Virtual head rotation reveals a process of route reconstruction from human vestibular signals
The vestibular organs can feed perceptual processes that build a picture of our route as we move about in the world. However, raw vestibular signals do not define the path taken because, during travel, the head can undergo accelerations unrelated to the route and also be orientated in any direction...
Saved in:
Published in | The Journal of physiology Vol. 567; no. 2; pp. 591 - 597 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
9600 Garsington Road , Oxford , OX4 2DQ , UK
The Physiological Society
01.09.2005
Blackwell Science Ltd Blackwell Science Inc |
Subjects | |
Online Access | Get full text |
ISSN | 0022-3751 1469-7793 |
DOI | 10.1113/jphysiol.2005.092544 |
Cover
Abstract | The vestibular organs can feed perceptual processes that build a picture of our route as we move about in the world. However,
raw vestibular signals do not define the path taken because, during travel, the head can undergo accelerations unrelated to
the route and also be orientated in any direction to vary the signal. This study investigated the computational process by
which the brain transforms raw vestibular signals for the purpose of route reconstruction. We electrically stimulated the
vestibular nerves of human subjects to evoke a virtual head rotation fixed in skull co-ordinates and measure its perceptual
effect. The virtual head rotation caused subjects to perceive an illusory whole-body rotation that was a cyclic function of
head-pitch angle. They perceived whole-body yaw rotation in one direction with the head pitched forwards, the opposite direction
with the head pitched backwards, and no rotation with the head in an intermediate position. A model based on vector operations
and the anatomy and firing properties of semicircular canals precisely predicted these perceptions. In effect, a neural process
computes the vector dot product between the craniocentric vestibular vector of head rotation and the gravitational unit vector.
This computation yields the signal of body rotation in the horizontal plane that feeds our perception of the route travelled. |
---|---|
AbstractList | The vestibular organs can feed perceptual processes that build a picture of our route as we move about in the world. However, raw vestibular signals do not define the path taken because, during travel, the head can undergo accelerations unrelated to the route and also be orientated in any direction to vary the signal. This study investigated the computational process by which the brain transforms raw vestibular signals for the purpose of route reconstruction. We electrically stimulated the vestibular nerves of human subjects to evoke a virtual head rotation fixed in skull co-ordinates and measure its perceptual effect. The virtual head rotation caused subjects to perceive an illusory whole-body rotation that was a cyclic function of head-pitch angle. They perceived whole-body yaw rotation in one direction with the head pitched forwards, the opposite direction with the head pitched backwards, and no rotation with the head in an intermediate position. A model based on vector operations and the anatomy and firing properties of semicircular canals precisely predicted these perceptions. In effect, a neural process computes the vector dot product between the craniocentric vestibular vector of head rotation and the gravitational unit vector. This computation yields the signal of body rotation in the horizontal plane that feeds our perception of the route travelled. The vestibular organs can feed perceptual processes that build a picture of our route as we move about in the world. However, raw vestibular signals do not define the path taken because, during travel, the head can undergo accelerations unrelated to the route and also be orientated in any direction to vary the signal. This study investigated the computational process by which the brain transforms raw vestibular signals for the purpose of route reconstruction. We electrically stimulated the vestibular nerves of human subjects to evoke a virtual head rotation fixed in skull co-ordinates and measure its perceptual effect. The virtual head rotation caused subjects to perceive an illusory whole-body rotation that was a cyclic function of head-pitch angle. They perceived whole-body yaw rotation in one direction with the head pitched forwards, the opposite direction with the head pitched backwards, and no rotation with the head in an intermediate position. A model based on vector operations and the anatomy and firing properties of semicircular canals precisely predicted these perceptions. In effect, a neural process computes the vector dot product between the craniocentric vestibular vector of head rotation and the gravitational unit vector. This computation yields the signal of body rotation in the horizontal plane that feeds our perception of the route travelled.The vestibular organs can feed perceptual processes that build a picture of our route as we move about in the world. However, raw vestibular signals do not define the path taken because, during travel, the head can undergo accelerations unrelated to the route and also be orientated in any direction to vary the signal. This study investigated the computational process by which the brain transforms raw vestibular signals for the purpose of route reconstruction. We electrically stimulated the vestibular nerves of human subjects to evoke a virtual head rotation fixed in skull co-ordinates and measure its perceptual effect. The virtual head rotation caused subjects to perceive an illusory whole-body rotation that was a cyclic function of head-pitch angle. They perceived whole-body yaw rotation in one direction with the head pitched forwards, the opposite direction with the head pitched backwards, and no rotation with the head in an intermediate position. A model based on vector operations and the anatomy and firing properties of semicircular canals precisely predicted these perceptions. In effect, a neural process computes the vector dot product between the craniocentric vestibular vector of head rotation and the gravitational unit vector. This computation yields the signal of body rotation in the horizontal plane that feeds our perception of the route travelled. The vestibular organs can feed perceptual processes that build a picture of our route as we move about in the world. However, raw vestibular signals do not define the path taken because, during travel, the head can undergo accelerations unrelated to the route and also be orientated in any direction to vary the signal. This study investigated the computational process by which the brain transforms raw vestibular signals for the purpose of route reconstruction. We electrically stimulated the vestibular nerves of human subjects to evoke a virtual head rotation fixed in skull co-ordinates and measure its perceptual effect. The virtual head rotation caused subjects to perceive an illusory whole-body rotation that was a cyclic function of head-pitch angle. They perceived whole-body yaw rotation in one direction with the head pitched forwards, the opposite direction with the head pitched backwards, and no rotation with the head in an intermediate position. A model based on vector operations and the anatomy and firing properties of semicircular canals precisely predicted these perceptions. In effect, a neural process computes the vector dot product between the craniocentric vestibular vector of head rotation and the gravitational unit vector. This computation yields the signal of body rotation in the horizontal plane that feeds our perception of the route travelled. |
Author | Richard C. Fitzpatrick Brian L. Day |
Author_xml | – sequence: 1 givenname: Brian L. surname: Day fullname: Day, Brian L. – sequence: 2 givenname: Richard C. surname: Fitzpatrick fullname: Fitzpatrick, Richard C. |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/16002439$$D View this record in MEDLINE/PubMed |
BookMark | eNqNUstu1DAUtVARnQ78AUJewSqDHdtxzAKpqniqEiwKO2Q5zs3ElRMPdjLV_D0e0vLalNVdnIfvucdn6GQMIyD0lJINpZS9vN71h-SC35SEiA1RpeD8AVpRXqlCSsVO0IqQsiyYFPQUnaV0TQhlRKlH6JRWGeJMrdC3ry5Os_G4B9PiGCYzuTDiCHswPmGDdzFYSAmHLqPzBBmyYUxTnO1PZhfDgPt5MCPeQ5pcM3sTcXLbMesfo4ddHvDkdq7Rl7dvri7eF5ef3n24OL8srKiFKphq6ro2LYUaeGshL2dbkMpUUjYVa2gjLRfW2kYqwjoKkhvRKMZJZWuiWrZGrxff3dwMkB3GKRqvd9ENJh50ME7_jYyu19uw15RLXuazrNHzW4MYvs85hx5csuC9GSHMSVe1EFwyfi-RSk6kUEfHZ3-u9GuXu9NnAl8INoaUInS_KUQfG9Z3Detjw3ppOMte_SOzbiktB3P-PrFaxDfOw-G_HtRXHz_T_Guy9sWi7d22v3ER9MJOwTqYDlpUUpf6GP0Hc-DSJw |
CitedBy_id | crossref_primary_10_1113_jphysiol_2010_197665 crossref_primary_10_1016_j_neulet_2024_137735 crossref_primary_10_1113_jphysiol_2012_230334 crossref_primary_10_1007_s00221_011_2549_7 crossref_primary_10_1016_j_clinph_2013_03_015 crossref_primary_10_1113_JP285834 crossref_primary_10_1152_jn_00035_2019 crossref_primary_10_1152_jn_00798_2007 crossref_primary_10_1016_j_exger_2014_09_020 crossref_primary_10_1152_japplphysiol_01398_2006 crossref_primary_10_1016_j_concog_2021_103108 crossref_primary_10_1152_jn_00688_2019 crossref_primary_10_1159_000509971 crossref_primary_10_1016_j_neuron_2017_12_020 crossref_primary_10_1152_japplphysiol_00621_2011 crossref_primary_10_3389_fphys_2019_00476 crossref_primary_10_3389_fneur_2018_00083 crossref_primary_10_3389_fnhum_2023_1329097 crossref_primary_10_1007_s00221_009_2054_4 crossref_primary_10_1007_s00221_011_2554_x crossref_primary_10_1152_jn_00343_2014 crossref_primary_10_1007_s00221_018_5346_8 crossref_primary_10_1113_jphysiol_2010_197053 crossref_primary_10_1111_j_1460_9568_2011_07859_x crossref_primary_10_1097_WNR_0000000000000369 crossref_primary_10_1113_JP272614 crossref_primary_10_1007_s00221_012_3250_1 crossref_primary_10_1152_japplphysiol_90594_2008 crossref_primary_10_1152_jn_00483_2018 crossref_primary_10_1016_j_neuron_2007_06_003 crossref_primary_10_1016_j_neulet_2018_03_056 crossref_primary_10_3758_s13421_021_01181_2 crossref_primary_10_1113_jphysiol_2006_115204 crossref_primary_10_1113_JP278642 crossref_primary_10_3389_fneur_2019_01270 crossref_primary_10_3233_VES_220031 crossref_primary_10_3233_VES_220075 crossref_primary_10_1016_j_gaitpost_2024_12_026 crossref_primary_10_1016_j_gaitpost_2012_07_014 crossref_primary_10_1093_pnasnexus_pgac174 crossref_primary_10_1113_jphysiol_2010_195222 crossref_primary_10_1523_ENEURO_0174_22_2022 crossref_primary_10_3389_fnint_2014_00094 crossref_primary_10_1007_s00221_011_2565_7 crossref_primary_10_1152_jn_00114_2015 crossref_primary_10_1016_j_heares_2018_03_025 crossref_primary_10_1113_jphysiol_2009_181768 crossref_primary_10_1152_jn_00276_2019 crossref_primary_10_1007_s00221_024_06992_8 crossref_primary_10_1152_jn_00419_2013 crossref_primary_10_1038_s41598_025_92064_y crossref_primary_10_1371_journal_pone_0124532 crossref_primary_10_1523_JNEUROSCI_0733_14_2014 crossref_primary_10_1007_s00221_024_06905_9 crossref_primary_10_1038_srep10168 crossref_primary_10_1007_s00421_022_05043_w crossref_primary_10_1016_j_cub_2006_05_063 crossref_primary_10_1038_s41467_019_09738_1 crossref_primary_10_1016_j_jneumeth_2022_109709 crossref_primary_10_1007_s00221_019_05634_8 crossref_primary_10_1152_jn_01250_2005 crossref_primary_10_1007_s00221_020_05760_8 crossref_primary_10_1152_jn_00881_2009 crossref_primary_10_1152_jn_00512_2015 crossref_primary_10_1152_jn_00843_2012 crossref_primary_10_1016_j_exger_2016_05_014 crossref_primary_10_1016_j_neulet_2013_06_046 crossref_primary_10_1007_s00221_018_5167_9 crossref_primary_10_1016_j_clinph_2012_12_041 crossref_primary_10_1371_journal_pcbi_1012601 crossref_primary_10_3389_fneur_2018_00535 crossref_primary_10_1113_jphysiol_2011_209163 crossref_primary_10_1523_JNEUROSCI_1902_16_2016 crossref_primary_10_1016_j_neuroimage_2015_10_004 crossref_primary_10_1113_JP273125 crossref_primary_10_1113_JP270334 crossref_primary_10_1242_jeb_020578 crossref_primary_10_3233_VES_210112 crossref_primary_10_1007_s00221_012_3302_6 crossref_primary_10_1007_s00221_016_4858_3 crossref_primary_10_1113_JP272998 |
Cites_doi | 10.1152/jn.00849.2003 10.1093/brain/awf212 10.1016/S0306-4522(99)00275-4 10.1007/BF00229416 10.1097/00001756-200212200-00001 10.1152/japplphysiol.00008.2004 10.1152/jn.1998.80.1.425 10.1002/hipo.1112 10.3109/00016487509121318 10.1523/JNEUROSCI.23-16-06490.2003 10.1523/JNEUROSCI.17-11-04349.1997 10.1111/j.1469-7793.2003.00293.x 10.1111/j.1469-7793.1997.223bl.x 10.1523/JNEUROSCI.15-01-00070.1995 10.1152/jn.00558.2001 10.1152/jn.00518.2002 10.1016/0006-8993(82)90990-8 10.1523/JNEUROSCI.10-02-00420.1990 10.1037/0735-7044.110.4.643 10.1007/s00221-002-1146-1 10.1113/jphysiol.1955.sp005241 10.1002/(SICI)1098-1063(1999)9:3<206::AID-HIPO2>3.0.CO;2-H 10.1016/S0306-4522(00)00258-X 10.1113/jphysiol.2004.079525 |
ContentType | Journal Article |
Copyright | 2005 The Journal of Physiology © 2005 The Physiological Society The Physiological society 2005 2005 |
Copyright_xml | – notice: 2005 The Journal of Physiology © 2005 The Physiological Society – notice: The Physiological society 2005 2005 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7TK 7X8 5PM |
DOI | 10.1113/jphysiol.2005.092544 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Neurosciences Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Neurosciences Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic Neurosciences Abstracts CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology |
EISSN | 1469-7793 |
EndPage | 597 |
ExternalDocumentID | PMC1474201 16002439 10_1113_jphysiol_2005_092544 TJP1099 567_2_591 |
Genre | rapidPublication Controlled Clinical Trial Comparative Study Clinical Trial Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | - 05W 0R 0YM 10A 123 1OB 1OC 24P 29L 2WC 31 33P 3N 3O- 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52R 52S 52T 52U 52V 52W 52X 53G 55 5GY 5HH 5LA 5RE 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A01 A03 AAESR AAEVG AAONW AAVGM AAZKR ABCUV ABFLS ABHUG ABITZ ABIVO ABOCM ABPPZ ABPTK ABPVW ABUFD ABWRO ACAHQ ACFBH ACGFS ACIWK ACMXC ACNCT ACPOU ACPRK ACXME ACXQS ADACO ADAWD ADBBV ADDAD ADEOM ADIZJ ADXAS ADZMN AEIMD AEUQT AFBPY AFFNX AFPWT AFZJQ AGJLS ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR ATUGU AZBYB AZVAB BAFTC BAWUL BFHJK BHBCM BMXJE BROTX BRXPI BY8 C1A C45 CAG COF CS3 D-6 D-7 D-E D-F DCZOG DIK DPXWK DR2 DRFUL DRMAN DRSTM DZ E3Z EBS EJD EX3 F00 F01 F04 F5P FIJ FUBAC G-S G.N GA GJ GODZA GX1 H.X H13 HZ HZI IA IX1 J0M K48 LATKE LC2 LC3 LEEKS LI0 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MVM MXFUL MXMAN MXSTM N04 N05 N9A NEJ NF O0- O66 O9- OHT OK1 OVD P2P P2W P2X P2Z P4A P4B P4D Q.N Q11 QB0 R.K RIG ROL RPM RX1 SUPJJ TLM TN5 UB1 UNR UPT UQL V8K VH1 W8V W99 WBKPD WH7 WIH WIJ WIK WIN WNSPC WOHZO WOQ WOW WQJ WRC WT WXI WYISQ X X7M XG1 Y3 YZZ ZA5 ZZTAW --- -DZ -~X .3N .55 .GA .GJ .Y3 0R~ 18M 31~ 36B 3EH AAFWJ AAHQN AAIPD AAMNL AANLZ AASGY AAXRX AAYCA AAYJJ ABCQN ABEML ABJNI ABQWH ABXGK ACCZN ACGFO ACGOF ACSCC ACXBN ADBTR ADKYN ADMGS ADOZA ADXHL AEGXH AEIGN AEUYR AEYWJ AFEBI AFFPM AFGKR AFWVQ AGHNM AGYGG AHBTC AI. AIACR AIAGR AITYG AIURR ALVPJ AMYDB AOIJS CHEAL EMOBN FA8 HF~ HGLYW HZ~ H~9 IHE KBYEO LH4 NF~ OIG TEORI TR2 UKR W8F WHG WXSBR XOL YBU YHG YKV YQT YSK YXB YYP ZGI ZXP ~IA ~WT AAHHS AAYXX ACCFJ AEEZP AEQDE AIWBW AJBDE CITATION CGR CUY CVF ECM EIF IPNFZ NPM 7TK 7X8 5PM |
ID | FETCH-LOGICAL-c5859-39b888ad1e8e4dce002cde79a677b63b1b7c45cccb7903f1e74a5b93406c809d3 |
IEDL.DBID | DR2 |
ISSN | 0022-3751 |
IngestDate | Thu Aug 21 18:16:44 EDT 2025 Fri Jul 11 02:38:29 EDT 2025 Thu Jul 10 17:17:13 EDT 2025 Wed Feb 19 01:52:11 EST 2025 Tue Jul 01 03:48:40 EDT 2025 Thu Apr 24 22:55:12 EDT 2025 Wed Aug 20 07:26:02 EDT 2025 Fri Jan 15 02:11:33 EST 2021 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5859-39b888ad1e8e4dce002cde79a677b63b1b7c45cccb7903f1e74a5b93406c809d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 ObjectType-Article-2 ObjectType-Feature-1 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1113/jphysiol.2005.092544 |
PMID | 16002439 |
PQID | 17407591 |
PQPubID | 23462 |
PageCount | 7 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_1474201 proquest_miscellaneous_68554734 proquest_miscellaneous_17407591 pubmed_primary_16002439 crossref_primary_10_1113_jphysiol_2005_092544 crossref_citationtrail_10_1113_jphysiol_2005_092544 wiley_primary_10_1113_jphysiol_2005_092544_TJP1099 highwire_physiosociety_567_2_591 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | September 2005 |
PublicationDateYYYYMMDD | 2005-09-01 |
PublicationDate_xml | – month: 09 year: 2005 text: September 2005 |
PublicationDecade | 2000 |
PublicationPlace | 9600 Garsington Road , Oxford , OX4 2DQ , UK |
PublicationPlace_xml | – name: 9600 Garsington Road , Oxford , OX4 2DQ , UK – name: England |
PublicationTitle | The Journal of physiology |
PublicationTitleAlternate | J Physiol |
PublicationYear | 2005 |
Publisher | The Physiological Society Blackwell Science Ltd Blackwell Science Inc |
Publisher_xml | – name: The Physiological Society – name: Blackwell Science Ltd – name: Blackwell Science Inc |
References | 2004; 96 1990; 10 1997; 502 2003; 547 2005; 563 1995; 15 1991; 85 2002; 12 2002; 125 2002; 13 2002; 87 2002; 88 2002; 145 1955; 127 1982; 252 1997; 17 1996; 110 1998; 80 2000; 100 1999; 93 2004; 91 1975; 80 1999; 9 2003; 23 e_1_2_5_15_1 e_1_2_5_14_1 e_1_2_5_17_1 e_1_2_5_25_1 e_1_2_5_9_1 e_1_2_5_16_1 e_1_2_5_8_1 e_1_2_5_11_1 e_1_2_5_23_1 e_1_2_5_7_1 e_1_2_5_10_1 e_1_2_5_24_1 e_1_2_5_6_1 e_1_2_5_13_1 e_1_2_5_21_1 e_1_2_5_5_1 e_1_2_5_12_1 e_1_2_5_22_1 e_1_2_5_4_1 e_1_2_5_3_1 e_1_2_5_2_1 e_1_2_5_19_1 e_1_2_5_18_1 e_1_2_5_20_1 2303851 - J Neurosci. 1990 Feb;10(2):420-35 10401637 - Hippocampus. 1999;9(3):206-19 9234209 - J Physiol. 1997 Jul 1;502 ( Pt 1):223-33 10473274 - Neuroscience. 1999;93(3):1095-107 12562970 - J Physiol. 2003 Feb 15;547(Pt 1):293-9 12099481 - Hippocampus. 2002;12(3):291-303 9658061 - J Neurophysiol. 1998 Jul;80(1):425-46 14354631 - J Physiol. 1955 Jan 28;127(1):104-17 12466465 - J Neurophysiol. 2002 Dec;88(6):3518-33 1893987 - Exp Brain Res. 1991;85(2):389-404 9151751 - J Neurosci. 1997 Jun 1;17(11):4349-58 12183353 - Brain. 2002 Sep;125(Pt 9):2081-8 8864258 - Behav Neurosci. 1996 Aug;110(4):643-60 1101636 - Acta Otolaryngol. 1975 Sep-Oct;80(3-4):185-96 15069099 - J Neurophysiol. 2004 May;91(5):2090-100 15618274 - J Physiol. 2005 Feb 15;563(Pt 1):229-34 12878690 - J Neurosci. 2003 Jul 23;23(16):6490-8 12172660 - Exp Brain Res. 2002 Aug;145(4):489-97 7823153 - J Neurosci. 1995 Jan;15(1 Pt 1):70-86 10996454 - Neuroscience. 2000;100(1):11-9 12499833 - Neuroreport. 2002 Dec 20;13(18):2379-83 6293651 - Brain Res. 1982 Dec 2;252(1):156-60 15133017 - J Appl Physiol (1985). 2004 Jun;96(6):2301-16 11929924 - J Neurophysiol. 2002 Apr;87(4):2064-73 |
References_xml | – volume: 110 start-page: 643 year: 1996 end-page: 660 article-title: Visual and vestibular influences on head‐direction cells in the anterior thalamus of the rat publication-title: Behav Neurosci – volume: 502 start-page: 223 year: 1997 end-page: 233 article-title: The contribution of otoliths and semicircular canals to the perception of two‐dimensional passive whole‐body motion in humans publication-title: J Physiol – volume: 96 start-page: 2301 year: 2004 end-page: 2316 article-title: Probing the human vestibular system with galvanic stimulation publication-title: J Appl Physiol – volume: 87 start-page: 2064 year: 2002 end-page: 2073 article-title: Comparison of human ocular torsion patterns during natural and galvanic vestibular stimulation publication-title: J Neurophysiol – volume: 13 start-page: 2379 year: 2002 end-page: 2383 article-title: Galvanic vestibular stimulation evokes sensations of body rotation publication-title: Neuroreport – volume: 100 start-page: 11 year: 2000 end-page: 19 article-title: Convergence of head direction and place information in the CA1 region of hippocampus publication-title: Neuroscience – volume: 145 start-page: 489 year: 2002 end-page: 497 article-title: Differential effects of labyrinthine dysfunction on distance and direction during blindfolded walking of a triangular path publication-title: Exp Brain Res – volume: 80 start-page: 425 year: 1998 end-page: 446 article-title: Interactions between idiothetic cues and external landmarks in the control of place cells and head direction cells publication-title: J Neurophysiol – volume: 252 start-page: 156 year: 1982 end-page: 160 article-title: Responses of vestibular‐nerve afferents in the squirrel monkey to externally applied galvanic currents publication-title: Brain Res – volume: 17 start-page: 4349 year: 1997 end-page: 4358 article-title: Firing properties of head direction cells in the rat anterior thalamic nucleus: dependence on vestibular input publication-title: J Neurosci – volume: 91 start-page: 2090 year: 2004 end-page: 2100 article-title: Trunk position influences vestibular responses of fastigial nucleus neurons in the alert monkey publication-title: J Neurophysiol – volume: 547 start-page: 293 year: 2003 end-page: 299 article-title: Position and velocity responses to galvanic vestibular stimulation during standing publication-title: J Physiol – volume: 88 start-page: 3518 year: 2002 end-page: 3533 article-title: Vestibular convergence patterns in vestibular nuclei neurons of alert primates publication-title: J Neurophysiol – volume: 10 start-page: 420 year: 1990 end-page: 435 article-title: Head‐direction cells recorded from the postsubiculum in freely moving rats. I. Description and quantitative analysis publication-title: J Neurosci – volume: 23 start-page: 6490 year: 2003 end-page: 6498 article-title: Long‐term effects of permanent vestibular lesions on hippocampal spatial firing publication-title: J Neurosci – volume: 85 start-page: 389 year: 1991 end-page: 404 article-title: Human perception of horizontal trunk and head rotation in space during vestibular and neck stimulation publication-title: Exp Brain Res – volume: 93 start-page: 1095 year: 1999 end-page: 1107 article-title: Neck input modifies the reference frame for coding labyrinthine signals in the cerebellar vermis: a cellular analysis publication-title: Neuroscience – volume: 80 start-page: 185 year: 1975 end-page: 196 article-title: Planar relationships of the semicircular canals in man publication-title: Acta Otolaryngol – volume: 127 start-page: 104 year: 1955 end-page: 117 article-title: The effect of galvanic polarization on the impulse discharge from sense endings in the isolated labyrinth of the thornback ray ( a) publication-title: J Physiol – volume: 563 start-page: 229 year: 2005 end-page: 234 article-title: Otolith and canal reflexes in human standing publication-title: J Physiol – volume: 15 start-page: 70 year: 1995 end-page: 86 article-title: Head direction cells recorded in the anterior thalamic nuclei of freely moving rats publication-title: J Neurosci – volume: 9 start-page: 206 year: 1999 end-page: 219 article-title: Head direction cells in the primate pre‐subiculum publication-title: Hippocampus – volume: 12 start-page: 291 year: 2002 end-page: 303 article-title: Hippocampal spatial representations require vestibular input publication-title: Hippocampus – volume: 125 start-page: 2081 year: 2002 end-page: 2088 article-title: Vestibular‐evoked postural responses in the absence of somatosensory information publication-title: Brain – ident: e_1_2_5_12_1 doi: 10.1152/jn.00849.2003 – ident: e_1_2_5_5_1 doi: 10.1093/brain/awf212 – ident: e_1_2_5_16_1 doi: 10.1016/S0306-4522(99)00275-4 – ident: e_1_2_5_17_1 doi: 10.1007/BF00229416 – ident: e_1_2_5_8_1 doi: 10.1097/00001756-200212200-00001 – ident: e_1_2_5_7_1 doi: 10.1152/japplphysiol.00008.2004 – ident: e_1_2_5_13_1 doi: 10.1152/jn.1998.80.1.425 – ident: e_1_2_5_21_1 doi: 10.1002/hipo.1112 – ident: e_1_2_5_3_1 doi: 10.3109/00016487509121318 – ident: e_1_2_5_19_1 doi: 10.1523/JNEUROSCI.23-16-06490.2003 – ident: e_1_2_5_22_1 doi: 10.1523/JNEUROSCI.17-11-04349.1997 – ident: e_1_2_5_25_1 doi: 10.1111/j.1469-7793.2003.00293.x – ident: e_1_2_5_11_1 doi: 10.1111/j.1469-7793.1997.223bl.x – ident: e_1_2_5_23_1 doi: 10.1523/JNEUROSCI.15-01-00070.1995 – ident: e_1_2_5_20_1 doi: 10.1152/jn.00558.2001 – ident: e_1_2_5_6_1 doi: 10.1152/jn.00518.2002 – ident: e_1_2_5_10_1 doi: 10.1016/0006-8993(82)90990-8 – ident: e_1_2_5_24_1 doi: 10.1523/JNEUROSCI.10-02-00420.1990 – ident: e_1_2_5_2_1 doi: 10.1037/0735-7044.110.4.643 – ident: e_1_2_5_9_1 doi: 10.1007/s00221-002-1146-1 – ident: e_1_2_5_15_1 doi: 10.1113/jphysiol.1955.sp005241 – ident: e_1_2_5_18_1 doi: 10.1002/(SICI)1098-1063(1999)9:3<206::AID-HIPO2>3.0.CO;2-H – ident: e_1_2_5_14_1 doi: 10.1016/S0306-4522(00)00258-X – ident: e_1_2_5_4_1 doi: 10.1113/jphysiol.2004.079525 – reference: 9658061 - J Neurophysiol. 1998 Jul;80(1):425-46 – reference: 11929924 - J Neurophysiol. 2002 Apr;87(4):2064-73 – reference: 7823153 - J Neurosci. 1995 Jan;15(1 Pt 1):70-86 – reference: 15069099 - J Neurophysiol. 2004 May;91(5):2090-100 – reference: 1101636 - Acta Otolaryngol. 1975 Sep-Oct;80(3-4):185-96 – reference: 10473274 - Neuroscience. 1999;93(3):1095-107 – reference: 12466465 - J Neurophysiol. 2002 Dec;88(6):3518-33 – reference: 9151751 - J Neurosci. 1997 Jun 1;17(11):4349-58 – reference: 12499833 - Neuroreport. 2002 Dec 20;13(18):2379-83 – reference: 14354631 - J Physiol. 1955 Jan 28;127(1):104-17 – reference: 1893987 - Exp Brain Res. 1991;85(2):389-404 – reference: 15133017 - J Appl Physiol (1985). 2004 Jun;96(6):2301-16 – reference: 15618274 - J Physiol. 2005 Feb 15;563(Pt 1):229-34 – reference: 10996454 - Neuroscience. 2000;100(1):11-9 – reference: 9234209 - J Physiol. 1997 Jul 1;502 ( Pt 1):223-33 – reference: 12099481 - Hippocampus. 2002;12(3):291-303 – reference: 12562970 - J Physiol. 2003 Feb 15;547(Pt 1):293-9 – reference: 6293651 - Brain Res. 1982 Dec 2;252(1):156-60 – reference: 8864258 - Behav Neurosci. 1996 Aug;110(4):643-60 – reference: 12183353 - Brain. 2002 Sep;125(Pt 9):2081-8 – reference: 10401637 - Hippocampus. 1999;9(3):206-19 – reference: 2303851 - J Neurosci. 1990 Feb;10(2):420-35 – reference: 12878690 - J Neurosci. 2003 Jul 23;23(16):6490-8 – reference: 12172660 - Exp Brain Res. 2002 Aug;145(4):489-97 |
SSID | ssj0013099 |
Score | 2.1361828 |
Snippet | The vestibular organs can feed perceptual processes that build a picture of our route as we move about in the world. However,
raw vestibular signals do not... The vestibular organs can feed perceptual processes that build a picture of our route as we move about in the world. However, raw vestibular signals do not... |
SourceID | pubmedcentral proquest pubmed crossref wiley highwire |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 591 |
SubjectTerms | Adult Computer Simulation Electric Stimulation - methods Female Head Movements - physiology Humans Integrative Physiology Male Middle Aged Models, Neurological Proprioception - physiology Rotation Space Perception - physiology User-Computer Interface Vestibule, Labyrinth - innervation Vestibule, Labyrinth - physiology |
Title | Virtual head rotation reveals a process of route reconstruction from human vestibular signals |
URI | http://jp.physoc.org/content/567/2/591.abstract https://onlinelibrary.wiley.com/doi/abs/10.1113%2Fjphysiol.2005.092544 https://www.ncbi.nlm.nih.gov/pubmed/16002439 https://www.proquest.com/docview/17407591 https://www.proquest.com/docview/68554734 https://pubmed.ncbi.nlm.nih.gov/PMC1474201 |
Volume | 567 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5VPXHhVR6BUnxA3FLi-LU-VsCqqgSqUIt6QZbtOKVQkqrdPbS_nrGdpCxUgODsR2L7sz3jmfkG4AXzjtpa2JKxtiq5l7rEa9iVwmub6Et0Co9-917uHvK9I3G0BvMxFibzQ0wPbnFnpPM6bnDrhiwkNJINfEmqf386vIvoyLWFRzFlMlLov_lQXxsTKq0n0nAl6BBBh928uqmT1RtqZA2-SQL91ZHyRwE33VDzO3A8ji07pnzdXi7ctr_6ifbx_wd_F24PQizZyai7B2uhuw8bOx0q8N8uyUuyn5v1x5cb8OnjyXmMUSF46jfkvM-mfxKZoxD5xJKzHKpA-hZLl4tAko4-8dqSGABDUipBkihBXHScJdHvBNs_gMP524PXu-WQ06H0qJjoEnGAOrdtaJgFjvOGi-KboLSVSjnJHHXKc-G9d0pXrKVBcSucZih3-FmlG_YQ1ru-C4-BcCl8zQKfWd3yWZSk2srLpuIN9ia0LYCN62j8QHge826cmqz4MDPOYszFKUyexQLKqdVZJvz4Q30yQsTk4ovsbmuEVKY2QtMCno_QMbh5o0XGdqFfXhhUB1Fk-10NGd0IFcPPPMpQu_4pmdgkdQFqBYRThUgcvlrSnXxOBOKUK46CXwF1wthfjdMc7O1HK-qTf2n0FG4lytvkm7cJ6wih8AyFuYXbSlt1K72yfQfIIEkA |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB6VcoBLeZRHgFIfELeUJLbj9bHqg6W0VYW2qBdk2Y5DS0tStbuH8usZ20nKQgUIcfZj1_Y38Tf2zGeAV9SaXBdcp5TWWcpsKVPchk3KrdRBvkSG9Oi9_XJ8yHaO-NECvO1zYaI-xHDg5i0jfK-9gfsD6c7KvdrAl-D7t2fdwYj0Ylu34DZDzuG9sM0PxfV1QiblIBsueN7l0GE_b27qZX6P6nWDb-Kgv4ZS_khxwx61fQ-O-9HF0JTTtdnUrNlvPwk__ofh34eljseS9Qi8B7DgmoewvN6gD__1irwmB7FZ-_lqGT59PLnwaSoEP_wVuWjj7T_x4lEIfqLJecxWIG2NpbOpI8FNH6Rtic-BIeE1QRJUQYyPnSU-9ATbP4LD7a3JxjjtnnVILfomMkUooNutq9yNHMOJw1WxlRNSl0KYkprcCMu4tdYImdE6d4JpbiRF6mFHmazoY1hs2sY9BYJrbQvq2EjLmo08maozW1YZq7A3LnUCtF9IZTvNc__0xpmKvg9V_Sz65zi5irOYQDq0Oo-aH3-oT3qMqFh8GSNuFS-FKhSXeQKrPXYU2q-_lNGNa2eXCj1CZG2_q1H6SEJB8WeeRKxd_6kyCErKBMQcCocKXjt8vqQ5OQ4a4jkTDLlfAkUA2V-NU012DvxF6rN_abQKd8aTvV21-27__XO4GxRwQ6jeC1hEOLkV5HZT8zLY7XdnNUwP |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6VIiEu5VEo4VUfELeUJH6tjxWwKgWqFWpRL8iyHacU2mTV7h7Kr2dsJ1sWKkBw9iOx8038jT3zGeAZdbY0FTc5pU2RMydUjsuwzblTJsqXqJge_X5P7Byw3UN-uALjIRcm6UMsNtyCZcT_dTDwad30Rh7EBr5E17876fdFVNDaugbXmUBSEcjRh-ryNKFQaqEaLnnZp9BhPy-u6mV5iRpkg6-ioL9GUv7IcOMSNb4FR8PgUmTK1635zG65bz_pPv7_6G_DWs9iyXaC3R1Y8e1dWN9u0YM_vSDPySQ1644u1uHTx-OzkKRC8Ldfk7Munf2TIB2F0CeGTFOuAukaLJ3PPIlO-kLYloQMGBLvEiRRE8SGyFkSAk-w_T04GL_ef7mT95c65A49E5UjENDpNnXpR57hvOFHcbWXyggpraC2tNIx7pyzUhW0Kb1khltFkXi4UaFqeh9W2671D4AwwV1FPRsZ1bBRoFJN4URdsBp748pkQIfvqF2veB4u3jjRyfOhepjFcBkn12kWM8gXraZJ8eMP9ckAEZ2Kz1O8reZC6kpzVWawOUBHo_WGIxnT-m5-rtEfRM72uxoixBFKio_ZSFC7fCkR5SRVBnIJhIsKQTl8uaQ9_hwVxEsmGTK_DKqIsb8ap97fnYRj1If_0mgTbkxejfW7N3tvH8HNKH8b4_QewyqiyT9BYjezT6PVfgdXOkq- |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Virtual+head+rotation+reveals+a+process+of+route+reconstruction+from+human+vestibular+signals&rft.jtitle=The+Journal+of+physiology&rft.au=Day%2C+Brian+L.&rft.au=Fitzpatrick%2C+Richard+C.&rft.date=2005-09-01&rft.pub=Blackwell+Science+Ltd&rft.issn=0022-3751&rft.eissn=1469-7793&rft.volume=567&rft.issue=2&rft.spage=591&rft.epage=597&rft_id=info:doi/10.1113%2Fjphysiol.2005.092544&rft.externalDBID=10.1113%252Fjphysiol.2005.092544&rft.externalDocID=TJP1099 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-3751&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-3751&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-3751&client=summon |