Ab initio protein structure assembly using continuous structure fragments and optimized knowledge-based force field

Ab initio protein folding is one of the major unsolved problems in computational biology owing to the difficulties in force field design and conformational search. We developed a novel program, QUARK, for template‐free protein structure prediction. Query sequences are first broken into fragments of...

Full description

Saved in:
Bibliographic Details
Published inProteins, structure, function, and bioinformatics Vol. 80; no. 7; pp. 1715 - 1735
Main Authors Xu, Dong, Zhang, Yang
Format Journal Article
LanguageEnglish
Published Hoboken Wiley Subscription Services, Inc., A Wiley Company 01.07.2012
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Ab initio protein folding is one of the major unsolved problems in computational biology owing to the difficulties in force field design and conformational search. We developed a novel program, QUARK, for template‐free protein structure prediction. Query sequences are first broken into fragments of 1–20 residues where multiple fragment structures are retrieved at each position from unrelated experimental structures. Full‐length structure models are then assembled from fragments using replica‐exchange Monte Carlo simulations, which are guided by a composite knowledge‐based force field. A number of novel energy terms and Monte Carlo movements are introduced and the particular contributions to enhancing the efficiency of both force field and search engine are analyzed in detail. QUARK prediction procedure is depicted and tested on the structure modeling of 145 nonhomologous proteins. Although no global templates are used and all fragments from experimental structures with template modeling score >0.5 are excluded, QUARK can successfully construct 3D models of correct folds in one‐third cases of short proteins up to 100 residues. In the ninth community‐wide Critical Assessment of protein Structure Prediction experiment, QUARK server outperformed the second and third best servers by 18 and 47% based on the cumulative Z‐score of global distance test‐total scores in the FM category. Although ab initio protein folding remains a significant challenge, these data demonstrate new progress toward the solution of the most important problem in the field. Proteins 2012; © 2012 Wiley Periodicals, Inc.
AbstractList Ab initio protein folding is one of the major unsolved problems in computational biology owing to the difficulties in force field design and conformational search. We developed a novel program, QUARK, for template-free protein structure prediction. Query sequences are first broken into fragments of 1-20 residues where multiple fragment structures are retrieved at each position from unrelated experimental structures. Full-length structure models are then assembled from fragments using replica-exchange Monte Carlo simulations, which are guided by a composite knowledge-based force field. A number of novel energy terms and Monte Carlo movements are introduced and the particular contributions to enhancing the efficiency of both force field and search engine are analyzed in detail. QUARK prediction procedure is depicted and tested on the structure modeling of 145 nonhomologous proteins. Although no global templates are used and all fragments from experimental structures with template modeling score >0.5 are excluded, QUARK can successfully construct 3D models of correct folds in one-third cases of short proteins up to 100 residues. In the ninth community-wide Critical Assessment of protein Structure Prediction experiment, QUARK server outperformed the second and third best servers by 18 and 47% based on the cumulative Z-score of global distance test-total scores in the FM category. Although ab initio protein folding remains a significant challenge, these data demonstrate new progress toward the solution of the most important problem in the field. Proteins 2012; copyright 2012 Wiley Periodicals, Inc.
Ab initio protein folding is one of the major unsolved problems in computational biology owing to the difficulties in force field design and conformational search. We developed a novel program, QUARK, for template-free protein structure prediction. Query sequences are first broken into fragments of 1-20 residues where multiple fragment structures are retrieved at each position from unrelated experimental structures. Full-length structure models are then assembled from fragments using replica-exchange Monte Carlo simulations, which are guided by a composite knowledge-based force field. A number of novel energy terms and Monte Carlo movements are introduced and the particular contributions to enhancing the efficiency of both force field and search engine are analyzed in detail. QUARK prediction procedure is depicted and tested on the structure modeling of 145 nonhomologous proteins. Although no global templates are used and all fragments from experimental structures with template modeling score >0.5 are excluded, QUARK can successfully construct 3D models of correct folds in one-third cases of short proteins up to 100 residues. In the ninth community-wide Critical Assessment of protein Structure Prediction experiment, QUARK server outperformed the second and third best servers by 18 and 47% based on the cumulative Z-score of global distance test-total scores in the FM category. Although ab initio protein folding remains a significant challenge, these data demonstrate new progress toward the solution of the most important problem in the field.
Ab initio protein folding is one of the major unsolved problems in computational biology owing to the difficulties in force field design and conformational search. We developed a novel program, QUARK, for template-free protein structure prediction. Query sequences are first broken into fragments of 1-20 residues where multiple fragment structures are retrieved at each position from unrelated experimental structures. Full-length structure models are then assembled from fragments using replica-exchange Monte Carlo simulations, which are guided by a composite knowledge-based force field. A number of novel energy terms and Monte Carlo movements are introduced and the particular contributions to enhancing the efficiency of both force field and search engine are analyzed in detail. QUARK prediction procedure is depicted and tested on the structure modeling of 145 nonhomologous proteins. Although no global templates are used and all fragments from experimental structures with template modeling score >0.5 are excluded, QUARK can successfully construct 3D models of correct folds in one-third cases of short proteins up to 100 residues. In the ninth community-wide Critical Assessment of protein Structure Prediction experiment, QUARK server outperformed the second and third best servers by 18 and 47% based on the cumulative Z-score of global distance test-total scores in the FM category. Although ab initio protein folding remains a significant challenge, these data demonstrate new progress toward the solution of the most important problem in the field. Proteins 2012; © 2012 Wiley Periodicals, Inc. [PUBLICATION ABSTRACT]
Ab initio protein folding is one of the major unsolved problems in computational biology owing to the difficulties in force field design and conformational search. We developed a novel program, QUARK, for template‐free protein structure prediction. Query sequences are first broken into fragments of 1–20 residues where multiple fragment structures are retrieved at each position from unrelated experimental structures. Full‐length structure models are then assembled from fragments using replica‐exchange Monte Carlo simulations, which are guided by a composite knowledge‐based force field. A number of novel energy terms and Monte Carlo movements are introduced and the particular contributions to enhancing the efficiency of both force field and search engine are analyzed in detail. QUARK prediction procedure is depicted and tested on the structure modeling of 145 nonhomologous proteins. Although no global templates are used and all fragments from experimental structures with template modeling score >0.5 are excluded, QUARK can successfully construct 3D models of correct folds in one‐third cases of short proteins up to 100 residues. In the ninth community‐wide Critical Assessment of protein Structure Prediction experiment, QUARK server outperformed the second and third best servers by 18 and 47% based on the cumulative Z‐score of global distance test‐total scores in the FM category. Although ab initio protein folding remains a significant challenge, these data demonstrate new progress toward the solution of the most important problem in the field. Proteins 2012; © 2012 Wiley Periodicals, Inc.
Ab initio protein folding is one of the major unsolved problems in computational biology owing to the difficulties in force field design and conformational search. We developed a novel program, QUARK, for template-free protein structure prediction. Query sequences are first broken into fragments of 1-20 residues where multiple fragment structures are retrieved at each position from unrelated experimental structures. Full-length structure models are then assembled from fragments using replica-exchange Monte Carlo simulations, which are guided by a composite knowledge-based force field. A number of novel energy terms and Monte Carlo movements are introduced and the particular contributions to enhancing the efficiency of both force field and search engine are analyzed in detail. QUARK prediction procedure is depicted and tested on the structure modeling of 145 nonhomologous proteins. Although no global templates are used and all fragments from experimental structures with template modeling score >0.5 are excluded, QUARK can successfully construct 3D models of correct folds in one-third cases of short proteins up to 100 residues. In the ninth community-wide Critical Assessment of protein Structure Prediction experiment, QUARK server outperformed the second and third best servers by 18 and 47% based on the cumulative Z-score of global distance test-total scores in the FM category. Although ab initio protein folding remains a significant challenge, these data demonstrate new progress toward the solution of the most important problem in the field.Ab initio protein folding is one of the major unsolved problems in computational biology owing to the difficulties in force field design and conformational search. We developed a novel program, QUARK, for template-free protein structure prediction. Query sequences are first broken into fragments of 1-20 residues where multiple fragment structures are retrieved at each position from unrelated experimental structures. Full-length structure models are then assembled from fragments using replica-exchange Monte Carlo simulations, which are guided by a composite knowledge-based force field. A number of novel energy terms and Monte Carlo movements are introduced and the particular contributions to enhancing the efficiency of both force field and search engine are analyzed in detail. QUARK prediction procedure is depicted and tested on the structure modeling of 145 nonhomologous proteins. Although no global templates are used and all fragments from experimental structures with template modeling score >0.5 are excluded, QUARK can successfully construct 3D models of correct folds in one-third cases of short proteins up to 100 residues. In the ninth community-wide Critical Assessment of protein Structure Prediction experiment, QUARK server outperformed the second and third best servers by 18 and 47% based on the cumulative Z-score of global distance test-total scores in the FM category. Although ab initio protein folding remains a significant challenge, these data demonstrate new progress toward the solution of the most important problem in the field.
Ab initio protein folding is one of the major unsolved problems in computational biology due to the difficulties in force field design and conformational search. We developed a novel program, QUARK, for template-free protein structure prediction. Query sequences are first broken into fragments of 1–20 residues where multiple fragment structures are retrieved at each position from unrelated experimental structures. Full-length structure models are then assembled from fragments using replica-exchange Monte Carlo simulations, which are guided by a composite knowledge-based force field. A number of novel energy terms and Monte Carlo movements are introduced and the particular contributions to enhancing the efficiency of both force field and search engine are analyzed in detail. QUARK prediction procedure is depicted and tested on the structure modeling of 145 non-homologous proteins. Although no global templates are used and all fragments from experimental structures with template modeling score (TM-score) >0.5 are excluded, QUARK can successfully construct 3D models of correct folds in 1/3 cases of short proteins up to 100 residues. In the ninth community-wide Critical Assessment of protein Structure Prediction (CASP9) experiment, QUARK server outperformed the second and third best servers by 18% and 47% based on the cumulative Z-score of global distance test-total (GDT-TS) scores in the free modeling (FM) category. Although ab initio protein folding remains a significant challenge, these data demonstrate new progress towards the solution of the most important problem in the field.
Ab initio protein folding is one of the major unsolved problems in computational biology owing to the difficulties in force field design and conformational search. We developed a novel program, QUARK, for template‐free protein structure prediction. Query sequences are first broken into fragments of 1–20 residues where multiple fragment structures are retrieved at each position from unrelated experimental structures. Full‐length structure models are then assembled from fragments using replica‐exchange Monte Carlo simulations, which are guided by a composite knowledge‐based force field. A number of novel energy terms and Monte Carlo movements are introduced and the particular contributions to enhancing the efficiency of both force field and search engine are analyzed in detail. QUARK prediction procedure is depicted and tested on the structure modeling of 145 nonhomologous proteins. Although no global templates are used and all fragments from experimental structures with template modeling score >0.5 are excluded, QUARK can successfully construct 3D models of correct folds in one‐third cases of short proteins up to 100 residues. In the ninth community‐wide Critical Assessment of protein Structure Prediction experiment, QUARK server outperformed the second and third best servers by 18 and 47% based on the cumulative Z ‐score of global distance test‐total scores in the FM category. Although ab initio protein folding remains a significant challenge, these data demonstrate new progress toward the solution of the most important problem in the field. Proteins 2012; © 2012 Wiley Periodicals, Inc.
Author Xu, Dong
Zhang, Yang
AuthorAffiliation 1 Department of Computational Medicine and Bioinformatics, University of Michigan, 100 Washtenaw Avenue, Ann Arbor, MI 48109, USA
2 Department of Biological Chemistry, University of Michigan, 100 Washtenaw Avenue, Ann Arbor, MI 48109, USA
AuthorAffiliation_xml – name: 1 Department of Computational Medicine and Bioinformatics, University of Michigan, 100 Washtenaw Avenue, Ann Arbor, MI 48109, USA
– name: 2 Department of Biological Chemistry, University of Michigan, 100 Washtenaw Avenue, Ann Arbor, MI 48109, USA
Author_xml – sequence: 1
  givenname: Dong
  surname: Xu
  fullname: Xu, Dong
  organization: Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan 48109
– sequence: 2
  givenname: Yang
  surname: Zhang
  fullname: Zhang, Yang
  email: zhng@umich.edu
  organization: Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan 48109
BackLink https://www.ncbi.nlm.nih.gov/pubmed/22411565$$D View this record in MEDLINE/PubMed
BookMark eNqFkt1r1TAYxoNM3Ife-AdIwRsROt80SdPcCHPoFA9OxsTLkLZvj9na5Cxpnce_3tSzHeYQvQov-T0Pz_uxT3acd0jIUwqHFKB4tQp-PCw4lOIB2aOgZA6U8R2yB1UlcyYqsUv2Y7wAgFKx8hHZLQpOqSjFHolHdWadHa3PZhu0LotjmJpxCpiZGHGo-3U2ReuWWePdaN3kp3iH6YJZDujGmBnXZn412sH-xDa7dP66x3aJeW1iqjsfmkRb7NvH5GFn-ohPbt4D8uXd2_Pj9_ni9OTD8dEib1JkkbOCs05RjsZQKOpKFsixTi1J0ymDjejKTjRVBRJaDi3UpmorlKXhQLGoOTsgrze-q6kesG1SymB6vQp2MGGtvbH6zx9nv-ml_64ZkwByNnhxYxD81YRx1IONDfa9cZimoKkolOJplOz_KFBVUq6ETOjze-iFn4JLk0iGVHKulJgNn90Nv019u7oEvNwATfAxBuy2CAU934WeF6p_30WC4R7c2NGkrc-N2_7vErqRXNse1_8w15_PTs9vNflGY-OIP7YaEy51KZkU-uunE119XEh4oxb6jP0Cn_7clg
CitedBy_id crossref_primary_10_1371_journal_ppat_1007056
crossref_primary_10_3390_ijms21010366
crossref_primary_10_1093_bioinformatics_btw668
crossref_primary_10_1093_bioinformatics_btv459
crossref_primary_10_1093_bioinformatics_btx514
crossref_primary_10_3390_ijms21010006
crossref_primary_10_1007_s11047_014_9427_8
crossref_primary_10_1016_j_jmb_2015_09_024
crossref_primary_10_1016_S2222_1808_14_60492_8
crossref_primary_10_1093_bib_bbab493
crossref_primary_10_20537_2076_7633_2013_5_4_737_747
crossref_primary_10_1371_journal_pone_0065770
crossref_primary_10_1016_j_jmgm_2017_09_003
crossref_primary_10_1016_j_ijbiomac_2020_12_192
crossref_primary_10_1016_j_bbamem_2016_11_011
crossref_primary_10_1016_j_compbiolchem_2014_10_001
crossref_primary_10_2174_1871526518666171215123214
crossref_primary_10_1016_j_celrep_2014_05_034
crossref_primary_10_3390_md19040181
crossref_primary_10_1016_j_jsb_2015_06_009
crossref_primary_10_1016_j_devcel_2023_05_006
crossref_primary_10_1016_j_isci_2021_102059
crossref_primary_10_1016_j_pnmrs_2018_03_002
crossref_primary_10_1186_s12859_016_1348_3
crossref_primary_10_1016_j_gene_2015_04_070
crossref_primary_10_1109_TEVC_2021_3095481
crossref_primary_10_1002_prot_26355
crossref_primary_10_1021_acs_jctc_8b00303
crossref_primary_10_1002_yea_3537
crossref_primary_10_1021_bi400606b
crossref_primary_10_2174_0929866527666200129141116
crossref_primary_10_1016_j_fochx_2024_101275
crossref_primary_10_1021_acs_jpcb_1c00902
crossref_primary_10_1016_j_abb_2018_05_020
crossref_primary_10_1093_bioinformatics_btv235
crossref_primary_10_1093_molbev_mst207
crossref_primary_10_1002_prot_24179
crossref_primary_10_1002_prot_26478
crossref_primary_10_1109_TCBB_2022_3168676
crossref_primary_10_1093_bioinformatics_btab620
crossref_primary_10_1016_j_jmb_2021_167127
crossref_primary_10_1093_bioinformatics_btab500
crossref_primary_10_1111_cmi_12288
crossref_primary_10_3390_v14102307
crossref_primary_10_3390_molecules26216566
crossref_primary_10_1002_prot_25278
crossref_primary_10_1038_srep45224
crossref_primary_10_1038_s41596_021_00628_9
crossref_primary_10_1371_journal_pone_0053571
crossref_primary_10_1038_srep44150
crossref_primary_10_1016_j_ijbiomac_2020_10_211
crossref_primary_10_1093_bioinformatics_btw316
crossref_primary_10_1109_TNB_2017_2749243
crossref_primary_10_1093_bioinformatics_btz943
crossref_primary_10_3390_life10070109
crossref_primary_10_1021_acs_cgd_0c01136
crossref_primary_10_3390_toxins7061989
crossref_primary_10_1093_bioinformatics_btab871
crossref_primary_10_1109_TCBB_2017_2705094
crossref_primary_10_1007_s11120_014_0071_z
crossref_primary_10_1039_D1SC06825C
crossref_primary_10_3390_biology10111113
crossref_primary_10_3390_mca26020039
crossref_primary_10_3389_fmolb_2021_814935
crossref_primary_10_1109_TCBB_2015_2497226
crossref_primary_10_1016_j_bbagen_2021_129889
crossref_primary_10_1002_jbmr_3142
crossref_primary_10_1002_prot_25162
crossref_primary_10_1371_journal_pcbi_1004619
crossref_primary_10_1016_j_micpath_2020_104111
crossref_primary_10_1186_s12858_015_0047_4
crossref_primary_10_1021_acs_jpclett_6b00452
crossref_primary_10_1016_j_tplants_2015_08_004
crossref_primary_10_1111_ejh_12456
crossref_primary_10_1016_j_jmb_2022_167541
crossref_primary_10_1016_j_bpj_2016_12_008
crossref_primary_10_1111_plb_13711
crossref_primary_10_1371_journal_pone_0068954
crossref_primary_10_1002_ange_201707554
crossref_primary_10_1039_D4MD00383G
crossref_primary_10_1080_07391102_2015_1077736
crossref_primary_10_1002_prot_25332
crossref_primary_10_1016_j_abb_2017_12_004
crossref_primary_10_1093_bioinformatics_btab777
crossref_primary_10_1098_rsif_2011_0843
crossref_primary_10_1080_07391102_2018_1461688
crossref_primary_10_1080_07391102_2020_1832579
crossref_primary_10_1002_minf_201400108
crossref_primary_10_1021_acs_jcim_9b00948
crossref_primary_10_1155_2018_7963401
crossref_primary_10_1007_s10096_020_04125_x
crossref_primary_10_3390_v14020420
crossref_primary_10_1093_bioinformatics_btx781
crossref_primary_10_1016_j_dnarep_2019_102698
crossref_primary_10_1074_jbc_RA118_003490
crossref_primary_10_1002_biot_201900343
crossref_primary_10_1093_nar_gkz266
crossref_primary_10_1002_prot_24374
crossref_primary_10_1002_prot_24490
crossref_primary_10_1016_j_compbiomed_2021_104380
crossref_primary_10_1016_j_bbrc_2020_08_024
crossref_primary_10_1186_s12859_021_04258_6
crossref_primary_10_1371_journal_pone_0057848
crossref_primary_10_1016_j_antiviral_2017_11_001
crossref_primary_10_1093_bioinformatics_btz876
crossref_primary_10_1002_pro_3348
crossref_primary_10_1038_srep35465
crossref_primary_10_1093_bib_bbab590
crossref_primary_10_1007_s00439_017_1843_2
crossref_primary_10_1016_j_ijbiomac_2020_08_232
crossref_primary_10_3389_fmicb_2016_00509
crossref_primary_10_1016_j_isci_2022_104425
crossref_primary_10_1021_ct500592m
crossref_primary_10_1021_acs_jcim_2c01196
crossref_primary_10_1016_j_virusres_2020_198143
crossref_primary_10_1038_s41598_019_39301_3
crossref_primary_10_1016_j_peptides_2013_03_014
crossref_primary_10_1038_nature24282
crossref_primary_10_1124_mol_119_117549
crossref_primary_10_3390_tropicalmed9070140
crossref_primary_10_1124_jpet_114_221143
crossref_primary_10_1126_sciadv_abg3147
crossref_primary_10_1371_journal_ppat_1009884
crossref_primary_10_3390_v7010394
crossref_primary_10_3389_fmicb_2018_00725
crossref_primary_10_1002_cmdc_201300256
crossref_primary_10_1002_bkcs_10421
crossref_primary_10_1007_s11883_023_01154_7
crossref_primary_10_1016_j_virusres_2016_07_013
crossref_primary_10_34248_bsengineering_1402011
crossref_primary_10_1142_S0219720019400134
crossref_primary_10_3390_physiologia3010002
crossref_primary_10_1080_07391102_2020_1841025
crossref_primary_10_1002_prot_25244
crossref_primary_10_1186_1756_0500_7_446
crossref_primary_10_3389_fbinf_2023_1120370
crossref_primary_10_1242_jeb_092288
crossref_primary_10_1002_prot_25769
crossref_primary_10_1016_j_gpb_2022_11_014
crossref_primary_10_1093_jnci_djab019
crossref_primary_10_3390_v15112144
crossref_primary_10_1371_journal_pgen_1003874
crossref_primary_10_1099_jgv_0_001730
crossref_primary_10_1128_JB_00445_20
crossref_primary_10_3390_life9010008
crossref_primary_10_1021_acs_jproteome_5b00734
crossref_primary_10_3390_biom9100612
crossref_primary_10_1155_2013_594319
crossref_primary_10_1002_minf_201500044
crossref_primary_10_12688_f1000research_12486_1
crossref_primary_10_12688_f1000research_12486_2
crossref_primary_10_1080_07391102_2020_1790423
crossref_primary_10_3389_fmolb_2021_649990
crossref_primary_10_1021_acs_jpclett_6b00362
crossref_primary_10_1093_database_bay090
crossref_primary_10_1002_prot_25414
crossref_primary_10_1016_j_jmb_2016_01_007
crossref_primary_10_1128_JB_00623_18
crossref_primary_10_3389_fmicb_2018_02846
crossref_primary_10_1016_j_jmb_2020_07_027
crossref_primary_10_1016_j_bbrep_2016_07_018
crossref_primary_10_1021_acs_jafc_3c05860
crossref_primary_10_3390_plants10102181
crossref_primary_10_3390_pharmaceutics15051433
crossref_primary_10_7554_eLife_24109
crossref_primary_10_1371_journal_pone_0211897
crossref_primary_10_1371_journal_pone_0191162
crossref_primary_10_1016_j_jbior_2012_12_001
crossref_primary_10_1016_j_sbi_2022_102354
crossref_primary_10_1002_anie_201707554
crossref_primary_10_3390_ijms23073721
crossref_primary_10_1016_j_biochi_2020_04_026
crossref_primary_10_1016_j_csbj_2019_07_010
crossref_primary_10_1002_1873_3468_13704
crossref_primary_10_1002_prot_24459
crossref_primary_10_1002_prot_25306
crossref_primary_10_1021_acsinfecdis_4c00240
crossref_primary_10_1126_science_aar2781
crossref_primary_10_1002_prot_24336
crossref_primary_10_1007_s00436_017_5408_z
crossref_primary_10_1371_journal_pone_0183548
crossref_primary_10_3389_fmicb_2015_01397
crossref_primary_10_1016_j_knosys_2018_01_028
crossref_primary_10_1016_j_dci_2018_02_021
crossref_primary_10_1074_mcp_M116_060806
crossref_primary_10_1016_j_cjche_2021_08_017
crossref_primary_10_1016_j_jinorgbio_2019_110960
crossref_primary_10_1016_j_jmgm_2021_108046
crossref_primary_10_1186_s12862_015_0337_x
crossref_primary_10_1109_TAI_2021_3062771
crossref_primary_10_3389_fbinf_2023_1157956
crossref_primary_10_1002_prot_25792
crossref_primary_10_1002_prot_24341
crossref_primary_10_1016_j_cels_2019_03_006
crossref_primary_10_1186_s12859_019_2794_5
crossref_primary_10_1002_ctm2_1789
crossref_primary_10_7554_eLife_01584
crossref_primary_10_1021_acs_chemrev_6b00163
crossref_primary_10_1111_cns_13627
crossref_primary_10_1093_bioinformatics_btz544
crossref_primary_10_1016_j_pbiomolbio_2017_02_006
crossref_primary_10_1002_prot_24587
crossref_primary_10_1007_s00439_016_1741_z
crossref_primary_10_1128_JB_00399_21
crossref_primary_10_1021_jacs_0c02954
crossref_primary_10_1093_bib_bbac507
crossref_primary_10_1021_acs_jctc_4c00067
crossref_primary_10_1073_pnas_1905068116
crossref_primary_10_3390_molecules29040832
crossref_primary_10_1002_prot_25442
crossref_primary_10_1038_srep23105
crossref_primary_10_1107_S2052252521011891
crossref_primary_10_1108_BPMJ_11_2023_0902
crossref_primary_10_1007_s00894_014_2357_7
crossref_primary_10_7554_eLife_92379_3
crossref_primary_10_3390_molecules24050854
crossref_primary_10_1039_D0SM00491J
crossref_primary_10_1161_CIRCRESAHA_122_320882
crossref_primary_10_3390_molecules25092228
crossref_primary_10_1074_jbc_M116_771675
crossref_primary_10_1093_jb_mvw064
crossref_primary_10_1089_regen_2023_0012
crossref_primary_10_1093_bioinformatics_btab484
crossref_primary_10_1093_bioinformatics_btv092
crossref_primary_10_1371_journal_pone_0082985
crossref_primary_10_1093_bib_bbw070
crossref_primary_10_3390_ijms22094408
crossref_primary_10_1109_ACCESS_2022_3176945
crossref_primary_10_1016_j_bbagen_2020_129633
crossref_primary_10_1016_j_peptides_2012_07_017
crossref_primary_10_1016_j_jsb_2016_03_004
crossref_primary_10_1016_j_bbabio_2017_11_001
crossref_primary_10_1016_j_jmgm_2016_08_007
crossref_primary_10_1109_TCBB_2019_2921958
crossref_primary_10_1002_advs_202102592
crossref_primary_10_1021_ct5007828
crossref_primary_10_1038_s41467_023_41669_w
crossref_primary_10_1016_j_crstbi_2022_01_001
crossref_primary_10_1007_s00430_020_00663_5
crossref_primary_10_1162_EVCO_a_00176
crossref_primary_10_1016_j_compbiomed_2022_105695
crossref_primary_10_1007_s10969_012_9146_2
crossref_primary_10_1128_AEM_00367_20
crossref_primary_10_1021_acsbiomaterials_8b00819
crossref_primary_10_1074_mcp_TIR118_001233
crossref_primary_10_1371_journal_pone_0221347
crossref_primary_10_3390_ijms160715136
crossref_primary_10_1038_s41598_019_43926_9
crossref_primary_10_1016_j_asoc_2015_06_024
crossref_primary_10_3389_fcimb_2020_00405
crossref_primary_10_1073_pnas_1607178113
crossref_primary_10_1093_ofid_ofz013
crossref_primary_10_3390_md17060376
crossref_primary_10_1016_j_jes_2015_03_035
crossref_primary_10_1016_j_jid_2021_01_033
crossref_primary_10_1016_j_ncrna_2019_10_002
crossref_primary_10_1002_2211_5463_13908
crossref_primary_10_1016_j_peptides_2014_02_010
crossref_primary_10_1089_ars_2019_7931
crossref_primary_10_1124_jpet_114_217976
crossref_primary_10_1002_bit_26865
crossref_primary_10_1111_cea_12028
crossref_primary_10_1038_s41598_018_31891_8
crossref_primary_10_1021_acs_jcim_1c00175
crossref_primary_10_1002_prot_24782
crossref_primary_10_1016_j_future_2019_04_011
crossref_primary_10_1016_j_xpro_2021_100505
crossref_primary_10_1109_TCBB_2020_3000758
crossref_primary_10_1007_s10462_022_10350_x
crossref_primary_10_1016_j_ijbiomac_2021_02_210
crossref_primary_10_1038_s41598_021_90313_4
crossref_primary_10_1016_j_jprot_2013_04_007
crossref_primary_10_1038_s41467_020_17568_9
crossref_primary_10_1016_j_jmb_2020_07_002
crossref_primary_10_3390_ijms20030606
crossref_primary_10_1002_jez_1930
crossref_primary_10_1093_bioinformatics_btx164
crossref_primary_10_3390_biom14091083
crossref_primary_10_1016_j_compbiolchem_2018_02_003
crossref_primary_10_3390_molecules25225405
crossref_primary_10_1016_j_chroma_2018_04_067
crossref_primary_10_3390_bioengineering9030118
crossref_primary_10_1126_scisignal_abe9613
crossref_primary_10_3390_ijms23073862
crossref_primary_10_1371_journal_pone_0071610
crossref_primary_10_1016_j_molliq_2021_117778
crossref_primary_10_12688_f1000research_130443_1
crossref_primary_10_1016_j_bbapap_2013_04_022
crossref_primary_10_1002_prot_24950
crossref_primary_10_1093_bib_bbx006
crossref_primary_10_1021_acs_jmedchem_7b01831
crossref_primary_10_1136_jmedgenet_2018_105299
crossref_primary_10_1016_j_cels_2020_08_016
crossref_primary_10_1109_TCBB_2013_29
crossref_primary_10_1515_cmb_2019_0001
crossref_primary_10_1039_D4ME00073K
crossref_primary_10_1002_jcc_23543
crossref_primary_10_1073_pnas_2208275120
crossref_primary_10_1016_j_molliq_2021_116899
crossref_primary_10_1002_wcms_1307
crossref_primary_10_1016_j_ijbiomac_2020_07_293
crossref_primary_10_1371_journal_pcbi_1010539
crossref_primary_10_1038_s41588_023_01403_0
crossref_primary_10_1371_journal_pone_0093313
crossref_primary_10_1007_s00018_016_2131_3
crossref_primary_10_1021_acs_jctc_6b00819
crossref_primary_10_1107_S2059798322003576
crossref_primary_10_1098_rsob_130172
crossref_primary_10_1002_prot_24600
crossref_primary_10_1371_journal_pone_0138787
crossref_primary_10_1016_j_bbapap_2014_07_019
crossref_primary_10_3389_fimmu_2020_00076
crossref_primary_10_1042_BCJ20190687
crossref_primary_10_1371_journal_pone_0080493
crossref_primary_10_1016_j_heliyon_2020_e04115
crossref_primary_10_1038_s41596_022_00728_0
crossref_primary_10_1016_j_procbio_2015_06_010
crossref_primary_10_1371_journal_pone_0154923
crossref_primary_10_1186_s12859_020_3491_0
crossref_primary_10_1016_j_jsb_2022_107870
crossref_primary_10_1111_mmi_12759
crossref_primary_10_3390_ijms24076262
crossref_primary_10_1016_j_dci_2014_11_008
crossref_primary_10_1186_s12859_020_3523_9
crossref_primary_10_1007_s12010_014_0757_x
crossref_primary_10_3390_molecules21081062
crossref_primary_10_1094_MPMI_02_20_0028_R
crossref_primary_10_1016_j_cor_2017_11_015
crossref_primary_10_1002_prot_24973
crossref_primary_10_1016_j_bbagen_2018_06_011
crossref_primary_10_1021_acs_jcim_3c01324
crossref_primary_10_1016_j_compbiolchem_2022_107693
crossref_primary_10_1111_jcmm_16660
crossref_primary_10_1111_cbdd_13329
crossref_primary_10_1530_JME_14_0050
crossref_primary_10_1074_jbc_M115_676221
crossref_primary_10_1016_j_peptides_2014_03_017
crossref_primary_10_1002_jcc_24415
crossref_primary_10_1099_vir_0_055673_0
crossref_primary_10_1007_s13353_014_0265_2
crossref_primary_10_1002_prot_25956
crossref_primary_10_1109_TCBB_2019_2917452
crossref_primary_10_1002_prot_24744
crossref_primary_10_7498_aps_65_178701
crossref_primary_10_1007_s00232_021_00187_w
crossref_primary_10_1016_j_csbj_2015_04_004
crossref_primary_10_1016_j_jmgm_2013_05_012
crossref_primary_10_1002_pro_2961
crossref_primary_10_3389_fgene_2015_00348
crossref_primary_10_1109_TCBB_2020_3049088
crossref_primary_10_1016_j_foodhyd_2024_110154
crossref_primary_10_1371_journal_pone_0170131
crossref_primary_10_1042_ETLS20200253
crossref_primary_10_1038_srep44948
crossref_primary_10_1093_nar_gkt462
crossref_primary_10_1126_science_aaz3041
crossref_primary_10_1038_srep38031
crossref_primary_10_1016_j_asej_2019_03_004
crossref_primary_10_1016_j_bbamem_2018_03_002
crossref_primary_10_1186_s12934_017_0706_9
crossref_primary_10_1074_jbc_M112_343756
crossref_primary_10_1016_j_micpath_2018_09_004
crossref_primary_10_1016_j_bbcan_2013_02_001
crossref_primary_10_1016_j_jacl_2021_01_002
crossref_primary_10_1093_nar_gku369
crossref_primary_10_1002_prot_24917
crossref_primary_10_1093_bioinformatics_btac056
crossref_primary_10_1002_prot_24918
crossref_primary_10_1371_journal_pone_0251459
crossref_primary_10_1016_j_jocs_2020_101087
crossref_primary_10_1016_j_ijbiomac_2021_03_199
crossref_primary_10_1155_2021_9542038
crossref_primary_10_1016_j_jmb_2018_12_013
crossref_primary_10_1126_sciadv_abd0263
crossref_primary_10_3390_v12050570
crossref_primary_10_1016_j_jmb_2018_12_016
crossref_primary_10_1007_s00894_019_4232_z
crossref_primary_10_1007_s00239_016_9738_8
crossref_primary_10_1242_jcs_188516
crossref_primary_10_3390_genes9080386
crossref_primary_10_1016_j_jmb_2019_05_044
crossref_primary_10_1038_s41467_021_21667_6
crossref_primary_10_1186_s12885_021_08370_x
crossref_primary_10_1016_j_actbio_2022_04_025
crossref_primary_10_1021_acschembio_7b00055
crossref_primary_10_3390_ijms141020635
crossref_primary_10_3390_v11020143
crossref_primary_10_1002_prot_24924
crossref_primary_10_1002_cem_3026
crossref_primary_10_3390_ph17020158
crossref_primary_10_1093_nar_gkv342
crossref_primary_10_1371_journal_pone_0121074
crossref_primary_10_3390_app11188315
crossref_primary_10_1080_07391102_2022_2050301
crossref_primary_10_15406_jbmoa_2022_10_00330
crossref_primary_10_1016_j_cub_2017_08_019
crossref_primary_10_1126_sciadv_adh9812
crossref_primary_10_1002_jcc_23339
crossref_primary_10_1021_acs_biochem_7b01073
crossref_primary_10_1016_j_foodhyd_2023_108638
crossref_primary_10_1021_acsomega_0c00189
crossref_primary_10_7554_eLife_17029
crossref_primary_10_7717_peerj_3139
crossref_primary_10_1016_j_bbamem_2019_183138
crossref_primary_10_1002_prot_24930
crossref_primary_10_3390_computation6020039
crossref_primary_10_1271_bbb_130424
crossref_primary_10_1016_j_npep_2023_102390
crossref_primary_10_1007_s10570_020_03194_7
crossref_primary_10_1186_s12859_019_2652_5
crossref_primary_10_2217_fvl_2016_0083
crossref_primary_10_1111_cbdd_14588
crossref_primary_10_3390_jcm10050984
crossref_primary_10_1142_S2737416523300018
crossref_primary_10_1007_s10989_015_9459_7
crossref_primary_10_1371_journal_pone_0188520
crossref_primary_10_3390_ijms20153756
crossref_primary_10_1016_j_sbi_2021_01_007
crossref_primary_10_1021_acs_biomac_6b01810
crossref_primary_10_1038_s41467_024_48843_8
crossref_primary_10_1016_j_ins_2020_06_003
crossref_primary_10_1073_pnas_2110828118
crossref_primary_10_1038_s42003_022_03886_9
crossref_primary_10_1021_acs_jcim_6b00407
crossref_primary_10_1109_TCBB_2016_2566617
crossref_primary_10_1007_s10930_021_10016_7
crossref_primary_10_1007_s13337_021_00688_1
crossref_primary_10_1016_j_jsb_2016_05_004
crossref_primary_10_1111_febs_13795
crossref_primary_10_3390_life5021141
crossref_primary_10_1158_0008_5472_CAN_17_2876
crossref_primary_10_1002_jbmr_4711
crossref_primary_10_1016_j_compbiolchem_2016_01_009
crossref_primary_10_1016_j_intimp_2019_01_016
crossref_primary_10_1016_j_compbiolchem_2016_01_008
crossref_primary_10_1186_s12936_021_03598_1
crossref_primary_10_1128_JVI_01785_16
crossref_primary_10_3390_jof9010103
crossref_primary_10_1186_s12915_020_0751_4
crossref_primary_10_3389_fcimb_2015_00040
crossref_primary_10_3390_biology9090294
crossref_primary_10_1074_jbc_M117_794230
crossref_primary_10_1016_j_jmgm_2017_12_023
crossref_primary_10_1016_j_biochi_2020_12_017
crossref_primary_10_3389_fmicb_2015_00958
crossref_primary_10_1371_journal_pcbi_1007411
crossref_primary_10_1016_j_mimet_2015_06_003
crossref_primary_10_1371_journal_pcbi_1003298
crossref_primary_10_1016_j_drudis_2014_08_011
crossref_primary_10_3989_arbor_2015_772n2006
crossref_primary_10_1016_j_jmb_2023_168146
crossref_primary_10_1016_j_ejps_2022_106324
crossref_primary_10_1093_bioinformatics_btv601
crossref_primary_10_1111_brv_12170
crossref_primary_10_1021_bi5004052
crossref_primary_10_1186_s12864_015_2218_5
crossref_primary_10_1002_ajmg_a_61168
crossref_primary_10_1038_s41598_023_45875_w
crossref_primary_10_1002_prot_26193
crossref_primary_10_1007_s12539_024_00626_x
crossref_primary_10_1016_j_cels_2017_11_014
crossref_primary_10_1016_j_jbc_2021_100441
crossref_primary_10_7554_eLife_61069
crossref_primary_10_7554_eLife_92379
crossref_primary_10_1021_acs_jctc_1c00129
crossref_primary_10_1172_JCI83817
crossref_primary_10_1109_TEVC_2015_2505317
crossref_primary_10_1111_nph_17739
crossref_primary_10_1021_ja409608r
crossref_primary_10_1016_j_tibtech_2013_10_008
crossref_primary_10_1016_j_pbiomolbio_2022_05_002
crossref_primary_10_1371_journal_pone_0178272
crossref_primary_10_1093_bioinformatics_btt578
crossref_primary_10_3390_v8030061
crossref_primary_10_1093_nar_gkw329
crossref_primary_10_1016_j_bpj_2016_08_004
crossref_primary_10_1038_s41598_019_45942_1
crossref_primary_10_1080_09205063_2020_1816870
crossref_primary_10_1128_AEM_02655_13
crossref_primary_10_1038_s43588_022_00232_1
crossref_primary_10_1007_s10723_015_9353_8
crossref_primary_10_1107_S2059798321004629
crossref_primary_10_1128_mBio_00950_17
crossref_primary_10_1371_journal_pone_0050200
crossref_primary_10_2139_ssrn_4013270
crossref_primary_10_1038_s41467_021_25316_w
crossref_primary_10_1016_j_foodchem_2022_133589
crossref_primary_10_1021_acs_jpcb_0c02720
crossref_primary_10_1016_j_sbi_2017_03_012
crossref_primary_10_1126_science_aay0262
crossref_primary_10_1155_2018_5486403
crossref_primary_10_1016_j_biosystems_2018_04_002
crossref_primary_10_1080_17460441_2021_1918097
crossref_primary_10_1371_journal_pone_0180456
crossref_primary_10_1002_bip_22436
crossref_primary_10_1186_s12976_015_0014_1
crossref_primary_10_1016_j_meegid_2021_104826
crossref_primary_10_1093_nar_gkaa1198
crossref_primary_10_1016_j_compbiomed_2024_108620
crossref_primary_10_1002_prot_25049
crossref_primary_10_1021_acscentsci_3c00158
crossref_primary_10_1007_s10989_020_10017_7
crossref_primary_10_1016_j_biotechadv_2017_02_001
crossref_primary_10_1093_bib_bbab296
crossref_primary_10_3390_v12121463
crossref_primary_10_1109_TNB_2019_2922101
crossref_primary_10_1016_j_jbc_2021_100870
crossref_primary_10_7554_eLife_39340
crossref_primary_10_1016_j_bpj_2020_06_025
crossref_primary_10_1016_j_virol_2020_01_018
crossref_primary_10_3390_v11030231
crossref_primary_10_2174_1574893615999200504103643
crossref_primary_10_1002_pro_4606
crossref_primary_10_1021_acs_jctc_7b01079
crossref_primary_10_1142_S0219720018500051
crossref_primary_10_1007_s10930_020_09944_7
crossref_primary_10_2139_ssrn_3239970
crossref_primary_10_1007_s12033_023_00885_x
crossref_primary_10_3390_axioms8040136
crossref_primary_10_1007_s00436_021_07190_z
crossref_primary_10_1007_s00894_020_04490_6
crossref_primary_10_1016_j_molliq_2022_119321
crossref_primary_10_1080_07391102_2020_1860826
crossref_primary_10_1038_srep25138
crossref_primary_10_1016_j_celrep_2021_109567
crossref_primary_10_1016_j_jtbi_2017_05_011
crossref_primary_10_1016_j_molimm_2021_04_016
crossref_primary_10_1080_07391102_2020_1860827
crossref_primary_10_3762_bjoc_12_267
crossref_primary_10_4204_EPTCS_130_9
crossref_primary_10_3390_molecules23010216
crossref_primary_10_1093_nar_gkx366
crossref_primary_10_1109_TCBB_2016_2635143
crossref_primary_10_1021_acs_jcim_5b00246
crossref_primary_10_1093_bib_bbad217
crossref_primary_10_1016_j_asoc_2018_07_042
crossref_primary_10_1080_07391102_2020_1784287
crossref_primary_10_1080_07391102_2024_2308763
crossref_primary_10_3389_fmicb_2016_02080
crossref_primary_10_1134_S1990750819030053
crossref_primary_10_1002_prot_25186
crossref_primary_10_1007_s00894_019_4285_z
crossref_primary_10_1002_pep2_24087
crossref_primary_10_3892_mmr_2017_8314
crossref_primary_10_1021_acs_chemrev_8b00731
crossref_primary_10_1016_j_celrep_2019_07_036
crossref_primary_10_1016_j_compbiolchem_2022_107773
crossref_primary_10_1093_bib_bbac045
crossref_primary_10_1371_journal_pcbi_1008954
crossref_primary_10_1016_j_bbamem_2018_10_005
crossref_primary_10_1002_1873_3468_13060
crossref_primary_10_1109_TCBB_2018_2873691
crossref_primary_10_1016_j_biochi_2013_06_027
crossref_primary_10_1016_j_bbapap_2017_06_003
crossref_primary_10_3390_ijms25158426
crossref_primary_10_1002_humu_23041
crossref_primary_10_3390_antibiotics11030363
crossref_primary_10_1093_bioinformatics_btx722
crossref_primary_10_1098_rspb_2018_1589
crossref_primary_10_1098_rsif_2013_1147
crossref_primary_10_1186_s13104_016_2149_5
crossref_primary_10_1021_acs_molpharmaceut_0c00312
crossref_primary_10_1186_1471_2105_14_62
Cites_doi 10.1093/nar/gkm251
10.1002/pro.5560031206
10.1126/science.181.4096.223
10.1126/science.1113801
10.1093/nar/28.1.235
10.1006/jmbi.1996.0720
10.1002/prot.22589
10.1103/PhysRevLett.57.2607
10.1002/prot.21702
10.1002/prot.10056
10.1107/S0567739476001873
10.1093/nar/gkg571
10.1145/63039.63042
10.1002/pro.5560010313
10.1006/jmbi.1993.1626
10.1110/ps.0242703
10.1529/biophysj.104.041541
10.1002/prot.20338
10.1016/j.str.2011.05.004
10.1002/prot.21767
10.1038/323533a0
10.1002/prot.23190
10.1073/pnas.0611593104
10.1016/S0006-3495(03)74551-2
10.1093/bioinformatics/btq066
10.1002/prot.20264
10.1093/bioinformatics/btg224
10.1002/prot.1170
10.1016/S0022-2836(05)80269-4
10.1093/nar/gki524
10.1002/jcc.20011
10.1093/nar/25.17.3389
10.1371/journal.pone.0008140
10.1006/jmbi.1997.0959
10.1002/(SICI)1097-0134(1999)37:3 <171::AID-PROT21>3.0.CO;2-Z
10.1038/nprot.2010.5
10.1006/jmbi.1994.1334
10.1002/prot.21945
10.1002/jcc.540040211
10.1093/bioinformatics/16.9.776
10.1002/bip.360221211
10.1006/jmbi.1999.3091
10.1002/pro.5560050204
10.1016/S0076-6879(04)83004-0
10.1073/pnas.0305695101
10.1016/j.sbi.2006.02.004
10.1021/jp065380a
10.1002/prot.23181
10.1002/(SICI)1097-0134(1999)37:3 <149::AID-PROT20>3.0.CO;2-H
10.1016/S0065-3233(08)60402-7
10.1002/prot.22538
10.1002/prot.22591
10.1063/1.1699114
10.1016/j.bpj.2011.10.024
10.1002/prot.21791
10.1110/ps.0217002
ContentType Journal Article
Copyright Copyright © 2012 Wiley Periodicals, Inc.
Copyright_xml – notice: Copyright © 2012 Wiley Periodicals, Inc.
DBID BSCLL
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QL
7QO
7QP
7QR
7TK
7TM
7U9
8FD
C1K
FR3
H94
K9.
M7N
P64
RC3
7X8
5PM
DOI 10.1002/prot.24065
DatabaseName Istex
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Bacteriology Abstracts (Microbiology B)
Biotechnology Research Abstracts
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
ProQuest Health & Medical Complete (Alumni)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Virology and AIDS Abstracts
Technology Research Database
Nucleic Acids Abstracts
ProQuest Health & Medical Complete (Alumni)
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Genetics Abstracts
Biotechnology Research Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
MEDLINE - Academic
DatabaseTitleList Engineering Research Database
MEDLINE
Virology and AIDS Abstracts

MEDLINE - Academic

CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
Chemistry
Biology
EISSN 1097-0134
EndPage 1735
ExternalDocumentID PMC3370074
3278880201
22411565
10_1002_prot_24065
PROT24065
ark_67375_WNG_8KL70B9L_R
Genre article
Research Support, U.S. Gov't, Non-P.H.S
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: The NSF Career Award
  funderid: DBI 1027394
– fundername: The National Institute of General Medical Sciences
  funderid: GM083107; GM084222
– fundername: NIGMS NIH HHS
  grantid: GM083107
– fundername: NIGMS NIH HHS
  grantid: R01 GM083107
– fundername: NIGMS NIH HHS
  grantid: GM084222
– fundername: NIGMS NIH HHS
  grantid: R01 GM084222
GroupedDBID -~X
.3N
.GA
.GJ
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
31~
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5RE
5VS
66C
6TJ
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABLJU
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADZMN
AEEZP
AEIGN
AEIMD
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFRAH
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BLYAC
BMNLL
BNHUX
BROTX
BRXPI
BSCLL
BY8
CS3
D-E
D-F
D0L
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBD
EBS
EJD
EMOBN
F00
F01
F04
F5P
FA8
FEDTE
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
IX1
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LH6
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NDZJH
NF~
NNB
O66
O9-
P2P
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RBB
RIWAO
RJQFR
RNS
ROL
RWI
RX1
SAMSI
SUPJJ
SV3
UB1
V2E
W8V
W99
WBFHL
WBKPD
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WSB
WXSBR
WYISQ
XG1
XPP
XV2
ZGI
ZXP
ZZTAW
~IA
~WT
AAHQN
AAMNL
AANHP
AAYCA
ACRPL
ACYXJ
ADNMO
AFWVQ
ALVPJ
AAYXX
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QL
7QO
7QP
7QR
7TK
7TM
7U9
8FD
C1K
FR3
H94
K9.
M7N
P64
RC3
7X8
5PM
ID FETCH-LOGICAL-c5855-3243f914eaa102b872e4eb8877af9aec5f6f5c88070d40d0ba8d8e76a401e2b43
IEDL.DBID DR2
ISSN 0887-3585
1097-0134
IngestDate Thu Aug 21 13:56:32 EDT 2025
Fri Jul 11 07:15:12 EDT 2025
Fri Jul 11 11:01:22 EDT 2025
Fri Jul 25 10:19:07 EDT 2025
Thu Apr 03 07:09:20 EDT 2025
Thu Apr 24 22:51:07 EDT 2025
Tue Jul 01 00:45:03 EDT 2025
Wed Jan 22 16:38:33 EST 2025
Wed Oct 30 10:05:04 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
Copyright © 2012 Wiley Periodicals, Inc.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5855-3243f914eaa102b872e4eb8877af9aec5f6f5c88070d40d0ba8d8e76a401e2b43
Notes ArticleID:PROT24065
The NSF Career Award - No. DBI 1027394
ark:/67375/WNG-8KL70B9L-R
The National Institute of General Medical Sciences - No. GM083107; No. GM084222
istex:C7EC21E364CFDA33330E4B2A96763F32E39B4E09
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/3370074
PMID 22411565
PQID 1517449953
PQPubID 1016441
PageCount 21
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_3370074
proquest_miscellaneous_1529944113
proquest_miscellaneous_1019614957
proquest_journals_1517449953
pubmed_primary_22411565
crossref_primary_10_1002_prot_24065
crossref_citationtrail_10_1002_prot_24065
wiley_primary_10_1002_prot_24065_PROT24065
istex_primary_ark_67375_WNG_8KL70B9L_R
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate July 2012
PublicationDateYYYYMMDD 2012-07-01
PublicationDate_xml – month: 07
  year: 2012
  text: July 2012
PublicationDecade 2010
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
– name: United States
– name: Hokoben
PublicationTitle Proteins, structure, function, and bioinformatics
PublicationTitleAlternate Proteins
PublicationYear 2012
Publisher Wiley Subscription Services, Inc., A Wiley Company
Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc., A Wiley Company
– name: Wiley Subscription Services, Inc
References Wu S,Szilagyi A,Zhang Y. Improving protein structure prediction using multiple sequence-based contact predictions. Structure 2011; 19: 1182-1191.
Kinch L,Yong Shi S,Cong Q,Cheng H,Liao Y,Grishin NV. CASP9 assessment of free modeling target predictions. Proteins 2011; 79: 59-73.
Wu S,Zhang Y. MUSTER: Improving protein sequence profile-profile alignments by using multiple sources of structure information. Proteins 2008; 72: 547-556.
Kabsch W. A solution for the best rotation to relate two sets of vectors. Acta Cryst 1976; 32A: 922-923.
Rumelhart DE,Hinton GE,Williams RJ. Learning representations by back-propagating errors. Nature 1986; 323: 533-536.
Ben-David M,Noivirt-Brik O,Paz A,Prilusky J,Sussman JL,Levy Y. Assessment of CASP8 structure predictions for template free targets. Proteins 2009; 77: 50-65.
Skolnick J,Kolinski A,Ortiz AR. MONSSTER: a method for folding globular proteins with a small number of distance restraints. J Mol Biol 1997; 265: 217-241.
Case DA,Pearlman DA,Caldwell JA,Cheatham TE,Ross WSea. AMBER 5.0. 1997; University of California, San Francisco, San Francisco.
Skolnick J. In quest of an empirical potential for protein structure prediction. Curr Opin Struct Biol 2006; 16: 166-171.
Summa CM,Levitt M. Near-native structure refinement using in vacuo energy minimization. Proc Natl Acad Sci USA 2007; 104: 3177-3182.
Rohl CA,Strauss CE,Misura KM,Baker D. Protein structure prediction using Rosetta. Methods Enzymol 2004; 383: 66-93.
Xu J,Zhang Y. How significant is a protein structure similarity with TM-score = 0.5? Bioinformatics 2010; 26: 889-895.
Zhang Y,Skolnick J. Scoring function for automated assessment of protein structure template quality. Proteins 2004; 57: 702-710.
Wang G,Dunbrack RL,Jr. PISCES: a protein sequence culling server. Bioinformatics 2003; 19: 1589-1591.
Jones DT. Protein secondary structure prediction based on position-specific scoring matrices. J Mol Biol 1999; 292: 195-202.
Zhang Y. Template-based modeling and free modeling by I-TASSER in CASP7. Proteins 2007; 69: 108-117.
Zemla A. LGA: A method for finding 3D similarities in protein structures. Nucleic Acids Res 2003; 31: 3370-3374.
Zhang Y,Skolnick J. Automated structure prediction of weakly homologous proteins on a genomic scale. Proc Natl Acad Sci USA 2004; 101: 7594-7599.
Moult J,Fidelis K,Kryshtafovych A,Rost B,Tramontano A. Critical assessment of methods of protein structure prediction-Round VIII. Protein Struct Funct Bioinformatics 2009; 77: 1-4.
Shackelford G,Karplus K. Contact prediction using mutual information and neural nets. Proteins 2007; 69: 159-164.
Anfinsen CB. Principles that govern the folding of protein chains. Science 1973; 181: 223-230.
Bradley P,Misura KM,Baker D. Toward high-resolution de novo structure prediction for small proteins. Science 2005; 309: 1868-1871.
Wu S,Zhang Y. LOMETS: a local meta-threading-server for protein structure prediction. Nucleic Acids Res 2007; 35: 3375-3382.
Kabsch W,Sander C. Dictionary of protein secondary structure: pattern recognition of hydrogen-bonded and geometrical features. Biopolymers 1983; 22: 2577-2637.
Siew N,Elofsson A,Rychlewski L,Fischer D. MaxSub: an automated measure for the assessment of protein structure prediction quality. Bioinformatics 2000; 16: 776-785.
Liwo A,Khalili M,Czaplewski C,Kalinowski S,Oldziej S,Wachucik K,Scheraga HA. Modification and optimization of the united-residue (UNRES) potential energy function for canonical simulations. I. Temperature dependence of the effective energy function and tests of the optimization method with single training proteins. J Phys Chem B 2007; 111: 260-285.
Sali A,Blundell TL. Comparative protein modelling by satisfaction of spatial restraints. J Mol Biol 1993; 234: 779-815.
Hobohm U,Scharf M,Schneider R,Sander C. Selection of representative protein data sets. Protein Sci 1992; 1: 409-417.
MacCallum JL,Hua L,Schnieders MJ,Pande VS,Jacobson MP,Dill KA. Assessment of the protein-structure refinement category in CASP8. Proteins 2009; 77: 66-80.
Swendsen RH,Wang JS. Replica Monte Carlo simulation of spin glasses. Phys Rev Lett 1986; 57: 2607-2609.
Klepeis JL,Wei Y,Hecht MH,Floudas CA. Ab initio prediction of the three-dimensional structure of a de novo designed protein: a double-blind case study. Proteins 2005; 58: 560-570.
Zhang Y,Skolnick J. TM-align: a protein structure alignment algorithm based on the TM-score. Nucleic Acids Res 2005; 33: 2302-2309.
Xu D,Zhang Y. Generating triangulated macromolecular surfaces by Euclidean distance transform. PLoS One 2009; 4: e8140.
Bonneau R,Tsai J,Ruczinski I,Chivian D,Rohl C,Strauss CE,Baker D. Rosetta in CASP4: progress in ab initio protein structure prediction. Proteins 2001; S5: 119-126.
Hutchinson EG,Thornton JM. A revised set of potentials for beta-turn formation in proteins. Protein Sci 1994; 3: 2207-2216.
Simons KT,Bonneau R,Ruczinski I,Baker D. Ab initio protein structure prediction of CASP III targets using ROSETTA. Proteins 1999; 37: 171-176.
Berman HM,Westbrook J,Feng Z,Gilliland G,Bhat TN,Weissig H,Shindyalov IN,Bourne PE. The Protein Data Bank. Nucleic Acids Res 2000; 28: 235-242.
Moult J,Fidelis K,Kryshtafovych A,Rost B,Hubbard T,Tramontano A. Critical assessment of methods of protein structure prediction-Round VII. Proteins 2007; 69: 3-9.
Simons KT,Kooperberg C,Huang E,Baker D. Assembly of protein tertiary structures from fragments with similar local sequences using simulated annealing and Bayesian scoring functions. J Mol Biol 1997; 268: 209-225.
Zhou H,Zhou Y. Distance-scaled, finite ideal-gas reference state improves structure-derived potentials of mean force for structure selection and stability prediction. Protein Sci 2002; 11: 2714-2726.
Wu S,Skolnick J,Zhang Y. Ab initio modeling of small proteins by iterative TASSER simulations. Biomed Chromatogr Biol 2007; 5: 17.
Brooks BR,Bruccoleri RE,Olafson BD,States DJ,Swaminathan S,Karplus M. CHARMM: a program for macromolecular energy, minimization, and dynamics calculations. J Comput Chem 1983; 4: 187-217.
Zhang Y,Skolnick J. SPICKER: A clustering approach to identify near-native protein folds. J Comput Chem 2004; 25: 865-871.
McDonald IK,Thornton JM. Satisfying hydrogen bonding potential in proteins. J Mol Biol 1994; 238: 777-793.
Kinch LN,Shi S,Cheng H,Cong Q,Pei J,Mariani V,Schwede T,Grishin NV. CASP9 target classification. Proteins 2011; 79: 21-36.
Ramachandran GN,Sasisekharan V. Conformation of polypeptides and proteins. Adv Protein Chem 1968; 23: 283-438.
Hutchinson EG,Thornton JM. PROMOTIF-a program to identify and analyze structural motifs in proteins. Protein Sci 1996; 5: 212-220.
Orengo CA,Bray JE,Hubbard T,LoConte L,Sillitoe I. Analysis and assessment of ab initio three-dimensional prediction, secondary structure, and contacts prediction. Proteins 1999; S3: 149-170.
Roy A,Kucukural A,Zhang Y. I-TASSER: a unified platform for automated protein structure and function prediction. Nat Protoc 2010; 5: 725-738.
Sippl MJ. Calculation of conformational ensembles from potentials of mean force. An approach to the knowledge-based prediction of local structures in globular proteins. J Mol Biol 1990; 213: 859-883.
Park SK,Miller KW. Random number generators: good ones are hard to find. Commun ACM 1988; 31: 1192-1201.
Canutescu AA,Dunbrack RL,Jr. Cyclic coordinate descent: a robotics algorithm for protein loop closure. Protein Sci 2003; 12: 963-972.
Lesk AM,Lo Conte L,Hubbard TJ. Assessment of novel fold targets in CASP4: predictions of three-dimensional structures, secondary structures, and interresidue contacts. Proteins 2001; S5: 98-118.
Zhang Y,Kolinski A,Skolnick J. TOUCHSTONE II: a new approach to ab initio protein structure prediction. Biophys J 2003; 85: 1145-1164.
Xu D,Zhang Y. Improving the physical realism and structural accuracy of protein models by a two-step atomic-level energy minimization. Biophys J 2011; 101: 2525-2534.
da Silva RA,Degreve L,Caliri A. LMProt: an efficient algorithm for Monte Carlo sampling of protein conformational space. Biophys J 2004; 87: 1567-1577.
Metropolis N,Rosenbluth AW,Rosenbluth MN,Teller AH,Teller E. Equation of state calculations by fast computing machines. J Chem Phys 1953; 21: 1087-1092.
Altschul SF,Madden TL,Schaffer AA,Zhang J,Zhang Z,Miller W,Lipman DJ. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 1997; 25: 3389-3402.
2007; 104
1968; 23
1973; 181
2004; 25
1999; 292
1983; 4
2002; 11
1976; 32A
2003; 19
1988; 31
2008; 72
2011; 19
2007; 35
2003; 12
1997; 268
2010; 26
1990; 213
2000; 16
1997; 265
2005; 309
2007; 5
1996; 5
2010; 5
2003; 85
1992; 1
2005; 33
2007; 69
1953; 21
1983; 22
2004; 101
2004; 87
1994; 238
2000; 28
2006; 16
2004; 383
1997; 25
1986; 57
1997
1999; S3
2011; 79
2001; S5
2003; 31
2009; 77
1986; 323
2007; 111
1999; 37
2004; 57
2009; 4
1993; 234
1994; 3
2011; 101
2005; 58
e_1_2_6_51_2
e_1_2_6_53_2
e_1_2_6_30_2
e_1_2_6_19_2
e_1_2_6_13_2
e_1_2_6_34_2
e_1_2_6_59_2
e_1_2_6_11_2
e_1_2_6_32_2
e_1_2_6_17_2
e_1_2_6_38_2
e_1_2_6_55_2
e_1_2_6_15_2
e_1_2_6_36_2
e_1_2_6_57_2
e_1_2_6_20_2
e_1_2_6_41_2
e_1_2_6_7_2
e_1_2_6_3_2
e_1_2_6_5_2
e_1_2_6_24_2
e_1_2_6_47_2
e_1_2_6_22_2
e_1_2_6_49_2
e_1_2_6_28_2
e_1_2_6_43_2
e_1_2_6_26_2
e_1_2_6_45_2
e_1_2_6_50_2
e_1_2_6_52_2
e_1_2_6_31_2
Case DA (e_1_2_6_9_2) 1997
e_1_2_6_18_2
e_1_2_6_12_2
e_1_2_6_35_2
e_1_2_6_58_2
e_1_2_6_10_2
e_1_2_6_33_2
e_1_2_6_16_2
e_1_2_6_39_2
e_1_2_6_54_2
e_1_2_6_14_2
e_1_2_6_37_2
e_1_2_6_56_2
e_1_2_6_42_2
e_1_2_6_40_2
e_1_2_6_8_2
e_1_2_6_29_2
e_1_2_6_4_2
Wu S (e_1_2_6_6_2) 2007; 5
e_1_2_6_23_2
e_1_2_6_48_2
e_1_2_6_2_2
e_1_2_6_21_2
e_1_2_6_27_2
e_1_2_6_44_2
e_1_2_6_25_2
e_1_2_6_46_2
4124164 - Science. 1973 Jul 20;181(4096):223-30
12381853 - Protein Sci. 2002 Nov;11(11):2714-26
17478507 - Nucleic Acids Res. 2007;35(10):3375-82
17932918 - Proteins. 2007;69 Suppl 8:159-64
17918729 - Proteins. 2007;69 Suppl 8:3-9
19774550 - Proteins. 2009;77 Suppl 9:50-65
16166519 - Science. 2005 Sep 16;309(5742):1868-71
17360625 - Proc Natl Acad Sci U S A. 2007 Feb 27;104(9):3177-82
6667333 - Biopolymers. 1983 Dec;22(12):2577-637
11108700 - Bioinformatics. 2000 Sep;16(9):776-85
9149153 - J Mol Biol. 1997 Apr 25;268(1):209-25
12717019 - Protein Sci. 2003 May;12(5):963-72
10526364 - Proteins. 1999;Suppl 3:149-70
9254694 - Nucleic Acids Res. 1997 Sep 1;25(17):3389-402
12912846 - Bioinformatics. 2003 Aug 12;19(12):1589-91
16524716 - Curr Opin Struct Biol. 2006 Apr;16(2):166-71
15063647 - Methods Enzymol. 2004;383:66-93
12885659 - Biophys J. 2003 Aug;85(2):1145-64
15609306 - Proteins. 2005 Feb 15;58(3):560-70
2359125 - J Mol Biol. 1990 Jun 20;213(4):859-83
19774620 - Proteins. 2009;77 Suppl 9:1-4
9020984 - J Mol Biol. 1997 Jan 17;265(2):217-41
20164152 - Bioinformatics. 2010 Apr 1;26(7):889-95
19956577 - PLoS One. 2009;4(12):e8140
15011258 - J Comput Chem. 2004 Apr 30;25(6):865-71
11835487 - Proteins. 2001;Suppl 5:98-118
7756980 - Protein Sci. 1994 Dec;3(12):2207-16
10493868 - J Mol Biol. 1999 Sep 17;292(2):195-202
10526365 - Proteins. 1999;Suppl 3:171-6
17894355 - Proteins. 2007;69 Suppl 8:108-17
17201450 - J Phys Chem B. 2007 Jan 11;111(1):260-85
11835488 - Proteins. 2001;Suppl 5:119-26
8182748 - J Mol Biol. 1994 May 20;238(5):777-93
4882249 - Adv Protein Chem. 1968;23:283-438
20360767 - Nat Protoc. 2010 Apr;5(4):725-38
1304348 - Protein Sci. 1992 Mar;1(3):409-17
10033814 - Phys Rev Lett. 1986 Nov 24;57(21):2607-2609
12824330 - Nucleic Acids Res. 2003 Jul 1;31(13):3370-4
15849316 - Nucleic Acids Res. 2005;33(7):2302-9
22098752 - Biophys J. 2011 Nov 16;101(10):2525-34
17488521 - BMC Biol. 2007;5:17
21997778 - Proteins. 2011;79 Suppl 10:21-36
19714776 - Proteins. 2009;77 Suppl 9:66-80
15476259 - Proteins. 2004 Dec 1;57(4):702-10
21827953 - Structure. 2011 Aug 10;19(8):1182-91
8254673 - J Mol Biol. 1993 Dec 5;234(3):779-815
21997521 - Proteins. 2011;79 Suppl 10:59-73
10592235 - Nucleic Acids Res. 2000 Jan 1;28(1):235-42
8745398 - Protein Sci. 1996 Feb;5(2):212-20
18247410 - Proteins. 2008 Aug;72(2):547-56
15345537 - Biophys J. 2004 Sep;87(3):1567-77
15126668 - Proc Natl Acad Sci U S A. 2004 May 18;101(20):7594-9
References_xml – reference: Kabsch W. A solution for the best rotation to relate two sets of vectors. Acta Cryst 1976; 32A: 922-923.
– reference: Zhang Y,Skolnick J. TM-align: a protein structure alignment algorithm based on the TM-score. Nucleic Acids Res 2005; 33: 2302-2309.
– reference: Wu S,Skolnick J,Zhang Y. Ab initio modeling of small proteins by iterative TASSER simulations. Biomed Chromatogr Biol 2007; 5: 17.
– reference: Kinch L,Yong Shi S,Cong Q,Cheng H,Liao Y,Grishin NV. CASP9 assessment of free modeling target predictions. Proteins 2011; 79: 59-73.
– reference: Siew N,Elofsson A,Rychlewski L,Fischer D. MaxSub: an automated measure for the assessment of protein structure prediction quality. Bioinformatics 2000; 16: 776-785.
– reference: Jones DT. Protein secondary structure prediction based on position-specific scoring matrices. J Mol Biol 1999; 292: 195-202.
– reference: Wu S,Szilagyi A,Zhang Y. Improving protein structure prediction using multiple sequence-based contact predictions. Structure 2011; 19: 1182-1191.
– reference: Brooks BR,Bruccoleri RE,Olafson BD,States DJ,Swaminathan S,Karplus M. CHARMM: a program for macromolecular energy, minimization, and dynamics calculations. J Comput Chem 1983; 4: 187-217.
– reference: Skolnick J,Kolinski A,Ortiz AR. MONSSTER: a method for folding globular proteins with a small number of distance restraints. J Mol Biol 1997; 265: 217-241.
– reference: Rohl CA,Strauss CE,Misura KM,Baker D. Protein structure prediction using Rosetta. Methods Enzymol 2004; 383: 66-93.
– reference: Anfinsen CB. Principles that govern the folding of protein chains. Science 1973; 181: 223-230.
– reference: Skolnick J. In quest of an empirical potential for protein structure prediction. Curr Opin Struct Biol 2006; 16: 166-171.
– reference: Zhang Y,Kolinski A,Skolnick J. TOUCHSTONE II: a new approach to ab initio protein structure prediction. Biophys J 2003; 85: 1145-1164.
– reference: Canutescu AA,Dunbrack RL,Jr. Cyclic coordinate descent: a robotics algorithm for protein loop closure. Protein Sci 2003; 12: 963-972.
– reference: Kinch LN,Shi S,Cheng H,Cong Q,Pei J,Mariani V,Schwede T,Grishin NV. CASP9 target classification. Proteins 2011; 79: 21-36.
– reference: Simons KT,Kooperberg C,Huang E,Baker D. Assembly of protein tertiary structures from fragments with similar local sequences using simulated annealing and Bayesian scoring functions. J Mol Biol 1997; 268: 209-225.
– reference: Berman HM,Westbrook J,Feng Z,Gilliland G,Bhat TN,Weissig H,Shindyalov IN,Bourne PE. The Protein Data Bank. Nucleic Acids Res 2000; 28: 235-242.
– reference: McDonald IK,Thornton JM. Satisfying hydrogen bonding potential in proteins. J Mol Biol 1994; 238: 777-793.
– reference: Ben-David M,Noivirt-Brik O,Paz A,Prilusky J,Sussman JL,Levy Y. Assessment of CASP8 structure predictions for template free targets. Proteins 2009; 77: 50-65.
– reference: Swendsen RH,Wang JS. Replica Monte Carlo simulation of spin glasses. Phys Rev Lett 1986; 57: 2607-2609.
– reference: Sali A,Blundell TL. Comparative protein modelling by satisfaction of spatial restraints. J Mol Biol 1993; 234: 779-815.
– reference: Moult J,Fidelis K,Kryshtafovych A,Rost B,Tramontano A. Critical assessment of methods of protein structure prediction-Round VIII. Protein Struct Funct Bioinformatics 2009; 77: 1-4.
– reference: Bonneau R,Tsai J,Ruczinski I,Chivian D,Rohl C,Strauss CE,Baker D. Rosetta in CASP4: progress in ab initio protein structure prediction. Proteins 2001; S5: 119-126.
– reference: Shackelford G,Karplus K. Contact prediction using mutual information and neural nets. Proteins 2007; 69: 159-164.
– reference: Lesk AM,Lo Conte L,Hubbard TJ. Assessment of novel fold targets in CASP4: predictions of three-dimensional structures, secondary structures, and interresidue contacts. Proteins 2001; S5: 98-118.
– reference: Roy A,Kucukural A,Zhang Y. I-TASSER: a unified platform for automated protein structure and function prediction. Nat Protoc 2010; 5: 725-738.
– reference: MacCallum JL,Hua L,Schnieders MJ,Pande VS,Jacobson MP,Dill KA. Assessment of the protein-structure refinement category in CASP8. Proteins 2009; 77: 66-80.
– reference: Zemla A. LGA: A method for finding 3D similarities in protein structures. Nucleic Acids Res 2003; 31: 3370-3374.
– reference: Summa CM,Levitt M. Near-native structure refinement using in vacuo energy minimization. Proc Natl Acad Sci USA 2007; 104: 3177-3182.
– reference: Orengo CA,Bray JE,Hubbard T,LoConte L,Sillitoe I. Analysis and assessment of ab initio three-dimensional prediction, secondary structure, and contacts prediction. Proteins 1999; S3: 149-170.
– reference: Zhang Y,Skolnick J. SPICKER: A clustering approach to identify near-native protein folds. J Comput Chem 2004; 25: 865-871.
– reference: Zhang Y. Template-based modeling and free modeling by I-TASSER in CASP7. Proteins 2007; 69: 108-117.
– reference: Hutchinson EG,Thornton JM. A revised set of potentials for beta-turn formation in proteins. Protein Sci 1994; 3: 2207-2216.
– reference: Wu S,Zhang Y. LOMETS: a local meta-threading-server for protein structure prediction. Nucleic Acids Res 2007; 35: 3375-3382.
– reference: Simons KT,Bonneau R,Ruczinski I,Baker D. Ab initio protein structure prediction of CASP III targets using ROSETTA. Proteins 1999; 37: 171-176.
– reference: Liwo A,Khalili M,Czaplewski C,Kalinowski S,Oldziej S,Wachucik K,Scheraga HA. Modification and optimization of the united-residue (UNRES) potential energy function for canonical simulations. I. Temperature dependence of the effective energy function and tests of the optimization method with single training proteins. J Phys Chem B 2007; 111: 260-285.
– reference: Case DA,Pearlman DA,Caldwell JA,Cheatham TE,Ross WSea. AMBER 5.0. 1997; University of California, San Francisco, San Francisco.
– reference: Klepeis JL,Wei Y,Hecht MH,Floudas CA. Ab initio prediction of the three-dimensional structure of a de novo designed protein: a double-blind case study. Proteins 2005; 58: 560-570.
– reference: da Silva RA,Degreve L,Caliri A. LMProt: an efficient algorithm for Monte Carlo sampling of protein conformational space. Biophys J 2004; 87: 1567-1577.
– reference: Hutchinson EG,Thornton JM. PROMOTIF-a program to identify and analyze structural motifs in proteins. Protein Sci 1996; 5: 212-220.
– reference: Zhang Y,Skolnick J. Scoring function for automated assessment of protein structure template quality. Proteins 2004; 57: 702-710.
– reference: Bradley P,Misura KM,Baker D. Toward high-resolution de novo structure prediction for small proteins. Science 2005; 309: 1868-1871.
– reference: Moult J,Fidelis K,Kryshtafovych A,Rost B,Hubbard T,Tramontano A. Critical assessment of methods of protein structure prediction-Round VII. Proteins 2007; 69: 3-9.
– reference: Ramachandran GN,Sasisekharan V. Conformation of polypeptides and proteins. Adv Protein Chem 1968; 23: 283-438.
– reference: Sippl MJ. Calculation of conformational ensembles from potentials of mean force. An approach to the knowledge-based prediction of local structures in globular proteins. J Mol Biol 1990; 213: 859-883.
– reference: Park SK,Miller KW. Random number generators: good ones are hard to find. Commun ACM 1988; 31: 1192-1201.
– reference: Kabsch W,Sander C. Dictionary of protein secondary structure: pattern recognition of hydrogen-bonded and geometrical features. Biopolymers 1983; 22: 2577-2637.
– reference: Zhang Y,Skolnick J. Automated structure prediction of weakly homologous proteins on a genomic scale. Proc Natl Acad Sci USA 2004; 101: 7594-7599.
– reference: Metropolis N,Rosenbluth AW,Rosenbluth MN,Teller AH,Teller E. Equation of state calculations by fast computing machines. J Chem Phys 1953; 21: 1087-1092.
– reference: Xu J,Zhang Y. How significant is a protein structure similarity with TM-score = 0.5? Bioinformatics 2010; 26: 889-895.
– reference: Altschul SF,Madden TL,Schaffer AA,Zhang J,Zhang Z,Miller W,Lipman DJ. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 1997; 25: 3389-3402.
– reference: Rumelhart DE,Hinton GE,Williams RJ. Learning representations by back-propagating errors. Nature 1986; 323: 533-536.
– reference: Zhou H,Zhou Y. Distance-scaled, finite ideal-gas reference state improves structure-derived potentials of mean force for structure selection and stability prediction. Protein Sci 2002; 11: 2714-2726.
– reference: Xu D,Zhang Y. Generating triangulated macromolecular surfaces by Euclidean distance transform. PLoS One 2009; 4: e8140.
– reference: Hobohm U,Scharf M,Schneider R,Sander C. Selection of representative protein data sets. Protein Sci 1992; 1: 409-417.
– reference: Xu D,Zhang Y. Improving the physical realism and structural accuracy of protein models by a two-step atomic-level energy minimization. Biophys J 2011; 101: 2525-2534.
– reference: Wang G,Dunbrack RL,Jr. PISCES: a protein sequence culling server. Bioinformatics 2003; 19: 1589-1591.
– reference: Wu S,Zhang Y. MUSTER: Improving protein sequence profile-profile alignments by using multiple sources of structure information. Proteins 2008; 72: 547-556.
– volume: 57
  start-page: 2607
  year: 1986
  end-page: 2609
  article-title: Replica Monte Carlo simulation of spin glasses
  publication-title: Phys Rev Lett
– volume: 69
  start-page: 108
  year: 2007
  end-page: 117
  article-title: Template‐based modeling and free modeling by I‐TASSER in CASP7
  publication-title: Proteins
– volume: 85
  start-page: 1145
  year: 2003
  end-page: 1164
  article-title: TOUCHSTONE II: a new approach to ab initio protein structure prediction
  publication-title: Biophys J
– volume: 101
  start-page: 2525
  year: 2011
  end-page: 2534
  article-title: Improving the physical realism and structural accuracy of protein models by a two‐step atomic‐level energy minimization
  publication-title: Biophys J
– volume: 31
  start-page: 1192
  year: 1988
  end-page: 1201
  article-title: Random number generators: good ones are hard to find
  publication-title: Commun ACM
– volume: 16
  start-page: 776
  year: 2000
  end-page: 785
  article-title: MaxSub: an automated measure for the assessment of protein structure prediction quality
  publication-title: Bioinformatics
– volume: 79
  start-page: 21
  year: 2011
  end-page: 36
  article-title: CASP9 target classification
  publication-title: Proteins
– volume: 101
  start-page: 7594
  year: 2004
  end-page: 7599
  article-title: Automated structure prediction of weakly homologous proteins on a genomic scale
  publication-title: Proc Natl Acad Sci USA
– volume: 77
  start-page: 1
  year: 2009
  end-page: 4
  article-title: Critical assessment of methods of protein structure prediction‐Round VIII
  publication-title: Protein Struct Funct Bioinformatics
– volume: 19
  start-page: 1182
  year: 2011
  end-page: 1191
  article-title: Improving protein structure prediction using multiple sequence‐based contact predictions
  publication-title: Structure
– volume: 111
  start-page: 260
  year: 2007
  end-page: 285
  article-title: Modification and optimization of the united‐residue (UNRES) potential energy function for canonical simulations. I. Temperature dependence of the effective energy function and tests of the optimization method with single training proteins
  publication-title: J Phys Chem B
– volume: 57
  start-page: 702
  year: 2004
  end-page: 710
  article-title: Scoring function for automated assessment of protein structure template quality
  publication-title: Proteins
– volume: 4
  start-page: 187
  year: 1983
  end-page: 217
  article-title: CHARMM: a program for macromolecular energy, minimization, and dynamics calculations
  publication-title: J Comput Chem
– volume: 26
  start-page: 889
  year: 2010
  end-page: 895
  article-title: How significant is a protein structure similarity with TM‐score = 0.5?
  publication-title: Bioinformatics
– volume: 268
  start-page: 209
  year: 1997
  end-page: 225
  article-title: Assembly of protein tertiary structures from fragments with similar local sequences using simulated annealing and Bayesian scoring functions
  publication-title: J Mol Biol
– volume: 383
  start-page: 66
  year: 2004
  end-page: 93
  article-title: Protein structure prediction using Rosetta
  publication-title: Methods Enzymol
– volume: 31
  start-page: 3370
  year: 2003
  end-page: 3374
  article-title: LGA: A method for finding 3D similarities in protein structures
  publication-title: Nucleic Acids Res
– volume: 21
  start-page: 1087
  year: 1953
  end-page: 1092
  article-title: Equation of state calculations by fast computing machines
  publication-title: J Chem Phys
– volume: 292
  start-page: 195
  year: 1999
  end-page: 202
  article-title: Protein secondary structure prediction based on position‐specific scoring matrices
  publication-title: J Mol Biol
– year: 1997
– volume: 37
  start-page: 171
  year: 1999
  end-page: 176
  article-title: Ab initio protein structure prediction of CASP III targets using ROSETTA
  publication-title: Proteins
– volume: 234
  start-page: 779
  year: 1993
  end-page: 815
  article-title: Comparative protein modelling by satisfaction of spatial restraints
  publication-title: J Mol Biol
– volume: 69
  start-page: 159
  year: 2007
  end-page: 164
  article-title: Contact prediction using mutual information and neural nets
  publication-title: Proteins
– volume: 5
  start-page: 212
  year: 1996
  end-page: 220
  article-title: PROMOTIF—a program to identify and analyze structural motifs in proteins
  publication-title: Protein Sci
– volume: 77
  start-page: 66
  year: 2009
  end-page: 80
  article-title: Assessment of the protein‐structure refinement category in CASP8
  publication-title: Proteins
– volume: 58
  start-page: 560
  year: 2005
  end-page: 570
  article-title: Ab initio prediction of the three‐dimensional structure of a de novo designed protein: a double‐blind case study
  publication-title: Proteins
– volume: 25
  start-page: 865
  year: 2004
  end-page: 871
  article-title: SPICKER: A clustering approach to identify near‐native protein folds
  publication-title: J Comput Chem
– volume: 79
  start-page: 59
  year: 2011
  end-page: 73
  article-title: CASP9 assessment of free modeling target predictions
  publication-title: Proteins
– volume: 35
  start-page: 3375
  year: 2007
  end-page: 3382
  article-title: LOMETS: a local meta‐threading‐server for protein structure prediction
  publication-title: Nucleic Acids Res
– volume: 28
  start-page: 235
  year: 2000
  end-page: 242
  article-title: The Protein Data Bank
  publication-title: Nucleic Acids Res
– volume: 1
  start-page: 409
  year: 1992
  end-page: 417
  article-title: Selection of representative protein data sets
  publication-title: Protein Sci
– volume: 213
  start-page: 859
  year: 1990
  end-page: 883
  article-title: Calculation of conformational ensembles from potentials of mean force. An approach to the knowledge‐based prediction of local structures in globular proteins
  publication-title: J Mol Biol
– volume: 22
  start-page: 2577
  year: 1983
  end-page: 2637
  article-title: Dictionary of protein secondary structure: pattern recognition of hydrogen‐bonded and geometrical features
  publication-title: Biopolymers
– volume: 16
  start-page: 166
  year: 2006
  end-page: 171
  article-title: In quest of an empirical potential for protein structure prediction
  publication-title: Curr Opin Struct Biol
– volume: 11
  start-page: 2714
  year: 2002
  end-page: 2726
  article-title: Distance‐scaled, finite ideal‐gas reference state improves structure‐derived potentials of mean force for structure selection and stability prediction
  publication-title: Protein Sci
– volume: 323
  start-page: 533
  year: 1986
  end-page: 536
  article-title: Learning representations by back‐propagating errors
  publication-title: Nature
– volume: 5
  start-page: 17
  year: 2007
  article-title: Ab initio modeling of small proteins by iterative TASSER simulations
  publication-title: Biomed Chromatogr Biol
– volume: 77
  start-page: 50
  year: 2009
  end-page: 65
  article-title: Assessment of CASP8 structure predictions for template free targets
  publication-title: Proteins
– volume: 5
  start-page: 725
  year: 2010
  end-page: 738
  article-title: I‐TASSER: a unified platform for automated protein structure and function prediction
  publication-title: Nat Protoc
– volume: 104
  start-page: 3177
  year: 2007
  end-page: 3182
  article-title: Near‐native structure refinement using in vacuo energy minimization
  publication-title: Proc Natl Acad Sci USA
– volume: 87
  start-page: 1567
  year: 2004
  end-page: 1577
  article-title: LMProt: an efficient algorithm for Monte Carlo sampling of protein conformational space
  publication-title: Biophys J
– volume: 3
  start-page: 2207
  year: 1994
  end-page: 2216
  article-title: A revised set of potentials for beta‐turn formation in proteins
  publication-title: Protein Sci
– volume: 25
  start-page: 3389
  year: 1997
  end-page: 3402
  article-title: Gapped BLAST and PSI‐BLAST: a new generation of protein database search programs
  publication-title: Nucleic Acids Res
– volume: S5
  start-page: 98
  year: 2001
  end-page: 118
  article-title: Assessment of novel fold targets in CASP4: predictions of three‐dimensional structures, secondary structures, and interresidue contacts
  publication-title: Proteins
– volume: 238
  start-page: 777
  year: 1994
  end-page: 793
  article-title: Satisfying hydrogen bonding potential in proteins
  publication-title: J Mol Biol
– volume: 69
  start-page: 3
  year: 2007
  end-page: 9
  article-title: Critical assessment of methods of protein structure prediction‐Round VII
  publication-title: Proteins
– volume: 33
  start-page: 2302
  year: 2005
  end-page: 2309
  article-title: TM‐align: a protein structure alignment algorithm based on the TM‐score
  publication-title: Nucleic Acids Res
– volume: 12
  start-page: 963
  year: 2003
  end-page: 972
  article-title: Cyclic coordinate descent: a robotics algorithm for protein loop closure
  publication-title: Protein Sci
– volume: 265
  start-page: 217
  year: 1997
  end-page: 241
  article-title: MONSSTER: a method for folding globular proteins with a small number of distance restraints
  publication-title: J Mol Biol
– volume: 181
  start-page: 223
  year: 1973
  end-page: 230
  article-title: Principles that govern the folding of protein chains
  publication-title: Science
– volume: 23
  start-page: 283
  year: 1968
  end-page: 438
  article-title: Conformation of polypeptides and proteins
  publication-title: Adv Protein Chem
– volume: S3
  start-page: 149
  year: 1999
  end-page: 170
  article-title: Analysis and assessment of ab initio three‐dimensional prediction, secondary structure, and contacts prediction
  publication-title: Proteins
– volume: 19
  start-page: 1589
  year: 2003
  end-page: 1591
  article-title: PISCES: a protein sequence culling server
  publication-title: Bioinformatics
– volume: S5
  start-page: 119
  year: 2001
  end-page: 126
  article-title: Rosetta in CASP4: progress in ab initio protein structure prediction
  publication-title: Proteins
– volume: 72
  start-page: 547
  year: 2008
  end-page: 556
  article-title: MUSTER: Improving protein sequence profile‐profile alignments by using multiple sources of structure information
  publication-title: Proteins
– volume: 309
  start-page: 1868
  year: 2005
  end-page: 1871
  article-title: Toward high‐resolution de novo structure prediction for small proteins
  publication-title: Science
– volume: 4
  start-page: e8140
  year: 2009
  article-title: Generating triangulated macromolecular surfaces by Euclidean distance transform
  publication-title: PLoS One
– volume: 32A
  start-page: 922
  year: 1976
  end-page: 923
  article-title: A solution for the best rotation to relate two sets of vectors
  publication-title: Acta Cryst
– ident: e_1_2_6_23_2
  doi: 10.1093/nar/gkm251
– ident: e_1_2_6_41_2
  doi: 10.1002/pro.5560031206
– ident: e_1_2_6_14_2
  doi: 10.1126/science.181.4096.223
– ident: e_1_2_6_4_2
  doi: 10.1126/science.1113801
– ident: e_1_2_6_10_2
  doi: 10.1093/nar/28.1.235
– ident: e_1_2_6_57_2
  doi: 10.1006/jmbi.1996.0720
– ident: e_1_2_6_20_2
  doi: 10.1002/prot.22589
– ident: e_1_2_6_38_2
  doi: 10.1103/PhysRevLett.57.2607
– volume-title: AMBER 5.0
  year: 1997
  ident: e_1_2_6_9_2
– ident: e_1_2_6_17_2
  doi: 10.1002/prot.21702
– ident: e_1_2_6_55_2
  doi: 10.1002/prot.10056
– ident: e_1_2_6_48_2
  doi: 10.1107/S0567739476001873
– ident: e_1_2_6_49_2
  doi: 10.1093/nar/gkg571
– ident: e_1_2_6_29_2
  doi: 10.1145/63039.63042
– ident: e_1_2_6_35_2
  doi: 10.1002/pro.5560010313
– ident: e_1_2_6_56_2
  doi: 10.1006/jmbi.1993.1626
– ident: e_1_2_6_39_2
  doi: 10.1110/ps.0242703
– ident: e_1_2_6_40_2
  doi: 10.1529/biophysj.104.041541
– ident: e_1_2_6_7_2
  doi: 10.1002/prot.20338
– ident: e_1_2_6_59_2
  doi: 10.1016/j.str.2011.05.004
– ident: e_1_2_6_21_2
  doi: 10.1002/prot.21767
– ident: e_1_2_6_27_2
  doi: 10.1038/323533a0
– ident: e_1_2_6_53_2
  doi: 10.1002/prot.23190
– ident: e_1_2_6_11_2
  doi: 10.1073/pnas.0611593104
– ident: e_1_2_6_5_2
  doi: 10.1016/S0006-3495(03)74551-2
– ident: e_1_2_6_52_2
  doi: 10.1093/bioinformatics/btq066
– ident: e_1_2_6_30_2
  doi: 10.1002/prot.20264
– ident: e_1_2_6_22_2
  doi: 10.1093/bioinformatics/btg224
– ident: e_1_2_6_46_2
  doi: 10.1002/prot.1170
– ident: e_1_2_6_32_2
  doi: 10.1016/S0022-2836(05)80269-4
– ident: e_1_2_6_24_2
  doi: 10.1093/nar/gki524
– ident: e_1_2_6_31_2
  doi: 10.1002/jcc.20011
– ident: e_1_2_6_26_2
  doi: 10.1093/nar/25.17.3389
– ident: e_1_2_6_36_2
  doi: 10.1371/journal.pone.0008140
– ident: e_1_2_6_15_2
  doi: 10.1006/jmbi.1997.0959
– ident: e_1_2_6_45_2
  doi: 10.1002/(SICI)1097-0134(1999)37:3 <171::AID-PROT21>3.0.CO;2-Z
– ident: e_1_2_6_19_2
  doi: 10.1038/nprot.2010.5
– ident: e_1_2_6_51_2
  doi: 10.1006/jmbi.1994.1334
– ident: e_1_2_6_28_2
  doi: 10.1002/prot.21945
– ident: e_1_2_6_8_2
  doi: 10.1002/jcc.540040211
– ident: e_1_2_6_50_2
  doi: 10.1093/bioinformatics/16.9.776
– ident: e_1_2_6_34_2
  doi: 10.1002/bip.360221211
– ident: e_1_2_6_47_2
  doi: 10.1006/jmbi.1999.3091
– ident: e_1_2_6_42_2
  doi: 10.1002/pro.5560050204
– ident: e_1_2_6_44_2
  doi: 10.1016/S0076-6879(04)83004-0
– ident: e_1_2_6_16_2
  doi: 10.1073/pnas.0305695101
– ident: e_1_2_6_13_2
  doi: 10.1016/j.sbi.2006.02.004
– ident: e_1_2_6_18_2
  doi: 10.1021/jp065380a
– ident: e_1_2_6_3_2
  doi: 10.1002/prot.23181
– ident: e_1_2_6_54_2
  doi: 10.1002/(SICI)1097-0134(1999)37:3 <149::AID-PROT20>3.0.CO;2-H
– ident: e_1_2_6_37_2
  doi: 10.1016/S0065-3233(08)60402-7
– ident: e_1_2_6_12_2
  doi: 10.1002/prot.22538
– volume: 5
  start-page: 17
  year: 2007
  ident: e_1_2_6_6_2
  article-title: Ab initio modeling of small proteins by iterative TASSER simulations
  publication-title: Biomed Chromatogr Biol
– ident: e_1_2_6_2_2
  doi: 10.1002/prot.22591
– ident: e_1_2_6_43_2
  doi: 10.1063/1.1699114
– ident: e_1_2_6_25_2
  doi: 10.1016/j.bpj.2011.10.024
– ident: e_1_2_6_58_2
  doi: 10.1002/prot.21791
– ident: e_1_2_6_33_2
  doi: 10.1110/ps.0217002
– reference: 4124164 - Science. 1973 Jul 20;181(4096):223-30
– reference: 17360625 - Proc Natl Acad Sci U S A. 2007 Feb 27;104(9):3177-82
– reference: 20360767 - Nat Protoc. 2010 Apr;5(4):725-38
– reference: 1304348 - Protein Sci. 1992 Mar;1(3):409-17
– reference: 8254673 - J Mol Biol. 1993 Dec 5;234(3):779-815
– reference: 2359125 - J Mol Biol. 1990 Jun 20;213(4):859-83
– reference: 12885659 - Biophys J. 2003 Aug;85(2):1145-64
– reference: 21827953 - Structure. 2011 Aug 10;19(8):1182-91
– reference: 22098752 - Biophys J. 2011 Nov 16;101(10):2525-34
– reference: 11108700 - Bioinformatics. 2000 Sep;16(9):776-85
– reference: 7756980 - Protein Sci. 1994 Dec;3(12):2207-16
– reference: 8182748 - J Mol Biol. 1994 May 20;238(5):777-93
– reference: 19774550 - Proteins. 2009;77 Suppl 9:50-65
– reference: 18247410 - Proteins. 2008 Aug;72(2):547-56
– reference: 19956577 - PLoS One. 2009;4(12):e8140
– reference: 19714776 - Proteins. 2009;77 Suppl 9:66-80
– reference: 15476259 - Proteins. 2004 Dec 1;57(4):702-10
– reference: 12381853 - Protein Sci. 2002 Nov;11(11):2714-26
– reference: 10526365 - Proteins. 1999;Suppl 3:171-6
– reference: 21997778 - Proteins. 2011;79 Suppl 10:21-36
– reference: 10493868 - J Mol Biol. 1999 Sep 17;292(2):195-202
– reference: 20164152 - Bioinformatics. 2010 Apr 1;26(7):889-95
– reference: 21997521 - Proteins. 2011;79 Suppl 10:59-73
– reference: 11835487 - Proteins. 2001;Suppl 5:98-118
– reference: 15126668 - Proc Natl Acad Sci U S A. 2004 May 18;101(20):7594-9
– reference: 10526364 - Proteins. 1999;Suppl 3:149-70
– reference: 4882249 - Adv Protein Chem. 1968;23:283-438
– reference: 17478507 - Nucleic Acids Res. 2007;35(10):3375-82
– reference: 15063647 - Methods Enzymol. 2004;383:66-93
– reference: 17918729 - Proteins. 2007;69 Suppl 8:3-9
– reference: 15609306 - Proteins. 2005 Feb 15;58(3):560-70
– reference: 17201450 - J Phys Chem B. 2007 Jan 11;111(1):260-85
– reference: 10033814 - Phys Rev Lett. 1986 Nov 24;57(21):2607-2609
– reference: 12912846 - Bioinformatics. 2003 Aug 12;19(12):1589-91
– reference: 9149153 - J Mol Biol. 1997 Apr 25;268(1):209-25
– reference: 15849316 - Nucleic Acids Res. 2005;33(7):2302-9
– reference: 12717019 - Protein Sci. 2003 May;12(5):963-72
– reference: 10592235 - Nucleic Acids Res. 2000 Jan 1;28(1):235-42
– reference: 17932918 - Proteins. 2007;69 Suppl 8:159-64
– reference: 8745398 - Protein Sci. 1996 Feb;5(2):212-20
– reference: 16524716 - Curr Opin Struct Biol. 2006 Apr;16(2):166-71
– reference: 16166519 - Science. 2005 Sep 16;309(5742):1868-71
– reference: 11835488 - Proteins. 2001;Suppl 5:119-26
– reference: 6667333 - Biopolymers. 1983 Dec;22(12):2577-637
– reference: 19774620 - Proteins. 2009;77 Suppl 9:1-4
– reference: 12824330 - Nucleic Acids Res. 2003 Jul 1;31(13):3370-4
– reference: 17894355 - Proteins. 2007;69 Suppl 8:108-17
– reference: 9020984 - J Mol Biol. 1997 Jan 17;265(2):217-41
– reference: 17488521 - BMC Biol. 2007;5:17
– reference: 9254694 - Nucleic Acids Res. 1997 Sep 1;25(17):3389-402
– reference: 15011258 - J Comput Chem. 2004 Apr 30;25(6):865-71
– reference: 15345537 - Biophys J. 2004 Sep;87(3):1567-77
SSID ssj0006936
Score 2.5864947
Snippet Ab initio protein folding is one of the major unsolved problems in computational biology owing to the difficulties in force field design and conformational...
Ab initio protein folding is one of the major unsolved problems in computational biology owing to the difficulties in force field design and conformational...
Ab initio protein folding is one of the major unsolved problems in computational biology due to the difficulties in force field design and conformational...
SourceID pubmedcentral
proquest
pubmed
crossref
wiley
istex
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1715
SubjectTerms Computer Simulation
Databases, Protein
Hydrogen Bonding
Models, Chemical
Models, Molecular
Monte Carlo Method
Monte Carlo simulation
Protein Conformation
Protein Folding
protein structure prediction
Proteins - chemistry
Sequence Alignment - methods
solvent accessibility
Solvents - chemistry
statistical potential
Title Ab initio protein structure assembly using continuous structure fragments and optimized knowledge-based force field
URI https://api.istex.fr/ark:/67375/WNG-8KL70B9L-R/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fprot.24065
https://www.ncbi.nlm.nih.gov/pubmed/22411565
https://www.proquest.com/docview/1517449953
https://www.proquest.com/docview/1019614957
https://www.proquest.com/docview/1529944113
https://pubmed.ncbi.nlm.nih.gov/PMC3370074
Volume 80
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1db9MwFLWmIQQvfGx8BAYyAk0CKZ2bxHEs8dJNjAnGQNUm9oIs23FGtDVF7SKxPfET-I38Eu51mnSFaRK8RcpplVxf2-c6x8eEvIgYFNKCyTCXmQsTY3hosiQKUya1zLmNM4e7kT_spTsHybtDfrhEXrd7YRp_iG7BDXuGH6-xg2sz3ZibhqKPQQ_nI9xhjmItZETDuXdUKv35gE0vAlLceZNGG_OfLsxG1zCw3y-jmn8rJi8yWT8Vbd8mX9qXaBQox7361PTs-R_-jv_7lnfIrRlHpYMmqe6SJVetkNVBBfX56IyuU68a9cvxK-T6Znt1Y6s9O26V1ANDS5Qljak3gigr2hjV1hNHga67kTk5o6i5P6Ioli-relxPL2CKiT7ym--ornI6hnFtVJ67nHZLgL9-_MQJOKdAui3gUYh3jxxsv9nf2glnBzyEFhqEh0Dm4kL2E6c18ByTicglzkCDCV1I7Swv0oJbGGEEyxOWM6OzPHMi1VAUusgk8X2yXI0r95BQHjNjdVpAfQnQOM_SxAK5SVjSt5IZE5CXbUMrO3M_x0M4TlTj2xwpDIfykQ7I8w77rfH8uBS17vOlg-jJMarkBFef996q7P2uYJtyVw0DstYmlJoNEFPVR4dwqDZ5HJBn3W1oJfxeoysHQUf1nUyxghVXYDjwCaC0ffifB02Odg-E7AzKc3hSsZC9HQCtxRfvVOVXbzEexwLJZUBe-eS8Igzq0_Djvr969C_gx-QmUM-Z8HmNLEN-uSdA707NU9-NfwNNs0-3
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtNAEB6VVqhc-Gn5CRRYBFQCyalje_1z4JC2lJSkAUWp6G3ZtdclauOg_AjaE4_Ai_AqPARPwsw6dhqoKnHogZslj-zV7MzuN7sz3wA8c2wMpAM7spIo1JanFLdU6DmWb0cySnjshpqqkffafmPfe3vADxbgR1ELk_NDlAdu5BlmvSYHpwPpjRlrKBEZVGlDKnIqm_rkC0Zso1e72zi9zx1n53V3q2FNmwpYMSJjbiGAcNOo5mkpcW9VYeBoTyt0tUCmkdQxT_2Ux2jVgZ14dmIrGSahDnyJgYh2lOfid6_AErUQJ6r-7c6MrcqPTEfC3G_xZyUbqrMxG-vc_rdEU_n1PHD7d47mWexsNr-dG_CzUFue83JUnYxVNT79g1Hyv9HrTbg-heGsnvvNLVjQ2Qqs1jM5HvRP2DozibHmxmEFrm4WT8tbRXu8VZjUFetR5tWAGa6LXsZyLt7JUDOMSHRfHZ8wKis4ZFQP0Msmg8nojEw6lIemvpDJLGEDXLr7vVOdsPKU89e374QxEoZxRYzylGt4G_YvRS13YDEbZPoeMO7aKpZ-iiE0irpJ6Hsx4jfP9mpxZCtVgReFZYl4SvBOfUaORU5N7QhShzAzW4GnpeznnNbkXKl1Y6CliBweUSJgwMWH9hsRNluBvRm1RKcCa4UFi-kaOBI1IkHHgJq7FXhSvsZZoispmWlUOiUYRj4F6cEFMhwhE6L2Gn7nbu4U5YAIgNY4jTSYc5dSgNjT599kvU-GRd11A8LPFXhpvOECNYj3nXdd83T_X4Qfw3Kju9cSrd128wFcQ6Q9zfNeg0W0Nf0Q0exYPTJrCIOPl-1cvwG80q2Q
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEF6VVjwuPFoegQKLgEpFcurHrh8HDmlDaEkIVdSK3pZde12iNk6VhyA98RP4IfwV_gS_hJl17DRQVeLQAzdLHtnr2Zndb9Yz3xDywrUhkA7syEqiUFtMKW6pkLmWb0cySnjshRqrkd-3_e199u6AHyyQH0UtTM4PUR64oWeY9Rod_CRJN2akochjUMX9qEipbOrJFwjYhq936jC7L1238WZva9ua9hSwYgDG3AL84KWRw7SUsLWqMHA10wo8LZBpJHXMUz_lMRh1YCfMTmwlwyTUgS8hDtGuYh489wpZYvAt2Cii3pmRVfmRaUiYuy28rCRDdTdmY53b_pZwJr-eh23_TtE8C53N3te4RX4WWstTXo6q45Gqxqd_EEr-L2q9TW5OQTit5V5zhyzobJms1DI56vcmdI2atFjzv2GZXN0srq5vFc3xVsi4pmgX86761DBddDOaM_GOB5pCPKJ76nhCsajgkGI1QDcb98fDMzLpQB6a6kIqs4T2YeHudU91Qsszzl_fviPCSChEFTHIY6bhXbJ_KWq5RxazfqYfEMo9W8XSTyGABlEvCX0WA3pjNnPiyFaqQtYLwxLxlN4du4wci5yY2hWoDmFmtkKel7InOanJuVJrxj5LETk4wjTAgIuP7bcibLYCezNqiU6FrBYGLKYr4FA4SIEO4TT3KuRZeRtmCX9IyUyD0jG9MPIxRA8ukOEAmACzO_Cc-7lPlANC-OlwHGkw5y2lAHKnz9_Jup8Nh7rnBYieK-SVcYYL1CB2Ox_2zNXDfxF-Sq7t1huitdNuPiI3AGZPk7xXySKYmn4MUHaknpgVhJJPl-1bvwELlaw_
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ab+initio+protein+structure+assembly+using+continuous+structure+fragments+and+optimized+knowledge-based+force+field&rft.jtitle=Proteins%2C+structure%2C+function%2C+and+bioinformatics&rft.au=Xu%2C+Dong&rft.au=Zhang%2C+Yang&rft.date=2012-07-01&rft.eissn=1097-0134&rft.volume=80&rft.issue=7&rft.spage=1715&rft_id=info:doi/10.1002%2Fprot.24065&rft_id=info%3Apmid%2F22411565&rft.externalDocID=22411565
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0887-3585&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0887-3585&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0887-3585&client=summon