Conformational entropy of alanine versus glycine in protein denatured states

The presence of a solvent-exposed alanine residue stabilizes a helix by 0.4-2 kcal·mol⁻¹ relative to glycine. Various factors have been suggested to account for the differences in helical propensity, from the higher conformational freedom of glycine sequences in the unfolded state to hydrophobic and...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the National Academy of Sciences - PNAS Vol. 104; no. 8; pp. 2661 - 2666
Main Authors Scott, Kathryn A, Alonso, Darwin O.V, Sato, Satoshi, Fersht, Alan R, Daggett, Valerie
Format Journal Article
LanguageEnglish
Published United States National Academy of Sciences 20.02.2007
National Acad Sciences
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The presence of a solvent-exposed alanine residue stabilizes a helix by 0.4-2 kcal·mol⁻¹ relative to glycine. Various factors have been suggested to account for the differences in helical propensity, from the higher conformational freedom of glycine sequences in the unfolded state to hydrophobic and van der Waals' stabilization of the alanine side chain in the helical state. We have performed all-atom molecular dynamics simulations with explicit solvent and exhaustive sampling of model peptides to address the backbone conformational entropy difference between Ala and Gly in the denatured state. The mutation of Ala to Gly leads to an increase in conformational entropy equivalent to [almost equal to]0.4 kcal·mol⁻¹ in a fully flexible denatured, that is, unfolded, state. But, this energy is closely counterbalanced by the (measured) difference in free energy of transfer of the glycine and alanine side chains from the vapor phase to water so that the unfolded alanine- and glycine-containing peptides are approximately isoenergetic. The helix-stabilizing propensity of Ala relative to Gly thus mainly results from more favorable interactions of Ala in the folded helical structure. The small difference in energetics in the denatured states means that the Φ-values derived from Ala [rightward arrow] Gly scanning of helices are a very good measure of the extent of formation of structure in proteins with little residual structure in the denatured state.
AbstractList The presence of a solvent-exposed alanine residue stabilizes a helix by 0.4-2 kcal.mol(-1) relative to glycine. Various factors have been suggested to account for the differences in helical propensity, from the higher conformational freedom of glycine sequences in the unfolded state to hydrophobic and van der Waals' stabilization of the alanine side chain in the helical state. We have performed all-atom molecular dynamics simulations with explicit solvent and exhaustive sampling of model peptides to address the backbone conformational entropy difference between Ala and Gly in the denatured state. The mutation of Ala to Gly leads to an increase in conformational entropy equivalent to approximately 0.4 kcal.mol(-1) in a fully flexible denatured, that is, unfolded, state. But, this energy is closely counterbalanced by the (measured) difference in free energy of transfer of the glycine and alanine side chains from the vapor phase to water so that the unfolded alanine- and glycine-containing peptides are approximately isoenergetic. The helix-stabilizing propensity of Ala relative to Gly thus mainly results from more favorable interactions of Ala in the folded helical structure. The small difference in energetics in the denatured states means that the Phi-values derived from Ala --> Gly scanning of helices are a very good measure of the extent of formation of structure in proteins with little residual structure in the denatured state.
The presence of a solvent-exposed alanine residue stabilizes a helix by 0.4–2 kcal·mol −1 relative to glycine. Various factors have been suggested to account for the differences in helical propensity, from the higher conformational freedom of glycine sequences in the unfolded state to hydrophobic and van der Waals' stabilization of the alanine side chain in the helical state. We have performed all-atom molecular dynamics simulations with explicit solvent and exhaustive sampling of model peptides to address the backbone conformational entropy difference between Ala and Gly in the denatured state. The mutation of Ala to Gly leads to an increase in conformational entropy equivalent to ≈0.4 kcal·mol −1 in a fully flexible denatured, that is, unfolded, state. But, this energy is closely counterbalanced by the (measured) difference in free energy of transfer of the glycine and alanine side chains from the vapor phase to water so that the unfolded alanine- and glycine-containing peptides are approximately isoenergetic. The helix-stabilizing propensity of Ala relative to Gly thus mainly results from more favorable interactions of Ala in the folded helical structure. The small difference in energetics in the denatured states means that the Φ-values derived from Ala → Gly scanning of helices are a very good measure of the extent of formation of structure in proteins with little residual structure in the denatured state. folding pathway protein stability transition state
The presence of a solvent-exposed alanine residue stabilizes a helix by 0.4-2 kcal·mol⁻¹ relative to glycine. Various factors have been suggested to account for the differences in helical propensity, from the higher conformational freedom of glycine sequences in the unfolded state to hydrophobic and van der Waals' stabilization of the alanine side chain in the helical state. We have performed all-atom molecular dynamics simulations with explicit solvent and exhaustive sampling of model peptides to address the backbone conformational entropy difference between Ala and Gly in the denatured state. The mutation of Ala to Gly leads to an increase in conformational entropy equivalent to ≈0.4 kcal·mol⁻¹ in a fully flexible denatured, that is, unfolded, state. But, this energy is closely counterbalanced by the (measured) difference in free energy of transfer of the glycine and alanine side chains from the vapor phase to water so that the unfolded alanine- and glycine-containing peptides are approximately isoenergetic. The helix-stabilizing propensity of Ala relative to Gly thus mainly results from more favorable interactions of Ala in the folded helical structure. The small difference in energetics in the denatured states means that the Φ-values derived from Ala → Gly scanning of helices are a very good measure of the extent of formation of structure in proteins with little residual structure in the denatured state.
The presence of a solvent-exposed alanine residue stabilizes a helix by 0.4-2 kcal.moL... relative to glycine. Various factors have been suggested to account for the differences in helical propensity, from the higher conformational freedom of glycine sequences in the unfolded state to hydrophobic and van der Waals' stabilization of the alanine side chain in the helical state. We have performed all-atom molecular dynamics simulations with explicit solvent and exhaustive sampling of model peptides to address the backbone conformational entropy difference between Ala and Gly in the denatured state. The mutation of Ala to Gly leads to an increase in conformational entropy equivalent to ...0.4 kcal.moL... in a fully flexible denatured, that is, unfolded, state. But, this energy is closely counterbalanced by the (measured) difference in free energy of transfer of the glycine and alanine side chains from the vapor phase to water so that the unfolded alanine- and glycine-containing peptides are approximately isoenergetic. The helix-stabilizing propensity of Ala relative to Gly thus mainly results from more favorable interactions of Ala in the folded helical structure. The small difference in energetics in the denatured states means that the ...-values derived from Ala...Gly scanning of helices are a very good measure of the extent of formation of structure in proteins with little residual structure in the denatured state. (ProQuest -CSA LLC: ... denotes formulae/symbols omitted.)
The presence of a solvent-exposed alanine residue stabilizes a helix by 0.4-2 kcal·mol⁻¹ relative to glycine. Various factors have been suggested to account for the differences in helical propensity, from the higher conformational freedom of glycine sequences in the unfolded state to hydrophobic and van der Waals' stabilization of the alanine side chain in the helical state. We have performed all-atom molecular dynamics simulations with explicit solvent and exhaustive sampling of model peptides to address the backbone conformational entropy difference between Ala and Gly in the denatured state. The mutation of Ala to Gly leads to an increase in conformational entropy equivalent to [almost equal to]0.4 kcal·mol⁻¹ in a fully flexible denatured, that is, unfolded, state. But, this energy is closely counterbalanced by the (measured) difference in free energy of transfer of the glycine and alanine side chains from the vapor phase to water so that the unfolded alanine- and glycine-containing peptides are approximately isoenergetic. The helix-stabilizing propensity of Ala relative to Gly thus mainly results from more favorable interactions of Ala in the folded helical structure. The small difference in energetics in the denatured states means that the Φ-values derived from Ala [rightward arrow] Gly scanning of helices are a very good measure of the extent of formation of structure in proteins with little residual structure in the denatured state.
The presence of a solvent-exposed alanine residue stabilizes a helix by 0.4–2 kcal·mol −1 relative to glycine. Various factors have been suggested to account for the differences in helical propensity, from the higher conformational freedom of glycine sequences in the unfolded state to hydrophobic and van der Waals' stabilization of the alanine side chain in the helical state. We have performed all-atom molecular dynamics simulations with explicit solvent and exhaustive sampling of model peptides to address the backbone conformational entropy difference between Ala and Gly in the denatured state. The mutation of Ala to Gly leads to an increase in conformational entropy equivalent to ≈0.4 kcal·mol −1 in a fully flexible denatured, that is, unfolded, state. But, this energy is closely counterbalanced by the (measured) difference in free energy of transfer of the glycine and alanine side chains from the vapor phase to water so that the unfolded alanine- and glycine-containing peptides are approximately isoenergetic. The helix-stabilizing propensity of Ala relative to Gly thus mainly results from more favorable interactions of Ala in the folded helical structure. The small difference in energetics in the denatured states means that the Φ-values derived from Ala → Gly scanning of helices are a very good measure of the extent of formation of structure in proteins with little residual structure in the denatured state.
Author Sato, Satoshi
Scott, Kathryn A
Alonso, Darwin O.V
Daggett, Valerie
Fersht, Alan R
Author_xml – sequence: 1
  fullname: Scott, Kathryn A
– sequence: 2
  fullname: Alonso, Darwin O.V
– sequence: 3
  fullname: Sato, Satoshi
– sequence: 4
  fullname: Fersht, Alan R
– sequence: 5
  fullname: Daggett, Valerie
BackLink https://www.ncbi.nlm.nih.gov/pubmed/17307875$$D View this record in MEDLINE/PubMed
BookMark eNptkc2P0zAQxS20iO0WzpyAiAOcujt2nMS5rIQqvqRKHGDPlmOPS6rUDrazov89jlptF8TBGlnvN08z867IhfMOCXlJ4ZpCU96MTsVrqCmlglHgT8iCQktXNW_hgiwAWLMSnPFLchXjDgDaSsAzckmbEhrRVAuyWXtnfdir1HunhgJdCn48FN4WalCud1jcY4hTLLbDQc_f3hVj8AlzNehUmgKaIiaVMD4nT60aIr441SW5-_Txx_rLavPt89f1h81KV6JKK4a87owAZrXQhjFGLeq249yopiqxQyuwZh0XCjizUDNjtDFcG051bVpVLsnt0Xecuj0aPQ-tBjmGfq_CQXrVy78V1_-UW38vqaAVK0U2eHcyCP7XhDHJfR81Dnlj9FOUTT6c4PlKS_L2H3Dnp5APFSUDyrNf2Wbo5gjp4GMMaB8moSDnmOQckzzHlDteP17gzJ9yycD7EzB3nu24FJLVNZV2GoaEv9Mjq_-TGXh1BHYx-fBAsIqzuipn_c1Rt8pLtQ19lHff83IlQFPNr_wD4Eq89w
CitedBy_id crossref_primary_10_1110_ps_073004907
crossref_primary_10_1021_cb200153g
crossref_primary_10_1016_j_str_2010_01_012
crossref_primary_10_1021_jp402087e
crossref_primary_10_1073_pnas_1409122111
crossref_primary_10_1021_acs_jcim_5b00308
crossref_primary_10_1021_jp310623x
crossref_primary_10_1038_srep38167
crossref_primary_10_1529_biophysj_107_113241
crossref_primary_10_1017_S0033583523000045
crossref_primary_10_1016_j_npep_2019_101971
crossref_primary_10_1016_j_bpj_2011_05_059
crossref_primary_10_1021_acs_jpcb_7b00577
crossref_primary_10_1021_bi702474k
crossref_primary_10_1021_jacs_6b09511
crossref_primary_10_3724_SP_J_1260_2011_00395
crossref_primary_10_1016_j_ejmech_2013_11_043
crossref_primary_10_1016_j_foodhyd_2016_09_029
crossref_primary_10_1039_D2CP02636H
crossref_primary_10_1007_s11274_022_03344_y
crossref_primary_10_1007_s00894_022_05419_x
crossref_primary_10_1021_acs_biochem_7b00974
crossref_primary_10_1073_pnas_1407768111
crossref_primary_10_1111_tra_12403
crossref_primary_10_1021_acs_biochem_1c00110
crossref_primary_10_1021_acsomega_9b01104
crossref_primary_10_1016_j_jmb_2008_06_081
crossref_primary_10_1021_ja901860f
crossref_primary_10_1080_10408398_2021_1970508
crossref_primary_10_1021_acs_biochem_0c00241
crossref_primary_10_1016_j_aggene_2017_09_002
crossref_primary_10_1039_C8CS00014J
crossref_primary_10_3389_fmolb_2020_00100
crossref_primary_10_1021_acschembio_5b00753
crossref_primary_10_1016_j_jmb_2012_08_003
crossref_primary_10_1021_acs_molpharmaceut_7b00876
crossref_primary_10_1080_07391102_2023_2175259
crossref_primary_10_4236_jbpc_2015_62006
crossref_primary_10_1073_pnas_0706527105
crossref_primary_10_3389_fcimb_2020_600112
crossref_primary_10_1073_pnas_1101752108
crossref_primary_10_1016_j_jmb_2009_05_010
crossref_primary_10_1021_ja3064028
crossref_primary_10_1021_ja500367u
crossref_primary_10_1016_j_jmb_2009_05_011
crossref_primary_10_1073_pnas_0910516107
crossref_primary_10_1073_pnas_1114477108
crossref_primary_10_1080_07388551_2019_1682963
crossref_primary_10_4236_msa_2013_46047
crossref_primary_10_1371_journal_pcbi_1009328
crossref_primary_10_1016_j_bpj_2017_10_016
crossref_primary_10_1021_jacs_0c03853
crossref_primary_10_1063_1_4962837
crossref_primary_10_3390_ijms22083818
crossref_primary_10_1002_jcc_21420
crossref_primary_10_1016_j_bpj_2017_05_037
crossref_primary_10_1042_BCJ20190739
crossref_primary_10_1105_tpc_114_129940
crossref_primary_10_1021_acsbiomaterials_6b00512
crossref_primary_10_1016_j_bcp_2021_114668
crossref_primary_10_1021_acs_jmedchem_1c01860
crossref_primary_10_1021_acs_jpcb_6b04886
crossref_primary_10_1002_pro_4783
crossref_primary_10_1073_pnas_1201793109
crossref_primary_10_1016_j_jmb_2017_11_012
crossref_primary_10_1124_mol_116_103432
crossref_primary_10_1021_jp076906
crossref_primary_10_1080_07391102_2016_1207563
crossref_primary_10_1021_jp408579v
crossref_primary_10_1093_molbev_msad032
crossref_primary_10_1016_j_jmb_2009_04_004
crossref_primary_10_1021_acscatal_3c00503
crossref_primary_10_1073_pnas_0707284105
crossref_primary_10_1093_protein_gzr059
Cites_doi 10.1038/344268a0
10.1110/ps.0306803
10.1016/j.ymeth.2004.03.008
10.1073/pnas.0401396101
10.1038/346440a0
10.1002/prot.1
10.1006/jmbi.1995.0502
10.1021/bi00020a027
10.1016/0022-2836(92)90906-Z
10.1038/356453a0
10.1002/prot.340190202
10.1073/pnas.91.22.10430
10.1016/0022-2836(92)90907-2
10.1002/pro.5560030514
10.1006/jmbi.1995.0616
10.1073/pnas.94.25.13409
10.1021/j100876a008
10.1016/S0022-2836(02)01249-4
10.1073/pnas.250473497
10.1002/(SICI)1097-0134(19990815)36:3<332::AID-PROT7>3.0.CO;2-H
10.1038/9384
10.1016/0022-2836(92)90561-W
10.1126/science.8503008
10.1006/jmbi.1996.0173
10.1073/pnas.37.4.205
10.1002/pro.5560020603
10.1073/pnas.0402684101
10.1021/bi00507a030
10.1002/pro.5560060614
10.1016/j.jmb.2004.09.023
10.1016/S0022-2836(02)00672-1
10.1073/pnas.0406091101
10.1021/jp964020s
10.1016/0010-4655(95)00049-L
10.1016/0022-2836(92)90563-Y
10.1126/science.2237415
10.1073/pnas.0408004102
10.1038/340122a0
10.1073/pnas.84.19.6663
10.1016/S0959-440X(97)80028-0
10.1073/pnas.96.9.4930
10.1016/S0022-2836(03)00765-4
10.1006/jmbi.1996.0172
10.1002/elps.1150181505
10.1021/ar0100834
ContentType Journal Article
Copyright Copyright 2007 The National Academy of Sciences of the United States of America
Copyright National Academy of Sciences Feb 20, 2007
2007 by The National Academy of Sciences of the USA 2007
Copyright_xml – notice: Copyright 2007 The National Academy of Sciences of the United States of America
– notice: Copyright National Academy of Sciences Feb 20, 2007
– notice: 2007 by The National Academy of Sciences of the USA 2007
DBID FBQ
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
5PM
DOI 10.1073/pnas.0611182104
DatabaseName AGRIS
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
Virology and AIDS Abstracts
Oncogenes and Growth Factors Abstracts
Technology Research Database
Nucleic Acids Abstracts
Ecology Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Entomology Abstracts
Genetics Abstracts
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Immunology Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic


MEDLINE
Virology and AIDS Abstracts


CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: FBQ
  name: AGRIS
  url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 1091-6490
EndPage 2666
ExternalDocumentID 1222172191
10_1073_pnas_0611182104
17307875
104_8_2661
25426531
US201300750075
Genre Journal Article
Research Support, N.I.H., Extramural
Feature
GrantInformation_xml – fundername: Medical Research Council
  grantid: MC_U105484373
– fundername: NIGMS NIH HHS
  grantid: R01 GM050789
– fundername: NIGMS NIH HHS
  grantid: R29 GM050789
– fundername: NIGMS NIH HHS
  grantid: GM 50789
GroupedDBID ---
-DZ
-~X
.55
.GJ
0R~
123
29P
2AX
2FS
2WC
3O-
4.4
53G
5RE
5VS
692
6TJ
79B
85S
AACGO
AAFWJ
AANCE
AAYJJ
ABBHK
ABOCM
ABPLY
ABPPZ
ABPTK
ABTLG
ABZEH
ACGOD
ACIWK
ACKIV
ACNCT
ACPRK
ADULT
ADZLD
AENEX
AEUPB
AEXZC
AFDAS
AFFNX
AFOSN
AFRAH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
AS~
BKOMP
CS3
D0L
DCCCD
DIK
DNJUQ
DOOOF
DU5
DWIUU
E3Z
EBS
EJD
F20
F5P
FBQ
FRP
GX1
HGD
HH5
HQ3
HTVGU
HYE
JAAYA
JBMMH
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSG
JSODD
JST
KQ8
L7B
LU7
MVM
N9A
NEJ
NHB
N~3
O9-
OK1
P-O
PNE
PQQKQ
R.V
RHF
RHI
RNA
RNS
RPM
RXW
SA0
SJN
TAE
TN5
UKR
VOH
VQA
W8F
WH7
WHG
WOQ
WOW
X7M
XFK
XSW
Y6R
YBH
YKV
YSK
ZA5
ZCA
ZCG
~02
~KM
ABXSQ
AQVQM
-
02
0R
1AW
55
AAPBV
ABFLS
ADACO
AJYGW
AS
DZ
KM
PQEST
X
XHC
ADACV
CGR
CUY
CVF
ECM
EIF
H13
IPSME
NPM
AAYXX
CITATION
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
5PM
ID FETCH-LOGICAL-c585t-2e46bd802fc8cd2221fec9b44da753ebef8e62b48a042f062ddcdd4cd41c6d9a3
IEDL.DBID RPM
ISSN 0027-8424
IngestDate Tue Sep 17 21:26:30 EDT 2024
Sat Oct 26 05:52:39 EDT 2024
Thu Oct 10 19:50:37 EDT 2024
Fri Aug 23 01:50:58 EDT 2024
Sat Nov 02 12:14:43 EDT 2024
Thu May 30 15:49:56 EDT 2019
Wed Nov 11 00:29:42 EST 2020
Fri Feb 02 07:05:39 EST 2024
Wed Dec 27 19:14:45 EST 2023
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c585t-2e46bd802fc8cd2221fec9b44da753ebef8e62b48a042f062ddcdd4cd41c6d9a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Present address: Structural Bioinformatics and Computational Biochemistry Unit, University of Oxford, Oxford OX1 3QU, United Kingdom.
Contributed by Alan R. Fersht, December 18, 2006
Author contributions: K.A.S., A.R.F., and V.D. designed research; K.A.S. performed research; D.O.V.A. contributed new reagents/analytic tools; K.A.S., S.S., A.R.F., and V.D. analyzed data; and K.A.S., A.R.F., and V.D. wrote the paper.
OpenAccessLink https://europepmc.org/articles/pmc1815238?pdf=render
PMID 17307875
PQID 201418139
PQPubID 42026
PageCount 6
ParticipantIDs pnas_primary_104_8_2661
pnas_primary_104_8_2661_fulltext
proquest_journals_201418139
crossref_primary_10_1073_pnas_0611182104
proquest_miscellaneous_70278417
pubmedcentral_primary_oai_pubmedcentral_nih_gov_1815238
pubmed_primary_17307875
jstor_primary_25426531
fao_agris_US201300750075
ProviderPackageCode RNA
PNE
PublicationCentury 2000
PublicationDate 2007-02-20
PublicationDateYYYYMMDD 2007-02-20
PublicationDate_xml – month: 02
  year: 2007
  text: 2007-02-20
  day: 20
PublicationDecade 2000
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
PublicationTitle Proceedings of the National Academy of Sciences - PNAS
PublicationTitleAlternate Proc Natl Acad Sci U S A
PublicationYear 2007
Publisher National Academy of Sciences
National Acad Sciences
Publisher_xml – name: National Academy of Sciences
– name: National Acad Sciences
References e_1_3_3_17_2
e_1_3_3_16_2
e_1_3_3_19_2
e_1_3_3_38_2
e_1_3_3_18_2
e_1_3_3_39_2
e_1_3_3_13_2
e_1_3_3_36_2
e_1_3_3_12_2
e_1_3_3_37_2
e_1_3_3_15_2
e_1_3_3_34_2
e_1_3_3_14_2
e_1_3_3_35_2
e_1_3_3_32_2
e_1_3_3_33_2
e_1_3_3_11_2
e_1_3_3_30_2
e_1_3_3_10_2
e_1_3_3_31_2
e_1_3_3_40_2
e_1_3_3_6_2
e_1_3_3_5_2
e_1_3_3_8_2
e_1_3_3_7_2
e_1_3_3_28_2
e_1_3_3_9_2
e_1_3_3_27_2
e_1_3_3_29_2
e_1_3_3_24_2
e_1_3_3_23_2
e_1_3_3_26_2
e_1_3_3_45_2
e_1_3_3_25_2
e_1_3_3_2_2
e_1_3_3_20_2
e_1_3_3_43_2
e_1_3_3_1_2
e_1_3_3_44_2
e_1_3_3_4_2
e_1_3_3_22_2
e_1_3_3_41_2
e_1_3_3_3_2
e_1_3_3_21_2
e_1_3_3_42_2
References_xml – ident: e_1_3_3_1_2
  doi: 10.1038/344268a0
– ident: e_1_3_3_20_2
  doi: 10.1110/ps.0306803
– ident: e_1_3_3_37_2
  doi: 10.1016/j.ymeth.2004.03.008
– ident: e_1_3_3_22_2
  doi: 10.1073/pnas.0401396101
– ident: e_1_3_3_29_2
  doi: 10.1038/346440a0
– ident: e_1_3_3_14_2
  doi: 10.1002/prot.1
– ident: e_1_3_3_13_2
  doi: 10.1006/jmbi.1995.0502
– ident: e_1_3_3_21_2
  doi: 10.1021/bi00020a027
– ident: e_1_3_3_5_2
  doi: 10.1016/0022-2836(92)90906-Z
– ident: e_1_3_3_4_2
  doi: 10.1038/356453a0
– ident: e_1_3_3_8_2
  doi: 10.1002/prot.340190202
– ident: e_1_3_3_34_2
  doi: 10.1073/pnas.91.22.10430
– ident: e_1_3_3_3_2
  doi: 10.1016/0022-2836(92)90907-2
– ident: e_1_3_3_7_2
  doi: 10.1002/pro.5560030514
– ident: e_1_3_3_25_2
  doi: 10.1006/jmbi.1995.0616
– ident: e_1_3_3_42_2
  doi: 10.1073/pnas.94.25.13409
– ident: e_1_3_3_11_2
  doi: 10.1021/j100876a008
– ident: e_1_3_3_23_2
  doi: 10.1016/S0022-2836(02)01249-4
– ident: e_1_3_3_41_2
  doi: 10.1073/pnas.250473497
– ident: e_1_3_3_17_2
  doi: 10.1002/(SICI)1097-0134(19990815)36:3<332::AID-PROT7>3.0.CO;2-H
– ident: e_1_3_3_24_2
  doi: 10.1038/9384
– ident: e_1_3_3_28_2
  doi: 10.1016/0022-2836(92)90561-W
– ident: e_1_3_3_6_2
  doi: 10.1126/science.8503008
– ident: e_1_3_3_36_2
  doi: 10.1006/jmbi.1996.0173
– ident: e_1_3_3_10_2
  doi: 10.1073/pnas.37.4.205
– ident: e_1_3_3_40_2
  doi: 10.1002/pro.5560020603
– ident: e_1_3_3_33_2
  doi: 10.1073/pnas.0402684101
– ident: e_1_3_3_32_2
  doi: 10.1021/bi00507a030
– ident: e_1_3_3_9_2
  doi: 10.1002/pro.5560060614
– ident: e_1_3_3_26_2
  doi: 10.1016/j.jmb.2004.09.023
– ident: e_1_3_3_44_2
  doi: 10.1016/S0022-2836(02)00672-1
– ident: e_1_3_3_31_2
  doi: 10.1073/pnas.0406091101
– ident: e_1_3_3_38_2
  doi: 10.1021/jp964020s
– ident: e_1_3_3_39_2
  doi: 10.1016/0010-4655(95)00049-L
– ident: e_1_3_3_27_2
  doi: 10.1016/0022-2836(92)90563-Y
– ident: e_1_3_3_2_2
  doi: 10.1126/science.2237415
– ident: e_1_3_3_19_2
  doi: 10.1073/pnas.0408004102
– ident: e_1_3_3_30_2
  doi: 10.1038/340122a0
– ident: e_1_3_3_12_2
  doi: 10.1073/pnas.84.19.6663
– ident: e_1_3_3_15_2
  doi: 10.1016/S0959-440X(97)80028-0
– ident: e_1_3_3_16_2
  doi: 10.1073/pnas.96.9.4930
– ident: e_1_3_3_18_2
  doi: 10.1016/S0022-2836(03)00765-4
– ident: e_1_3_3_35_2
  doi: 10.1006/jmbi.1996.0172
– ident: e_1_3_3_45_2
  doi: 10.1002/elps.1150181505
– ident: e_1_3_3_43_2
  doi: 10.1021/ar0100834
SSID ssj0009580
Score 2.2280698
Snippet The presence of a solvent-exposed alanine residue stabilizes a helix by 0.4-2 kcal·mol⁻¹ relative to glycine. Various factors have been suggested to account...
The presence of a solvent-exposed alanine residue stabilizes a helix by 0.4–2 kcal·mol −1 relative to glycine. Various factors have been suggested to account...
The presence of a solvent-exposed alanine residue stabilizes a helix by 0.4-2 kcal.mol(-1) relative to glycine. Various factors have been suggested to account...
The presence of a solvent-exposed alanine residue stabilizes a helix by 0.4–2 kcal·mol −1 relative to glycine. Various factors have been suggested to account...
The presence of a solvent-exposed alanine residue stabilizes a helix by 0.4-2 kcal.moL... relative to glycine. Various factors have been suggested to account...
SourceID pubmedcentral
proquest
crossref
pubmed
pnas
jstor
fao
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2661
SubjectTerms Alanine - chemistry
Alanine - genetics
Amino acids
Biochemistry
Biological Sciences
Datasets
Entropy
Free energy
Glycine - chemistry
Glycine - genetics
High temperature
Kinetics
Modeling
Models, Biological
Molecular structure
Mutation - genetics
Peptides
Peptides - chemistry
Protein Conformation
Protein Denaturation
Protein folding
Proteins - chemistry
Simulation
Solvents
Surface areas
Trajectories
Title Conformational entropy of alanine versus glycine in protein denatured states
URI https://www.jstor.org/stable/25426531
http://www.pnas.org/content/104/8/2661.abstract
https://www.ncbi.nlm.nih.gov/pubmed/17307875
https://www.proquest.com/docview/201418139
https://search.proquest.com/docview/70278417
https://pubmed.ncbi.nlm.nih.gov/PMC1815238
Volume 104
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEB41PXFBFCg1hbIHDuXgPNYbe3NEFVV5FCFBpN5W-7BLpNaOcHLov-ebjZ20CC4cLB82s452Xt94HiZ6O3GzSbBapd4Fnyqnx6mD50mhd2Uo7CybZtyNfPk1v5irT1fTqz2a9r0wsWjfu8Wwvrkd1oufsbZyeetHfZ3Y6NvlGbwS4ic9GtAAAtqH6NtJu3rTdyJhfpVU_TyfIhsta9sO4cAYVCMM4YGhoC9ikeE9rzSobNOXJ_LMU1D9DX_-WUZ5zy-dP6HHHaAU7zd__ID2yvopHXQq24rTbq70u2f0hbv7-l5FkPB-zfJONJXg-kbATcE1GutWXN_ccb5dLGoR5zjgDvMUR4AGEVuQ2uc0P__w4-wi7T6mkHpEBKtUlip3QY9l5bUPQAWTqvQzp1SwiFjAykqXuXRKW6hxNc5lCD4E5YOa-DzMbHZI-3VTl0ck-OuJwE1h6uHgVT62mXfegeEg8gAQCZ32h2mWm5kZJua6i8zwYZodCxI6wmEbew2LZubfJedRGcTgSugwcmC7BUJZmcNkJPQi7rLbWhltGGgkJP6xYqqulCah456RptPW1kiudtXAwgm92a5CzTh3YuuyWbem2GRoC354ZPruIZ0IJVQ8EIftD3iA98MVyHUc5N3J8cv_pjymR5t3zRLW7hXtr36ty9cASSt3gvDg4-eTqBq_ARuVD5E
link.rule.ids 230,315,730,783,787,888,27936,27937,53804,53806
linkProvider National Library of Medicine
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9tAEB7xOLSXCmgp5rmHHujBibPe2JsjQqBAE1SpROK22ocNkcCO6uTAv2dmbSdQ0QsHy4fNrqOdmZ1vPDOfAX70zKDntBShNc6GwsgoNOh5QrS7zKV6EPdj6kYe3yTDibi-69-tQb_thfFF-9ZMO8XjU6eYPvjaytmT7bZ1Yt3f43P0Shg_ye46bKK9RqIN0pdcu7LuPOF4AAsuWkafNO7OCl110IURrMZAhChDUcVTX2b4yi-t57psCxSJ9RRnvYdA_y2kfOWZLrfgSwMp2Vn917dhLSt2YLsx2oqdNszSP7_CiPr72m5FnELrlbNnVuaMKhwRcDKq0lhU7P7xmTLubFowz-SAdzygPAmoY74JqfoGk8uL2_Nh2HxOIbQYE8xDnonEOBnx3ErrEBf08swOjBBOY8yCwsxllnAjpEZDzqOEO2edE9aJnk3cQMe7sFGURbYHjL6fiMjJ9S26eJFEOrbGGhQ5TrIIIQI4bTdTzWrWDOWz3WmsaDPVSgQB7OFmK32PZ5qa_OGUSSUYg1cAu14CyyUwmOUJHhoBfPerrJYWSiqCGgGw_4yovCmmCeCgFaRq7LVSnOpdJaLhAE6Wo2holD3RRVYuKpXWOdqUHu6FvnpIo0IBpG_UYfkDovB-O4Ka7am8G03e__DME_g0vB2P1Ojq5tcBfK7fPHM8-w5hY_53kR0hZJqbY28gLyVsEe4
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9tAEB7xkKpeqkJLcWnLHnqgB8fOemNvjhVtBBQQUonEbbUPGyKBbdXJgX_fmbWdBNReOEQ5bHYd7czsfOP5Zhbg69CMh05LEVrjbCiMjEODnidEu8tdpsfJKKFq5IvL9GQqzm5GN2tXfXnSvjWzQXn_MChnd55bWT_YqOeJRVcXx-iVMH6SUe2KaBO20WbjtA_Ul_12ZVt9wvEQFlz0XX2yJKpL3QzQjRG0xmCE2oaimmeearjmmzYLXfUkRep8irP-hUKfkynXvNPkLbzpYCX73v79HdjIy13Y6Qy3YUddd-lv7-Ccavz6ikWcQutV9SOrCkYsRwSdjJgai4bd3j9S1p3NSua7OeA3HlK-EahjvhCpeQ_Tyc_r45Owu1IhtBgXzEOei9Q4GfPCSusQGwyL3I6NEE5j3IICLWSeciOkRmMu4pQ7Z50T1omhTd1YJ3uwVVZlvg-M7lBE9ORGFt28SGOdWGMNih0nWYQRARz1m6nqtnOG8hnvLFG0mWolggD2cbOVvsVzTU1_c8qmEpTBTwB7XgLLJTCg5SkeHAF88KuslhZKKoIbAbD_jKiiI9QEcNALUnU22yhOnFeJiDiAw-UoGhtlUHSZV4tGZW2eNqOHe6GvHtKpUADZE3VY_oDaeD8dQe327bw7bf744pmH8Orqx0Sdn17-OoDX7ctnjsffJ9ia_1nknxE1zc0Xbx9_AR05EwE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Conformational+entropy+of+alanine+versus+glycine+in+protein+denatured+states&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Scott%2C+Kathryn+A&rft.au=Alonso%2C+Darwin+O.V&rft.au=Sato%2C+Satoshi&rft.au=Fersht%2C+Alan+R&rft.date=2007-02-20&rft.pub=National+Academy+of+Sciences&rft.issn=0027-8424&rft.eissn=1091-6490&rft.volume=104&rft.issue=8&rft.spage=2661&rft.epage=2666&rft_id=info:doi/10.1073%2Fpnas.0611182104&rft.externalDocID=US201300750075
thumbnail_m http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F104%2F8.cover.gif
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F104%2F8.cover.gif