doi: 10.1016/j.bbamem.2019.183172
– volume: 296
  start-page: 100494
  year: 2021
  ident: ref_116
  article-title: Modifying the resolving cysteine affects the structure and hydrogen peroxide reactivity of peroxiredoxin 2
  publication-title: J. Biol. Chem.
  doi: 10.1016/j.jbc.2021.100494
– volume: 41
  start-page: 5
  year: 2008
  ident: ref_96
  article-title: Presence of cytosolic peroxiredoxin 2 in the erythrocyte membrane of patients with hereditary spherocytosis
  publication-title: Blood Cells Mol. Dis.
  doi: 10.1016/j.bcmd.2008.02.008
– volume: 2023
  start-page: 5781180
  year: 2023
  ident: ref_206
  article-title: Peroxiredoxin 2 Is a Potential Objective Indicator for Severity and the Clinical Status of Subarachnoid Hemorrhage Patients
  publication-title: Dis. Markers
  doi: 10.1155/2023/5781180
– volume: 30
  start-page: 823
  year: 1998
  ident: ref_167
  article-title: A low catalase activity in dog erythrocytes is due to a very low content of catalase protein despite having a normal specific activity
  publication-title: Int. J. Biochem. Cell Biol.
  doi: 10.1016/S1357-2725(98)00044-2
– volume: 65
  start-page: 742
  year: 2013
  ident: ref_19
  article-title: The concentration of glutathione in human erythrocytes is a heritable trait
  publication-title: Free Radic. Biol. Med.
  doi: 10.1016/j.freeradbiomed.2013.08.002
– volume: 10
  start-page: 1621
  year: 2008
  ident: ref_42
  article-title: Peroxiredoxin 2 and peroxide metabolism in the erythrocyte
  publication-title: Antioxid. Redox Signal.
  doi: 10.1089/ars.2008.2081
– volume: 3
  start-page: 313
  year: 2001
  ident: ref_13
  article-title: Redox reactions of hemoglobin and myoglobin: Biological and toxicological implications
  publication-title: Antioxid. Redox Signal.
  doi: 10.1089/152308601300185250
– ident: ref_194
  doi: 10.1371/journal.pone.0208316
– volume: 1528
  start-page: 159
  year: 2001
  ident: ref_21
  article-title: Mechanisms of ascorbic acid recycling in human erythrocytes
  publication-title: Biochim. Biophys. Acta
  doi: 10.1016/S0304-4165(01)00188-X
– volume: 269
  start-page: 27670
  year: 1994
  ident: ref_52
  article-title: Thioredoxin-dependent peroxide reductase from yeast
  publication-title: J. Biol. Chem.
  doi: 10.1016/S0021-9258(18)47038-X
– volume: 175
  start-page: 779
  year: 2006
  ident: ref_73
  article-title: Oxidation state governs structural transitions in peroxiredoxin II that correlate with cell cycle arrest and recovery
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.200606005
– volume: 12
  start-page: 1235
  year: 2010
  ident: ref_160
  article-title: Irreversible inactivation of glutathione peroxidase 1 and reversible inactivation of peroxiredoxin II by H2O2 in red blood cells
  publication-title: Antioxid. Redox Signal.
  doi: 10.1089/ars.2009.2701
– volume: 46
  start-page: 329
  year: 1969
  ident: ref_35
  article-title: Some negative contrast staining features of a protein from erythrocyte ghosts
  publication-title: J. Mol. Biol.
  doi: 10.1016/0022-2836(69)90425-2
– volume: 292
  start-page: 8705
  year: 2017
  ident: ref_110
  article-title: Urate hydroperoxide oxidizes human peroxiredoxin 1 and peroxiredoxin 2
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M116.767657
– volume: 49
  start-page: 457
  year: 2010
  ident: ref_94
  article-title: Peroxiredoxin-2 expression is increased in beta-thalassemic mouse red cells but is displaced from the membrane as a marker of oxidative stress
  publication-title: Free Radic. Biol. Med.
  doi: 10.1016/j.freeradbiomed.2010.05.003
– volume: 451
  start-page: 98
  year: 2008
  ident: ref_64
  article-title: Structure of the sulphiredoxin-peroxiredoxin complex reveals an essential repair embrace
  publication-title: Nature
  doi: 10.1038/nature06415
– volume: 47
  start-page: 7196
  year: 2008
  ident: ref_88
  article-title: Thermodynamics of the dimer-decamer transition of reduced human and plant 2-cys peroxiredoxin
  publication-title: Biochemistry
  doi: 10.1021/bi8002956
– volume: 288
  start-page: 14170
  year: 2013
  ident: ref_59
  article-title: Hyperoxidation of peroxiredoxins 2 and 3: Rate constants for the reactions of the sulfenic acid of the peroxidatic cysteine
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M113.460881
– volume: 199
  start-page: 199
  year: 1994
  ident: ref_106
  article-title: Purification and characterization of thiol-specific antioxidant protein from human red blood cell: A new type of antioxidant protein
  publication-title: Biochem. Biophys. Res. Commun.
  doi: 10.1006/bbrc.1994.1214
– volume: 287
  start-page: 4403
  year: 2012
  ident: ref_53
  article-title: Peroxiredoxin functions as a peroxidase and a regulator and sensor of local peroxides
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.R111.283432
– volume: 111
  start-page: 12043
  year: 2014
  ident: ref_159
  article-title: Circadian rhythm of hyperoxidized peroxiredoxin II is determined by hemoglobin autoxidation and the 20S proteasome in red blood cells
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1401100111
– volume: 270
  start-page: 334
  year: 2003
  ident: ref_178
  article-title: Antioxidant protein 2 prevents methemoglobin formation in erythrocyte hemolysates
  publication-title: Eur. J. Biochem.
  doi: 10.1046/j.1432-1033.2003.03393.x
– volume: 11
  start-page: 64
  year: 2015
  ident: ref_57
  article-title: Peroxiredoxin-2 and STAT3 form a redox relay for H2O2 signaling
  publication-title: Nat. Chem. Biol.
  doi: 10.1038/nchembio.1695
– volume: 36
  start-page: e22267
  year: 2022
  ident: ref_157
  article-title: Peroxiredoxin-2 recycling is slower in denser and pediatric sickle cell red cells
  publication-title: FASEB J.
  doi: 10.1096/fj.202200052R
– volume: 425
  start-page: 980
  year: 2003
  ident: ref_60
  article-title: ATP-dependent reduction of cysteine-sulphinic acid by S. cerevisiae sulphiredoxin
  publication-title: Nature
  doi: 10.1038/nature02075
– volume: 304
  start-page: 596
  year: 2004
  ident: ref_61
  article-title: Regeneration of peroxiredoxins by p53-regulated sestrins, homologs of bacterial AhpD
  publication-title: Science
  doi: 10.1126/science.1095569
SSID ssj0000913809
Score 2.3278227
SecondaryResourceType review_article
Snippet Peroxiredoxin 2 (Prdx2) is the third most abundant erythrocyte protein. It was known previously as calpromotin since its binding to the membrane stimulates the...
SourceID doaj
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 1012
SubjectTerms Acetylation
Amino acids
antioxidant
antioxidant activity
Antioxidants
autoxidation
B cells
Calcium
calpromotin
Chemical bonds
Circadian rhythms
cysteine
Cytosol
Enzymes
erythrocyte
erythrocyte membrane
erythrocytes
Glutathione
Hemoglobin
Hydrogen peroxide
hydroperoxides
lipids
Membrane proteins
Nitration
Oxidants
Oxidation
Oxidative stress
Peroxiredoxin
Phosphorylation
Physiology
Post-translation
Potassium
potassium channels
Potassium channels (calcium-gated)
Proteins
Review
Thiols
Thioredoxin
thioredoxins
Uric acid
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3dS4RAEF-ip3qIvru-MAh6ktR1193errqooAgq6G3ZL-mgvLgMrv--GfUOJaqXHnVGXcfZnfnp-BtCDrlOveFChk47AQBF01Ayhy_yqbfIqG4E_o18c8svH9PrJ_bUavWFNWE1PXBtOADs1LqUOziNSJlOjJbMstRpJJKizODqCzGvBaaqNVjGVESyZmmkgOuPNRYPTuKkcsKkE4Uqsv7vS3IrJnXrJVsB6GKZLDWZY9CvR7xC5nyxShZbfIJr5P7Oj0eTIXKAToZFkJwE_SK4eq1S7KIMBnWpeDDKA0j7QIZjHToUnfsc8KyfigbjT-yfYD9Lv04eLgYPZ5dh0zUhtJD6lyEDyxvsauQgljsnPMZ8bNuXOJZDnIqd11zDdi4c05bGnkkbWaZj7anJ6QaZL0aF3yIBhdzEylxKpmkKQEpzmeXWsCgyNsoF75FwakRlG0ZxbGzxogBZoNFV1-g9cjTTf6u5NH7UPMVnMtNCDuxqB3iGajxD_eUZcDl8ogpnKgzL6uaHA7g55LxS_QyTUy551iO7HU2YYbYrnvqEamb4u8IPkJBMSg6DPZiJ8UisWiv86AN1sGJNAvL_TQfiEXL-w3k2azeb3TbNEgoLqugR0XHAjl26kmL4XHGEY8d2gJJs-z8suUMWEsjt8CNaku2S-XL84fcgFyvNfjXtvgDucDFO
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Scholars Portal Journals: Open Access
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dS9xAEF9EX-xDsbW1Z7VEEPoUTbLZzW6hlLOeqKAIKvi27Ff0QJM2jXD33zuT5M4LVR-TmSS7szM7M8nkN4Tscp16w4UMnXYCEhRNQ8kcvsin3iKiuhH4N_LZOT--Tk9v2M1z_VMnwH8vpnbYT-q6ut-b_J3-AoP_iRknpOz7GusCJ3HS6BdsxyvglTI00rMu1G92ZRlTEckWt_GFy3p-qYHv_3-TXvBS_QrKBZd0tEbed7FkMGwX_wNZ8sVH8m4BYXCdXF74qpyMERV0Mi6C5EcwLIKTh2a-RR2M2uLxoMwDCASBhmMdOyQd-hwyXD8jjaopdlSw09p_IldHo6vfx2HXRyG0kAzUIYO1MNjnyIF3d054jAKwkV_iWA6eK3Zecw3HuXBMWxp7Jm1kmY61pyann8lyURb-CwkoRCtW5lIyTVNIrTSXWW4NiyJjo1zwAQlnQlS2wxjHVhf3CnINFLrqC31Avs_5_7ToGq9yHuCazLkQFbs5UVa3qjMyxTJqXcodqJxImU6Mlsyy1GkEHaPMwONwRRVqEwzL6u4XBJgcomCpYYbhKpc8G5CtHifYnO2TZzqhZiqr8JMkhJeSw2B35mS8EuvYCl8-Ig_WsMkoyd7iAQ-FXQDgPhutms2nTbOEwhYrBkT0FLAnlz6lGN81qOHYwx2SS7b59ti_ktUE4jj8YJZkW2S5rh79NsRdtfnWGNQTYR0soA
  priority: 102
  providerName: Scholars Portal
Title Peroxiredoxin 2: An Important Element of the Antioxidant Defense of the Erythrocyte
URI https://www.ncbi.nlm.nih.gov/pubmed/37237878
https://www.proquest.com/docview/2819264962
https://www.proquest.com/docview/2820019027
https://www.proquest.com/docview/2887607892
https://pubmed.ncbi.nlm.nih.gov/PMC10215765
https://doaj.org/article/573cd46d40a845a2ba95c54da964335b
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dT9swELc2eNkeEOwzg6FMmrSniNSOHXsvUxlFbBIIbUzizfJXWKUtgRKk8t_vLnGzRtN4qdTeJXXsO9-HL78j5L0wRbBCqswbLyFAMSxT3GMinwWHiOpW4tvIp2fi5Efx9ZJfxoTbbSyrXO2J3UbtG4c58gM88AHjrQT9dH2TYdcoPF2NLTQek03YgiUEX5uHs7Pzb0OWBVEvZa56tEYG8f2BwSLC5YR2wkhH1qgD7f93a16zTeO6yTVDdLxNtqIHmU77Jd8hj0L9jDxdwxV8Tr6fh0WznCMW6HJep_RjOq3TL787V7tu01lfMp42VQruH9BwrHOPpKNQQVwbVqTZ4h77KLj7NrwgF8ezi88nWeyekDkIAdqMwwpY7G7kwaZ7LwPafmzfRz2vwF5NfDDCwPdKem4cmwSuXO64mZjAbMVeko26qcNrkjLwUZyqlOKGFRBQGaHKylme59bllRQJyVaTqF1EFscGF780RBg46Xo86Qn5MPBf95ga_-U8xDUZuBALu_uhWVzpqFqal8z5QngQNFlwQ61R3PHCG4QaY9zC3-GKatRYGJYz8cUDeDjEvtLTEp1UoUSZkL0RJ2iaG5NXMqGjpt_qv3KZkHcDGa_E6rU6NHfIg5VrKqflQzxglxD7H-7zqhez4bFZSRlsrDIhciSAo3kZU-r5zw4rHDu3Q0jJ3zw89l3yhIL3hsdktNwjG-3iLrwFb6u1-1Gl9rtsBXyeFvIPkuIsXg
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-N7gF4QHyOwIAggXiKltpxEiMh1LFOLduqCYq0N8uxHagEyeg60f5R_I_c5aM0Quxtj-1dU-d8vg_7_DuAV7GOXBanMrDappigaB5IYWkjnztDiOpZSreRTybx6Ev08UycbcHv9i4MlVW2NrEy1LY0tEe-Rwc-6LxlzN6f_wyoaxSdrrYtNGq1OHKrX5iyXbwbH-D8vmbscDj9MAqargKBwdB4EQgcWUZdfyz6OmtTRz6R2toxK3K0433rdKzxc55aoQ3vOyFNaITua8eznONjb8B2xDGT6cH2_nBy-mm9qUMgm2koa3BIzmW4p6lmcdlnle6zjvOregT86wk2XGG3THPD7x3ehTtNwOoPag27B1uuuA-3N2AMH8DnUzcvlzOCHl3OCp-99QeFP_5RRfbFwh_WFep-mfsYbSKNxjqzRDpwOabRriUN5ytq22BWC_cQptch1kfQK8rCPQafY0hkZC6l0DzC_E3HMslNJsIwM2Gexh4ErRCVaYDMqZ_Gd4UJDQlddYXuwZs1_3kN4fFfzn2akzUXQW9XX5Tzr6pZyUok3NgotqjXaSQ0y7QURkRWE7IZFxn-Hc2oIgOBwzK6ueeAL0dQW2qQUEwcyzjxYLfDiQvbdMmtTqjGsFyov8vAg5drMv2SiuUKV14SDxXKyZAlV_GgG6RWA_icnVrN1q_NE8bRjqcepB0F7MilSylm3ypocmoUjxmseHL12F_AzdH05FgdjydHT-EWw8CRTuhYsgu9xfzSPcNAb5E9b5aXD-qaF_Qfxg9meg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-NTkLwgPgchQFBAvEUNbXjJEZCqKOtVgZVBUPam-XYDlTaktF1ov3T-O-4y0dphNjbHtu7po59n_b5dwCvIh26NEqkb7VNMEHR3JfC0kY-d4YQ1dOEbiN_nkaH38KPJ-JkB343d2GorLKxiaWhtoWhPfIeHfig85YR62V1WcRsOH5__tOnDlJ00tq006hE5Mitf2H6dvFuMsS1fs3YeHT84dCvOwz4BsPkpS9wlCl1ALLo96xNHPlHanHHrMjQpvet05HGz1lihTa874Q0gRG6rx1PM46PvQG7MSZFQQd2D0bT2ZfNBg8BbiaBrIAiOZdBT1P94qrPSj1gLUdY9gv41ytsucV2yeaWDxzfhTt18OoNKmm7Bzsuvw-3tyANH8DXmVsUqznBkK7mucfeeoPcm5yVUX6-9EZVtbpXZB5Gnkijsc4tkYYuw5TaNaTRYk0tHMx66R7C8XVM6yPo5EXuHoPHMTwyMpNSaB5iLqcjGWcmFUGQmiBLoi74zSQqU4OaU2-NU4XJDU26ak96F95s-M8rOI__ch7Qmmy4CIa7_KJYfFe1VisRc2PDyKKMJ6HQLNVSGBFaTShnXKT4d7SiiowFDsvo-s4DvhzBbqlBTPFxJKO4C_stTlRy0yY3MqFqI3Oh_qpEF15uyPRLKpzLXXFJPFQ0JwMWX8WDLpHaDuBz9iox27w2jxlHm550IWkJYGte2pR8_qOEKaem8ZjNiidXj_0F3ERFVp8m06OncIthDEmHdSzeh85ycemeYcy3TJ_X2uWBumZ9_gN4tWqv
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Peroxiredoxin+2%3A+An+Important+Element+of+the+Antioxidant+Defense+of+the+Erythrocyte&rft.jtitle=Antioxidants&rft.au=Sadowska-Bartosz%2C+Izabela&rft.au=Bartosz%2C+Grzegorz&rft.date=2023-04-27&rft.pub=MDPI+AG&rft.eissn=2076-3921&rft.volume=12&rft.issue=5&rft.spage=1012&rft_id=info:doi/10.3390%2Fantiox12051012&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2076-3921&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2076-3921&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2076-3921&client=summon