Conformational entropy of alanine versus glycine in protein denatured states
The presence of a solvent-exposed alanine residue stabilizes a helix by 0.4-2 kcal·mol⁻¹ relative to glycine. Various factors have been suggested to account for the differences in helical propensity, from the higher conformational freedom of glycine sequences in the unfolded state to hydrophobic and...
Saved in:
Published in | Proceedings of the National Academy of Sciences - PNAS Vol. 104; no. 8; pp. 2661 - 2666 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
United States
National Academy of Sciences
20.02.2007
National Acad Sciences |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The presence of a solvent-exposed alanine residue stabilizes a helix by 0.4-2 kcal·mol⁻¹ relative to glycine. Various factors have been suggested to account for the differences in helical propensity, from the higher conformational freedom of glycine sequences in the unfolded state to hydrophobic and van der Waals' stabilization of the alanine side chain in the helical state. We have performed all-atom molecular dynamics simulations with explicit solvent and exhaustive sampling of model peptides to address the backbone conformational entropy difference between Ala and Gly in the denatured state. The mutation of Ala to Gly leads to an increase in conformational entropy equivalent to [almost equal to]0.4 kcal·mol⁻¹ in a fully flexible denatured, that is, unfolded, state. But, this energy is closely counterbalanced by the (measured) difference in free energy of transfer of the glycine and alanine side chains from the vapor phase to water so that the unfolded alanine- and glycine-containing peptides are approximately isoenergetic. The helix-stabilizing propensity of Ala relative to Gly thus mainly results from more favorable interactions of Ala in the folded helical structure. The small difference in energetics in the denatured states means that the Φ-values derived from Ala [rightward arrow] Gly scanning of helices are a very good measure of the extent of formation of structure in proteins with little residual structure in the denatured state. |
---|---|
AbstractList | The presence of a solvent-exposed alanine residue stabilizes a helix by 0.4-2 kcal.mol(-1) relative to glycine. Various factors have been suggested to account for the differences in helical propensity, from the higher conformational freedom of glycine sequences in the unfolded state to hydrophobic and van der Waals' stabilization of the alanine side chain in the helical state. We have performed all-atom molecular dynamics simulations with explicit solvent and exhaustive sampling of model peptides to address the backbone conformational entropy difference between Ala and Gly in the denatured state. The mutation of Ala to Gly leads to an increase in conformational entropy equivalent to approximately 0.4 kcal.mol(-1) in a fully flexible denatured, that is, unfolded, state. But, this energy is closely counterbalanced by the (measured) difference in free energy of transfer of the glycine and alanine side chains from the vapor phase to water so that the unfolded alanine- and glycine-containing peptides are approximately isoenergetic. The helix-stabilizing propensity of Ala relative to Gly thus mainly results from more favorable interactions of Ala in the folded helical structure. The small difference in energetics in the denatured states means that the Phi-values derived from Ala --> Gly scanning of helices are a very good measure of the extent of formation of structure in proteins with little residual structure in the denatured state. The presence of a solvent-exposed alanine residue stabilizes a helix by 0.4–2 kcal·mol −1 relative to glycine. Various factors have been suggested to account for the differences in helical propensity, from the higher conformational freedom of glycine sequences in the unfolded state to hydrophobic and van der Waals' stabilization of the alanine side chain in the helical state. We have performed all-atom molecular dynamics simulations with explicit solvent and exhaustive sampling of model peptides to address the backbone conformational entropy difference between Ala and Gly in the denatured state. The mutation of Ala to Gly leads to an increase in conformational entropy equivalent to ≈0.4 kcal·mol −1 in a fully flexible denatured, that is, unfolded, state. But, this energy is closely counterbalanced by the (measured) difference in free energy of transfer of the glycine and alanine side chains from the vapor phase to water so that the unfolded alanine- and glycine-containing peptides are approximately isoenergetic. The helix-stabilizing propensity of Ala relative to Gly thus mainly results from more favorable interactions of Ala in the folded helical structure. The small difference in energetics in the denatured states means that the Φ-values derived from Ala → Gly scanning of helices are a very good measure of the extent of formation of structure in proteins with little residual structure in the denatured state. folding pathway protein stability transition state The presence of a solvent-exposed alanine residue stabilizes a helix by 0.4-2 kcal·mol⁻¹ relative to glycine. Various factors have been suggested to account for the differences in helical propensity, from the higher conformational freedom of glycine sequences in the unfolded state to hydrophobic and van der Waals' stabilization of the alanine side chain in the helical state. We have performed all-atom molecular dynamics simulations with explicit solvent and exhaustive sampling of model peptides to address the backbone conformational entropy difference between Ala and Gly in the denatured state. The mutation of Ala to Gly leads to an increase in conformational entropy equivalent to ≈0.4 kcal·mol⁻¹ in a fully flexible denatured, that is, unfolded, state. But, this energy is closely counterbalanced by the (measured) difference in free energy of transfer of the glycine and alanine side chains from the vapor phase to water so that the unfolded alanine- and glycine-containing peptides are approximately isoenergetic. The helix-stabilizing propensity of Ala relative to Gly thus mainly results from more favorable interactions of Ala in the folded helical structure. The small difference in energetics in the denatured states means that the Φ-values derived from Ala → Gly scanning of helices are a very good measure of the extent of formation of structure in proteins with little residual structure in the denatured state. The presence of a solvent-exposed alanine residue stabilizes a helix by 0.4-2 kcal.moL... relative to glycine. Various factors have been suggested to account for the differences in helical propensity, from the higher conformational freedom of glycine sequences in the unfolded state to hydrophobic and van der Waals' stabilization of the alanine side chain in the helical state. We have performed all-atom molecular dynamics simulations with explicit solvent and exhaustive sampling of model peptides to address the backbone conformational entropy difference between Ala and Gly in the denatured state. The mutation of Ala to Gly leads to an increase in conformational entropy equivalent to ...0.4 kcal.moL... in a fully flexible denatured, that is, unfolded, state. But, this energy is closely counterbalanced by the (measured) difference in free energy of transfer of the glycine and alanine side chains from the vapor phase to water so that the unfolded alanine- and glycine-containing peptides are approximately isoenergetic. The helix-stabilizing propensity of Ala relative to Gly thus mainly results from more favorable interactions of Ala in the folded helical structure. The small difference in energetics in the denatured states means that the ...-values derived from Ala...Gly scanning of helices are a very good measure of the extent of formation of structure in proteins with little residual structure in the denatured state. (ProQuest -CSA LLC: ... denotes formulae/symbols omitted.) The presence of a solvent-exposed alanine residue stabilizes a helix by 0.4-2 kcal·mol⁻¹ relative to glycine. Various factors have been suggested to account for the differences in helical propensity, from the higher conformational freedom of glycine sequences in the unfolded state to hydrophobic and van der Waals' stabilization of the alanine side chain in the helical state. We have performed all-atom molecular dynamics simulations with explicit solvent and exhaustive sampling of model peptides to address the backbone conformational entropy difference between Ala and Gly in the denatured state. The mutation of Ala to Gly leads to an increase in conformational entropy equivalent to [almost equal to]0.4 kcal·mol⁻¹ in a fully flexible denatured, that is, unfolded, state. But, this energy is closely counterbalanced by the (measured) difference in free energy of transfer of the glycine and alanine side chains from the vapor phase to water so that the unfolded alanine- and glycine-containing peptides are approximately isoenergetic. The helix-stabilizing propensity of Ala relative to Gly thus mainly results from more favorable interactions of Ala in the folded helical structure. The small difference in energetics in the denatured states means that the Φ-values derived from Ala [rightward arrow] Gly scanning of helices are a very good measure of the extent of formation of structure in proteins with little residual structure in the denatured state. The presence of a solvent-exposed alanine residue stabilizes a helix by 0.4–2 kcal·mol −1 relative to glycine. Various factors have been suggested to account for the differences in helical propensity, from the higher conformational freedom of glycine sequences in the unfolded state to hydrophobic and van der Waals' stabilization of the alanine side chain in the helical state. We have performed all-atom molecular dynamics simulations with explicit solvent and exhaustive sampling of model peptides to address the backbone conformational entropy difference between Ala and Gly in the denatured state. The mutation of Ala to Gly leads to an increase in conformational entropy equivalent to ≈0.4 kcal·mol −1 in a fully flexible denatured, that is, unfolded, state. But, this energy is closely counterbalanced by the (measured) difference in free energy of transfer of the glycine and alanine side chains from the vapor phase to water so that the unfolded alanine- and glycine-containing peptides are approximately isoenergetic. The helix-stabilizing propensity of Ala relative to Gly thus mainly results from more favorable interactions of Ala in the folded helical structure. The small difference in energetics in the denatured states means that the Φ-values derived from Ala → Gly scanning of helices are a very good measure of the extent of formation of structure in proteins with little residual structure in the denatured state. |
Author | Sato, Satoshi Scott, Kathryn A Alonso, Darwin O.V Daggett, Valerie Fersht, Alan R |
Author_xml | – sequence: 1 fullname: Scott, Kathryn A – sequence: 2 fullname: Alonso, Darwin O.V – sequence: 3 fullname: Sato, Satoshi – sequence: 4 fullname: Fersht, Alan R – sequence: 5 fullname: Daggett, Valerie |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/17307875$$D View this record in MEDLINE/PubMed |
BookMark | eNptkc2P0zAQxS20iO0WzpyAiAOcujt2nMS5rIQqvqRKHGDPlmOPS6rUDrazov89jlptF8TBGlnvN08z867IhfMOCXlJ4ZpCU96MTsVrqCmlglHgT8iCQktXNW_hgiwAWLMSnPFLchXjDgDaSsAzckmbEhrRVAuyWXtnfdir1HunhgJdCn48FN4WalCud1jcY4hTLLbDQc_f3hVj8AlzNehUmgKaIiaVMD4nT60aIr441SW5-_Txx_rLavPt89f1h81KV6JKK4a87owAZrXQhjFGLeq249yopiqxQyuwZh0XCjizUDNjtDFcG051bVpVLsnt0Xecuj0aPQ-tBjmGfq_CQXrVy78V1_-UW38vqaAVK0U2eHcyCP7XhDHJfR81Dnlj9FOUTT6c4PlKS_L2H3Dnp5APFSUDyrNf2Wbo5gjp4GMMaB8moSDnmOQckzzHlDteP17gzJ9yycD7EzB3nu24FJLVNZV2GoaEv9Mjq_-TGXh1BHYx-fBAsIqzuipn_c1Rt8pLtQ19lHff83IlQFPNr_wD4Eq89w |
CitedBy_id | crossref_primary_10_1110_ps_073004907 crossref_primary_10_1021_cb200153g crossref_primary_10_1016_j_str_2010_01_012 crossref_primary_10_1021_jp402087e crossref_primary_10_1073_pnas_1409122111 crossref_primary_10_1021_acs_jcim_5b00308 crossref_primary_10_1021_jp310623x crossref_primary_10_1038_srep38167 crossref_primary_10_1529_biophysj_107_113241 crossref_primary_10_1017_S0033583523000045 crossref_primary_10_1016_j_npep_2019_101971 crossref_primary_10_1016_j_bpj_2011_05_059 crossref_primary_10_1021_acs_jpcb_7b00577 crossref_primary_10_1021_bi702474k crossref_primary_10_1021_jacs_6b09511 crossref_primary_10_3724_SP_J_1260_2011_00395 crossref_primary_10_1016_j_ejmech_2013_11_043 crossref_primary_10_1016_j_foodhyd_2016_09_029 crossref_primary_10_1039_D2CP02636H crossref_primary_10_1007_s11274_022_03344_y crossref_primary_10_1007_s00894_022_05419_x crossref_primary_10_1021_acs_biochem_7b00974 crossref_primary_10_1073_pnas_1407768111 crossref_primary_10_1111_tra_12403 crossref_primary_10_1021_acs_biochem_1c00110 crossref_primary_10_1021_acsomega_9b01104 crossref_primary_10_1016_j_jmb_2008_06_081 crossref_primary_10_1021_ja901860f crossref_primary_10_1080_10408398_2021_1970508 crossref_primary_10_1021_acs_biochem_0c00241 crossref_primary_10_1016_j_aggene_2017_09_002 crossref_primary_10_1039_C8CS00014J crossref_primary_10_3389_fmolb_2020_00100 crossref_primary_10_1021_acschembio_5b00753 crossref_primary_10_1016_j_jmb_2012_08_003 crossref_primary_10_1021_acs_molpharmaceut_7b00876 crossref_primary_10_1080_07391102_2023_2175259 crossref_primary_10_4236_jbpc_2015_62006 crossref_primary_10_1073_pnas_0706527105 crossref_primary_10_3389_fcimb_2020_600112 crossref_primary_10_1073_pnas_1101752108 crossref_primary_10_1016_j_jmb_2009_05_010 crossref_primary_10_1021_ja3064028 crossref_primary_10_1021_ja500367u crossref_primary_10_1016_j_jmb_2009_05_011 crossref_primary_10_1073_pnas_0910516107 crossref_primary_10_1073_pnas_1114477108 crossref_primary_10_1080_07388551_2019_1682963 crossref_primary_10_4236_msa_2013_46047 crossref_primary_10_1371_journal_pcbi_1009328 crossref_primary_10_1016_j_bpj_2017_10_016 crossref_primary_10_1021_jacs_0c03853 crossref_primary_10_1063_1_4962837 crossref_primary_10_3390_ijms22083818 crossref_primary_10_1002_jcc_21420 crossref_primary_10_1016_j_bpj_2017_05_037 crossref_primary_10_1042_BCJ20190739 crossref_primary_10_1105_tpc_114_129940 crossref_primary_10_1021_acsbiomaterials_6b00512 crossref_primary_10_1016_j_bcp_2021_114668 crossref_primary_10_1021_acs_jmedchem_1c01860 crossref_primary_10_1021_acs_jpcb_6b04886 crossref_primary_10_1002_pro_4783 crossref_primary_10_1073_pnas_1201793109 crossref_primary_10_1016_j_jmb_2017_11_012 crossref_primary_10_1124_mol_116_103432 crossref_primary_10_1021_jp076906 crossref_primary_10_1080_07391102_2016_1207563 crossref_primary_10_1021_jp408579v crossref_primary_10_1093_molbev_msad032 crossref_primary_10_1016_j_jmb_2009_04_004 crossref_primary_10_1021_acscatal_3c00503 crossref_primary_10_1073_pnas_0707284105 crossref_primary_10_1093_protein_gzr059 |
Cites_doi | 10.1038/344268a0 10.1110/ps.0306803 10.1016/j.ymeth.2004.03.008 10.1073/pnas.0401396101 10.1038/346440a0 10.1002/prot.1 10.1006/jmbi.1995.0502 10.1021/bi00020a027 10.1016/0022-2836(92)90906-Z 10.1038/356453a0 10.1002/prot.340190202 10.1073/pnas.91.22.10430 10.1016/0022-2836(92)90907-2 10.1002/pro.5560030514 10.1006/jmbi.1995.0616 10.1073/pnas.94.25.13409 10.1021/j100876a008 10.1016/S0022-2836(02)01249-4 10.1073/pnas.250473497 10.1002/(SICI)1097-0134(19990815)36:3<332::AID-PROT7>3.0.CO;2-H 10.1038/9384 10.1016/0022-2836(92)90561-W 10.1126/science.8503008 10.1006/jmbi.1996.0173 10.1073/pnas.37.4.205 10.1002/pro.5560020603 10.1073/pnas.0402684101 10.1021/bi00507a030 10.1002/pro.5560060614 10.1016/j.jmb.2004.09.023 10.1016/S0022-2836(02)00672-1 10.1073/pnas.0406091101 10.1021/jp964020s 10.1016/0010-4655(95)00049-L 10.1016/0022-2836(92)90563-Y 10.1126/science.2237415 10.1073/pnas.0408004102 10.1038/340122a0 10.1073/pnas.84.19.6663 10.1016/S0959-440X(97)80028-0 10.1073/pnas.96.9.4930 10.1016/S0022-2836(03)00765-4 10.1006/jmbi.1996.0172 10.1002/elps.1150181505 10.1021/ar0100834 |
ContentType | Journal Article |
Copyright | Copyright 2007 The National Academy of Sciences of the United States of America Copyright National Academy of Sciences Feb 20, 2007 2007 by The National Academy of Sciences of the USA 2007 |
Copyright_xml | – notice: Copyright 2007 The National Academy of Sciences of the United States of America – notice: Copyright National Academy of Sciences Feb 20, 2007 – notice: 2007 by The National Academy of Sciences of the USA 2007 |
DBID | FBQ CGR CUY CVF ECM EIF NPM AAYXX CITATION 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 5PM |
DOI | 10.1073/pnas.0611182104 |
DatabaseName | AGRIS Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Immunology Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef Virology and AIDS Abstracts Oncogenes and Growth Factors Abstracts Technology Research Database Nucleic Acids Abstracts Ecology Abstracts Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Entomology Abstracts Genetics Abstracts Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Immunology Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE Virology and AIDS Abstracts CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: FBQ name: AGRIS url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
EISSN | 1091-6490 |
EndPage | 2666 |
ExternalDocumentID | 1222172191 10_1073_pnas_0611182104 17307875 104_8_2661 25426531 US201300750075 |
Genre | Journal Article Research Support, N.I.H., Extramural Feature |
GrantInformation_xml | – fundername: Medical Research Council grantid: MC_U105484373 – fundername: NIGMS NIH HHS grantid: R01 GM050789 – fundername: NIGMS NIH HHS grantid: R29 GM050789 – fundername: NIGMS NIH HHS grantid: GM 50789 |
GroupedDBID | --- -DZ -~X .55 .GJ 0R~ 123 29P 2AX 2FS 2WC 3O- 4.4 53G 5RE 5VS 692 6TJ 79B 85S AACGO AAFWJ AANCE AAYJJ ABBHK ABOCM ABPLY ABPPZ ABPTK ABTLG ABZEH ACGOD ACIWK ACKIV ACNCT ACPRK ADULT ADZLD AENEX AEUPB AEXZC AFDAS AFFNX AFOSN AFRAH ALMA_UNASSIGNED_HOLDINGS ASUFR AS~ BKOMP CS3 D0L DCCCD DIK DNJUQ DOOOF DU5 DWIUU E3Z EBS EJD F20 F5P FBQ FRP GX1 HGD HH5 HQ3 HTVGU HYE JAAYA JBMMH JENOY JHFFW JKQEH JLS JLXEF JPM JSG JSODD JST KQ8 L7B LU7 MVM N9A NEJ NHB N~3 O9- OK1 P-O PNE PQQKQ R.V RHF RHI RNA RNS RPM RXW SA0 SJN TAE TN5 UKR VOH VQA W8F WH7 WHG WOQ WOW X7M XFK XSW Y6R YBH YKV YSK ZA5 ZCA ZCG ~02 ~KM ABXSQ AQVQM - 02 0R 1AW 55 AAPBV ABFLS ADACO AJYGW AS DZ KM PQEST X XHC ADACV CGR CUY CVF ECM EIF H13 IPSME NPM AAYXX CITATION 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 5PM |
ID | FETCH-LOGICAL-c585t-2e46bd802fc8cd2221fec9b44da753ebef8e62b48a042f062ddcdd4cd41c6d9a3 |
IEDL.DBID | RPM |
ISSN | 0027-8424 |
IngestDate | Tue Sep 17 21:26:30 EDT 2024 Sat Oct 26 05:52:39 EDT 2024 Thu Oct 10 19:50:37 EDT 2024 Fri Aug 23 01:50:58 EDT 2024 Sat Nov 02 12:14:43 EDT 2024 Thu May 30 15:49:56 EDT 2019 Wed Nov 11 00:29:42 EST 2020 Fri Feb 02 07:05:39 EST 2024 Wed Dec 27 19:14:45 EST 2023 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c585t-2e46bd802fc8cd2221fec9b44da753ebef8e62b48a042f062ddcdd4cd41c6d9a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Present address: Structural Bioinformatics and Computational Biochemistry Unit, University of Oxford, Oxford OX1 3QU, United Kingdom. Contributed by Alan R. Fersht, December 18, 2006 Author contributions: K.A.S., A.R.F., and V.D. designed research; K.A.S. performed research; D.O.V.A. contributed new reagents/analytic tools; K.A.S., S.S., A.R.F., and V.D. analyzed data; and K.A.S., A.R.F., and V.D. wrote the paper. |
OpenAccessLink | https://europepmc.org/articles/pmc1815238?pdf=render |
PMID | 17307875 |
PQID | 201418139 |
PQPubID | 42026 |
PageCount | 6 |
ParticipantIDs | pnas_primary_104_8_2661 pnas_primary_104_8_2661_fulltext proquest_journals_201418139 crossref_primary_10_1073_pnas_0611182104 proquest_miscellaneous_70278417 pubmedcentral_primary_oai_pubmedcentral_nih_gov_1815238 pubmed_primary_17307875 jstor_primary_25426531 fao_agris_US201300750075 |
ProviderPackageCode | RNA PNE |
PublicationCentury | 2000 |
PublicationDate | 2007-02-20 |
PublicationDateYYYYMMDD | 2007-02-20 |
PublicationDate_xml | – month: 02 year: 2007 text: 2007-02-20 day: 20 |
PublicationDecade | 2000 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Washington |
PublicationTitle | Proceedings of the National Academy of Sciences - PNAS |
PublicationTitleAlternate | Proc Natl Acad Sci U S A |
PublicationYear | 2007 |
Publisher | National Academy of Sciences National Acad Sciences |
Publisher_xml | – name: National Academy of Sciences – name: National Acad Sciences |
References | e_1_3_3_17_2 e_1_3_3_16_2 e_1_3_3_19_2 e_1_3_3_38_2 e_1_3_3_18_2 e_1_3_3_39_2 e_1_3_3_13_2 e_1_3_3_36_2 e_1_3_3_12_2 e_1_3_3_37_2 e_1_3_3_15_2 e_1_3_3_34_2 e_1_3_3_14_2 e_1_3_3_35_2 e_1_3_3_32_2 e_1_3_3_33_2 e_1_3_3_11_2 e_1_3_3_30_2 e_1_3_3_10_2 e_1_3_3_31_2 e_1_3_3_40_2 e_1_3_3_6_2 e_1_3_3_5_2 e_1_3_3_8_2 e_1_3_3_7_2 e_1_3_3_28_2 e_1_3_3_9_2 e_1_3_3_27_2 e_1_3_3_29_2 e_1_3_3_24_2 e_1_3_3_23_2 e_1_3_3_26_2 e_1_3_3_45_2 e_1_3_3_25_2 e_1_3_3_2_2 e_1_3_3_20_2 e_1_3_3_43_2 e_1_3_3_1_2 e_1_3_3_44_2 e_1_3_3_4_2 e_1_3_3_22_2 e_1_3_3_41_2 e_1_3_3_3_2 e_1_3_3_21_2 e_1_3_3_42_2 |
References_xml | – ident: e_1_3_3_1_2 doi: 10.1038/344268a0 – ident: e_1_3_3_20_2 doi: 10.1110/ps.0306803 – ident: e_1_3_3_37_2 doi: 10.1016/j.ymeth.2004.03.008 – ident: e_1_3_3_22_2 doi: 10.1073/pnas.0401396101 – ident: e_1_3_3_29_2 doi: 10.1038/346440a0 – ident: e_1_3_3_14_2 doi: 10.1002/prot.1 – ident: e_1_3_3_13_2 doi: 10.1006/jmbi.1995.0502 – ident: e_1_3_3_21_2 doi: 10.1021/bi00020a027 – ident: e_1_3_3_5_2 doi: 10.1016/0022-2836(92)90906-Z – ident: e_1_3_3_4_2 doi: 10.1038/356453a0 – ident: e_1_3_3_8_2 doi: 10.1002/prot.340190202 – ident: e_1_3_3_34_2 doi: 10.1073/pnas.91.22.10430 – ident: e_1_3_3_3_2 doi: 10.1016/0022-2836(92)90907-2 – ident: e_1_3_3_7_2 doi: 10.1002/pro.5560030514 – ident: e_1_3_3_25_2 doi: 10.1006/jmbi.1995.0616 – ident: e_1_3_3_42_2 doi: 10.1073/pnas.94.25.13409 – ident: e_1_3_3_11_2 doi: 10.1021/j100876a008 – ident: e_1_3_3_23_2 doi: 10.1016/S0022-2836(02)01249-4 – ident: e_1_3_3_41_2 doi: 10.1073/pnas.250473497 – ident: e_1_3_3_17_2 doi: 10.1002/(SICI)1097-0134(19990815)36:3<332::AID-PROT7>3.0.CO;2-H – ident: e_1_3_3_24_2 doi: 10.1038/9384 – ident: e_1_3_3_28_2 doi: 10.1016/0022-2836(92)90561-W – ident: e_1_3_3_6_2 doi: 10.1126/science.8503008 – ident: e_1_3_3_36_2 doi: 10.1006/jmbi.1996.0173 – ident: e_1_3_3_10_2 doi: 10.1073/pnas.37.4.205 – ident: e_1_3_3_40_2 doi: 10.1002/pro.5560020603 – ident: e_1_3_3_33_2 doi: 10.1073/pnas.0402684101 – ident: e_1_3_3_32_2 doi: 10.1021/bi00507a030 – ident: e_1_3_3_9_2 doi: 10.1002/pro.5560060614 – ident: e_1_3_3_26_2 doi: 10.1016/j.jmb.2004.09.023 – ident: e_1_3_3_44_2 doi: 10.1016/S0022-2836(02)00672-1 – ident: e_1_3_3_31_2 doi: 10.1073/pnas.0406091101 – ident: e_1_3_3_38_2 doi: 10.1021/jp964020s – ident: e_1_3_3_39_2 doi: 10.1016/0010-4655(95)00049-L – ident: e_1_3_3_27_2 doi: 10.1016/0022-2836(92)90563-Y – ident: e_1_3_3_2_2 doi: 10.1126/science.2237415 – ident: e_1_3_3_19_2 doi: 10.1073/pnas.0408004102 – ident: e_1_3_3_30_2 doi: 10.1038/340122a0 – ident: e_1_3_3_12_2 doi: 10.1073/pnas.84.19.6663 – ident: e_1_3_3_15_2 doi: 10.1016/S0959-440X(97)80028-0 – ident: e_1_3_3_16_2 doi: 10.1073/pnas.96.9.4930 – ident: e_1_3_3_18_2 doi: 10.1016/S0022-2836(03)00765-4 – ident: e_1_3_3_35_2 doi: 10.1006/jmbi.1996.0172 – ident: e_1_3_3_45_2 doi: 10.1002/elps.1150181505 – ident: e_1_3_3_43_2 doi: 10.1021/ar0100834 |
SSID | ssj0009580 |
Score | 2.2280698 |
Snippet | The presence of a solvent-exposed alanine residue stabilizes a helix by 0.4-2 kcal·mol⁻¹ relative to glycine. Various factors have been suggested to account... The presence of a solvent-exposed alanine residue stabilizes a helix by 0.4–2 kcal·mol −1 relative to glycine. Various factors have been suggested to account... The presence of a solvent-exposed alanine residue stabilizes a helix by 0.4-2 kcal.mol(-1) relative to glycine. Various factors have been suggested to account... The presence of a solvent-exposed alanine residue stabilizes a helix by 0.4–2 kcal·mol −1 relative to glycine. Various factors have been suggested to account... The presence of a solvent-exposed alanine residue stabilizes a helix by 0.4-2 kcal.moL... relative to glycine. Various factors have been suggested to account... |
SourceID | pubmedcentral proquest crossref pubmed pnas jstor fao |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 2661 |
SubjectTerms | Alanine - chemistry Alanine - genetics Amino acids Biochemistry Biological Sciences Datasets Entropy Free energy Glycine - chemistry Glycine - genetics High temperature Kinetics Modeling Models, Biological Molecular structure Mutation - genetics Peptides Peptides - chemistry Protein Conformation Protein Denaturation Protein folding Proteins - chemistry Simulation Solvents Surface areas Trajectories |
Title | Conformational entropy of alanine versus glycine in protein denatured states |
URI | https://www.jstor.org/stable/25426531 http://www.pnas.org/content/104/8/2661.abstract https://www.ncbi.nlm.nih.gov/pubmed/17307875 https://www.proquest.com/docview/201418139 https://search.proquest.com/docview/70278417 https://pubmed.ncbi.nlm.nih.gov/PMC1815238 |
Volume | 104 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEB41PXFBFCg1hbIHDuXgPNYbe3NEFVV5FCFBpN5W-7BLpNaOcHLov-ebjZ20CC4cLB82s452Xt94HiZ6O3GzSbBapd4Fnyqnx6mD50mhd2Uo7CybZtyNfPk1v5irT1fTqz2a9r0wsWjfu8Wwvrkd1oufsbZyeetHfZ3Y6NvlGbwS4ic9GtAAAtqH6NtJu3rTdyJhfpVU_TyfIhsta9sO4cAYVCMM4YGhoC9ikeE9rzSobNOXJ_LMU1D9DX_-WUZ5zy-dP6HHHaAU7zd__ID2yvopHXQq24rTbq70u2f0hbv7-l5FkPB-zfJONJXg-kbATcE1GutWXN_ccb5dLGoR5zjgDvMUR4AGEVuQ2uc0P__w4-wi7T6mkHpEBKtUlip3QY9l5bUPQAWTqvQzp1SwiFjAykqXuXRKW6hxNc5lCD4E5YOa-DzMbHZI-3VTl0ck-OuJwE1h6uHgVT62mXfegeEg8gAQCZ32h2mWm5kZJua6i8zwYZodCxI6wmEbew2LZubfJedRGcTgSugwcmC7BUJZmcNkJPQi7rLbWhltGGgkJP6xYqqulCah456RptPW1kiudtXAwgm92a5CzTh3YuuyWbem2GRoC354ZPruIZ0IJVQ8EIftD3iA98MVyHUc5N3J8cv_pjymR5t3zRLW7hXtr36ty9cASSt3gvDg4-eTqBq_ARuVD5E |
link.rule.ids | 230,315,730,783,787,888,27936,27937,53804,53806 |
linkProvider | National Library of Medicine |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9tAEB7xOLSXCmgp5rmHHujBibPe2JsjQqBAE1SpROK22ocNkcCO6uTAv2dmbSdQ0QsHy4fNrqOdmZ1vPDOfAX70zKDntBShNc6GwsgoNOh5QrS7zKV6EPdj6kYe3yTDibi-69-tQb_thfFF-9ZMO8XjU6eYPvjaytmT7bZ1Yt3f43P0Shg_ye46bKK9RqIN0pdcu7LuPOF4AAsuWkafNO7OCl110IURrMZAhChDUcVTX2b4yi-t57psCxSJ9RRnvYdA_y2kfOWZLrfgSwMp2Vn917dhLSt2YLsx2oqdNszSP7_CiPr72m5FnELrlbNnVuaMKhwRcDKq0lhU7P7xmTLubFowz-SAdzygPAmoY74JqfoGk8uL2_Nh2HxOIbQYE8xDnonEOBnx3ErrEBf08swOjBBOY8yCwsxllnAjpEZDzqOEO2edE9aJnk3cQMe7sFGURbYHjL6fiMjJ9S26eJFEOrbGGhQ5TrIIIQI4bTdTzWrWDOWz3WmsaDPVSgQB7OFmK32PZ5qa_OGUSSUYg1cAu14CyyUwmOUJHhoBfPerrJYWSiqCGgGw_4yovCmmCeCgFaRq7LVSnOpdJaLhAE6Wo2holD3RRVYuKpXWOdqUHu6FvnpIo0IBpG_UYfkDovB-O4Ka7am8G03e__DME_g0vB2P1Ojq5tcBfK7fPHM8-w5hY_53kR0hZJqbY28gLyVsEe4 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9tAEB7xkKpeqkJLcWnLHnqgB8fOemNvjhVtBBQQUonEbbUPGyKBbdXJgX_fmbWdBNReOEQ5bHYd7czsfOP5Zhbg69CMh05LEVrjbCiMjEODnidEu8tdpsfJKKFq5IvL9GQqzm5GN2tXfXnSvjWzQXn_MChnd55bWT_YqOeJRVcXx-iVMH6SUe2KaBO20WbjtA_Ul_12ZVt9wvEQFlz0XX2yJKpL3QzQjRG0xmCE2oaimmeearjmmzYLXfUkRep8irP-hUKfkynXvNPkLbzpYCX73v79HdjIy13Y6Qy3YUddd-lv7-Ccavz6ikWcQutV9SOrCkYsRwSdjJgai4bd3j9S1p3NSua7OeA3HlK-EahjvhCpeQ_Tyc_r45Owu1IhtBgXzEOei9Q4GfPCSusQGwyL3I6NEE5j3IICLWSeciOkRmMu4pQ7Z50T1omhTd1YJ3uwVVZlvg-M7lBE9ORGFt28SGOdWGMNih0nWYQRARz1m6nqtnOG8hnvLFG0mWolggD2cbOVvsVzTU1_c8qmEpTBTwB7XgLLJTCg5SkeHAF88KuslhZKKoIbAbD_jKiiI9QEcNALUnU22yhOnFeJiDiAw-UoGhtlUHSZV4tGZW2eNqOHe6GvHtKpUADZE3VY_oDaeD8dQe327bw7bf744pmH8Orqx0Sdn17-OoDX7ctnjsffJ9ia_1nknxE1zc0Xbx9_AR05EwE |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Conformational+entropy+of+alanine+versus+glycine+in+protein+denatured+states&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Scott%2C+Kathryn+A&rft.au=Alonso%2C+Darwin+O.V&rft.au=Sato%2C+Satoshi&rft.au=Fersht%2C+Alan+R&rft.date=2007-02-20&rft.pub=National+Academy+of+Sciences&rft.issn=0027-8424&rft.eissn=1091-6490&rft.volume=104&rft.issue=8&rft.spage=2661&rft.epage=2666&rft_id=info:doi/10.1073%2Fpnas.0611182104&rft.externalDocID=US201300750075 |
thumbnail_m | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F104%2F8.cover.gif |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F104%2F8.cover.gif |