Peroxiredoxin 2: An Important Element of the Antioxidant Defense of the Erythrocyte
Peroxiredoxin 2 (Prdx2) is the third most abundant erythrocyte protein. It was known previously as calpromotin since its binding to the membrane stimulates the calcium-dependent potassium channel. Prdx2 is present mostly in cytosol in the form of non-covalent dimers but may associate into doughnut-l...
Saved in:
Published in | Antioxidants Vol. 12; no. 5; p. 1012 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI AG
27.04.2023
MDPI |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Peroxiredoxin 2 (Prdx2) is the third most abundant erythrocyte protein. It was known previously as calpromotin since its binding to the membrane stimulates the calcium-dependent potassium channel. Prdx2 is present mostly in cytosol in the form of non-covalent dimers but may associate into doughnut-like decamers and other oligomers. Prdx2 reacts rapidly with hydrogen peroxide (k > 107 M−1 s−1). It is the main erythrocyte antioxidant that removes hydrogen peroxide formed endogenously by hemoglobin autoxidation. Prdx2 also reduces other peroxides including lipid, urate, amino acid, and protein hydroperoxides and peroxynitrite. Oxidized Prdx2 can be reduced at the expense of thioredoxin but also of other thiols, especially glutathione. Further reactions of Prdx2 with oxidants lead to hyperoxidation (formation of sulfinyl or sulfonyl derivatives of the peroxidative cysteine). The sulfinyl derivative can be reduced by sulfiredoxin. Circadian oscillations in the level of hyperoxidation of erythrocyte Prdx2 were reported. The protein can be subject to post-translational modifications; some of them, such as phosphorylation, nitration, and acetylation, increase its activity. Prdx2 can also act as a chaperone for hemoglobin and erythrocyte membrane proteins, especially during the maturation of erythrocyte precursors. The extent of Prdx2 oxidation is increased in various diseases and can be an index of oxidative stress. |
---|---|
AbstractList | Peroxiredoxin 2 (Prdx2) is the third most abundant erythrocyte protein. It was known previously as calpromotin since its binding to the membrane stimulates the calcium-dependent potassium channel. Prdx2 is present mostly in cytosol in the form of non-covalent dimers but may associate into doughnut-like decamers and other oligomers. Prdx2 reacts rapidly with hydrogen peroxide (k > 10
M
s
). It is the main erythrocyte antioxidant that removes hydrogen peroxide formed endogenously by hemoglobin autoxidation. Prdx2 also reduces other peroxides including lipid, urate, amino acid, and protein hydroperoxides and peroxynitrite. Oxidized Prdx2 can be reduced at the expense of thioredoxin but also of other thiols, especially glutathione. Further reactions of Prdx2 with oxidants lead to hyperoxidation (formation of sulfinyl or sulfonyl derivatives of the peroxidative cysteine). The sulfinyl derivative can be reduced by sulfiredoxin. Circadian oscillations in the level of hyperoxidation of erythrocyte Prdx2 were reported. The protein can be subject to post-translational modifications; some of them, such as phosphorylation, nitration, and acetylation, increase its activity. Prdx2 can also act as a chaperone for hemoglobin and erythrocyte membrane proteins, especially during the maturation of erythrocyte precursors. The extent of Prdx2 oxidation is increased in various diseases and can be an index of oxidative stress. Peroxiredoxin 2 (Prdx2) is the third most abundant erythrocyte protein. It was known previously as calpromotin since its binding to the membrane stimulates the calcium-dependent potassium channel. Prdx2 is present mostly in cytosol in the form of non-covalent dimers but may associate into doughnut-like decamers and other oligomers. Prdx2 reacts rapidly with hydrogen peroxide (k > 10[sup.7] M[sup.−1] s[sup.−1]). It is the main erythrocyte antioxidant that removes hydrogen peroxide formed endogenously by hemoglobin autoxidation. Prdx2 also reduces other peroxides including lipid, urate, amino acid, and protein hydroperoxides and peroxynitrite. Oxidized Prdx2 can be reduced at the expense of thioredoxin but also of other thiols, especially glutathione. Further reactions of Prdx2 with oxidants lead to hyperoxidation (formation of sulfinyl or sulfonyl derivatives of the peroxidative cysteine). The sulfinyl derivative can be reduced by sulfiredoxin. Circadian oscillations in the level of hyperoxidation of erythrocyte Prdx2 were reported. The protein can be subject to post-translational modifications; some of them, such as phosphorylation, nitration, and acetylation, increase its activity. Prdx2 can also act as a chaperone for hemoglobin and erythrocyte membrane proteins, especially during the maturation of erythrocyte precursors. The extent of Prdx2 oxidation is increased in various diseases and can be an index of oxidative stress. Peroxiredoxin 2 (Prdx2) is the third most abundant erythrocyte protein. It was known previously as calpromotin since its binding to the membrane stimulates the calcium-dependent potassium channel. Prdx2 is present mostly in cytosol in the form of non-covalent dimers but may associate into doughnut-like decamers and other oligomers. Prdx2 reacts rapidly with hydrogen peroxide (k > 107 M−1 s−1). It is the main erythrocyte antioxidant that removes hydrogen peroxide formed endogenously by hemoglobin autoxidation. Prdx2 also reduces other peroxides including lipid, urate, amino acid, and protein hydroperoxides and peroxynitrite. Oxidized Prdx2 can be reduced at the expense of thioredoxin but also of other thiols, especially glutathione. Further reactions of Prdx2 with oxidants lead to hyperoxidation (formation of sulfinyl or sulfonyl derivatives of the peroxidative cysteine). The sulfinyl derivative can be reduced by sulfiredoxin. Circadian oscillations in the level of hyperoxidation of erythrocyte Prdx2 were reported. The protein can be subject to post-translational modifications; some of them, such as phosphorylation, nitration, and acetylation, increase its activity. Prdx2 can also act as a chaperone for hemoglobin and erythrocyte membrane proteins, especially during the maturation of erythrocyte precursors. The extent of Prdx2 oxidation is increased in various diseases and can be an index of oxidative stress. Peroxiredoxin 2 (Prdx2) is the third most abundant erythrocyte protein. It was known previously as calpromotin since its binding to the membrane stimulates the calcium-dependent potassium channel. Prdx2 is present mostly in cytosol in the form of non-covalent dimers but may associate into doughnut-like decamers and other oligomers. Prdx2 reacts rapidly with hydrogen peroxide (k > 10 7 M −1 s −1 ). It is the main erythrocyte antioxidant that removes hydrogen peroxide formed endogenously by hemoglobin autoxidation. Prdx2 also reduces other peroxides including lipid, urate, amino acid, and protein hydroperoxides and peroxynitrite. Oxidized Prdx2 can be reduced at the expense of thioredoxin but also of other thiols, especially glutathione. Further reactions of Prdx2 with oxidants lead to hyperoxidation (formation of sulfinyl or sulfonyl derivatives of the peroxidative cysteine). The sulfinyl derivative can be reduced by sulfiredoxin. Circadian oscillations in the level of hyperoxidation of erythrocyte Prdx2 were reported. The protein can be subject to post-translational modifications; some of them, such as phosphorylation, nitration, and acetylation, increase its activity. Prdx2 can also act as a chaperone for hemoglobin and erythrocyte membrane proteins, especially during the maturation of erythrocyte precursors. The extent of Prdx2 oxidation is increased in various diseases and can be an index of oxidative stress. Peroxiredoxin 2 (Prdx2) is the third most abundant erythrocyte protein. It was known previously as calpromotin since its binding to the membrane stimulates the calcium-dependent potassium channel. Prdx2 is present mostly in cytosol in the form of non-covalent dimers but may associate into doughnut-like decamers and other oligomers. Prdx2 reacts rapidly with hydrogen peroxide (k > 10⁷ M⁻¹ s⁻¹). It is the main erythrocyte antioxidant that removes hydrogen peroxide formed endogenously by hemoglobin autoxidation. Prdx2 also reduces other peroxides including lipid, urate, amino acid, and protein hydroperoxides and peroxynitrite. Oxidized Prdx2 can be reduced at the expense of thioredoxin but also of other thiols, especially glutathione. Further reactions of Prdx2 with oxidants lead to hyperoxidation (formation of sulfinyl or sulfonyl derivatives of the peroxidative cysteine). The sulfinyl derivative can be reduced by sulfiredoxin. Circadian oscillations in the level of hyperoxidation of erythrocyte Prdx2 were reported. The protein can be subject to post-translational modifications; some of them, such as phosphorylation, nitration, and acetylation, increase its activity. Prdx2 can also act as a chaperone for hemoglobin and erythrocyte membrane proteins, especially during the maturation of erythrocyte precursors. The extent of Prdx2 oxidation is increased in various diseases and can be an index of oxidative stress. Peroxiredoxin 2 (Prdx2) is the third most abundant erythrocyte protein. It was known previously as calpromotin since its binding to the membrane stimulates the calcium-dependent potassium channel. Prdx2 is present mostly in cytosol in the form of non-covalent dimers but may associate into doughnut-like decamers and other oligomers. Prdx2 reacts rapidly with hydrogen peroxide (k > 107 M-1 s-1). It is the main erythrocyte antioxidant that removes hydrogen peroxide formed endogenously by hemoglobin autoxidation. Prdx2 also reduces other peroxides including lipid, urate, amino acid, and protein hydroperoxides and peroxynitrite. Oxidized Prdx2 can be reduced at the expense of thioredoxin but also of other thiols, especially glutathione. Further reactions of Prdx2 with oxidants lead to hyperoxidation (formation of sulfinyl or sulfonyl derivatives of the peroxidative cysteine). The sulfinyl derivative can be reduced by sulfiredoxin. Circadian oscillations in the level of hyperoxidation of erythrocyte Prdx2 were reported. The protein can be subject to post-translational modifications; some of them, such as phosphorylation, nitration, and acetylation, increase its activity. Prdx2 can also act as a chaperone for hemoglobin and erythrocyte membrane proteins, especially during the maturation of erythrocyte precursors. The extent of Prdx2 oxidation is increased in various diseases and can be an index of oxidative stress.Peroxiredoxin 2 (Prdx2) is the third most abundant erythrocyte protein. It was known previously as calpromotin since its binding to the membrane stimulates the calcium-dependent potassium channel. Prdx2 is present mostly in cytosol in the form of non-covalent dimers but may associate into doughnut-like decamers and other oligomers. Prdx2 reacts rapidly with hydrogen peroxide (k > 107 M-1 s-1). It is the main erythrocyte antioxidant that removes hydrogen peroxide formed endogenously by hemoglobin autoxidation. Prdx2 also reduces other peroxides including lipid, urate, amino acid, and protein hydroperoxides and peroxynitrite. Oxidized Prdx2 can be reduced at the expense of thioredoxin but also of other thiols, especially glutathione. Further reactions of Prdx2 with oxidants lead to hyperoxidation (formation of sulfinyl or sulfonyl derivatives of the peroxidative cysteine). The sulfinyl derivative can be reduced by sulfiredoxin. Circadian oscillations in the level of hyperoxidation of erythrocyte Prdx2 were reported. The protein can be subject to post-translational modifications; some of them, such as phosphorylation, nitration, and acetylation, increase its activity. Prdx2 can also act as a chaperone for hemoglobin and erythrocyte membrane proteins, especially during the maturation of erythrocyte precursors. The extent of Prdx2 oxidation is increased in various diseases and can be an index of oxidative stress. |
Audience | Academic |
Author | Bartosz, Grzegorz Sadowska-Bartosz, Izabela |
AuthorAffiliation | 1 Laboratory of Analytical Biochemistry, Institute of Food Technology and Nutrition, College of Natural Sciences, University of Rzeszow, 4 Zelwerowicza St., 35-601 Rzeszow, Poland 2 Department of Bioenergetics, Food Analysis and Microbiology, Institute of Food Technology and Nutrition, College of Natural Sciences, University of Rzeszów, 4 Zelwerowicza St., 35-601 Rzeszow, Poland; gbartosz@ur.edu.pl |
AuthorAffiliation_xml | – name: 1 Laboratory of Analytical Biochemistry, Institute of Food Technology and Nutrition, College of Natural Sciences, University of Rzeszow, 4 Zelwerowicza St., 35-601 Rzeszow, Poland – name: 2 Department of Bioenergetics, Food Analysis and Microbiology, Institute of Food Technology and Nutrition, College of Natural Sciences, University of Rzeszów, 4 Zelwerowicza St., 35-601 Rzeszow, Poland; gbartosz@ur.edu.pl |
Author_xml | – sequence: 1 givenname: Izabela orcidid: 0000-0001-9035-6833 surname: Sadowska-Bartosz fullname: Sadowska-Bartosz, Izabela – sequence: 2 givenname: Grzegorz orcidid: 0000-0002-0347-0740 surname: Bartosz fullname: Bartosz, Grzegorz |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37237878$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkt1v0zAUxSM0xMbYK4-oEi-8dPgj_uIFVaNApUkgsXfLsW9aV0lcnHRa_3tu6LqtCCQSKY59z_3ZPjovi5MudVAUrym55NyQ964bYrqjjAhKKHtWnDGi5JQbRk-e_J8WF32_JvgYyjUxL4pTrhhXWumz4sd3yOkuZgj47Sbsw2TWTRbtJuUB6ZN5Ay3gmOrJsAKsjRvGMJY-QQ1dD4fSPO-GVU5-N8Cr4nntmh4u7sfz4ubz_Obq6_T625fF1ex66oUWw1RIbSoqmAiCshA0aGqI4dKwIGrKOA3gpMN5rYNwnlMQxhMvHHXAq5qfF4s9NiS3tpscW5d3Nrlofy-kvLQuD9E3YIXiPpQylMTpUjhWOSO8KIMzsuRcVMj6uGdttlULweOds2uOoMeVLq7sMt1aShgVSgokvLsn5PRzC_1g29h7aBrXQdr2lmmtJFHasP-QMkLQC6ZQ-vYP6Tptc4euoooaJksj2aNq6fCysasTntGPUDtTgmgtjRxZl39R4RugjR6TVUdcP2p489SUBzcO6UFBuRf4nPo-Q219HBxGZPQoNmiOHXNqj3P6eJCHtgP5Hw2_AKV5598 |
CitedBy_id | crossref_primary_10_3389_fphys_2024_1499308 crossref_primary_10_1016_j_jpba_2024_116247 crossref_primary_10_1016_j_abb_2024_110121 crossref_primary_10_3389_fimmu_2024_1367432 crossref_primary_10_3390_antiox13091070 crossref_primary_10_3390_gels10120772 crossref_primary_10_1007_s00018_024_05563_y crossref_primary_10_3390_cimb46060349 crossref_primary_10_1002_ctm2_70166 crossref_primary_10_1007_s00109_023_02368_7 crossref_primary_10_3390_antiox13060629 crossref_primary_10_1016_j_molstruc_2024_138817 |
Cites_doi | 10.1016/j.freeradbiomed.2019.07.004 10.1089/ars.2017.7488 10.1155/2019/3435174 10.1016/j.cell.2016.05.006 10.1073/pnas.1419682112 10.1093/oxfordjournals.jbchem.a022451 10.1089/ars.2010.3624 10.1089/ars.2008.2049 10.1016/j.molmed.2005.10.006 10.1080/10715760701625075 10.1080/10715762.2016.1241995 10.1021/bi00906a038 10.1016/j.biochi.2011.02.005 10.1073/pnas.0307446101 10.3324/haematol.2013.084533 10.1016/j.bbadis.2016.11.019 10.1042/BJ20130030 10.1073/pnas.0905387106 10.1089/ars.2016.6922 10.3390/ijms231810735 10.1016/j.jchromb.2015.06.007 10.1016/j.jmb.2010.07.022 10.1016/S0021-9258(19)36688-8 10.1111/j.1582-4934.2008.00478.x 10.1016/j.freeradbiomed.2003.08.019 10.1267/ahc.15.685 10.1002/pmic.201800311 10.1182/blood.V90.12.4973 10.1016/j.redox.2021.101980 10.1096/fj.14-250050 10.1089/ars.2010.3564 10.1006/abio.1996.9939 10.1016/0005-2795(81)90021-0 10.1016/j.freeradbiomed.2020.07.007 10.1074/jbc.M113.544957 10.1002/med.10051 10.1016/j.freeradbiomed.2006.10.042 10.1016/j.freeradbiomed.2019.07.016 10.1016/j.febslet.2009.05.029 10.1039/c7ib00039a 10.1021/ic1007389 10.1172/JCI113230 10.1016/j.jprot.2015.06.014 10.1038/nchembio.935 10.1016/j.freeradbiomed.2018.04.274 10.1016/S0021-9258(18)55157-7 10.1111/trf.13039 10.1073/pnas.0803749105 10.1038/263336a0 10.1002/prca.201500128 10.1016/j.pathophys.2017.04.003 10.1016/j.cell.2004.05.002 10.1074/jbc.RA117.001690 10.14348/molcells.2016.2325 10.1074/jbc.M505362200 10.3390/antiox10020206 10.1016/j.freeradbiomed.2018.10.450 10.1074/jbc.271.26.15315 10.1016/j.molcel.2011.11.027 10.1016/j.ab.2019.02.026 10.1007/s12975-019-00714-x 10.1182/blood.V73.1.334.334 10.3389/fphys.2020.00357 10.1021/bi000034j 10.1016/j.freeradbiomed.2014.09.025 10.2478/s11658-011-0032-x 10.3390/antiox8020029 10.3390/ijms20225769 10.1021/acs.jproteome.7b00025 10.1074/jbc.M113.539213 10.1111/j.1742-4658.2009.06985.x 10.1039/b901735f 10.1016/j.freeradbiomed.2009.11.021 10.1016/j.abb.2015.10.021 10.2741/4770 10.1074/jbc.M110.172460 10.1182/blood-2006-09-048728 10.1038/nchembio.1722 10.1016/j.bcmd.2009.03.002 10.1016/j.freeradbiomed.2019.09.010 10.1074/jbc.M112.433755 10.1111/j.1753-4887.2012.00476.x 10.1126/science.1080405 10.1016/j.redox.2019.101399 10.1016/j.freeradbiomed.2012.05.020 10.1089/ars.2017.7214 10.1007/s00436-021-07051-9 10.1182/blood-2002-08-2548 10.1038/nature09702 10.1111/j.1537-2995.2010.03032.x 10.1074/jbc.M610330200 10.1016/j.abb.2023.109569 10.1021/bi012173m 10.1042/bj2560751 10.1073/pnas.0705904104 10.1016/j.ab.2019.02.019 10.1016/j.biocel.2012.04.008 10.1016/j.bbrc.2019.08.108 10.1371/journal.pone.0092411 10.1093/acprof:oso/9780198717478.001.0001 10.1006/bbrc.1999.1107 10.1074/jbc.M511082200 10.1074/jbc.M111.232355 10.1021/bi00380a041 10.1002/elps.1150180807 10.1079/BJN19820059 10.1016/j.freeradbiomed.2014.08.004 10.1006/bbrc.1997.6278 10.1074/jbc.M700339200 10.1042/bj1550493 10.14348/molcells.2016.2330 10.1016/j.freeradbiomed.2014.10.009 10.1007/s00232-013-9569-0 10.1042/bj3120699 10.1023/A:1016036617585 10.1096/fj.13-227298 10.1080/13510002.1997.11747085 10.1074/jbc.M704369200 10.14814/phy2.14745 10.1016/S0021-9258(18)90956-7 10.1016/j.freeradbiomed.2012.10.543 10.1002/(SICI)1096-8652(199710)56:2<100::AID-AJH5>3.0.CO;2-2 10.1016/S0168-8227(99)00037-6 10.1016/j.micron.2006.04.010 10.1016/j.freeradbiomed.2018.10.407 10.1038/nature11088 10.3109/10715762.2015.1028402 10.1073/pnas.1915275117 10.1080/15216540600936549 10.1016/S0891-5849(99)00051-9 10.1021/acs.chemrestox.5b00132 10.1007/s12975-021-00980-8 10.1186/s12967-019-2076-z 10.1016/j.abb.2017.02.012 10.1002/prca.200780058 10.3324/haematol.2013.090076 10.1089/ars.2010.3393 10.1016/j.abb.2008.11.017 10.1016/0005-2736(79)90348-1 10.1016/S0009-8981(03)00200-6 10.1021/bi5013222 10.3109/10715762.2012.756138 10.3390/ijms18091932 10.1016/j.neurobiolaging.2007.06.012 10.1515/BC.2002.040 10.1074/jbc.M115.692798 10.1021/bi9003556 10.1021/bi00612a031 10.1007/BF00201829 10.1016/j.freeradbiomed.2009.08.022 10.3390/ijms21218033 10.1016/j.jmb.2017.12.020 10.1016/j.redox.2021.102073 10.1002/prca.201600121 10.3390/antiox11122486 10.1016/j.bbagen.2013.08.001 10.1146/annurev-biochem-060208-092442 10.1074/jbc.274.20.13908 10.1042/BJ20101156 10.1182/blood.V71.2.512.512 10.1089/ars.2014.5950 10.1021/bi801718d 10.1002/pmic.201300177 10.1016/j.freeradbiomed.2005.02.026 10.1096/fj.201801150R 10.1002/prca.201400035 10.14348/molcells.2016.2368 10.1097/TA.0000000000002730 10.1007/BF00188176 10.1016/j.bbagen.2012.11.020 10.1074/jbc.M409482200 10.1016/j.redox.2017.12.008 10.1016/S0969-2126(00)00147-7 10.1021/tx060146x 10.1016/j.bbrc.2012.08.113 10.1186/s12974-018-1118-4 10.1016/j.bbamem.2019.183172 10.1016/j.jbc.2021.100494 10.1016/j.bcmd.2008.02.008 10.1155/2023/5781180 10.1016/S1357-2725(98)00044-2 10.1016/j.freeradbiomed.2013.08.002 10.1089/ars.2008.2081 10.1089/152308601300185250 10.1371/journal.pone.0208316 10.1016/S0304-4165(01)00188-X 10.1016/S0021-9258(18)47038-X 10.1083/jcb.200606005 10.1089/ars.2009.2701 10.1016/0022-2836(69)90425-2 10.1074/jbc.M116.767657 10.1016/j.freeradbiomed.2010.05.003 10.1038/nature06415 10.1021/bi8002956 10.1074/jbc.M113.460881 10.1006/bbrc.1994.1214 10.1074/jbc.R111.283432 10.1073/pnas.1401100111 10.1046/j.1432-1033.2003.03393.x 10.1038/nchembio.1695 10.1096/fj.202200052R 10.1038/nature02075 10.1126/science.1095569 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2023 MDPI AG 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2023 by the authors. 2023 |
Copyright_xml | – notice: COPYRIGHT 2023 MDPI AG – notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2023 by the authors. 2023 |
DBID | AAYXX CITATION NPM 7QR 7T5 7TO 8FD 8FE 8FH ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FR3 GNUQQ H94 HCIFZ LK8 M7P P64 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI 7X8 7S9 L.6 5PM DOA |
DOI | 10.3390/antiox12051012 |
DatabaseName | CrossRef PubMed Chemoreception Abstracts Immunology Abstracts Oncogenes and Growth Factors Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Korea Engineering Research Database ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection Biological Sciences Biological Science Database Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic (New) ProQuest Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition MEDLINE - Academic AGRICOLA AGRICOLA - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student Oncogenes and Growth Factors Abstracts Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Central ProQuest One Applied & Life Sciences Natural Science Collection ProQuest Central Korea Biological Science Collection AIDS and Cancer Research Abstracts Chemoreception Abstracts ProQuest Central (New) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Biological Science Database ProQuest SciTech Collection Biotechnology and BioEngineering Abstracts ProQuest One Academic UKI Edition Immunology Abstracts Engineering Research Database ProQuest One Academic ProQuest One Academic (New) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | PubMed CrossRef Publicly Available Content Database AGRICOLA MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2076-3921 |
ExternalDocumentID | oai_doaj_org_article_573cd46d40a845a2ba95c54da964335b PMC10215765 A750886967 37237878 10_3390_antiox12051012 |
Genre | Journal Article Review |
GroupedDBID | 53G 5VS 8FE 8FH AADQD AAFWJ AAHBH AAYXX ADBBV AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS AOIJS BBNVY BCNDV BENPR BHPHI CCPQU CITATION GROUPED_DOAJ HCIFZ HYE IAO IHR ITC KQ8 LK8 M48 M7P MODMG M~E OK1 PGMZT PHGZM PHGZT PIMPY PROAC RPM NPM PMFND 7QR 7T5 7TO 8FD ABUWG AZQEC DWQXO FR3 GNUQQ H94 P64 PKEHL PQEST PQGLB PQQKQ PQUKI 7X8 7S9 L.6 5PM PUEGO |
ID | FETCH-LOGICAL-c585t-5689b1525d512dd8e819093692d5f1231dea6a369f8d5ac31e59c0c5a1ae3bf3 |
IEDL.DBID | BENPR |
ISSN | 2076-3921 |
IngestDate | Wed Aug 27 01:30:47 EDT 2025 Thu Aug 21 18:37:53 EDT 2025 Fri Jul 11 04:28:36 EDT 2025 Fri Jul 11 11:17:19 EDT 2025 Fri Jul 25 12:11:10 EDT 2025 Tue Jun 17 21:25:30 EDT 2025 Tue Jun 10 20:29:12 EDT 2025 Thu Jan 02 22:51:32 EST 2025 Thu Apr 24 22:59:45 EDT 2025 Tue Jul 01 02:20:41 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | peroxiredoxin antioxidant calpromotin thioredoxin glutathione hydrogen peroxide erythrocyte |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c585t-5689b1525d512dd8e819093692d5f1231dea6a369f8d5ac31e59c0c5a1ae3bf3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0001-9035-6833 0000-0002-0347-0740 |
OpenAccessLink | https://www.proquest.com/docview/2819264962?pq-origsite=%requestingapplication% |
PMID | 37237878 |
PQID | 2819264962 |
PQPubID | 2032435 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_573cd46d40a845a2ba95c54da964335b pubmedcentral_primary_oai_pubmedcentral_nih_gov_10215765 proquest_miscellaneous_2887607892 proquest_miscellaneous_2820019027 proquest_journals_2819264962 gale_infotracmisc_A750886967 gale_infotracacademiconefile_A750886967 pubmed_primary_37237878 crossref_citationtrail_10_3390_antiox12051012 crossref_primary_10_3390_antiox12051012 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-04-27 |
PublicationDateYYYYMMDD | 2023-04-27 |
PublicationDate_xml | – month: 04 year: 2023 text: 2023-04-27 day: 27 |
PublicationDecade | 2020 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: Basel |
PublicationTitle | Antioxidants |
PublicationTitleAlternate | Antioxidants (Basel) |
PublicationYear | 2023 |
Publisher | MDPI AG MDPI |
Publisher_xml | – name: MDPI AG – name: MDPI |
References | ref_137 Lu (ref_203) 2018; 15 ref_136 Flatt (ref_197) 2020; 11 Peskin (ref_128) 2010; 432 Dietz (ref_68) 2009; 583 Tiwari (ref_170) 2021; 120 (ref_17) 2014; 63 Nagy (ref_115) 2011; 286 Ishida (ref_119) 2019; 518 May (ref_21) 2001; 1528 Chen (ref_188) 2017; 11 ref_134 Winterbourn (ref_155) 1987; 80 Burillo (ref_207) 2014; 8 Sadvakassova (ref_198) 2021; 9 Ferru (ref_182) 2014; 99 Ghashghaeinia (ref_16) 2012; 17 Edgar (ref_172) 2012; 485 Abruzzo (ref_210) 2019; 17 Lee (ref_161) 2003; 101 Bayer (ref_183) 2015; 55 Meotti (ref_124) 2011; 286 Chang (ref_63) 2004; 279 Rabilloud (ref_81) 1995; 312 Stacey (ref_135) 2009; 47 Johnson (ref_164) 2010; 48 Kakorin (ref_88) 2008; 47 Melo (ref_168) 2023; 739 Soethoudt (ref_146) 2014; 77 Fukuda (ref_166) 1982; 15 Peng (ref_206) 2023; 2023 Lu (ref_201) 2019; 33 Hofmann (ref_45) 2002; 383 Plishker (ref_33) 1992; 267 Ogasawara (ref_79) 2015; 997 Xia (ref_204) 2022; 13 Netto (ref_44) 1996; 271 Rhee (ref_53) 2012; 287 ref_150 Tzounakas (ref_189) 2016; 10 Bayer (ref_152) 2013; 27 Trindade (ref_130) 2006; 19 Pastore (ref_15) 2003; 333 Detterich (ref_191) 2019; 141 Kettle (ref_9) 1997; 3 Kumsta (ref_67) 2009; 48 Phalen (ref_73) 2006; 175 Nagababu (ref_98) 2013; 47 Moore (ref_34) 1991; 266 Meissner (ref_84) 2007; 38 Selvaggio (ref_153) 2018; 15 Feliciano (ref_200) 2017; 1863 Kirkman (ref_31) 1999; 274 ref_148 Stuhlmeier (ref_178) 2003; 270 Pearson (ref_156) 2021; 43 Song (ref_18) 2019; 2019 Low (ref_14) 2007; 109 Waugh (ref_104) 1987; 26 Matte (ref_94) 2010; 49 Santo (ref_11) 2016; 2 Romero (ref_129) 2006; 58 Moon (ref_175) 2005; 280 Fourquet (ref_69) 2008; 10 Mueller (ref_112) 1997; 245 Peskin (ref_55) 2016; 291 Rhee (ref_78) 2011; 15 Maiorino (ref_121) 2013; 1830 Yao (ref_131) 2010; 49 Muralidharan (ref_142) 2019; 573 Cheah (ref_190) 2014; 28 Alayash (ref_13) 2001; 3 Nagababu (ref_163) 2004; 6 Shau (ref_38) 1994; 40 Richardson (ref_132) 2003; 35 Allen (ref_37) 1979; 551 Poynton (ref_154) 2014; 1840 Oh (ref_157) 2022; 36 Bolduc (ref_118) 2018; 293 Peskin (ref_59) 2013; 288 Melo (ref_103) 2018; 120 Nakamura (ref_167) 1998; 30 Lim (ref_106) 1994; 199 Halliwell (ref_5) 2012; 70 Liu (ref_145) 2012; 8 Biondani (ref_97) 2008; 2 Winterbourn (ref_72) 2015; 11 Hall (ref_48) 2010; 402 Jeong (ref_62) 2006; 281 Lee (ref_176) 2007; 282 Radi (ref_10) 2004; 101 Rinalducci (ref_91) 2011; 93 Jang (ref_158) 2004; 117 Han (ref_180) 2012; 426 Demarest (ref_23) 2019; 572 Bian (ref_205) 2020; 11 Svensson (ref_151) 1988; 256 Chae (ref_43) 1999; 45 Mueller (ref_27) 1997; 90 Bayer (ref_100) 2016; 50 Fang (ref_77) 2007; 104 Carvalho (ref_110) 2017; 292 Peskin (ref_117) 2020; 158 Franco (ref_195) 2014; 99 Littlechild (ref_82) 2000; 8 Johnson (ref_64) 2008; 451 Holmgren (ref_25) 1978; 17 Harper (ref_185) 2015; 22 Lowther (ref_65) 2011; 15 Ng (ref_113) 2007; 41 Nelson (ref_114) 2008; 47 Karplus (ref_71) 2015; 80 Peskin (ref_108) 2007; 282 Reddy (ref_173) 2011; 469 Connor (ref_202) 2017; 24 Ogusucu (ref_107) 2007; 42 Rinalducci (ref_187) 2011; 51 Low (ref_42) 2008; 10 Rocha (ref_99) 2015; 49 Engelman (ref_141) 2013; 288 Kim (ref_174) 2013; 82 Winterbourn (ref_111) 1999; 27 Jeong (ref_143) 2012; 53 Bruskov (ref_149) 2002; 384 Basu (ref_179) 2015; 128 Matthews (ref_4) 2017; 9 Wood (ref_89) 2002; 41 Day (ref_74) 2012; 45 Basu (ref_192) 2013; 13 Daiber (ref_12) 2018; 28 Haruyama (ref_105) 2018; 430 Peskin (ref_56) 2021; 86 Poole (ref_50) 2016; 39 Rocha (ref_96) 2008; 41 Teixeira (ref_86) 2015; 112 Sobotta (ref_57) 2015; 11 Gromer (ref_26) 2004; 24 Pantaleo (ref_162) 2014; 76 Parmigiani (ref_140) 2008; 105 Seidel (ref_125) 2014; 289 Peskin (ref_133) 2019; 145 Rocha (ref_93) 2009; 43 Biteau (ref_60) 2003; 425 Ogasawara (ref_90) 2012; 44 Rocha (ref_196) 2020; 1862 Budanov (ref_61) 2004; 304 Scott (ref_28) 1991; 118 Rhee (ref_47) 2016; 39 Peskin (ref_116) 2021; 296 Ogata (ref_165) 1991; 86 Gebicki (ref_127) 2016; 595 Koncarevic (ref_171) 2009; 106 Vielfort (ref_177) 2016; 166 Yoshida (ref_208) 2009; 30 Alfaro (ref_8) 2019; 130 Zerez (ref_22) 1988; 71 Hall (ref_49) 2009; 276 Winterbourn (ref_2) 1976; 155 Randall (ref_138) 2014; 289 Randall (ref_139) 2019; 141 Harris (ref_35) 1969; 46 Link (ref_76) 1997; 18 Forcina (ref_122) 2019; 19 Moore (ref_193) 1997; 56 Wood (ref_41) 2003; 300 Cho (ref_160) 2010; 12 Winterbourn (ref_109) 2016; 39 Veal (ref_75) 2018; 28 Cho (ref_159) 2014; 111 Oh (ref_184) 2020; 89 Walder (ref_102) 1984; 259 Wagner (ref_19) 2013; 65 Pace (ref_144) 2018; 129 Pace (ref_54) 2013; 453 Manta (ref_46) 2009; 484 Ma (ref_181) 2019; 24 Nelson (ref_66) 2018; 28 Cordray (ref_120) 2007; 282 Verdoy (ref_169) 2020; 34 Chae (ref_52) 1994; 269 Harris (ref_36) 1981; 670 Prado (ref_126) 2015; 28 Talwar (ref_87) 2020; 117 Kitano (ref_85) 1999; 126 Rhee (ref_51) 2005; 38 ref_194 Cohen (ref_29) 1963; 2 ref_199 Kang (ref_70) 2005; 11 Kristensen (ref_39) 1999; 262 Gaetani (ref_30) 1989; 73 Bryk (ref_80) 2017; 16 Amen (ref_186) 2017; 621 Cha (ref_40) 2000; 39 Stolwijk (ref_123) 2021; 46 Moore (ref_92) 1997; 232 Evans (ref_20) 1982; 47 Sharma (ref_101) 2013; 246 ref_1 ref_3 Reed (ref_209) 2009; 13 Roch (ref_24) 2019; 4 Perkins (ref_58) 2014; 53 Lew (ref_32) 1976; 263 Hall (ref_83) 2011; 15 ref_7 Matte (ref_95) 2013; 55 ref_6 Haraldsen (ref_147) 2009; 7 |
References_xml | – volume: 141 start-page: 408 year: 2019 ident: ref_191 article-title: Erythrocyte and plasma oxidative stress appears to be compensated in patients with sickle cell disease during a period of relative health, despite the presence of known oxidative agents publication-title: Free Radic. Biol. Med. doi: 10.1016/j.freeradbiomed.2019.07.004 – volume: 28 start-page: 735 year: 2018 ident: ref_12 article-title: Environmental Stressors and Their Impact on Health and Disease with Focus on Oxidative Stress publication-title: Antioxid. Redox Signal. doi: 10.1089/ars.2017.7488 – volume: 2019 start-page: 3435174 year: 2019 ident: ref_18 article-title: Uric Acid Provides Protective Role in Red Blood Cells by Antioxidant Defense: A Hypothetical Analysis publication-title: Oxid. Med. Cell. Longev. doi: 10.1155/2019/3435174 – volume: 166 start-page: 140 year: 2016 ident: ref_177 article-title: Lifespan Control by Redox-Dependent Recruitment of Chaperones to Misfolded Proteins publication-title: Cell doi: 10.1016/j.cell.2016.05.006 – volume: 112 start-page: E616 year: 2015 ident: ref_86 article-title: Mitochondrial peroxiredoxin functions as crucial chaperone reservoir in Leishmania infantum publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1419682112 – volume: 2 start-page: 245 year: 2016 ident: ref_11 article-title: Free radicals: From health to disease publication-title: React. Oxyg. Species – volume: 126 start-page: 313 year: 1999 ident: ref_85 article-title: Stimulation of peroxidase activity by decamerization related to ionic strength: AhpC protein from Amphibacillus xylanus publication-title: J. Biochem. (Tokyo) doi: 10.1093/oxfordjournals.jbchem.a022451 – volume: 15 start-page: 795 year: 2011 ident: ref_83 article-title: Structure-based insights into the catalytic power and conformational dexterity of peroxiredoxins publication-title: Antioxid. Redox. Signal. doi: 10.1089/ars.2010.3624 – volume: 10 start-page: 1565 year: 2008 ident: ref_69 article-title: The dual functions of thiol-based peroxidases in H2O2 scavenging and signaling publication-title: Antioxid. Redox Signal. doi: 10.1089/ars.2008.2049 – volume: 11 start-page: 571 year: 2005 ident: ref_70 article-title: 2-Cys peroxiredoxin function in intracellular signal transduction: Therapeutic implications publication-title: Trends Mol. Med. doi: 10.1016/j.molmed.2005.10.006 – volume: 41 start-page: 1201 year: 2007 ident: ref_113 article-title: The rate of cellular hydrogen peroxide removal shows dependency on GSH: Mathematical insight into in vivo H2O2 and GPx concentrations publication-title: Free Radic. Res. doi: 10.1080/10715760701625075 – volume: 50 start-page: 1329 year: 2016 ident: ref_100 article-title: Interactions between peroxiredoxin 2, hemichrome and the erythrocyte membrane publication-title: Free Radic. Res. doi: 10.1080/10715762.2016.1241995 – volume: 2 start-page: 1420 year: 1963 ident: ref_29 article-title: Glutathione peroxidase: The primary agent for the elimination of hydrogen peroxide in erythrocytes publication-title: Biochemistry doi: 10.1021/bi00906a038 – volume: 93 start-page: 845 year: 2011 ident: ref_91 article-title: Oxidative stress-dependent oligomeric status of erythrocyte peroxiredoxin II (PrxII) during storage under standard blood banking conditions publication-title: Biochimie doi: 10.1016/j.biochi.2011.02.005 – volume: 101 start-page: 4003 year: 2004 ident: ref_10 article-title: Nitric oxide, oxidants, and protein tyrosine nitration publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0307446101 – volume: 99 start-page: 570 year: 2014 ident: ref_182 article-title: Thalassemic erythrocytes release microparticles loaded with hemichromes by redox activation of p72Syk kinase publication-title: Haematologica doi: 10.3324/haematol.2013.084533 – volume: 1863 start-page: 621 year: 2017 ident: ref_200 article-title: Evening and morning peroxiredoxin-2 redox/oligomeric state changes in obstructive sleep apnea red blood cells: Correlation with polysomnographic and metabolic parameters publication-title: Biochim. Biophys. Acta Mol. Basis Dis. doi: 10.1016/j.bbadis.2016.11.019 – volume: 453 start-page: 475 year: 2013 ident: ref_54 article-title: Hyperoxidized peroxiredoxin 2 interacts with the protein disulfide- isomerase ERp46 publication-title: Biochem. J. doi: 10.1042/BJ20130030 – volume: 106 start-page: 13323 year: 2009 ident: ref_171 article-title: The malarial parasite Plasmodium falciparum imports the human protein peroxiredoxin 2 for peroxide detoxification publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0905387106 – volume: 28 start-page: 521 year: 2018 ident: ref_66 article-title: Experimentally Dissecting the Origins of Peroxiredoxin Catalysis publication-title: Antioxid. Redox Signal. doi: 10.1089/ars.2016.6922 – ident: ref_134 doi: 10.3390/ijms231810735 – volume: 997 start-page: 136 year: 2015 ident: ref_79 article-title: A simple high performance liquid chromatography method for quantitatively determining the reduced form of peroxiredoxin 2 and the mass spectrometric analysis of its oxidative status publication-title: J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. doi: 10.1016/j.jchromb.2015.06.007 – volume: 402 start-page: 194 year: 2010 ident: ref_48 article-title: Structural evidence that peroxiredoxin catalytic power is based on transition-state stabilization publication-title: J. Mol. Biol. doi: 10.1016/j.jmb.2010.07.022 – volume: 267 start-page: 21839 year: 1992 ident: ref_33 article-title: Calcium-activated potassium transport and high molecular weight forms of calpromotin publication-title: J. Biol. Chem. doi: 10.1016/S0021-9258(19)36688-8 – volume: 13 start-page: 2019 year: 2009 ident: ref_209 article-title: Proteomic identification of nitrated brain proteins in early Alzheimer’s disease inferior parietal lobule publication-title: J. Cell. Mol. Med. doi: 10.1111/j.1582-4934.2008.00478.x – volume: 35 start-page: 1538 year: 2003 ident: ref_132 article-title: Methionine oxidation by peroxymonocarbonate, a reactive oxygen species formed from CO2/bicarbonate and hydrogen peroxide publication-title: Free Radic. Biol. Med. doi: 10.1016/j.freeradbiomed.2003.08.019 – volume: 15 start-page: 685 year: 1982 ident: ref_166 article-title: Catalase activity of erythrocytes from beagle dogs: An appearance of hereditary acatalasemia publication-title: Acta Histochem. Cytochem. doi: 10.1267/ahc.15.685 – volume: 19 start-page: e1800311 year: 2019 ident: ref_122 article-title: GPX4 at the Crossroads of Lipid Homeostasis and Ferroptosis publication-title: Proteomics doi: 10.1002/pmic.201800311 – volume: 90 start-page: 4973 year: 1997 ident: ref_27 article-title: Direct evidence for catalase as the predominant H2O2-removing enzyme in human erythrocytes publication-title: Blood doi: 10.1182/blood.V90.12.4973 – volume: 43 start-page: 101980 year: 2021 ident: ref_156 article-title: Peroxiredoxin 2 oxidation reveals hydrogen peroxide generation within erythrocytes during high-dose vitamin C administration publication-title: Redox Biol. doi: 10.1016/j.redox.2021.101980 – volume: 28 start-page: 3205 year: 2014 ident: ref_190 article-title: Increased basal oxidation of peroxiredoxin 2 and limited peroxiredoxin recycling in glucose-6-phosphate dehydrogenase-deficient erythrocytes from newborn infants publication-title: FASEB J. doi: 10.1096/fj.14-250050 – volume: 15 start-page: 99 year: 2011 ident: ref_65 article-title: Reduction of cysteine sulfinic acid in eukaryotic, typical 2-Cys peroxiredoxins by sulfiredoxin publication-title: Antioxid. Redox Signal. doi: 10.1089/ars.2010.3564 – volume: 245 start-page: 55 year: 1997 ident: ref_112 article-title: Determination of catalase activity at physiological hydrogen peroxide concentrations publication-title: Anal. Biochem. doi: 10.1006/abio.1996.9939 – volume: 670 start-page: 285 year: 1981 ident: ref_36 article-title: Further studies on the characterization of cylindrin and torin, two extrinsic proteins of the erythrocyte membrane publication-title: Biochim. Biophys. Acta doi: 10.1016/0005-2795(81)90021-0 – volume: 158 start-page: 115 year: 2020 ident: ref_117 article-title: Intra-dimer cooperativity between the active site cysteines during the oxidation of peroxiredoxin 2 publication-title: Free Radic. Biol. Med. doi: 10.1016/j.freeradbiomed.2020.07.007 – volume: 289 start-page: 21937 year: 2014 ident: ref_125 article-title: Uric acid and thiocyanate as competing substrates of lactoperoxidase publication-title: J. Biol. Chem. doi: 10.1074/jbc.M113.544957 – volume: 24 start-page: 40 year: 2004 ident: ref_26 article-title: The thioredoxin system--from science to clinic publication-title: Med. Res. Rev. doi: 10.1002/med.10051 – volume: 42 start-page: 326 year: 2007 ident: ref_107 article-title: Reactions of yeast thioredoxin peroxidases I and II with hydrogen peroxide and peroxynitrite: Rate constants by competitive kinetics publication-title: Free Radic. Biol. Med. doi: 10.1016/j.freeradbiomed.2006.10.042 – volume: 141 start-page: 492 year: 2019 ident: ref_139 article-title: Unraveling the effects of peroxiredoxin 2 nitration; role of C-terminal tyrosine 193 publication-title: Free Radic. Biol. Med. doi: 10.1016/j.freeradbiomed.2019.07.016 – volume: 583 start-page: 1809 year: 2009 ident: ref_68 article-title: The oligomeric conformation of peroxiredoxins links redox state to function publication-title: FEBS Lett. doi: 10.1016/j.febslet.2009.05.029 – volume: 9 start-page: 519 year: 2017 ident: ref_4 article-title: Microfluidic analysis of red blood cell deformability as a means to assess hemin-induced oxidative stress resulting from, Plasmodium falciparum intraerythrocytic parasitism publication-title: Integr. Biol. doi: 10.1039/c7ib00039a – volume: 49 start-page: 11287 year: 2010 ident: ref_131 article-title: Kinetics and mechanism of peroxymonocarbonate formation publication-title: Inorg. Chem. doi: 10.1021/ic1007389 – volume: 80 start-page: 1486 year: 1987 ident: ref_155 article-title: Human red cells scavenge extracellular hydrogen peroxide and inhibit formation of hypochlorous acid and hydroxyl radical publication-title: J. Clin. Investig. doi: 10.1172/JCI113230 – volume: 128 start-page: 469 year: 2015 ident: ref_179 article-title: Hemoglobin interacting proteins and implications of spectrin hemoglobin interaction publication-title: J. Proteomics doi: 10.1016/j.jprot.2015.06.014 – volume: 8 start-page: 486 year: 2012 ident: ref_145 article-title: Adenanthin targets peroxiredoxin I and II to induce differentiation of leukemic cells publication-title: Nat. Chem. Biol. doi: 10.1038/nchembio.935 – volume: 120 start-page: 583 year: 2018 ident: ref_103 article-title: Role of peroxiredoxin 2 in erythrocyte antioxidant defense: Peroxidase and chaperone publication-title: Free Radic. Biol. Med. doi: 10.1016/j.freeradbiomed.2018.04.274 – volume: 266 start-page: 18964 year: 1991 ident: ref_34 article-title: Reconstitution of Ca2+-dependent K+ transport in erythrocyte membrane vesicles requires a cytoplasmic protein publication-title: J. Biol. Chem. doi: 10.1016/S0021-9258(18)55157-7 – volume: 55 start-page: 1909 year: 2015 ident: ref_183 article-title: Accumulation of oxidized peroxiredoxin 2 in red blood cells and its prevention publication-title: Transfusion doi: 10.1111/trf.13039 – volume: 105 start-page: 9633 year: 2008 ident: ref_140 article-title: HDAC6 is a specific deacetylase of peroxiredoxins and is involved in redox regulation publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0803749105 – volume: 263 start-page: 336 year: 1976 ident: ref_32 article-title: Variable Ca sensitivity of a K-selective channel in intact red-cell membranes publication-title: Nature doi: 10.1038/263336a0 – volume: 10 start-page: 791 year: 2016 ident: ref_189 article-title: Donor-variation effect on red blood cell storage lesion: A close relationship emerges publication-title: Proteom. Clin. Appl. doi: 10.1002/prca.201500128 – volume: 24 start-page: 169 year: 2017 ident: ref_202 article-title: Variations in the cerebrospinal fluid proteome following traumatic brain injury and subarachnoid hemorrhage publication-title: Pathophysiology doi: 10.1016/j.pathophys.2017.04.003 – volume: 117 start-page: 625 year: 2004 ident: ref_158 article-title: Two enzymes in one; two yeast peroxiredoxins display oxidative stress-dependent switching from a peroxidase to a molecular chaperone function publication-title: Cell doi: 10.1016/j.cell.2004.05.002 – volume: 293 start-page: 11901 year: 2018 ident: ref_118 article-title: Novel hyperoxidation resistance motifs in 2-Cys peroxiredoxins publication-title: J. Biol. Chem. doi: 10.1074/jbc.RA117.001690 – volume: 39 start-page: 26 year: 2016 ident: ref_109 article-title: Kinetic Approaches to Measuring Peroxiredoxin Reactivity publication-title: Mol. Cells doi: 10.14348/molcells.2016.2325 – volume: 280 start-page: 28775 year: 2005 ident: ref_175 article-title: Oxidative stress-dependent structural and functional switching of a human 2-Cys peroxiredoxin isotype II that enhances HeLa cell resistance to H2O2-induced cell death publication-title: J. Biol. Chem. doi: 10.1074/jbc.M505362200 – ident: ref_137 doi: 10.3390/antiox10020206 – volume: 130 start-page: 163 year: 2019 ident: ref_8 article-title: Cancer-associated fibroblasts modify lung cancer metabolism involving ROS and TGF-β signaling publication-title: Free Radic. Biol. Med. doi: 10.1016/j.freeradbiomed.2018.10.450 – volume: 271 start-page: 15315 year: 1996 ident: ref_44 article-title: Removal of hydrogen peroxide by thiol-specific antioxidant enzyme (TSA) is involved with its antioxidant properties. TSA possesses thiol peroxidase activity publication-title: J. Biol. Chem. doi: 10.1074/jbc.271.26.15315 – volume: 4 start-page: e126376 year: 2019 ident: ref_24 article-title: Transition to 37 °C reveals importance of NADPH in mitigating oxidative stress in stored RBCs publication-title: J. Clin. Investig. – volume: 45 start-page: 398 year: 2012 ident: ref_74 article-title: Inactivation of a peroxiredoxin by hydrogen peroxide is critical for thioredoxin-mediated repair of oxidized proteins and cell survival publication-title: Mol. Cell doi: 10.1016/j.molcel.2011.11.027 – volume: 573 start-page: 37 year: 2019 ident: ref_142 article-title: Glycation profile of minor abundant erythrocyte proteome across varying glycemic index in diabetes mellitus publication-title: Anal. Biochem. doi: 10.1016/j.ab.2019.02.026 – volume: 11 start-page: 288 year: 2020 ident: ref_205 article-title: Intracerebral Hemorrhage-Induced Brain Injury in Rats: The Role of Extracellular Peroxiredoxin 2 publication-title: Transl. Stroke Res. doi: 10.1007/s12975-019-00714-x – volume: 73 start-page: 334 year: 1989 ident: ref_30 article-title: Catalase and glutathione peroxidase are equally active in detoxification of hydrogen peroxide in human erythrocytes publication-title: Blood doi: 10.1182/blood.V73.1.334.334 – volume: 11 start-page: 357 year: 2020 ident: ref_197 article-title: Expression of South East Asian Ovalocytic Band 3 Disrupts Erythroblast Cytokinesis and Reticulocyte Maturation publication-title: Front. Physiol. doi: 10.3389/fphys.2020.00357 – volume: 39 start-page: 6944 year: 2000 ident: ref_40 article-title: Interaction of human thiol-specific antioxidant protein 1 with erythrocyte plasma membrane publication-title: Biochemistry doi: 10.1021/bi000034j – volume: 77 start-page: 331 year: 2014 ident: ref_146 article-title: Interaction of adenanthin with glutathione and thiol enzymes: Selectivity for thioredoxin reductase and inhibition of peroxiredoxin recycling publication-title: Free Radic. Biol. Med. doi: 10.1016/j.freeradbiomed.2014.09.025 – volume: 17 start-page: 11 year: 2012 ident: ref_16 article-title: Potential roles of the NFκB and glutathione pathways in mature human erythrocytes publication-title: Cell. Mol. Biol. Lett. doi: 10.2478/s11658-011-0032-x – ident: ref_136 doi: 10.3390/antiox8020029 – ident: ref_3 doi: 10.3390/ijms20225769 – volume: 16 start-page: 2752 year: 2017 ident: ref_80 article-title: Quantitative Analysis of Human Red Blood Cell Proteome publication-title: J. Proteome Res. doi: 10.1021/acs.jproteome.7b00025 – volume: 289 start-page: 15536 year: 2014 ident: ref_138 article-title: Nitration transforms a sensitive peroxiredoxin 2 into a more active and robust peroxidase publication-title: J. Biol. Chem. doi: 10.1074/jbc.M113.539213 – volume: 276 start-page: 2469 year: 2009 ident: ref_49 article-title: Typical 2-Cys peroxiredoxins--structures, mechanisms and functions publication-title: FEBS J. doi: 10.1111/j.1742-4658.2009.06985.x – volume: 7 start-page: 3040 year: 2009 ident: ref_147 article-title: Identification of conoidin A as a covalent inhibitor of peroxiredoxin II publication-title: Org. Biomol. Chem. doi: 10.1039/b901735f – volume: 48 start-page: 519 year: 2010 ident: ref_164 article-title: The effects of disruption of genes for peroxiredoxin-2, glutathione peroxidase-1, and catalase on erythrocyte oxidative metabolism publication-title: Free Radic. Biol. Med. doi: 10.1016/j.freeradbiomed.2009.11.021 – volume: 595 start-page: 33 year: 2016 ident: ref_127 article-title: Oxidative stress, free radicals and protein peroxides publication-title: Arch. Biochem. Biophys. doi: 10.1016/j.abb.2015.10.021 – volume: 24 start-page: 1085 year: 2019 ident: ref_181 article-title: Interactions between human hemoglobin subunits and peroxiredoxin 2 publication-title: Front. Biosci. doi: 10.2741/4770 – volume: 286 start-page: 12901 year: 2011 ident: ref_124 article-title: Urate as a physiological substrate for myeloperoxidase: Implications for hyperuricemia and inflammation publication-title: J. Biol. Chem. doi: 10.1074/jbc.M110.172460 – volume: 109 start-page: 2611 year: 2007 ident: ref_14 article-title: Peroxiredoxin 2 functions as a noncatalytic scavenger of low-level hydrogen peroxide in the erythrocyte publication-title: Blood doi: 10.1182/blood-2006-09-048728 – volume: 11 start-page: 5 year: 2015 ident: ref_72 article-title: Redox biology: Signaling via a peroxiredoxin sensor publication-title: Nat. Chem. Biol. doi: 10.1038/nchembio.1722 – volume: 43 start-page: 68 year: 2009 ident: ref_93 article-title: Linkage of cytosolic peroxiredoxin 2 to erythrocyte membrane imposed by hydrogen peroxide-induced oxidative stress publication-title: Blood Cells Mol. Dis. doi: 10.1016/j.bcmd.2009.03.002 – volume: 145 start-page: 1 year: 2019 ident: ref_133 article-title: Enhanced hyperoxidation of peroxiredoxin 2 and peroxiredoxin 3 in the presence of bicarbonate/CO2 publication-title: Free Radic. Biol. Med. doi: 10.1016/j.freeradbiomed.2019.09.010 – volume: 288 start-page: 11312 year: 2013 ident: ref_141 article-title: Multilevel regulation of 2-Cys peroxiredoxin reaction cycle by S-nitrosylation publication-title: J. Biol. Chem. doi: 10.1074/jbc.M112.433755 – volume: 70 start-page: 257 year: 2012 ident: ref_5 article-title: Free radicals and antioxidants: Updating a personal view publication-title: Nutr. Rev. doi: 10.1111/j.1753-4887.2012.00476.x – volume: 300 start-page: 650 year: 2003 ident: ref_41 article-title: Peroxiredoxin evolution and the regulation of hydrogen peroxide signaling publication-title: Science doi: 10.1126/science.1080405 – volume: 34 start-page: 101399 year: 2020 ident: ref_169 article-title: Redox regulation of nitrosyl-hemoglobin in human erythrocytes publication-title: Redox Biol. doi: 10.1016/j.redox.2019.101399 – volume: 53 start-page: 447 year: 2012 ident: ref_143 article-title: Role of sulfiredoxin as a regulator of peroxiredoxin function and regulation of its expression publication-title: Free Radic. Biol. Med. doi: 10.1016/j.freeradbiomed.2012.05.020 – volume: 28 start-page: 574 year: 2018 ident: ref_75 article-title: Hyperoxidation of Peroxiredoxins: Gain or Loss of Function? publication-title: Antioxid. Redox Signal. doi: 10.1089/ars.2017.7214 – volume: 120 start-page: 423 year: 2021 ident: ref_170 article-title: Redox interactome in malaria parasite Plasmodium falciparum publication-title: Parasitol. Res. doi: 10.1007/s00436-021-07051-9 – volume: 101 start-page: 5033 year: 2003 ident: ref_161 article-title: Peroxiredoxin II is essential for sustaining life span of erythrocytes in mice publication-title: Blood doi: 10.1182/blood-2002-08-2548 – volume: 469 start-page: 498 year: 2011 ident: ref_173 article-title: Circadian clocks in human red blood cells publication-title: Nature doi: 10.1038/nature09702 – volume: 51 start-page: 1439 year: 2011 ident: ref_187 article-title: Peroxiredoxin-2 as a candidate biomarker to test oxidative stress levels of stored red blood cells under blood bank conditions publication-title: Transfusion doi: 10.1111/j.1537-2995.2010.03032.x – volume: 282 start-page: 22011 year: 2007 ident: ref_176 article-title: Human peroxiredoxin 1 and 2 are not duplicate proteins: The unique presence of CYS83 in Prx1 underscores the structural and functional differences between Prx1 and Prx2 publication-title: J. Biol. Chem. doi: 10.1074/jbc.M610330200 – volume: 118 start-page: 7 year: 1991 ident: ref_28 article-title: Erythrocyte defense against hydrogen peroxide: Preeminent importance of catalase publication-title: J. Lab. Clin. Med. – volume: 739 start-page: 109569 year: 2023 ident: ref_168 article-title: Inhibition of erythrocyte’s catalase, glutathione peroxidase or peroxiredoxin 2-Impact on cytosol and membrane publication-title: Arch. Biochem. Biophys. doi: 10.1016/j.abb.2023.109569 – volume: 41 start-page: 5493 year: 2002 ident: ref_89 article-title: Dimers to doughnuts: Redox-sensitive oligomerization of 2-cysteine peroxiredoxins publication-title: Biochemistry doi: 10.1021/bi012173m – volume: 256 start-page: 751 year: 1988 ident: ref_151 article-title: Myeloperoxidase oxidation states involved in myeloperoxidase-oxidase oxidation of thiols publication-title: Biochem. J. doi: 10.1042/bj2560751 – volume: 104 start-page: 18742 year: 2007 ident: ref_77 article-title: S-nitrosylation of peroxiredoxin 2 promotes oxidative stress-induced neuronal cell death in Parkinson’s disease publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0705904104 – volume: 572 start-page: 1 year: 2019 ident: ref_23 article-title: Assessment of NAD+ metabolism in human cell cultures, erythrocytes, cerebrospinal fluid and primate skeletal muscle publication-title: Anal. Biochem. doi: 10.1016/j.ab.2019.02.019 – volume: 44 start-page: 1072 year: 2012 ident: ref_90 article-title: Structural and functional analysis of native peroxiredoxin 2 in human red blood cells publication-title: Int. J. Biochem. Cell Biol. doi: 10.1016/j.biocel.2012.04.008 – volume: 518 start-page: 685 year: 2019 ident: ref_119 article-title: Differential oxidation processes of peroxiredoxin 2 dependent on the reaction with several peroxides in human red blood cells publication-title: Biochem. Biophys. Res. Commun. doi: 10.1016/j.bbrc.2019.08.108 – ident: ref_148 doi: 10.1371/journal.pone.0092411 – ident: ref_6 doi: 10.1093/acprof:oso/9780198717478.001.0001 – volume: 262 start-page: 127 year: 1999 ident: ref_39 article-title: Properties of thiol-specific anti-oxidant protein or calpromotin in solution publication-title: Biochem. Biophys. Res. Commun. doi: 10.1006/bbrc.1999.1107 – volume: 281 start-page: 14400 year: 2006 ident: ref_62 article-title: Molecular mechanism of the reduction of cysteine sulfinic acid of peroxiredoxin to cysteine by mammalian sulfiredoxin publication-title: J. Biol. Chem. doi: 10.1074/jbc.M511082200 – volume: 286 start-page: 18048 year: 2011 ident: ref_115 article-title: Model for the exceptional reactivity of peroxiredoxins 2 and 3 with hydrogen peroxide: A kinetic and computational study publication-title: J. Biol. Chem. doi: 10.1074/jbc.M111.232355 – volume: 26 start-page: 1777 year: 1987 ident: ref_104 article-title: Partial characterization of the copolymerization reaction of erythrocyte membrane band 3 with hemichromes publication-title: Biochemistry doi: 10.1021/bi00380a041 – volume: 18 start-page: 1259 year: 1997 ident: ref_76 article-title: Comparing the predicted and observed properties of proteins encoded in the genome of Escherichia coli K-12 publication-title: Electrophoresis doi: 10.1002/elps.1150180807 – volume: 47 start-page: 473 year: 1982 ident: ref_20 article-title: The distribution of ascorbic acid between various cellular components of blood, in normal individuals, and its relation to the plasma concentration publication-title: Br. J. Nutr. doi: 10.1079/BJN19820059 – volume: 76 start-page: 80 year: 2014 ident: ref_162 article-title: The novel role of peroxiredoxin-2 in red cell membrane protein homeostasis and senescence publication-title: Free Radic. Biol. Med. doi: 10.1016/j.freeradbiomed.2014.08.004 – volume: 232 start-page: 294 year: 1997 ident: ref_92 article-title: Protein 7.2b of human erythrocyte membranes binds to calpromotin publication-title: Biochem. Biophys. Res. Commun. doi: 10.1006/bbrc.1997.6278 – ident: ref_1 – volume: 282 start-page: 11885 year: 2007 ident: ref_108 article-title: The high reactivity of peroxiredoxin 2 with H2O2 is not reflected in its reaction with other oxidants and thiol reagents publication-title: J. Biol. Chem. doi: 10.1074/jbc.M700339200 – volume: 155 start-page: 493 year: 1976 ident: ref_2 article-title: Reactions involving superoxide and normal and unstable haemoglobins publication-title: Biochem. J. doi: 10.1042/bj1550493 – volume: 39 start-page: 53 year: 2016 ident: ref_50 article-title: Distribution and Features of the Six Classes of Peroxiredoxins publication-title: Mol. Cells doi: 10.14348/molcells.2016.2330 – volume: 80 start-page: 183 year: 2015 ident: ref_71 article-title: A primer on peroxiredoxin biochemistry publication-title: Free Radic. Biol. Med. doi: 10.1016/j.freeradbiomed.2014.10.009 – volume: 246 start-page: 591 year: 2013 ident: ref_101 article-title: Identification of human erythrocyte cytosolic proteins associated with plasma membrane during thermal stress publication-title: J. Membr. Biol. doi: 10.1007/s00232-013-9569-0 – volume: 312 start-page: 699 year: 1995 ident: ref_81 article-title: Early events in erythroid differentiation: Accumulation of the acidic peroxiredoxin publication-title: Biochem. J. doi: 10.1042/bj3120699 – volume: 384 start-page: 181 year: 2002 ident: ref_149 article-title: Heat-induced generation of reactive oxygen species in water publication-title: Dokl. Biochem. Biophys. doi: 10.1023/A:1016036617585 – volume: 27 start-page: 3315 year: 2013 ident: ref_152 article-title: Neutrophil-mediated oxidation of erythrocyte peroxiredoxin 2 as a potential marker of oxidative stress in inflammation publication-title: FASEB J. doi: 10.1096/fj.13-227298 – volume: 3 start-page: 3 year: 1997 ident: ref_9 article-title: Myeloperoxidase: A key regulator of neutrophil oxidant production publication-title: Redox Rep. doi: 10.1080/13510002.1997.11747085 – volume: 282 start-page: 32623 year: 2007 ident: ref_120 article-title: Oxidation of 2-Cys-peroxiredoxins by arachidonic acid peroxide metabolites of lipoxygenases and cyclooxygenase-2 publication-title: J. Biol. Chem. doi: 10.1074/jbc.M704369200 – volume: 9 start-page: e14745 year: 2021 ident: ref_198 article-title: Active hematopoiesis triggers exosomal release of PRDX2 that promotes osteoclast formation publication-title: Physiol. Rep. doi: 10.14814/phy2.14745 – volume: 259 start-page: 10238 year: 1984 ident: ref_102 article-title: The interaction of hemoglobin with the cytoplasmic domain of band 3 of the human erythrocyte membrane publication-title: J. Biol. Chem. doi: 10.1016/S0021-9258(18)90956-7 – volume: 55 start-page: 27 year: 2013 ident: ref_95 article-title: Membrane association of peroxiredoxin-2 in red cells is mediated by the N-terminal cytoplasmic domain of band 3 publication-title: Free Radic. Biol. Med. doi: 10.1016/j.freeradbiomed.2012.10.543 – volume: 56 start-page: 100 year: 1997 ident: ref_193 article-title: Calpromotin, a cytoplasmic protein, is associated with the formation of dense cells in sickle cell anemia publication-title: Am. J. Hematol. doi: 10.1002/(SICI)1096-8652(199710)56:2<100::AID-AJH5>3.0.CO;2-2 – volume: 45 start-page: 101 year: 1999 ident: ref_43 article-title: Characterization of three isoforms of mammalian peroxiredoxin that reduce peroxides in the presence of thioredoxin publication-title: Diabetes Res. Clin. Pract. doi: 10.1016/S0168-8227(99)00037-6 – volume: 38 start-page: 29 year: 2007 ident: ref_84 article-title: Formation, TEM study and 3D reconstruction of the human erythrocyte peroxiredoxin-2 dodecahedral higher-order assembly publication-title: Micron doi: 10.1016/j.micron.2006.04.010 – volume: 129 start-page: 383 year: 2018 ident: ref_144 article-title: Peroxiredoxin interaction with the cytoskeletal-regulatory protein CRMP2: Investigation of a putative redox relay publication-title: Free Radic. Biol. Med. doi: 10.1016/j.freeradbiomed.2018.10.407 – volume: 485 start-page: 459 year: 2012 ident: ref_172 article-title: Peroxiredoxins are conserved markers of circadian rhythms publication-title: Nature doi: 10.1038/nature11088 – volume: 49 start-page: 990 year: 2015 ident: ref_99 article-title: Peroxiredoxin 2, glutathione peroxidase, and catalase in the cytosol and membrane of erythrocytes under H2O2-induced oxidative stress publication-title: Free Radic. Res. doi: 10.3109/10715762.2015.1028402 – volume: 117 start-page: 16313 year: 2020 ident: ref_87 article-title: Real-time monitoring of peroxiredoxin oligomerization dynamics in living cells publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1915275117 – volume: 58 start-page: 572 year: 2006 ident: ref_129 article-title: Red blood cells in the metabolism of nitric oxide-derived peroxynitrite publication-title: IUBMB Life doi: 10.1080/15216540600936549 – volume: 27 start-page: 322 year: 1999 ident: ref_111 article-title: Reactivity of biologically important thiol compounds with superoxide and hydrogen peroxide publication-title: Free Radic. Biol. Med. doi: 10.1016/S0891-5849(99)00051-9 – volume: 28 start-page: 1556 year: 2015 ident: ref_126 article-title: Chemical Characterization of Urate Hydroperoxide, A Pro-oxidant Intermediate Generated by Urate Oxidation in Inflammatory and Photoinduced Processes publication-title: Chem. Res. Toxicol. doi: 10.1021/acs.chemrestox.5b00132 – volume: 13 start-page: 655 year: 2022 ident: ref_204 article-title: The Fate of Erythrocytes after Cerebral Hemorrhage publication-title: Transl. Stroke Res. doi: 10.1007/s12975-021-00980-8 – volume: 17 start-page: 332 year: 2019 ident: ref_210 article-title: Plasma peroxiredoxin changes and inflammatory cytokines support the involvement of neuro-inflammation and oxidative stress in Autism Spectrum Disorder publication-title: J. Transl. Med. doi: 10.1186/s12967-019-2076-z – volume: 621 start-page: 31 year: 2017 ident: ref_186 article-title: N-acetylcysteine improves the quality of red blood cells stored for transfusion publication-title: Arch. Biochem. Biophys. doi: 10.1016/j.abb.2017.02.012 – volume: 2 start-page: 706 year: 2008 ident: ref_97 article-title: Heat-shock protein-27, -70 and peroxiredoxin-II show molecular chaperone function in sickle red cells: Evidence from transgenic sickle cell mouse model publication-title: Proteom. Clin. Appl. doi: 10.1002/prca.200780058 – volume: 86 start-page: 84 year: 2021 ident: ref_56 article-title: The Enigma of 2-Cys Peroxiredoxins: What Are Their Roles? publication-title: Biochemistry – volume: 99 start-page: 267 year: 2014 ident: ref_195 article-title: Resveratrol accelerates erythroid maturation by activation of FoxO3 and ameliorates anemia in beta-thalassemic mice publication-title: Haematologica doi: 10.3324/haematol.2013.090076 – volume: 15 start-page: 781 year: 2011 ident: ref_78 article-title: Multiple functions of peroxiredoxins: Peroxidases, sensors and regulators of the intracellular messenger H2O2, and protein chaperones publication-title: Antioxid. Redox Signal. doi: 10.1089/ars.2010.3393 – volume: 484 start-page: 146 year: 2009 ident: ref_46 article-title: The peroxidase and peroxynitrite reductase activity of human erythrocyte peroxiredoxin 2 publication-title: Arch. Biochem. Biophys. doi: 10.1016/j.abb.2008.11.017 – volume: 551 start-page: 1 year: 1979 ident: ref_37 article-title: Calcium-induced erythrocyte membrane changes. The role of adsorption of cytosol proteins and proteases publication-title: Biochim. Biophys. Acta doi: 10.1016/0005-2736(79)90348-1 – volume: 333 start-page: 19 year: 2003 ident: ref_15 article-title: Analysis of glutathione: Implication in redox and detoxification publication-title: Clin. Chim. Acta doi: 10.1016/S0009-8981(03)00200-6 – volume: 53 start-page: 7693 year: 2014 ident: ref_58 article-title: Tuning of peroxiredoxin catalysis for various physiological roles publication-title: Biochemistry doi: 10.1021/bi5013222 – volume: 47 start-page: 164 year: 2013 ident: ref_98 article-title: Role of peroxiredoxin-2 in protecting RBCs from hydrogen peroxide-induced oxidative stress publication-title: Free Radic. Res. doi: 10.3109/10715762.2012.756138 – ident: ref_7 doi: 10.3390/ijms18091932 – volume: 30 start-page: 174 year: 2009 ident: ref_208 article-title: Hydroxyoctadecadienoic acid and oxidatively modified peroxiredoxins in the blood of Alzheimer’s disease patients and their potential as biomarkers publication-title: Neurobiol. Aging doi: 10.1016/j.neurobiolaging.2007.06.012 – volume: 383 start-page: 347 year: 2002 ident: ref_45 article-title: Peroxiredoxins publication-title: Biol. Chem. doi: 10.1515/BC.2002.040 – volume: 291 start-page: 3053 year: 2016 ident: ref_55 article-title: Glutathionylation of the active site cysteines of peroxiredoxin 2 and recycling by glutaredoxin publication-title: J. Biol. Chem. doi: 10.1074/jbc.M115.692798 – volume: 48 start-page: 4666 year: 2009 ident: ref_67 article-title: Redox-regulated chaperones publication-title: Biochemistry doi: 10.1021/bi9003556 – volume: 17 start-page: 4071 year: 1978 ident: ref_25 article-title: Tissue distribution and subcellular localization of bovine thioredoxin determined by radioimmunoassay publication-title: Biochemistry doi: 10.1021/bi00612a031 – volume: 86 start-page: 331 year: 1991 ident: ref_165 article-title: Acatalasemia publication-title: Hum Genet. doi: 10.1007/BF00201829 – volume: 47 start-page: 1468 year: 2009 ident: ref_135 article-title: Chloramines and hypochlorous acid oxidize erythrocyte peroxiredoxin 2 publication-title: Free Radic. Biol. Med. doi: 10.1016/j.freeradbiomed.2009.08.022 – ident: ref_150 doi: 10.3390/ijms21218033 – volume: 430 start-page: 602 year: 2018 ident: ref_105 article-title: Negatively Charged Lipids Are Essential for Functional and Structural Switch of Human 2-Cys Peroxiredoxin II publication-title: J. Mol. Biol. doi: 10.1016/j.jmb.2017.12.020 – volume: 46 start-page: 102073 year: 2021 ident: ref_123 article-title: Red blood cells contain enzymatically active GPx4 whose abundance anticorrelates with hemolysis during blood bank storage publication-title: Redox Biol. doi: 10.1016/j.redox.2021.102073 – volume: 11 start-page: 1600121 year: 2017 ident: ref_188 article-title: Identification of potential protein quality markers in pathogen inactivated and gamma-irradiated red cell concentrates publication-title: Proteom. Clin. Appl. doi: 10.1002/prca.201600121 – ident: ref_199 doi: 10.3390/antiox11122486 – volume: 1840 start-page: 906 year: 2014 ident: ref_154 article-title: Peroxiredoxins as biomarkers of oxidative stress publication-title: Biochim. Biophys. Acta doi: 10.1016/j.bbagen.2013.08.001 – volume: 82 start-page: 323 year: 2013 ident: ref_174 article-title: Molecular chaperone functions in protein folding and proteostasis publication-title: Annu. Rev. Biochem. doi: 10.1146/annurev-biochem-060208-092442 – volume: 274 start-page: 13908 year: 1999 ident: ref_31 article-title: Mechanisms of protection of catalase by NADPH. Kinetics and stoichiometry publication-title: J. Biol. Chem. doi: 10.1074/jbc.274.20.13908 – volume: 432 start-page: 313 year: 2010 ident: ref_128 article-title: Removal of amino acid, peptide and protein hydroperoxides by reaction with peroxiredoxins 2 and 3 publication-title: Biochem. J. doi: 10.1042/BJ20101156 – volume: 63 start-page: 753 year: 2014 ident: ref_17 article-title: A monitoring of allantoin, uric acid, and malondialdehyde levels in plasma and erythrocytes after ten minutes of running activity publication-title: Physiol. Res. – volume: 71 start-page: 512 year: 1988 ident: ref_22 article-title: Decreased erythrocyte nicotinamide adenine dinucleotide redox potential and abnormal pyridine nucleotide content in sickle cell disease publication-title: Blood doi: 10.1182/blood.V71.2.512.512 – volume: 22 start-page: 294 year: 2015 ident: ref_185 article-title: Peroxiredoxin-2 recycling is inhibited during erythrocyte storage publication-title: Antioxid. Redox Signal. doi: 10.1089/ars.2014.5950 – volume: 47 start-page: 12860 year: 2008 ident: ref_114 article-title: Cysteine pKa values for the bacterial peroxiredoxin AhpC publication-title: Biochemistry doi: 10.1021/bi801718d – volume: 13 start-page: 3233 year: 2013 ident: ref_192 article-title: 2D DIGE based proteomics study of erythrocyte cytosol in sickle cell disease: Altered proteostasis and oxidative stress publication-title: Proteomics doi: 10.1002/pmic.201300177 – volume: 38 start-page: 1543 year: 2005 ident: ref_51 article-title: Peroxiredoxins: A historical overview and speculative preview of novel mechanisms and emerging concepts in cell signaling publication-title: Free Radic. Biol. Med. doi: 10.1016/j.freeradbiomed.2005.02.026 – volume: 33 start-page: 3051 year: 2019 ident: ref_201 article-title: Peroxiredoxin 1/2 protects brain against H2O2-induced apoptosis after subarachnoid hemorrhage publication-title: FASEB J. doi: 10.1096/fj.201801150R – volume: 8 start-page: 626 year: 2014 ident: ref_207 article-title: Label-free proteomic analysis of red blood cell membrane fractions from abdominal aortic aneurysm patients publication-title: Proteom. Clin. Appl. doi: 10.1002/prca.201400035 – volume: 39 start-page: 1 year: 2016 ident: ref_47 article-title: Overview on Peroxiredoxin publication-title: Mol. Cells doi: 10.14348/molcells.2016.2368 – volume: 89 start-page: 344 year: 2020 ident: ref_184 article-title: Damage to red blood cells during whole blood storage publication-title: J. Trauma Acute Care Surg. doi: 10.1097/TA.0000000000002730 – volume: 40 start-page: 129 year: 1994 ident: ref_38 article-title: Cloning and sequence analysis of candidate human natural killer enhancing factor genes publication-title: Immunogenetics doi: 10.1007/BF00188176 – volume: 1830 start-page: 3289 year: 2013 ident: ref_121 article-title: Glutathione peroxidases publication-title: Biochim. Biophys. Acta doi: 10.1016/j.bbagen.2012.11.020 – volume: 279 start-page: 50994 year: 2004 ident: ref_63 article-title: Characterization of mammalian sulfiredoxin and its reactivation of hyperoxidized peroxiredoxin through reduction of cysteine sulfinic acid in the active site to cysteine publication-title: J. Biol. Chem. doi: 10.1074/jbc.M409482200 – volume: 15 start-page: 297 year: 2018 ident: ref_153 article-title: Mapping the phenotypic repertoire of the cytoplasmic 2-Cys peroxiredoxin-Thioredoxin system. 1. Understanding commonalities and differences among cell types publication-title: Redox Biol. doi: 10.1016/j.redox.2017.12.008 – volume: 6 start-page: 967 year: 2004 ident: ref_163 article-title: Heme degradation by reactive oxygen species publication-title: Antioxid. Redox Signal. – volume: 8 start-page: 605 year: 2000 ident: ref_82 article-title: Crystal structure of decameric 2-Cys peroxiredoxin from human erythrocytes at 1.7 A resolution publication-title: Structure doi: 10.1016/S0969-2126(00)00147-7 – volume: 19 start-page: 1475 year: 2006 ident: ref_130 article-title: A role for peroxymonocarbonate in the stimulation of biothiol peroxidation by the bicarbonate/carbon dioxide pair publication-title: Chem. Res. Toxicol. doi: 10.1021/tx060146x – volume: 426 start-page: 427 year: 2012 ident: ref_180 article-title: Peroxiredoxin II is essential for preventing hemolytic anemia from oxidative stress through maintaining hemoglobin stability publication-title: Biochem. Biophys. Res. Commun. doi: 10.1016/j.bbrc.2012.08.113 – volume: 15 start-page: 87 year: 2018 ident: ref_203 article-title: Peroxiredoxin 2 activates microglia by interacting with Toll-like receptor 4 after subarachnoid hemorrhage publication-title: J. Neuroinflamm. doi: 10.1186/s12974-018-1118-4 – volume: 1862 start-page: 183172 year: 2020 ident: ref_196 article-title: Linkage of typically cytosolic peroxidases to erythrocyte membrane—A possible mechanism of protection in Hereditary Spherocytosis publication-title: Biochim. Biophys. Acta Biomembr. doi: 10.1016/j.bbamem.2019.183172 – volume: 296 start-page: 100494 year: 2021 ident: ref_116 article-title: Modifying the resolving cysteine affects the structure and hydrogen peroxide reactivity of peroxiredoxin 2 publication-title: J. Biol. Chem. doi: 10.1016/j.jbc.2021.100494 – volume: 41 start-page: 5 year: 2008 ident: ref_96 article-title: Presence of cytosolic peroxiredoxin 2 in the erythrocyte membrane of patients with hereditary spherocytosis publication-title: Blood Cells Mol. Dis. doi: 10.1016/j.bcmd.2008.02.008 – volume: 2023 start-page: 5781180 year: 2023 ident: ref_206 article-title: Peroxiredoxin 2 Is a Potential Objective Indicator for Severity and the Clinical Status of Subarachnoid Hemorrhage Patients publication-title: Dis. Markers doi: 10.1155/2023/5781180 – volume: 30 start-page: 823 year: 1998 ident: ref_167 article-title: A low catalase activity in dog erythrocytes is due to a very low content of catalase protein despite having a normal specific activity publication-title: Int. J. Biochem. Cell Biol. doi: 10.1016/S1357-2725(98)00044-2 – volume: 65 start-page: 742 year: 2013 ident: ref_19 article-title: The concentration of glutathione in human erythrocytes is a heritable trait publication-title: Free Radic. Biol. Med. doi: 10.1016/j.freeradbiomed.2013.08.002 – volume: 10 start-page: 1621 year: 2008 ident: ref_42 article-title: Peroxiredoxin 2 and peroxide metabolism in the erythrocyte publication-title: Antioxid. Redox Signal. doi: 10.1089/ars.2008.2081 – volume: 3 start-page: 313 year: 2001 ident: ref_13 article-title: Redox reactions of hemoglobin and myoglobin: Biological and toxicological implications publication-title: Antioxid. Redox Signal. doi: 10.1089/152308601300185250 – ident: ref_194 doi: 10.1371/journal.pone.0208316 – volume: 1528 start-page: 159 year: 2001 ident: ref_21 article-title: Mechanisms of ascorbic acid recycling in human erythrocytes publication-title: Biochim. Biophys. Acta doi: 10.1016/S0304-4165(01)00188-X – volume: 269 start-page: 27670 year: 1994 ident: ref_52 article-title: Thioredoxin-dependent peroxide reductase from yeast publication-title: J. Biol. Chem. doi: 10.1016/S0021-9258(18)47038-X – volume: 175 start-page: 779 year: 2006 ident: ref_73 article-title: Oxidation state governs structural transitions in peroxiredoxin II that correlate with cell cycle arrest and recovery publication-title: J. Cell Biol. doi: 10.1083/jcb.200606005 – volume: 12 start-page: 1235 year: 2010 ident: ref_160 article-title: Irreversible inactivation of glutathione peroxidase 1 and reversible inactivation of peroxiredoxin II by H2O2 in red blood cells publication-title: Antioxid. Redox Signal. doi: 10.1089/ars.2009.2701 – volume: 46 start-page: 329 year: 1969 ident: ref_35 article-title: Some negative contrast staining features of a protein from erythrocyte ghosts publication-title: J. Mol. Biol. doi: 10.1016/0022-2836(69)90425-2 – volume: 292 start-page: 8705 year: 2017 ident: ref_110 article-title: Urate hydroperoxide oxidizes human peroxiredoxin 1 and peroxiredoxin 2 publication-title: J. Biol. Chem. doi: 10.1074/jbc.M116.767657 – volume: 49 start-page: 457 year: 2010 ident: ref_94 article-title: Peroxiredoxin-2 expression is increased in beta-thalassemic mouse red cells but is displaced from the membrane as a marker of oxidative stress publication-title: Free Radic. Biol. Med. doi: 10.1016/j.freeradbiomed.2010.05.003 – volume: 451 start-page: 98 year: 2008 ident: ref_64 article-title: Structure of the sulphiredoxin-peroxiredoxin complex reveals an essential repair embrace publication-title: Nature doi: 10.1038/nature06415 – volume: 47 start-page: 7196 year: 2008 ident: ref_88 article-title: Thermodynamics of the dimer-decamer transition of reduced human and plant 2-cys peroxiredoxin publication-title: Biochemistry doi: 10.1021/bi8002956 – volume: 288 start-page: 14170 year: 2013 ident: ref_59 article-title: Hyperoxidation of peroxiredoxins 2 and 3: Rate constants for the reactions of the sulfenic acid of the peroxidatic cysteine publication-title: J. Biol. Chem. doi: 10.1074/jbc.M113.460881 – volume: 199 start-page: 199 year: 1994 ident: ref_106 article-title: Purification and characterization of thiol-specific antioxidant protein from human red blood cell: A new type of antioxidant protein publication-title: Biochem. Biophys. Res. Commun. doi: 10.1006/bbrc.1994.1214 – volume: 287 start-page: 4403 year: 2012 ident: ref_53 article-title: Peroxiredoxin functions as a peroxidase and a regulator and sensor of local peroxides publication-title: J. Biol. Chem. doi: 10.1074/jbc.R111.283432 – volume: 111 start-page: 12043 year: 2014 ident: ref_159 article-title: Circadian rhythm of hyperoxidized peroxiredoxin II is determined by hemoglobin autoxidation and the 20S proteasome in red blood cells publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1401100111 – volume: 270 start-page: 334 year: 2003 ident: ref_178 article-title: Antioxidant protein 2 prevents methemoglobin formation in erythrocyte hemolysates publication-title: Eur. J. Biochem. doi: 10.1046/j.1432-1033.2003.03393.x – volume: 11 start-page: 64 year: 2015 ident: ref_57 article-title: Peroxiredoxin-2 and STAT3 form a redox relay for H2O2 signaling publication-title: Nat. Chem. Biol. doi: 10.1038/nchembio.1695 – volume: 36 start-page: e22267 year: 2022 ident: ref_157 article-title: Peroxiredoxin-2 recycling is slower in denser and pediatric sickle cell red cells publication-title: FASEB J. doi: 10.1096/fj.202200052R – volume: 425 start-page: 980 year: 2003 ident: ref_60 article-title: ATP-dependent reduction of cysteine-sulphinic acid by S. cerevisiae sulphiredoxin publication-title: Nature doi: 10.1038/nature02075 – volume: 304 start-page: 596 year: 2004 ident: ref_61 article-title: Regeneration of peroxiredoxins by p53-regulated sestrins, homologs of bacterial AhpD publication-title: Science doi: 10.1126/science.1095569 |
SSID | ssj0000913809 |
Score | 2.3278227 |
SecondaryResourceType | review_article |
Snippet | Peroxiredoxin 2 (Prdx2) is the third most abundant erythrocyte protein. It was known previously as calpromotin since its binding to the membrane stimulates the... |
SourceID | doaj pubmedcentral proquest gale pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 1012 |
SubjectTerms | Acetylation Amino acids antioxidant antioxidant activity Antioxidants autoxidation B cells Calcium calpromotin Chemical bonds Circadian rhythms cysteine Cytosol Enzymes erythrocyte erythrocyte membrane erythrocytes Glutathione Hemoglobin Hydrogen peroxide hydroperoxides lipids Membrane proteins Nitration Oxidants Oxidation Oxidative stress Peroxiredoxin Phosphorylation Physiology Post-translation Potassium potassium channels Potassium channels (calcium-gated) Proteins Review Thiols Thioredoxin thioredoxins Uric acid |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3dS4RAEF-ip3qIvru-MAh6ktR1193errqooAgq6G3ZL-mgvLgMrv--GfUOJaqXHnVGXcfZnfnp-BtCDrlOveFChk47AQBF01Ayhy_yqbfIqG4E_o18c8svH9PrJ_bUavWFNWE1PXBtOADs1LqUOziNSJlOjJbMstRpJJKizODqCzGvBaaqNVjGVESyZmmkgOuPNRYPTuKkcsKkE4Uqsv7vS3IrJnXrJVsB6GKZLDWZY9CvR7xC5nyxShZbfIJr5P7Oj0eTIXKAToZFkJwE_SK4eq1S7KIMBnWpeDDKA0j7QIZjHToUnfsc8KyfigbjT-yfYD9Lv04eLgYPZ5dh0zUhtJD6lyEDyxvsauQgljsnPMZ8bNuXOJZDnIqd11zDdi4c05bGnkkbWaZj7anJ6QaZL0aF3yIBhdzEylxKpmkKQEpzmeXWsCgyNsoF75FwakRlG0ZxbGzxogBZoNFV1-g9cjTTf6u5NH7UPMVnMtNCDuxqB3iGajxD_eUZcDl8ogpnKgzL6uaHA7g55LxS_QyTUy551iO7HU2YYbYrnvqEamb4u8IPkJBMSg6DPZiJ8UisWiv86AN1sGJNAvL_TQfiEXL-w3k2azeb3TbNEgoLqugR0XHAjl26kmL4XHGEY8d2gJJs-z8suUMWEsjt8CNaku2S-XL84fcgFyvNfjXtvgDucDFO priority: 102 providerName: Directory of Open Access Journals – databaseName: Scholars Portal Journals: Open Access dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dS9xAEF9EX-xDsbW1Z7VEEPoUTbLZzW6hlLOeqKAIKvi27Ff0QJM2jXD33zuT5M4LVR-TmSS7szM7M8nkN4Tscp16w4UMnXYCEhRNQ8kcvsin3iKiuhH4N_LZOT--Tk9v2M1z_VMnwH8vpnbYT-q6ut-b_J3-AoP_iRknpOz7GusCJ3HS6BdsxyvglTI00rMu1G92ZRlTEckWt_GFy3p-qYHv_3-TXvBS_QrKBZd0tEbed7FkMGwX_wNZ8sVH8m4BYXCdXF74qpyMERV0Mi6C5EcwLIKTh2a-RR2M2uLxoMwDCASBhmMdOyQd-hwyXD8jjaopdlSw09p_IldHo6vfx2HXRyG0kAzUIYO1MNjnyIF3d054jAKwkV_iWA6eK3Zecw3HuXBMWxp7Jm1kmY61pyann8lyURb-CwkoRCtW5lIyTVNIrTSXWW4NiyJjo1zwAQlnQlS2wxjHVhf3CnINFLrqC31Avs_5_7ToGq9yHuCazLkQFbs5UVa3qjMyxTJqXcodqJxImU6Mlsyy1GkEHaPMwONwRRVqEwzL6u4XBJgcomCpYYbhKpc8G5CtHifYnO2TZzqhZiqr8JMkhJeSw2B35mS8EuvYCl8-Ig_WsMkoyd7iAQ-FXQDgPhutms2nTbOEwhYrBkT0FLAnlz6lGN81qOHYwx2SS7b59ti_ktUE4jj8YJZkW2S5rh79NsRdtfnWGNQTYR0soA priority: 102 providerName: Scholars Portal |
Title | Peroxiredoxin 2: An Important Element of the Antioxidant Defense of the Erythrocyte |
URI | https://www.ncbi.nlm.nih.gov/pubmed/37237878 https://www.proquest.com/docview/2819264962 https://www.proquest.com/docview/2820019027 https://www.proquest.com/docview/2887607892 https://pubmed.ncbi.nlm.nih.gov/PMC10215765 https://doaj.org/article/573cd46d40a845a2ba95c54da964335b |
Volume | 12 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dT9swELc2eNkeEOwzg6FMmrSniNSOHXsvUxlFbBIIbUzizfJXWKUtgRKk8t_vLnGzRtN4qdTeJXXsO9-HL78j5L0wRbBCqswbLyFAMSxT3GMinwWHiOpW4tvIp2fi5Efx9ZJfxoTbbSyrXO2J3UbtG4c58gM88AHjrQT9dH2TYdcoPF2NLTQek03YgiUEX5uHs7Pzb0OWBVEvZa56tEYG8f2BwSLC5YR2wkhH1qgD7f93a16zTeO6yTVDdLxNtqIHmU77Jd8hj0L9jDxdwxV8Tr6fh0WznCMW6HJep_RjOq3TL787V7tu01lfMp42VQruH9BwrHOPpKNQQVwbVqTZ4h77KLj7NrwgF8ezi88nWeyekDkIAdqMwwpY7G7kwaZ7LwPafmzfRz2vwF5NfDDCwPdKem4cmwSuXO64mZjAbMVeko26qcNrkjLwUZyqlOKGFRBQGaHKylme59bllRQJyVaTqF1EFscGF780RBg46Xo86Qn5MPBf95ga_-U8xDUZuBALu_uhWVzpqFqal8z5QngQNFlwQ61R3PHCG4QaY9zC3-GKatRYGJYz8cUDeDjEvtLTEp1UoUSZkL0RJ2iaG5NXMqGjpt_qv3KZkHcDGa_E6rU6NHfIg5VrKqflQzxglxD7H-7zqhez4bFZSRlsrDIhciSAo3kZU-r5zw4rHDu3Q0jJ3zw89l3yhIL3hsdktNwjG-3iLrwFb6u1-1Gl9rtsBXyeFvIPkuIsXg |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-N7gF4QHyOwIAggXiKltpxEiMh1LFOLduqCYq0N8uxHagEyeg60f5R_I_c5aM0Quxtj-1dU-d8vg_7_DuAV7GOXBanMrDappigaB5IYWkjnztDiOpZSreRTybx6Ev08UycbcHv9i4MlVW2NrEy1LY0tEe-Rwc-6LxlzN6f_wyoaxSdrrYtNGq1OHKrX5iyXbwbH-D8vmbscDj9MAqargKBwdB4EQgcWUZdfyz6OmtTRz6R2toxK3K0433rdKzxc55aoQ3vOyFNaITua8eznONjb8B2xDGT6cH2_nBy-mm9qUMgm2koa3BIzmW4p6lmcdlnle6zjvOregT86wk2XGG3THPD7x3ehTtNwOoPag27B1uuuA-3N2AMH8DnUzcvlzOCHl3OCp-99QeFP_5RRfbFwh_WFep-mfsYbSKNxjqzRDpwOabRriUN5ytq22BWC_cQptch1kfQK8rCPQafY0hkZC6l0DzC_E3HMslNJsIwM2Gexh4ErRCVaYDMqZ_Gd4UJDQlddYXuwZs1_3kN4fFfzn2akzUXQW9XX5Tzr6pZyUok3NgotqjXaSQ0y7QURkRWE7IZFxn-Hc2oIgOBwzK6ueeAL0dQW2qQUEwcyzjxYLfDiQvbdMmtTqjGsFyov8vAg5drMv2SiuUKV14SDxXKyZAlV_GgG6RWA_icnVrN1q_NE8bRjqcepB0F7MilSylm3ypocmoUjxmseHL12F_AzdH05FgdjydHT-EWw8CRTuhYsgu9xfzSPcNAb5E9b5aXD-qaF_Qfxg9meg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-NTkLwgPgchQFBAvEUNbXjJEZCqKOtVgZVBUPam-XYDlTaktF1ov3T-O-4y0dphNjbHtu7po59n_b5dwCvIh26NEqkb7VNMEHR3JfC0kY-d4YQ1dOEbiN_nkaH38KPJ-JkB343d2GorLKxiaWhtoWhPfIeHfig85YR62V1WcRsOH5__tOnDlJ00tq006hE5Mitf2H6dvFuMsS1fs3YeHT84dCvOwz4BsPkpS9wlCl1ALLo96xNHPlHanHHrMjQpvet05HGz1lihTa874Q0gRG6rx1PM46PvQG7MSZFQQd2D0bT2ZfNBg8BbiaBrIAiOZdBT1P94qrPSj1gLUdY9gv41ytsucV2yeaWDxzfhTt18OoNKmm7Bzsuvw-3tyANH8DXmVsUqznBkK7mucfeeoPcm5yVUX6-9EZVtbpXZB5Gnkijsc4tkYYuw5TaNaTRYk0tHMx66R7C8XVM6yPo5EXuHoPHMTwyMpNSaB5iLqcjGWcmFUGQmiBLoi74zSQqU4OaU2-NU4XJDU26ak96F95s-M8rOI__ch7Qmmy4CIa7_KJYfFe1VisRc2PDyKKMJ6HQLNVSGBFaTShnXKT4d7SiiowFDsvo-s4DvhzBbqlBTPFxJKO4C_stTlRy0yY3MqFqI3Oh_qpEF15uyPRLKpzLXXFJPFQ0JwMWX8WDLpHaDuBz9iox27w2jxlHm550IWkJYGte2pR8_qOEKaem8ZjNiidXj_0F3ERFVp8m06OncIthDEmHdSzeh85ycemeYcy3TJ_X2uWBumZ9_gN4tWqv |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Peroxiredoxin+2%3A+An+Important+Element+of+the+Antioxidant+Defense+of+the+Erythrocyte&rft.jtitle=Antioxidants&rft.au=Sadowska-Bartosz%2C+Izabela&rft.au=Bartosz%2C+Grzegorz&rft.date=2023-04-27&rft.pub=MDPI+AG&rft.eissn=2076-3921&rft.volume=12&rft.issue=5&rft.spage=1012&rft_id=info:doi/10.3390%2Fantiox12051012&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2076-3921&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2076-3921&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2076-3921&client=summon |