PKM2‐TMEM33 axis regulates lipid homeostasis in cancer cells by controlling SCAP stability

The pyruvate kinase M2 isoform (PKM2) is preferentially expressed in cancer cells to regulate anabolic metabolism. Although PKM2 was recently reported to regulate lipid homeostasis, the molecular mechanism remains unclear. Herein, we discovered an ER transmembrane protein 33 (TMEM33) as a downstream...

Full description

Saved in:
Bibliographic Details
Published inThe EMBO journal Vol. 40; no. 22; pp. e108065 - n/a
Main Authors Liu, Fabao, Ma, Min, Gao, Ang, Ma, Fengfei, Ma, Gui, Liu, Peng, Jia, Chenxi, Wang, Yidan, Donahue, Kristine, Zhang, Shengjie, Ong, Irene M, Keles, Sunduz, Li, Lingjun, Xu, Wei
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 15.11.2021
Springer Nature B.V
John Wiley and Sons Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The pyruvate kinase M2 isoform (PKM2) is preferentially expressed in cancer cells to regulate anabolic metabolism. Although PKM2 was recently reported to regulate lipid homeostasis, the molecular mechanism remains unclear. Herein, we discovered an ER transmembrane protein 33 (TMEM33) as a downstream effector of PKM2 that regulates activation of SREBPs and lipid metabolism. Loss of PKM2 leads to up‐regulation of TMEM33, which recruits RNF5, an E3 ligase, to promote SREBP‐cleavage activating protein (SCAP) degradation. TMEM33 is transcriptionally regulated by nuclear factor erythroid 2‐like 1 (NRF1), whose cleavage and activation are controlled by PKM2 levels. Total plasma cholesterol levels are elevated by either treatment with PKM2 tetramer‐promoting agent TEPP‐46 or by global PKM2 knockout in mice, highlighting the essential function of PKM2 in lipid metabolism. Although depletion of PKM2 decreases cancer cell growth, global PKM2 knockout accelerates allografted tumor growth. Together, our findings reveal the cell‐autonomous and systemic effects of PKM2 in lipid homeostasis and carcinogenesis, as well as TMEM33 as a bona fide regulator of lipid metabolism. SYNOPSIS This study identifies the endoplasmic reticulum (ER) transmembrane protein TMEM33 as a new mechanistic target of pyruvate kinase M2 (PKM2) and bona fide regulator of lipid metabolism. These findings have implications for cancer caused by elevated plasma cholesterol levels and underscore systemic functions of PKM2, opening up new avenues for therapeutic interventions. PKM2 down‐regulates TMEM33 expression in MEFs and breast cancer cells, derepressing the lipogenic transcription factor SREBP. TMEM33 is transcriptionally regulated by NRF1, whose activation depends on the PKM2/VCP axis. PKM2 loss induces TMEM33, leading it to recruit E3 ligase RNF5 for ubiquitination and degradation of SREBP‐cleavage factor SCAP. Depletion of PKM2 in mice elevates global cholesterol levels and promotes allografted growth of hepatocellular cancer. Graphical Abstract Transmembrane protein TMEM33 is a novel target of ER‐localised PKM2 and regulator of cholesterol metabolism.
AbstractList The pyruvate kinase M2 isoform (PKM2) is preferentially expressed in cancer cells to regulate anabolic metabolism. Although PKM2 was recently reported to regulate lipid homeostasis, the molecular mechanism remains unclear. Herein, we discovered an ER transmembrane protein 33 (TMEM33) as a downstream effector of PKM2 that regulates activation of SREBPs and lipid metabolism. Loss of PKM2 leads to up-regulation of TMEM33, which recruits RNF5, an E3 ligase, to promote SREBP-cleavage activating protein (SCAP) degradation. TMEM33 is transcriptionally regulated by nuclear factor erythroid 2-like 1 (NRF1), whose cleavage and activation are controlled by PKM2 levels. Total plasma cholesterol levels are elevated by either treatment with PKM2 tetramer-promoting agent TEPP-46 or by global PKM2 knockout in mice, highlighting the essential function of PKM2 in lipid metabolism. Although depletion of PKM2 decreases cancer cell growth, global PKM2 knockout accelerates allografted tumor growth. Together, our findings reveal the cell-autonomous and systemic effects of PKM2 in lipid homeostasis and carcinogenesis, as well as TMEM33 as a bona fide regulator of lipid metabolism.The pyruvate kinase M2 isoform (PKM2) is preferentially expressed in cancer cells to regulate anabolic metabolism. Although PKM2 was recently reported to regulate lipid homeostasis, the molecular mechanism remains unclear. Herein, we discovered an ER transmembrane protein 33 (TMEM33) as a downstream effector of PKM2 that regulates activation of SREBPs and lipid metabolism. Loss of PKM2 leads to up-regulation of TMEM33, which recruits RNF5, an E3 ligase, to promote SREBP-cleavage activating protein (SCAP) degradation. TMEM33 is transcriptionally regulated by nuclear factor erythroid 2-like 1 (NRF1), whose cleavage and activation are controlled by PKM2 levels. Total plasma cholesterol levels are elevated by either treatment with PKM2 tetramer-promoting agent TEPP-46 or by global PKM2 knockout in mice, highlighting the essential function of PKM2 in lipid metabolism. Although depletion of PKM2 decreases cancer cell growth, global PKM2 knockout accelerates allografted tumor growth. Together, our findings reveal the cell-autonomous and systemic effects of PKM2 in lipid homeostasis and carcinogenesis, as well as TMEM33 as a bona fide regulator of lipid metabolism.
The pyruvate kinase M2 isoform (PKM2) is preferentially expressed in cancer cells to regulate anabolic metabolism. Although PKM2 was recently reported to regulate lipid homeostasis, the molecular mechanism remains unclear. Herein, we discovered an ER transmembrane protein 33 (TMEM33) as a downstream effector of PKM2 that regulates activation of SREBPs and lipid metabolism. Loss of PKM2 leads to up‐regulation of TMEM33, which recruits RNF5, an E3 ligase, to promote SREBP‐cleavage activating protein (SCAP) degradation. TMEM33 is transcriptionally regulated by nuclear factor erythroid 2‐like 1 (NRF1), whose cleavage and activation are controlled by PKM2 levels. Total plasma cholesterol levels are elevated by either treatment with PKM2 tetramer‐promoting agent TEPP‐46 or by global PKM2 knockout in mice, highlighting the essential function of PKM2 in lipid metabolism. Although depletion of PKM2 decreases cancer cell growth, global PKM2 knockout accelerates allografted tumor growth. Together, our findings reveal the cell‐autonomous and systemic effects of PKM2 in lipid homeostasis and carcinogenesis, as well as TMEM33 as a bona fide regulator of lipid metabolism. SYNOPSIS This study identifies the endoplasmic reticulum (ER) transmembrane protein TMEM33 as a new mechanistic target of pyruvate kinase M2 (PKM2) and bona fide regulator of lipid metabolism. These findings have implications for cancer caused by elevated plasma cholesterol levels and underscore systemic functions of PKM2, opening up new avenues for therapeutic interventions. PKM2 down‐regulates TMEM33 expression in MEFs and breast cancer cells, derepressing the lipogenic transcription factor SREBP. TMEM33 is transcriptionally regulated by NRF1, whose activation depends on the PKM2/VCP axis. PKM2 loss induces TMEM33, leading it to recruit E3 ligase RNF5 for ubiquitination and degradation of SREBP‐cleavage factor SCAP. Depletion of PKM2 in mice elevates global cholesterol levels and promotes allografted growth of hepatocellular cancer. Graphical Abstract Transmembrane protein TMEM33 is a novel target of ER‐localised PKM2 and regulator of cholesterol metabolism.
The pyruvate kinase M2 isoform (PKM2) is preferentially expressed in cancer cells to regulate anabolic metabolism. Although PKM2 was recently reported to regulate lipid homeostasis, the molecular mechanism remains unclear. Herein, we discovered an ER transmembrane protein 33 (TMEM33) as a downstream effector of PKM2 that regulates activation of SREBPs and lipid metabolism. Loss of PKM2 leads to up‐regulation of TMEM33, which recruits RNF5, an E3 ligase, to promote SREBP‐cleavage activating protein (SCAP) degradation. TMEM33 is transcriptionally regulated by nuclear factor erythroid 2‐like 1 (NRF1), whose cleavage and activation are controlled by PKM2 levels. Total plasma cholesterol levels are elevated by either treatment with PKM2 tetramer‐promoting agent TEPP‐46 or by global PKM2 knockout in mice, highlighting the essential function of PKM2 in lipid metabolism. Although depletion of PKM2 decreases cancer cell growth, global PKM2 knockout accelerates allografted tumor growth. Together, our findings reveal the cell‐autonomous and systemic effects of PKM2 in lipid homeostasis and carcinogenesis, as well as TMEM33 as a bona fide regulator of lipid metabolism. SYNOPSIS This study identifies the endoplasmic reticulum (ER) transmembrane protein TMEM33 as a new mechanistic target of pyruvate kinase M2 (PKM2) and bona fide regulator of lipid metabolism. These findings have implications for cancer caused by elevated plasma cholesterol levels and underscore systemic functions of PKM2, opening up new avenues for therapeutic interventions. PKM2 down‐regulates TMEM33 expression in MEFs and breast cancer cells, derepressing the lipogenic transcription factor SREBP. TMEM33 is transcriptionally regulated by NRF1, whose activation depends on the PKM2/VCP axis. PKM2 loss induces TMEM33, leading it to recruit E3 ligase RNF5 for ubiquitination and degradation of SREBP‐cleavage factor SCAP. Depletion of PKM2 in mice elevates global cholesterol levels and promotes allografted growth of hepatocellular cancer. Transmembrane protein TMEM33 is a novel target of ER‐localised PKM2 and regulator of cholesterol metabolism.
The pyruvate kinase M2 isoform (PKM2) is preferentially expressed in cancer cells to regulate anabolic metabolism. Although PKM2 was recently reported to regulate lipid homeostasis, the molecular mechanism remains unclear. Herein, we discovered an ER transmembrane protein 33 (TMEM33) as a downstream effector of PKM2 that regulates activation of SREBPs and lipid metabolism. Loss of PKM2 leads to up‐regulation of TMEM33, which recruits RNF5, an E3 ligase, to promote SREBP‐cleavage activating protein (SCAP) degradation. TMEM33 is transcriptionally regulated by nuclear factor erythroid 2‐like 1 (NRF1), whose cleavage and activation are controlled by PKM2 levels. Total plasma cholesterol levels are elevated by either treatment with PKM2 tetramer‐promoting agent TEPP‐46 or by global PKM2 knockout in mice, highlighting the essential function of PKM2 in lipid metabolism. Although depletion of PKM2 decreases cancer cell growth, global PKM2 knockout accelerates allografted tumor growth. Together, our findings reveal the cell‐autonomous and systemic effects of PKM2 in lipid homeostasis and carcinogenesis, as well as TMEM33 as a bona fide regulator of lipid metabolism. Transmembrane protein TMEM33 is a novel target of ER‐localised PKM2 and regulator of cholesterol metabolism.
The pyruvate kinase M2 isoform (PKM2) is preferentially expressed in cancer cells to regulate anabolic metabolism. Although PKM2 was recently reported to regulate lipid homeostasis, the molecular mechanism remains unclear. Herein, we discovered an ER transmembrane protein 33 (TMEM33) as a downstream effector of PKM2 that regulates activation of SREBPs and lipid metabolism. Loss of PKM2 leads to up-regulation of TMEM33, which recruits RNF5, an E3 ligase, to promote SREBP-cleavage activating protein (SCAP) degradation. TMEM33 is transcriptionally regulated by nuclear factor erythroid 2-like 1 (NRF1), whose cleavage and activation are controlled by PKM2 levels. Total plasma cholesterol levels are elevated by either treatment with PKM2 tetramer-promoting agent TEPP-46 or by global PKM2 knockout in mice, highlighting the essential function of PKM2 in lipid metabolism. Although depletion of PKM2 decreases cancer cell growth, global PKM2 knockout accelerates allografted tumor growth. Together, our findings reveal the cell-autonomous and systemic effects of PKM2 in lipid homeostasis and carcinogenesis, as well as TMEM33 as a bona fide regulator of lipid metabolism.
Author Gao, Ang
Ma, Min
Xu, Wei
Li, Lingjun
Ma, Gui
Donahue, Kristine
Liu, Fabao
Jia, Chenxi
Zhang, Shengjie
Ma, Fengfei
Wang, Yidan
Liu, Peng
Ong, Irene M
Keles, Sunduz
AuthorAffiliation 6 Department of Chemistry University of Wisconsin‐Madison Madison WI USA
5 Department of Statistics University of Wisconsin‐Madison Madison WI USA
2 School of Pharmacy University of Wisconsin‐Madison Madison WI USA
4 UW Carbone Cancer Center School of Medicine and Public Health University of Wisconsin‐Madison Madison WI USA
3 Department of Biostatistics and Medical Informatics University of Wisconsin‐Madison Madison WI USA
7 Present address: Protein Sciences, Discovery Biologics Merck & Co., Inc. South San Francisco CA USA
8 Present address: State Key Laboratory of Proteomics National Center for Protein Sciences‐Beijing Beijing Proteome Research Center Beijing Institute of Radiation Medicine Beijing China
1 McArdle Laboratory for Cancer Research University of Wisconsin‐Madison Madison WI USA
AuthorAffiliation_xml – name: 2 School of Pharmacy University of Wisconsin‐Madison Madison WI USA
– name: 3 Department of Biostatistics and Medical Informatics University of Wisconsin‐Madison Madison WI USA
– name: 6 Department of Chemistry University of Wisconsin‐Madison Madison WI USA
– name: 7 Present address: Protein Sciences, Discovery Biologics Merck & Co., Inc. South San Francisco CA USA
– name: 5 Department of Statistics University of Wisconsin‐Madison Madison WI USA
– name: 8 Present address: State Key Laboratory of Proteomics National Center for Protein Sciences‐Beijing Beijing Proteome Research Center Beijing Institute of Radiation Medicine Beijing China
– name: 4 UW Carbone Cancer Center School of Medicine and Public Health University of Wisconsin‐Madison Madison WI USA
– name: 1 McArdle Laboratory for Cancer Research University of Wisconsin‐Madison Madison WI USA
Author_xml – sequence: 1
  givenname: Fabao
  orcidid: 0000-0003-0019-7301
  surname: Liu
  fullname: Liu, Fabao
  organization: McArdle Laboratory for Cancer Research, University of Wisconsin‐Madison
– sequence: 2
  givenname: Min
  surname: Ma
  fullname: Ma, Min
  organization: School of Pharmacy, University of Wisconsin‐Madison
– sequence: 3
  givenname: Ang
  surname: Gao
  fullname: Gao, Ang
  organization: McArdle Laboratory for Cancer Research, University of Wisconsin‐Madison
– sequence: 4
  givenname: Fengfei
  surname: Ma
  fullname: Ma, Fengfei
  organization: School of Pharmacy, University of Wisconsin‐Madison, Protein Sciences, Discovery Biologics, Merck & Co., Inc
– sequence: 5
  givenname: Gui
  surname: Ma
  fullname: Ma, Gui
  organization: McArdle Laboratory for Cancer Research, University of Wisconsin‐Madison
– sequence: 6
  givenname: Peng
  surname: Liu
  fullname: Liu, Peng
  organization: Department of Biostatistics and Medical Informatics, University of Wisconsin‐Madison, UW Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin‐Madison
– sequence: 7
  givenname: Chenxi
  orcidid: 0000-0001-6334-5282
  surname: Jia
  fullname: Jia, Chenxi
  organization: School of Pharmacy, University of Wisconsin‐Madison, State Key Laboratory of Proteomics, National Center for Protein Sciences‐Beijing, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine
– sequence: 8
  givenname: Yidan
  orcidid: 0000-0002-1417-8059
  surname: Wang
  fullname: Wang, Yidan
  organization: McArdle Laboratory for Cancer Research, University of Wisconsin‐Madison
– sequence: 9
  givenname: Kristine
  surname: Donahue
  fullname: Donahue, Kristine
  organization: McArdle Laboratory for Cancer Research, University of Wisconsin‐Madison
– sequence: 10
  givenname: Shengjie
  surname: Zhang
  fullname: Zhang, Shengjie
  organization: McArdle Laboratory for Cancer Research, University of Wisconsin‐Madison
– sequence: 11
  givenname: Irene M
  surname: Ong
  fullname: Ong, Irene M
  organization: Department of Biostatistics and Medical Informatics, University of Wisconsin‐Madison, UW Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin‐Madison
– sequence: 12
  givenname: Sunduz
  surname: Keles
  fullname: Keles, Sunduz
  organization: Department of Statistics, University of Wisconsin‐Madison
– sequence: 13
  givenname: Lingjun
  orcidid: 0000-0003-0056-3869
  surname: Li
  fullname: Li, Lingjun
  organization: School of Pharmacy, University of Wisconsin‐Madison, Department of Chemistry, University of Wisconsin‐Madison
– sequence: 14
  givenname: Wei
  orcidid: 0000-0003-3808-0045
  surname: Xu
  fullname: Xu, Wei
  email: wxu@oncology.wisc.edu
  organization: McArdle Laboratory for Cancer Research, University of Wisconsin‐Madison
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34487377$$D View this record in MEDLINE/PubMed
BookMark eNqFkcFu1DAURS3Uik4Le1bIEhs2aZ-dOHYkhFRGAxQ6ohJlh2Q5iTP1yLGndgLMjk_gG_kSPJ2W0krAyot37vW97-2jHeedRugJgUPCKKNHuq-XhxQoISCgZA_QhBQlZBQ420EToCXJCiKqPbQf4xIAmODkIdrLi0LwnPMJ-nz2fk5_fv9xPp_N8xyrbybioBejVYOO2JqVafGF77WPg4ppZhxulGt0wI22NuJ6jRvvhuCtNW6BP06Pz3BCa2PNsH6Edjtlo358_R6gT69n59O32emHNyfT49OsYYKxrCYV7XgDQlRFSylTwIAyVrc171JIDS1AWbSiVUQwTWsOtSJcdRXnvOOsyw_Qy63vaqx73TY6BVJWroLpVVhLr4y8O3HmQi78FylYRViRJ4Pn1wbBX446DrI3cVNQOe3HKCkrq5KUgkFCn91Dl34MLtVLVMULkpgiUU__TPQ7ys3iE1BugSb4GIPuZGMGNZjNLpWxkoC8urDcXFjeXjgJ4Z7wxvsfkhdbyVdj9fq_vJzNX727IydbeUxKt9DhtvFfv_wFxzfJ-g
CitedBy_id crossref_primary_10_1038_s41419_024_07328_8
crossref_primary_10_1021_acschemneuro_3c00497
crossref_primary_10_1002_advs_202402600
crossref_primary_10_3389_fmicb_2022_849020
crossref_primary_10_1002_cbin_11950
crossref_primary_10_1016_j_canlet_2024_217415
crossref_primary_10_1016_j_brainresbull_2023_110752
crossref_primary_10_1016_j_ijbiomac_2024_130961
crossref_primary_10_3389_fgene_2022_908807
crossref_primary_10_1186_s12967_023_04780_6
crossref_primary_10_1620_tjem_2023_J027
crossref_primary_10_1016_j_jep_2023_117472
crossref_primary_10_1371_journal_pone_0294508
crossref_primary_10_1016_j_bbcan_2024_189089
crossref_primary_10_1155_2023_5542181
crossref_primary_10_1016_j_cmet_2023_12_003
crossref_primary_10_7554_eLife_92741
crossref_primary_10_1016_j_rvsc_2024_105275
crossref_primary_10_1016_j_jad_2024_05_156
crossref_primary_10_7554_eLife_92741_4
crossref_primary_10_1111_cas_70056
crossref_primary_10_1007_s12672_024_01069_y
crossref_primary_10_1016_j_celrep_2022_111675
crossref_primary_10_1007_s11010_024_05174_y
crossref_primary_10_3390_antiox13070758
crossref_primary_10_1002_advs_202407942
crossref_primary_10_3390_ijms25042152
crossref_primary_10_1007_s12032_025_02671_y
crossref_primary_10_15252_embj_2021109683
crossref_primary_10_3389_fphar_2023_1130747
crossref_primary_10_1111_mmi_15228
crossref_primary_10_1016_j_canlet_2025_217493
crossref_primary_10_1186_s11658_024_00629_y
crossref_primary_10_1016_j_canlet_2024_217076
crossref_primary_10_1111_febs_17097
crossref_primary_10_1016_j_drudis_2024_103949
Cites_doi 10.1172/JCI0215593
10.1038/nchembio.1060
10.1038/oncsis.2015.49
10.1038/nature06734
10.1038/s41580-019-0190-7
10.1016/j.taap.2009.07.034
10.1016/j.ajpath.2010.11.005
10.1186/s40880-018-0301-4
10.1007/s10549-015-3536-7
10.1126/science.1160809
10.4103/1477-3163.115423
10.1002/jcp.27129
10.1074/jbc.RA119.011849
10.1038/nature10598
10.1074/jbc.RA117.000100
10.1101/gad.278549.116
10.15252/embr.201643300
10.1038/nmeth.2368
10.1016/j.cell.2013.09.025
10.1016/j.cmet.2019.10.015
10.1128/MCB.00439-16
10.1038/s41586-020-2183-2
10.1016/j.canlet.2014.01.031
10.1038/nrc.2016.76
10.1101/gad.268722.115
10.2174/13816128113199990486
10.1073/pnas.0506580102
10.7554/eLife.28766
10.1007/978-3-319-42118-6_1
10.1038/s41586-019-0984-y
10.1074/jbc.M310053200
10.1158/0008-5472.CAN-15-2613
10.1016/S0021-9258(18)67091-7
10.1016/j.ajpath.2014.03.006
10.1074/jbc.M804597200
10.1038/nprot.2016.140
10.1016/j.cell.2011.03.054
10.4093/dmj.2015.39.5.353
10.1038/ni.2681
10.1038/ncomms5436
10.1101/gad.189365.112
10.1016/j.cellsig.2014.11.004
10.7554/eLife.01856
10.1073/pnas.1706205114
10.1074/mcp.M113.031591
10.1038/ncb3630
10.1016/j.ccell.2015.09.021
10.1074/jbc.M808222200
10.4049/jimmunol.1901086
10.1016/j.cell.2017.05.022
10.1016/j.cell.2017.10.003
10.1146/annurev-biochem-062917-011852
ContentType Journal Article
Copyright The Author(s) 2021
2021 The Authors
2021 The Authors.
2021 EMBO
Copyright_xml – notice: The Author(s) 2021
– notice: 2021 The Authors
– notice: 2021 The Authors.
– notice: 2021 EMBO
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QG
7QL
7QP
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
K9.
M7N
P64
RC3
7X8
5PM
DOI 10.15252/embj.2021108065
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Immunology Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
ProQuest Health & Medical Complete (Alumni)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Virology and AIDS Abstracts
Oncogenes and Growth Factors Abstracts
Technology Research Database
Nucleic Acids Abstracts
ProQuest Health & Medical Complete (Alumni)
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Genetics Abstracts
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Immunology Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic



MEDLINE
Virology and AIDS Abstracts
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
Biology
DocumentTitleAlternate Fabao Liu et al
EISSN 1460-2075
EndPage n/a
ExternalDocumentID PMC8591543
34487377
10_15252_embj_2021108065
EMBJ2021108065
Genre article
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: HHS|NIH|National Cancer Institute (NCI)
  grantid: NCI P30CA014520
  funderid: 10.13039/100000054
– fundername: HHS|National Institutes of Health (NIH)
  grantid: R01 CA236356; R01DK071801; R01 CA213293
  funderid: 10.13039/100000002
– fundername: HHS|National Institutes of Health (NIH)
  funderid: R01 CA236356; R01DK071801; R01 CA213293
– fundername: HHS|NIH|National Cancer Institute (NCI)
  funderid: NCI P30CA014520
– fundername: NIA NIH HHS
  grantid: RF1 AG052324
– fundername: NHGRI NIH HHS
  grantid: R01 HG003747
– fundername: NIGMS NIH HHS
  grantid: P41 GM108538
– fundername: NIDDK NIH HHS
  grantid: R01 DK071801
– fundername: NCI NIH HHS
  grantid: P30 CA014520
– fundername: NCI NIH HHS
  grantid: R01 CA213293
– fundername: NCRR NIH HHS
  grantid: S10 RR029531
– fundername: NCI NIH HHS
  grantid: R01 CA236356
– fundername: ;
  grantid: NCI P30CA014520
– fundername: ;
  grantid: R01 CA236356; R01DK071801; R01 CA213293
GroupedDBID ---
-DZ
-~X
0R~
123
1OC
24P
29G
2WC
33P
36B
39C
53G
5VS
70F
8R4
8R5
A8Z
AAESR
AAEVG
AAHBH
AAHHS
AAIHA
AAJSJ
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCUV
ABLJU
ACAHQ
ACCFJ
ACCZN
ACGFO
ACGFS
ACNCT
ACPOU
ACPRK
ACXBN
ACXQS
ADBBV
ADEOM
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AENEX
AEQDE
AEUYR
AFBPY
AFFNX
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHMBA
AIAGR
AIURR
AIWBW
AJBDE
ALAGY
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
AOIJS
AUFTA
AZBYB
AZFZN
AZVAB
BAWUL
BDRZF
BENPR
BFHJK
BMNLL
BMXJE
BRXPI
BTFSW
C6C
CS3
DCZOG
DIK
DPXWK
DRFUL
DRSTM
DU5
E3Z
EBD
EBLON
EBS
EMB
EMOBN
F5P
G-S
GROUPED_DOAJ
GX1
HH5
HK~
HYE
KQ8
LATKE
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MRFUL
MRSTM
MSFUL
MSSTM
MVM
MXFUL
MXSTM
MY~
O9-
OK1
P2P
P2W
Q2X
R.K
RHI
RNS
ROL
RPM
SV3
TN5
TR2
WBKPD
WH7
WIH
WIK
WIN
WOHZO
WXSBR
WYJ
YSK
ZCA
ZZTAW
~KM
ABJNI
AASML
AAYXX
ABZEH
CITATION
NAO
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
CGR
CUY
CVF
ECM
EIF
NPM
7QG
7QL
7QP
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
K9.
M7N
P64
RC3
7X8
5PM
ID FETCH-LOGICAL-c5855-b192f7c08894d225a050255bdb7f377e0d0064d8da185e2b70ba17af9777f75f3
IEDL.DBID C6C
ISSN 0261-4189
1460-2075
IngestDate Thu Aug 21 18:39:09 EDT 2025
Fri Jul 11 07:30:43 EDT 2025
Fri Jul 25 19:24:38 EDT 2025
Mon Jul 21 06:02:25 EDT 2025
Thu Apr 24 23:07:48 EDT 2025
Tue Jul 01 01:47:23 EDT 2025
Wed Jan 22 16:26:56 EST 2025
Fri Feb 21 02:37:33 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 22
Keywords tumor growth
total cholesterol levels
PKM2
TMEM33
SCAP degradation
Language English
License 2021 The Authors.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5855-b192f7c08894d225a050255bdb7f377e0d0064d8da185e2b70ba17af9777f75f3
Notes See also
A Khateb & ZA Ronai
November 2021
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
See also: A Khateb & ZA Ronai (November 2021)
ORCID 0000-0003-0056-3869
0000-0003-0019-7301
0000-0002-1417-8059
0000-0001-6334-5282
0000-0003-3808-0045
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.15252/embj.2021108065
PMID 34487377
PQID 2597415034
PQPubID 35985
PageCount 20
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_8591543
proquest_miscellaneous_2569616850
proquest_journals_2597415034
pubmed_primary_34487377
crossref_citationtrail_10_15252_embj_2021108065
crossref_primary_10_15252_embj_2021108065
wiley_primary_10_15252_embj_2021108065_EMBJ2021108065
springer_journals_10_15252_embj_2021108065
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 15 November 2021
PublicationDateYYYYMMDD 2021-11-15
PublicationDate_xml – month: 11
  year: 2021
  text: 15 November 2021
  day: 15
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
– name: New York
– name: Hoboken
PublicationTitle The EMBO journal
PublicationTitleAbbrev EMBO J
PublicationTitleAlternate EMBO J
PublicationYear 2021
Publisher Nature Publishing Group UK
Springer Nature B.V
John Wiley and Sons Inc
Publisher_xml – name: Nature Publishing Group UK
– name: Springer Nature B.V
– name: John Wiley and Sons Inc
References Christofk, Vander Heiden, Harris, Ramanathan, Gerszten, Wei, Fleming, Schreiber, Cantley (CR11) 2008; 452
Brault, Schulze (CR7) 2016; 207
Xu, Wang, Xia, Shao, Xia, Wei, Li, Qian, Lee, Du (CR49) 2020; 580
Angiari, Runtsch, Sutton, Palsson‐McDermott, Kelly, Rana, Kane, Papadopoulou, Pearce, Mills (CR2) 2020; 31
Anastasiou, Yu, Israelsen, Jiang, Boxer, Hong, Tempel, Dimov, Shen, Jha (CR1) 2012; 8
Medes, Thomas, Weinhouse (CR29) 1953; 13
Pelton, Coticchia, Curatolo, Schaffner, Zurakowski, Solomon, Moses (CR36) 2014; 184
Liu, Ma, Wang, Hao, Zeng, Jia, Wang, Liu, Ong, Li (CR25) 2017; 19
Yang, Xie, Yang, Yu, Zhu, Hou, Kang, Lotze, Billiar, Wang (CR50) 2014; 5
Filipp (CR17) 2013; 12
Sever, Song, Yabe, Goldstein, Brown, DeBose‐Boyd (CR39) 2003; 278
Biswas, Chan (CR5) 2010; 244
Cheng, Ru, Geng, Liu, Yoo, Wu, Cheng, Euthine, Hu, Guo (CR10) 2015; 28
Zhang, Rajbhandari, Priest, Sandhu, Wu, Temel, Castrillo, Vallim, Sallam, Tontonoz (CR53) 2017; 6
Tao, Su, Xu, Deng, Zhou, Zhuang, Huang, He, He, Peng (CR43) 2019; 234
Kuan, Takahashi, Maruyama, Shimizu, Yamauchi, Sato (CR22) 2020; 295
Baird, Tsujita, Kobayashi, Funayama, Nagashima, Nakayama, Yamamoto (CR3) 2017; 37
Cox, Hein, Luber, Paron, Nagaraj, Mann (CR12) 2014; 13
Parker, Calkin, Seldin, Keating, Tarling, Yang, Moody, Liu, Zerenturk, Needham (CR35) 2019; 567
Dayton, Jacks, Vander Heiden (CR15) 2016; 17
Guo, Bell, Mischel, Chakravarti (CR18) 2014; 20
Noguchi, Inoue, Tanaka (CR31) 1986; 261
Tcherpakov, Delaunay, Toth, Kadoya, Petroski, Ronai (CR44) 2009; 284
Ohtsuji, Katsuoka, Kobayashi, Aburatani, Hayes, Yamamoto (CR32) 2008; 283
Hulce, Cognetta, Niphakis, Tully, Cravatt (CR20) 2013; 10
Pankow, Bamberger, Calzolari, Bamberger, Yates (CR33) 2016; 11
Ding, Zhang, Li, Yang (CR16) 2019; 9
Beloribi‐Djefaflia, Vasseur, Guillaumond (CR4) 2016; 5
Luo, Hu, Chang, Zhong, Knabel, O'Meally, Cole, Pandey, Semenza (CR28) 2011; 145
Sakabe, Hu, Jin, Clarke, Kasid (CR38) 2015; 153
Spann, Glass (CR41) 2013; 14
Dayton, Gocheva, Miller, Israelsen, Bhutkar, Clish, Davidson, Luengo, Bronson, Jacks (CR14) 2016; 30
Zhao, Zhao, Yang, Li, Min, Yang, Liu, Huang (CR54) 2018; 293
Horton, Goldstein, Brown (CR19) 2002; 109
Lee, Nam, Oh, Lim, Lee, Shin (CR24) 2015; 27
Simsek, Tiu, Flynn, Byeon, Leppek, Xu, Chang, Barna (CR40) 2017; 169
Widenmaier, Snyder, Nguyen, Arduini, Lee, Arruda, Saksi, Bartelt, Hotamisligil (CR47) 2017; 171
Vander Heiden, Cantley, Thompson (CR46) 2009; 324
van de Wetering, Aboushousha, Manuel, Chia, Erickson, MacPherson, van der Velden, Anathy, Dixon, Irvin (CR45) 2020; 204
Luo, Yang, Song (CR27) 2020; 21
Cheng, Geng, Cheng, Guo (CR9) 2018; 38
Wong, Ojo, Yan, Tang (CR48) 2015; 356
Israelsen, Dayton, Davidson, Fiske, Hosios, Bellinger, Li, Yu, Sasaki, Horner (CR21) 2013; 155
Llaverias, Danilo, Mercier, Daumer, Capozza, Williams, Sotgia, Lisanti, Frank (CR26) 2011; 178
Kuzu, Noory, Robertson (CR23) 2016; 76
Dang (CR13) 2012; 26
Parhofer (CR34) 2015; 39
Subramanian, Tamayo, Mootha, Mukherjee, Ebert, Gillette, Paulovich, Pomeroy, Golub, Lander (CR42) 2005; 102
Radhakrishnan, den Besten, Deshaies (CR37) 2014; 3
Zeng, Xu (CR52) 2015; 29
Blythe, Olson, Chau, Deshaies (CR6) 2017; 114
Mullen, Yu, Longo, Archer, Penn (CR30) 2016; 16
Yang, Xia, Ji, Zheng, Liang, Huang, Gao, Aldape, Lu (CR51) 2011; 480
Brown, Radhakrishnan, Goldstein (CR8) 2018; 87
2017; 6
2015; 39
2016; 76
2020; 204
2019; 567
2018; 87
2003; 278
2017; 114
2014; 20
2014; 5
2013; 14
2014; 3
2018; 293
2017; 37
2020; 295
2013; 10
2013; 12
2005; 102
1986; 261
2013; 155
2019; 234
2014; 13
2009; 284
2012; 26
2002; 109
2011; 480
2017; 169
2018; 38
2009; 324
2019; 9
2016b; 17
2020; 580
2016; 207
2010; 244
2017; 171
1953; 13
2016; 16
2011; 178
2008; 283
2016; 11
2016; 5
2015; 28
2015; 27
2015; 29
2020; 31
2015; 356
2015; 153
2017; 19
2014; 184
2020; 21
2008; 452
2011; 145
2012; 8
2016a; 30
e_1_2_9_31_1
e_1_2_9_52_1
e_1_2_9_50_1
e_1_2_9_10_1
e_1_2_9_35_1
e_1_2_9_12_1
e_1_2_9_33_1
e_1_2_9_54_1
e_1_2_9_14_1
e_1_2_9_39_1
e_1_2_9_16_1
e_1_2_9_37_1
e_1_2_9_18_1
e_1_2_9_41_1
e_1_2_9_20_1
e_1_2_9_22_1
e_1_2_9_45_1
e_1_2_9_24_1
e_1_2_9_43_1
e_1_2_9_8_1
e_1_2_9_6_1
e_1_2_9_4_1
e_1_2_9_2_1
e_1_2_9_26_1
e_1_2_9_49_1
e_1_2_9_28_1
e_1_2_9_47_1
e_1_2_9_53_1
e_1_2_9_51_1
e_1_2_9_11_1
e_1_2_9_34_1
e_1_2_9_13_1
e_1_2_9_32_1
e_1_2_9_55_1
Medes G (e_1_2_9_30_1) 1953; 13
e_1_2_9_15_1
e_1_2_9_38_1
e_1_2_9_36_1
e_1_2_9_19_1
e_1_2_9_42_1
e_1_2_9_40_1
e_1_2_9_21_1
e_1_2_9_46_1
e_1_2_9_23_1
e_1_2_9_44_1
e_1_2_9_7_1
e_1_2_9_5_1
e_1_2_9_3_1
e_1_2_9_9_1
e_1_2_9_25_1
e_1_2_9_27_1
e_1_2_9_48_1
e_1_2_9_29_1
Ding X (e_1_2_9_17_1) 2019; 9
34642948 - EMBO J. 2021 Nov 15;40(22):e109683
References_xml – volume: 452
  start-page: 230
  year: 2008
  end-page: 233
  ident: CR11
  article-title: The M2 splice isoform of pyruvate kinase is important for cancer metabolism and tumour growth
  publication-title: Nature
– volume: 26
  start-page: 877
  year: 2012
  end-page: 890
  ident: CR13
  article-title: Links between metabolism and cancer
  publication-title: Gene Dev
– volume: 5
  start-page: 4436
  year: 2014
  ident: CR50
  article-title: PKM2 regulates the Warburg effect and promotes HMGB1 release in sepsis
  publication-title: Nat Commun
– volume: 39
  start-page: 353
  year: 2015
  end-page: 362
  ident: CR34
  article-title: Interaction between glucose and lipid metabolism: more than diabetic dyslipidemia
  publication-title: Diabetes Metab J
– volume: 76
  start-page: 2063
  year: 2016
  end-page: 2070
  ident: CR23
  article-title: The role of cholesterol in cancer
  publication-title: Cancer Res
– volume: 31
  start-page: 391
  year: 2020
  end-page: 405.e8
  ident: CR2
  article-title: Pharmacological activation of pyruvate kinase M2 Inhibits CD4(+) T cell pathogenicity and suppresses autoimmunity
  publication-title: Cell Metab
– volume: 102
  start-page: 15545
  year: 2005
  end-page: 15550
  ident: CR42
  article-title: Gene set enrichment analysis: a knowledge‐based approach for interpreting genome‐wide expression profiles
  publication-title: Proc Natl Acad Sci USA
– volume: 244
  start-page: 16
  year: 2010
  end-page: 20
  ident: CR5
  article-title: Role of Nrf1 in antioxidant response element‐mediated gene expression and beyond
  publication-title: Toxicol Appl Pharmacol
– volume: 155
  start-page: 397
  year: 2013
  end-page: 409
  ident: CR21
  article-title: PKM2 isoform‐specific deletion reveals a differential requirement for pyruvate kinase in tumor cells
  publication-title: Cell
– volume: 278
  start-page: 52479
  year: 2003
  end-page: 52490
  ident: CR39
  article-title: Insig‐dependent ubiquitination and degradation of mammalian 3‐hydroxy‐3‐methylglutaryl‐CoA reductase stimulated by sterols and geranylgeraniol
  publication-title: J Biol Chem
– volume: 37
  start-page: E00651
  year: 2017
  end-page: E1199
  ident: CR3
  article-title: A homeostatic shift facilitates endoplasmic reticulum proteostasis through transcriptional integration of proteostatic stress response pathways
  publication-title: Mol Cell Biol
– volume: 204
  start-page: 763
  year: 2020
  end-page: 774
  ident: CR45
  article-title: Pyruvate kinase M2 promotes expression of proinflammatory mediators in house dust mite‐induced allergic airways disease
  publication-title: J Immunol
– volume: 14
  start-page: 893
  year: 2013
  end-page: 900
  ident: CR41
  article-title: Sterols and oxysterols in immune cell function
  publication-title: Nat Immunol
– volume: 10
  start-page: 259
  year: 2013
  end-page: 264
  ident: CR20
  article-title: Proteome‐wide mapping of cholesterol‐interacting proteins in mammalian cells
  publication-title: Nat Methods
– volume: 153
  start-page: 285
  year: 2015
  end-page: 297
  ident: CR38
  article-title: TMEM33: a new stress‐inducible endoplasmic reticulum transmembrane protein and modulator of the unfolded protein response signaling
  publication-title: Breast Cancer Res Treat
– volume: 295
  start-page: 3918
  year: 2020
  end-page: 3928
  ident: CR22
  article-title: Ring finger protein 5 activates sterol regulatory element‐binding protein 2 (SREBP2) to promote cholesterol biosynthesis via inducing polyubiquitination of SREBP chaperone SCAP
  publication-title: J Biol Chem
– volume: 114
  start-page: E4380
  year: 2017
  end-page: E4388
  ident: CR6
  article-title: Ubiquitin‐ and ATP‐dependent unfoldase activity of P97/VCP center dot NPLOC4 center dot UFD1L is enhanced by a mutation that causes multisystem proteinopathy
  publication-title: Proc Natl Acad Sci USA
– volume: 87
  start-page: 783
  year: 2018
  end-page: 807
  ident: CR8
  article-title: Retrospective on cholesterol homeostasis: the central role of scap
  publication-title: Annu Rev Biochem
– volume: 293
  start-page: 6623
  year: 2018
  end-page: 6634
  ident: CR54
  article-title: Pyruvate kinase M2 interacts with nuclear sterol regulatory element‐binding protein 1a and thereby activates lipogenesis and cell proliferation in hepatocellular carcinoma
  publication-title: J Biol Chem
– volume: 3
  year: 2014
  ident: CR37
  article-title: p97‐dependent retrotranslocation and proteolytic processing govern formation of active Nrf1 upon proteasome inhibition
  publication-title: Elife
– volume: 169
  start-page: 1051
  year: 2017
  end-page: 1065.e18
  ident: CR40
  article-title: The mammalian ribo‐interactome reveals ribosome functional diversity and heterogeneity
  publication-title: Cell
– volume: 234
  start-page: 3088
  year: 2019
  end-page: 3104
  ident: CR43
  article-title: Down‐regulation of PKM2 decreases FASN expression in bladder cancer cells through AKT/mTOR/SREBP‐1c axis
  publication-title: J Cell Physiol
– volume: 21
  start-page: 225
  year: 2020
  end-page: 245
  ident: CR27
  article-title: Mechanisms and regulation of cholesterol homeostasis
  publication-title: Nat Rev Mol Cell Biol
– volume: 12
  start-page: 14
  year: 2013
  ident: CR17
  article-title: Cancer metabolism meets systems biology: Pyruvate kinase isoform PKM2 is a metabolic master regulator
  publication-title: J Carcinog
– volume: 580
  start-page: 530
  year: 2020
  end-page: 535
  ident: CR49
  article-title: The gluconeogenic enzyme PCK1 phosphorylates INSIG1/2 for lipogenesis
  publication-title: Nature
– volume: 480
  start-page: 118
  year: 2011
  end-page: 122
  ident: CR51
  article-title: Nuclear PKM2 regulates beta‐catenin transactivation upon EGFR activation
  publication-title: Nature
– volume: 17
  start-page: 1721
  year: 2016
  end-page: 1730
  ident: CR15
  article-title: PKM2, cancer metabolism, and the road ahead
  publication-title: EMBO Rep
– volume: 356
  start-page: 184
  year: 2015
  end-page: 191
  ident: CR48
  article-title: PKM2 contributes to cancer metabolism
  publication-title: Cancer Lett
– volume: 5
  start-page: e189
  year: 2016
  ident: CR4
  article-title: Lipid metabolic reprogramming in cancer cells
  publication-title: Oncogenesis
– volume: 30
  start-page: 1020
  year: 2016
  end-page: 1033
  ident: CR14
  article-title: Germline loss of PKM2 promotes metabolic distress and hepatocellular carcinoma
  publication-title: Genes Dev
– volume: 171
  start-page: 1094
  year: 2017
  end-page: 1109.e15
  ident: CR47
  article-title: NRF1 is an ER membrane sensor that is central to cholesterol homeostasis
  publication-title: Cell
– volume: 20
  start-page: 2619
  year: 2014
  end-page: 2626
  ident: CR18
  article-title: Targeting SREBP‐1‐driven lipid metabolism to treat cancer
  publication-title: Curr Pharm Design
– volume: 27
  start-page: 228
  year: 2015
  end-page: 235
  ident: CR24
  article-title: ECM1 promotes the Warburg effect through EGF‐mediated activation of PKM2
  publication-title: Cell Signal
– volume: 109
  start-page: 1125
  year: 2002
  end-page: 1131
  ident: CR19
  article-title: SREBPs: activators of the complete program of cholesterol and fatty acid synthesis in the liver
  publication-title: J Clin Invest
– volume: 9
  start-page: 219
  year: 2019
  end-page: 227
  ident: CR16
  article-title: The role of cholesterol metabolism in cancer
  publication-title: Am J Cancer Res
– volume: 29
  start-page: 2153
  year: 2015
  end-page: 2167
  ident: CR52
  article-title: Ctr9, a key subunit of PAFc, affects global estrogen signaling and drives ERalpha‐positive breast tumorigenesis
  publication-title: Genes Dev
– volume: 38
  start-page: 27
  year: 2018
  ident: CR9
  article-title: Lipid metabolism reprogramming and its potential targets in cancer
  publication-title: Cancer Commun
– volume: 261
  start-page: 13807
  year: 1986
  end-page: 13812
  ident: CR31
  article-title: The M1‐ and M2‐type isozymes of rat pyruvate kinase are produced from the same gene by alternative RNA splicing
  publication-title: J Biol Chem
– volume: 567
  start-page: 187‐+
  year: 2019
  ident: CR35
  article-title: An integrative systems genetic analysis of mammalian lipid metabolism
  publication-title: Nature
– volume: 184
  start-page: 2099
  year: 2014
  end-page: 2110
  ident: CR36
  article-title: Hypercholesterolemia induces angiogenesis and accelerates growth of breast tumors in vivo
  publication-title: Am J Pathol
– volume: 13
  start-page: 27
  year: 1953
  end-page: 29
  ident: CR29
  article-title: Metabolism of neoplastic tissue. IV. A study of lipid synthesis in neoplastic tissue slices
  publication-title: Cancer Res
– volume: 283
  start-page: 33554
  year: 2008
  end-page: 33562
  ident: CR32
  article-title: Nrf1 and Nrf2 play distinct roles in activation of antioxidant response element‐dependent genes
  publication-title: J Biol Chem
– volume: 207
  start-page: 1
  year: 2016
  end-page: 22
  ident: CR7
  article-title: The role of glucose and lipid metabolism in growth and survival of cancer cells
  publication-title: Recent Results Cancer Res
– volume: 145
  start-page: 732
  year: 2011
  end-page: 744
  ident: CR28
  article-title: Pyruvate kinase M2 is a PHD3‐stimulated coactivator for hypoxia‐inducible factor 1
  publication-title: Cell
– volume: 324
  start-page: 1029
  year: 2009
  end-page: 1033
  ident: CR46
  article-title: Understanding the Warburg effect: the metabolic requirements of cell proliferation
  publication-title: Science
– volume: 11
  start-page: 2515
  year: 2016
  end-page: 2528
  ident: CR33
  article-title: Deep interactome profiling of membrane proteins by co‐interacting protein identification technology
  publication-title: Nat Protoc
– volume: 6
  year: 2017
  ident: CR53
  article-title: Inhibition of cholesterol biosynthesis through RNF145‐dependent ubiquitination of SCAP
  publication-title: Elife
– volume: 8
  start-page: 839
  year: 2012
  end-page: 847
  ident: CR1
  article-title: Pyruvate kinase M2 activators promote tetramer formation and suppress tumorigenesis
  publication-title: Nat Chem Biol
– volume: 28
  start-page: 569
  year: 2015
  end-page: 581
  ident: CR10
  article-title: Glucose‐mediated N‐glycosylation of SCAP is essential for SREBP‐1 activation and tumor growth
  publication-title: Cancer Cell
– volume: 19
  start-page: 1358
  year: 2017
  end-page: 1370
  ident: CR25
  article-title: PKM2 methylation by CARM1 activates aerobic glycolysis to promote tumorigenesis
  publication-title: Nat Cell Biol
– volume: 284
  start-page: 12099
  year: 2009
  end-page: 12109
  ident: CR44
  article-title: Regulation of endoplasmic reticulum‐associated degradation by RNF5‐dependent ubiquitination of JNK‐associated membrane protein (JAMP)
  publication-title: J Biol Chem
– volume: 178
  start-page: 402
  year: 2011
  end-page: 412
  ident: CR26
  article-title: Role of cholesterol in the development and progression of breast cancer
  publication-title: Am J Pathol
– volume: 13
  start-page: 2513
  year: 2014
  end-page: 2526
  ident: CR12
  article-title: Accurate proteome‐wide label‐free quantification by delayed normalization and maximal peptide ratio extraction, termed MaxLFQ
  publication-title: Mol Cell Proteomics
– volume: 16
  start-page: 718
  year: 2016
  end-page: 731
  ident: CR30
  article-title: The interplay between cell signalling and the mevalonate pathway in cancer
  publication-title: Nat Rev Cancer
– volume: 3
  year: 2014
  article-title: p97‐dependent retrotranslocation and proteolytic processing govern formation of active Nrf1 upon proteasome inhibition
  publication-title: Elife
– volume: 31
  start-page: 391
  year: 2020
  end-page: 405.e8
  article-title: Pharmacological activation of pyruvate kinase M2 Inhibits CD4(+) T cell pathogenicity and suppresses autoimmunity
  publication-title: Cell Metab
– volume: 5
  start-page: e189
  year: 2016
  article-title: Lipid metabolic reprogramming in cancer cells
  publication-title: Oncogenesis
– volume: 30
  start-page: 1020
  year: 2016a
  end-page: 1033
  article-title: Germline loss of PKM2 promotes metabolic distress and hepatocellular carcinoma
  publication-title: Genes Dev
– volume: 16
  start-page: 718
  year: 2016
  end-page: 731
  article-title: The interplay between cell signalling and the mevalonate pathway in cancer
  publication-title: Nat Rev Cancer
– volume: 324
  start-page: 1029
  year: 2009
  end-page: 1033
  article-title: Understanding the Warburg effect: the metabolic requirements of cell proliferation
  publication-title: Science
– volume: 28
  start-page: 569
  year: 2015
  end-page: 581
  article-title: Glucose‐mediated N‐glycosylation of SCAP is essential for SREBP‐1 activation and tumor growth
  publication-title: Cancer Cell
– volume: 184
  start-page: 2099
  year: 2014
  end-page: 2110
  article-title: Hypercholesterolemia induces angiogenesis and accelerates growth of breast tumors in vivo
  publication-title: Am J Pathol
– volume: 204
  start-page: 763
  year: 2020
  end-page: 774
  article-title: Pyruvate kinase M2 promotes expression of proinflammatory mediators in house dust mite‐induced allergic airways disease
  publication-title: J Immunol
– volume: 234
  start-page: 3088
  year: 2019
  end-page: 3104
  article-title: Down‐regulation of PKM2 decreases FASN expression in bladder cancer cells through AKT/mTOR/SREBP‐1c axis
  publication-title: J Cell Physiol
– volume: 171
  start-page: 1094
  year: 2017
  end-page: 1109.e15
  article-title: NRF1 is an ER membrane sensor that is central to cholesterol homeostasis
  publication-title: Cell
– volume: 38
  start-page: 27
  year: 2018
  article-title: Lipid metabolism reprogramming and its potential targets in cancer
  publication-title: Cancer Commun
– volume: 295
  start-page: 3918
  year: 2020
  end-page: 3928
  article-title: Ring finger protein 5 activates sterol regulatory element‐binding protein 2 (SREBP2) to promote cholesterol biosynthesis via inducing polyubiquitination of SREBP chaperone SCAP
  publication-title: J Biol Chem
– volume: 29
  start-page: 2153
  year: 2015
  end-page: 2167
  article-title: Ctr9, a key subunit of PAFc, affects global estrogen signaling and drives ERalpha‐positive breast tumorigenesis
  publication-title: Genes Dev
– volume: 178
  start-page: 402
  year: 2011
  end-page: 412
  article-title: Role of cholesterol in the development and progression of breast cancer
  publication-title: Am J Pathol
– volume: 284
  start-page: 12099
  year: 2009
  end-page: 12109
  article-title: Regulation of endoplasmic reticulum‐associated degradation by RNF5‐dependent ubiquitination of JNK‐associated membrane protein (JAMP)
  publication-title: J Biol Chem
– volume: 567
  start-page: 187‐+
  year: 2019
  article-title: An integrative systems genetic analysis of mammalian lipid metabolism
  publication-title: Nature
– volume: 580
  start-page: 530
  year: 2020
  end-page: 535
  article-title: The gluconeogenic enzyme PCK1 phosphorylates INSIG1/2 for lipogenesis
  publication-title: Nature
– volume: 145
  start-page: 732
  year: 2011
  end-page: 744
  article-title: Pyruvate kinase M2 is a PHD3‐stimulated coactivator for hypoxia‐inducible factor 1
  publication-title: Cell
– volume: 37
  start-page: E00651
  year: 2017
  end-page: E1199
  article-title: A homeostatic shift facilitates endoplasmic reticulum proteostasis through transcriptional integration of proteostatic stress response pathways
  publication-title: Mol Cell Biol
– volume: 39
  start-page: 353
  year: 2015
  end-page: 362
  article-title: Interaction between glucose and lipid metabolism: more than diabetic dyslipidemia
  publication-title: Diabetes Metab J
– volume: 12
  start-page: 14
  year: 2013
  article-title: Cancer metabolism meets systems biology: Pyruvate kinase isoform PKM2 is a metabolic master regulator
  publication-title: J Carcinog
– volume: 480
  start-page: 118
  year: 2011
  end-page: 122
  article-title: Nuclear PKM2 regulates beta‐catenin transactivation upon EGFR activation
  publication-title: Nature
– volume: 8
  start-page: 839
  year: 2012
  end-page: 847
  article-title: Pyruvate kinase M2 activators promote tetramer formation and suppress tumorigenesis
  publication-title: Nat Chem Biol
– volume: 13
  start-page: 27
  year: 1953
  end-page: 29
  article-title: Metabolism of neoplastic tissue. IV. A study of lipid synthesis in neoplastic tissue slices
  publication-title: Cancer Res
– volume: 27
  start-page: 228
  year: 2015
  end-page: 235
  article-title: ECM1 promotes the Warburg effect through EGF‐mediated activation of PKM2
  publication-title: Cell Signal
– volume: 169
  start-page: 1051
  year: 2017
  end-page: 1065.e18
  article-title: The mammalian ribo‐interactome reveals ribosome functional diversity and heterogeneity
  publication-title: Cell
– volume: 283
  start-page: 33554
  year: 2008
  end-page: 33562
  article-title: Nrf1 and Nrf2 play distinct roles in activation of antioxidant response element‐dependent genes
  publication-title: J Biol Chem
– volume: 102
  start-page: 15545
  year: 2005
  end-page: 15550
  article-title: Gene set enrichment analysis: a knowledge‐based approach for interpreting genome‐wide expression profiles
  publication-title: Proc Natl Acad Sci USA
– volume: 76
  start-page: 2063
  year: 2016
  end-page: 2070
  article-title: The role of cholesterol in cancer
  publication-title: Cancer Res
– volume: 10
  start-page: 259
  year: 2013
  end-page: 264
  article-title: Proteome‐wide mapping of cholesterol‐interacting proteins in mammalian cells
  publication-title: Nat Methods
– volume: 9
  start-page: 219
  year: 2019
  end-page: 227
  article-title: The role of cholesterol metabolism in cancer
  publication-title: Am J Cancer Res
– volume: 21
  start-page: 225
  year: 2020
  end-page: 245
  article-title: Mechanisms and regulation of cholesterol homeostasis
  publication-title: Nat Rev Mol Cell Biol
– volume: 14
  start-page: 893
  year: 2013
  end-page: 900
  article-title: Sterols and oxysterols in immune cell function
  publication-title: Nat Immunol
– volume: 17
  start-page: 1721
  year: 2016b
  end-page: 1730
  article-title: PKM2, cancer metabolism, and the road ahead
  publication-title: EMBO Rep
– volume: 452
  start-page: 230
  year: 2008
  end-page: 233
  article-title: The M2 splice isoform of pyruvate kinase is important for cancer metabolism and tumour growth
  publication-title: Nature
– volume: 153
  start-page: 285
  year: 2015
  end-page: 297
  article-title: TMEM33: a new stress‐inducible endoplasmic reticulum transmembrane protein and modulator of the unfolded protein response signaling
  publication-title: Breast Cancer Res Treat
– volume: 261
  start-page: 13807
  year: 1986
  end-page: 13812
  article-title: The M1‐ and M2‐type isozymes of rat pyruvate kinase are produced from the same gene by alternative RNA splicing
  publication-title: J Biol Chem
– volume: 155
  start-page: 397
  year: 2013
  end-page: 409
  article-title: PKM2 isoform‐specific deletion reveals a differential requirement for pyruvate kinase in tumor cells
  publication-title: Cell
– volume: 6
  year: 2017
  article-title: Inhibition of cholesterol biosynthesis through RNF145‐dependent ubiquitination of SCAP
  publication-title: Elife
– volume: 293
  start-page: 6623
  year: 2018
  end-page: 6634
  article-title: Pyruvate kinase M2 interacts with nuclear sterol regulatory element‐binding protein 1a and thereby activates lipogenesis and cell proliferation in hepatocellular carcinoma
  publication-title: J Biol Chem
– volume: 26
  start-page: 877
  year: 2012
  end-page: 890
  article-title: Links between metabolism and cancer
  publication-title: Gene Dev
– volume: 87
  start-page: 783
  year: 2018
  end-page: 807
  article-title: Retrospective on cholesterol homeostasis: the central role of scap
  publication-title: Annu Rev Biochem
– volume: 13
  start-page: 2513
  year: 2014
  end-page: 2526
  article-title: Accurate proteome‐wide label‐free quantification by delayed normalization and maximal peptide ratio extraction, termed MaxLFQ
  publication-title: Mol Cell Proteomics
– volume: 20
  start-page: 2619
  year: 2014
  end-page: 2626
  article-title: Targeting SREBP‐1‐driven lipid metabolism to treat cancer
  publication-title: Curr Pharm Design
– volume: 109
  start-page: 1125
  year: 2002
  end-page: 1131
  article-title: SREBPs: activators of the complete program of cholesterol and fatty acid synthesis in the liver
  publication-title: J Clin Invest
– volume: 5
  start-page: 4436
  year: 2014
  article-title: PKM2 regulates the Warburg effect and promotes HMGB1 release in sepsis
  publication-title: Nat Commun
– volume: 244
  start-page: 16
  year: 2010
  end-page: 20
  article-title: Role of Nrf1 in antioxidant response element‐mediated gene expression and beyond
  publication-title: Toxicol Appl Pharmacol
– volume: 19
  start-page: 1358
  year: 2017
  end-page: 1370
  article-title: PKM2 methylation by CARM1 activates aerobic glycolysis to promote tumorigenesis
  publication-title: Nat Cell Biol
– volume: 11
  start-page: 2515
  year: 2016
  end-page: 2528
  article-title: Deep interactome profiling of membrane proteins by co‐interacting protein identification technology
  publication-title: Nat Protoc
– volume: 356
  start-page: 184
  year: 2015
  end-page: 191
  article-title: PKM2 contributes to cancer metabolism
  publication-title: Cancer Lett
– volume: 278
  start-page: 52479
  year: 2003
  end-page: 52490
  article-title: Insig‐dependent ubiquitination and degradation of mammalian 3‐hydroxy‐3‐methylglutaryl‐CoA reductase stimulated by sterols and geranylgeraniol
  publication-title: J Biol Chem
– volume: 114
  start-page: E4380
  year: 2017
  end-page: E4388
  article-title: Ubiquitin‐ and ATP‐dependent unfoldase activity of P97/VCP center dot NPLOC4 center dot UFD1L is enhanced by a mutation that causes multisystem proteinopathy
  publication-title: Proc Natl Acad Sci USA
– volume: 207
  start-page: 1
  year: 2016
  end-page: 22
  article-title: The role of glucose and lipid metabolism in growth and survival of cancer cells
  publication-title: Recent Results Cancer Res
– ident: e_1_2_9_20_1
  doi: 10.1172/JCI0215593
– ident: e_1_2_9_2_1
  doi: 10.1038/nchembio.1060
– ident: e_1_2_9_5_1
  doi: 10.1038/oncsis.2015.49
– ident: e_1_2_9_12_1
  doi: 10.1038/nature06734
– ident: e_1_2_9_28_1
  doi: 10.1038/s41580-019-0190-7
– ident: e_1_2_9_6_1
  doi: 10.1016/j.taap.2009.07.034
– ident: e_1_2_9_27_1
  doi: 10.1016/j.ajpath.2010.11.005
– ident: e_1_2_9_10_1
  doi: 10.1186/s40880-018-0301-4
– ident: e_1_2_9_39_1
  doi: 10.1007/s10549-015-3536-7
– ident: e_1_2_9_47_1
  doi: 10.1126/science.1160809
– ident: e_1_2_9_18_1
  doi: 10.4103/1477-3163.115423
– ident: e_1_2_9_44_1
  doi: 10.1002/jcp.27129
– ident: e_1_2_9_23_1
  doi: 10.1074/jbc.RA119.011849
– ident: e_1_2_9_52_1
  doi: 10.1038/nature10598
– ident: e_1_2_9_55_1
  doi: 10.1074/jbc.RA117.000100
– ident: e_1_2_9_15_1
  doi: 10.1101/gad.278549.116
– ident: e_1_2_9_16_1
  doi: 10.15252/embr.201643300
– ident: e_1_2_9_21_1
  doi: 10.1038/nmeth.2368
– ident: e_1_2_9_22_1
  doi: 10.1016/j.cell.2013.09.025
– ident: e_1_2_9_3_1
  doi: 10.1016/j.cmet.2019.10.015
– ident: e_1_2_9_4_1
  doi: 10.1128/MCB.00439-16
– ident: e_1_2_9_50_1
  doi: 10.1038/s41586-020-2183-2
– ident: e_1_2_9_49_1
  doi: 10.1016/j.canlet.2014.01.031
– ident: e_1_2_9_31_1
  doi: 10.1038/nrc.2016.76
– ident: e_1_2_9_53_1
  doi: 10.1101/gad.268722.115
– ident: e_1_2_9_19_1
  doi: 10.2174/13816128113199990486
– ident: e_1_2_9_43_1
  doi: 10.1073/pnas.0506580102
– ident: e_1_2_9_54_1
  doi: 10.7554/eLife.28766
– ident: e_1_2_9_8_1
  doi: 10.1007/978-3-319-42118-6_1
– ident: e_1_2_9_36_1
  doi: 10.1038/s41586-019-0984-y
– ident: e_1_2_9_40_1
  doi: 10.1074/jbc.M310053200
– ident: e_1_2_9_24_1
  doi: 10.1158/0008-5472.CAN-15-2613
– ident: e_1_2_9_32_1
  doi: 10.1016/S0021-9258(18)67091-7
– ident: e_1_2_9_37_1
  doi: 10.1016/j.ajpath.2014.03.006
– ident: e_1_2_9_33_1
  doi: 10.1074/jbc.M804597200
– ident: e_1_2_9_34_1
  doi: 10.1038/nprot.2016.140
– ident: e_1_2_9_29_1
  doi: 10.1016/j.cell.2011.03.054
– ident: e_1_2_9_35_1
  doi: 10.4093/dmj.2015.39.5.353
– ident: e_1_2_9_42_1
  doi: 10.1038/ni.2681
– ident: e_1_2_9_51_1
  doi: 10.1038/ncomms5436
– ident: e_1_2_9_14_1
  doi: 10.1101/gad.189365.112
– ident: e_1_2_9_25_1
  doi: 10.1016/j.cellsig.2014.11.004
– ident: e_1_2_9_38_1
  doi: 10.7554/eLife.01856
– ident: e_1_2_9_7_1
  doi: 10.1073/pnas.1706205114
– ident: e_1_2_9_13_1
  doi: 10.1074/mcp.M113.031591
– ident: e_1_2_9_26_1
  doi: 10.1038/ncb3630
– volume: 9
  start-page: 219
  year: 2019
  ident: e_1_2_9_17_1
  article-title: The role of cholesterol metabolism in cancer
  publication-title: Am J Cancer Res
– ident: e_1_2_9_11_1
  doi: 10.1016/j.ccell.2015.09.021
– ident: e_1_2_9_45_1
  doi: 10.1074/jbc.M808222200
– ident: e_1_2_9_46_1
  doi: 10.4049/jimmunol.1901086
– ident: e_1_2_9_41_1
  doi: 10.1016/j.cell.2017.05.022
– ident: e_1_2_9_48_1
  doi: 10.1016/j.cell.2017.10.003
– volume: 13
  start-page: 27
  year: 1953
  ident: e_1_2_9_30_1
  article-title: Metabolism of neoplastic tissue. IV. A study of lipid synthesis in neoplastic tissue slices in vitro
  publication-title: Cancer Res
– ident: e_1_2_9_9_1
  doi: 10.1146/annurev-biochem-062917-011852
– reference: 34642948 - EMBO J. 2021 Nov 15;40(22):e109683
SSID ssj0005871
Score 2.540051
Snippet The pyruvate kinase M2 isoform (PKM2) is preferentially expressed in cancer cells to regulate anabolic metabolism. Although PKM2 was recently reported to...
SourceID pubmedcentral
proquest
pubmed
crossref
wiley
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e108065
SubjectTerms Animals
Breast cancer
Breast Neoplasms - genetics
Breast Neoplasms - metabolism
Cancer
Carcinogenesis
Carcinogens
Carrier Proteins - genetics
Carrier Proteins - metabolism
Cell Line, Tumor
Cholesterol
Cholesterol - blood
Cleavage
Control stability
Degradation
Depletion
EMBO03
EMBO21
EMBO37
Endoplasmic reticulum
Female
Gene Expression Regulation, Neoplastic
Homeostasis
Humans
Intracellular Signaling Peptides and Proteins - genetics
Intracellular Signaling Peptides and Proteins - metabolism
Kinases
Lipid metabolism
Lipid Metabolism - physiology
Lipids
Liver cancer
Membrane Proteins - genetics
Membrane Proteins - metabolism
Metabolism
Mice, Knockout
PKM2
Proteins
Pyruvate kinase
Pyruvic acid
SCAP degradation
Sterol Regulatory Element Binding Protein 1 - metabolism
Sterol regulatory element-binding protein
Therapeutic applications
Thyroid Hormone-Binding Proteins
Thyroid Hormones - genetics
Thyroid Hormones - metabolism
TMEM33
total cholesterol levels
tumor growth
Tumors
Ubiquitin-protein ligase
Ubiquitination
Xenograft Model Antitumor Assays
Title PKM2‐TMEM33 axis regulates lipid homeostasis in cancer cells by controlling SCAP stability
URI https://link.springer.com/article/10.15252/embj.2021108065
https://onlinelibrary.wiley.com/doi/abs/10.15252%2Fembj.2021108065
https://www.ncbi.nlm.nih.gov/pubmed/34487377
https://www.proquest.com/docview/2597415034
https://www.proquest.com/docview/2569616850
https://pubmed.ncbi.nlm.nih.gov/PMC8591543
Volume 40
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS90wFD84ZcyXsbkP65xksJcNim3z1fvoyhVROoQp-DAoSZNih_bKrYL3zT_Bv3F_yXLS3t5d3Ac-hqRJc07C-Z2cL4CPGMZjVeTztiYhM0yEKrajsDSUUUplUvogsfyrODhlh2f8rH_vwFiY3-33POHJrr3UP5wah3oK2gCfwBqPqcQiDZnIFs4cqVet_GsKi9NRb5D80wzLAugBqnzoHDlYSJfxqxdA-y_geY8cyV7H6pewYpsNeNrVkpxtwLNsXrrtFXw_PsqTn3f3J_k4p5So27ol067ovG3JRX1VG3I-ubQTBw1b11c3pETuTwm-47dEz0jvwo7B6uRbtndM3FDvRzt7Daf745PsIOzLKISl0wV4qB2Iq2SJ_kzMuOurIo6KhDZaVlRKGxnEJSY1yslum2gZaRVLVTlkKCvJK_oGVptJYzeBxJpKKx3q0KJi1sSpMsJWonITlTotowB257Qtyj7HOJa6uChQ10BuFMiNYsGNAD4NX1x1-TX-MXZ7zq6iv2ltkaBG5FAtZQF8GLodvZFgqrGTGxwjRiIWKXc_-Lbj7rAYdfqpdGQIQC7xfRiA-beXe5r63OfhxtR_nNEAPs9PyOK3_r4H7s_QfzdbjPMvh4vm1mMWeQfr2MCQyZhvw-r19Ma-d9jpWu_4a7OD8ov_AmtDDuo
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VVKhcEJSXocAiwQEkq7bX9joHDiGkSpO6qtRU6gHJ9XrXqlHrVHEryI2fwG_gp_FLmNnYjqLyEIcerV3vY2bW-43nBfCawnh06pi8rZ7tKz-0U1d37Uxxn3MuvMwEicX74fDIHx0Hx2vwo4mFMd7ujUnSfKnrGj3etj6Xn1GhI42FrIG1I-VYz7-gmla93_2IPH3jeTuDSX9o15UE7AzhcGBLxDG5yMilx1cowakTEJaWSoqcC6EdRVezilSK15f2pHBk6oo0R3AkchHkHMe9BetREEZBB9Z7vdHhaOlIEhm1zvzJ8d2oWxtDf7fm1cvvGqK97pjZWmdXsbO5_Hbuwd0atbLeQszuw5ouN-H2oo7lfBM2-k3ZuAfw6WAcez-_fZ_Eg5hzln4tKjZbFLzXFTsrLgrFTqfneoqwtMK2omQZSd6MkQ2hYnLOavd5CpRnh_3eAcOuxod3_hCOboTwj6BTTkv9BJgrudACEY8Mc18rN0pVqPMwx4EyGWWOBdsNbZOszm9OZTbOEtJziBsJcSNZcsOCt-0bF4vcHn_pu9WwK6lPeZV4pI0houa-Ba_aZqQ3ESwt9fSK-oTd0EW5wQU-XnC3nYyjbiyQDBaIFb63HSj392pLWZyaHOCUdjDwuQXvGglZLuvPewiMDP1zs8kg_jBaPj79n0lewsZwEu8le7v742dwhxoodNMNtqBzObvSzxHDXcoX9SFicHLT5_YXDqdPFw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VIh4XVMrL0MIiwQEkK7bX9joHDsVN1Da4ikQr9YBkvN41NWqdKE4FufET-CX8KH4JM35FUXmIQ4_2buz1zKz2-zIvgBeUxqMTq6rb6piucn0zsXXfTBV3OefCSasksejQ3zt2D068kzX40ebCVNHurUuyzmmgKk3FvDdVWduvx-npc_kZyR2xF_IMNkGVI734gpStfLO_i_p96TjDwVG4ZzZdBcwUobFnSsQ0mUgpvMdVaM2J5RGulkqKjAuhLUXHtApUgkeZdqSwZGKLJEOgJDLhZRyfew2uIy-yieyFfrgMKQkqglf9p-PaQb9xi_5uxavH4CVsezlEs_PTrqLo6hgcbsCdBr-yndrg7sKaLjbhRt3RcrEJt8K2gdw9-DAeRc7Pb9-PokHEOUu-5iWb6U_UL0yX7Cyf5oqdTs71BAFqiWN5wVKywRkjb0LJ5II1gfSUMs_ehztjhlOraN7FfTi-ErE_gPViUuhHwGzJhRaIfaSfuVrZQaJ8nfkZPiiVQWoZ0GtlG6dNpXNquHEWE-MhbcSkjXipDQNedb-Y1lU-_jJ3q1VX3Oz3MnaIlyG25q4Bz7thlDcJLCn05ILm-H3f9gMPF_iw1m73Mo4sWaAYDBAreu8mUBXw1ZEiP62qgVMBQs_lBrxuLWS5rD9_g1fZ0D8_Nh5Ebw-Wl4__5yXP4OZ4dxi_2z8cPYHbdJ9yOG1vC9bnswu9jWBuLp9WO4jBx6vesr8Al3xR8Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=PKM2%E2%80%90TMEM33+axis+regulates+lipid+homeostasis+in+cancer+cells+by+controlling+SCAP+stability&rft.jtitle=The+EMBO+journal&rft.au=Liu%2C+Fabao&rft.au=Ma%2C+Min&rft.au=Gao%2C+Ang&rft.au=Ma%2C+Fengfei&rft.date=2021-11-15&rft.pub=Springer+Nature+B.V&rft.issn=0261-4189&rft.eissn=1460-2075&rft.volume=40&rft.issue=22&rft_id=info:doi/10.15252%2Fembj.2021108065&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0261-4189&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0261-4189&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0261-4189&client=summon