PKM2‐TMEM33 axis regulates lipid homeostasis in cancer cells by controlling SCAP stability
The pyruvate kinase M2 isoform (PKM2) is preferentially expressed in cancer cells to regulate anabolic metabolism. Although PKM2 was recently reported to regulate lipid homeostasis, the molecular mechanism remains unclear. Herein, we discovered an ER transmembrane protein 33 (TMEM33) as a downstream...
Saved in:
Published in | The EMBO journal Vol. 40; no. 22; pp. e108065 - n/a |
---|---|
Main Authors | , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
15.11.2021
Springer Nature B.V John Wiley and Sons Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The pyruvate kinase M2 isoform (PKM2) is preferentially expressed in cancer cells to regulate anabolic metabolism. Although PKM2 was recently reported to regulate lipid homeostasis, the molecular mechanism remains unclear. Herein, we discovered an ER transmembrane protein 33 (TMEM33) as a downstream effector of PKM2 that regulates activation of SREBPs and lipid metabolism. Loss of PKM2 leads to up‐regulation of TMEM33, which recruits RNF5, an E3 ligase, to promote SREBP‐cleavage activating protein (SCAP) degradation. TMEM33 is transcriptionally regulated by nuclear factor erythroid 2‐like 1 (NRF1), whose cleavage and activation are controlled by PKM2 levels. Total plasma cholesterol levels are elevated by either treatment with PKM2 tetramer‐promoting agent TEPP‐46 or by global PKM2 knockout in mice, highlighting the essential function of PKM2 in lipid metabolism. Although depletion of PKM2 decreases cancer cell growth, global PKM2 knockout accelerates allografted tumor growth. Together, our findings reveal the cell‐autonomous and systemic effects of PKM2 in lipid homeostasis and carcinogenesis, as well as TMEM33 as a
bona fide
regulator of lipid metabolism.
SYNOPSIS
This study identifies the endoplasmic reticulum (ER) transmembrane protein TMEM33 as a new mechanistic target of pyruvate kinase M2 (PKM2) and
bona fide
regulator of lipid metabolism. These findings have implications for cancer caused by elevated plasma cholesterol levels and underscore systemic functions of PKM2, opening up new avenues for therapeutic interventions.
PKM2 down‐regulates TMEM33 expression in MEFs and breast cancer cells, derepressing the lipogenic transcription factor SREBP.
TMEM33 is transcriptionally regulated by NRF1, whose activation depends on the PKM2/VCP axis.
PKM2 loss induces TMEM33, leading it to recruit E3 ligase RNF5 for ubiquitination and degradation of SREBP‐cleavage factor SCAP.
Depletion of PKM2 in mice elevates global cholesterol levels and promotes allografted growth of hepatocellular cancer.
Graphical Abstract
Transmembrane protein TMEM33 is a novel target of ER‐localised PKM2 and regulator of cholesterol metabolism. |
---|---|
AbstractList | The pyruvate kinase M2 isoform (PKM2) is preferentially expressed in cancer cells to regulate anabolic metabolism. Although PKM2 was recently reported to regulate lipid homeostasis, the molecular mechanism remains unclear. Herein, we discovered an ER transmembrane protein 33 (TMEM33) as a downstream effector of PKM2 that regulates activation of SREBPs and lipid metabolism. Loss of PKM2 leads to up-regulation of TMEM33, which recruits RNF5, an E3 ligase, to promote SREBP-cleavage activating protein (SCAP) degradation. TMEM33 is transcriptionally regulated by nuclear factor erythroid 2-like 1 (NRF1), whose cleavage and activation are controlled by PKM2 levels. Total plasma cholesterol levels are elevated by either treatment with PKM2 tetramer-promoting agent TEPP-46 or by global PKM2 knockout in mice, highlighting the essential function of PKM2 in lipid metabolism. Although depletion of PKM2 decreases cancer cell growth, global PKM2 knockout accelerates allografted tumor growth. Together, our findings reveal the cell-autonomous and systemic effects of PKM2 in lipid homeostasis and carcinogenesis, as well as TMEM33 as a bona fide regulator of lipid metabolism.The pyruvate kinase M2 isoform (PKM2) is preferentially expressed in cancer cells to regulate anabolic metabolism. Although PKM2 was recently reported to regulate lipid homeostasis, the molecular mechanism remains unclear. Herein, we discovered an ER transmembrane protein 33 (TMEM33) as a downstream effector of PKM2 that regulates activation of SREBPs and lipid metabolism. Loss of PKM2 leads to up-regulation of TMEM33, which recruits RNF5, an E3 ligase, to promote SREBP-cleavage activating protein (SCAP) degradation. TMEM33 is transcriptionally regulated by nuclear factor erythroid 2-like 1 (NRF1), whose cleavage and activation are controlled by PKM2 levels. Total plasma cholesterol levels are elevated by either treatment with PKM2 tetramer-promoting agent TEPP-46 or by global PKM2 knockout in mice, highlighting the essential function of PKM2 in lipid metabolism. Although depletion of PKM2 decreases cancer cell growth, global PKM2 knockout accelerates allografted tumor growth. Together, our findings reveal the cell-autonomous and systemic effects of PKM2 in lipid homeostasis and carcinogenesis, as well as TMEM33 as a bona fide regulator of lipid metabolism. The pyruvate kinase M2 isoform (PKM2) is preferentially expressed in cancer cells to regulate anabolic metabolism. Although PKM2 was recently reported to regulate lipid homeostasis, the molecular mechanism remains unclear. Herein, we discovered an ER transmembrane protein 33 (TMEM33) as a downstream effector of PKM2 that regulates activation of SREBPs and lipid metabolism. Loss of PKM2 leads to up‐regulation of TMEM33, which recruits RNF5, an E3 ligase, to promote SREBP‐cleavage activating protein (SCAP) degradation. TMEM33 is transcriptionally regulated by nuclear factor erythroid 2‐like 1 (NRF1), whose cleavage and activation are controlled by PKM2 levels. Total plasma cholesterol levels are elevated by either treatment with PKM2 tetramer‐promoting agent TEPP‐46 or by global PKM2 knockout in mice, highlighting the essential function of PKM2 in lipid metabolism. Although depletion of PKM2 decreases cancer cell growth, global PKM2 knockout accelerates allografted tumor growth. Together, our findings reveal the cell‐autonomous and systemic effects of PKM2 in lipid homeostasis and carcinogenesis, as well as TMEM33 as a bona fide regulator of lipid metabolism. SYNOPSIS This study identifies the endoplasmic reticulum (ER) transmembrane protein TMEM33 as a new mechanistic target of pyruvate kinase M2 (PKM2) and bona fide regulator of lipid metabolism. These findings have implications for cancer caused by elevated plasma cholesterol levels and underscore systemic functions of PKM2, opening up new avenues for therapeutic interventions. PKM2 down‐regulates TMEM33 expression in MEFs and breast cancer cells, derepressing the lipogenic transcription factor SREBP. TMEM33 is transcriptionally regulated by NRF1, whose activation depends on the PKM2/VCP axis. PKM2 loss induces TMEM33, leading it to recruit E3 ligase RNF5 for ubiquitination and degradation of SREBP‐cleavage factor SCAP. Depletion of PKM2 in mice elevates global cholesterol levels and promotes allografted growth of hepatocellular cancer. Graphical Abstract Transmembrane protein TMEM33 is a novel target of ER‐localised PKM2 and regulator of cholesterol metabolism. The pyruvate kinase M2 isoform (PKM2) is preferentially expressed in cancer cells to regulate anabolic metabolism. Although PKM2 was recently reported to regulate lipid homeostasis, the molecular mechanism remains unclear. Herein, we discovered an ER transmembrane protein 33 (TMEM33) as a downstream effector of PKM2 that regulates activation of SREBPs and lipid metabolism. Loss of PKM2 leads to up‐regulation of TMEM33, which recruits RNF5, an E3 ligase, to promote SREBP‐cleavage activating protein (SCAP) degradation. TMEM33 is transcriptionally regulated by nuclear factor erythroid 2‐like 1 (NRF1), whose cleavage and activation are controlled by PKM2 levels. Total plasma cholesterol levels are elevated by either treatment with PKM2 tetramer‐promoting agent TEPP‐46 or by global PKM2 knockout in mice, highlighting the essential function of PKM2 in lipid metabolism. Although depletion of PKM2 decreases cancer cell growth, global PKM2 knockout accelerates allografted tumor growth. Together, our findings reveal the cell‐autonomous and systemic effects of PKM2 in lipid homeostasis and carcinogenesis, as well as TMEM33 as a bona fide regulator of lipid metabolism. SYNOPSIS This study identifies the endoplasmic reticulum (ER) transmembrane protein TMEM33 as a new mechanistic target of pyruvate kinase M2 (PKM2) and bona fide regulator of lipid metabolism. These findings have implications for cancer caused by elevated plasma cholesterol levels and underscore systemic functions of PKM2, opening up new avenues for therapeutic interventions. PKM2 down‐regulates TMEM33 expression in MEFs and breast cancer cells, derepressing the lipogenic transcription factor SREBP. TMEM33 is transcriptionally regulated by NRF1, whose activation depends on the PKM2/VCP axis. PKM2 loss induces TMEM33, leading it to recruit E3 ligase RNF5 for ubiquitination and degradation of SREBP‐cleavage factor SCAP. Depletion of PKM2 in mice elevates global cholesterol levels and promotes allografted growth of hepatocellular cancer. Transmembrane protein TMEM33 is a novel target of ER‐localised PKM2 and regulator of cholesterol metabolism. The pyruvate kinase M2 isoform (PKM2) is preferentially expressed in cancer cells to regulate anabolic metabolism. Although PKM2 was recently reported to regulate lipid homeostasis, the molecular mechanism remains unclear. Herein, we discovered an ER transmembrane protein 33 (TMEM33) as a downstream effector of PKM2 that regulates activation of SREBPs and lipid metabolism. Loss of PKM2 leads to up‐regulation of TMEM33, which recruits RNF5, an E3 ligase, to promote SREBP‐cleavage activating protein (SCAP) degradation. TMEM33 is transcriptionally regulated by nuclear factor erythroid 2‐like 1 (NRF1), whose cleavage and activation are controlled by PKM2 levels. Total plasma cholesterol levels are elevated by either treatment with PKM2 tetramer‐promoting agent TEPP‐46 or by global PKM2 knockout in mice, highlighting the essential function of PKM2 in lipid metabolism. Although depletion of PKM2 decreases cancer cell growth, global PKM2 knockout accelerates allografted tumor growth. Together, our findings reveal the cell‐autonomous and systemic effects of PKM2 in lipid homeostasis and carcinogenesis, as well as TMEM33 as a bona fide regulator of lipid metabolism. Transmembrane protein TMEM33 is a novel target of ER‐localised PKM2 and regulator of cholesterol metabolism. The pyruvate kinase M2 isoform (PKM2) is preferentially expressed in cancer cells to regulate anabolic metabolism. Although PKM2 was recently reported to regulate lipid homeostasis, the molecular mechanism remains unclear. Herein, we discovered an ER transmembrane protein 33 (TMEM33) as a downstream effector of PKM2 that regulates activation of SREBPs and lipid metabolism. Loss of PKM2 leads to up-regulation of TMEM33, which recruits RNF5, an E3 ligase, to promote SREBP-cleavage activating protein (SCAP) degradation. TMEM33 is transcriptionally regulated by nuclear factor erythroid 2-like 1 (NRF1), whose cleavage and activation are controlled by PKM2 levels. Total plasma cholesterol levels are elevated by either treatment with PKM2 tetramer-promoting agent TEPP-46 or by global PKM2 knockout in mice, highlighting the essential function of PKM2 in lipid metabolism. Although depletion of PKM2 decreases cancer cell growth, global PKM2 knockout accelerates allografted tumor growth. Together, our findings reveal the cell-autonomous and systemic effects of PKM2 in lipid homeostasis and carcinogenesis, as well as TMEM33 as a bona fide regulator of lipid metabolism. |
Author | Gao, Ang Ma, Min Xu, Wei Li, Lingjun Ma, Gui Donahue, Kristine Liu, Fabao Jia, Chenxi Zhang, Shengjie Ma, Fengfei Wang, Yidan Liu, Peng Ong, Irene M Keles, Sunduz |
AuthorAffiliation | 6 Department of Chemistry University of Wisconsin‐Madison Madison WI USA 5 Department of Statistics University of Wisconsin‐Madison Madison WI USA 2 School of Pharmacy University of Wisconsin‐Madison Madison WI USA 4 UW Carbone Cancer Center School of Medicine and Public Health University of Wisconsin‐Madison Madison WI USA 3 Department of Biostatistics and Medical Informatics University of Wisconsin‐Madison Madison WI USA 7 Present address: Protein Sciences, Discovery Biologics Merck & Co., Inc. South San Francisco CA USA 8 Present address: State Key Laboratory of Proteomics National Center for Protein Sciences‐Beijing Beijing Proteome Research Center Beijing Institute of Radiation Medicine Beijing China 1 McArdle Laboratory for Cancer Research University of Wisconsin‐Madison Madison WI USA |
AuthorAffiliation_xml | – name: 2 School of Pharmacy University of Wisconsin‐Madison Madison WI USA – name: 3 Department of Biostatistics and Medical Informatics University of Wisconsin‐Madison Madison WI USA – name: 6 Department of Chemistry University of Wisconsin‐Madison Madison WI USA – name: 7 Present address: Protein Sciences, Discovery Biologics Merck & Co., Inc. South San Francisco CA USA – name: 5 Department of Statistics University of Wisconsin‐Madison Madison WI USA – name: 8 Present address: State Key Laboratory of Proteomics National Center for Protein Sciences‐Beijing Beijing Proteome Research Center Beijing Institute of Radiation Medicine Beijing China – name: 4 UW Carbone Cancer Center School of Medicine and Public Health University of Wisconsin‐Madison Madison WI USA – name: 1 McArdle Laboratory for Cancer Research University of Wisconsin‐Madison Madison WI USA |
Author_xml | – sequence: 1 givenname: Fabao orcidid: 0000-0003-0019-7301 surname: Liu fullname: Liu, Fabao organization: McArdle Laboratory for Cancer Research, University of Wisconsin‐Madison – sequence: 2 givenname: Min surname: Ma fullname: Ma, Min organization: School of Pharmacy, University of Wisconsin‐Madison – sequence: 3 givenname: Ang surname: Gao fullname: Gao, Ang organization: McArdle Laboratory for Cancer Research, University of Wisconsin‐Madison – sequence: 4 givenname: Fengfei surname: Ma fullname: Ma, Fengfei organization: School of Pharmacy, University of Wisconsin‐Madison, Protein Sciences, Discovery Biologics, Merck & Co., Inc – sequence: 5 givenname: Gui surname: Ma fullname: Ma, Gui organization: McArdle Laboratory for Cancer Research, University of Wisconsin‐Madison – sequence: 6 givenname: Peng surname: Liu fullname: Liu, Peng organization: Department of Biostatistics and Medical Informatics, University of Wisconsin‐Madison, UW Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin‐Madison – sequence: 7 givenname: Chenxi orcidid: 0000-0001-6334-5282 surname: Jia fullname: Jia, Chenxi organization: School of Pharmacy, University of Wisconsin‐Madison, State Key Laboratory of Proteomics, National Center for Protein Sciences‐Beijing, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine – sequence: 8 givenname: Yidan orcidid: 0000-0002-1417-8059 surname: Wang fullname: Wang, Yidan organization: McArdle Laboratory for Cancer Research, University of Wisconsin‐Madison – sequence: 9 givenname: Kristine surname: Donahue fullname: Donahue, Kristine organization: McArdle Laboratory for Cancer Research, University of Wisconsin‐Madison – sequence: 10 givenname: Shengjie surname: Zhang fullname: Zhang, Shengjie organization: McArdle Laboratory for Cancer Research, University of Wisconsin‐Madison – sequence: 11 givenname: Irene M surname: Ong fullname: Ong, Irene M organization: Department of Biostatistics and Medical Informatics, University of Wisconsin‐Madison, UW Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin‐Madison – sequence: 12 givenname: Sunduz surname: Keles fullname: Keles, Sunduz organization: Department of Statistics, University of Wisconsin‐Madison – sequence: 13 givenname: Lingjun orcidid: 0000-0003-0056-3869 surname: Li fullname: Li, Lingjun organization: School of Pharmacy, University of Wisconsin‐Madison, Department of Chemistry, University of Wisconsin‐Madison – sequence: 14 givenname: Wei orcidid: 0000-0003-3808-0045 surname: Xu fullname: Xu, Wei email: wxu@oncology.wisc.edu organization: McArdle Laboratory for Cancer Research, University of Wisconsin‐Madison |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34487377$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkcFu1DAURS3Uik4Le1bIEhs2aZ-dOHYkhFRGAxQ6ohJlh2Q5iTP1yLGndgLMjk_gG_kSPJ2W0krAyot37vW97-2jHeedRugJgUPCKKNHuq-XhxQoISCgZA_QhBQlZBQ420EToCXJCiKqPbQf4xIAmODkIdrLi0LwnPMJ-nz2fk5_fv9xPp_N8xyrbybioBejVYOO2JqVafGF77WPg4ppZhxulGt0wI22NuJ6jRvvhuCtNW6BP06Pz3BCa2PNsH6Edjtlo358_R6gT69n59O32emHNyfT49OsYYKxrCYV7XgDQlRFSylTwIAyVrc171JIDS1AWbSiVUQwTWsOtSJcdRXnvOOsyw_Qy63vaqx73TY6BVJWroLpVVhLr4y8O3HmQi78FylYRViRJ4Pn1wbBX446DrI3cVNQOe3HKCkrq5KUgkFCn91Dl34MLtVLVMULkpgiUU__TPQ7ys3iE1BugSb4GIPuZGMGNZjNLpWxkoC8urDcXFjeXjgJ4Z7wxvsfkhdbyVdj9fq_vJzNX727IydbeUxKt9DhtvFfv_wFxzfJ-g |
CitedBy_id | crossref_primary_10_1038_s41419_024_07328_8 crossref_primary_10_1021_acschemneuro_3c00497 crossref_primary_10_1002_advs_202402600 crossref_primary_10_3389_fmicb_2022_849020 crossref_primary_10_1002_cbin_11950 crossref_primary_10_1016_j_canlet_2024_217415 crossref_primary_10_1016_j_brainresbull_2023_110752 crossref_primary_10_1016_j_ijbiomac_2024_130961 crossref_primary_10_3389_fgene_2022_908807 crossref_primary_10_1186_s12967_023_04780_6 crossref_primary_10_1620_tjem_2023_J027 crossref_primary_10_1016_j_jep_2023_117472 crossref_primary_10_1371_journal_pone_0294508 crossref_primary_10_1016_j_bbcan_2024_189089 crossref_primary_10_1155_2023_5542181 crossref_primary_10_1016_j_cmet_2023_12_003 crossref_primary_10_7554_eLife_92741 crossref_primary_10_1016_j_rvsc_2024_105275 crossref_primary_10_1016_j_jad_2024_05_156 crossref_primary_10_7554_eLife_92741_4 crossref_primary_10_1111_cas_70056 crossref_primary_10_1007_s12672_024_01069_y crossref_primary_10_1016_j_celrep_2022_111675 crossref_primary_10_1007_s11010_024_05174_y crossref_primary_10_3390_antiox13070758 crossref_primary_10_1002_advs_202407942 crossref_primary_10_3390_ijms25042152 crossref_primary_10_1007_s12032_025_02671_y crossref_primary_10_15252_embj_2021109683 crossref_primary_10_3389_fphar_2023_1130747 crossref_primary_10_1111_mmi_15228 crossref_primary_10_1016_j_canlet_2025_217493 crossref_primary_10_1186_s11658_024_00629_y crossref_primary_10_1016_j_canlet_2024_217076 crossref_primary_10_1111_febs_17097 crossref_primary_10_1016_j_drudis_2024_103949 |
Cites_doi | 10.1172/JCI0215593 10.1038/nchembio.1060 10.1038/oncsis.2015.49 10.1038/nature06734 10.1038/s41580-019-0190-7 10.1016/j.taap.2009.07.034 10.1016/j.ajpath.2010.11.005 10.1186/s40880-018-0301-4 10.1007/s10549-015-3536-7 10.1126/science.1160809 10.4103/1477-3163.115423 10.1002/jcp.27129 10.1074/jbc.RA119.011849 10.1038/nature10598 10.1074/jbc.RA117.000100 10.1101/gad.278549.116 10.15252/embr.201643300 10.1038/nmeth.2368 10.1016/j.cell.2013.09.025 10.1016/j.cmet.2019.10.015 10.1128/MCB.00439-16 10.1038/s41586-020-2183-2 10.1016/j.canlet.2014.01.031 10.1038/nrc.2016.76 10.1101/gad.268722.115 10.2174/13816128113199990486 10.1073/pnas.0506580102 10.7554/eLife.28766 10.1007/978-3-319-42118-6_1 10.1038/s41586-019-0984-y 10.1074/jbc.M310053200 10.1158/0008-5472.CAN-15-2613 10.1016/S0021-9258(18)67091-7 10.1016/j.ajpath.2014.03.006 10.1074/jbc.M804597200 10.1038/nprot.2016.140 10.1016/j.cell.2011.03.054 10.4093/dmj.2015.39.5.353 10.1038/ni.2681 10.1038/ncomms5436 10.1101/gad.189365.112 10.1016/j.cellsig.2014.11.004 10.7554/eLife.01856 10.1073/pnas.1706205114 10.1074/mcp.M113.031591 10.1038/ncb3630 10.1016/j.ccell.2015.09.021 10.1074/jbc.M808222200 10.4049/jimmunol.1901086 10.1016/j.cell.2017.05.022 10.1016/j.cell.2017.10.003 10.1146/annurev-biochem-062917-011852 |
ContentType | Journal Article |
Copyright | The Author(s) 2021 2021 The Authors 2021 The Authors. 2021 EMBO |
Copyright_xml | – notice: The Author(s) 2021 – notice: 2021 The Authors – notice: 2021 The Authors. – notice: 2021 EMBO |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QG 7QL 7QP 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 K9. M7N P64 RC3 7X8 5PM |
DOI | 10.15252/embj.2021108065 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Immunology Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts ProQuest Health & Medical Complete (Alumni) Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Virology and AIDS Abstracts Oncogenes and Growth Factors Abstracts Technology Research Database Nucleic Acids Abstracts ProQuest Health & Medical Complete (Alumni) Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Genetics Abstracts Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Immunology Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE Virology and AIDS Abstracts |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry Biology |
DocumentTitleAlternate | Fabao Liu et al |
EISSN | 1460-2075 |
EndPage | n/a |
ExternalDocumentID | PMC8591543 34487377 10_15252_embj_2021108065 EMBJ2021108065 |
Genre | article Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: HHS|NIH|National Cancer Institute (NCI) grantid: NCI P30CA014520 funderid: 10.13039/100000054 – fundername: HHS|National Institutes of Health (NIH) grantid: R01 CA236356; R01DK071801; R01 CA213293 funderid: 10.13039/100000002 – fundername: HHS|National Institutes of Health (NIH) funderid: R01 CA236356; R01DK071801; R01 CA213293 – fundername: HHS|NIH|National Cancer Institute (NCI) funderid: NCI P30CA014520 – fundername: NIA NIH HHS grantid: RF1 AG052324 – fundername: NHGRI NIH HHS grantid: R01 HG003747 – fundername: NIGMS NIH HHS grantid: P41 GM108538 – fundername: NIDDK NIH HHS grantid: R01 DK071801 – fundername: NCI NIH HHS grantid: P30 CA014520 – fundername: NCI NIH HHS grantid: R01 CA213293 – fundername: NCRR NIH HHS grantid: S10 RR029531 – fundername: NCI NIH HHS grantid: R01 CA236356 – fundername: ; grantid: NCI P30CA014520 – fundername: ; grantid: R01 CA236356; R01DK071801; R01 CA213293 |
GroupedDBID | --- -DZ -~X 0R~ 123 1OC 24P 29G 2WC 33P 36B 39C 53G 5VS 70F 8R4 8R5 A8Z AAESR AAEVG AAHBH AAHHS AAIHA AAJSJ AANLZ AAONW AAXRX AAYCA AAZKR ABCUV ABLJU ACAHQ ACCFJ ACCZN ACGFO ACGFS ACNCT ACPOU ACPRK ACXBN ACXQS ADBBV ADEOM ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEGXH AEIGN AENEX AEQDE AEUYR AFBPY AFFNX AFGKR AFPWT AFRAH AFWVQ AFZJQ AHMBA AIAGR AIURR AIWBW AJBDE ALAGY ALIPV ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB AOIJS AUFTA AZBYB AZFZN AZVAB BAWUL BDRZF BENPR BFHJK BMNLL BMXJE BRXPI BTFSW C6C CS3 DCZOG DIK DPXWK DRFUL DRSTM DU5 E3Z EBD EBLON EBS EMB EMOBN F5P G-S GROUPED_DOAJ GX1 HH5 HK~ HYE KQ8 LATKE LEEKS LITHE LOXES LUTES LYRES MEWTI MRFUL MRSTM MSFUL MSSTM MVM MXFUL MXSTM MY~ O9- OK1 P2P P2W Q2X R.K RHI RNS ROL RPM SV3 TN5 TR2 WBKPD WH7 WIH WIK WIN WOHZO WXSBR WYJ YSK ZCA ZZTAW ~KM ABJNI AASML AAYXX ABZEH CITATION NAO AAMMB AEFGJ AGXDD AIDQK AIDYY CGR CUY CVF ECM EIF NPM 7QG 7QL 7QP 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 K9. M7N P64 RC3 7X8 5PM |
ID | FETCH-LOGICAL-c5855-b192f7c08894d225a050255bdb7f377e0d0064d8da185e2b70ba17af9777f75f3 |
IEDL.DBID | C6C |
ISSN | 0261-4189 1460-2075 |
IngestDate | Thu Aug 21 18:39:09 EDT 2025 Fri Jul 11 07:30:43 EDT 2025 Fri Jul 25 19:24:38 EDT 2025 Mon Jul 21 06:02:25 EDT 2025 Thu Apr 24 23:07:48 EDT 2025 Tue Jul 01 01:47:23 EDT 2025 Wed Jan 22 16:26:56 EST 2025 Fri Feb 21 02:37:33 EST 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 22 |
Keywords | tumor growth total cholesterol levels PKM2 TMEM33 SCAP degradation |
Language | English |
License | 2021 The Authors. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5855-b192f7c08894d225a050255bdb7f377e0d0064d8da185e2b70ba17af9777f75f3 |
Notes | See also A Khateb & ZA Ronai November 2021 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 See also: A Khateb & ZA Ronai (November 2021) |
ORCID | 0000-0003-0056-3869 0000-0003-0019-7301 0000-0002-1417-8059 0000-0001-6334-5282 0000-0003-3808-0045 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/pdfdirect/10.15252/embj.2021108065 |
PMID | 34487377 |
PQID | 2597415034 |
PQPubID | 35985 |
PageCount | 20 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_8591543 proquest_miscellaneous_2569616850 proquest_journals_2597415034 pubmed_primary_34487377 crossref_citationtrail_10_15252_embj_2021108065 crossref_primary_10_15252_embj_2021108065 wiley_primary_10_15252_embj_2021108065_EMBJ2021108065 springer_journals_10_15252_embj_2021108065 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 15 November 2021 |
PublicationDateYYYYMMDD | 2021-11-15 |
PublicationDate_xml | – month: 11 year: 2021 text: 15 November 2021 day: 15 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England – name: New York – name: Hoboken |
PublicationTitle | The EMBO journal |
PublicationTitleAbbrev | EMBO J |
PublicationTitleAlternate | EMBO J |
PublicationYear | 2021 |
Publisher | Nature Publishing Group UK Springer Nature B.V John Wiley and Sons Inc |
Publisher_xml | – name: Nature Publishing Group UK – name: Springer Nature B.V – name: John Wiley and Sons Inc |
References | Christofk, Vander Heiden, Harris, Ramanathan, Gerszten, Wei, Fleming, Schreiber, Cantley (CR11) 2008; 452 Brault, Schulze (CR7) 2016; 207 Xu, Wang, Xia, Shao, Xia, Wei, Li, Qian, Lee, Du (CR49) 2020; 580 Angiari, Runtsch, Sutton, Palsson‐McDermott, Kelly, Rana, Kane, Papadopoulou, Pearce, Mills (CR2) 2020; 31 Anastasiou, Yu, Israelsen, Jiang, Boxer, Hong, Tempel, Dimov, Shen, Jha (CR1) 2012; 8 Medes, Thomas, Weinhouse (CR29) 1953; 13 Pelton, Coticchia, Curatolo, Schaffner, Zurakowski, Solomon, Moses (CR36) 2014; 184 Liu, Ma, Wang, Hao, Zeng, Jia, Wang, Liu, Ong, Li (CR25) 2017; 19 Yang, Xie, Yang, Yu, Zhu, Hou, Kang, Lotze, Billiar, Wang (CR50) 2014; 5 Filipp (CR17) 2013; 12 Sever, Song, Yabe, Goldstein, Brown, DeBose‐Boyd (CR39) 2003; 278 Biswas, Chan (CR5) 2010; 244 Cheng, Ru, Geng, Liu, Yoo, Wu, Cheng, Euthine, Hu, Guo (CR10) 2015; 28 Zhang, Rajbhandari, Priest, Sandhu, Wu, Temel, Castrillo, Vallim, Sallam, Tontonoz (CR53) 2017; 6 Tao, Su, Xu, Deng, Zhou, Zhuang, Huang, He, He, Peng (CR43) 2019; 234 Kuan, Takahashi, Maruyama, Shimizu, Yamauchi, Sato (CR22) 2020; 295 Baird, Tsujita, Kobayashi, Funayama, Nagashima, Nakayama, Yamamoto (CR3) 2017; 37 Cox, Hein, Luber, Paron, Nagaraj, Mann (CR12) 2014; 13 Parker, Calkin, Seldin, Keating, Tarling, Yang, Moody, Liu, Zerenturk, Needham (CR35) 2019; 567 Dayton, Jacks, Vander Heiden (CR15) 2016; 17 Guo, Bell, Mischel, Chakravarti (CR18) 2014; 20 Noguchi, Inoue, Tanaka (CR31) 1986; 261 Tcherpakov, Delaunay, Toth, Kadoya, Petroski, Ronai (CR44) 2009; 284 Ohtsuji, Katsuoka, Kobayashi, Aburatani, Hayes, Yamamoto (CR32) 2008; 283 Hulce, Cognetta, Niphakis, Tully, Cravatt (CR20) 2013; 10 Pankow, Bamberger, Calzolari, Bamberger, Yates (CR33) 2016; 11 Ding, Zhang, Li, Yang (CR16) 2019; 9 Beloribi‐Djefaflia, Vasseur, Guillaumond (CR4) 2016; 5 Luo, Hu, Chang, Zhong, Knabel, O'Meally, Cole, Pandey, Semenza (CR28) 2011; 145 Sakabe, Hu, Jin, Clarke, Kasid (CR38) 2015; 153 Spann, Glass (CR41) 2013; 14 Dayton, Gocheva, Miller, Israelsen, Bhutkar, Clish, Davidson, Luengo, Bronson, Jacks (CR14) 2016; 30 Zhao, Zhao, Yang, Li, Min, Yang, Liu, Huang (CR54) 2018; 293 Horton, Goldstein, Brown (CR19) 2002; 109 Lee, Nam, Oh, Lim, Lee, Shin (CR24) 2015; 27 Simsek, Tiu, Flynn, Byeon, Leppek, Xu, Chang, Barna (CR40) 2017; 169 Widenmaier, Snyder, Nguyen, Arduini, Lee, Arruda, Saksi, Bartelt, Hotamisligil (CR47) 2017; 171 Vander Heiden, Cantley, Thompson (CR46) 2009; 324 van de Wetering, Aboushousha, Manuel, Chia, Erickson, MacPherson, van der Velden, Anathy, Dixon, Irvin (CR45) 2020; 204 Luo, Yang, Song (CR27) 2020; 21 Cheng, Geng, Cheng, Guo (CR9) 2018; 38 Wong, Ojo, Yan, Tang (CR48) 2015; 356 Israelsen, Dayton, Davidson, Fiske, Hosios, Bellinger, Li, Yu, Sasaki, Horner (CR21) 2013; 155 Llaverias, Danilo, Mercier, Daumer, Capozza, Williams, Sotgia, Lisanti, Frank (CR26) 2011; 178 Kuzu, Noory, Robertson (CR23) 2016; 76 Dang (CR13) 2012; 26 Parhofer (CR34) 2015; 39 Subramanian, Tamayo, Mootha, Mukherjee, Ebert, Gillette, Paulovich, Pomeroy, Golub, Lander (CR42) 2005; 102 Radhakrishnan, den Besten, Deshaies (CR37) 2014; 3 Zeng, Xu (CR52) 2015; 29 Blythe, Olson, Chau, Deshaies (CR6) 2017; 114 Mullen, Yu, Longo, Archer, Penn (CR30) 2016; 16 Yang, Xia, Ji, Zheng, Liang, Huang, Gao, Aldape, Lu (CR51) 2011; 480 Brown, Radhakrishnan, Goldstein (CR8) 2018; 87 2017; 6 2015; 39 2016; 76 2020; 204 2019; 567 2018; 87 2003; 278 2017; 114 2014; 20 2014; 5 2013; 14 2014; 3 2018; 293 2017; 37 2020; 295 2013; 10 2013; 12 2005; 102 1986; 261 2013; 155 2019; 234 2014; 13 2009; 284 2012; 26 2002; 109 2011; 480 2017; 169 2018; 38 2009; 324 2019; 9 2016b; 17 2020; 580 2016; 207 2010; 244 2017; 171 1953; 13 2016; 16 2011; 178 2008; 283 2016; 11 2016; 5 2015; 28 2015; 27 2015; 29 2020; 31 2015; 356 2015; 153 2017; 19 2014; 184 2020; 21 2008; 452 2011; 145 2012; 8 2016a; 30 e_1_2_9_31_1 e_1_2_9_52_1 e_1_2_9_50_1 e_1_2_9_10_1 e_1_2_9_35_1 e_1_2_9_12_1 e_1_2_9_33_1 e_1_2_9_54_1 e_1_2_9_14_1 e_1_2_9_39_1 e_1_2_9_16_1 e_1_2_9_37_1 e_1_2_9_18_1 e_1_2_9_41_1 e_1_2_9_20_1 e_1_2_9_22_1 e_1_2_9_45_1 e_1_2_9_24_1 e_1_2_9_43_1 e_1_2_9_8_1 e_1_2_9_6_1 e_1_2_9_4_1 e_1_2_9_2_1 e_1_2_9_26_1 e_1_2_9_49_1 e_1_2_9_28_1 e_1_2_9_47_1 e_1_2_9_53_1 e_1_2_9_51_1 e_1_2_9_11_1 e_1_2_9_34_1 e_1_2_9_13_1 e_1_2_9_32_1 e_1_2_9_55_1 Medes G (e_1_2_9_30_1) 1953; 13 e_1_2_9_15_1 e_1_2_9_38_1 e_1_2_9_36_1 e_1_2_9_19_1 e_1_2_9_42_1 e_1_2_9_40_1 e_1_2_9_21_1 e_1_2_9_46_1 e_1_2_9_23_1 e_1_2_9_44_1 e_1_2_9_7_1 e_1_2_9_5_1 e_1_2_9_3_1 e_1_2_9_9_1 e_1_2_9_25_1 e_1_2_9_27_1 e_1_2_9_48_1 e_1_2_9_29_1 Ding X (e_1_2_9_17_1) 2019; 9 34642948 - EMBO J. 2021 Nov 15;40(22):e109683 |
References_xml | – volume: 452 start-page: 230 year: 2008 end-page: 233 ident: CR11 article-title: The M2 splice isoform of pyruvate kinase is important for cancer metabolism and tumour growth publication-title: Nature – volume: 26 start-page: 877 year: 2012 end-page: 890 ident: CR13 article-title: Links between metabolism and cancer publication-title: Gene Dev – volume: 5 start-page: 4436 year: 2014 ident: CR50 article-title: PKM2 regulates the Warburg effect and promotes HMGB1 release in sepsis publication-title: Nat Commun – volume: 39 start-page: 353 year: 2015 end-page: 362 ident: CR34 article-title: Interaction between glucose and lipid metabolism: more than diabetic dyslipidemia publication-title: Diabetes Metab J – volume: 76 start-page: 2063 year: 2016 end-page: 2070 ident: CR23 article-title: The role of cholesterol in cancer publication-title: Cancer Res – volume: 31 start-page: 391 year: 2020 end-page: 405.e8 ident: CR2 article-title: Pharmacological activation of pyruvate kinase M2 Inhibits CD4(+) T cell pathogenicity and suppresses autoimmunity publication-title: Cell Metab – volume: 102 start-page: 15545 year: 2005 end-page: 15550 ident: CR42 article-title: Gene set enrichment analysis: a knowledge‐based approach for interpreting genome‐wide expression profiles publication-title: Proc Natl Acad Sci USA – volume: 244 start-page: 16 year: 2010 end-page: 20 ident: CR5 article-title: Role of Nrf1 in antioxidant response element‐mediated gene expression and beyond publication-title: Toxicol Appl Pharmacol – volume: 155 start-page: 397 year: 2013 end-page: 409 ident: CR21 article-title: PKM2 isoform‐specific deletion reveals a differential requirement for pyruvate kinase in tumor cells publication-title: Cell – volume: 278 start-page: 52479 year: 2003 end-page: 52490 ident: CR39 article-title: Insig‐dependent ubiquitination and degradation of mammalian 3‐hydroxy‐3‐methylglutaryl‐CoA reductase stimulated by sterols and geranylgeraniol publication-title: J Biol Chem – volume: 37 start-page: E00651 year: 2017 end-page: E1199 ident: CR3 article-title: A homeostatic shift facilitates endoplasmic reticulum proteostasis through transcriptional integration of proteostatic stress response pathways publication-title: Mol Cell Biol – volume: 204 start-page: 763 year: 2020 end-page: 774 ident: CR45 article-title: Pyruvate kinase M2 promotes expression of proinflammatory mediators in house dust mite‐induced allergic airways disease publication-title: J Immunol – volume: 14 start-page: 893 year: 2013 end-page: 900 ident: CR41 article-title: Sterols and oxysterols in immune cell function publication-title: Nat Immunol – volume: 10 start-page: 259 year: 2013 end-page: 264 ident: CR20 article-title: Proteome‐wide mapping of cholesterol‐interacting proteins in mammalian cells publication-title: Nat Methods – volume: 153 start-page: 285 year: 2015 end-page: 297 ident: CR38 article-title: TMEM33: a new stress‐inducible endoplasmic reticulum transmembrane protein and modulator of the unfolded protein response signaling publication-title: Breast Cancer Res Treat – volume: 295 start-page: 3918 year: 2020 end-page: 3928 ident: CR22 article-title: Ring finger protein 5 activates sterol regulatory element‐binding protein 2 (SREBP2) to promote cholesterol biosynthesis via inducing polyubiquitination of SREBP chaperone SCAP publication-title: J Biol Chem – volume: 114 start-page: E4380 year: 2017 end-page: E4388 ident: CR6 article-title: Ubiquitin‐ and ATP‐dependent unfoldase activity of P97/VCP center dot NPLOC4 center dot UFD1L is enhanced by a mutation that causes multisystem proteinopathy publication-title: Proc Natl Acad Sci USA – volume: 87 start-page: 783 year: 2018 end-page: 807 ident: CR8 article-title: Retrospective on cholesterol homeostasis: the central role of scap publication-title: Annu Rev Biochem – volume: 293 start-page: 6623 year: 2018 end-page: 6634 ident: CR54 article-title: Pyruvate kinase M2 interacts with nuclear sterol regulatory element‐binding protein 1a and thereby activates lipogenesis and cell proliferation in hepatocellular carcinoma publication-title: J Biol Chem – volume: 3 year: 2014 ident: CR37 article-title: p97‐dependent retrotranslocation and proteolytic processing govern formation of active Nrf1 upon proteasome inhibition publication-title: Elife – volume: 169 start-page: 1051 year: 2017 end-page: 1065.e18 ident: CR40 article-title: The mammalian ribo‐interactome reveals ribosome functional diversity and heterogeneity publication-title: Cell – volume: 234 start-page: 3088 year: 2019 end-page: 3104 ident: CR43 article-title: Down‐regulation of PKM2 decreases FASN expression in bladder cancer cells through AKT/mTOR/SREBP‐1c axis publication-title: J Cell Physiol – volume: 21 start-page: 225 year: 2020 end-page: 245 ident: CR27 article-title: Mechanisms and regulation of cholesterol homeostasis publication-title: Nat Rev Mol Cell Biol – volume: 12 start-page: 14 year: 2013 ident: CR17 article-title: Cancer metabolism meets systems biology: Pyruvate kinase isoform PKM2 is a metabolic master regulator publication-title: J Carcinog – volume: 580 start-page: 530 year: 2020 end-page: 535 ident: CR49 article-title: The gluconeogenic enzyme PCK1 phosphorylates INSIG1/2 for lipogenesis publication-title: Nature – volume: 480 start-page: 118 year: 2011 end-page: 122 ident: CR51 article-title: Nuclear PKM2 regulates beta‐catenin transactivation upon EGFR activation publication-title: Nature – volume: 17 start-page: 1721 year: 2016 end-page: 1730 ident: CR15 article-title: PKM2, cancer metabolism, and the road ahead publication-title: EMBO Rep – volume: 356 start-page: 184 year: 2015 end-page: 191 ident: CR48 article-title: PKM2 contributes to cancer metabolism publication-title: Cancer Lett – volume: 5 start-page: e189 year: 2016 ident: CR4 article-title: Lipid metabolic reprogramming in cancer cells publication-title: Oncogenesis – volume: 30 start-page: 1020 year: 2016 end-page: 1033 ident: CR14 article-title: Germline loss of PKM2 promotes metabolic distress and hepatocellular carcinoma publication-title: Genes Dev – volume: 171 start-page: 1094 year: 2017 end-page: 1109.e15 ident: CR47 article-title: NRF1 is an ER membrane sensor that is central to cholesterol homeostasis publication-title: Cell – volume: 20 start-page: 2619 year: 2014 end-page: 2626 ident: CR18 article-title: Targeting SREBP‐1‐driven lipid metabolism to treat cancer publication-title: Curr Pharm Design – volume: 27 start-page: 228 year: 2015 end-page: 235 ident: CR24 article-title: ECM1 promotes the Warburg effect through EGF‐mediated activation of PKM2 publication-title: Cell Signal – volume: 109 start-page: 1125 year: 2002 end-page: 1131 ident: CR19 article-title: SREBPs: activators of the complete program of cholesterol and fatty acid synthesis in the liver publication-title: J Clin Invest – volume: 9 start-page: 219 year: 2019 end-page: 227 ident: CR16 article-title: The role of cholesterol metabolism in cancer publication-title: Am J Cancer Res – volume: 29 start-page: 2153 year: 2015 end-page: 2167 ident: CR52 article-title: Ctr9, a key subunit of PAFc, affects global estrogen signaling and drives ERalpha‐positive breast tumorigenesis publication-title: Genes Dev – volume: 38 start-page: 27 year: 2018 ident: CR9 article-title: Lipid metabolism reprogramming and its potential targets in cancer publication-title: Cancer Commun – volume: 261 start-page: 13807 year: 1986 end-page: 13812 ident: CR31 article-title: The M1‐ and M2‐type isozymes of rat pyruvate kinase are produced from the same gene by alternative RNA splicing publication-title: J Biol Chem – volume: 567 start-page: 187‐+ year: 2019 ident: CR35 article-title: An integrative systems genetic analysis of mammalian lipid metabolism publication-title: Nature – volume: 184 start-page: 2099 year: 2014 end-page: 2110 ident: CR36 article-title: Hypercholesterolemia induces angiogenesis and accelerates growth of breast tumors in vivo publication-title: Am J Pathol – volume: 13 start-page: 27 year: 1953 end-page: 29 ident: CR29 article-title: Metabolism of neoplastic tissue. IV. A study of lipid synthesis in neoplastic tissue slices publication-title: Cancer Res – volume: 283 start-page: 33554 year: 2008 end-page: 33562 ident: CR32 article-title: Nrf1 and Nrf2 play distinct roles in activation of antioxidant response element‐dependent genes publication-title: J Biol Chem – volume: 207 start-page: 1 year: 2016 end-page: 22 ident: CR7 article-title: The role of glucose and lipid metabolism in growth and survival of cancer cells publication-title: Recent Results Cancer Res – volume: 145 start-page: 732 year: 2011 end-page: 744 ident: CR28 article-title: Pyruvate kinase M2 is a PHD3‐stimulated coactivator for hypoxia‐inducible factor 1 publication-title: Cell – volume: 324 start-page: 1029 year: 2009 end-page: 1033 ident: CR46 article-title: Understanding the Warburg effect: the metabolic requirements of cell proliferation publication-title: Science – volume: 11 start-page: 2515 year: 2016 end-page: 2528 ident: CR33 article-title: Deep interactome profiling of membrane proteins by co‐interacting protein identification technology publication-title: Nat Protoc – volume: 6 year: 2017 ident: CR53 article-title: Inhibition of cholesterol biosynthesis through RNF145‐dependent ubiquitination of SCAP publication-title: Elife – volume: 8 start-page: 839 year: 2012 end-page: 847 ident: CR1 article-title: Pyruvate kinase M2 activators promote tetramer formation and suppress tumorigenesis publication-title: Nat Chem Biol – volume: 28 start-page: 569 year: 2015 end-page: 581 ident: CR10 article-title: Glucose‐mediated N‐glycosylation of SCAP is essential for SREBP‐1 activation and tumor growth publication-title: Cancer Cell – volume: 19 start-page: 1358 year: 2017 end-page: 1370 ident: CR25 article-title: PKM2 methylation by CARM1 activates aerobic glycolysis to promote tumorigenesis publication-title: Nat Cell Biol – volume: 284 start-page: 12099 year: 2009 end-page: 12109 ident: CR44 article-title: Regulation of endoplasmic reticulum‐associated degradation by RNF5‐dependent ubiquitination of JNK‐associated membrane protein (JAMP) publication-title: J Biol Chem – volume: 178 start-page: 402 year: 2011 end-page: 412 ident: CR26 article-title: Role of cholesterol in the development and progression of breast cancer publication-title: Am J Pathol – volume: 13 start-page: 2513 year: 2014 end-page: 2526 ident: CR12 article-title: Accurate proteome‐wide label‐free quantification by delayed normalization and maximal peptide ratio extraction, termed MaxLFQ publication-title: Mol Cell Proteomics – volume: 16 start-page: 718 year: 2016 end-page: 731 ident: CR30 article-title: The interplay between cell signalling and the mevalonate pathway in cancer publication-title: Nat Rev Cancer – volume: 3 year: 2014 article-title: p97‐dependent retrotranslocation and proteolytic processing govern formation of active Nrf1 upon proteasome inhibition publication-title: Elife – volume: 31 start-page: 391 year: 2020 end-page: 405.e8 article-title: Pharmacological activation of pyruvate kinase M2 Inhibits CD4(+) T cell pathogenicity and suppresses autoimmunity publication-title: Cell Metab – volume: 5 start-page: e189 year: 2016 article-title: Lipid metabolic reprogramming in cancer cells publication-title: Oncogenesis – volume: 30 start-page: 1020 year: 2016a end-page: 1033 article-title: Germline loss of PKM2 promotes metabolic distress and hepatocellular carcinoma publication-title: Genes Dev – volume: 16 start-page: 718 year: 2016 end-page: 731 article-title: The interplay between cell signalling and the mevalonate pathway in cancer publication-title: Nat Rev Cancer – volume: 324 start-page: 1029 year: 2009 end-page: 1033 article-title: Understanding the Warburg effect: the metabolic requirements of cell proliferation publication-title: Science – volume: 28 start-page: 569 year: 2015 end-page: 581 article-title: Glucose‐mediated N‐glycosylation of SCAP is essential for SREBP‐1 activation and tumor growth publication-title: Cancer Cell – volume: 184 start-page: 2099 year: 2014 end-page: 2110 article-title: Hypercholesterolemia induces angiogenesis and accelerates growth of breast tumors in vivo publication-title: Am J Pathol – volume: 204 start-page: 763 year: 2020 end-page: 774 article-title: Pyruvate kinase M2 promotes expression of proinflammatory mediators in house dust mite‐induced allergic airways disease publication-title: J Immunol – volume: 234 start-page: 3088 year: 2019 end-page: 3104 article-title: Down‐regulation of PKM2 decreases FASN expression in bladder cancer cells through AKT/mTOR/SREBP‐1c axis publication-title: J Cell Physiol – volume: 171 start-page: 1094 year: 2017 end-page: 1109.e15 article-title: NRF1 is an ER membrane sensor that is central to cholesterol homeostasis publication-title: Cell – volume: 38 start-page: 27 year: 2018 article-title: Lipid metabolism reprogramming and its potential targets in cancer publication-title: Cancer Commun – volume: 295 start-page: 3918 year: 2020 end-page: 3928 article-title: Ring finger protein 5 activates sterol regulatory element‐binding protein 2 (SREBP2) to promote cholesterol biosynthesis via inducing polyubiquitination of SREBP chaperone SCAP publication-title: J Biol Chem – volume: 29 start-page: 2153 year: 2015 end-page: 2167 article-title: Ctr9, a key subunit of PAFc, affects global estrogen signaling and drives ERalpha‐positive breast tumorigenesis publication-title: Genes Dev – volume: 178 start-page: 402 year: 2011 end-page: 412 article-title: Role of cholesterol in the development and progression of breast cancer publication-title: Am J Pathol – volume: 284 start-page: 12099 year: 2009 end-page: 12109 article-title: Regulation of endoplasmic reticulum‐associated degradation by RNF5‐dependent ubiquitination of JNK‐associated membrane protein (JAMP) publication-title: J Biol Chem – volume: 567 start-page: 187‐+ year: 2019 article-title: An integrative systems genetic analysis of mammalian lipid metabolism publication-title: Nature – volume: 580 start-page: 530 year: 2020 end-page: 535 article-title: The gluconeogenic enzyme PCK1 phosphorylates INSIG1/2 for lipogenesis publication-title: Nature – volume: 145 start-page: 732 year: 2011 end-page: 744 article-title: Pyruvate kinase M2 is a PHD3‐stimulated coactivator for hypoxia‐inducible factor 1 publication-title: Cell – volume: 37 start-page: E00651 year: 2017 end-page: E1199 article-title: A homeostatic shift facilitates endoplasmic reticulum proteostasis through transcriptional integration of proteostatic stress response pathways publication-title: Mol Cell Biol – volume: 39 start-page: 353 year: 2015 end-page: 362 article-title: Interaction between glucose and lipid metabolism: more than diabetic dyslipidemia publication-title: Diabetes Metab J – volume: 12 start-page: 14 year: 2013 article-title: Cancer metabolism meets systems biology: Pyruvate kinase isoform PKM2 is a metabolic master regulator publication-title: J Carcinog – volume: 480 start-page: 118 year: 2011 end-page: 122 article-title: Nuclear PKM2 regulates beta‐catenin transactivation upon EGFR activation publication-title: Nature – volume: 8 start-page: 839 year: 2012 end-page: 847 article-title: Pyruvate kinase M2 activators promote tetramer formation and suppress tumorigenesis publication-title: Nat Chem Biol – volume: 13 start-page: 27 year: 1953 end-page: 29 article-title: Metabolism of neoplastic tissue. IV. A study of lipid synthesis in neoplastic tissue slices publication-title: Cancer Res – volume: 27 start-page: 228 year: 2015 end-page: 235 article-title: ECM1 promotes the Warburg effect through EGF‐mediated activation of PKM2 publication-title: Cell Signal – volume: 169 start-page: 1051 year: 2017 end-page: 1065.e18 article-title: The mammalian ribo‐interactome reveals ribosome functional diversity and heterogeneity publication-title: Cell – volume: 283 start-page: 33554 year: 2008 end-page: 33562 article-title: Nrf1 and Nrf2 play distinct roles in activation of antioxidant response element‐dependent genes publication-title: J Biol Chem – volume: 102 start-page: 15545 year: 2005 end-page: 15550 article-title: Gene set enrichment analysis: a knowledge‐based approach for interpreting genome‐wide expression profiles publication-title: Proc Natl Acad Sci USA – volume: 76 start-page: 2063 year: 2016 end-page: 2070 article-title: The role of cholesterol in cancer publication-title: Cancer Res – volume: 10 start-page: 259 year: 2013 end-page: 264 article-title: Proteome‐wide mapping of cholesterol‐interacting proteins in mammalian cells publication-title: Nat Methods – volume: 9 start-page: 219 year: 2019 end-page: 227 article-title: The role of cholesterol metabolism in cancer publication-title: Am J Cancer Res – volume: 21 start-page: 225 year: 2020 end-page: 245 article-title: Mechanisms and regulation of cholesterol homeostasis publication-title: Nat Rev Mol Cell Biol – volume: 14 start-page: 893 year: 2013 end-page: 900 article-title: Sterols and oxysterols in immune cell function publication-title: Nat Immunol – volume: 17 start-page: 1721 year: 2016b end-page: 1730 article-title: PKM2, cancer metabolism, and the road ahead publication-title: EMBO Rep – volume: 452 start-page: 230 year: 2008 end-page: 233 article-title: The M2 splice isoform of pyruvate kinase is important for cancer metabolism and tumour growth publication-title: Nature – volume: 153 start-page: 285 year: 2015 end-page: 297 article-title: TMEM33: a new stress‐inducible endoplasmic reticulum transmembrane protein and modulator of the unfolded protein response signaling publication-title: Breast Cancer Res Treat – volume: 261 start-page: 13807 year: 1986 end-page: 13812 article-title: The M1‐ and M2‐type isozymes of rat pyruvate kinase are produced from the same gene by alternative RNA splicing publication-title: J Biol Chem – volume: 155 start-page: 397 year: 2013 end-page: 409 article-title: PKM2 isoform‐specific deletion reveals a differential requirement for pyruvate kinase in tumor cells publication-title: Cell – volume: 6 year: 2017 article-title: Inhibition of cholesterol biosynthesis through RNF145‐dependent ubiquitination of SCAP publication-title: Elife – volume: 293 start-page: 6623 year: 2018 end-page: 6634 article-title: Pyruvate kinase M2 interacts with nuclear sterol regulatory element‐binding protein 1a and thereby activates lipogenesis and cell proliferation in hepatocellular carcinoma publication-title: J Biol Chem – volume: 26 start-page: 877 year: 2012 end-page: 890 article-title: Links between metabolism and cancer publication-title: Gene Dev – volume: 87 start-page: 783 year: 2018 end-page: 807 article-title: Retrospective on cholesterol homeostasis: the central role of scap publication-title: Annu Rev Biochem – volume: 13 start-page: 2513 year: 2014 end-page: 2526 article-title: Accurate proteome‐wide label‐free quantification by delayed normalization and maximal peptide ratio extraction, termed MaxLFQ publication-title: Mol Cell Proteomics – volume: 20 start-page: 2619 year: 2014 end-page: 2626 article-title: Targeting SREBP‐1‐driven lipid metabolism to treat cancer publication-title: Curr Pharm Design – volume: 109 start-page: 1125 year: 2002 end-page: 1131 article-title: SREBPs: activators of the complete program of cholesterol and fatty acid synthesis in the liver publication-title: J Clin Invest – volume: 5 start-page: 4436 year: 2014 article-title: PKM2 regulates the Warburg effect and promotes HMGB1 release in sepsis publication-title: Nat Commun – volume: 244 start-page: 16 year: 2010 end-page: 20 article-title: Role of Nrf1 in antioxidant response element‐mediated gene expression and beyond publication-title: Toxicol Appl Pharmacol – volume: 19 start-page: 1358 year: 2017 end-page: 1370 article-title: PKM2 methylation by CARM1 activates aerobic glycolysis to promote tumorigenesis publication-title: Nat Cell Biol – volume: 11 start-page: 2515 year: 2016 end-page: 2528 article-title: Deep interactome profiling of membrane proteins by co‐interacting protein identification technology publication-title: Nat Protoc – volume: 356 start-page: 184 year: 2015 end-page: 191 article-title: PKM2 contributes to cancer metabolism publication-title: Cancer Lett – volume: 278 start-page: 52479 year: 2003 end-page: 52490 article-title: Insig‐dependent ubiquitination and degradation of mammalian 3‐hydroxy‐3‐methylglutaryl‐CoA reductase stimulated by sterols and geranylgeraniol publication-title: J Biol Chem – volume: 114 start-page: E4380 year: 2017 end-page: E4388 article-title: Ubiquitin‐ and ATP‐dependent unfoldase activity of P97/VCP center dot NPLOC4 center dot UFD1L is enhanced by a mutation that causes multisystem proteinopathy publication-title: Proc Natl Acad Sci USA – volume: 207 start-page: 1 year: 2016 end-page: 22 article-title: The role of glucose and lipid metabolism in growth and survival of cancer cells publication-title: Recent Results Cancer Res – ident: e_1_2_9_20_1 doi: 10.1172/JCI0215593 – ident: e_1_2_9_2_1 doi: 10.1038/nchembio.1060 – ident: e_1_2_9_5_1 doi: 10.1038/oncsis.2015.49 – ident: e_1_2_9_12_1 doi: 10.1038/nature06734 – ident: e_1_2_9_28_1 doi: 10.1038/s41580-019-0190-7 – ident: e_1_2_9_6_1 doi: 10.1016/j.taap.2009.07.034 – ident: e_1_2_9_27_1 doi: 10.1016/j.ajpath.2010.11.005 – ident: e_1_2_9_10_1 doi: 10.1186/s40880-018-0301-4 – ident: e_1_2_9_39_1 doi: 10.1007/s10549-015-3536-7 – ident: e_1_2_9_47_1 doi: 10.1126/science.1160809 – ident: e_1_2_9_18_1 doi: 10.4103/1477-3163.115423 – ident: e_1_2_9_44_1 doi: 10.1002/jcp.27129 – ident: e_1_2_9_23_1 doi: 10.1074/jbc.RA119.011849 – ident: e_1_2_9_52_1 doi: 10.1038/nature10598 – ident: e_1_2_9_55_1 doi: 10.1074/jbc.RA117.000100 – ident: e_1_2_9_15_1 doi: 10.1101/gad.278549.116 – ident: e_1_2_9_16_1 doi: 10.15252/embr.201643300 – ident: e_1_2_9_21_1 doi: 10.1038/nmeth.2368 – ident: e_1_2_9_22_1 doi: 10.1016/j.cell.2013.09.025 – ident: e_1_2_9_3_1 doi: 10.1016/j.cmet.2019.10.015 – ident: e_1_2_9_4_1 doi: 10.1128/MCB.00439-16 – ident: e_1_2_9_50_1 doi: 10.1038/s41586-020-2183-2 – ident: e_1_2_9_49_1 doi: 10.1016/j.canlet.2014.01.031 – ident: e_1_2_9_31_1 doi: 10.1038/nrc.2016.76 – ident: e_1_2_9_53_1 doi: 10.1101/gad.268722.115 – ident: e_1_2_9_19_1 doi: 10.2174/13816128113199990486 – ident: e_1_2_9_43_1 doi: 10.1073/pnas.0506580102 – ident: e_1_2_9_54_1 doi: 10.7554/eLife.28766 – ident: e_1_2_9_8_1 doi: 10.1007/978-3-319-42118-6_1 – ident: e_1_2_9_36_1 doi: 10.1038/s41586-019-0984-y – ident: e_1_2_9_40_1 doi: 10.1074/jbc.M310053200 – ident: e_1_2_9_24_1 doi: 10.1158/0008-5472.CAN-15-2613 – ident: e_1_2_9_32_1 doi: 10.1016/S0021-9258(18)67091-7 – ident: e_1_2_9_37_1 doi: 10.1016/j.ajpath.2014.03.006 – ident: e_1_2_9_33_1 doi: 10.1074/jbc.M804597200 – ident: e_1_2_9_34_1 doi: 10.1038/nprot.2016.140 – ident: e_1_2_9_29_1 doi: 10.1016/j.cell.2011.03.054 – ident: e_1_2_9_35_1 doi: 10.4093/dmj.2015.39.5.353 – ident: e_1_2_9_42_1 doi: 10.1038/ni.2681 – ident: e_1_2_9_51_1 doi: 10.1038/ncomms5436 – ident: e_1_2_9_14_1 doi: 10.1101/gad.189365.112 – ident: e_1_2_9_25_1 doi: 10.1016/j.cellsig.2014.11.004 – ident: e_1_2_9_38_1 doi: 10.7554/eLife.01856 – ident: e_1_2_9_7_1 doi: 10.1073/pnas.1706205114 – ident: e_1_2_9_13_1 doi: 10.1074/mcp.M113.031591 – ident: e_1_2_9_26_1 doi: 10.1038/ncb3630 – volume: 9 start-page: 219 year: 2019 ident: e_1_2_9_17_1 article-title: The role of cholesterol metabolism in cancer publication-title: Am J Cancer Res – ident: e_1_2_9_11_1 doi: 10.1016/j.ccell.2015.09.021 – ident: e_1_2_9_45_1 doi: 10.1074/jbc.M808222200 – ident: e_1_2_9_46_1 doi: 10.4049/jimmunol.1901086 – ident: e_1_2_9_41_1 doi: 10.1016/j.cell.2017.05.022 – ident: e_1_2_9_48_1 doi: 10.1016/j.cell.2017.10.003 – volume: 13 start-page: 27 year: 1953 ident: e_1_2_9_30_1 article-title: Metabolism of neoplastic tissue. IV. A study of lipid synthesis in neoplastic tissue slices in vitro publication-title: Cancer Res – ident: e_1_2_9_9_1 doi: 10.1146/annurev-biochem-062917-011852 – reference: 34642948 - EMBO J. 2021 Nov 15;40(22):e109683 |
SSID | ssj0005871 |
Score | 2.540051 |
Snippet | The pyruvate kinase M2 isoform (PKM2) is preferentially expressed in cancer cells to regulate anabolic metabolism. Although PKM2 was recently reported to... |
SourceID | pubmedcentral proquest pubmed crossref wiley springer |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | e108065 |
SubjectTerms | Animals Breast cancer Breast Neoplasms - genetics Breast Neoplasms - metabolism Cancer Carcinogenesis Carcinogens Carrier Proteins - genetics Carrier Proteins - metabolism Cell Line, Tumor Cholesterol Cholesterol - blood Cleavage Control stability Degradation Depletion EMBO03 EMBO21 EMBO37 Endoplasmic reticulum Female Gene Expression Regulation, Neoplastic Homeostasis Humans Intracellular Signaling Peptides and Proteins - genetics Intracellular Signaling Peptides and Proteins - metabolism Kinases Lipid metabolism Lipid Metabolism - physiology Lipids Liver cancer Membrane Proteins - genetics Membrane Proteins - metabolism Metabolism Mice, Knockout PKM2 Proteins Pyruvate kinase Pyruvic acid SCAP degradation Sterol Regulatory Element Binding Protein 1 - metabolism Sterol regulatory element-binding protein Therapeutic applications Thyroid Hormone-Binding Proteins Thyroid Hormones - genetics Thyroid Hormones - metabolism TMEM33 total cholesterol levels tumor growth Tumors Ubiquitin-protein ligase Ubiquitination Xenograft Model Antitumor Assays |
Title | PKM2‐TMEM33 axis regulates lipid homeostasis in cancer cells by controlling SCAP stability |
URI | https://link.springer.com/article/10.15252/embj.2021108065 https://onlinelibrary.wiley.com/doi/abs/10.15252%2Fembj.2021108065 https://www.ncbi.nlm.nih.gov/pubmed/34487377 https://www.proquest.com/docview/2597415034 https://www.proquest.com/docview/2569616850 https://pubmed.ncbi.nlm.nih.gov/PMC8591543 |
Volume | 40 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS90wFD84ZcyXsbkP65xksJcNim3z1fvoyhVROoQp-DAoSZNih_bKrYL3zT_Bv3F_yXLS3t5d3Ac-hqRJc07C-Z2cL4CPGMZjVeTztiYhM0yEKrajsDSUUUplUvogsfyrODhlh2f8rH_vwFiY3-33POHJrr3UP5wah3oK2gCfwBqPqcQiDZnIFs4cqVet_GsKi9NRb5D80wzLAugBqnzoHDlYSJfxqxdA-y_geY8cyV7H6pewYpsNeNrVkpxtwLNsXrrtFXw_PsqTn3f3J_k4p5So27ol067ovG3JRX1VG3I-ubQTBw1b11c3pETuTwm-47dEz0jvwo7B6uRbtndM3FDvRzt7Daf745PsIOzLKISl0wV4qB2Iq2SJ_kzMuOurIo6KhDZaVlRKGxnEJSY1yslum2gZaRVLVTlkKCvJK_oGVptJYzeBxJpKKx3q0KJi1sSpMsJWonITlTotowB257Qtyj7HOJa6uChQ10BuFMiNYsGNAD4NX1x1-TX-MXZ7zq6iv2ltkaBG5FAtZQF8GLodvZFgqrGTGxwjRiIWKXc_-Lbj7rAYdfqpdGQIQC7xfRiA-beXe5r63OfhxtR_nNEAPs9PyOK3_r4H7s_QfzdbjPMvh4vm1mMWeQfr2MCQyZhvw-r19Ma-d9jpWu_4a7OD8ov_AmtDDuo |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VVKhcEJSXocAiwQEkq7bX9joHDiGkSpO6qtRU6gHJ9XrXqlHrVHEryI2fwG_gp_FLmNnYjqLyEIcerV3vY2bW-43nBfCawnh06pi8rZ7tKz-0U1d37Uxxn3MuvMwEicX74fDIHx0Hx2vwo4mFMd7ujUnSfKnrGj3etj6Xn1GhI42FrIG1I-VYz7-gmla93_2IPH3jeTuDSX9o15UE7AzhcGBLxDG5yMilx1cowakTEJaWSoqcC6EdRVezilSK15f2pHBk6oo0R3AkchHkHMe9BetREEZBB9Z7vdHhaOlIEhm1zvzJ8d2oWxtDf7fm1cvvGqK97pjZWmdXsbO5_Hbuwd0atbLeQszuw5ouN-H2oo7lfBM2-k3ZuAfw6WAcez-_fZ_Eg5hzln4tKjZbFLzXFTsrLgrFTqfneoqwtMK2omQZSd6MkQ2hYnLOavd5CpRnh_3eAcOuxod3_hCOboTwj6BTTkv9BJgrudACEY8Mc18rN0pVqPMwx4EyGWWOBdsNbZOszm9OZTbOEtJziBsJcSNZcsOCt-0bF4vcHn_pu9WwK6lPeZV4pI0houa-Ba_aZqQ3ESwt9fSK-oTd0EW5wQU-XnC3nYyjbiyQDBaIFb63HSj392pLWZyaHOCUdjDwuQXvGglZLuvPewiMDP1zs8kg_jBaPj79n0lewsZwEu8le7v742dwhxoodNMNtqBzObvSzxHDXcoX9SFicHLT5_YXDqdPFw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VIh4XVMrL0MIiwQEkK7bX9joHDsVN1Da4ikQr9YBkvN41NWqdKE4FufET-CX8KH4JM35FUXmIQ4_2buz1zKz2-zIvgBeUxqMTq6rb6piucn0zsXXfTBV3OefCSasksejQ3zt2D068kzX40ebCVNHurUuyzmmgKk3FvDdVWduvx-npc_kZyR2xF_IMNkGVI734gpStfLO_i_p96TjDwVG4ZzZdBcwUobFnSsQ0mUgpvMdVaM2J5RGulkqKjAuhLUXHtApUgkeZdqSwZGKLJEOgJDLhZRyfew2uIy-yieyFfrgMKQkqglf9p-PaQb9xi_5uxavH4CVsezlEs_PTrqLo6hgcbsCdBr-yndrg7sKaLjbhRt3RcrEJt8K2gdw9-DAeRc7Pb9-PokHEOUu-5iWb6U_UL0yX7Cyf5oqdTs71BAFqiWN5wVKywRkjb0LJ5II1gfSUMs_ehztjhlOraN7FfTi-ErE_gPViUuhHwGzJhRaIfaSfuVrZQaJ8nfkZPiiVQWoZ0GtlG6dNpXNquHEWE-MhbcSkjXipDQNedb-Y1lU-_jJ3q1VX3Oz3MnaIlyG25q4Bz7thlDcJLCn05ILm-H3f9gMPF_iw1m73Mo4sWaAYDBAreu8mUBXw1ZEiP62qgVMBQs_lBrxuLWS5rD9_g1fZ0D8_Nh5Ebw-Wl4__5yXP4OZ4dxi_2z8cPYHbdJ9yOG1vC9bnswu9jWBuLp9WO4jBx6vesr8Al3xR8Q |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=PKM2%E2%80%90TMEM33+axis+regulates+lipid+homeostasis+in+cancer+cells+by+controlling+SCAP+stability&rft.jtitle=The+EMBO+journal&rft.au=Liu%2C+Fabao&rft.au=Ma%2C+Min&rft.au=Gao%2C+Ang&rft.au=Ma%2C+Fengfei&rft.date=2021-11-15&rft.pub=Springer+Nature+B.V&rft.issn=0261-4189&rft.eissn=1460-2075&rft.volume=40&rft.issue=22&rft_id=info:doi/10.15252%2Fembj.2021108065&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0261-4189&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0261-4189&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0261-4189&client=summon |