Searching for Kerr in the 2PM amplitude

A bstract The classical scattering of spinning objects is well described by the spinor-helicity formalism for heavy particles. Using these variables, we derive spurious-pole-free, all-spin opposite-helicity Compton amplitudes (factorizing on physical poles to the minimal, all-spin three-point amplit...

Full description

Saved in:
Bibliographic Details
Published inThe journal of high energy physics Vol. 2022; no. 7; pp. 72 - 34
Main Authors Aoude, Rafael, Haddad, Kays, Helset, Andreas
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.07.2022
Springer Nature B.V
Springer Nature
SpringerOpen
Subjects
Online AccessGet full text

Cover

Loading…
Abstract A bstract The classical scattering of spinning objects is well described by the spinor-helicity formalism for heavy particles. Using these variables, we derive spurious-pole-free, all-spin opposite-helicity Compton amplitudes (factorizing on physical poles to the minimal, all-spin three-point amplitudes) in the classical limit for QED, QCD, and gravity. The cured amplitudes are subject to deformations by contact terms, the vast majority of whose contributions we can fix by imposing a relation between spin structures — motivated by lower spin multipoles of black hole scattering — at the second post-Minkowskian (2PM) order. For QED and gravity, this leaves a modest number of unfixed coefficients parametrizing contact-term deformations, while the QCD amplitude is uniquely determined. Our gravitational Compton amplitude allows us to push the state-of-the-art of spinning-2PM scattering to any order in the spin vectors of both objects; we present results here and in the supplementary material file 2PMSpin8Aux.nb up to eighth order in the spin vectors. Interestingly, despite leftover coefficients in the Compton amplitude, imposing the aforementioned relation between spin structures uniquely fixes some higher-spin parts of the 2PM amplitude.
AbstractList A bstract The classical scattering of spinning objects is well described by the spinor-helicity formalism for heavy particles. Using these variables, we derive spurious-pole-free, all-spin opposite-helicity Compton amplitudes (factorizing on physical poles to the minimal, all-spin three-point amplitudes) in the classical limit for QED, QCD, and gravity. The cured amplitudes are subject to deformations by contact terms, the vast majority of whose contributions we can fix by imposing a relation between spin structures — motivated by lower spin multipoles of black hole scattering — at the second post-Minkowskian (2PM) order. For QED and gravity, this leaves a modest number of unfixed coefficients parametrizing contact-term deformations, while the QCD amplitude is uniquely determined. Our gravitational Compton amplitude allows us to push the state-of-the-art of spinning-2PM scattering to any order in the spin vectors of both objects; we present results here and in the supplementary material file 2PMSpin8Aux.nb up to eighth order in the spin vectors. Interestingly, despite leftover coefficients in the Compton amplitude, imposing the aforementioned relation between spin structures uniquely fixes some higher-spin parts of the 2PM amplitude.
The classical scattering of spinning objects is well described by the spinor-helicity formalism for heavy particles. Using these variables, we derive spurious-pole-free, all-spin opposite-helicity Compton amplitudes (factorizing on physical poles to the minimal, all-spin three-point amplitudes) in the classical limit for QED, QCD, and gravity. The cured amplitudes are subject to deformations by contact terms, the vast majority of whose contributions we can fix by imposing a relation between spin structures - motivated by lower spin multipoles of black hole scattering - at the second post-Minkowskian (2PM) order. For QED and gravity, this leaves a modest number of unfixed coefficients parametrizing contact-term deformations, while the QCD amplitude is uniquely determined. Our gravitational Compton amplitude allows us to push the state-of-the-art of spinning-2PM scattering to any order in the spin vectors of both objects; we present results here and in the supplementary material file 2PMSpin8Aux.nb up to eighth order in the spin vectors. Interestingly, despite leftover coefficients in the Compton amplitude, imposing the aforementioned relation between spin structures uniquely fixes some higher-spin parts of the 2PM amplitude.
Abstract The classical scattering of spinning objects is well described by the spinor-helicity formalism for heavy particles. Using these variables, we derive spurious-pole-free, all-spin opposite-helicity Compton amplitudes (factorizing on physical poles to the minimal, all-spin three-point amplitudes) in the classical limit for QED, QCD, and gravity. The cured amplitudes are subject to deformations by contact terms, the vast majority of whose contributions we can fix by imposing a relation between spin structures — motivated by lower spin multipoles of black hole scattering — at the second post-Minkowskian (2PM) order. For QED and gravity, this leaves a modest number of unfixed coefficients parametrizing contact-term deformations, while the QCD amplitude is uniquely determined. Our gravitational Compton amplitude allows us to push the state-of-the-art of spinning-2PM scattering to any order in the spin vectors of both objects; we present results here and in the supplementary material file 2PMSpin8Aux.nb up to eighth order in the spin vectors. Interestingly, despite leftover coefficients in the Compton amplitude, imposing the aforementioned relation between spin structures uniquely fixes some higher-spin parts of the 2PM amplitude.
ArticleNumber 72
Author Helset, Andreas
Aoude, Rafael
Haddad, Kays
Author_xml – sequence: 1
  givenname: Rafael
  orcidid: 0000-0001-9259-9257
  surname: Aoude
  fullname: Aoude, Rafael
  organization: Centre for Cosmology, Particle Physics and Phenomenology (CP3), Université catholique de Louvain
– sequence: 2
  givenname: Kays
  orcidid: 0000-0002-1182-2750
  surname: Haddad
  fullname: Haddad, Kays
  email: kays.haddad@physics.uu.se
  organization: Department of Physics and Astronomy, Uppsala University, Nordita, Stockholm University and KTH Royal Institute of Technology
– sequence: 3
  givenname: Andreas
  orcidid: 0000-0002-5904-3748
  surname: Helset
  fullname: Helset, Andreas
  organization: Walter Burke Institute for Theoretical Physics, California Institute of Technology
BackLink https://www.osti.gov/servlets/purl/1976498$$D View this record in Osti.gov
https://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-316132$$DView record from Swedish Publication Index
https://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-482499$$DView record from Swedish Publication Index
BookMark eNqFkU1vFSEUholpE9vq2u1EF2riWGCYAZZNrf2wxiZ-bAkDh3u53sItMDH--3I7NX4kjSsIed4n5_Duo50QAyD0jOC3BGN-eHF2coX5K4opfY05fYT2CKayFYzLnT_uj9F-ziuMSU8k3kMvP4NOZunDonExNR8gpcaHpiyhoVcfG329WfsyWXiCdp1eZ3h6fx6gr-9PvhyftZefTs-Pjy5b04u-tJ1h2HFuORes6x3X1lkzaOJIL620xPajFTAOhI1EU7AOXDcC2G4QUlBsuwN0Pntt1Cu1Sf5ap58qaq_uHmJaKJ2KN2tQA-Zjz-nQOemYtFwPxnDOZMetAS1odb2ZXfkHbKbxL9s7_-3ozjZNignKpKx4-3_8e1mqjgyk2-qfz3zMxatsfAGzNDEEMEURyQcmRYVezNAmxZsJclGrOKVQv1BRwWohXGJcqX6mTIo5J3Cq2nTxMZSk_VoRrLYdq7ljte1Y1Y5r7vCf3K-hH07g-yUrGRaQfs_zUOQWBYi3LA
CitedBy_id crossref_primary_10_1140_epjc_s10052_025_13879_7
crossref_primary_10_1007_JHEP04_2024_058
crossref_primary_10_1103_PhysRevD_106_124030
crossref_primary_10_1103_PhysRevD_106_L081901
crossref_primary_10_1103_PhysRevD_111_L021701
crossref_primary_10_1007_JHEP10_2022_128
crossref_primary_10_1088_1751_8121_ad8b02
crossref_primary_10_1007_JHEP02_2024_026
crossref_primary_10_1007_JHEP03_2025_126
crossref_primary_10_1007_JHEP05_2024_148
crossref_primary_10_1103_PhysRevD_107_044033
crossref_primary_10_1007_JHEP05_2023_211
crossref_primary_10_1007_JHEP05_2023_177
crossref_primary_10_1103_PhysRevD_108_106003
crossref_primary_10_1007_JHEP06_2023_204
crossref_primary_10_1007_JHEP06_2023_167
crossref_primary_10_1007_JHEP06_2023_048
crossref_primary_10_1103_PhysRevLett_131_221401
crossref_primary_10_1007_JHEP05_2024_157
crossref_primary_10_1103_PhysRevLett_130_021601
crossref_primary_10_1007_JHEP12_2022_058
crossref_primary_10_1103_PhysRevD_109_045011
crossref_primary_10_1007_JHEP03_2024_143
crossref_primary_10_1007_JHEP02_2023_107
crossref_primary_10_1007_JHEP09_2024_196
crossref_primary_10_1007_JHEP02_2023_105
crossref_primary_10_1007_JHEP02_2025_019
crossref_primary_10_1007_JHEP08_2024_188
crossref_primary_10_1007_JHEP06_2023_170
crossref_primary_10_1007_JHEP03_2024_108
crossref_primary_10_1007_JHEP03_2025_144
crossref_primary_10_1103_PhysRevD_107_L081701
crossref_primary_10_1007_JHEP05_2023_088
crossref_primary_10_1016_j_physrep_2024_06_002
crossref_primary_10_1103_PhysRevD_108_084036
crossref_primary_10_1007_JHEP07_2024_272
crossref_primary_10_1007_JHEP10_2022_105
crossref_primary_10_1007_JHEP02_2024_202
crossref_primary_10_1103_PhysRevD_108_024049
crossref_primary_10_1007_JHEP12_2024_060
crossref_primary_10_1007_JHEP03_2024_015
crossref_primary_10_1007_JHEP06_2024_015
crossref_primary_10_1007_s10714_024_03294_w
crossref_primary_10_1140_epjc_s10052_025_13814_w
crossref_primary_10_1007_JHEP12_2024_213
crossref_primary_10_1103_PhysRevD_109_084071
crossref_primary_10_1103_PhysRevLett_133_071601
crossref_primary_10_1007_JHEP02_2023_197
crossref_primary_10_1103_PhysRevD_110_L041502
crossref_primary_10_1103_PhysRevD_108_084065
crossref_primary_10_1103_PhysRevLett_131_011601
crossref_primary_10_1103_PhysRevLett_132_191603
crossref_primary_10_1103_PhysRevLett_131_011603
crossref_primary_10_1007_JHEP12_2023_103
crossref_primary_10_1007_JHEP03_2024_125
crossref_primary_10_1007_JHEP08_2024_080
crossref_primary_10_1007_JHEP01_2025_140
crossref_primary_10_1103_PhysRevD_110_124005
crossref_primary_10_1103_PhysRevLett_129_141102
crossref_primary_10_1007_JHEP07_2023_042
crossref_primary_10_1103_PhysRevLett_134_101602
crossref_primary_10_1007_JHEP08_2024_045
crossref_primary_10_1103_PhysRevD_109_036007
crossref_primary_10_1103_PhysRevD_106_124026
crossref_primary_10_1103_PhysRevD_108_024050
Cites_doi 10.1007/JHEP07(2021)169
10.1103/PhysRevD.75.125019
10.1016/j.cpc.2020.107478
10.1103/PhysRevLett.128.161103
10.1142/S0217751X88000710
10.1007/JHEP01(2020)072
10.1103/PhysRevLett.121.251101
10.1103/PhysRevLett.126.201602
10.1103/PhysRevD.93.124038
10.1016/0370-2693(90)91128-X
10.1007/JHEP06(2021)012
10.1007/JHEP04(2022)154
10.1088/1361-6382/aaa3a8
10.1016/0010-4655(91)90130-D
10.1103/PhysRevD.103.045015
10.1016/j.physrep.2016.04.003
10.1016/j.nuclphysb.2013.09.007
10.1007/JHEP01(2020)046
10.1007/JHEP08(2020)038
10.1103/PhysRevD.105.026004
10.1016/S0550-3213(98)00420-9
10.1007/JHEP11(2020)106
10.1103/PhysRevLett.126.171601
10.1007/JHEP03(2021)097
10.1016/0550-3213(94)00488-Z
10.1103/PhysRevD.100.084040
10.1103/PhysRevLett.125.261103
10.1007/JHEP02(2014)111
10.1007/JHEP05(2021)188
10.1103/PhysRevLett.128.161104
10.1016/0550-3213(94)90179-1
10.1007/JHEP04(2019)156
10.1016/j.cpc.2016.06.008
10.1007/JHEP10(2019)206
10.1103/PhysRevLett.122.201603
10.1007/JHEP11(2021)070
10.1007/JHEP09(2015)219
10.1103/PhysRevD.104.024013
10.1007/JHEP10(2021)148
10.1103/PhysRevD.103.024030
10.1007/JHEP07(2021)037
10.1103/PhysRevD.100.104024
10.1103/PhysRevD.102.124025
10.1007/JHEP09(2020)074
10.1016/S0550-3213(97)00703-7
10.1007/JHEP12(2019)156
10.1088/1361-6633/ab12bc
10.1007/JHEP10(2021)118
10.1007/JHEP06(2020)144
10.1007/JHEP03(2022)009
10.1007/JHEP05(2021)238
10.1016/j.nuclphysb.2005.07.014
10.1103/PhysRevLett.128.011101
10.1007/JHEP02(2020)120
10.1103/PhysRevLett.93.201602
10.1007/JHEP04(2019)033
10.1103/PhysRevD.101.064066
10.1103/PhysRevD.91.024017
10.1103/PhysRevLett.128.141102
10.1103/PhysRevLett.72.2996
10.1016/j.physletb.2022.137203
10.1103/PhysRevD.104.065014
10.1007/JHEP10(2021)008
10.1103/PhysRevLett.125.181603
10.1103/PhysRevD.76.125020
10.1007/JHEP11(2019)070
10.1007/JHEP12(2020)024
10.1103/PhysRevLett.125.191601
10.1007/JHEP05(2020)051
10.1007/JHEP02(2022)156
10.1007/JHEP01(2022)027
10.1007/JHEP02(2019)137
10.1007/JHEP09(2019)056
10.1007/JHEP09(2019)040
10.1016/j.nuclphysb.2005.02.030
10.1103/PhysRevLett.94.181602
10.1103/PhysRevResearch.4.013127
ContentType Journal Article
Copyright The Author(s) 2022
The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2022
– notice: The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
CorporateAuthor California Institute of Technology (CalTech), Pasadena, CA (United States)
CorporateAuthor_xml – name: California Institute of Technology (CalTech), Pasadena, CA (United States)
DBID C6C
AAYXX
CITATION
8FE
8FG
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
OIOZB
OTOTI
ADTPV
AFDQA
AOWAS
D8T
D8V
ZZAVC
ACNBI
DF2
DOA
DOI 10.1007/JHEP07(2022)072
DatabaseName Springer Nature OA Free Journals
CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central Korea
SciTech Premium Collection
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
OSTI.GOV - Hybrid
OSTI.GOV
SwePub
SWEPUB Kungliga Tekniska Högskolan full text
SwePub Articles
SWEPUB Freely available online
SWEPUB Kungliga Tekniska Högskolan
SwePub Articles full text
SWEPUB Uppsala universitet full text
SWEPUB Uppsala universitet
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Advanced Technologies & Aerospace Collection
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList

CrossRef



Publicly Available Content Database
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1029-8479
EndPage 34
ExternalDocumentID oai_doaj_org_article_607b57263f9f49d7a6cc774937dcea82
oai_DiVA_org_uu_482499
oai_DiVA_org_kth_316132
1976498
10_1007_JHEP07_2022_072
GroupedDBID -5F
-5G
-A0
-BR
0R~
0VY
199
1N0
30V
4.4
408
40D
5GY
5VS
8FE
8FG
8TC
8UJ
95.
AAFWJ
AAKKN
ABEEZ
ACACY
ACGFS
ACHIP
ACREN
ACULB
ADBBV
ADINQ
AEGXH
AENEX
AFGXO
AFKRA
AFPKN
AFWTZ
AHBYD
AHYZX
AIBLX
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOAED
ARAPS
ASPBG
ATQHT
AVWKF
AZFZN
BCNDV
BENPR
BGLVJ
C24
C6C
CCPQU
CS3
CSCUP
DU5
EBS
ER.
FEDTE
GQ6
GROUPED_DOAJ
HCIFZ
HF~
HLICF
HMJXF
HVGLF
HZ~
IHE
KOV
LAP
M~E
N5L
N9A
NB0
O93
OK1
P62
P9T
PIMPY
PROAC
R9I
RO9
RSV
S27
S3B
SOJ
SPH
T13
TUS
U2A
VC2
VSI
WK8
XPP
Z45
ZMT
02O
1JI
1WK
2VQ
5ZI
AAGCD
AAGCF
AAIAL
AAJIO
AALHV
AARHV
AATNI
AAYXX
AAYZH
ABFSG
ABTEG
ACAFW
ACARI
ACBXY
ACSTC
ADKPE
ADRFC
AEFHF
AEJGL
AERVB
AETNG
AEZWR
AFHIU
AFLOW
AGJBK
AGQPQ
AHSBF
AHSEE
AHWEU
AIXLP
AIYBF
AKPSB
AMVHM
ARNYC
BAPOH
BBWZM
BGNMA
CAG
CITATION
CJUJL
COF
CRLBU
EDWGO
EJD
EMSAF
EPQRW
EQZZN
H13
IJHAN
IOP
IZVLO
JCGBZ
KOT
M45
M4Y
NT-
NT.
NU0
O9-
PHGZM
PHGZT
PJBAE
Q02
R4D
RIN
RKQ
RNS
ROL
RPA
S1Z
S3P
SY9
T37
ABUWG
AZQEC
DWQXO
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
AAYZJ
AFNRJ
AHBXF
OIOZB
OTOTI
ADTPV
AEINN
AFDQA
AOWAS
D8T
D8V
ZZAVC
ACNBI
DF2
PUEGO
ID FETCH-LOGICAL-c585t-3c40f77d778435f7adfdc6a1f159d9d1d5bd8eb614b1a2edfef3beed3689820d3
IEDL.DBID DOA
ISSN 1029-8479
1126-6708
IngestDate Wed Aug 27 01:13:44 EDT 2025
Thu Aug 21 06:27:08 EDT 2025
Thu Aug 21 06:16:39 EDT 2025
Mon Jan 15 05:22:55 EST 2024
Sat Jul 26 00:16:36 EDT 2025
Thu Apr 24 22:53:50 EDT 2025
Tue Jul 01 01:00:21 EDT 2025
Fri Feb 21 02:45:36 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Keywords Classical Theories of Gravity
Effective Field Theories
Scattering Amplitudes
Black Holes
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c585t-3c40f77d778435f7adfdc6a1f159d9d1d5bd8eb614b1a2edfef3beed3689820d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
USDOE Office of Science (SC)
SC0011632; KAW 2018.0116
Walter Burke Institute for Theoretical Physics
Ragnar Söderberg Foundation
Knut and Alice Wallenberg Foundation
ORCID 0000-0002-1182-2750
0000-0001-9259-9257
0000-0002-5904-3748
0000000192599257
0000000211822750
0000000259043748
OpenAccessLink https://doaj.org/article/607b57263f9f49d7a6cc774937dcea82
PQID 2848477900
PQPubID 2034718
PageCount 34
ParticipantIDs doaj_primary_oai_doaj_org_article_607b57263f9f49d7a6cc774937dcea82
swepub_primary_oai_DiVA_org_uu_482499
swepub_primary_oai_DiVA_org_kth_316132
osti_scitechconnect_1976498
proquest_journals_2848477900
crossref_citationtrail_10_1007_JHEP07_2022_072
crossref_primary_10_1007_JHEP07_2022_072
springer_journals_10_1007_JHEP07_2022_072
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-07-01
PublicationDateYYYYMMDD 2022-07-01
PublicationDate_xml – month: 07
  year: 2022
  text: 2022-07-01
  day: 01
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
– name: United States
PublicationTitle The journal of high energy physics
PublicationTitleAbbrev J. High Energ. Phys
PublicationYear 2022
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Springer Nature
SpringerOpen
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
– name: Springer Nature
– name: SpringerOpen
References Y. F. Bautista, A. Guevara, C. Kavanagh and J. Vines, From scattering in black hole backgrounds to higher-spin amplitudes: part I, arXiv:2107.10179 [INSPIRE].
LiuZPortoRAYangZSpin effects in the effective field theory approach to post-Minkowskian conservative dynamicsJHEP2021060122021JHEP...06..012L431642810.1007/JHEP06(2021)012[arXiv:2102.10059] [INSPIRE]
DamgaardPHHaddadKHelsetAHeavy black hole effective theoryJHEP2019110702019JHEP...11..070D40694931429.8303410.1007/JHEP11(2019)070[arXiv:1908.10308] [INSPIRE]
CheungCRothsteinIZSolonMPFrom scattering amplitudes to classical potentials in the post-Minkowskian expansionPhys. Rev. Lett.20181212018PhRvL.121y1101C10.1103/PhysRevLett.121.251101[arXiv:1808.02489] [INSPIRE]
BrittoRCachazoFFengBNew recursion relations for tree amplitudes of gluonsNucl. Phys. B20057154992005NuPhB.715..499B21356461207.8108810.1016/j.nuclphysb.2005.02.030[hep-th/0412308] [INSPIRE]
Accettulli HuberMBrandhuberADe AngelisSTravagliniGFrom amplitudes to gravitational radiation with cubic interactions and tidal effectsPhys. Rev. D20211032021PhRvD.103d5015A422672010.1103/PhysRevD.103.045015[arXiv:2012.06548] [INSPIRE]
ShtabovenkoVMertigROrellanaFNew developments in FeynCalc 9.0Comput. Phys. Commun.20162074322016CoPhC.207..432S1375.6822710.1016/j.cpc.2016.06.008[arXiv:1601.01167] [INSPIRE]
JakobsenGUMogullGPlefkaJSteinhoffJGravitational Bremsstrahlung and hidden supersymmetry of spinning bodiesPhys. Rev. Lett.20221282022PhRvL.128a1101J438779910.1103/PhysRevLett.128.011101[arXiv:2106.10256] [INSPIRE]
BernZParra-MartinezJRoibanRSawyerEShenC-HLeading nonlinear tidal effects and scattering amplitudesJHEP2021051882021JHEP...05..188B43016161466.8113310.1007/JHEP05(2021)188[arXiv:2010.08559] [INSPIRE]
A. Cristofoli, R. Gonzo, D. A. Kosower and D. O’Connell, Waveforms from amplitudes, arXiv:2107.10193 [INSPIRE].
BernZScattering amplitudes, the tail effect, and conservative binary dynamics atOG4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{O}\left({G}^4\right) $$\end{document}Phys. Rev. Lett.20221282022PhRvL.128p1103B10.1103/PhysRevLett.128.1611034420383[arXiv:2112.10750] [INSPIRE]
VaidyaVGravitational spin Hamiltonians from the S matrixPhys. Rev. D2015912015PhRvD..91b4017V364914510.1103/PhysRevD.91.024017[arXiv:1410.5348] [INSPIRE]
HerrmannEParra-MartinezJRufMSZengMRadiative classical gravitational observables atOG3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{O}\left({G}^3\right) $$\end{document}from scattering amplitudesJHEP2021101482021JHEP...10..148H1476.8308810.1007/JHEP10(2021)1484339778[arXiv:2104.03957] [INSPIRE]
GuevaraAHolomorphic classical limit for spin effects in gravitational and electromagnetic scatteringJHEP2019040332019JHEP...04..033G39554361415.8110710.1007/JHEP04(2019)033[arXiv:1706.02314] [INSPIRE]
G. Cho, G. Kälin and R. A. Porto, From boundary data to bound states. Part III. Radiative effects, JHEP04 (2022) 154 [arXiv:2112.03976] [INSPIRE].
SiemonsenNVinesJTest black holes, scattering amplitudes and perturbations of Kerr spacetimePhys. Rev. D20201012020PhRvD.101f4066S408622410.1103/PhysRevD.101.064066[arXiv:1909.07361] [INSPIRE]
DlapaCKälinGLiuZPortoRADynamics of binary systems to fourth post-Minkowskian order from the effective field theory approachPhys. Lett. B202283144323940754044610.1016/j.physletb.2022.137203[arXiv:2106.08276] [INSPIRE]
MertigRBöhmMDennerAFEYN CALC: computer algebraic calculation of Feynman amplitudesComput. Phys. Commun.1991643451991CoPhC..64..345M111396710.1016/0010-4655(91)90130-D[INSPIRE]
M. Neubert, Heavy quark effective theory, Subnucl. Ser.34 (1997) 98 [hep-ph/9610266] [INSPIRE].
LIGO Scientific and Virgo collaborations, GW170817: observation of gravitational waves from a binary neutron star inspiral, Phys. Rev. Lett.119 (2017) 161101 [arXiv:1710.05832] [INSPIRE].
LeviMEffective field theories of post-Newtonian gravity: a comprehensive reviewRept. Prog. Phys.2020832020RPPh...83g5901L411923510.1088/1361-6633/ab12bc[arXiv:1807.01699] [INSPIRE]
Bjerrum-BohrNEJCristofoliADamgaardPHPost-Minkowskian scattering angle in Einstein gravityJHEP2020080382020JHEP...08..038B41901871454.8300810.1007/JHEP08(2020)038[arXiv:1910.09366] [INSPIRE]
VinesJScattering of two spinning black holes in post-Minkowskian gravity, to all orders in spin, and effective-one-body mappingsClass. Quant. Grav.2018352018CQGra..35h4002V37895091409.8311610.1088/1361-6382/aaa3a8[arXiv:1709.06016] [INSPIRE]
HolsteinBRDonoghueJFClassical physics and quantum loopsPhys. Rev. Lett.2004932004PhRvL..93t1602H211826010.1103/PhysRevLett.93.201602[hep-th/0405239] [INSPIRE]
ShtabovenkoVMertigROrellanaFFeynCalc 9.3: new features and improvementsComput. Phys. Commun.2020256107478412201710.1016/j.cpc.2020.107478[arXiv:2001.04407] [INSPIRE]
AmatiDCiafaloniMVenezianoGClassical and quantum gravity effects from Planckian energy superstring collisionsInt. J. Mod. Phys. A1988316151988IJMPA...3.1615A10.1142/S0217751X88000710[INSPIRE]
HaddadKHelsetATidal effects in quantum field theoryJHEP2020120242020JHEP...12..024H42394281457.8107010.1007/JHEP12(2020)024[arXiv:2008.04920] [INSPIRE]
CristofoliABjerrum-BohrNEJDamgaardPHVanhovePPost-Minkowskian Hamiltonians in general relativityPhys. Rev. D20191002019PhRvD.100h4040C403155210.1103/PhysRevD.100.084040[arXiv:1906.01579] [INSPIRE]
Di VecchiaPHeissenbergCRussoRVenezianoGThe eikonal approach to gravitational scattering and radiation atOG3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{O}\left({G}^3\right) $$\end{document}JHEP2021071692021JHEP...07..169D1468.8305710.1007/JHEP07(2021)1694316502[arXiv:2104.03256] [INSPIRE]
AoudeRHaddadKHelsetATidal effects for spinning particlesJHEP2021030972021JHEP...03..097A42627571461.8113410.1007/JHEP03(2021)097[arXiv:2012.05256] [INSPIRE]
KälinGPortoRAPost-Minkowskian effective field theory for conservative binary dynamicsJHEP2020111062020JHEP...11..106K420417210.1007/JHEP11(2020)106[arXiv:2006.01184] [INSPIRE]
Arkani-HamedNHuangY-TO’ConnellDKerr black holes as elementary particlesJHEP2020010462020JHEP...01..046A40882731434.8304910.1007/JHEP01(2020)046[arXiv:1906.10100] [INSPIRE]
ManoharAVWiseMBHeavy quark physicsCamb. Monogr. Part. Phys. Nucl. Phys. Cosmol.2000101[INSPIRE]
Bjerrum-BohrNEJDonoghueJFVanhovePOn-shell techniques and universal results in quantum gravityJHEP2014021112014JHEP...02..111B31831381333.8304310.1007/JHEP02(2014)111[arXiv:1309.0804] [INSPIRE]
BernZScattering amplitudes and conservative binary dynamics atOG4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{O}\left({G}^4\right) $$\end{document}Phys. Rev. Lett.20211262021PhRvL.126q1601B10.1103/PhysRevLett.126.1716014264684[arXiv:2101.07254] [INSPIRE]
B. R. Holstein and A. Ross, Spin effects in long range gravitational scattering, arXiv:0802.0716 [INSPIRE].
GuevaraAOchirovAVinesJBlack-hole scattering with general spin directions from minimal-coupling amplitudesPhys. Rev. D20191002019PhRvD.100j4024G404192710.1103/PhysRevD.100.104024[arXiv:1906.10071] [INSPIRE]
BrittoRCachazoFFengBWittenEDirect proof of tree-level recursion relation in Yang-Mills theoryPhys. Rev. Lett.2005942005PhRvL..94r1602B226097610.1103/PhysRevLett.94.181602[hep-th/0501052] [INSPIRE]
LeviMSteinhoffJSpinning gravitating objects in the effective field theory in the post-Newtonian schemeJHEP2015092192015JHEP...09..219L34305461388.8303110.1007/JHEP09(2015)219[arXiv:1501.04956] [INSPIRE]
BernZDixonLJDunbarDCKosowerDAOne loop n point gauge theory amplitudes, unitarity and collinear limitsNucl. Phys. B19944252171994NuPhB.425..217B12926261049.8164410.1016/0550-3213(94)90179-1[hep-ph/9403226] [INSPIRE]
NeillDRothsteinIZClassical space-times from the S matrixNucl. Phys. B20138771772013NuPhB.877..177N31248371284.8305210.1016/j.nuclphysb.2013.09.007[arXiv:1304.7263] [INSPIRE]
BrittoRCachazoFFengBGeneralized unitarity and one-loop amplitudes in N = 4 super-Yang-MillsNucl. Phys. B20057252752005NuPhB.725..275B21642931178.8120210.1016/j.nuclphysb.2005.07.014[hep-th/0412103] [INSPIRE]
HaddadKExponentiation of the leading eikonal phase with spinPhys. Rev. D20221052022PhRvD.105b6004H438104510.1103/PhysRevD.105.026004[arXiv:2109.04427] [INSPIRE]
HerrmannEParra-MartinezJRufMSZengMGravitational Bremsstrahlung from reverse unitarityPhys. Rev. Lett.20211262021PhRvL.126t1602H426552710.1103/PhysRevLett.126.201602[arXiv:2101.07255] [INSPIRE]
BernZCheungCRoibanRShenC-HSolonMPZengMBlack hole binary dynamics from the double copy and effective theoryJHEP2019102062019JHEP...10..206B40510521427.8303510.1007/JHEP10(2019)206[arXiv:1908.01493] [INSPIRE]
KälinGPortoRAFrom boundary data to bound statesJHEP2020010722020JHEP...01..072K40882471434.8500410.1007/JHEP01(2020)072[arXiv:1910.03008] [INSPIRE]
CheungCSolonMPClassical gravitational scattering atOG3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{O}\left({G}^3\right) $$\end{document}from Feynman diagramsJHEP2020061442020JHEP...06..144C1439.8301310.1007/JHEP06(2020)1444133859[arXiv:2003.08351] [INSPIRE]
KosowerDAMaybeeBO’ConnellDAmplitudes, observables, and classical scatteringJHEP2019021372019JHEP...02..137K39252331411.8121710.1007/JHEP02(2019)137[arXiv:1811.10950] [INSPIRE]
W. B. Kilgore,
M-Z Chung (18721_CR35) 2020; 09
E Herrmann (18721_CR14) 2021; 126
Z Bern (18721_CR10) 2019; 10
NEJ Bjerrum-Bohr (18721_CR60) 2014; 02
Z Bern (18721_CR38) 2021; 104
18721_CR54
P Di Vecchia (18721_CR16) 2021; 07
A Brandhuber (18721_CR17) 2021; 10
18721_CR52
AV Manohar (18721_CR73) 2000; 10
18721_CR92
18721_CR1
GU Jakobsen (18721_CR42) 2022; 128
K Haddad (18721_CR74) 2020; 125
18721_CR2
E Herrmann (18721_CR15) 2021; 10
DA Kosower (18721_CR46) 2019; 02
18721_CR49
18721_CR5
M Accettulli Huber (18721_CR27) 2021; 103
R Aoude (18721_CR28) 2021; 03
A Lazopoulos (18721_CR65) 2022; 03
18721_CR3
18721_CR4
Z Bern (18721_CR80) 1995; 435
D Forde (18721_CR86) 2007; 75
A Guevara (18721_CR33) 2019; 100
A Cristofoli (18721_CR50) 2019; 100
D Kosmopoulos (18721_CR40) 2021; 07
C Dlapa (18721_CR21) 2022; 128
Z Bern (18721_CR79) 1998; 513
RA Porto (18721_CR6) 2016; 633
R Mertig (18721_CR89) 1991; 64
A Guevara (18721_CR30) 2019; 09
M-Z Chung (18721_CR31) 2019; 04
Z Bern (18721_CR78) 1994; 425
Z Bern (18721_CR19) 2022; 128
R Aoude (18721_CR41) 2021; 10
K Haddad (18721_CR53) 2022; 105
H Johansson (18721_CR64) 2019; 09
G Kälin (18721_CR55) 2020; 02
C Kavanagh (18721_CR69) 2016; 93
R Britto (18721_CR82) 2005; 725
Z Bern (18721_CR18) 2021; 126
C Cheung (18721_CR22) 2020; 125
18721_CR57
V Shtabovenko (18721_CR91) 2020; 256
PH Damgaard (18721_CR36) 2019; 11
MVS Saketh (18721_CR56) 2022; 4
C Cheung (18721_CR11) 2020; 06
G Kälin (18721_CR24) 2020; 102
Z Bern (18721_CR83) 2007; 76
Z Bern (18721_CR9) 2019; 122
GU Jakobsen (18721_CR43) 2022; 01
A Falkowski (18721_CR66) 2021; 05
Z Liu (18721_CR39) 2021; 06
18721_CR72
C Cheung (18721_CR25) 2021; 103
M Levi (18721_CR7) 2020; 83
18721_CR70
Z Bern (18721_CR81) 1998; 530
R Britto (18721_CR63) 2005; 94
M Levi (18721_CR75) 2015; 09
G Kälin (18721_CR13) 2020; 125
N Arkani-Hamed (18721_CR34) 2020; 01
V Shtabovenko (18721_CR90) 2016; 207
D Neill (18721_CR59) 2013; 877
NEJ Bjerrum-Bohr (18721_CR48) 2020; 08
V Vaidya (18721_CR61) 2015; 91
B Maybee (18721_CR32) 2019; 12
H Georgi (18721_CR71) 1990; 240
G Kälin (18721_CR12) 2020; 11
K Haddad (18721_CR23) 2020; 12
A Guevara (18721_CR29) 2019; 04
18721_CR44
18721_CR88
18721_CR87
G Kälin (18721_CR47) 2020; 01
R Britto (18721_CR62) 2005; 715
N Siemonsen (18721_CR68) 2020; 101
18721_CR84
BR Holstein (18721_CR85) 2004; 93
Z Bern (18721_CR26) 2021; 05
J Vines (18721_CR76) 2018; 35
HS Chia (18721_CR77) 2021; 104
R Aoude (18721_CR37) 2020; 05
GU Jakobsen (18721_CR45) 2022; 128
C Cheung (18721_CR8) 2018; 121
N Arkani-Hamed (18721_CR58) 2021; 11
M Chiodaroli (18721_CR67) 2022; 02
D Amati (18721_CR51) 1988; 3
C Dlapa (18721_CR20) 2022; 831
References_xml – reference: ShtabovenkoVMertigROrellanaFFeynCalc 9.3: new features and improvementsComput. Phys. Commun.2020256107478412201710.1016/j.cpc.2020.107478[arXiv:2001.04407] [INSPIRE]
– reference: SiemonsenNVinesJTest black holes, scattering amplitudes and perturbations of Kerr spacetimePhys. Rev. D20201012020PhRvD.101f4066S408622410.1103/PhysRevD.101.064066[arXiv:1909.07361] [INSPIRE]
– reference: ShtabovenkoVMertigROrellanaFNew developments in FeynCalc 9.0Comput. Phys. Commun.20162074322016CoPhC.207..432S1375.6822710.1016/j.cpc.2016.06.008[arXiv:1601.01167] [INSPIRE]
– reference: LIGO Scientific and Virgo collaborations, Observation of gravitational waves from a binary black hole merger, Phys. Rev. Lett.116 (2016) 061102 [arXiv:1602.03837] [INSPIRE].
– reference: BernZDixonLJDunbarDCKosowerDAOne loop n point gauge theory amplitudes, unitarity and collinear limitsNucl. Phys. B19944252171994NuPhB.425..217B12926261049.8164410.1016/0550-3213(94)90179-1[hep-ph/9403226] [INSPIRE]
– reference: DlapaCKälinGLiuZPortoRADynamics of binary systems to fourth post-Minkowskian order from the effective field theory approachPhys. Lett. B202283144323940754044610.1016/j.physletb.2022.137203[arXiv:2106.08276] [INSPIRE]
– reference: KälinGPortoRAFrom boundary data to bound states. Part II. Scattering angle to dynamical invariants (with twist)JHEP2020021202020JHEP...02..120K40891611435.8500310.1007/JHEP02(2020)120[arXiv:1911.09130] [INSPIRE]
– reference: LIGO Scientific and Virgo collaborations, GW170817: observation of gravitational waves from a binary neutron star inspiral, Phys. Rev. Lett.119 (2017) 161101 [arXiv:1710.05832] [INSPIRE].
– reference: Di VecchiaPHeissenbergCRussoRVenezianoGThe eikonal approach to gravitational scattering and radiation atOG3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{O}\left({G}^3\right) $$\end{document}JHEP2021071692021JHEP...07..169D1468.8305710.1007/JHEP07(2021)1694316502[arXiv:2104.03256] [INSPIRE]
– reference: AoudeRHaddadKHelsetATidal effects for spinning particlesJHEP2021030972021JHEP...03..097A42627571461.8113410.1007/JHEP03(2021)097[arXiv:2012.05256] [INSPIRE]
– reference: GuevaraAOchirovAVinesJBlack-hole scattering with general spin directions from minimal-coupling amplitudesPhys. Rev. D20191002019PhRvD.100j4024G404192710.1103/PhysRevD.100.104024[arXiv:1906.10071] [INSPIRE]
– reference: ChungM-ZHuangY-TKimJ-WClassical potential for general spinning bodiesJHEP2020090742020JHEP...09..074C420318510.1007/JHEP09(2020)074[arXiv:1908.08463] [INSPIRE]
– reference: Bjerrum-BohrNEJDonoghueJFVanhovePOn-shell techniques and universal results in quantum gravityJHEP2014021112014JHEP...02..111B31831381333.8304310.1007/JHEP02(2014)111[arXiv:1309.0804] [INSPIRE]
– reference: VinesJScattering of two spinning black holes in post-Minkowskian gravity, to all orders in spin, and effective-one-body mappingsClass. Quant. Grav.2018352018CQGra..35h4002V37895091409.8311610.1088/1361-6382/aaa3a8[arXiv:1709.06016] [INSPIRE]
– reference: LiuZPortoRAYangZSpin effects in the effective field theory approach to post-Minkowskian conservative dynamicsJHEP2021060122021JHEP...06..012L431642810.1007/JHEP06(2021)012[arXiv:2102.10059] [INSPIRE]
– reference: KosowerDAMaybeeBO’ConnellDAmplitudes, observables, and classical scatteringJHEP2019021372019JHEP...02..137K39252331411.8121710.1007/JHEP02(2019)137[arXiv:1811.10950] [INSPIRE]
– reference: SakethMVSVinesJSteinhoffJBuonannoAConservative and radiative dynamics in classical relativistic scattering and bound systemsPhys. Rev. Res.2022410.1103/PhysRevResearch.4.013127[arXiv:2109.05994] [INSPIRE]
– reference: BernZCheungCRoibanRShenC-HSolonMPZengMBlack hole binary dynamics from the double copy and effective theoryJHEP2019102062019JHEP...10..206B40510521427.8303510.1007/JHEP10(2019)206[arXiv:1908.01493] [INSPIRE]
– reference: BernZDixonLJKosowerDAOne loop amplitudes for e+e−to four partonsNucl. Phys. B199851331998NuPhB.513....3B10.1016/S0550-3213(97)00703-7[hep-ph/9708239] [INSPIRE]
– reference: KälinGLiuZPortoRAConservative dynamics of binary systems to third post-Minkowskian order from the effective field theory approachPhys. Rev. Lett.20201252020PhRvL.125z1103K419793810.1103/PhysRevLett.125.261103[arXiv:2007.04977] [INSPIRE]
– reference: BrandhuberAChenGTravagliniGWenCClassical gravitational scattering from a gauge-invariant double copyJHEP2021101182021JHEP...10..118B43398081476.8300510.1007/JHEP10(2021)118[arXiv:2108.04216] [INSPIRE]
– reference: GuevaraAOchirovAVinesJScattering of spinning black holes from exponentiated soft factorsJHEP2019090562019JHEP...09..056G40202041423.8303010.1007/JHEP09(2019)056[arXiv:1812.06895] [INSPIRE]
– reference: Arkani-HamedNHuangY-TO’ConnellDKerr black holes as elementary particlesJHEP2020010462020JHEP...01..046A40882731434.8304910.1007/JHEP01(2020)046[arXiv:1906.10100] [INSPIRE]
– reference: G. Cho, G. Kälin and R. A. Porto, From boundary data to bound states. Part III. Radiative effects, JHEP04 (2022) 154 [arXiv:2112.03976] [INSPIRE].
– reference: T. Adamo, A. Cristofoli and P. Tourkine, Eikonal amplitudes from curved backgrounds, arXiv:2112.09113 [INSPIRE].
– reference: NeillDRothsteinIZClassical space-times from the S matrixNucl. Phys. B20138771772013NuPhB.877..177N31248371284.8305210.1016/j.nuclphysb.2013.09.007[arXiv:1304.7263] [INSPIRE]
– reference: HerrmannEParra-MartinezJRufMSZengMGravitational Bremsstrahlung from reverse unitarityPhys. Rev. Lett.20211262021PhRvL.126t1602H426552710.1103/PhysRevLett.126.201602[arXiv:2101.07255] [INSPIRE]
– reference: LeviMEffective field theories of post-Newtonian gravity: a comprehensive reviewRept. Prog. Phys.2020832020RPPh...83g5901L411923510.1088/1361-6633/ab12bc[arXiv:1807.01699] [INSPIRE]
– reference: CheungCShahNSolonMPMining the geodesic equation for scattering dataPhys. Rev. D20211032021PhRvD.103b4030C421244410.1103/PhysRevD.103.024030[arXiv:2010.08568] [INSPIRE]
– reference: Y. F. Bautista, A. Guevara, C. Kavanagh and J. Vines, From scattering in black hole backgrounds to higher-spin amplitudes: part I, arXiv:2107.10179 [INSPIRE].
– reference: B. R. Holstein and A. Ross, Spin effects in long range gravitational scattering, arXiv:0802.0716 [INSPIRE].
– reference: CheungCSolonMPTidal effects in the post-Minkowskian expansionPhys. Rev. Lett.20201252020PhRvL.125s1601C417558910.1103/PhysRevLett.125.191601[arXiv:2006.06665] [INSPIRE]
– reference: KälinGPortoRAFrom boundary data to bound statesJHEP2020010722020JHEP...01..072K40882471434.8500410.1007/JHEP01(2020)072[arXiv:1910.03008] [INSPIRE]
– reference: CristofoliABjerrum-BohrNEJDamgaardPHVanhovePPost-Minkowskian Hamiltonians in general relativityPhys. Rev. D20191002019PhRvD.100h4040C403155210.1103/PhysRevD.100.084040[arXiv:1906.01579] [INSPIRE]
– reference: FordeDDirect extraction of one-loop integral coefficientsPhys. Rev. D2007752007PhRvD..75l5019F232687810.1103/PhysRevD.75.125019[arXiv:0704.1835] [INSPIRE]
– reference: BernZScattering amplitudes, the tail effect, and conservative binary dynamics atOG4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{O}\left({G}^4\right) $$\end{document}Phys. Rev. Lett.20221282022PhRvL.128p1103B10.1103/PhysRevLett.128.1611034420383[arXiv:2112.10750] [INSPIRE]
– reference: BernZCheungCRoibanRShenC-HSolonMPZengMScattering amplitudes and the conservative Hamiltonian for binary systems at third post-Minkowskian orderPhys. Rev. Lett.20191222019PhRvL.122t1603B10.1103/PhysRevLett.122.201603[arXiv:1901.04424] [INSPIRE]
– reference: ChiaHSTidal deformation and dissipation of rotating black holesPhys. Rev. D20211042021PhRvD.104b4013C430368010.1103/PhysRevD.104.024013[arXiv:2010.07300] [INSPIRE]
– reference: BernZParra-MartinezJRoibanRSawyerEShenC-HLeading nonlinear tidal effects and scattering amplitudesJHEP2021051882021JHEP...05..188B43016161466.8113310.1007/JHEP05(2021)188[arXiv:2010.08559] [INSPIRE]
– reference: KosmopoulosDLunaAQuadratic-in-spin Hamiltonian atOG2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{O}\left({G}^2\right) $$\end{document}from scattering amplitudesJHEP2021070372021JHEP...07..037K10.1007/JHEP07(2021)0374317060[arXiv:2102.10137] [INSPIRE]
– reference: Arkani-HamedNHuangT-CHuangY-TScattering amplitudes for all masses and spinsJHEP2021110702021JHEP...11..070A436878710.1007/JHEP11(2021)070[arXiv:1709.04891] [INSPIRE]
– reference: LeviMSteinhoffJSpinning gravitating objects in the effective field theory in the post-Newtonian schemeJHEP2015092192015JHEP...09..219L34305461388.8303110.1007/JHEP09(2015)219[arXiv:1501.04956] [INSPIRE]
– reference: ManoharAVWiseMBHeavy quark physicsCamb. Monogr. Part. Phys. Nucl. Phys. Cosmol.2000101[INSPIRE]
– reference: AmatiDCiafaloniMVenezianoGClassical and quantum gravity effects from Planckian energy superstring collisionsInt. J. Mod. Phys. A1988316151988IJMPA...3.1615A10.1142/S0217751X88000710[INSPIRE]
– reference: BernZDixonLJDunbarDCKosowerDAFusing gauge theory tree amplitudes into loop amplitudesNucl. Phys. B1995435591995NuPhB.435...59B10.1016/0550-3213(94)00488-Z[hep-ph/9409265] [INSPIRE]
– reference: M. Neubert, Heavy quark effective theory, Subnucl. Ser.34 (1997) 98 [hep-ph/9610266] [INSPIRE].
– reference: MaybeeBO’ConnellDVinesJObservables and amplitudes for spinning particles and black holesJHEP2019121562019JHEP...12..156M40612671431.8310110.1007/JHEP12(2019)156[arXiv:1906.09260] [INSPIRE]
– reference: FalkowskiAMachadoCSSoft matters, or the recursions with massive spinorsJHEP2021052382021JHEP...05..238F42958061466.8306310.1007/JHEP05(2021)238[arXiv:2005.08981] [INSPIRE]
– reference: KavanaghCOttewillACWardellBAnalytical high-order post-Newtonian expansions for spinning extreme mass ratio binariesPhys. Rev. D2016932016PhRvD..93l4038K362548310.1103/PhysRevD.93.124038[arXiv:1601.03394] [INSPIRE]
– reference: CheungCSolonMPClassical gravitational scattering atOG3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{O}\left({G}^3\right) $$\end{document}from Feynman diagramsJHEP2020061442020JHEP...06..144C1439.8301310.1007/JHEP06(2020)1444133859[arXiv:2003.08351] [INSPIRE]
– reference: JohanssonHOchirovADouble copy for massive quantum particles with spinJHEP2019090402019JHEP...09..040J40201881423.8118310.1007/JHEP09(2019)040[arXiv:1906.12292] [INSPIRE]
– reference: JakobsenGUMogullGPlefkaJSteinhoffJGravitational Bremsstrahlung and hidden supersymmetry of spinning bodiesPhys. Rev. Lett.20221282022PhRvL.128a1101J438779910.1103/PhysRevLett.128.011101[arXiv:2106.10256] [INSPIRE]
– reference: LIGO Scientific and Virgo collaborations, GWTC-2: compact binary coalescences observed by LIGO and Virgo during the first half of the third observing run, Phys. Rev. X11 (2021) 021053 [arXiv:2010.14527] [INSPIRE].
– reference: HaddadKHelsetAThe double copy for heavy particlesPhys. Rev. Lett.20201252020PhRvL.125r1603H417557010.1103/PhysRevLett.125.181603[arXiv:2005.13897] [INSPIRE]
– reference: J. F. Donoghue, Leading quantum correction to the Newtonian potential, Phys. Rev. Lett.72 (1994) 2996 [gr-qc/9310024] [INSPIRE].
– reference: LIGO Scientific and Virgo collaborations, GWTC-1: a gravitational-wave transient catalog of compact binary mergers observed by LIGO and Virgo during the first and second observing runs, Phys. Rev. X9 (2019) 031040 [arXiv:1811.12907] [INSPIRE].
– reference: BrittoRCachazoFFengBGeneralized unitarity and one-loop amplitudes in N = 4 super-Yang-MillsNucl. Phys. B20057252752005NuPhB.725..275B21642931178.8120210.1016/j.nuclphysb.2005.07.014[hep-th/0412103] [INSPIRE]
– reference: LIGO Scientific and Virgo collaborations, GWTC-2.1: deep extended catalog of compact binary coalescences observed by LIGO and Virgo during the first half of the third observing run, arXiv:2108.01045 [INSPIRE].
– reference: LazopoulosAOchirovAShiCAll-multiplicity amplitudes with four massive quarks and identical-helicity gluonsJHEP2022030092022JHEP...03..009L10.1007/JHEP03(2022)009[arXiv:2111.06847] [INSPIRE]
– reference: HerrmannEParra-MartinezJRufMSZengMRadiative classical gravitational observables atOG3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{O}\left({G}^3\right) $$\end{document}from scattering amplitudesJHEP2021101482021JHEP...10..148H1476.8308810.1007/JHEP10(2021)1484339778[arXiv:2104.03957] [INSPIRE]
– reference: AoudeRHaddadKHelsetAOn-shell heavy particle effective theoriesJHEP2020050512020JHEP...05..051A41124201437.8305310.1007/JHEP05(2020)051[arXiv:2001.09164] [INSPIRE]
– reference: JakobsenGUMogullGPlefkaJSteinhoffJSUSY in the sky with gravitonsJHEP2022010272022JHEP...01..027J440351710.1007/JHEP01(2022)027[arXiv:2109.04465] [INSPIRE]
– reference: Z. Bern, D. Kosmopoulos, A. Luna, R. Roiban and F. Teng, Binary dynamics through the fifth power of spin atOG2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{O}\left({G}^2\right) $$\end{document}, arXiv:2203.06202 [INSPIRE].
– reference: BrittoRCachazoFFengBWittenEDirect proof of tree-level recursion relation in Yang-Mills theoryPhys. Rev. Lett.2005942005PhRvL..94r1602B226097610.1103/PhysRevLett.94.181602[hep-th/0501052] [INSPIRE]
– reference: A. Cristofoli, R. Gonzo, D. A. Kosower and D. O’Connell, Waveforms from amplitudes, arXiv:2107.10193 [INSPIRE].
– reference: HaddadKHelsetATidal effects in quantum field theoryJHEP2020120242020JHEP...12..024H42394281457.8107010.1007/JHEP12(2020)024[arXiv:2008.04920] [INSPIRE]
– reference: KälinGLiuZPortoRAConservative tidal effects in compact binary systems to next-to-leading post-Minkowskian orderPhys. Rev. D20201022020PhRvD.102l4025K419699310.1103/PhysRevD.102.124025[arXiv:2008.06047] [INSPIRE]
– reference: BrittoRCachazoFFengBNew recursion relations for tree amplitudes of gluonsNucl. Phys. B20057154992005NuPhB.715..499B21356461207.8108810.1016/j.nuclphysb.2005.02.030[hep-th/0412308] [INSPIRE]
– reference: GeorgiHAn effective field theory for heavy quarks at low-energiesPhys. Lett. B19902404471990PhLB..240..447G10.1016/0370-2693(90)91128-X[INSPIRE]
– reference: ChungM-ZHuangY-TKimJ-WLeeSThe simplest massive S-matrix: from minimal coupling to black holesJHEP2019041562019JHEP...04..156C39539181415.8301410.1007/JHEP04(2019)156[arXiv:1812.08752] [INSPIRE]
– reference: MertigRBöhmMDennerAFEYN CALC: computer algebraic calculation of Feynman amplitudesComput. Phys. Commun.1991643451991CoPhC..64..345M111396710.1016/0010-4655(91)90130-D[INSPIRE]
– reference: JakobsenGUMogullGConservative and radiative dynamics of spinning bodies at third post-Minkowskian order using worldline quantum field theoryPhys. Rev. Lett.20221282022PhRvL.128n1102J441941910.1103/PhysRevLett.128.141102[arXiv:2201.07778] [INSPIRE]
– reference: W. B. Kilgore, One-loop integral coefficients from generalized unitarity, arXiv:0711.5015 [INSPIRE].
– reference: R. Aoude, K. Haddad and A. Helset, Classical gravitational spinning-spinless scattering atOG2S∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{O}\left({G}^2{S}^{\infty}\right) $$\end{document}, arXiv:2205.02809 [INSPIRE].
– reference: Accettulli HuberMBrandhuberADe AngelisSTravagliniGFrom amplitudes to gravitational radiation with cubic interactions and tidal effectsPhys. Rev. D20211032021PhRvD.103d5015A422672010.1103/PhysRevD.103.045015[arXiv:2012.06548] [INSPIRE]
– reference: ChiodaroliMJohanssonHPichiniPCompton black-hole scattering for s ≤ 5/2JHEP2022021562022JHEP...02..156C440728910.1007/JHEP02(2022)156[arXiv:2107.14779] [INSPIRE]
– reference: VaidyaVGravitational spin Hamiltonians from the S matrixPhys. Rev. D2015912015PhRvD..91b4017V364914510.1103/PhysRevD.91.024017[arXiv:1410.5348] [INSPIRE]
– reference: KälinGPortoRAPost-Minkowskian effective field theory for conservative binary dynamicsJHEP2020111062020JHEP...11..106K420417210.1007/JHEP11(2020)106[arXiv:2006.01184] [INSPIRE]
– reference: PortoRAThe effective field theorist’s approach to gravitational dynamicsPhys. Rept.201663312016PhR...633....1P35031431359.8302410.1016/j.physrep.2016.04.003[arXiv:1601.04914] [INSPIRE]
– reference: BernZCarrascoJJMJohanssonHKosowerDAMaximally supersymmetric planar Yang-Mills amplitudes at five loopsPhys. Rev. D2007762007PhRvD..76l5020B237963210.1103/PhysRevD.76.125020[arXiv:0705.1864] [INSPIRE]
– reference: DlapaCKälinGLiuZPortoRAConservative dynamics of binary systems at fourth post-Minkowskian order in the large-eccentricity expansionPhys. Rev. Lett.20221282022PhRvL.128p1104D442038410.1103/PhysRevLett.128.161104[arXiv:2112.11296] [INSPIRE]
– reference: DamgaardPHHaddadKHelsetAHeavy black hole effective theoryJHEP2019110702019JHEP...11..070D40694931429.8303410.1007/JHEP11(2019)070[arXiv:1908.10308] [INSPIRE]
– reference: AoudeROchirovAClassical observables from coherent-spin amplitudesJHEP2021100082021JHEP...10..008A43399181476.8306010.1007/JHEP10(2021)008[arXiv:2108.01649] [INSPIRE]
– reference: BernZDixonLJDunbarDCPerelsteinMRozowskyJSOn the relationship between Yang-Mills theory and gravity and its implication for ultraviolet divergencesNucl. Phys. B19985304011998NuPhB.530..401B10.1016/S0550-3213(98)00420-9[hep-th/9802162] [INSPIRE]
– reference: Bjerrum-BohrNEJCristofoliADamgaardPHPost-Minkowskian scattering angle in Einstein gravityJHEP2020080382020JHEP...08..038B41901871454.8300810.1007/JHEP08(2020)038[arXiv:1910.09366] [INSPIRE]
– reference: BernZScattering amplitudes and conservative binary dynamics atOG4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{O}\left({G}^4\right) $$\end{document}Phys. Rev. Lett.20211262021PhRvL.126q1601B10.1103/PhysRevLett.126.1716014264684[arXiv:2101.07254] [INSPIRE]
– reference: BernZLunaARoibanRShenC-HZengMSpinning black hole binary dynamics, scattering amplitudes, and effective field theoryPhys. Rev. D20211042021PhRvD.104f5014B433506610.1103/PhysRevD.104.065014[arXiv:2005.03071] [INSPIRE]
– reference: W.-M. Chen, M.-Z. Chung, Y.-T. Huang and J.-W. Kim, The 2PM Hamiltonian for binary Kerr to quartic in spin, arXiv:2111.13639 [INSPIRE].
– reference: HolsteinBRDonoghueJFClassical physics and quantum loopsPhys. Rev. Lett.2004932004PhRvL..93t1602H211826010.1103/PhysRevLett.93.201602[hep-th/0405239] [INSPIRE]
– reference: GuevaraAHolomorphic classical limit for spin effects in gravitational and electromagnetic scatteringJHEP2019040332019JHEP...04..033G39554361415.8110710.1007/JHEP04(2019)033[arXiv:1706.02314] [INSPIRE]
– reference: HaddadKExponentiation of the leading eikonal phase with spinPhys. Rev. D20221052022PhRvD.105b6004H438104510.1103/PhysRevD.105.026004[arXiv:2109.04427] [INSPIRE]
– reference: CheungCRothsteinIZSolonMPFrom scattering amplitudes to classical potentials in the post-Minkowskian expansionPhys. Rev. Lett.20181212018PhRvL.121y1101C10.1103/PhysRevLett.121.251101[arXiv:1808.02489] [INSPIRE]
– ident: 18721_CR88
– volume: 07
  start-page: 169
  year: 2021
  ident: 18721_CR16
  publication-title: JHEP
  doi: 10.1007/JHEP07(2021)169
– volume: 75
  year: 2007
  ident: 18721_CR86
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.75.125019
– volume: 256
  start-page: 107478
  year: 2020
  ident: 18721_CR91
  publication-title: Comput. Phys. Commun.
  doi: 10.1016/j.cpc.2020.107478
– ident: 18721_CR1
– volume: 128
  year: 2022
  ident: 18721_CR19
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.128.161103
– volume: 3
  start-page: 1615
  year: 1988
  ident: 18721_CR51
  publication-title: Int. J. Mod. Phys. A
  doi: 10.1142/S0217751X88000710
– volume: 01
  start-page: 072
  year: 2020
  ident: 18721_CR47
  publication-title: JHEP
  doi: 10.1007/JHEP01(2020)072
– volume: 121
  year: 2018
  ident: 18721_CR8
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.121.251101
– volume: 126
  year: 2021
  ident: 18721_CR14
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.126.201602
– volume: 93
  year: 2016
  ident: 18721_CR69
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.93.124038
– volume: 240
  start-page: 447
  year: 1990
  ident: 18721_CR71
  publication-title: Phys. Lett. B
  doi: 10.1016/0370-2693(90)91128-X
– volume: 06
  start-page: 012
  year: 2021
  ident: 18721_CR39
  publication-title: JHEP
  doi: 10.1007/JHEP06(2021)012
– ident: 18721_CR57
  doi: 10.1007/JHEP04(2022)154
– volume: 35
  year: 2018
  ident: 18721_CR76
  publication-title: Class. Quant. Grav.
  doi: 10.1088/1361-6382/aaa3a8
– volume: 64
  start-page: 345
  year: 1991
  ident: 18721_CR89
  publication-title: Comput. Phys. Commun.
  doi: 10.1016/0010-4655(91)90130-D
– volume: 103
  year: 2021
  ident: 18721_CR27
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.103.045015
– volume: 633
  start-page: 1
  year: 2016
  ident: 18721_CR6
  publication-title: Phys. Rept.
  doi: 10.1016/j.physrep.2016.04.003
– volume: 877
  start-page: 177
  year: 2013
  ident: 18721_CR59
  publication-title: Nucl. Phys. B
  doi: 10.1016/j.nuclphysb.2013.09.007
– volume: 01
  start-page: 046
  year: 2020
  ident: 18721_CR34
  publication-title: JHEP
  doi: 10.1007/JHEP01(2020)046
– volume: 08
  start-page: 038
  year: 2020
  ident: 18721_CR48
  publication-title: JHEP
  doi: 10.1007/JHEP08(2020)038
– ident: 18721_CR87
– volume: 105
  year: 2022
  ident: 18721_CR53
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.105.026004
– volume: 530
  start-page: 401
  year: 1998
  ident: 18721_CR81
  publication-title: Nucl. Phys. B
  doi: 10.1016/S0550-3213(98)00420-9
– volume: 11
  start-page: 106
  year: 2020
  ident: 18721_CR12
  publication-title: JHEP
  doi: 10.1007/JHEP11(2020)106
– volume: 126
  year: 2021
  ident: 18721_CR18
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.126.171601
– volume: 03
  start-page: 097
  year: 2021
  ident: 18721_CR28
  publication-title: JHEP
  doi: 10.1007/JHEP03(2021)097
– ident: 18721_CR2
– volume: 435
  start-page: 59
  year: 1995
  ident: 18721_CR80
  publication-title: Nucl. Phys. B
  doi: 10.1016/0550-3213(94)00488-Z
– volume: 100
  year: 2019
  ident: 18721_CR50
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.100.084040
– volume: 125
  year: 2020
  ident: 18721_CR13
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.125.261103
– ident: 18721_CR72
– volume: 02
  start-page: 111
  year: 2014
  ident: 18721_CR60
  publication-title: JHEP
  doi: 10.1007/JHEP02(2014)111
– volume: 05
  start-page: 188
  year: 2021
  ident: 18721_CR26
  publication-title: JHEP
  doi: 10.1007/JHEP05(2021)188
– ident: 18721_CR5
– volume: 128
  year: 2022
  ident: 18721_CR21
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.128.161104
– ident: 18721_CR52
– volume: 425
  start-page: 217
  year: 1994
  ident: 18721_CR78
  publication-title: Nucl. Phys. B
  doi: 10.1016/0550-3213(94)90179-1
– volume: 04
  start-page: 156
  year: 2019
  ident: 18721_CR31
  publication-title: JHEP
  doi: 10.1007/JHEP04(2019)156
– volume: 207
  start-page: 432
  year: 2016
  ident: 18721_CR90
  publication-title: Comput. Phys. Commun.
  doi: 10.1016/j.cpc.2016.06.008
– volume: 10
  start-page: 206
  year: 2019
  ident: 18721_CR10
  publication-title: JHEP
  doi: 10.1007/JHEP10(2019)206
– volume: 122
  year: 2019
  ident: 18721_CR9
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.122.201603
– ident: 18721_CR49
– volume: 11
  start-page: 070
  year: 2021
  ident: 18721_CR58
  publication-title: JHEP
  doi: 10.1007/JHEP11(2021)070
– volume: 09
  start-page: 219
  year: 2015
  ident: 18721_CR75
  publication-title: JHEP
  doi: 10.1007/JHEP09(2015)219
– volume: 104
  year: 2021
  ident: 18721_CR77
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.104.024013
– volume: 10
  start-page: 1
  year: 2000
  ident: 18721_CR73
  publication-title: Camb. Monogr. Part. Phys. Nucl. Phys. Cosmol.
– volume: 10
  start-page: 148
  year: 2021
  ident: 18721_CR15
  publication-title: JHEP
  doi: 10.1007/JHEP10(2021)148
– volume: 103
  year: 2021
  ident: 18721_CR25
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.103.024030
– volume: 07
  start-page: 037
  year: 2021
  ident: 18721_CR40
  publication-title: JHEP
  doi: 10.1007/JHEP07(2021)037
– ident: 18721_CR3
– volume: 100
  year: 2019
  ident: 18721_CR33
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.100.104024
– volume: 102
  year: 2020
  ident: 18721_CR24
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.102.124025
– volume: 09
  start-page: 074
  year: 2020
  ident: 18721_CR35
  publication-title: JHEP
  doi: 10.1007/JHEP09(2020)074
– volume: 513
  start-page: 3
  year: 1998
  ident: 18721_CR79
  publication-title: Nucl. Phys. B
  doi: 10.1016/S0550-3213(97)00703-7
– ident: 18721_CR92
– volume: 12
  start-page: 156
  year: 2019
  ident: 18721_CR32
  publication-title: JHEP
  doi: 10.1007/JHEP12(2019)156
– volume: 83
  year: 2020
  ident: 18721_CR7
  publication-title: Rept. Prog. Phys.
  doi: 10.1088/1361-6633/ab12bc
– volume: 10
  start-page: 118
  year: 2021
  ident: 18721_CR17
  publication-title: JHEP
  doi: 10.1007/JHEP10(2021)118
– volume: 06
  start-page: 144
  year: 2020
  ident: 18721_CR11
  publication-title: JHEP
  doi: 10.1007/JHEP06(2020)144
– volume: 03
  start-page: 009
  year: 2022
  ident: 18721_CR65
  publication-title: JHEP
  doi: 10.1007/JHEP03(2022)009
– ident: 18721_CR44
– volume: 05
  start-page: 238
  year: 2021
  ident: 18721_CR66
  publication-title: JHEP
  doi: 10.1007/JHEP05(2021)238
– volume: 725
  start-page: 275
  year: 2005
  ident: 18721_CR82
  publication-title: Nucl. Phys. B
  doi: 10.1016/j.nuclphysb.2005.07.014
– volume: 128
  year: 2022
  ident: 18721_CR42
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.128.011101
– volume: 02
  start-page: 120
  year: 2020
  ident: 18721_CR55
  publication-title: JHEP
  doi: 10.1007/JHEP02(2020)120
– volume: 93
  year: 2004
  ident: 18721_CR85
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.93.201602
– volume: 04
  start-page: 033
  year: 2019
  ident: 18721_CR29
  publication-title: JHEP
  doi: 10.1007/JHEP04(2019)033
– volume: 101
  year: 2020
  ident: 18721_CR68
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.101.064066
– volume: 91
  year: 2015
  ident: 18721_CR61
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.91.024017
– volume: 128
  year: 2022
  ident: 18721_CR45
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.128.141102
– ident: 18721_CR70
– ident: 18721_CR84
  doi: 10.1103/PhysRevLett.72.2996
– ident: 18721_CR4
– volume: 831
  year: 2022
  ident: 18721_CR20
  publication-title: Phys. Lett. B
  doi: 10.1016/j.physletb.2022.137203
– volume: 104
  year: 2021
  ident: 18721_CR38
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.104.065014
– volume: 10
  start-page: 008
  year: 2021
  ident: 18721_CR41
  publication-title: JHEP
  doi: 10.1007/JHEP10(2021)008
– ident: 18721_CR54
– volume: 125
  year: 2020
  ident: 18721_CR74
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.125.181603
– volume: 76
  year: 2007
  ident: 18721_CR83
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.76.125020
– volume: 11
  start-page: 070
  year: 2019
  ident: 18721_CR36
  publication-title: JHEP
  doi: 10.1007/JHEP11(2019)070
– volume: 12
  start-page: 024
  year: 2020
  ident: 18721_CR23
  publication-title: JHEP
  doi: 10.1007/JHEP12(2020)024
– volume: 125
  year: 2020
  ident: 18721_CR22
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.125.191601
– volume: 05
  start-page: 051
  year: 2020
  ident: 18721_CR37
  publication-title: JHEP
  doi: 10.1007/JHEP05(2020)051
– volume: 02
  start-page: 156
  year: 2022
  ident: 18721_CR67
  publication-title: JHEP
  doi: 10.1007/JHEP02(2022)156
– volume: 01
  start-page: 027
  year: 2022
  ident: 18721_CR43
  publication-title: JHEP
  doi: 10.1007/JHEP01(2022)027
– volume: 02
  start-page: 137
  year: 2019
  ident: 18721_CR46
  publication-title: JHEP
  doi: 10.1007/JHEP02(2019)137
– volume: 09
  start-page: 056
  year: 2019
  ident: 18721_CR30
  publication-title: JHEP
  doi: 10.1007/JHEP09(2019)056
– volume: 09
  start-page: 040
  year: 2019
  ident: 18721_CR64
  publication-title: JHEP
  doi: 10.1007/JHEP09(2019)040
– volume: 715
  start-page: 499
  year: 2005
  ident: 18721_CR62
  publication-title: Nucl. Phys. B
  doi: 10.1016/j.nuclphysb.2005.02.030
– volume: 94
  year: 2005
  ident: 18721_CR63
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.94.181602
– volume: 4
  year: 2022
  ident: 18721_CR56
  publication-title: Phys. Rev. Res.
  doi: 10.1103/PhysRevResearch.4.013127
SSID ssj0015190
Score 2.6449218
Snippet A bstract The classical scattering of spinning objects is well described by the spinor-helicity formalism for heavy particles. Using these variables, we derive...
The classical scattering of spinning objects is well described by the spinor-helicity formalism for heavy particles. Using these variables, we derive...
Abstract The classical scattering of spinning objects is well described by the spinor-helicity formalism for heavy particles. Using these variables, we derive...
SourceID doaj
swepub
osti
proquest
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 72
SubjectTerms Amplitudes
Black Holes
Classical and Quantum Gravitation
CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS
Classical Theories of Gravity
Deformation
Effective Field Theories
Elementary Particles
Gravitational waves
Gravity
Helicity
High energy physics
Multipoles
Physics
Physics and Astronomy
Quantum Field Theories
Quantum Field Theory
Quantum Physics
Regular Article - Theoretical Physics
Relativity Theory
Scattering
Scattering Amplitudes
Spin structure
String Theory
Variables
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3fT9swELYYaNJe0AabVmAoDzDgIcOJHZ_9hGArqphA1TQm3qz414Y2taxN__-dE6eok-ApUnJJTnf23Wf79B0hB146yi0vc1MxkXPwNlec1jk1hfCAGcbVcb_j-kaMbvnVXXWXNtzmqayyj4ltoHZTG_fITzGMYiAFRenZw988do2Kp6uphcYLsoEhWOLia-NieDP-tjxHQHxCe0IfCqdXo-GYwjEu-MsTCuVKLmop-_Eyxam1AjeXJ6T_sYm2GejyNdlM0DE773z9hqz5yRZ52ZZw2vk2Oeoqh_EbGQLR7KufzbL7SYYALyvH11kdS8cjkeVbcns5_P55lKc2CLlFLN_kzHIaAByARGwToHbBWVEXAZGIU65wlXHSG8yzpqhL74IPzGDqY0IqzO-OvSPrk-nEvycZoi9rFRgEKRwzuZcVuLLAfMWCENzBgHzqDaJt4giPrSr-6J7duLOgjhbUaMEBOV6-8NDRYzwtehEtvBSLvNbtjensp07TRAsKpoJSsKACVw5q1BcBKmIoZ30t8SO70T8a4UHkuLWxGMg2ukBQxZUckL3ebTpNxbl-HDgDctK78vHxk9p-7Hy9ou-X-x_nrb6_m1-aIVhmKHj4nOBiobnEJa7aeV63XfIq_rorBN4j681s4T8g3GnMfhrT_wBf5vrX
  priority: 102
  providerName: ProQuest
– databaseName: SpringerOpen
  dbid: C24
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS-QwGA2iCL4s66o4qyt98PpQSZs0aR7VVQZF8UHFt9DcdmWXmWXs_P896WVkFAWfGtqkDd-X5Jw0X04I2fWlo9zyPDUFEymX3qaK0yqlJhNeAmFcFf93XN-I4T2_fCweF0jW74Vpot37JclmpO43u10Oz2-pPMRkPT-iEqPuUoF0bNRncYNDt3AAQkJ7BZ-3hebAp9Hox2WMvjTHL2dLoq_kQxvIufhKvnRcMTlpnbtKFvzoG1luYjbt8xo5aEOF8Y4EzDO58pNJ8jRKwOiS_PY6qWKseFSuXCf3F-d3Z8O0O_cgtSDvdcosp0FKJ2UJMhNk5YKzosoCqIdTLnOFcaU3AFaTVbl3wQdmgHVMlAqA7tgGWRyNR36TJKBb1ippwEo4oNuXhXR5BoBiQQju5IAc9wbRthMFj2dT_NW9nHFrQR0tqGHBATmcFfjX6mG8n_U0WniWLQpZNzfGk1-66xdaUGkKmQsWVODKyQr1BSMFaXLWVyVeshX9o8EHoqitjdE_ttYZWBRX5YBs927TXd971gBcQK5UlA7IUe_Kl8fv1na_9fVcfX8-PZw09f1T_9YM7Jgh495HGadTzUvMadX3T3x8i6zEZBsGvE0W68nU_wDZqc1O07z_A-jr9M4
  priority: 102
  providerName: Springer Nature
Title Searching for Kerr in the 2PM amplitude
URI https://link.springer.com/article/10.1007/JHEP07(2022)072
https://www.proquest.com/docview/2848477900
https://www.osti.gov/servlets/purl/1976498
https://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-316132
https://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-482499
https://doaj.org/article/607b57263f9f49d7a6cc774937dcea82
Volume 2022
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB5BERIXxFOEllUOPNpDqGM7fhy3yy6rolYrxKLerPilVqAt2mb_P-M8FhapcOHiKMnEmszI-T7Ho88Ar4PyhDtOC1sxUXAZXKE5qQtiSxEkIoyv0_-Os3MxX_LTi-rit62-Uk1YJw_cBe5YEGkrSQWLOnLtZS2cQ8qCqOpdqFX79UXMGyZT_foB8hIyCPkQeXw6ny6IPMSJPj0iku5gUCvVj4drHFI7NHO7MvqHimiLPLNH8LCnjPm4c_Ux3AmrJ3C_Ld10N0_hXVcxjH3kSEDzT2G9zq9WORK7nC7O8jqVjCcBy2ewnE2_TOZFv_1B4ZDDNwVznEQpvZQKOU2UtY_eibqMyEC89qWvrFfBIr7asqbBxxCZRchjQmnEdc-ew97qehVeQI6syzktLZITjggeVCU9LRGnWBSCe5nB-yEgxvXa4GmLiu9mUDXuImhSBA1GMIPD7QM_OlmM201PUoS3ZknPur2AWTZ9ls2_spzBfsqPQVqQtG1dKgJyjSmRTHGtMjgY0mb6IXhjEHcReaUmJIOjIZW_bt_q7dsu1zv-frj6Om79_dZcGoYkmaHhm78ZbjaGK5za6pf_4_X34UFysCsTPoC9Zr0Jr5AMNXYEd9Xs4wjunUzPF5_xbEJ5asVk1I4IbJd0_BOmegbv
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIgQXxFMsLeADhfYQ6tiOHR8QKrTLttutemhRbybxAyrQbtnNCvGn-I2M89hqkdpbT5GSiTWa8fj7Yk9mAF773FFhBUvKjMtEKG8TLWiR0DKVXiHCuCLud4yO5OBUHJxlZyvwt_sXJqZVdmtivVC7iY175Nu4jOJCqjSlHy5-JbFrVDxd7VpoNNNi6P_8xk-22fv9XfTvBmP9vZNPg6TtKpBYpMZVwq2gQSmnVI5UIajCBWdlkQYEdqdd6rLS5b5E2CrTgnkXfOAlIgmXuUa4dBzHvQW3Bec6RlTe_7w4tUA2RLvyQVRtHwz2jqnaZAiTW1SxJeSrGwTgZYKBvERuF-ex_9UurfGu_wDut0SV7DQz6yGs-PEjuFMnjNrZY3jb5CnjGARpLxn66ZScjwnSScKOR6SIieqxbOYTOL0R8zyF1fFk7J8BQa5nrVYlUiKBvMHnmXIsRXTkQUrhVA_edQYxtq1IHhtj_DRdLeXGgiZa0KAFe7C5eOGiKcZxtejHaOGFWKyiXd-YTL-ZNiiNpKrMFJM86CC0UwXqi3QYGZuzvshxkLXoH4NkJFbUtTH1yFYmRQondN6D9c5tpg38mbmcpj3Y6lx5-fhKbd80vl7Sd_f8y06t74_qu-FIzTkKblwnOJ8bkeMHtX5-vW6v4O7gZHRoDvePhmtwL6rRpCCvw2o1nfsXSLSq8mU9uwl8velw-gdf6Tia
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VVCAuqLxEaAEfKLQHk_Xu2msfEGqbRGlDowhR1NvifbUVKCmJI8Rf669j1o9UqdTeerJkj1ejmd35vvWOZwDe29QQrjkNVcySkAurw4yTPCQqSqxAhDG5_95xPEoGJ_zoND5dg6vmXxifVtnExDJQm6n238g7GEYxkIqMkI6r0yLG3f6Xyz-h7yDlT1qbdhrVFBnaf39x-zb_fNhFX29T2u99PxiEdYeBUCNNLkKmOXFCGCFSpA1O5MYZneSRQ5A3mYlMrExqFUKYinJqjbOOKUQVlqQZQqdhOO4DWBe4KyItWN_vjcbflmcYyI1IU0yIiM7RoDcmYociaO4SQVdwsGwXgJcpLusVqrs8nb1RybREv_4GPKlpa7BXzbOnsGYnz-BhmT6q58_hY5W1jGMESIKDoZ3NgotJgOQyoOPjIPdp676I5gs4uRcDvYTWZDqxryBA5qd1JhQSJI4swqaxMDRCrGQuSbgRbfjUGETquj65b5PxWzaVlSsLSm9BiRZsw87yhcuqNMftovvewksxX1O7vDGdncl6icqECBULmjCXOZ4ZkaO-SI6Rvxlt8xQH2fT-kUhNfH1d7RORdCEjJHQ8S9uw1bhN1mFgLq8nbRt2G1deP75V2w-Vr1f07V782Cv1_VWcS4ZEnaHg9l2Ci4XkKW6vs9d36_YOHuFSkl8PR8NNeOy1qPKRt6BVzBb2DbKuQr2tp3cAP-97Rf0HN9w-LA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Searching+for+Kerr+in+the+2PM+amplitude&rft.jtitle=The+journal+of+high+energy+physics&rft.au=Rafael+Aoude&rft.au=Kays+Haddad&rft.au=Andreas+Helset&rft.date=2022-07-01&rft.pub=SpringerOpen&rft.eissn=1029-8479&rft.volume=2022&rft.issue=7&rft.spage=1&rft.epage=34&rft_id=info:doi/10.1007%2FJHEP07%282022%29072&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_607b57263f9f49d7a6cc774937dcea82
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1029-8479&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1029-8479&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1029-8479&client=summon