Searching for Kerr in the 2PM amplitude
A bstract The classical scattering of spinning objects is well described by the spinor-helicity formalism for heavy particles. Using these variables, we derive spurious-pole-free, all-spin opposite-helicity Compton amplitudes (factorizing on physical poles to the minimal, all-spin three-point amplit...
Saved in:
Published in | The journal of high energy physics Vol. 2022; no. 7; pp. 72 - 34 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.07.2022
Springer Nature B.V Springer Nature SpringerOpen |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | A
bstract
The classical scattering of spinning objects is well described by the spinor-helicity formalism for heavy particles. Using these variables, we derive spurious-pole-free, all-spin opposite-helicity Compton amplitudes (factorizing on physical poles to the minimal, all-spin three-point amplitudes) in the classical limit for QED, QCD, and gravity. The cured amplitudes are subject to deformations by contact terms, the vast majority of whose contributions we can fix by imposing a relation between spin structures — motivated by lower spin multipoles of black hole scattering — at the second post-Minkowskian (2PM) order. For QED and gravity, this leaves a modest number of unfixed coefficients parametrizing contact-term deformations, while the QCD amplitude is uniquely determined. Our gravitational Compton amplitude allows us to push the state-of-the-art of spinning-2PM scattering to any order in the spin vectors of both objects; we present results here and in the supplementary material file 2PMSpin8Aux.nb up to eighth order in the spin vectors. Interestingly, despite leftover coefficients in the Compton amplitude, imposing the aforementioned relation between spin structures uniquely fixes some higher-spin parts of the 2PM amplitude. |
---|---|
AbstractList | A
bstract
The classical scattering of spinning objects is well described by the spinor-helicity formalism for heavy particles. Using these variables, we derive spurious-pole-free, all-spin opposite-helicity Compton amplitudes (factorizing on physical poles to the minimal, all-spin three-point amplitudes) in the classical limit for QED, QCD, and gravity. The cured amplitudes are subject to deformations by contact terms, the vast majority of whose contributions we can fix by imposing a relation between spin structures — motivated by lower spin multipoles of black hole scattering — at the second post-Minkowskian (2PM) order. For QED and gravity, this leaves a modest number of unfixed coefficients parametrizing contact-term deformations, while the QCD amplitude is uniquely determined. Our gravitational Compton amplitude allows us to push the state-of-the-art of spinning-2PM scattering to any order in the spin vectors of both objects; we present results here and in the supplementary material file 2PMSpin8Aux.nb up to eighth order in the spin vectors. Interestingly, despite leftover coefficients in the Compton amplitude, imposing the aforementioned relation between spin structures uniquely fixes some higher-spin parts of the 2PM amplitude. The classical scattering of spinning objects is well described by the spinor-helicity formalism for heavy particles. Using these variables, we derive spurious-pole-free, all-spin opposite-helicity Compton amplitudes (factorizing on physical poles to the minimal, all-spin three-point amplitudes) in the classical limit for QED, QCD, and gravity. The cured amplitudes are subject to deformations by contact terms, the vast majority of whose contributions we can fix by imposing a relation between spin structures - motivated by lower spin multipoles of black hole scattering - at the second post-Minkowskian (2PM) order. For QED and gravity, this leaves a modest number of unfixed coefficients parametrizing contact-term deformations, while the QCD amplitude is uniquely determined. Our gravitational Compton amplitude allows us to push the state-of-the-art of spinning-2PM scattering to any order in the spin vectors of both objects; we present results here and in the supplementary material file 2PMSpin8Aux.nb up to eighth order in the spin vectors. Interestingly, despite leftover coefficients in the Compton amplitude, imposing the aforementioned relation between spin structures uniquely fixes some higher-spin parts of the 2PM amplitude. Abstract The classical scattering of spinning objects is well described by the spinor-helicity formalism for heavy particles. Using these variables, we derive spurious-pole-free, all-spin opposite-helicity Compton amplitudes (factorizing on physical poles to the minimal, all-spin three-point amplitudes) in the classical limit for QED, QCD, and gravity. The cured amplitudes are subject to deformations by contact terms, the vast majority of whose contributions we can fix by imposing a relation between spin structures — motivated by lower spin multipoles of black hole scattering — at the second post-Minkowskian (2PM) order. For QED and gravity, this leaves a modest number of unfixed coefficients parametrizing contact-term deformations, while the QCD amplitude is uniquely determined. Our gravitational Compton amplitude allows us to push the state-of-the-art of spinning-2PM scattering to any order in the spin vectors of both objects; we present results here and in the supplementary material file 2PMSpin8Aux.nb up to eighth order in the spin vectors. Interestingly, despite leftover coefficients in the Compton amplitude, imposing the aforementioned relation between spin structures uniquely fixes some higher-spin parts of the 2PM amplitude. |
ArticleNumber | 72 |
Author | Helset, Andreas Aoude, Rafael Haddad, Kays |
Author_xml | – sequence: 1 givenname: Rafael orcidid: 0000-0001-9259-9257 surname: Aoude fullname: Aoude, Rafael organization: Centre for Cosmology, Particle Physics and Phenomenology (CP3), Université catholique de Louvain – sequence: 2 givenname: Kays orcidid: 0000-0002-1182-2750 surname: Haddad fullname: Haddad, Kays email: kays.haddad@physics.uu.se organization: Department of Physics and Astronomy, Uppsala University, Nordita, Stockholm University and KTH Royal Institute of Technology – sequence: 3 givenname: Andreas orcidid: 0000-0002-5904-3748 surname: Helset fullname: Helset, Andreas organization: Walter Burke Institute for Theoretical Physics, California Institute of Technology |
BackLink | https://www.osti.gov/servlets/purl/1976498$$D View this record in Osti.gov https://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-316132$$DView record from Swedish Publication Index https://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-482499$$DView record from Swedish Publication Index |
BookMark | eNqFkU1vFSEUholpE9vq2u1EF2riWGCYAZZNrf2wxiZ-bAkDh3u53sItMDH--3I7NX4kjSsIed4n5_Duo50QAyD0jOC3BGN-eHF2coX5K4opfY05fYT2CKayFYzLnT_uj9F-ziuMSU8k3kMvP4NOZunDonExNR8gpcaHpiyhoVcfG329WfsyWXiCdp1eZ3h6fx6gr-9PvhyftZefTs-Pjy5b04u-tJ1h2HFuORes6x3X1lkzaOJIL620xPajFTAOhI1EU7AOXDcC2G4QUlBsuwN0Pntt1Cu1Sf5ap58qaq_uHmJaKJ2KN2tQA-Zjz-nQOemYtFwPxnDOZMetAS1odb2ZXfkHbKbxL9s7_-3ozjZNignKpKx4-3_8e1mqjgyk2-qfz3zMxatsfAGzNDEEMEURyQcmRYVezNAmxZsJclGrOKVQv1BRwWohXGJcqX6mTIo5J3Cq2nTxMZSk_VoRrLYdq7ljte1Y1Y5r7vCf3K-hH07g-yUrGRaQfs_zUOQWBYi3LA |
CitedBy_id | crossref_primary_10_1140_epjc_s10052_025_13879_7 crossref_primary_10_1007_JHEP04_2024_058 crossref_primary_10_1103_PhysRevD_106_124030 crossref_primary_10_1103_PhysRevD_106_L081901 crossref_primary_10_1103_PhysRevD_111_L021701 crossref_primary_10_1007_JHEP10_2022_128 crossref_primary_10_1088_1751_8121_ad8b02 crossref_primary_10_1007_JHEP02_2024_026 crossref_primary_10_1007_JHEP03_2025_126 crossref_primary_10_1007_JHEP05_2024_148 crossref_primary_10_1103_PhysRevD_107_044033 crossref_primary_10_1007_JHEP05_2023_211 crossref_primary_10_1007_JHEP05_2023_177 crossref_primary_10_1103_PhysRevD_108_106003 crossref_primary_10_1007_JHEP06_2023_204 crossref_primary_10_1007_JHEP06_2023_167 crossref_primary_10_1007_JHEP06_2023_048 crossref_primary_10_1103_PhysRevLett_131_221401 crossref_primary_10_1007_JHEP05_2024_157 crossref_primary_10_1103_PhysRevLett_130_021601 crossref_primary_10_1007_JHEP12_2022_058 crossref_primary_10_1103_PhysRevD_109_045011 crossref_primary_10_1007_JHEP03_2024_143 crossref_primary_10_1007_JHEP02_2023_107 crossref_primary_10_1007_JHEP09_2024_196 crossref_primary_10_1007_JHEP02_2023_105 crossref_primary_10_1007_JHEP02_2025_019 crossref_primary_10_1007_JHEP08_2024_188 crossref_primary_10_1007_JHEP06_2023_170 crossref_primary_10_1007_JHEP03_2024_108 crossref_primary_10_1007_JHEP03_2025_144 crossref_primary_10_1103_PhysRevD_107_L081701 crossref_primary_10_1007_JHEP05_2023_088 crossref_primary_10_1016_j_physrep_2024_06_002 crossref_primary_10_1103_PhysRevD_108_084036 crossref_primary_10_1007_JHEP07_2024_272 crossref_primary_10_1007_JHEP10_2022_105 crossref_primary_10_1007_JHEP02_2024_202 crossref_primary_10_1103_PhysRevD_108_024049 crossref_primary_10_1007_JHEP12_2024_060 crossref_primary_10_1007_JHEP03_2024_015 crossref_primary_10_1007_JHEP06_2024_015 crossref_primary_10_1007_s10714_024_03294_w crossref_primary_10_1140_epjc_s10052_025_13814_w crossref_primary_10_1007_JHEP12_2024_213 crossref_primary_10_1103_PhysRevD_109_084071 crossref_primary_10_1103_PhysRevLett_133_071601 crossref_primary_10_1007_JHEP02_2023_197 crossref_primary_10_1103_PhysRevD_110_L041502 crossref_primary_10_1103_PhysRevD_108_084065 crossref_primary_10_1103_PhysRevLett_131_011601 crossref_primary_10_1103_PhysRevLett_132_191603 crossref_primary_10_1103_PhysRevLett_131_011603 crossref_primary_10_1007_JHEP12_2023_103 crossref_primary_10_1007_JHEP03_2024_125 crossref_primary_10_1007_JHEP08_2024_080 crossref_primary_10_1007_JHEP01_2025_140 crossref_primary_10_1103_PhysRevD_110_124005 crossref_primary_10_1103_PhysRevLett_129_141102 crossref_primary_10_1007_JHEP07_2023_042 crossref_primary_10_1103_PhysRevLett_134_101602 crossref_primary_10_1007_JHEP08_2024_045 crossref_primary_10_1103_PhysRevD_109_036007 crossref_primary_10_1103_PhysRevD_106_124026 crossref_primary_10_1103_PhysRevD_108_024050 |
Cites_doi | 10.1007/JHEP07(2021)169 10.1103/PhysRevD.75.125019 10.1016/j.cpc.2020.107478 10.1103/PhysRevLett.128.161103 10.1142/S0217751X88000710 10.1007/JHEP01(2020)072 10.1103/PhysRevLett.121.251101 10.1103/PhysRevLett.126.201602 10.1103/PhysRevD.93.124038 10.1016/0370-2693(90)91128-X 10.1007/JHEP06(2021)012 10.1007/JHEP04(2022)154 10.1088/1361-6382/aaa3a8 10.1016/0010-4655(91)90130-D 10.1103/PhysRevD.103.045015 10.1016/j.physrep.2016.04.003 10.1016/j.nuclphysb.2013.09.007 10.1007/JHEP01(2020)046 10.1007/JHEP08(2020)038 10.1103/PhysRevD.105.026004 10.1016/S0550-3213(98)00420-9 10.1007/JHEP11(2020)106 10.1103/PhysRevLett.126.171601 10.1007/JHEP03(2021)097 10.1016/0550-3213(94)00488-Z 10.1103/PhysRevD.100.084040 10.1103/PhysRevLett.125.261103 10.1007/JHEP02(2014)111 10.1007/JHEP05(2021)188 10.1103/PhysRevLett.128.161104 10.1016/0550-3213(94)90179-1 10.1007/JHEP04(2019)156 10.1016/j.cpc.2016.06.008 10.1007/JHEP10(2019)206 10.1103/PhysRevLett.122.201603 10.1007/JHEP11(2021)070 10.1007/JHEP09(2015)219 10.1103/PhysRevD.104.024013 10.1007/JHEP10(2021)148 10.1103/PhysRevD.103.024030 10.1007/JHEP07(2021)037 10.1103/PhysRevD.100.104024 10.1103/PhysRevD.102.124025 10.1007/JHEP09(2020)074 10.1016/S0550-3213(97)00703-7 10.1007/JHEP12(2019)156 10.1088/1361-6633/ab12bc 10.1007/JHEP10(2021)118 10.1007/JHEP06(2020)144 10.1007/JHEP03(2022)009 10.1007/JHEP05(2021)238 10.1016/j.nuclphysb.2005.07.014 10.1103/PhysRevLett.128.011101 10.1007/JHEP02(2020)120 10.1103/PhysRevLett.93.201602 10.1007/JHEP04(2019)033 10.1103/PhysRevD.101.064066 10.1103/PhysRevD.91.024017 10.1103/PhysRevLett.128.141102 10.1103/PhysRevLett.72.2996 10.1016/j.physletb.2022.137203 10.1103/PhysRevD.104.065014 10.1007/JHEP10(2021)008 10.1103/PhysRevLett.125.181603 10.1103/PhysRevD.76.125020 10.1007/JHEP11(2019)070 10.1007/JHEP12(2020)024 10.1103/PhysRevLett.125.191601 10.1007/JHEP05(2020)051 10.1007/JHEP02(2022)156 10.1007/JHEP01(2022)027 10.1007/JHEP02(2019)137 10.1007/JHEP09(2019)056 10.1007/JHEP09(2019)040 10.1016/j.nuclphysb.2005.02.030 10.1103/PhysRevLett.94.181602 10.1103/PhysRevResearch.4.013127 |
ContentType | Journal Article |
Copyright | The Author(s) 2022 The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2022 – notice: The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
CorporateAuthor | California Institute of Technology (CalTech), Pasadena, CA (United States) |
CorporateAuthor_xml | – name: California Institute of Technology (CalTech), Pasadena, CA (United States) |
DBID | C6C AAYXX CITATION 8FE 8FG ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO HCIFZ P5Z P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI OIOZB OTOTI ADTPV AFDQA AOWAS D8T D8V ZZAVC ACNBI DF2 DOA |
DOI | 10.1007/JHEP07(2022)072 |
DatabaseName | Springer Nature OA Free Journals CrossRef ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Central Korea SciTech Premium Collection Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition OSTI.GOV - Hybrid OSTI.GOV SwePub SWEPUB Kungliga Tekniska Högskolan full text SwePub Articles SWEPUB Freely available online SWEPUB Kungliga Tekniska Högskolan SwePub Articles full text SWEPUB Uppsala universitet full text SWEPUB Uppsala universitet DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database Advanced Technologies & Aerospace Collection Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central Advanced Technologies & Aerospace Database ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | CrossRef Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 1029-8479 |
EndPage | 34 |
ExternalDocumentID | oai_doaj_org_article_607b57263f9f49d7a6cc774937dcea82 oai_DiVA_org_uu_482499 oai_DiVA_org_kth_316132 1976498 10_1007_JHEP07_2022_072 |
GroupedDBID | -5F -5G -A0 -BR 0R~ 0VY 199 1N0 30V 4.4 408 40D 5GY 5VS 8FE 8FG 8TC 8UJ 95. AAFWJ AAKKN ABEEZ ACACY ACGFS ACHIP ACREN ACULB ADBBV ADINQ AEGXH AENEX AFGXO AFKRA AFPKN AFWTZ AHBYD AHYZX AIBLX ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH AOAED ARAPS ASPBG ATQHT AVWKF AZFZN BCNDV BENPR BGLVJ C24 C6C CCPQU CS3 CSCUP DU5 EBS ER. FEDTE GQ6 GROUPED_DOAJ HCIFZ HF~ HLICF HMJXF HVGLF HZ~ IHE KOV LAP M~E N5L N9A NB0 O93 OK1 P62 P9T PIMPY PROAC R9I RO9 RSV S27 S3B SOJ SPH T13 TUS U2A VC2 VSI WK8 XPP Z45 ZMT 02O 1JI 1WK 2VQ 5ZI AAGCD AAGCF AAIAL AAJIO AALHV AARHV AATNI AAYXX AAYZH ABFSG ABTEG ACAFW ACARI ACBXY ACSTC ADKPE ADRFC AEFHF AEJGL AERVB AETNG AEZWR AFHIU AFLOW AGJBK AGQPQ AHSBF AHSEE AHWEU AIXLP AIYBF AKPSB AMVHM ARNYC BAPOH BBWZM BGNMA CAG CITATION CJUJL COF CRLBU EDWGO EJD EMSAF EPQRW EQZZN H13 IJHAN IOP IZVLO JCGBZ KOT M45 M4Y NT- NT. NU0 O9- PHGZM PHGZT PJBAE Q02 R4D RIN RKQ RNS ROL RPA S1Z S3P SY9 T37 ABUWG AZQEC DWQXO PKEHL PQEST PQGLB PQQKQ PQUKI AAYZJ AFNRJ AHBXF OIOZB OTOTI ADTPV AEINN AFDQA AOWAS D8T D8V ZZAVC ACNBI DF2 PUEGO |
ID | FETCH-LOGICAL-c585t-3c40f77d778435f7adfdc6a1f159d9d1d5bd8eb614b1a2edfef3beed3689820d3 |
IEDL.DBID | DOA |
ISSN | 1029-8479 1126-6708 |
IngestDate | Wed Aug 27 01:13:44 EDT 2025 Thu Aug 21 06:27:08 EDT 2025 Thu Aug 21 06:16:39 EDT 2025 Mon Jan 15 05:22:55 EST 2024 Sat Jul 26 00:16:36 EDT 2025 Thu Apr 24 22:53:50 EDT 2025 Tue Jul 01 01:00:21 EDT 2025 Fri Feb 21 02:45:36 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Keywords | Classical Theories of Gravity Effective Field Theories Scattering Amplitudes Black Holes |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c585t-3c40f77d778435f7adfdc6a1f159d9d1d5bd8eb614b1a2edfef3beed3689820d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 USDOE Office of Science (SC) SC0011632; KAW 2018.0116 Walter Burke Institute for Theoretical Physics Ragnar Söderberg Foundation Knut and Alice Wallenberg Foundation |
ORCID | 0000-0002-1182-2750 0000-0001-9259-9257 0000-0002-5904-3748 0000000192599257 0000000211822750 0000000259043748 |
OpenAccessLink | https://doaj.org/article/607b57263f9f49d7a6cc774937dcea82 |
PQID | 2848477900 |
PQPubID | 2034718 |
PageCount | 34 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_607b57263f9f49d7a6cc774937dcea82 swepub_primary_oai_DiVA_org_uu_482499 swepub_primary_oai_DiVA_org_kth_316132 osti_scitechconnect_1976498 proquest_journals_2848477900 crossref_citationtrail_10_1007_JHEP07_2022_072 crossref_primary_10_1007_JHEP07_2022_072 springer_journals_10_1007_JHEP07_2022_072 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-07-01 |
PublicationDateYYYYMMDD | 2022-07-01 |
PublicationDate_xml | – month: 07 year: 2022 text: 2022-07-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Berlin/Heidelberg |
PublicationPlace_xml | – name: Berlin/Heidelberg – name: Heidelberg – name: United States |
PublicationTitle | The journal of high energy physics |
PublicationTitleAbbrev | J. High Energ. Phys |
PublicationYear | 2022 |
Publisher | Springer Berlin Heidelberg Springer Nature B.V Springer Nature SpringerOpen |
Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V – name: Springer Nature – name: SpringerOpen |
References | Y. F. Bautista, A. Guevara, C. Kavanagh and J. Vines, From scattering in black hole backgrounds to higher-spin amplitudes: part I, arXiv:2107.10179 [INSPIRE]. LiuZPortoRAYangZSpin effects in the effective field theory approach to post-Minkowskian conservative dynamicsJHEP2021060122021JHEP...06..012L431642810.1007/JHEP06(2021)012[arXiv:2102.10059] [INSPIRE] DamgaardPHHaddadKHelsetAHeavy black hole effective theoryJHEP2019110702019JHEP...11..070D40694931429.8303410.1007/JHEP11(2019)070[arXiv:1908.10308] [INSPIRE] CheungCRothsteinIZSolonMPFrom scattering amplitudes to classical potentials in the post-Minkowskian expansionPhys. Rev. Lett.20181212018PhRvL.121y1101C10.1103/PhysRevLett.121.251101[arXiv:1808.02489] [INSPIRE] BrittoRCachazoFFengBNew recursion relations for tree amplitudes of gluonsNucl. Phys. B20057154992005NuPhB.715..499B21356461207.8108810.1016/j.nuclphysb.2005.02.030[hep-th/0412308] [INSPIRE] Accettulli HuberMBrandhuberADe AngelisSTravagliniGFrom amplitudes to gravitational radiation with cubic interactions and tidal effectsPhys. Rev. D20211032021PhRvD.103d5015A422672010.1103/PhysRevD.103.045015[arXiv:2012.06548] [INSPIRE] ShtabovenkoVMertigROrellanaFNew developments in FeynCalc 9.0Comput. Phys. Commun.20162074322016CoPhC.207..432S1375.6822710.1016/j.cpc.2016.06.008[arXiv:1601.01167] [INSPIRE] JakobsenGUMogullGPlefkaJSteinhoffJGravitational Bremsstrahlung and hidden supersymmetry of spinning bodiesPhys. Rev. Lett.20221282022PhRvL.128a1101J438779910.1103/PhysRevLett.128.011101[arXiv:2106.10256] [INSPIRE] BernZParra-MartinezJRoibanRSawyerEShenC-HLeading nonlinear tidal effects and scattering amplitudesJHEP2021051882021JHEP...05..188B43016161466.8113310.1007/JHEP05(2021)188[arXiv:2010.08559] [INSPIRE] A. Cristofoli, R. Gonzo, D. A. Kosower and D. O’Connell, Waveforms from amplitudes, arXiv:2107.10193 [INSPIRE]. BernZScattering amplitudes, the tail effect, and conservative binary dynamics atOG4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{O}\left({G}^4\right) $$\end{document}Phys. Rev. Lett.20221282022PhRvL.128p1103B10.1103/PhysRevLett.128.1611034420383[arXiv:2112.10750] [INSPIRE] VaidyaVGravitational spin Hamiltonians from the S matrixPhys. Rev. D2015912015PhRvD..91b4017V364914510.1103/PhysRevD.91.024017[arXiv:1410.5348] [INSPIRE] HerrmannEParra-MartinezJRufMSZengMRadiative classical gravitational observables atOG3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{O}\left({G}^3\right) $$\end{document}from scattering amplitudesJHEP2021101482021JHEP...10..148H1476.8308810.1007/JHEP10(2021)1484339778[arXiv:2104.03957] [INSPIRE] GuevaraAHolomorphic classical limit for spin effects in gravitational and electromagnetic scatteringJHEP2019040332019JHEP...04..033G39554361415.8110710.1007/JHEP04(2019)033[arXiv:1706.02314] [INSPIRE] G. Cho, G. Kälin and R. A. Porto, From boundary data to bound states. Part III. Radiative effects, JHEP04 (2022) 154 [arXiv:2112.03976] [INSPIRE]. SiemonsenNVinesJTest black holes, scattering amplitudes and perturbations of Kerr spacetimePhys. Rev. D20201012020PhRvD.101f4066S408622410.1103/PhysRevD.101.064066[arXiv:1909.07361] [INSPIRE] DlapaCKälinGLiuZPortoRADynamics of binary systems to fourth post-Minkowskian order from the effective field theory approachPhys. Lett. B202283144323940754044610.1016/j.physletb.2022.137203[arXiv:2106.08276] [INSPIRE] MertigRBöhmMDennerAFEYN CALC: computer algebraic calculation of Feynman amplitudesComput. Phys. Commun.1991643451991CoPhC..64..345M111396710.1016/0010-4655(91)90130-D[INSPIRE] M. Neubert, Heavy quark effective theory, Subnucl. Ser.34 (1997) 98 [hep-ph/9610266] [INSPIRE]. LIGO Scientific and Virgo collaborations, GW170817: observation of gravitational waves from a binary neutron star inspiral, Phys. Rev. Lett.119 (2017) 161101 [arXiv:1710.05832] [INSPIRE]. LeviMEffective field theories of post-Newtonian gravity: a comprehensive reviewRept. Prog. Phys.2020832020RPPh...83g5901L411923510.1088/1361-6633/ab12bc[arXiv:1807.01699] [INSPIRE] Bjerrum-BohrNEJCristofoliADamgaardPHPost-Minkowskian scattering angle in Einstein gravityJHEP2020080382020JHEP...08..038B41901871454.8300810.1007/JHEP08(2020)038[arXiv:1910.09366] [INSPIRE] VinesJScattering of two spinning black holes in post-Minkowskian gravity, to all orders in spin, and effective-one-body mappingsClass. Quant. Grav.2018352018CQGra..35h4002V37895091409.8311610.1088/1361-6382/aaa3a8[arXiv:1709.06016] [INSPIRE] HolsteinBRDonoghueJFClassical physics and quantum loopsPhys. Rev. Lett.2004932004PhRvL..93t1602H211826010.1103/PhysRevLett.93.201602[hep-th/0405239] [INSPIRE] ShtabovenkoVMertigROrellanaFFeynCalc 9.3: new features and improvementsComput. Phys. Commun.2020256107478412201710.1016/j.cpc.2020.107478[arXiv:2001.04407] [INSPIRE] AmatiDCiafaloniMVenezianoGClassical and quantum gravity effects from Planckian energy superstring collisionsInt. J. Mod. Phys. A1988316151988IJMPA...3.1615A10.1142/S0217751X88000710[INSPIRE] HaddadKHelsetATidal effects in quantum field theoryJHEP2020120242020JHEP...12..024H42394281457.8107010.1007/JHEP12(2020)024[arXiv:2008.04920] [INSPIRE] CristofoliABjerrum-BohrNEJDamgaardPHVanhovePPost-Minkowskian Hamiltonians in general relativityPhys. Rev. D20191002019PhRvD.100h4040C403155210.1103/PhysRevD.100.084040[arXiv:1906.01579] [INSPIRE] Di VecchiaPHeissenbergCRussoRVenezianoGThe eikonal approach to gravitational scattering and radiation atOG3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{O}\left({G}^3\right) $$\end{document}JHEP2021071692021JHEP...07..169D1468.8305710.1007/JHEP07(2021)1694316502[arXiv:2104.03256] [INSPIRE] AoudeRHaddadKHelsetATidal effects for spinning particlesJHEP2021030972021JHEP...03..097A42627571461.8113410.1007/JHEP03(2021)097[arXiv:2012.05256] [INSPIRE] KälinGPortoRAPost-Minkowskian effective field theory for conservative binary dynamicsJHEP2020111062020JHEP...11..106K420417210.1007/JHEP11(2020)106[arXiv:2006.01184] [INSPIRE] Arkani-HamedNHuangY-TO’ConnellDKerr black holes as elementary particlesJHEP2020010462020JHEP...01..046A40882731434.8304910.1007/JHEP01(2020)046[arXiv:1906.10100] [INSPIRE] ManoharAVWiseMBHeavy quark physicsCamb. Monogr. Part. Phys. Nucl. Phys. Cosmol.2000101[INSPIRE] Bjerrum-BohrNEJDonoghueJFVanhovePOn-shell techniques and universal results in quantum gravityJHEP2014021112014JHEP...02..111B31831381333.8304310.1007/JHEP02(2014)111[arXiv:1309.0804] [INSPIRE] BernZScattering amplitudes and conservative binary dynamics atOG4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{O}\left({G}^4\right) $$\end{document}Phys. Rev. Lett.20211262021PhRvL.126q1601B10.1103/PhysRevLett.126.1716014264684[arXiv:2101.07254] [INSPIRE] B. R. Holstein and A. Ross, Spin effects in long range gravitational scattering, arXiv:0802.0716 [INSPIRE]. GuevaraAOchirovAVinesJBlack-hole scattering with general spin directions from minimal-coupling amplitudesPhys. Rev. D20191002019PhRvD.100j4024G404192710.1103/PhysRevD.100.104024[arXiv:1906.10071] [INSPIRE] BrittoRCachazoFFengBWittenEDirect proof of tree-level recursion relation in Yang-Mills theoryPhys. Rev. Lett.2005942005PhRvL..94r1602B226097610.1103/PhysRevLett.94.181602[hep-th/0501052] [INSPIRE] LeviMSteinhoffJSpinning gravitating objects in the effective field theory in the post-Newtonian schemeJHEP2015092192015JHEP...09..219L34305461388.8303110.1007/JHEP09(2015)219[arXiv:1501.04956] [INSPIRE] BernZDixonLJDunbarDCKosowerDAOne loop n point gauge theory amplitudes, unitarity and collinear limitsNucl. Phys. B19944252171994NuPhB.425..217B12926261049.8164410.1016/0550-3213(94)90179-1[hep-ph/9403226] [INSPIRE] NeillDRothsteinIZClassical space-times from the S matrixNucl. Phys. B20138771772013NuPhB.877..177N31248371284.8305210.1016/j.nuclphysb.2013.09.007[arXiv:1304.7263] [INSPIRE] BrittoRCachazoFFengBGeneralized unitarity and one-loop amplitudes in N = 4 super-Yang-MillsNucl. Phys. B20057252752005NuPhB.725..275B21642931178.8120210.1016/j.nuclphysb.2005.07.014[hep-th/0412103] [INSPIRE] HaddadKExponentiation of the leading eikonal phase with spinPhys. Rev. D20221052022PhRvD.105b6004H438104510.1103/PhysRevD.105.026004[arXiv:2109.04427] [INSPIRE] HerrmannEParra-MartinezJRufMSZengMGravitational Bremsstrahlung from reverse unitarityPhys. Rev. Lett.20211262021PhRvL.126t1602H426552710.1103/PhysRevLett.126.201602[arXiv:2101.07255] [INSPIRE] BernZCheungCRoibanRShenC-HSolonMPZengMBlack hole binary dynamics from the double copy and effective theoryJHEP2019102062019JHEP...10..206B40510521427.8303510.1007/JHEP10(2019)206[arXiv:1908.01493] [INSPIRE] KälinGPortoRAFrom boundary data to bound statesJHEP2020010722020JHEP...01..072K40882471434.8500410.1007/JHEP01(2020)072[arXiv:1910.03008] [INSPIRE] CheungCSolonMPClassical gravitational scattering atOG3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{O}\left({G}^3\right) $$\end{document}from Feynman diagramsJHEP2020061442020JHEP...06..144C1439.8301310.1007/JHEP06(2020)1444133859[arXiv:2003.08351] [INSPIRE] KosowerDAMaybeeBO’ConnellDAmplitudes, observables, and classical scatteringJHEP2019021372019JHEP...02..137K39252331411.8121710.1007/JHEP02(2019)137[arXiv:1811.10950] [INSPIRE] W. B. Kilgore, M-Z Chung (18721_CR35) 2020; 09 E Herrmann (18721_CR14) 2021; 126 Z Bern (18721_CR10) 2019; 10 NEJ Bjerrum-Bohr (18721_CR60) 2014; 02 Z Bern (18721_CR38) 2021; 104 18721_CR54 P Di Vecchia (18721_CR16) 2021; 07 A Brandhuber (18721_CR17) 2021; 10 18721_CR52 AV Manohar (18721_CR73) 2000; 10 18721_CR92 18721_CR1 GU Jakobsen (18721_CR42) 2022; 128 K Haddad (18721_CR74) 2020; 125 18721_CR2 E Herrmann (18721_CR15) 2021; 10 DA Kosower (18721_CR46) 2019; 02 18721_CR49 18721_CR5 M Accettulli Huber (18721_CR27) 2021; 103 R Aoude (18721_CR28) 2021; 03 A Lazopoulos (18721_CR65) 2022; 03 18721_CR3 18721_CR4 Z Bern (18721_CR80) 1995; 435 D Forde (18721_CR86) 2007; 75 A Guevara (18721_CR33) 2019; 100 A Cristofoli (18721_CR50) 2019; 100 D Kosmopoulos (18721_CR40) 2021; 07 C Dlapa (18721_CR21) 2022; 128 Z Bern (18721_CR79) 1998; 513 RA Porto (18721_CR6) 2016; 633 R Mertig (18721_CR89) 1991; 64 A Guevara (18721_CR30) 2019; 09 M-Z Chung (18721_CR31) 2019; 04 Z Bern (18721_CR78) 1994; 425 Z Bern (18721_CR19) 2022; 128 R Aoude (18721_CR41) 2021; 10 K Haddad (18721_CR53) 2022; 105 H Johansson (18721_CR64) 2019; 09 G Kälin (18721_CR55) 2020; 02 C Kavanagh (18721_CR69) 2016; 93 R Britto (18721_CR82) 2005; 725 Z Bern (18721_CR18) 2021; 126 C Cheung (18721_CR22) 2020; 125 18721_CR57 V Shtabovenko (18721_CR91) 2020; 256 PH Damgaard (18721_CR36) 2019; 11 MVS Saketh (18721_CR56) 2022; 4 C Cheung (18721_CR11) 2020; 06 G Kälin (18721_CR24) 2020; 102 Z Bern (18721_CR83) 2007; 76 Z Bern (18721_CR9) 2019; 122 GU Jakobsen (18721_CR43) 2022; 01 A Falkowski (18721_CR66) 2021; 05 Z Liu (18721_CR39) 2021; 06 18721_CR72 C Cheung (18721_CR25) 2021; 103 M Levi (18721_CR7) 2020; 83 18721_CR70 Z Bern (18721_CR81) 1998; 530 R Britto (18721_CR63) 2005; 94 M Levi (18721_CR75) 2015; 09 G Kälin (18721_CR13) 2020; 125 N Arkani-Hamed (18721_CR34) 2020; 01 V Shtabovenko (18721_CR90) 2016; 207 D Neill (18721_CR59) 2013; 877 NEJ Bjerrum-Bohr (18721_CR48) 2020; 08 V Vaidya (18721_CR61) 2015; 91 B Maybee (18721_CR32) 2019; 12 H Georgi (18721_CR71) 1990; 240 G Kälin (18721_CR12) 2020; 11 K Haddad (18721_CR23) 2020; 12 A Guevara (18721_CR29) 2019; 04 18721_CR44 18721_CR88 18721_CR87 G Kälin (18721_CR47) 2020; 01 R Britto (18721_CR62) 2005; 715 N Siemonsen (18721_CR68) 2020; 101 18721_CR84 BR Holstein (18721_CR85) 2004; 93 Z Bern (18721_CR26) 2021; 05 J Vines (18721_CR76) 2018; 35 HS Chia (18721_CR77) 2021; 104 R Aoude (18721_CR37) 2020; 05 GU Jakobsen (18721_CR45) 2022; 128 C Cheung (18721_CR8) 2018; 121 N Arkani-Hamed (18721_CR58) 2021; 11 M Chiodaroli (18721_CR67) 2022; 02 D Amati (18721_CR51) 1988; 3 C Dlapa (18721_CR20) 2022; 831 |
References_xml | – reference: ShtabovenkoVMertigROrellanaFFeynCalc 9.3: new features and improvementsComput. Phys. Commun.2020256107478412201710.1016/j.cpc.2020.107478[arXiv:2001.04407] [INSPIRE] – reference: SiemonsenNVinesJTest black holes, scattering amplitudes and perturbations of Kerr spacetimePhys. Rev. D20201012020PhRvD.101f4066S408622410.1103/PhysRevD.101.064066[arXiv:1909.07361] [INSPIRE] – reference: ShtabovenkoVMertigROrellanaFNew developments in FeynCalc 9.0Comput. Phys. Commun.20162074322016CoPhC.207..432S1375.6822710.1016/j.cpc.2016.06.008[arXiv:1601.01167] [INSPIRE] – reference: LIGO Scientific and Virgo collaborations, Observation of gravitational waves from a binary black hole merger, Phys. Rev. Lett.116 (2016) 061102 [arXiv:1602.03837] [INSPIRE]. – reference: BernZDixonLJDunbarDCKosowerDAOne loop n point gauge theory amplitudes, unitarity and collinear limitsNucl. Phys. B19944252171994NuPhB.425..217B12926261049.8164410.1016/0550-3213(94)90179-1[hep-ph/9403226] [INSPIRE] – reference: DlapaCKälinGLiuZPortoRADynamics of binary systems to fourth post-Minkowskian order from the effective field theory approachPhys. Lett. B202283144323940754044610.1016/j.physletb.2022.137203[arXiv:2106.08276] [INSPIRE] – reference: KälinGPortoRAFrom boundary data to bound states. Part II. Scattering angle to dynamical invariants (with twist)JHEP2020021202020JHEP...02..120K40891611435.8500310.1007/JHEP02(2020)120[arXiv:1911.09130] [INSPIRE] – reference: LIGO Scientific and Virgo collaborations, GW170817: observation of gravitational waves from a binary neutron star inspiral, Phys. Rev. Lett.119 (2017) 161101 [arXiv:1710.05832] [INSPIRE]. – reference: Di VecchiaPHeissenbergCRussoRVenezianoGThe eikonal approach to gravitational scattering and radiation atOG3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{O}\left({G}^3\right) $$\end{document}JHEP2021071692021JHEP...07..169D1468.8305710.1007/JHEP07(2021)1694316502[arXiv:2104.03256] [INSPIRE] – reference: AoudeRHaddadKHelsetATidal effects for spinning particlesJHEP2021030972021JHEP...03..097A42627571461.8113410.1007/JHEP03(2021)097[arXiv:2012.05256] [INSPIRE] – reference: GuevaraAOchirovAVinesJBlack-hole scattering with general spin directions from minimal-coupling amplitudesPhys. Rev. D20191002019PhRvD.100j4024G404192710.1103/PhysRevD.100.104024[arXiv:1906.10071] [INSPIRE] – reference: ChungM-ZHuangY-TKimJ-WClassical potential for general spinning bodiesJHEP2020090742020JHEP...09..074C420318510.1007/JHEP09(2020)074[arXiv:1908.08463] [INSPIRE] – reference: Bjerrum-BohrNEJDonoghueJFVanhovePOn-shell techniques and universal results in quantum gravityJHEP2014021112014JHEP...02..111B31831381333.8304310.1007/JHEP02(2014)111[arXiv:1309.0804] [INSPIRE] – reference: VinesJScattering of two spinning black holes in post-Minkowskian gravity, to all orders in spin, and effective-one-body mappingsClass. Quant. Grav.2018352018CQGra..35h4002V37895091409.8311610.1088/1361-6382/aaa3a8[arXiv:1709.06016] [INSPIRE] – reference: LiuZPortoRAYangZSpin effects in the effective field theory approach to post-Minkowskian conservative dynamicsJHEP2021060122021JHEP...06..012L431642810.1007/JHEP06(2021)012[arXiv:2102.10059] [INSPIRE] – reference: KosowerDAMaybeeBO’ConnellDAmplitudes, observables, and classical scatteringJHEP2019021372019JHEP...02..137K39252331411.8121710.1007/JHEP02(2019)137[arXiv:1811.10950] [INSPIRE] – reference: SakethMVSVinesJSteinhoffJBuonannoAConservative and radiative dynamics in classical relativistic scattering and bound systemsPhys. Rev. Res.2022410.1103/PhysRevResearch.4.013127[arXiv:2109.05994] [INSPIRE] – reference: BernZCheungCRoibanRShenC-HSolonMPZengMBlack hole binary dynamics from the double copy and effective theoryJHEP2019102062019JHEP...10..206B40510521427.8303510.1007/JHEP10(2019)206[arXiv:1908.01493] [INSPIRE] – reference: BernZDixonLJKosowerDAOne loop amplitudes for e+e−to four partonsNucl. Phys. B199851331998NuPhB.513....3B10.1016/S0550-3213(97)00703-7[hep-ph/9708239] [INSPIRE] – reference: KälinGLiuZPortoRAConservative dynamics of binary systems to third post-Minkowskian order from the effective field theory approachPhys. Rev. Lett.20201252020PhRvL.125z1103K419793810.1103/PhysRevLett.125.261103[arXiv:2007.04977] [INSPIRE] – reference: BrandhuberAChenGTravagliniGWenCClassical gravitational scattering from a gauge-invariant double copyJHEP2021101182021JHEP...10..118B43398081476.8300510.1007/JHEP10(2021)118[arXiv:2108.04216] [INSPIRE] – reference: GuevaraAOchirovAVinesJScattering of spinning black holes from exponentiated soft factorsJHEP2019090562019JHEP...09..056G40202041423.8303010.1007/JHEP09(2019)056[arXiv:1812.06895] [INSPIRE] – reference: Arkani-HamedNHuangY-TO’ConnellDKerr black holes as elementary particlesJHEP2020010462020JHEP...01..046A40882731434.8304910.1007/JHEP01(2020)046[arXiv:1906.10100] [INSPIRE] – reference: G. Cho, G. Kälin and R. A. Porto, From boundary data to bound states. Part III. Radiative effects, JHEP04 (2022) 154 [arXiv:2112.03976] [INSPIRE]. – reference: T. Adamo, A. Cristofoli and P. Tourkine, Eikonal amplitudes from curved backgrounds, arXiv:2112.09113 [INSPIRE]. – reference: NeillDRothsteinIZClassical space-times from the S matrixNucl. Phys. B20138771772013NuPhB.877..177N31248371284.8305210.1016/j.nuclphysb.2013.09.007[arXiv:1304.7263] [INSPIRE] – reference: HerrmannEParra-MartinezJRufMSZengMGravitational Bremsstrahlung from reverse unitarityPhys. Rev. Lett.20211262021PhRvL.126t1602H426552710.1103/PhysRevLett.126.201602[arXiv:2101.07255] [INSPIRE] – reference: LeviMEffective field theories of post-Newtonian gravity: a comprehensive reviewRept. Prog. Phys.2020832020RPPh...83g5901L411923510.1088/1361-6633/ab12bc[arXiv:1807.01699] [INSPIRE] – reference: CheungCShahNSolonMPMining the geodesic equation for scattering dataPhys. Rev. D20211032021PhRvD.103b4030C421244410.1103/PhysRevD.103.024030[arXiv:2010.08568] [INSPIRE] – reference: Y. F. Bautista, A. Guevara, C. Kavanagh and J. Vines, From scattering in black hole backgrounds to higher-spin amplitudes: part I, arXiv:2107.10179 [INSPIRE]. – reference: B. R. Holstein and A. Ross, Spin effects in long range gravitational scattering, arXiv:0802.0716 [INSPIRE]. – reference: CheungCSolonMPTidal effects in the post-Minkowskian expansionPhys. Rev. Lett.20201252020PhRvL.125s1601C417558910.1103/PhysRevLett.125.191601[arXiv:2006.06665] [INSPIRE] – reference: KälinGPortoRAFrom boundary data to bound statesJHEP2020010722020JHEP...01..072K40882471434.8500410.1007/JHEP01(2020)072[arXiv:1910.03008] [INSPIRE] – reference: CristofoliABjerrum-BohrNEJDamgaardPHVanhovePPost-Minkowskian Hamiltonians in general relativityPhys. Rev. D20191002019PhRvD.100h4040C403155210.1103/PhysRevD.100.084040[arXiv:1906.01579] [INSPIRE] – reference: FordeDDirect extraction of one-loop integral coefficientsPhys. Rev. D2007752007PhRvD..75l5019F232687810.1103/PhysRevD.75.125019[arXiv:0704.1835] [INSPIRE] – reference: BernZScattering amplitudes, the tail effect, and conservative binary dynamics atOG4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{O}\left({G}^4\right) $$\end{document}Phys. Rev. Lett.20221282022PhRvL.128p1103B10.1103/PhysRevLett.128.1611034420383[arXiv:2112.10750] [INSPIRE] – reference: BernZCheungCRoibanRShenC-HSolonMPZengMScattering amplitudes and the conservative Hamiltonian for binary systems at third post-Minkowskian orderPhys. Rev. Lett.20191222019PhRvL.122t1603B10.1103/PhysRevLett.122.201603[arXiv:1901.04424] [INSPIRE] – reference: ChiaHSTidal deformation and dissipation of rotating black holesPhys. Rev. D20211042021PhRvD.104b4013C430368010.1103/PhysRevD.104.024013[arXiv:2010.07300] [INSPIRE] – reference: BernZParra-MartinezJRoibanRSawyerEShenC-HLeading nonlinear tidal effects and scattering amplitudesJHEP2021051882021JHEP...05..188B43016161466.8113310.1007/JHEP05(2021)188[arXiv:2010.08559] [INSPIRE] – reference: KosmopoulosDLunaAQuadratic-in-spin Hamiltonian atOG2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{O}\left({G}^2\right) $$\end{document}from scattering amplitudesJHEP2021070372021JHEP...07..037K10.1007/JHEP07(2021)0374317060[arXiv:2102.10137] [INSPIRE] – reference: Arkani-HamedNHuangT-CHuangY-TScattering amplitudes for all masses and spinsJHEP2021110702021JHEP...11..070A436878710.1007/JHEP11(2021)070[arXiv:1709.04891] [INSPIRE] – reference: LeviMSteinhoffJSpinning gravitating objects in the effective field theory in the post-Newtonian schemeJHEP2015092192015JHEP...09..219L34305461388.8303110.1007/JHEP09(2015)219[arXiv:1501.04956] [INSPIRE] – reference: ManoharAVWiseMBHeavy quark physicsCamb. Monogr. Part. Phys. Nucl. Phys. Cosmol.2000101[INSPIRE] – reference: AmatiDCiafaloniMVenezianoGClassical and quantum gravity effects from Planckian energy superstring collisionsInt. J. Mod. Phys. A1988316151988IJMPA...3.1615A10.1142/S0217751X88000710[INSPIRE] – reference: BernZDixonLJDunbarDCKosowerDAFusing gauge theory tree amplitudes into loop amplitudesNucl. Phys. B1995435591995NuPhB.435...59B10.1016/0550-3213(94)00488-Z[hep-ph/9409265] [INSPIRE] – reference: M. Neubert, Heavy quark effective theory, Subnucl. Ser.34 (1997) 98 [hep-ph/9610266] [INSPIRE]. – reference: MaybeeBO’ConnellDVinesJObservables and amplitudes for spinning particles and black holesJHEP2019121562019JHEP...12..156M40612671431.8310110.1007/JHEP12(2019)156[arXiv:1906.09260] [INSPIRE] – reference: FalkowskiAMachadoCSSoft matters, or the recursions with massive spinorsJHEP2021052382021JHEP...05..238F42958061466.8306310.1007/JHEP05(2021)238[arXiv:2005.08981] [INSPIRE] – reference: KavanaghCOttewillACWardellBAnalytical high-order post-Newtonian expansions for spinning extreme mass ratio binariesPhys. Rev. D2016932016PhRvD..93l4038K362548310.1103/PhysRevD.93.124038[arXiv:1601.03394] [INSPIRE] – reference: CheungCSolonMPClassical gravitational scattering atOG3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{O}\left({G}^3\right) $$\end{document}from Feynman diagramsJHEP2020061442020JHEP...06..144C1439.8301310.1007/JHEP06(2020)1444133859[arXiv:2003.08351] [INSPIRE] – reference: JohanssonHOchirovADouble copy for massive quantum particles with spinJHEP2019090402019JHEP...09..040J40201881423.8118310.1007/JHEP09(2019)040[arXiv:1906.12292] [INSPIRE] – reference: JakobsenGUMogullGPlefkaJSteinhoffJGravitational Bremsstrahlung and hidden supersymmetry of spinning bodiesPhys. Rev. Lett.20221282022PhRvL.128a1101J438779910.1103/PhysRevLett.128.011101[arXiv:2106.10256] [INSPIRE] – reference: LIGO Scientific and Virgo collaborations, GWTC-2: compact binary coalescences observed by LIGO and Virgo during the first half of the third observing run, Phys. Rev. X11 (2021) 021053 [arXiv:2010.14527] [INSPIRE]. – reference: HaddadKHelsetAThe double copy for heavy particlesPhys. Rev. Lett.20201252020PhRvL.125r1603H417557010.1103/PhysRevLett.125.181603[arXiv:2005.13897] [INSPIRE] – reference: J. F. Donoghue, Leading quantum correction to the Newtonian potential, Phys. Rev. Lett.72 (1994) 2996 [gr-qc/9310024] [INSPIRE]. – reference: LIGO Scientific and Virgo collaborations, GWTC-1: a gravitational-wave transient catalog of compact binary mergers observed by LIGO and Virgo during the first and second observing runs, Phys. Rev. X9 (2019) 031040 [arXiv:1811.12907] [INSPIRE]. – reference: BrittoRCachazoFFengBGeneralized unitarity and one-loop amplitudes in N = 4 super-Yang-MillsNucl. Phys. B20057252752005NuPhB.725..275B21642931178.8120210.1016/j.nuclphysb.2005.07.014[hep-th/0412103] [INSPIRE] – reference: LIGO Scientific and Virgo collaborations, GWTC-2.1: deep extended catalog of compact binary coalescences observed by LIGO and Virgo during the first half of the third observing run, arXiv:2108.01045 [INSPIRE]. – reference: LazopoulosAOchirovAShiCAll-multiplicity amplitudes with four massive quarks and identical-helicity gluonsJHEP2022030092022JHEP...03..009L10.1007/JHEP03(2022)009[arXiv:2111.06847] [INSPIRE] – reference: HerrmannEParra-MartinezJRufMSZengMRadiative classical gravitational observables atOG3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{O}\left({G}^3\right) $$\end{document}from scattering amplitudesJHEP2021101482021JHEP...10..148H1476.8308810.1007/JHEP10(2021)1484339778[arXiv:2104.03957] [INSPIRE] – reference: AoudeRHaddadKHelsetAOn-shell heavy particle effective theoriesJHEP2020050512020JHEP...05..051A41124201437.8305310.1007/JHEP05(2020)051[arXiv:2001.09164] [INSPIRE] – reference: JakobsenGUMogullGPlefkaJSteinhoffJSUSY in the sky with gravitonsJHEP2022010272022JHEP...01..027J440351710.1007/JHEP01(2022)027[arXiv:2109.04465] [INSPIRE] – reference: Z. Bern, D. Kosmopoulos, A. Luna, R. Roiban and F. Teng, Binary dynamics through the fifth power of spin atOG2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{O}\left({G}^2\right) $$\end{document}, arXiv:2203.06202 [INSPIRE]. – reference: BrittoRCachazoFFengBWittenEDirect proof of tree-level recursion relation in Yang-Mills theoryPhys. Rev. Lett.2005942005PhRvL..94r1602B226097610.1103/PhysRevLett.94.181602[hep-th/0501052] [INSPIRE] – reference: A. Cristofoli, R. Gonzo, D. A. Kosower and D. O’Connell, Waveforms from amplitudes, arXiv:2107.10193 [INSPIRE]. – reference: HaddadKHelsetATidal effects in quantum field theoryJHEP2020120242020JHEP...12..024H42394281457.8107010.1007/JHEP12(2020)024[arXiv:2008.04920] [INSPIRE] – reference: KälinGLiuZPortoRAConservative tidal effects in compact binary systems to next-to-leading post-Minkowskian orderPhys. Rev. D20201022020PhRvD.102l4025K419699310.1103/PhysRevD.102.124025[arXiv:2008.06047] [INSPIRE] – reference: BrittoRCachazoFFengBNew recursion relations for tree amplitudes of gluonsNucl. Phys. B20057154992005NuPhB.715..499B21356461207.8108810.1016/j.nuclphysb.2005.02.030[hep-th/0412308] [INSPIRE] – reference: GeorgiHAn effective field theory for heavy quarks at low-energiesPhys. Lett. B19902404471990PhLB..240..447G10.1016/0370-2693(90)91128-X[INSPIRE] – reference: ChungM-ZHuangY-TKimJ-WLeeSThe simplest massive S-matrix: from minimal coupling to black holesJHEP2019041562019JHEP...04..156C39539181415.8301410.1007/JHEP04(2019)156[arXiv:1812.08752] [INSPIRE] – reference: MertigRBöhmMDennerAFEYN CALC: computer algebraic calculation of Feynman amplitudesComput. Phys. Commun.1991643451991CoPhC..64..345M111396710.1016/0010-4655(91)90130-D[INSPIRE] – reference: JakobsenGUMogullGConservative and radiative dynamics of spinning bodies at third post-Minkowskian order using worldline quantum field theoryPhys. Rev. Lett.20221282022PhRvL.128n1102J441941910.1103/PhysRevLett.128.141102[arXiv:2201.07778] [INSPIRE] – reference: W. B. Kilgore, One-loop integral coefficients from generalized unitarity, arXiv:0711.5015 [INSPIRE]. – reference: R. Aoude, K. Haddad and A. Helset, Classical gravitational spinning-spinless scattering atOG2S∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{O}\left({G}^2{S}^{\infty}\right) $$\end{document}, arXiv:2205.02809 [INSPIRE]. – reference: Accettulli HuberMBrandhuberADe AngelisSTravagliniGFrom amplitudes to gravitational radiation with cubic interactions and tidal effectsPhys. Rev. D20211032021PhRvD.103d5015A422672010.1103/PhysRevD.103.045015[arXiv:2012.06548] [INSPIRE] – reference: ChiodaroliMJohanssonHPichiniPCompton black-hole scattering for s ≤ 5/2JHEP2022021562022JHEP...02..156C440728910.1007/JHEP02(2022)156[arXiv:2107.14779] [INSPIRE] – reference: VaidyaVGravitational spin Hamiltonians from the S matrixPhys. Rev. D2015912015PhRvD..91b4017V364914510.1103/PhysRevD.91.024017[arXiv:1410.5348] [INSPIRE] – reference: KälinGPortoRAPost-Minkowskian effective field theory for conservative binary dynamicsJHEP2020111062020JHEP...11..106K420417210.1007/JHEP11(2020)106[arXiv:2006.01184] [INSPIRE] – reference: PortoRAThe effective field theorist’s approach to gravitational dynamicsPhys. Rept.201663312016PhR...633....1P35031431359.8302410.1016/j.physrep.2016.04.003[arXiv:1601.04914] [INSPIRE] – reference: BernZCarrascoJJMJohanssonHKosowerDAMaximally supersymmetric planar Yang-Mills amplitudes at five loopsPhys. Rev. D2007762007PhRvD..76l5020B237963210.1103/PhysRevD.76.125020[arXiv:0705.1864] [INSPIRE] – reference: DlapaCKälinGLiuZPortoRAConservative dynamics of binary systems at fourth post-Minkowskian order in the large-eccentricity expansionPhys. Rev. Lett.20221282022PhRvL.128p1104D442038410.1103/PhysRevLett.128.161104[arXiv:2112.11296] [INSPIRE] – reference: DamgaardPHHaddadKHelsetAHeavy black hole effective theoryJHEP2019110702019JHEP...11..070D40694931429.8303410.1007/JHEP11(2019)070[arXiv:1908.10308] [INSPIRE] – reference: AoudeROchirovAClassical observables from coherent-spin amplitudesJHEP2021100082021JHEP...10..008A43399181476.8306010.1007/JHEP10(2021)008[arXiv:2108.01649] [INSPIRE] – reference: BernZDixonLJDunbarDCPerelsteinMRozowskyJSOn the relationship between Yang-Mills theory and gravity and its implication for ultraviolet divergencesNucl. Phys. B19985304011998NuPhB.530..401B10.1016/S0550-3213(98)00420-9[hep-th/9802162] [INSPIRE] – reference: Bjerrum-BohrNEJCristofoliADamgaardPHPost-Minkowskian scattering angle in Einstein gravityJHEP2020080382020JHEP...08..038B41901871454.8300810.1007/JHEP08(2020)038[arXiv:1910.09366] [INSPIRE] – reference: BernZScattering amplitudes and conservative binary dynamics atOG4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{O}\left({G}^4\right) $$\end{document}Phys. Rev. Lett.20211262021PhRvL.126q1601B10.1103/PhysRevLett.126.1716014264684[arXiv:2101.07254] [INSPIRE] – reference: BernZLunaARoibanRShenC-HZengMSpinning black hole binary dynamics, scattering amplitudes, and effective field theoryPhys. Rev. D20211042021PhRvD.104f5014B433506610.1103/PhysRevD.104.065014[arXiv:2005.03071] [INSPIRE] – reference: W.-M. Chen, M.-Z. Chung, Y.-T. Huang and J.-W. Kim, The 2PM Hamiltonian for binary Kerr to quartic in spin, arXiv:2111.13639 [INSPIRE]. – reference: HolsteinBRDonoghueJFClassical physics and quantum loopsPhys. Rev. Lett.2004932004PhRvL..93t1602H211826010.1103/PhysRevLett.93.201602[hep-th/0405239] [INSPIRE] – reference: GuevaraAHolomorphic classical limit for spin effects in gravitational and electromagnetic scatteringJHEP2019040332019JHEP...04..033G39554361415.8110710.1007/JHEP04(2019)033[arXiv:1706.02314] [INSPIRE] – reference: HaddadKExponentiation of the leading eikonal phase with spinPhys. Rev. D20221052022PhRvD.105b6004H438104510.1103/PhysRevD.105.026004[arXiv:2109.04427] [INSPIRE] – reference: CheungCRothsteinIZSolonMPFrom scattering amplitudes to classical potentials in the post-Minkowskian expansionPhys. Rev. Lett.20181212018PhRvL.121y1101C10.1103/PhysRevLett.121.251101[arXiv:1808.02489] [INSPIRE] – ident: 18721_CR88 – volume: 07 start-page: 169 year: 2021 ident: 18721_CR16 publication-title: JHEP doi: 10.1007/JHEP07(2021)169 – volume: 75 year: 2007 ident: 18721_CR86 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.75.125019 – volume: 256 start-page: 107478 year: 2020 ident: 18721_CR91 publication-title: Comput. Phys. Commun. doi: 10.1016/j.cpc.2020.107478 – ident: 18721_CR1 – volume: 128 year: 2022 ident: 18721_CR19 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.128.161103 – volume: 3 start-page: 1615 year: 1988 ident: 18721_CR51 publication-title: Int. J. Mod. Phys. A doi: 10.1142/S0217751X88000710 – volume: 01 start-page: 072 year: 2020 ident: 18721_CR47 publication-title: JHEP doi: 10.1007/JHEP01(2020)072 – volume: 121 year: 2018 ident: 18721_CR8 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.121.251101 – volume: 126 year: 2021 ident: 18721_CR14 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.126.201602 – volume: 93 year: 2016 ident: 18721_CR69 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.93.124038 – volume: 240 start-page: 447 year: 1990 ident: 18721_CR71 publication-title: Phys. Lett. B doi: 10.1016/0370-2693(90)91128-X – volume: 06 start-page: 012 year: 2021 ident: 18721_CR39 publication-title: JHEP doi: 10.1007/JHEP06(2021)012 – ident: 18721_CR57 doi: 10.1007/JHEP04(2022)154 – volume: 35 year: 2018 ident: 18721_CR76 publication-title: Class. Quant. Grav. doi: 10.1088/1361-6382/aaa3a8 – volume: 64 start-page: 345 year: 1991 ident: 18721_CR89 publication-title: Comput. Phys. Commun. doi: 10.1016/0010-4655(91)90130-D – volume: 103 year: 2021 ident: 18721_CR27 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.103.045015 – volume: 633 start-page: 1 year: 2016 ident: 18721_CR6 publication-title: Phys. Rept. doi: 10.1016/j.physrep.2016.04.003 – volume: 877 start-page: 177 year: 2013 ident: 18721_CR59 publication-title: Nucl. Phys. B doi: 10.1016/j.nuclphysb.2013.09.007 – volume: 01 start-page: 046 year: 2020 ident: 18721_CR34 publication-title: JHEP doi: 10.1007/JHEP01(2020)046 – volume: 08 start-page: 038 year: 2020 ident: 18721_CR48 publication-title: JHEP doi: 10.1007/JHEP08(2020)038 – ident: 18721_CR87 – volume: 105 year: 2022 ident: 18721_CR53 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.105.026004 – volume: 530 start-page: 401 year: 1998 ident: 18721_CR81 publication-title: Nucl. Phys. B doi: 10.1016/S0550-3213(98)00420-9 – volume: 11 start-page: 106 year: 2020 ident: 18721_CR12 publication-title: JHEP doi: 10.1007/JHEP11(2020)106 – volume: 126 year: 2021 ident: 18721_CR18 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.126.171601 – volume: 03 start-page: 097 year: 2021 ident: 18721_CR28 publication-title: JHEP doi: 10.1007/JHEP03(2021)097 – ident: 18721_CR2 – volume: 435 start-page: 59 year: 1995 ident: 18721_CR80 publication-title: Nucl. Phys. B doi: 10.1016/0550-3213(94)00488-Z – volume: 100 year: 2019 ident: 18721_CR50 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.100.084040 – volume: 125 year: 2020 ident: 18721_CR13 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.125.261103 – ident: 18721_CR72 – volume: 02 start-page: 111 year: 2014 ident: 18721_CR60 publication-title: JHEP doi: 10.1007/JHEP02(2014)111 – volume: 05 start-page: 188 year: 2021 ident: 18721_CR26 publication-title: JHEP doi: 10.1007/JHEP05(2021)188 – ident: 18721_CR5 – volume: 128 year: 2022 ident: 18721_CR21 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.128.161104 – ident: 18721_CR52 – volume: 425 start-page: 217 year: 1994 ident: 18721_CR78 publication-title: Nucl. Phys. B doi: 10.1016/0550-3213(94)90179-1 – volume: 04 start-page: 156 year: 2019 ident: 18721_CR31 publication-title: JHEP doi: 10.1007/JHEP04(2019)156 – volume: 207 start-page: 432 year: 2016 ident: 18721_CR90 publication-title: Comput. Phys. Commun. doi: 10.1016/j.cpc.2016.06.008 – volume: 10 start-page: 206 year: 2019 ident: 18721_CR10 publication-title: JHEP doi: 10.1007/JHEP10(2019)206 – volume: 122 year: 2019 ident: 18721_CR9 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.122.201603 – ident: 18721_CR49 – volume: 11 start-page: 070 year: 2021 ident: 18721_CR58 publication-title: JHEP doi: 10.1007/JHEP11(2021)070 – volume: 09 start-page: 219 year: 2015 ident: 18721_CR75 publication-title: JHEP doi: 10.1007/JHEP09(2015)219 – volume: 104 year: 2021 ident: 18721_CR77 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.104.024013 – volume: 10 start-page: 1 year: 2000 ident: 18721_CR73 publication-title: Camb. Monogr. Part. Phys. Nucl. Phys. Cosmol. – volume: 10 start-page: 148 year: 2021 ident: 18721_CR15 publication-title: JHEP doi: 10.1007/JHEP10(2021)148 – volume: 103 year: 2021 ident: 18721_CR25 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.103.024030 – volume: 07 start-page: 037 year: 2021 ident: 18721_CR40 publication-title: JHEP doi: 10.1007/JHEP07(2021)037 – ident: 18721_CR3 – volume: 100 year: 2019 ident: 18721_CR33 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.100.104024 – volume: 102 year: 2020 ident: 18721_CR24 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.102.124025 – volume: 09 start-page: 074 year: 2020 ident: 18721_CR35 publication-title: JHEP doi: 10.1007/JHEP09(2020)074 – volume: 513 start-page: 3 year: 1998 ident: 18721_CR79 publication-title: Nucl. Phys. B doi: 10.1016/S0550-3213(97)00703-7 – ident: 18721_CR92 – volume: 12 start-page: 156 year: 2019 ident: 18721_CR32 publication-title: JHEP doi: 10.1007/JHEP12(2019)156 – volume: 83 year: 2020 ident: 18721_CR7 publication-title: Rept. Prog. Phys. doi: 10.1088/1361-6633/ab12bc – volume: 10 start-page: 118 year: 2021 ident: 18721_CR17 publication-title: JHEP doi: 10.1007/JHEP10(2021)118 – volume: 06 start-page: 144 year: 2020 ident: 18721_CR11 publication-title: JHEP doi: 10.1007/JHEP06(2020)144 – volume: 03 start-page: 009 year: 2022 ident: 18721_CR65 publication-title: JHEP doi: 10.1007/JHEP03(2022)009 – ident: 18721_CR44 – volume: 05 start-page: 238 year: 2021 ident: 18721_CR66 publication-title: JHEP doi: 10.1007/JHEP05(2021)238 – volume: 725 start-page: 275 year: 2005 ident: 18721_CR82 publication-title: Nucl. Phys. B doi: 10.1016/j.nuclphysb.2005.07.014 – volume: 128 year: 2022 ident: 18721_CR42 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.128.011101 – volume: 02 start-page: 120 year: 2020 ident: 18721_CR55 publication-title: JHEP doi: 10.1007/JHEP02(2020)120 – volume: 93 year: 2004 ident: 18721_CR85 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.93.201602 – volume: 04 start-page: 033 year: 2019 ident: 18721_CR29 publication-title: JHEP doi: 10.1007/JHEP04(2019)033 – volume: 101 year: 2020 ident: 18721_CR68 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.101.064066 – volume: 91 year: 2015 ident: 18721_CR61 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.91.024017 – volume: 128 year: 2022 ident: 18721_CR45 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.128.141102 – ident: 18721_CR70 – ident: 18721_CR84 doi: 10.1103/PhysRevLett.72.2996 – ident: 18721_CR4 – volume: 831 year: 2022 ident: 18721_CR20 publication-title: Phys. Lett. B doi: 10.1016/j.physletb.2022.137203 – volume: 104 year: 2021 ident: 18721_CR38 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.104.065014 – volume: 10 start-page: 008 year: 2021 ident: 18721_CR41 publication-title: JHEP doi: 10.1007/JHEP10(2021)008 – ident: 18721_CR54 – volume: 125 year: 2020 ident: 18721_CR74 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.125.181603 – volume: 76 year: 2007 ident: 18721_CR83 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.76.125020 – volume: 11 start-page: 070 year: 2019 ident: 18721_CR36 publication-title: JHEP doi: 10.1007/JHEP11(2019)070 – volume: 12 start-page: 024 year: 2020 ident: 18721_CR23 publication-title: JHEP doi: 10.1007/JHEP12(2020)024 – volume: 125 year: 2020 ident: 18721_CR22 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.125.191601 – volume: 05 start-page: 051 year: 2020 ident: 18721_CR37 publication-title: JHEP doi: 10.1007/JHEP05(2020)051 – volume: 02 start-page: 156 year: 2022 ident: 18721_CR67 publication-title: JHEP doi: 10.1007/JHEP02(2022)156 – volume: 01 start-page: 027 year: 2022 ident: 18721_CR43 publication-title: JHEP doi: 10.1007/JHEP01(2022)027 – volume: 02 start-page: 137 year: 2019 ident: 18721_CR46 publication-title: JHEP doi: 10.1007/JHEP02(2019)137 – volume: 09 start-page: 056 year: 2019 ident: 18721_CR30 publication-title: JHEP doi: 10.1007/JHEP09(2019)056 – volume: 09 start-page: 040 year: 2019 ident: 18721_CR64 publication-title: JHEP doi: 10.1007/JHEP09(2019)040 – volume: 715 start-page: 499 year: 2005 ident: 18721_CR62 publication-title: Nucl. Phys. B doi: 10.1016/j.nuclphysb.2005.02.030 – volume: 94 year: 2005 ident: 18721_CR63 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.94.181602 – volume: 4 year: 2022 ident: 18721_CR56 publication-title: Phys. Rev. Res. doi: 10.1103/PhysRevResearch.4.013127 |
SSID | ssj0015190 |
Score | 2.6449218 |
Snippet | A
bstract
The classical scattering of spinning objects is well described by the spinor-helicity formalism for heavy particles. Using these variables, we derive... The classical scattering of spinning objects is well described by the spinor-helicity formalism for heavy particles. Using these variables, we derive... Abstract The classical scattering of spinning objects is well described by the spinor-helicity formalism for heavy particles. Using these variables, we derive... |
SourceID | doaj swepub osti proquest crossref springer |
SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 72 |
SubjectTerms | Amplitudes Black Holes Classical and Quantum Gravitation CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS Classical Theories of Gravity Deformation Effective Field Theories Elementary Particles Gravitational waves Gravity Helicity High energy physics Multipoles Physics Physics and Astronomy Quantum Field Theories Quantum Field Theory Quantum Physics Regular Article - Theoretical Physics Relativity Theory Scattering Scattering Amplitudes Spin structure String Theory Variables |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3fT9swELYYaNJe0AabVmAoDzDgIcOJHZ_9hGArqphA1TQm3qz414Y2taxN__-dE6eok-ApUnJJTnf23Wf79B0hB146yi0vc1MxkXPwNlec1jk1hfCAGcbVcb_j-kaMbvnVXXWXNtzmqayyj4ltoHZTG_fITzGMYiAFRenZw988do2Kp6uphcYLsoEhWOLia-NieDP-tjxHQHxCe0IfCqdXo-GYwjEu-MsTCuVKLmop-_Eyxam1AjeXJ6T_sYm2GejyNdlM0DE773z9hqz5yRZ52ZZw2vk2Oeoqh_EbGQLR7KufzbL7SYYALyvH11kdS8cjkeVbcns5_P55lKc2CLlFLN_kzHIaAByARGwToHbBWVEXAZGIU65wlXHSG8yzpqhL74IPzGDqY0IqzO-OvSPrk-nEvycZoi9rFRgEKRwzuZcVuLLAfMWCENzBgHzqDaJt4giPrSr-6J7duLOgjhbUaMEBOV6-8NDRYzwtehEtvBSLvNbtjensp07TRAsKpoJSsKACVw5q1BcBKmIoZ30t8SO70T8a4UHkuLWxGMg2ukBQxZUckL3ebTpNxbl-HDgDctK78vHxk9p-7Hy9ou-X-x_nrb6_m1-aIVhmKHj4nOBiobnEJa7aeV63XfIq_rorBN4j681s4T8g3GnMfhrT_wBf5vrX priority: 102 providerName: ProQuest – databaseName: SpringerOpen dbid: C24 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS-QwGA2iCL4s66o4qyt98PpQSZs0aR7VVQZF8UHFt9DcdmWXmWXs_P896WVkFAWfGtqkDd-X5Jw0X04I2fWlo9zyPDUFEymX3qaK0yqlJhNeAmFcFf93XN-I4T2_fCweF0jW74Vpot37JclmpO43u10Oz2-pPMRkPT-iEqPuUoF0bNRncYNDt3AAQkJ7BZ-3hebAp9Hox2WMvjTHL2dLoq_kQxvIufhKvnRcMTlpnbtKFvzoG1luYjbt8xo5aEOF8Y4EzDO58pNJ8jRKwOiS_PY6qWKseFSuXCf3F-d3Z8O0O_cgtSDvdcosp0FKJ2UJMhNk5YKzosoCqIdTLnOFcaU3AFaTVbl3wQdmgHVMlAqA7tgGWRyNR36TJKBb1ippwEo4oNuXhXR5BoBiQQju5IAc9wbRthMFj2dT_NW9nHFrQR0tqGHBATmcFfjX6mG8n_U0WniWLQpZNzfGk1-66xdaUGkKmQsWVODKyQr1BSMFaXLWVyVeshX9o8EHoqitjdE_ttYZWBRX5YBs927TXd971gBcQK5UlA7IUe_Kl8fv1na_9fVcfX8-PZw09f1T_9YM7Jgh495HGadTzUvMadX3T3x8i6zEZBsGvE0W68nU_wDZqc1O07z_A-jr9M4 priority: 102 providerName: Springer Nature |
Title | Searching for Kerr in the 2PM amplitude |
URI | https://link.springer.com/article/10.1007/JHEP07(2022)072 https://www.proquest.com/docview/2848477900 https://www.osti.gov/servlets/purl/1976498 https://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-316132 https://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-482499 https://doaj.org/article/607b57263f9f49d7a6cc774937dcea82 |
Volume | 2022 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB5BERIXxFOEllUOPNpDqGM7fhy3yy6rolYrxKLerPilVqAt2mb_P-M8FhapcOHiKMnEmszI-T7Ho88Ar4PyhDtOC1sxUXAZXKE5qQtiSxEkIoyv0_-Os3MxX_LTi-rit62-Uk1YJw_cBe5YEGkrSQWLOnLtZS2cQ8qCqOpdqFX79UXMGyZT_foB8hIyCPkQeXw6ny6IPMSJPj0iku5gUCvVj4drHFI7NHO7MvqHimiLPLNH8LCnjPm4c_Ux3AmrJ3C_Ld10N0_hXVcxjH3kSEDzT2G9zq9WORK7nC7O8jqVjCcBy2ewnE2_TOZFv_1B4ZDDNwVznEQpvZQKOU2UtY_eibqMyEC89qWvrFfBIr7asqbBxxCZRchjQmnEdc-ew97qehVeQI6syzktLZITjggeVCU9LRGnWBSCe5nB-yEgxvXa4GmLiu9mUDXuImhSBA1GMIPD7QM_OlmM201PUoS3ZknPur2AWTZ9ls2_spzBfsqPQVqQtG1dKgJyjSmRTHGtMjgY0mb6IXhjEHcReaUmJIOjIZW_bt_q7dsu1zv-frj6Om79_dZcGoYkmaHhm78ZbjaGK5za6pf_4_X34UFysCsTPoC9Zr0Jr5AMNXYEd9Xs4wjunUzPF5_xbEJ5asVk1I4IbJd0_BOmegbv |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIgQXxFMsLeADhfYQ6tiOHR8QKrTLttutemhRbybxAyrQbtnNCvGn-I2M89hqkdpbT5GSiTWa8fj7Yk9mAF773FFhBUvKjMtEKG8TLWiR0DKVXiHCuCLud4yO5OBUHJxlZyvwt_sXJqZVdmtivVC7iY175Nu4jOJCqjSlHy5-JbFrVDxd7VpoNNNi6P_8xk-22fv9XfTvBmP9vZNPg6TtKpBYpMZVwq2gQSmnVI5UIajCBWdlkQYEdqdd6rLS5b5E2CrTgnkXfOAlIgmXuUa4dBzHvQW3Bec6RlTe_7w4tUA2RLvyQVRtHwz2jqnaZAiTW1SxJeSrGwTgZYKBvERuF-ex_9UurfGu_wDut0SV7DQz6yGs-PEjuFMnjNrZY3jb5CnjGARpLxn66ZScjwnSScKOR6SIieqxbOYTOL0R8zyF1fFk7J8BQa5nrVYlUiKBvMHnmXIsRXTkQUrhVA_edQYxtq1IHhtj_DRdLeXGgiZa0KAFe7C5eOGiKcZxtejHaOGFWKyiXd-YTL-ZNiiNpKrMFJM86CC0UwXqi3QYGZuzvshxkLXoH4NkJFbUtTH1yFYmRQondN6D9c5tpg38mbmcpj3Y6lx5-fhKbd80vl7Sd_f8y06t74_qu-FIzTkKblwnOJ8bkeMHtX5-vW6v4O7gZHRoDvePhmtwL6rRpCCvw2o1nfsXSLSq8mU9uwl8velw-gdf6Tia |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VVCAuqLxEaAEfKLQHk_Xu2msfEGqbRGlDowhR1NvifbUVKCmJI8Rf669j1o9UqdTeerJkj1ejmd35vvWOZwDe29QQrjkNVcySkAurw4yTPCQqSqxAhDG5_95xPEoGJ_zoND5dg6vmXxifVtnExDJQm6n238g7GEYxkIqMkI6r0yLG3f6Xyz-h7yDlT1qbdhrVFBnaf39x-zb_fNhFX29T2u99PxiEdYeBUCNNLkKmOXFCGCFSpA1O5MYZneSRQ5A3mYlMrExqFUKYinJqjbOOKUQVlqQZQqdhOO4DWBe4KyItWN_vjcbflmcYyI1IU0yIiM7RoDcmYociaO4SQVdwsGwXgJcpLusVqrs8nb1RybREv_4GPKlpa7BXzbOnsGYnz-BhmT6q58_hY5W1jGMESIKDoZ3NgotJgOQyoOPjIPdp676I5gs4uRcDvYTWZDqxryBA5qd1JhQSJI4swqaxMDRCrGQuSbgRbfjUGETquj65b5PxWzaVlSsLSm9BiRZsw87yhcuqNMftovvewksxX1O7vDGdncl6icqECBULmjCXOZ4ZkaO-SI6Rvxlt8xQH2fT-kUhNfH1d7RORdCEjJHQ8S9uw1bhN1mFgLq8nbRt2G1deP75V2w-Vr1f07V782Cv1_VWcS4ZEnaHg9l2Ci4XkKW6vs9d36_YOHuFSkl8PR8NNeOy1qPKRt6BVzBb2DbKuQr2tp3cAP-97Rf0HN9w-LA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Searching+for+Kerr+in+the+2PM+amplitude&rft.jtitle=The+journal+of+high+energy+physics&rft.au=Rafael+Aoude&rft.au=Kays+Haddad&rft.au=Andreas+Helset&rft.date=2022-07-01&rft.pub=SpringerOpen&rft.eissn=1029-8479&rft.volume=2022&rft.issue=7&rft.spage=1&rft.epage=34&rft_id=info:doi/10.1007%2FJHEP07%282022%29072&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_607b57263f9f49d7a6cc774937dcea82 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1029-8479&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1029-8479&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1029-8479&client=summon |