Virtual head rotation reveals a process of route reconstruction from human vestibular signals

The vestibular organs can feed perceptual processes that build a picture of our route as we move about in the world. However, raw vestibular signals do not define the path taken because, during travel, the head can undergo accelerations unrelated to the route and also be orientated in any direction...

Full description

Saved in:
Bibliographic Details
Published inThe Journal of physiology Vol. 567; no. 2; pp. 591 - 597
Main Authors Day, Brian L., Fitzpatrick, Richard C.
Format Journal Article
LanguageEnglish
Published 9600 Garsington Road , Oxford , OX4 2DQ , UK The Physiological Society 01.09.2005
Blackwell Science Ltd
Blackwell Science Inc
Subjects
Online AccessGet full text
ISSN0022-3751
1469-7793
DOI10.1113/jphysiol.2005.092544

Cover

Abstract The vestibular organs can feed perceptual processes that build a picture of our route as we move about in the world. However, raw vestibular signals do not define the path taken because, during travel, the head can undergo accelerations unrelated to the route and also be orientated in any direction to vary the signal. This study investigated the computational process by which the brain transforms raw vestibular signals for the purpose of route reconstruction. We electrically stimulated the vestibular nerves of human subjects to evoke a virtual head rotation fixed in skull co-ordinates and measure its perceptual effect. The virtual head rotation caused subjects to perceive an illusory whole-body rotation that was a cyclic function of head-pitch angle. They perceived whole-body yaw rotation in one direction with the head pitched forwards, the opposite direction with the head pitched backwards, and no rotation with the head in an intermediate position. A model based on vector operations and the anatomy and firing properties of semicircular canals precisely predicted these perceptions. In effect, a neural process computes the vector dot product between the craniocentric vestibular vector of head rotation and the gravitational unit vector. This computation yields the signal of body rotation in the horizontal plane that feeds our perception of the route travelled.
AbstractList The vestibular organs can feed perceptual processes that build a picture of our route as we move about in the world. However, raw vestibular signals do not define the path taken because, during travel, the head can undergo accelerations unrelated to the route and also be orientated in any direction to vary the signal. This study investigated the computational process by which the brain transforms raw vestibular signals for the purpose of route reconstruction. We electrically stimulated the vestibular nerves of human subjects to evoke a virtual head rotation fixed in skull co-ordinates and measure its perceptual effect. The virtual head rotation caused subjects to perceive an illusory whole-body rotation that was a cyclic function of head-pitch angle. They perceived whole-body yaw rotation in one direction with the head pitched forwards, the opposite direction with the head pitched backwards, and no rotation with the head in an intermediate position. A model based on vector operations and the anatomy and firing properties of semicircular canals precisely predicted these perceptions. In effect, a neural process computes the vector dot product between the craniocentric vestibular vector of head rotation and the gravitational unit vector. This computation yields the signal of body rotation in the horizontal plane that feeds our perception of the route travelled.
The vestibular organs can feed perceptual processes that build a picture of our route as we move about in the world. However, raw vestibular signals do not define the path taken because, during travel, the head can undergo accelerations unrelated to the route and also be orientated in any direction to vary the signal. This study investigated the computational process by which the brain transforms raw vestibular signals for the purpose of route reconstruction. We electrically stimulated the vestibular nerves of human subjects to evoke a virtual head rotation fixed in skull co-ordinates and measure its perceptual effect. The virtual head rotation caused subjects to perceive an illusory whole-body rotation that was a cyclic function of head-pitch angle. They perceived whole-body yaw rotation in one direction with the head pitched forwards, the opposite direction with the head pitched backwards, and no rotation with the head in an intermediate position. A model based on vector operations and the anatomy and firing properties of semicircular canals precisely predicted these perceptions. In effect, a neural process computes the vector dot product between the craniocentric vestibular vector of head rotation and the gravitational unit vector. This computation yields the signal of body rotation in the horizontal plane that feeds our perception of the route travelled.The vestibular organs can feed perceptual processes that build a picture of our route as we move about in the world. However, raw vestibular signals do not define the path taken because, during travel, the head can undergo accelerations unrelated to the route and also be orientated in any direction to vary the signal. This study investigated the computational process by which the brain transforms raw vestibular signals for the purpose of route reconstruction. We electrically stimulated the vestibular nerves of human subjects to evoke a virtual head rotation fixed in skull co-ordinates and measure its perceptual effect. The virtual head rotation caused subjects to perceive an illusory whole-body rotation that was a cyclic function of head-pitch angle. They perceived whole-body yaw rotation in one direction with the head pitched forwards, the opposite direction with the head pitched backwards, and no rotation with the head in an intermediate position. A model based on vector operations and the anatomy and firing properties of semicircular canals precisely predicted these perceptions. In effect, a neural process computes the vector dot product between the craniocentric vestibular vector of head rotation and the gravitational unit vector. This computation yields the signal of body rotation in the horizontal plane that feeds our perception of the route travelled.
The vestibular organs can feed perceptual processes that build a picture of our route as we move about in the world. However, raw vestibular signals do not define the path taken because, during travel, the head can undergo accelerations unrelated to the route and also be orientated in any direction to vary the signal. This study investigated the computational process by which the brain transforms raw vestibular signals for the purpose of route reconstruction. We electrically stimulated the vestibular nerves of human subjects to evoke a virtual head rotation fixed in skull co-ordinates and measure its perceptual effect. The virtual head rotation caused subjects to perceive an illusory whole-body rotation that was a cyclic function of head-pitch angle. They perceived whole-body yaw rotation in one direction with the head pitched forwards, the opposite direction with the head pitched backwards, and no rotation with the head in an intermediate position. A model based on vector operations and the anatomy and firing properties of semicircular canals precisely predicted these perceptions. In effect, a neural process computes the vector dot product between the craniocentric vestibular vector of head rotation and the gravitational unit vector. This computation yields the signal of body rotation in the horizontal plane that feeds our perception of the route travelled.
Author Richard C. Fitzpatrick
Brian L. Day
Author_xml – sequence: 1
  givenname: Brian L.
  surname: Day
  fullname: Day, Brian L.
– sequence: 2
  givenname: Richard C.
  surname: Fitzpatrick
  fullname: Fitzpatrick, Richard C.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/16002439$$D View this record in MEDLINE/PubMed
BookMark eNqNUstu1DAUtVARnQ78AUJewSqDHdtxzAKpqniqEiwKO2Q5zs3ElRMPdjLV_D0e0vLalNVdnIfvucdn6GQMIyD0lJINpZS9vN71h-SC35SEiA1RpeD8AVpRXqlCSsVO0IqQsiyYFPQUnaV0TQhlRKlH6JRWGeJMrdC3ry5Os_G4B9PiGCYzuTDiCHswPmGDdzFYSAmHLqPzBBmyYUxTnO1PZhfDgPt5MCPeQ5pcM3sTcXLbMesfo4ddHvDkdq7Rl7dvri7eF5ef3n24OL8srKiFKphq6ro2LYUaeGshL2dbkMpUUjYVa2gjLRfW2kYqwjoKkhvRKMZJZWuiWrZGrxff3dwMkB3GKRqvd9ENJh50ME7_jYyu19uw15RLXuazrNHzW4MYvs85hx5csuC9GSHMSVe1EFwyfi-RSk6kUEfHZ3-u9GuXu9NnAl8INoaUInS_KUQfG9Z3Detjw3ppOMte_SOzbiktB3P-PrFaxDfOw-G_HtRXHz_T_Guy9sWi7d22v3ER9MJOwTqYDlpUUpf6GP0Hc-DSJw
CitedBy_id crossref_primary_10_1113_jphysiol_2010_197665
crossref_primary_10_1016_j_neulet_2024_137735
crossref_primary_10_1113_jphysiol_2012_230334
crossref_primary_10_1007_s00221_011_2549_7
crossref_primary_10_1016_j_clinph_2013_03_015
crossref_primary_10_1113_JP285834
crossref_primary_10_1152_jn_00035_2019
crossref_primary_10_1152_jn_00798_2007
crossref_primary_10_1016_j_exger_2014_09_020
crossref_primary_10_1152_japplphysiol_01398_2006
crossref_primary_10_1016_j_concog_2021_103108
crossref_primary_10_1152_jn_00688_2019
crossref_primary_10_1159_000509971
crossref_primary_10_1016_j_neuron_2017_12_020
crossref_primary_10_1152_japplphysiol_00621_2011
crossref_primary_10_3389_fphys_2019_00476
crossref_primary_10_3389_fneur_2018_00083
crossref_primary_10_3389_fnhum_2023_1329097
crossref_primary_10_1007_s00221_009_2054_4
crossref_primary_10_1007_s00221_011_2554_x
crossref_primary_10_1152_jn_00343_2014
crossref_primary_10_1007_s00221_018_5346_8
crossref_primary_10_1113_jphysiol_2010_197053
crossref_primary_10_1111_j_1460_9568_2011_07859_x
crossref_primary_10_1097_WNR_0000000000000369
crossref_primary_10_1113_JP272614
crossref_primary_10_1007_s00221_012_3250_1
crossref_primary_10_1152_japplphysiol_90594_2008
crossref_primary_10_1152_jn_00483_2018
crossref_primary_10_1016_j_neuron_2007_06_003
crossref_primary_10_1016_j_neulet_2018_03_056
crossref_primary_10_3758_s13421_021_01181_2
crossref_primary_10_1113_jphysiol_2006_115204
crossref_primary_10_1113_JP278642
crossref_primary_10_3389_fneur_2019_01270
crossref_primary_10_3233_VES_220031
crossref_primary_10_3233_VES_220075
crossref_primary_10_1016_j_gaitpost_2024_12_026
crossref_primary_10_1016_j_gaitpost_2012_07_014
crossref_primary_10_1093_pnasnexus_pgac174
crossref_primary_10_1113_jphysiol_2010_195222
crossref_primary_10_1523_ENEURO_0174_22_2022
crossref_primary_10_3389_fnint_2014_00094
crossref_primary_10_1007_s00221_011_2565_7
crossref_primary_10_1152_jn_00114_2015
crossref_primary_10_1016_j_heares_2018_03_025
crossref_primary_10_1113_jphysiol_2009_181768
crossref_primary_10_1152_jn_00276_2019
crossref_primary_10_1007_s00221_024_06992_8
crossref_primary_10_1152_jn_00419_2013
crossref_primary_10_1038_s41598_025_92064_y
crossref_primary_10_1371_journal_pone_0124532
crossref_primary_10_1523_JNEUROSCI_0733_14_2014
crossref_primary_10_1007_s00221_024_06905_9
crossref_primary_10_1038_srep10168
crossref_primary_10_1007_s00421_022_05043_w
crossref_primary_10_1016_j_cub_2006_05_063
crossref_primary_10_1038_s41467_019_09738_1
crossref_primary_10_1016_j_jneumeth_2022_109709
crossref_primary_10_1007_s00221_019_05634_8
crossref_primary_10_1152_jn_01250_2005
crossref_primary_10_1007_s00221_020_05760_8
crossref_primary_10_1152_jn_00881_2009
crossref_primary_10_1152_jn_00512_2015
crossref_primary_10_1152_jn_00843_2012
crossref_primary_10_1016_j_exger_2016_05_014
crossref_primary_10_1016_j_neulet_2013_06_046
crossref_primary_10_1007_s00221_018_5167_9
crossref_primary_10_1016_j_clinph_2012_12_041
crossref_primary_10_1371_journal_pcbi_1012601
crossref_primary_10_3389_fneur_2018_00535
crossref_primary_10_1113_jphysiol_2011_209163
crossref_primary_10_1523_JNEUROSCI_1902_16_2016
crossref_primary_10_1016_j_neuroimage_2015_10_004
crossref_primary_10_1113_JP273125
crossref_primary_10_1113_JP270334
crossref_primary_10_1242_jeb_020578
crossref_primary_10_3233_VES_210112
crossref_primary_10_1007_s00221_012_3302_6
crossref_primary_10_1007_s00221_016_4858_3
crossref_primary_10_1113_JP272998
Cites_doi 10.1152/jn.00849.2003
10.1093/brain/awf212
10.1016/S0306-4522(99)00275-4
10.1007/BF00229416
10.1097/00001756-200212200-00001
10.1152/japplphysiol.00008.2004
10.1152/jn.1998.80.1.425
10.1002/hipo.1112
10.3109/00016487509121318
10.1523/JNEUROSCI.23-16-06490.2003
10.1523/JNEUROSCI.17-11-04349.1997
10.1111/j.1469-7793.2003.00293.x
10.1111/j.1469-7793.1997.223bl.x
10.1523/JNEUROSCI.15-01-00070.1995
10.1152/jn.00558.2001
10.1152/jn.00518.2002
10.1016/0006-8993(82)90990-8
10.1523/JNEUROSCI.10-02-00420.1990
10.1037/0735-7044.110.4.643
10.1007/s00221-002-1146-1
10.1113/jphysiol.1955.sp005241
10.1002/(SICI)1098-1063(1999)9:3<206::AID-HIPO2>3.0.CO;2-H
10.1016/S0306-4522(00)00258-X
10.1113/jphysiol.2004.079525
ContentType Journal Article
Copyright 2005 The Journal of Physiology © 2005 The Physiological Society
The Physiological society 2005 2005
Copyright_xml – notice: 2005 The Journal of Physiology © 2005 The Physiological Society
– notice: The Physiological society 2005 2005
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7TK
7X8
5PM
DOI 10.1113/jphysiol.2005.092544
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Neurosciences Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Neurosciences Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic


Neurosciences Abstracts
CrossRef

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 1469-7793
EndPage 597
ExternalDocumentID PMC1474201
16002439
10_1113_jphysiol_2005_092544
TJP1099
567_2_591
Genre rapidPublication
Controlled Clinical Trial
Comparative Study
Clinical Trial
Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID -
05W
0R
0YM
10A
123
1OB
1OC
24P
29L
2WC
31
33P
3N
3O-
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
55
5GY
5HH
5LA
5RE
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAONW
AAVGM
AAZKR
ABCUV
ABFLS
ABHUG
ABITZ
ABIVO
ABOCM
ABPPZ
ABPTK
ABPVW
ABUFD
ABWRO
ACAHQ
ACFBH
ACGFS
ACIWK
ACMXC
ACNCT
ACPOU
ACPRK
ACXME
ACXQS
ADACO
ADAWD
ADBBV
ADDAD
ADEOM
ADIZJ
ADXAS
ADZMN
AEIMD
AEUQT
AFBPY
AFFNX
AFPWT
AFZJQ
AGJLS
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
ATUGU
AZBYB
AZVAB
BAFTC
BAWUL
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BY8
C1A
C45
CAG
COF
CS3
D-6
D-7
D-E
D-F
DCZOG
DIK
DPXWK
DR2
DRFUL
DRMAN
DRSTM
DZ
E3Z
EBS
EJD
EX3
F00
F01
F04
F5P
FIJ
FUBAC
G-S
G.N
GA
GJ
GODZA
GX1
H.X
H13
HZ
HZI
IA
IX1
J0M
K48
LATKE
LC2
LC3
LEEKS
LI0
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MVM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NEJ
NF
O0-
O66
O9-
OHT
OK1
OVD
P2P
P2W
P2X
P2Z
P4A
P4B
P4D
Q.N
Q11
QB0
R.K
RIG
ROL
RPM
RX1
SUPJJ
TLM
TN5
UB1
UNR
UPT
UQL
V8K
VH1
W8V
W99
WBKPD
WH7
WIH
WIJ
WIK
WIN
WNSPC
WOHZO
WOQ
WOW
WQJ
WRC
WT
WXI
WYISQ
X
X7M
XG1
Y3
YZZ
ZA5
ZZTAW
---
-DZ
-~X
.3N
.55
.GA
.GJ
.Y3
0R~
18M
31~
36B
3EH
AAFWJ
AAHQN
AAIPD
AAMNL
AANLZ
AASGY
AAXRX
AAYCA
AAYJJ
ABCQN
ABEML
ABJNI
ABQWH
ABXGK
ACCZN
ACGFO
ACGOF
ACSCC
ACXBN
ADBTR
ADKYN
ADMGS
ADOZA
ADXHL
AEGXH
AEIGN
AEUYR
AEYWJ
AFEBI
AFFPM
AFGKR
AFWVQ
AGHNM
AGYGG
AHBTC
AI.
AIACR
AIAGR
AITYG
AIURR
ALVPJ
AMYDB
AOIJS
CHEAL
EMOBN
FA8
HF~
HGLYW
HZ~
H~9
IHE
KBYEO
LH4
NF~
OIG
TEORI
TR2
UKR
W8F
WHG
WXSBR
XOL
YBU
YHG
YKV
YQT
YSK
YXB
YYP
ZGI
ZXP
~IA
~WT
AAHHS
AAYXX
ACCFJ
AEEZP
AEQDE
AIWBW
AJBDE
CITATION
CGR
CUY
CVF
ECM
EIF
IPNFZ
NPM
7TK
7X8
5PM
ID FETCH-LOGICAL-c5859-39b888ad1e8e4dce002cde79a677b63b1b7c45cccb7903f1e74a5b93406c809d3
IEDL.DBID DR2
ISSN 0022-3751
IngestDate Thu Aug 21 18:16:44 EDT 2025
Fri Jul 11 02:38:29 EDT 2025
Thu Jul 10 17:17:13 EDT 2025
Wed Feb 19 01:52:11 EST 2025
Tue Jul 01 03:48:40 EDT 2025
Thu Apr 24 22:55:12 EDT 2025
Wed Aug 20 07:26:02 EDT 2025
Fri Jan 15 02:11:33 EST 2021
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5859-39b888ad1e8e4dce002cde79a677b63b1b7c45cccb7903f1e74a5b93406c809d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1113/jphysiol.2005.092544
PMID 16002439
PQID 17407591
PQPubID 23462
PageCount 7
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_1474201
proquest_miscellaneous_68554734
proquest_miscellaneous_17407591
pubmed_primary_16002439
crossref_primary_10_1113_jphysiol_2005_092544
crossref_citationtrail_10_1113_jphysiol_2005_092544
wiley_primary_10_1113_jphysiol_2005_092544_TJP1099
highwire_physiosociety_567_2_591
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate September 2005
PublicationDateYYYYMMDD 2005-09-01
PublicationDate_xml – month: 09
  year: 2005
  text: September 2005
PublicationDecade 2000
PublicationPlace 9600 Garsington Road , Oxford , OX4 2DQ , UK
PublicationPlace_xml – name: 9600 Garsington Road , Oxford , OX4 2DQ , UK
– name: England
PublicationTitle The Journal of physiology
PublicationTitleAlternate J Physiol
PublicationYear 2005
Publisher The Physiological Society
Blackwell Science Ltd
Blackwell Science Inc
Publisher_xml – name: The Physiological Society
– name: Blackwell Science Ltd
– name: Blackwell Science Inc
References 2004; 96
1990; 10
1997; 502
2003; 547
2005; 563
1995; 15
1991; 85
2002; 12
2002; 125
2002; 13
2002; 87
2002; 88
2002; 145
1955; 127
1982; 252
1997; 17
1996; 110
1998; 80
2000; 100
1999; 93
2004; 91
1975; 80
1999; 9
2003; 23
e_1_2_5_15_1
e_1_2_5_14_1
e_1_2_5_17_1
e_1_2_5_25_1
e_1_2_5_9_1
e_1_2_5_16_1
e_1_2_5_8_1
e_1_2_5_11_1
e_1_2_5_23_1
e_1_2_5_7_1
e_1_2_5_10_1
e_1_2_5_24_1
e_1_2_5_6_1
e_1_2_5_13_1
e_1_2_5_21_1
e_1_2_5_5_1
e_1_2_5_12_1
e_1_2_5_22_1
e_1_2_5_4_1
e_1_2_5_3_1
e_1_2_5_2_1
e_1_2_5_19_1
e_1_2_5_18_1
e_1_2_5_20_1
2303851 - J Neurosci. 1990 Feb;10(2):420-35
10401637 - Hippocampus. 1999;9(3):206-19
9234209 - J Physiol. 1997 Jul 1;502 ( Pt 1):223-33
10473274 - Neuroscience. 1999;93(3):1095-107
12562970 - J Physiol. 2003 Feb 15;547(Pt 1):293-9
12099481 - Hippocampus. 2002;12(3):291-303
9658061 - J Neurophysiol. 1998 Jul;80(1):425-46
14354631 - J Physiol. 1955 Jan 28;127(1):104-17
12466465 - J Neurophysiol. 2002 Dec;88(6):3518-33
1893987 - Exp Brain Res. 1991;85(2):389-404
9151751 - J Neurosci. 1997 Jun 1;17(11):4349-58
12183353 - Brain. 2002 Sep;125(Pt 9):2081-8
8864258 - Behav Neurosci. 1996 Aug;110(4):643-60
1101636 - Acta Otolaryngol. 1975 Sep-Oct;80(3-4):185-96
15069099 - J Neurophysiol. 2004 May;91(5):2090-100
15618274 - J Physiol. 2005 Feb 15;563(Pt 1):229-34
12878690 - J Neurosci. 2003 Jul 23;23(16):6490-8
12172660 - Exp Brain Res. 2002 Aug;145(4):489-97
7823153 - J Neurosci. 1995 Jan;15(1 Pt 1):70-86
10996454 - Neuroscience. 2000;100(1):11-9
12499833 - Neuroreport. 2002 Dec 20;13(18):2379-83
6293651 - Brain Res. 1982 Dec 2;252(1):156-60
15133017 - J Appl Physiol (1985). 2004 Jun;96(6):2301-16
11929924 - J Neurophysiol. 2002 Apr;87(4):2064-73
References_xml – volume: 110
  start-page: 643
  year: 1996
  end-page: 660
  article-title: Visual and vestibular influences on head‐direction cells in the anterior thalamus of the rat
  publication-title: Behav Neurosci
– volume: 502
  start-page: 223
  year: 1997
  end-page: 233
  article-title: The contribution of otoliths and semicircular canals to the perception of two‐dimensional passive whole‐body motion in humans
  publication-title: J Physiol
– volume: 96
  start-page: 2301
  year: 2004
  end-page: 2316
  article-title: Probing the human vestibular system with galvanic stimulation
  publication-title: J Appl Physiol
– volume: 87
  start-page: 2064
  year: 2002
  end-page: 2073
  article-title: Comparison of human ocular torsion patterns during natural and galvanic vestibular stimulation
  publication-title: J Neurophysiol
– volume: 13
  start-page: 2379
  year: 2002
  end-page: 2383
  article-title: Galvanic vestibular stimulation evokes sensations of body rotation
  publication-title: Neuroreport
– volume: 100
  start-page: 11
  year: 2000
  end-page: 19
  article-title: Convergence of head direction and place information in the CA1 region of hippocampus
  publication-title: Neuroscience
– volume: 145
  start-page: 489
  year: 2002
  end-page: 497
  article-title: Differential effects of labyrinthine dysfunction on distance and direction during blindfolded walking of a triangular path
  publication-title: Exp Brain Res
– volume: 80
  start-page: 425
  year: 1998
  end-page: 446
  article-title: Interactions between idiothetic cues and external landmarks in the control of place cells and head direction cells
  publication-title: J Neurophysiol
– volume: 252
  start-page: 156
  year: 1982
  end-page: 160
  article-title: Responses of vestibular‐nerve afferents in the squirrel monkey to externally applied galvanic currents
  publication-title: Brain Res
– volume: 17
  start-page: 4349
  year: 1997
  end-page: 4358
  article-title: Firing properties of head direction cells in the rat anterior thalamic nucleus: dependence on vestibular input
  publication-title: J Neurosci
– volume: 91
  start-page: 2090
  year: 2004
  end-page: 2100
  article-title: Trunk position influences vestibular responses of fastigial nucleus neurons in the alert monkey
  publication-title: J Neurophysiol
– volume: 547
  start-page: 293
  year: 2003
  end-page: 299
  article-title: Position and velocity responses to galvanic vestibular stimulation during standing
  publication-title: J Physiol
– volume: 88
  start-page: 3518
  year: 2002
  end-page: 3533
  article-title: Vestibular convergence patterns in vestibular nuclei neurons of alert primates
  publication-title: J Neurophysiol
– volume: 10
  start-page: 420
  year: 1990
  end-page: 435
  article-title: Head‐direction cells recorded from the postsubiculum in freely moving rats. I. Description and quantitative analysis
  publication-title: J Neurosci
– volume: 23
  start-page: 6490
  year: 2003
  end-page: 6498
  article-title: Long‐term effects of permanent vestibular lesions on hippocampal spatial firing
  publication-title: J Neurosci
– volume: 85
  start-page: 389
  year: 1991
  end-page: 404
  article-title: Human perception of horizontal trunk and head rotation in space during vestibular and neck stimulation
  publication-title: Exp Brain Res
– volume: 93
  start-page: 1095
  year: 1999
  end-page: 1107
  article-title: Neck input modifies the reference frame for coding labyrinthine signals in the cerebellar vermis: a cellular analysis
  publication-title: Neuroscience
– volume: 80
  start-page: 185
  year: 1975
  end-page: 196
  article-title: Planar relationships of the semicircular canals in man
  publication-title: Acta Otolaryngol
– volume: 127
  start-page: 104
  year: 1955
  end-page: 117
  article-title: The effect of galvanic polarization on the impulse discharge from sense endings in the isolated labyrinth of the thornback ray ( a)
  publication-title: J Physiol
– volume: 563
  start-page: 229
  year: 2005
  end-page: 234
  article-title: Otolith and canal reflexes in human standing
  publication-title: J Physiol
– volume: 15
  start-page: 70
  year: 1995
  end-page: 86
  article-title: Head direction cells recorded in the anterior thalamic nuclei of freely moving rats
  publication-title: J Neurosci
– volume: 9
  start-page: 206
  year: 1999
  end-page: 219
  article-title: Head direction cells in the primate pre‐subiculum
  publication-title: Hippocampus
– volume: 12
  start-page: 291
  year: 2002
  end-page: 303
  article-title: Hippocampal spatial representations require vestibular input
  publication-title: Hippocampus
– volume: 125
  start-page: 2081
  year: 2002
  end-page: 2088
  article-title: Vestibular‐evoked postural responses in the absence of somatosensory information
  publication-title: Brain
– ident: e_1_2_5_12_1
  doi: 10.1152/jn.00849.2003
– ident: e_1_2_5_5_1
  doi: 10.1093/brain/awf212
– ident: e_1_2_5_16_1
  doi: 10.1016/S0306-4522(99)00275-4
– ident: e_1_2_5_17_1
  doi: 10.1007/BF00229416
– ident: e_1_2_5_8_1
  doi: 10.1097/00001756-200212200-00001
– ident: e_1_2_5_7_1
  doi: 10.1152/japplphysiol.00008.2004
– ident: e_1_2_5_13_1
  doi: 10.1152/jn.1998.80.1.425
– ident: e_1_2_5_21_1
  doi: 10.1002/hipo.1112
– ident: e_1_2_5_3_1
  doi: 10.3109/00016487509121318
– ident: e_1_2_5_19_1
  doi: 10.1523/JNEUROSCI.23-16-06490.2003
– ident: e_1_2_5_22_1
  doi: 10.1523/JNEUROSCI.17-11-04349.1997
– ident: e_1_2_5_25_1
  doi: 10.1111/j.1469-7793.2003.00293.x
– ident: e_1_2_5_11_1
  doi: 10.1111/j.1469-7793.1997.223bl.x
– ident: e_1_2_5_23_1
  doi: 10.1523/JNEUROSCI.15-01-00070.1995
– ident: e_1_2_5_20_1
  doi: 10.1152/jn.00558.2001
– ident: e_1_2_5_6_1
  doi: 10.1152/jn.00518.2002
– ident: e_1_2_5_10_1
  doi: 10.1016/0006-8993(82)90990-8
– ident: e_1_2_5_24_1
  doi: 10.1523/JNEUROSCI.10-02-00420.1990
– ident: e_1_2_5_2_1
  doi: 10.1037/0735-7044.110.4.643
– ident: e_1_2_5_9_1
  doi: 10.1007/s00221-002-1146-1
– ident: e_1_2_5_15_1
  doi: 10.1113/jphysiol.1955.sp005241
– ident: e_1_2_5_18_1
  doi: 10.1002/(SICI)1098-1063(1999)9:3<206::AID-HIPO2>3.0.CO;2-H
– ident: e_1_2_5_14_1
  doi: 10.1016/S0306-4522(00)00258-X
– ident: e_1_2_5_4_1
  doi: 10.1113/jphysiol.2004.079525
– reference: 9658061 - J Neurophysiol. 1998 Jul;80(1):425-46
– reference: 11929924 - J Neurophysiol. 2002 Apr;87(4):2064-73
– reference: 7823153 - J Neurosci. 1995 Jan;15(1 Pt 1):70-86
– reference: 15069099 - J Neurophysiol. 2004 May;91(5):2090-100
– reference: 1101636 - Acta Otolaryngol. 1975 Sep-Oct;80(3-4):185-96
– reference: 10473274 - Neuroscience. 1999;93(3):1095-107
– reference: 12466465 - J Neurophysiol. 2002 Dec;88(6):3518-33
– reference: 9151751 - J Neurosci. 1997 Jun 1;17(11):4349-58
– reference: 12499833 - Neuroreport. 2002 Dec 20;13(18):2379-83
– reference: 14354631 - J Physiol. 1955 Jan 28;127(1):104-17
– reference: 1893987 - Exp Brain Res. 1991;85(2):389-404
– reference: 15133017 - J Appl Physiol (1985). 2004 Jun;96(6):2301-16
– reference: 15618274 - J Physiol. 2005 Feb 15;563(Pt 1):229-34
– reference: 10996454 - Neuroscience. 2000;100(1):11-9
– reference: 9234209 - J Physiol. 1997 Jul 1;502 ( Pt 1):223-33
– reference: 12099481 - Hippocampus. 2002;12(3):291-303
– reference: 12562970 - J Physiol. 2003 Feb 15;547(Pt 1):293-9
– reference: 6293651 - Brain Res. 1982 Dec 2;252(1):156-60
– reference: 8864258 - Behav Neurosci. 1996 Aug;110(4):643-60
– reference: 12183353 - Brain. 2002 Sep;125(Pt 9):2081-8
– reference: 10401637 - Hippocampus. 1999;9(3):206-19
– reference: 2303851 - J Neurosci. 1990 Feb;10(2):420-35
– reference: 12878690 - J Neurosci. 2003 Jul 23;23(16):6490-8
– reference: 12172660 - Exp Brain Res. 2002 Aug;145(4):489-97
SSID ssj0013099
Score 2.1361828
Snippet The vestibular organs can feed perceptual processes that build a picture of our route as we move about in the world. However, raw vestibular signals do not...
The vestibular organs can feed perceptual processes that build a picture of our route as we move about in the world. However, raw vestibular signals do not...
SourceID pubmedcentral
proquest
pubmed
crossref
wiley
highwire
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 591
SubjectTerms Adult
Computer Simulation
Electric Stimulation - methods
Female
Head Movements - physiology
Humans
Integrative Physiology
Male
Middle Aged
Models, Neurological
Proprioception - physiology
Rotation
Space Perception - physiology
User-Computer Interface
Vestibule, Labyrinth - innervation
Vestibule, Labyrinth - physiology
Title Virtual head rotation reveals a process of route reconstruction from human vestibular signals
URI http://jp.physoc.org/content/567/2/591.abstract
https://onlinelibrary.wiley.com/doi/abs/10.1113%2Fjphysiol.2005.092544
https://www.ncbi.nlm.nih.gov/pubmed/16002439
https://www.proquest.com/docview/17407591
https://www.proquest.com/docview/68554734
https://pubmed.ncbi.nlm.nih.gov/PMC1474201
Volume 567
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5VPXHhVR6BUnxA3FLi-LU-VsCqqgSqUIt6QZbtOKVQkqrdPbS_nrGdpCxUgODsR2L7sz3jmfkG4AXzjtpa2JKxtiq5l7rEa9iVwmub6Et0Co9-917uHvK9I3G0BvMxFibzQ0wPbnFnpPM6bnDrhiwkNJINfEmqf386vIvoyLWFRzFlMlLov_lQXxsTKq0n0nAl6BBBh928uqmT1RtqZA2-SQL91ZHyRwE33VDzO3A8ji07pnzdXi7ctr_6ifbx_wd_F24PQizZyai7B2uhuw8bOx0q8N8uyUuyn5v1x5cb8OnjyXmMUSF46jfkvM-mfxKZoxD5xJKzHKpA-hZLl4tAko4-8dqSGABDUipBkihBXHScJdHvBNs_gMP524PXu-WQ06H0qJjoEnGAOrdtaJgFjvOGi-KboLSVSjnJHHXKc-G9d0pXrKVBcSucZih3-FmlG_YQ1ru-C4-BcCl8zQKfWd3yWZSk2srLpuIN9ia0LYCN62j8QHge826cmqz4MDPOYszFKUyexQLKqdVZJvz4Q30yQsTk4ovsbmuEVKY2QtMCno_QMbh5o0XGdqFfXhhUB1Fk-10NGd0IFcPPPMpQu_4pmdgkdQFqBYRThUgcvlrSnXxOBOKUK46CXwF1wthfjdMc7O1HK-qTf2n0FG4lytvkm7cJ6wih8AyFuYXbSlt1K72yfQfIIEkA
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB6VcoBLeZRHgFIfELeUJLbj9bHqg6W0VYW2qBdk2Y5DS0tStbuH8usZ20nKQgUIcfZj1_Y38Tf2zGeAV9SaXBdcp5TWWcpsKVPchk3KrdRBvkSG9Oi9_XJ8yHaO-NECvO1zYaI-xHDg5i0jfK-9gfsD6c7KvdrAl-D7t2fdwYj0Ylu34DZDzuG9sM0PxfV1QiblIBsueN7l0GE_b27qZX6P6nWDb-Kgv4ZS_khxwx61fQ-O-9HF0JTTtdnUrNlvPwk__ofh34eljseS9Qi8B7DgmoewvN6gD__1irwmB7FZ-_lqGT59PLnwaSoEP_wVuWjj7T_x4lEIfqLJecxWIG2NpbOpI8FNH6Rtic-BIeE1QRJUQYyPnSU-9ATbP4LD7a3JxjjtnnVILfomMkUooNutq9yNHMOJw1WxlRNSl0KYkprcCMu4tdYImdE6d4JpbiRF6mFHmazoY1hs2sY9BYJrbQvq2EjLmo08maozW1YZq7A3LnUCtF9IZTvNc__0xpmKvg9V_Sz65zi5irOYQDq0Oo-aH3-oT3qMqFh8GSNuFS-FKhSXeQKrPXYU2q-_lNGNa2eXCj1CZG2_q1H6SEJB8WeeRKxd_6kyCErKBMQcCocKXjt8vqQ5OQ4a4jkTDLlfAkUA2V-NU012DvxF6rN_abQKd8aTvV21-27__XO4GxRwQ6jeC1hEOLkV5HZT8zLY7XdnNUwP
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6VIiEu5VEo4VUfELeUJH6tjxWwKgWqFWpRL8iyHacU2mTV7h7Kr2dsJ1sWKkBw9iOx8038jT3zGeAZdbY0FTc5pU2RMydUjsuwzblTJsqXqJge_X5P7Byw3UN-uALjIRcm6UMsNtyCZcT_dTDwad30Rh7EBr5E17876fdFVNDaugbXmUBSEcjRh-ryNKFQaqEaLnnZp9BhPy-u6mV5iRpkg6-ioL9GUv7IcOMSNb4FR8PgUmTK1635zG65bz_pPv7_6G_DWs9iyXaC3R1Y8e1dWN9u0YM_vSDPySQ1644u1uHTx-OzkKRC8Ldfk7Munf2TIB2F0CeGTFOuAukaLJ3PPIlO-kLYloQMGBLvEiRRE8SGyFkSAk-w_T04GL_ef7mT95c65A49E5UjENDpNnXpR57hvOFHcbWXyggpraC2tNIx7pyzUhW0Kb1khltFkXi4UaFqeh9W2671D4AwwV1FPRsZ1bBRoFJN4URdsBp748pkQIfvqF2veB4u3jjRyfOhepjFcBkn12kWM8gXraZJ8eMP9ckAEZ2Kz1O8reZC6kpzVWawOUBHo_WGIxnT-m5-rtEfRM72uxoixBFKio_ZSFC7fCkR5SRVBnIJhIsKQTl8uaQ9_hwVxEsmGTK_DKqIsb8ap97fnYRj1If_0mgTbkxejfW7N3tvH8HNKH8b4_QewyqiyT9BYjezT6PVfgdXOkq-
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Virtual+head+rotation+reveals+a+process+of+route+reconstruction+from+human+vestibular+signals&rft.jtitle=The+Journal+of+physiology&rft.au=Day%2C+Brian+L.&rft.au=Fitzpatrick%2C+Richard+C.&rft.date=2005-09-01&rft.pub=Blackwell+Science+Ltd&rft.issn=0022-3751&rft.eissn=1469-7793&rft.volume=567&rft.issue=2&rft.spage=591&rft.epage=597&rft_id=info:doi/10.1113%2Fjphysiol.2005.092544&rft.externalDBID=10.1113%252Fjphysiol.2005.092544&rft.externalDocID=TJP1099
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-3751&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-3751&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-3751&client=summon