Identification of common synaptic inputs to motor neurons from the rectified electromyogram
Key points • Oscillatory drives at the input of a pool of motor neurons are transmitted to the motor neuron output (neural drive to the muscle) in an approximately linear way if these inputs are common to all motor neurons. • The neural drive to the muscle is transformed in the EMG signal that can...
Saved in:
Published in | The Journal of physiology Vol. 591; no. 10; pp. 2403 - 2418 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Oxford, UK
Blackwell Publishing Ltd
01.05.2013
Wiley Subscription Services, Inc Blackwell Science Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Key points
•
Oscillatory drives at the input of a pool of motor neurons are transmitted to the motor neuron output (neural drive to the muscle) in an approximately linear way if these inputs are common to all motor neurons.
•
The neural drive to the muscle is transformed in the EMG signal that can be thus used to extract information on the oscillatory inputs to motor neurons.
•
The transmission of oscillatory inputs is closer to a linear transmission for the raw or for the rectified EMG depending on the energy of the raw and rectified motor unit action potentials at the input frequency and on the degree of amplitude cancellation.
•
Amplitude cancellation negatively influences the effectiveness of EMG rectification in identifying with linear methods oscillatory inputs to motor neurons, so that rectification is preferable over the raw EMG only when the degree of cancellation is low.
Oscillatory common inputs of cortical or peripheral origin can be identified from the motor neuron output with coherence analysis. Linear transmission is possible despite the motor neuron non‐linearity because the same input is sent commonly to several neurons. Because of the linear transmission, common input components to motor neurons can be investigated from the surface EMG, for example by EEG–EMG or EMG–EMG coherence. In these studies, there is an open debate on the utility and appropriateness of EMG rectification. The present study addresses this issue using an analytical, simulation and experimental approach. The main novel theoretical contribution that we report is that the spectra of both the rectified and the raw EMG contain input spectral components to motor neurons. However, they differ by the contribution of amplitude cancellation which influences the rectified EMG spectrum when extracting common oscillatory inputs. Therefore, the degree of amplitude cancellation has an impact on the effectiveness of EMG rectification in extracting input spectral peaks. The theoretical predictions were exactly confirmed by realistic simulations of a pool of motor neurons innervating a muscle in a cylindrical volume conductor of EMG generation and by experiments conducted on the first dorsal interosseous and the abductor pollicis brevis muscles of seven healthy subjects during pinching. It was concluded that when the contraction level is relatively low, EMG rectification may be preferable for identifying common inputs to motor neurons, especially when the energy of the action potentials in the low frequency range is low. Nonetheless, different levels of cancellation across conditions influence the relative estimates of the degree of linear transmission of oscillatory inputs to motor neurons when using the rectified EMG. |
---|---|
AbstractList | Key points * Oscillatory drives at the input of a pool of motor neurons are transmitted to the motor neuron output (neural drive to the muscle) in an approximately linear way if these inputs are common to all motor neurons. * The neural drive to the muscle is transformed in the EMG signal that can be thus used to extract information on the oscillatory inputs to motor neurons. * The transmission of oscillatory inputs is closer to a linear transmission for the raw or for the rectified EMG depending on the energy of the raw and rectified motor unit action potentials at the input frequency and on the degree of amplitude cancellation. * Amplitude cancellation negatively influences the effectiveness of EMG rectification in identifying with linear methods oscillatory inputs to motor neurons, so that rectification is preferable over the raw EMG only when the degree of cancellation is low. Abstract Oscillatory common inputs of cortical or peripheral origin can be identified from the motor neuron output with coherence analysis. Linear transmission is possible despite the motor neuron non-linearity because the same input is sent commonly to several neurons. Because of the linear transmission, common input components to motor neurons can be investigated from the surface EMG, for example by EEG-EMG or EMG-EMG coherence. In these studies, there is an open debate on the utility and appropriateness of EMG rectification. The present study addresses this issue using an analytical, simulation and experimental approach. The main novel theoretical contribution that we report is that the spectra of both the rectified and the raw EMG contain input spectral components to motor neurons. However, they differ by the contribution of amplitude cancellation which influences the rectified EMG spectrum when extracting common oscillatory inputs. Therefore, the degree of amplitude cancellation has an impact on the effectiveness of EMG rectification in extracting input spectral peaks. The theoretical predictions were exactly confirmed by realistic simulations of a pool of motor neurons innervating a muscle in a cylindrical volume conductor of EMG generation and by experiments conducted on the first dorsal interosseous and the abductor pollicis brevis muscles of seven healthy subjects during pinching. It was concluded that when the contraction level is relatively low, EMG rectification may be preferable for identifying common inputs to motor neurons, especially when the energy of the action potentials in the low frequency range is low. Nonetheless, different levels of cancellation across conditions influence the relative estimates of the degree of linear transmission of oscillatory inputs to motor neurons when using the rectified EMG. Oscillatory common inputs of cortical or peripheral origin can be identified from the motor neuron output with coherence analysis. Linear transmission is possible despite the motor neuron non-linearity because the same input is sent commonly to several neurons. Because of the linear transmission, common input components to motor neurons can be investigated from the surface EMG, for example by EEG–EMG or EMG–EMG coherence. In these studies, there is an open debate on the utility and appropriateness of EMG rectification. The present study addresses this issue using an analytical, simulation and experimental approach. The main novel theoretical contribution that we report is that the spectra of both the rectified and the raw EMG contain input spectral components to motor neurons. However, they differ by the contribution of amplitude cancellation which influences the rectified EMG spectrum when extracting common oscillatory inputs. Therefore, the degree of amplitude cancellation has an impact on the effectiveness of EMG rectification in extracting input spectral peaks. The theoretical predictions were exactly confirmed by realistic simulations of a pool of motor neurons innervating a muscle in a cylindrical volume conductor of EMG generation and by experiments conducted on the first dorsal interosseous and the abductor pollicis brevis muscles of seven healthy subjects during pinching. It was concluded that when the contraction level is relatively low, EMG rectification may be preferable for identifying common inputs to motor neurons, especially when the energy of the action potentials in the low frequency range is low. Nonetheless, different levels of cancellation across conditions influence the relative estimates of the degree of linear transmission of oscillatory inputs to motor neurons when using the rectified EMG. Oscillatory common inputs of cortical or peripheral origin can be identified from the motor neuron output with coherence analysis. Linear transmission is possible despite the motor neuron non-linearity because the same input is sent commonly to several neurons. Because of the linear transmission, common input components to motor neurons can be investigated from the surface EMG, for example by EEG-EMG or EMG-EMG coherence. In these studies, there is an open debate on the utility and appropriateness of EMG rectification. The present study addresses this issue using an analytical, simulation and experimental approach. The main novel theoretical contribution that we report is that the spectra of both the rectified and the raw EMG contain input spectral components to motor neurons. However, they differ by the contribution of amplitude cancellation which influences the rectified EMG spectrum when extracting common oscillatory inputs. Therefore, the degree of amplitude cancellation has an impact on the effectiveness of EMG rectification in extracting input spectral peaks. The theoretical predictions were exactly confirmed by realistic simulations of a pool of motor neurons innervating a muscle in a cylindrical volume conductor of EMG generation and by experiments conducted on the first dorsal interosseous and the abductor pollicis brevis muscles of seven healthy subjects during pinching. It was concluded that when the contraction level is relatively low, EMG rectification may be preferable for identifying common inputs to motor neurons, especially when the energy of the action potentials in the low frequency range is low. Nonetheless, different levels of cancellation across conditions influence the relative estimates of the degree of linear transmission of oscillatory inputs to motor neurons when using the rectified EMG.Oscillatory common inputs of cortical or peripheral origin can be identified from the motor neuron output with coherence analysis. Linear transmission is possible despite the motor neuron non-linearity because the same input is sent commonly to several neurons. Because of the linear transmission, common input components to motor neurons can be investigated from the surface EMG, for example by EEG-EMG or EMG-EMG coherence. In these studies, there is an open debate on the utility and appropriateness of EMG rectification. The present study addresses this issue using an analytical, simulation and experimental approach. The main novel theoretical contribution that we report is that the spectra of both the rectified and the raw EMG contain input spectral components to motor neurons. However, they differ by the contribution of amplitude cancellation which influences the rectified EMG spectrum when extracting common oscillatory inputs. Therefore, the degree of amplitude cancellation has an impact on the effectiveness of EMG rectification in extracting input spectral peaks. The theoretical predictions were exactly confirmed by realistic simulations of a pool of motor neurons innervating a muscle in a cylindrical volume conductor of EMG generation and by experiments conducted on the first dorsal interosseous and the abductor pollicis brevis muscles of seven healthy subjects during pinching. It was concluded that when the contraction level is relatively low, EMG rectification may be preferable for identifying common inputs to motor neurons, especially when the energy of the action potentials in the low frequency range is low. Nonetheless, different levels of cancellation across conditions influence the relative estimates of the degree of linear transmission of oscillatory inputs to motor neurons when using the rectified EMG. Oscillatory drives at the input of a pool of motor neurons are transmitted to the motor neuron output (neural drive to the muscle) in an approximately linear way if these inputs are common to all motor neurons. The neural drive to the muscle is transformed in the EMG signal that can be thus used to extract information on the oscillatory inputs to motor neurons. The transmission of oscillatory inputs is closer to a linear transmission for the raw or for the rectified EMG depending on the energy of the raw and rectified motor unit action potentials at the input frequency and on the degree of amplitude cancellation. Amplitude cancellation negatively influences the effectiveness of EMG rectification in identifying with linear methods oscillatory inputs to motor neurons, so that rectification is preferable over the raw EMG only when the degree of cancellation is low. Abstract Oscillatory common inputs of cortical or peripheral origin can be identified from the motor neuron output with coherence analysis. Linear transmission is possible despite the motor neuron non‐linearity because the same input is sent commonly to several neurons. Because of the linear transmission, common input components to motor neurons can be investigated from the surface EMG, for example by EEG–EMG or EMG–EMG coherence. In these studies, there is an open debate on the utility and appropriateness of EMG rectification. The present study addresses this issue using an analytical, simulation and experimental approach. The main novel theoretical contribution that we report is that the spectra of both the rectified and the raw EMG contain input spectral components to motor neurons. However, they differ by the contribution of amplitude cancellation which influences the rectified EMG spectrum when extracting common oscillatory inputs. Therefore, the degree of amplitude cancellation has an impact on the effectiveness of EMG rectification in extracting input spectral peaks. The theoretical predictions were exactly confirmed by realistic simulations of a pool of motor neurons innervating a muscle in a cylindrical volume conductor of EMG generation and by experiments conducted on the first dorsal interosseous and the abductor pollicis brevis muscles of seven healthy subjects during pinching. It was concluded that when the contraction level is relatively low, EMG rectification may be preferable for identifying common inputs to motor neurons, especially when the energy of the action potentials in the low frequency range is low. Nonetheless, different levels of cancellation across conditions influence the relative estimates of the degree of linear transmission of oscillatory inputs to motor neurons when using the rectified EMG. Key points • Oscillatory drives at the input of a pool of motor neurons are transmitted to the motor neuron output (neural drive to the muscle) in an approximately linear way if these inputs are common to all motor neurons. • The neural drive to the muscle is transformed in the EMG signal that can be thus used to extract information on the oscillatory inputs to motor neurons. • The transmission of oscillatory inputs is closer to a linear transmission for the raw or for the rectified EMG depending on the energy of the raw and rectified motor unit action potentials at the input frequency and on the degree of amplitude cancellation. • Amplitude cancellation negatively influences the effectiveness of EMG rectification in identifying with linear methods oscillatory inputs to motor neurons, so that rectification is preferable over the raw EMG only when the degree of cancellation is low. Oscillatory common inputs of cortical or peripheral origin can be identified from the motor neuron output with coherence analysis. Linear transmission is possible despite the motor neuron non‐linearity because the same input is sent commonly to several neurons. Because of the linear transmission, common input components to motor neurons can be investigated from the surface EMG, for example by EEG–EMG or EMG–EMG coherence. In these studies, there is an open debate on the utility and appropriateness of EMG rectification. The present study addresses this issue using an analytical, simulation and experimental approach. The main novel theoretical contribution that we report is that the spectra of both the rectified and the raw EMG contain input spectral components to motor neurons. However, they differ by the contribution of amplitude cancellation which influences the rectified EMG spectrum when extracting common oscillatory inputs. Therefore, the degree of amplitude cancellation has an impact on the effectiveness of EMG rectification in extracting input spectral peaks. The theoretical predictions were exactly confirmed by realistic simulations of a pool of motor neurons innervating a muscle in a cylindrical volume conductor of EMG generation and by experiments conducted on the first dorsal interosseous and the abductor pollicis brevis muscles of seven healthy subjects during pinching. It was concluded that when the contraction level is relatively low, EMG rectification may be preferable for identifying common inputs to motor neurons, especially when the energy of the action potentials in the low frequency range is low. Nonetheless, different levels of cancellation across conditions influence the relative estimates of the degree of linear transmission of oscillatory inputs to motor neurons when using the rectified EMG. times Oscillatory drives at the input of a pool of motor neurons are transmitted to the motor neuron output (neural drive to the muscle) in an approximately linear way if these inputs are common to all motor neurons. Abstract Oscillatory common inputs of cortical or peripheral origin can be identified from the motor neuron output with coherence analysis. Linear transmission is possible despite the motor neuron non-linearity because the same input is sent commonly to several neurons. Because of the linear transmission, common input components to motor neurons can be investigated from the surface EMG, for example by EEG-EMG or EMG-EMG coherence. In these studies, there is an open debate on the utility and appropriateness of EMG rectification. The present study addresses this issue using an analytical, simulation and experimental approach. The main novel theoretical contribution that we report is that the spectra of both the rectified and the raw EMG contain input spectral components to motor neurons. However, they differ by the contribution of amplitude cancellation which influences the rectified EMG spectrum when extracting common oscillatory inputs. Therefore, the degree of amplitude cancellation has an impact on the effectiveness of EMG rectification in extracting input spectral peaks. The theoretical predictions were exactly confirmed by realistic simulations of a pool of motor neurons innervating a muscle in a cylindrical volume conductor of EMG generation and by experiments conducted on the first dorsal interosseous and the abductor pollicis brevis muscles of seven healthy subjects during pinching. It was concluded that when the contraction level is relatively low, EMG rectification may be preferable for identifying common inputs to motor neurons, especially when the energy of the action potentials in the low frequency range is low. Nonetheless, different levels of cancellation across conditions influence the relative estimates of the degree of linear transmission of oscillatory inputs to motor neurons when using the rectified EMG. |
Author | Negro, Francesco Jiang, Ning Farina, Dario |
Author_xml | – sequence: 1 givenname: Dario surname: Farina fullname: Farina, Dario – sequence: 2 givenname: Francesco surname: Negro fullname: Negro, Francesco – sequence: 3 givenname: Ning surname: Jiang fullname: Jiang, Ning |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/23507877$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkktv1DAUhS1URKeFf4CQJTZsZvD1I45ZIFUVj6JKsCgrFpbjOB2PEjvYCSj_Hg_TQdBNWfnK_s7Rvb7nDJ2EGBxCz4FsAIC93o3bJfvYbygBuqG8IjV9hFbAK7WWUrETtCKE0jWTAk7RWc47QoARpZ6gU8oEkbWUK_TtqnVh8p23ZvIx4NhhG4ehVHkJZpy8xT6M85TxFPEQp5hwcHOKIeMuxQFPW4eTs3sH12LXl7JcL_E2meEpetyZPrtnd-c5-vr-3c3lx_X15w9XlxfXaytqwdZd5ygn0DhjakV43Sola85MZXnLFJCGVkpUohXKdrK1wBvowFHaCEoUgGTn6O3Bd5ybwbW2DJRMr8fkB5MWHY3X_74Ev9W38YdmlawJY8Xg1Z1Bit9nlyc9-Gxd35vg4pw1cFBMqIrBwygTjDAlgBb05T10F-cUyk9oEFwwzoWqC_Xi7-b_dH1cUQHeHACbYs7Jddr66feyyiy-10D0Pg_6mAe9z4M-5KGI-T3x0f8BmTrIfvreLf-l0TefvoiKM_YL3A3POw |
CODEN | JPHYA7 |
CitedBy_id | crossref_primary_10_1007_s00221_024_06953_1 crossref_primary_10_1088_1741_2560_12_3_036008 crossref_primary_10_1113_JP273090 crossref_primary_10_3389_fspor_2023_1251089 crossref_primary_10_1016_j_neulet_2023_137132 crossref_primary_10_1007_s00221_014_4145_0 crossref_primary_10_1016_j_humov_2020_102614 crossref_primary_10_1038_s41598_017_14555_x crossref_primary_10_1111_apha_12133 crossref_primary_10_1152_japplphysiol_00453_2024 crossref_primary_10_1007_s12311_020_01149_z crossref_primary_10_1152_jn_00296_2013 crossref_primary_10_1109_TNSRE_2021_3101615 crossref_primary_10_1152_jn_00296_2014 crossref_primary_10_3389_fphys_2023_1266085 crossref_primary_10_3389_fnrgo_2022_1046695 crossref_primary_10_1016_j_neures_2017_09_004 crossref_primary_10_3390_s20133754 crossref_primary_10_1371_journal_pone_0093159 crossref_primary_10_1016_j_jelekin_2024_102971 crossref_primary_10_3233_JPD_191715 crossref_primary_10_3389_fncom_2016_00126 crossref_primary_10_1002_acn3_681 crossref_primary_10_1152_jn_00398_2022 crossref_primary_10_1016_j_clinph_2013_11_006 crossref_primary_10_1371_journal_pone_0303053 crossref_primary_10_1371_journal_pcbi_1006985 crossref_primary_10_1152_jn_00801_2013 crossref_primary_10_1007_s00221_013_3689_8 crossref_primary_10_1152_jn_00204_2017 crossref_primary_10_1152_jn_00309_2024 crossref_primary_10_1016_j_neuroimage_2021_118209 crossref_primary_10_1016_j_bbr_2021_113563 crossref_primary_10_2139_ssrn_4160694 crossref_primary_10_7600_jpfsm_10_171 crossref_primary_10_1007_s00221_016_4602_z crossref_primary_10_1109_TBME_2020_2989311 crossref_primary_10_3389_fneur_2018_00879 crossref_primary_10_1016_j_marpolbul_2016_06_029 crossref_primary_10_1016_j_ynirp_2021_100075 crossref_primary_10_1152_jn_00018_2017 crossref_primary_10_3389_fneur_2017_00202 crossref_primary_10_1371_journal_pone_0157239 crossref_primary_10_3389_fphys_2022_994857 crossref_primary_10_1007_s00221_015_4262_4 crossref_primary_10_1007_s00221_023_06635_4 crossref_primary_10_1016_j_jelekin_2024_102881 crossref_primary_10_1109_TNSRE_2017_2701149 crossref_primary_10_1186_s13102_021_00369_y crossref_primary_10_1109_JBHI_2021_3135575 crossref_primary_10_1113_jphysiol_2013_265181 crossref_primary_10_1038_s41598_020_72839_1 crossref_primary_10_1007_s00421_022_05087_y crossref_primary_10_1186_s12984_019_0590_0 crossref_primary_10_3389_fbioe_2020_01007 crossref_primary_10_1152_japplphysiol_00162_2014 crossref_primary_10_1088_1741_2552_abf186 crossref_primary_10_1371_journal_pone_0088428 crossref_primary_10_1016_j_bspc_2023_104897 crossref_primary_10_1038_srep17830 crossref_primary_10_1088_0967_3334_35_7_R143 crossref_primary_10_1152_jn_00613_2017 crossref_primary_10_1152_jn_00431_2023 crossref_primary_10_1152_jn_00835_2012 crossref_primary_10_1007_s00221_020_05987_5 crossref_primary_10_3389_fnhum_2019_00223 crossref_primary_10_1080_00222895_2024_2332767 crossref_primary_10_1016_j_humov_2022_102952 crossref_primary_10_1016_j_neuroimage_2020_117089 crossref_primary_10_1016_j_neuroimage_2014_06_050 crossref_primary_10_1016_j_neuroimage_2019_116177 crossref_primary_10_1152_jn_00574_2015 crossref_primary_10_1155_2018_4759232 crossref_primary_10_1249_MSS_0000000000001117 crossref_primary_10_1007_s12311_023_01585_7 crossref_primary_10_3389_fnhum_2024_1354332 crossref_primary_10_1152_japplphysiol_00139_2019 crossref_primary_10_1186_1743_0003_11_23 crossref_primary_10_3389_fncom_2017_00017 crossref_primary_10_1007_s00221_014_4172_x crossref_primary_10_1016_j_clinph_2020_01_012 crossref_primary_10_1113_jphysiol_2013_267070 crossref_primary_10_1152_jn_00873_2013 crossref_primary_10_14814_phy2_70237 crossref_primary_10_1016_j_aquatox_2017_07_006 crossref_primary_10_1016_j_bspc_2024_106719 crossref_primary_10_3389_fnhum_2025_1556325 crossref_primary_10_1113_JP271748 crossref_primary_10_1007_s00221_023_06706_6 crossref_primary_10_3389_fnhum_2018_00207 crossref_primary_10_1152_jn_00531_2014 crossref_primary_10_3389_fnins_2022_896933 crossref_primary_10_1523_JNEUROSCI_1463_19_2020 crossref_primary_10_1152_japplphysiol_01092_2013 crossref_primary_10_1038_s41598_021_85851_w |
Cites_doi | 10.1109/TBME.2003.820998 10.1113/jphysiol.2010.202473 10.1523/JNEUROSCI.21-09-03215.2001 10.1016/j.jneumeth.2011.11.001 10.1152/jn.00832.2002 10.1111/j.1469-7793.1997.225bo.x 10.1152/jn.00336.2011 10.1046/j.1460-9568.2003.02751.x 10.1016/S0165-0270(03)00004-9 10.1152/jn.00844.2002 10.1109/10.568918 10.1152/jn.00583.2010 10.1007/s00221-006-0713-2 10.1152/jn.1991.66.2.635 10.1097/00001756-200303030-00005 10.1016/j.jneumeth.2006.07.008 10.1152/jn.1998.80.1.309 10.1007/s10827-008-0092-8 10.1152/jn.00792.2009 10.1016/S1388-2457(99)00141-8 10.1152/jn.01011.2011 10.1152/jn.1993.70.6.2470 10.1113/jphysiol.2005.089607 10.1152/japplphysiol.00894.2004 10.1152/japplphysiol.00491.2006 10.1371/journal.pone.0044894 10.1152/jn.00185.2010 10.1097/00004691-199911000-00002 10.1152/jn.00066.2011 10.1016/j.clinph.2009.10.040 10.1113/jphysiol.1995.sp021104 10.1055/s-0038-1633419 10.1152/jn.1997.78.5.2336 10.1016/j.clinph.2010.03.052 10.1152/jn.00222.2010 10.1152/jn.90365.2008 10.1152/japplphysiol.01282.2005 10.1152/japplphysiol.01070.2003 10.1152/jn.2001.86.5.2144 10.1109/TBME.1968.4502576 |
ContentType | Journal Article |
Copyright | 2013 The Authors. The Journal of Physiology © 2013 The Physiological Society 2013 The Authors. The Journal of Physiology © 2013 The Physiological Society 2013 |
Copyright_xml | – notice: 2013 The Authors. The Journal of Physiology © 2013 The Physiological Society – notice: 2013 The Authors. The Journal of Physiology © 2013 The Physiological Society 2013 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QP 7QR 7TK 7TS 8FD FR3 P64 7X8 5PM |
DOI | 10.1113/jphysiol.2012.246082 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Neurosciences Abstracts Physical Education Index Technology Research Database Engineering Research Database Biotechnology and BioEngineering Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Technology Research Database Chemoreception Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts Neurosciences Abstracts Physical Education Index Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitleList | Technology Research Database MEDLINE - Academic CrossRef Neurosciences Abstracts MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology |
EISSN | 1469-7793 |
EndPage | 2418 |
ExternalDocumentID | PMC3678033 3374429441 23507877 10_1113_jphysiol_2012_246082 TJP5643 |
Genre | article Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- -DZ -~X .3N .55 .GA .GJ .Y3 05W 0R~ 0YM 10A 123 18M 1OB 1OC 24P 29L 2WC 31~ 33P 36B 3EH 3O- 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52R 52S 52T 52U 52V 52W 52X 53G 5GY 5HH 5LA 5RE 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A01 A03 AAESR AAEVG AAFWJ AAHHS AAHQN AAIPD AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAYJJ AAZKR ABCQN ABCUV ABEML ABITZ ABIVO ABJNI ABOCM ABPPZ ABPVW ABQWH ABXGK ACAHQ ACCFJ ACCZN ACFBH ACGFO ACGFS ACGOF ACIWK ACMXC ACNCT ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADBTR ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEGXH AEIGN AEIMD AEQDE AEUQT AEUYR AFBPY AFEBI AFFNX AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AI. AIACR AIAGR AITYG AIURR AIWBW AJBDE ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB AOIJS ATUGU AZBYB AZVAB BAFTC BAWUL BFHJK BHBCM BMXJE BROTX BRXPI BY8 C1A C45 CAG CHEAL COF CS3 D-6 D-7 D-E D-F DCZOG DIK DPXWK DR2 DRFUL DRMAN DRSTM E3Z EBS EJD EMOBN EX3 F00 F01 F04 F5P FA8 FIJ FUBAC G-S G.N GODZA GX1 H.X H13 HF~ HGLYW HZI HZ~ H~9 IHE IPNFZ IX1 J0M K48 KBYEO LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MVM MXFUL MXMAN MXSTM N04 N05 N9A NEJ NF~ O66 O9- OHT OIG OK1 OVD P2P P2W P2X P2Z P4B P4D Q.N Q11 QB0 R.K RIG ROL RPM RX1 SAMSI SUPJJ TEORI TLM TN5 TR2 UB1 UKR UPT V8K VH1 W8F W8V W99 WBKPD WH7 WHG WIH WIJ WIK WIN WNSPC WOHZO WOQ WOW WQJ WRC WXI WXSBR WYISQ X7M XG1 XOL YBU YHG YKV YQT YSK YXB YYP YZZ ZGI ZXP ZZTAW ~IA ~WT AAYXX ADXHL AEYWJ AGHNM AGYGG CITATION CGR CUY CVF ECM EIF NPM 7QP 7QR 7TK 7TS 8FD FR3 P64 7X8 5PM |
ID | FETCH-LOGICAL-c5853-ffe2401beaa89048d997843a6c4d3910b269565d59cf7dc14b1f1e22b52091173 |
IEDL.DBID | DR2 |
ISSN | 0022-3751 1469-7793 |
IngestDate | Thu Aug 21 18:21:57 EDT 2025 Fri Jul 11 05:26:18 EDT 2025 Fri Jul 11 01:05:40 EDT 2025 Fri Jul 25 12:14:39 EDT 2025 Thu Apr 03 07:00:58 EDT 2025 Thu Apr 24 22:55:55 EDT 2025 Tue Jul 01 04:29:08 EDT 2025 Wed Jan 22 16:35:43 EST 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5853-ffe2401beaa89048d997843a6c4d3910b269565d59cf7dc14b1f1e22b52091173 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 ObjectType-Article-2 ObjectType-Feature-1 |
OpenAccessLink | http://doi.org/10.1113/jphysiol.2012.246082 |
PMID | 23507877 |
PQID | 1545344598 |
PQPubID | 1086388 |
PageCount | 16 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_3678033 proquest_miscellaneous_1419359631 proquest_miscellaneous_1353039512 proquest_journals_1545344598 pubmed_primary_23507877 crossref_citationtrail_10_1113_jphysiol_2012_246082 crossref_primary_10_1113_jphysiol_2012_246082 wiley_primary_10_1113_jphysiol_2012_246082_TJP5643 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | May 2013 |
PublicationDateYYYYMMDD | 2013-05-01 |
PublicationDate_xml | – month: 05 year: 2013 text: May 2013 |
PublicationDecade | 2010 |
PublicationPlace | Oxford, UK |
PublicationPlace_xml | – name: Oxford, UK – name: England – name: London |
PublicationTitle | The Journal of physiology |
PublicationTitleAlternate | J Physiol |
PublicationYear | 2013 |
Publisher | Blackwell Publishing Ltd Wiley Subscription Services, Inc Blackwell Science Inc |
Publisher_xml | – name: Blackwell Publishing Ltd – name: Wiley Subscription Services, Inc – name: Blackwell Science Inc |
References | 2011a; 589 2007; 102 1997; 44 2004c; 51 2010; 103 2010; 104 2010; 121 2003; 14 1975 2003; 18 1998; 80 2008; 100 2004b; 43 2012; 205 2012; 107 2001; 86 2001; 21 1968; 15 2007; 159 2007; 178 1997; 501 1993; 70 1991; 66 1999; 16 2005; 566 2004a; 96 2011b; 106 1997; 78 2008; 25 1999; 110 1995; 489 2005; 98 2012; 7 2003; 124 2006; 100 2003; 89 e_1_2_6_32_1 e_1_2_6_10_1 e_1_2_6_31_1 e_1_2_6_30_1 Machens CK (e_1_2_6_25_1) 2001; 21 e_1_2_6_19_1 e_1_2_6_13_1 e_1_2_6_36_1 e_1_2_6_14_1 e_1_2_6_35_1 e_1_2_6_11_1 e_1_2_6_34_1 e_1_2_6_12_1 e_1_2_6_33_1 e_1_2_6_17_1 e_1_2_6_18_1 e_1_2_6_39_1 e_1_2_6_15_1 e_1_2_6_16_1 e_1_2_6_37_1 e_1_2_6_42_1 e_1_2_6_21_1 e_1_2_6_20_1 e_1_2_6_41_1 e_1_2_6_40_1 e_1_2_6_9_1 e_1_2_6_8_1 Shampine L (e_1_2_6_38_1) 1975 e_1_2_6_5_1 e_1_2_6_4_1 e_1_2_6_7_1 e_1_2_6_6_1 e_1_2_6_24_1 e_1_2_6_3_1 e_1_2_6_23_1 e_1_2_6_2_1 e_1_2_6_22_1 e_1_2_6_29_1 e_1_2_6_28_1 e_1_2_6_27_1 e_1_2_6_26_1 21135042 - J Physiol. 2011 Feb 1;589(Pt 3):629-37 20434397 - Clin Neurophysiol. 2010 Oct;121(10):1633-42 16949676 - J Neurosci Methods. 2007 Jan 30;159(2):215-23 24382922 - J Physiol. 2014 Jan 1;592(1):251-2 15919711 - J Physiol. 2005 Jul 15;566(Pt 2):625-39 15026832 - Methods Inf Med. 2004;43(1):30-5 12686573 - J Neurophysiol. 2003 Apr;89(4):1941-53 15377649 - J Appl Physiol (1985). 2005 Jan;98(1):120-31 16397060 - J Appl Physiol (1985). 2006 Jun;100(6):1928-37 18506610 - J Comput Neurosci. 2008 Dec;25(3):520-42 17068220 - J Appl Physiol (1985). 2007 Mar;102(3):1193-201 12706845 - J Neurosci Methods. 2003 Apr 15;124(2):157-65 22072508 - J Neurophysiol. 2012 Feb;107(3):796-807 12574472 - J Neurophysiol. 2003 Feb;89(2):960-8 21795617 - J Neurophysiol. 2011 Nov;106(5):2688-97 18463179 - J Neurophysiol. 2008 Jul;100(1):431-40 20530508 - J Neurophysiol. 2010 Jun;103(6):3547; author reply 3548-9 22120690 - J Neurosci Methods. 2012 Mar 30;205(1):190-201 1663538 - J Neurophysiol. 1991 Aug;66(2):635-50 9125827 - IEEE Trans Biomed Eng. 1997 May;44(5):419-26 10600018 - J Clin Neurophysiol. 1999 Nov;16(6):501-11 11312306 - J Neurosci. 2001 May 1;21(9):3215-27 17109111 - Exp Brain Res. 2007 Mar;178(1):79-88 24382921 - J Physiol. 2014 Jan 1;592(1):249-50 9356386 - J Neurophysiol. 1997 Nov;78(5):2336-50 20444646 - Clin Neurophysiol. 2010 Oct;121(10):1616-23 20505123 - J Neurophysiol. 2010 Aug;104(2):1141-54 8788955 - J Physiol. 1995 Dec 15;489 ( Pt 3):917-24 20926609 - J Neurophysiol. 2010 Dec;104(6):3576-87 15000373 - IEEE Trans Biomed Eng. 2004 Mar;51(3):415-26 22378168 - J Neurophysiol. 2012 May;107(10):2866-75 5699902 - IEEE Trans Biomed Eng. 1968 Oct;15(4):257-65 12634476 - Neuroreport. 2003 Mar 3;14(3):321-4 15016793 - J Appl Physiol (1985). 2004 Apr;96(4):1486-95 8120594 - J Neurophysiol. 1993 Dec;70(6):2470-88 23049762 - PLoS One. 2012;7(9):e44894 10576479 - Clin Neurophysiol. 1999 Nov;110(11):1842-57 9175005 - J Physiol. 1997 May 15;501 ( Pt 1):225-41 9658052 - J Neurophysiol. 1998 Jul;80(1):309-23 11698507 - J Neurophysiol. 2001 Nov;86(5):2144-58 12887428 - Eur J Neurosci. 2003 Jul;18(2):453-6 20032241 - J Neurophysiol. 2010 Feb;103(2):1093-103 |
References_xml | – volume: 107 start-page: 796 year: 2012 end-page: 807 article-title: Neural mechanisms of intermuscular coherence: implications for the rectification of surface electromyography publication-title: J Neurophysiol – volume: 106 start-page: 2688 year: 2011b end-page: 2697 article-title: Decorrelation of cortical inputs and motoneuron output publication-title: J Neurophysiol – volume: 589 start-page: 629 year: 2011a end-page: 637 article-title: Linear transmission of cortical oscillations to the neural drive to muscles is mediated by common projections to populations of motoneurons in humans publication-title: J Physiol – volume: 21 start-page: 3215 year: 2001 end-page: 3227 article-title: Representation of acoustic communication signals by insect auditory receptor neurons publication-title: J Neurosci – volume: 501 start-page: 225 year: 1997 end-page: 241 article-title: Coherent oscillations in monkey motor cortex and hand muscle EMG show task‐dependent modulation publication-title: J Physiol – volume: 205 start-page: 190 year: 2012 end-page: 201 article-title: Rectification of the EMG is an unnecessary and inappropriate step in the calculation of corticomuscular coherence publication-title: J Neurosci Methods – volume: 25 start-page: 520 year: 2008 end-page: 542 article-title: Simulation system of spinal cord motor nuclei and associated nerves and muscles, in a Web‐based architecture publication-title: J Comput Neurosci – volume: 66 start-page: 635 year: 1991 end-page: 650 article-title: A model of a CA3 hippocampal pyramidal neuron incorporating voltage‐clamp data on intrinsic conductances publication-title: J Neurophysiol – volume: 86 start-page: 2144 year: 2001 end-page: 2158 article-title: Experimental simulation of cat electromyogram: evidence for algebraic summation of motor‐unit action‐potential trains publication-title: J Neurophysiol – volume: 104 start-page: 1141 year: 2010 end-page: 1154 article-title: Force‐independent distribution of correlated neural inputs to hand muscles during three‐digit grasping publication-title: J Neurophysiol – volume: 178 start-page: 79 year: 2007 end-page: 88 article-title: Bilateral motor unit synchronization is functionally organized publication-title: Exp Brain Res – volume: 15 start-page: 257 year: 1968 end-page: 265 article-title: Spectral analysis of pulse frequency modulation in the nervous systems publication-title: IEEE Trans Biomed Eng – volume: 107 start-page: 2866 year: 2012 end-page: 2875 article-title: Sensitivity of EMG‐EMG coherence to detect the common oscillatory drive to hand muscles in young and older adults publication-title: J Neurophysiol – volume: 44 start-page: 419 year: 1997 end-page: 426 article-title: Spectral distortion properties of the integral pulse frequency modulation model publication-title: IEEE Trans Biomed Eng – volume: 103 start-page: 1093 year: 2010 end-page: 1103 article-title: Rectification of the EMG signal impairs the identification of oscillatory input to the muscle publication-title: J Neurophysiol – year: 1975 – volume: 98 start-page: 120 year: 2005 end-page: 131 article-title: Influence of amplitude cancellation on the simulated surface electromyogram publication-title: J Appl Physiol – volume: 80 start-page: 309 year: 1998 end-page: 323 article-title: Decorrelating actions of Renshaw interneurons on the firing of spinal motoneurons within a motor nucleus: A simulation study publication-title: J Neurophysiol – volume: 18 start-page: 453 year: 2003 end-page: 456 article-title: Task‐dependent intermanual coupling of 8‐Hz discontinuities during slow finger movements publication-title: Eur J Neurosci – volume: 70 start-page: 2470 year: 1993 end-page: 2488 article-title: Models of recruitment and rate coding organization in motor‐unit pools publication-title: J Neurophysiol – volume: 124 start-page: 157 year: 2003 end-page: 165 article-title: Rectification and non‐linear pre‐processing of EMG signals for cortico‐muscular analysis publication-title: J Neurosci Methods – volume: 100 start-page: 431 year: 2008 end-page: 440 article-title: Amplitude cancellation of motor‐unit action potentials in the surface electromyogram can be estimated with spike‐triggered averaging publication-title: J Neurophysiol – volume: 489 start-page: 917 year: 1995 end-page: 924 article-title: Synchronization between motor cortex and spinal motoneuronal pool during the performance of a maintained motor task in man publication-title: J Physiol – volume: 110 start-page: 1842 year: 1999 end-page: 1857 article-title: Event‐related EEG/MEG synchronization and desynchronization: Basic principles publication-title: Clin Neurophysiol – volume: 14 start-page: 321 year: 2003 end-page: 324 article-title: Modulation of cortex‐muscle oscillatory interaction by ischaemia‐induced deafferentation publication-title: Neuroreport – volume: 51 start-page: 415 year: 2004c end-page: 426 article-title: A surface EMG generation model with multilayer cylindrical description of the volume conductor publication-title: IEEE Trans Biomed Eng – volume: 78 start-page: 2336 year: 1997 end-page: 2350 article-title: Decoding visual information from a population of retinal ganglion cells publication-title: J Neurophysiol – volume: 102 start-page: 1193 year: 2007 end-page: 1201 article-title: Sensitivity of the cross‐correlation between simulated surface EMGs for two muscles to detect motor unit synchronization publication-title: J Appl Physiol – volume: 43 start-page: 30 year: 2004b end-page: 35 article-title: Surface EMG crosstalk evaluated from experimental recordings and simulated signals. Reflections on crosstalk interpretation, quantification and reduction publication-title: Methods Inf Med – volume: 103 start-page: 3547 year: 2010 article-title: On the need for rectification of surface EMG publication-title: J Neurophysiol – volume: 566 start-page: 625 year: 2005 end-page: 639 article-title: Manipulation of peripheral neural feedback loops alters human corticomuscular coherence publication-title: J Physiol – volume: 100 start-page: 1928 year: 2006 end-page: 1937 article-title: Amplitude cancellation reduces the size of motor unit potentials averaged from the surface EMG publication-title: J Appl Physiol – volume: 96 start-page: 1486 year: 2004a end-page: 1495 article-title: The extraction of neural strategies from the surface EMG publication-title: J Appl Physiol – volume: 159 start-page: 215 year: 2007 end-page: 223 article-title: Effects of surface EMG rectification on power and coherence analyses: an EEG and MEG study publication-title: J Neurosci Methods – volume: 7 start-page: e44894 year: 2012 article-title: Factors influencing the estimates of correlation between motor unit activities in humans publication-title: PLoS One – volume: 89 start-page: 960 year: 2003 end-page: 968 article-title: Functional coupling of motor units is modulated during walking in human subjects publication-title: J Neurophysiol – volume: 121 start-page: 1616 year: 2010 end-page: 1623 article-title: Decoding the neural drive to muscles from the surface electromyogram publication-title: Clin Neurophysiol – volume: 104 start-page: 3576 year: 2010 end-page: 3587 article-title: Influence of fatigue on hand muscle coordination and EMG‐EMG coherence during three‐digit grasping publication-title: J Neurophysiol – volume: 16 start-page: 501 year: 1999 end-page: 511 article-title: Corticomuscular coherence: a review publication-title: J Clin Neurophysiol – volume: 121 start-page: 1633 year: 2010 end-page: 1642 article-title: The α‐motoneuron pool as transmitter of rhythmicities in cortical motor drive publication-title: Clin Neurophysiol – volume: 89 start-page: 1941 year: 2003 end-page: 1953 article-title: Synchronization in monkey motor cortex during a precision grip task. II. Effect of oscillatory activity on corticospinal output publication-title: J Neurophysiol – ident: e_1_2_6_16_1 doi: 10.1109/TBME.2003.820998 – ident: e_1_2_6_30_1 doi: 10.1113/jphysiol.2010.202473 – volume: 21 start-page: 3215 year: 2001 ident: e_1_2_6_25_1 article-title: Representation of acoustic communication signals by insect auditory receptor neurons publication-title: J Neurosci doi: 10.1523/JNEUROSCI.21-09-03215.2001 – ident: e_1_2_6_24_1 doi: 10.1016/j.jneumeth.2011.11.001 – ident: e_1_2_6_3_1 doi: 10.1152/jn.00832.2002 – ident: e_1_2_6_2_1 doi: 10.1111/j.1469-7793.1997.225bo.x – ident: e_1_2_6_31_1 doi: 10.1152/jn.00336.2011 – ident: e_1_2_6_11_1 doi: 10.1046/j.1460-9568.2003.02751.x – ident: e_1_2_6_28_1 doi: 10.1016/S0165-0270(03)00004-9 – ident: e_1_2_6_18_1 doi: 10.1152/jn.00844.2002 – ident: e_1_2_6_29_1 doi: 10.1109/10.568918 – ident: e_1_2_6_9_1 doi: 10.1152/jn.00583.2010 – ident: e_1_2_6_6_1 doi: 10.1007/s00221-006-0713-2 – volume-title: Computer Solution of Ordinary Differential Equations: The Initial Value Problem year: 1975 ident: e_1_2_6_38_1 – ident: e_1_2_6_40_1 doi: 10.1152/jn.1991.66.2.635 – ident: e_1_2_6_35_1 doi: 10.1097/00001756-200303030-00005 – ident: e_1_2_6_42_1 doi: 10.1016/j.jneumeth.2006.07.008 – ident: e_1_2_6_26_1 doi: 10.1152/jn.1998.80.1.309 – ident: e_1_2_6_7_1 doi: 10.1007/s10827-008-0092-8 – ident: e_1_2_6_33_1 doi: 10.1152/jn.00792.2009 – ident: e_1_2_6_34_1 doi: 10.1016/S1388-2457(99)00141-8 – ident: e_1_2_6_23_1 doi: 10.1152/jn.01011.2011 – ident: e_1_2_6_17_1 doi: 10.1152/jn.1993.70.6.2470 – ident: e_1_2_6_37_1 doi: 10.1113/jphysiol.2005.089607 – ident: e_1_2_6_20_1 doi: 10.1152/japplphysiol.00894.2004 – ident: e_1_2_6_22_1 doi: 10.1152/japplphysiol.00491.2006 – ident: e_1_2_6_32_1 doi: 10.1371/journal.pone.0044894 – ident: e_1_2_6_36_1 doi: 10.1152/jn.00185.2010 – ident: e_1_2_6_27_1 doi: 10.1097/00004691-199911000-00002 – ident: e_1_2_6_5_1 doi: 10.1152/jn.00066.2011 – ident: e_1_2_6_13_1 doi: 10.1016/j.clinph.2009.10.040 – ident: e_1_2_6_8_1 doi: 10.1113/jphysiol.1995.sp021104 – ident: e_1_2_6_15_1 doi: 10.1055/s-0038-1633419 – ident: e_1_2_6_41_1 doi: 10.1152/jn.1997.78.5.2336 – ident: e_1_2_6_39_1 doi: 10.1016/j.clinph.2010.03.052 – ident: e_1_2_6_19_1 doi: 10.1152/jn.00222.2010 – ident: e_1_2_6_12_1 doi: 10.1152/jn.90365.2008 – ident: e_1_2_6_21_1 doi: 10.1152/japplphysiol.01282.2005 – ident: e_1_2_6_14_1 doi: 10.1152/japplphysiol.01070.2003 – ident: e_1_2_6_10_1 doi: 10.1152/jn.2001.86.5.2144 – ident: e_1_2_6_4_1 doi: 10.1109/TBME.1968.4502576 – reference: 12574472 - J Neurophysiol. 2003 Feb;89(2):960-8 – reference: 23049762 - PLoS One. 2012;7(9):e44894 – reference: 20505123 - J Neurophysiol. 2010 Aug;104(2):1141-54 – reference: 9125827 - IEEE Trans Biomed Eng. 1997 May;44(5):419-26 – reference: 10600018 - J Clin Neurophysiol. 1999 Nov;16(6):501-11 – reference: 10576479 - Clin Neurophysiol. 1999 Nov;110(11):1842-57 – reference: 12706845 - J Neurosci Methods. 2003 Apr 15;124(2):157-65 – reference: 18463179 - J Neurophysiol. 2008 Jul;100(1):431-40 – reference: 15000373 - IEEE Trans Biomed Eng. 2004 Mar;51(3):415-26 – reference: 9356386 - J Neurophysiol. 1997 Nov;78(5):2336-50 – reference: 15919711 - J Physiol. 2005 Jul 15;566(Pt 2):625-39 – reference: 11698507 - J Neurophysiol. 2001 Nov;86(5):2144-58 – reference: 22378168 - J Neurophysiol. 2012 May;107(10):2866-75 – reference: 21795617 - J Neurophysiol. 2011 Nov;106(5):2688-97 – reference: 12887428 - Eur J Neurosci. 2003 Jul;18(2):453-6 – reference: 9175005 - J Physiol. 1997 May 15;501 ( Pt 1):225-41 – reference: 16397060 - J Appl Physiol (1985). 2006 Jun;100(6):1928-37 – reference: 9658052 - J Neurophysiol. 1998 Jul;80(1):309-23 – reference: 17068220 - J Appl Physiol (1985). 2007 Mar;102(3):1193-201 – reference: 5699902 - IEEE Trans Biomed Eng. 1968 Oct;15(4):257-65 – reference: 11312306 - J Neurosci. 2001 May 1;21(9):3215-27 – reference: 12634476 - Neuroreport. 2003 Mar 3;14(3):321-4 – reference: 15377649 - J Appl Physiol (1985). 2005 Jan;98(1):120-31 – reference: 24382921 - J Physiol. 2014 Jan 1;592(1):249-50 – reference: 20444646 - Clin Neurophysiol. 2010 Oct;121(10):1616-23 – reference: 15016793 - J Appl Physiol (1985). 2004 Apr;96(4):1486-95 – reference: 15026832 - Methods Inf Med. 2004;43(1):30-5 – reference: 20530508 - J Neurophysiol. 2010 Jun;103(6):3547; author reply 3548-9 – reference: 8788955 - J Physiol. 1995 Dec 15;489 ( Pt 3):917-24 – reference: 22120690 - J Neurosci Methods. 2012 Mar 30;205(1):190-201 – reference: 24382922 - J Physiol. 2014 Jan 1;592(1):251-2 – reference: 20032241 - J Neurophysiol. 2010 Feb;103(2):1093-103 – reference: 17109111 - Exp Brain Res. 2007 Mar;178(1):79-88 – reference: 20926609 - J Neurophysiol. 2010 Dec;104(6):3576-87 – reference: 12686573 - J Neurophysiol. 2003 Apr;89(4):1941-53 – reference: 20434397 - Clin Neurophysiol. 2010 Oct;121(10):1633-42 – reference: 16949676 - J Neurosci Methods. 2007 Jan 30;159(2):215-23 – reference: 22072508 - J Neurophysiol. 2012 Feb;107(3):796-807 – reference: 1663538 - J Neurophysiol. 1991 Aug;66(2):635-50 – reference: 18506610 - J Comput Neurosci. 2008 Dec;25(3):520-42 – reference: 8120594 - J Neurophysiol. 1993 Dec;70(6):2470-88 – reference: 21135042 - J Physiol. 2011 Feb 1;589(Pt 3):629-37 |
SSID | ssj0013099 |
Score | 2.4236224 |
Snippet | Key points
•
Oscillatory drives at the input of a pool of motor neurons are transmitted to the motor neuron output (neural drive to the muscle) in an... Oscillatory drives at the input of a pool of motor neurons are transmitted to the motor neuron output (neural drive to the muscle) in an approximately linear... Oscillatory common inputs of cortical or peripheral origin can be identified from the motor neuron output with coherence analysis. Linear transmission is... Key points * Oscillatory drives at the input of a pool of motor neurons are transmitted to the motor neuron output (neural drive to the muscle) in an... times Oscillatory drives at the input of a pool of motor neurons are transmitted to the motor neuron output (neural drive to the muscle) in an approximately... |
SourceID | pubmedcentral proquest pubmed crossref wiley |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 2403 |
SubjectTerms | Action Potentials Adult Amyotrophic lateral sclerosis Computational Neuroscience and Modelling Electromyography Female Fourier Analysis Humans Male Models, Biological Motor Neurons - physiology Muscle, Skeletal - physiology Neurons Synaptic Transmission Young Adult |
Title | Identification of common synaptic inputs to motor neurons from the rectified electromyogram |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1113%2Fjphysiol.2012.246082 https://www.ncbi.nlm.nih.gov/pubmed/23507877 https://www.proquest.com/docview/1545344598 https://www.proquest.com/docview/1353039512 https://www.proquest.com/docview/1419359631 https://pubmed.ncbi.nlm.nih.gov/PMC3678033 |
Volume | 591 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5VPXEBSnmElspIiFuW9SvZHCvUVVUJVKFWqsQhih27FKhTdbOH7a_vjPMoSxEgOGecXTsz42_smW8A3tRE-6SINnRmbaqs8akxZpoaX7lciyrLLZ13fPiYHZ6qozN9tgHzoRam44cYD9zIMqK_JgOvTN-FhBPZwNcY-jd0fcDFRKgMNzN0xZS2Rdjok7i7TJgWxUganmveV9Dha9796iXrO9Q92Hk_e_JHVBu3pfkjOB8m1GWjfJssWzOxNz9xPf7_jB_Dwx65sv1O1bZgw4UnsL0fMGq_XLG37Lgb1pyvtuFzV__r-wNB1niGP4YazxarUKGXsuwiXC3bBWsbhsrSXLNIrBkWjOpdGKJSFl2xR4TM-lY9l6uYSvYUTucHJ-8P076NQ2oxFpGp9w5hAzeuqmYFOoy6wMhVySqzqpaIVozIMEjTtS6sz2vLleGeOyEMZehwnstnsBma4F4AU7gS2ljPEXaoCiVzREe4BVMdlFNTn4AcPl1pe45zarXxvexiHVkOa1jSGpbdGiaQjqOuOo6PP8jvDlpR9ha_KAmKSqV0MUvg9fgYbZUuYKrgmiXKSI2IATGt-I2M4lQsnUmewPNO0cY_JSSi91meJ5CvqeAoQFzh60_CxZfIGS4RlEylTEBEDfureZYnR8caEevLfxm0Aw9E7BxCuaG7sNleL90rxG-t2YvWuRcP1m4B6aJC5A |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB6VcoALr0IJFDAS4pZl_UiyOVZAWUpbVWgrVeIQxU5MC9SputnD8uuZsZPAUgQIcc7YiZ0Z-xt75huAZxXRPimiDZ0YEyujbay1HsfalnWWiDLNDJ137B-k0yO1e5wcr8GbPhcm8EMMB25kGX69JgOnA-nOyolt4JP3_Ru6P-BiJFSKu9kVuErFvYlE_9V78f06YZznA214lvAuhw77efGrXlb3qEvA83L85I-41m9MOzfhpB9SiEf5PFq0emS-_sT2-B_GfAtudOCVbQdtuw1rtbsDG9sOHfezJXvODkOz5uNyAz6EFGDbnQmyxjJ8Gyo9my9diQuVYafufNHOWdsw1JfmgnluTTdnlPLCEJgyvxpbBMmsq9ZztvTRZHfhaOf17OU07io5xAbdERlbWyNy4Louy0mOa0aVo_OqZJkaVUkELFqk6KclVZIbm1WGK80tr4XQFKTDeSbvwbprXH0fmMKZSLSxHJGHKlEyQ4CEuzClQtVqbCOQ_b8rTEdzTtU2vhTB3ZFFP4cFzWER5jCCeGh1Hmg-_iC_1atF0Rn9vCA0KpVK8kkET4fHaK50B1O6ulmgjEwQNCCsFb-RUZzypVPJI9gMmjZ8lJAI4CdZFkG2ooODANGFrz5xpyeeNlwiLhlLGYHwKvZX4yxmu4cJgtYH_9LoCVybzvb3ir23B-8ewnXhC4lQqOgWrLcXi_oRwrlWP_am-g1OwkXw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6VIiEuvAolUMBIiFuW9SPJ5lhRVqVAtUKtVIlDFDtxKVBn1c0ell_PjJ0EliJAcMoh4yR2Zuxv7JlvAJ5VRPukiDZ0YkysjLax1noca1vWWSLKNDO03_HuMN0_VgcnyckGTPtcmMAPMWy4kWX4-ZoMfF7ZzsiJbOCTd_0bOj7gYiRUiovZFbiK15xKOOy9F99PE8Z5PrCGZwnvUujwOS9-9ZT1JeoS7rwcPvkjrPXr0vQmnPY9CuEon0fLVo_M15_IHv-_y7fgRgdd2W7QtduwUbs7sLXr0G0_X7HnbBaaNaerLfgQEoBttyPIGsvwZajybLFyJU5Thp25-bJdsLZhqC3NBfPMmm7BKOGFISxlfi62CJFZV6vnfOVjye7C8fTV0cv9uKvjEBt0RmRsbY24geu6LCc5zhhVjq6rkmVqVCURrmiRopeWVElubFYZrjS3vBZCU4gO55m8B5uucfV9YApHItHGcsQdqkTJDOERrsGUCFWrsY1A9r-uMB3JOdXa-FIEZ0cW_RgWNIZFGMMI4qHVPJB8_EF-p9eKojP5RUFYVCqV5JMIng630VjpBKZ0dbNEGZkgZEBQK34jozhlS6eSR7AdFG34KCERvk-yLIJsTQUHASILX7_jzj560nCJqGQsZQTCa9hf9bM4OpglCFkf_EujJ3Bttjct3r4-fPMQrgtfRYTiRHdgs71Y1o8Qy7X6sTfUb01YRJ8 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Identification+of+common+synaptic+inputs+to+motor+neurons+from+the+rectified+electromyogram&rft.jtitle=The+Journal+of+physiology&rft.au=Farina%2C+Dario&rft.au=Negro%2C+Francesco&rft.au=Jiang%2C+Ning&rft.date=2013-05-01&rft.issn=1469-7793&rft.eissn=1469-7793&rft.volume=591&rft.issue=10&rft.spage=2403&rft_id=info:doi/10.1113%2Fjphysiol.2012.246082&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-3751&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-3751&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-3751&client=summon |