Identification of common synaptic inputs to motor neurons from the rectified electromyogram

Key points •  Oscillatory drives at the input of a pool of motor neurons are transmitted to the motor neuron output (neural drive to the muscle) in an approximately linear way if these inputs are common to all motor neurons. •  The neural drive to the muscle is transformed in the EMG signal that can...

Full description

Saved in:
Bibliographic Details
Published inThe Journal of physiology Vol. 591; no. 10; pp. 2403 - 2418
Main Authors Farina, Dario, Negro, Francesco, Jiang, Ning
Format Journal Article
LanguageEnglish
Published Oxford, UK Blackwell Publishing Ltd 01.05.2013
Wiley Subscription Services, Inc
Blackwell Science Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Key points •  Oscillatory drives at the input of a pool of motor neurons are transmitted to the motor neuron output (neural drive to the muscle) in an approximately linear way if these inputs are common to all motor neurons. •  The neural drive to the muscle is transformed in the EMG signal that can be thus used to extract information on the oscillatory inputs to motor neurons. •  The transmission of oscillatory inputs is closer to a linear transmission for the raw or for the rectified EMG depending on the energy of the raw and rectified motor unit action potentials at the input frequency and on the degree of amplitude cancellation. •  Amplitude cancellation negatively influences the effectiveness of EMG rectification in identifying with linear methods oscillatory inputs to motor neurons, so that rectification is preferable over the raw EMG only when the degree of cancellation is low.   Oscillatory common inputs of cortical or peripheral origin can be identified from the motor neuron output with coherence analysis. Linear transmission is possible despite the motor neuron non‐linearity because the same input is sent commonly to several neurons. Because of the linear transmission, common input components to motor neurons can be investigated from the surface EMG, for example by EEG–EMG or EMG–EMG coherence. In these studies, there is an open debate on the utility and appropriateness of EMG rectification. The present study addresses this issue using an analytical, simulation and experimental approach. The main novel theoretical contribution that we report is that the spectra of both the rectified and the raw EMG contain input spectral components to motor neurons. However, they differ by the contribution of amplitude cancellation which influences the rectified EMG spectrum when extracting common oscillatory inputs. Therefore, the degree of amplitude cancellation has an impact on the effectiveness of EMG rectification in extracting input spectral peaks. The theoretical predictions were exactly confirmed by realistic simulations of a pool of motor neurons innervating a muscle in a cylindrical volume conductor of EMG generation and by experiments conducted on the first dorsal interosseous and the abductor pollicis brevis muscles of seven healthy subjects during pinching. It was concluded that when the contraction level is relatively low, EMG rectification may be preferable for identifying common inputs to motor neurons, especially when the energy of the action potentials in the low frequency range is low. Nonetheless, different levels of cancellation across conditions influence the relative estimates of the degree of linear transmission of oscillatory inputs to motor neurons when using the rectified EMG.
AbstractList Key points * Oscillatory drives at the input of a pool of motor neurons are transmitted to the motor neuron output (neural drive to the muscle) in an approximately linear way if these inputs are common to all motor neurons. * The neural drive to the muscle is transformed in the EMG signal that can be thus used to extract information on the oscillatory inputs to motor neurons. * The transmission of oscillatory inputs is closer to a linear transmission for the raw or for the rectified EMG depending on the energy of the raw and rectified motor unit action potentials at the input frequency and on the degree of amplitude cancellation. * Amplitude cancellation negatively influences the effectiveness of EMG rectification in identifying with linear methods oscillatory inputs to motor neurons, so that rectification is preferable over the raw EMG only when the degree of cancellation is low. Abstract Oscillatory common inputs of cortical or peripheral origin can be identified from the motor neuron output with coherence analysis. Linear transmission is possible despite the motor neuron non-linearity because the same input is sent commonly to several neurons. Because of the linear transmission, common input components to motor neurons can be investigated from the surface EMG, for example by EEG-EMG or EMG-EMG coherence. In these studies, there is an open debate on the utility and appropriateness of EMG rectification. The present study addresses this issue using an analytical, simulation and experimental approach. The main novel theoretical contribution that we report is that the spectra of both the rectified and the raw EMG contain input spectral components to motor neurons. However, they differ by the contribution of amplitude cancellation which influences the rectified EMG spectrum when extracting common oscillatory inputs. Therefore, the degree of amplitude cancellation has an impact on the effectiveness of EMG rectification in extracting input spectral peaks. The theoretical predictions were exactly confirmed by realistic simulations of a pool of motor neurons innervating a muscle in a cylindrical volume conductor of EMG generation and by experiments conducted on the first dorsal interosseous and the abductor pollicis brevis muscles of seven healthy subjects during pinching. It was concluded that when the contraction level is relatively low, EMG rectification may be preferable for identifying common inputs to motor neurons, especially when the energy of the action potentials in the low frequency range is low. Nonetheless, different levels of cancellation across conditions influence the relative estimates of the degree of linear transmission of oscillatory inputs to motor neurons when using the rectified EMG.
Oscillatory common inputs of cortical or peripheral origin can be identified from the motor neuron output with coherence analysis. Linear transmission is possible despite the motor neuron non-linearity because the same input is sent commonly to several neurons. Because of the linear transmission, common input components to motor neurons can be investigated from the surface EMG, for example by EEG–EMG or EMG–EMG coherence. In these studies, there is an open debate on the utility and appropriateness of EMG rectification. The present study addresses this issue using an analytical, simulation and experimental approach. The main novel theoretical contribution that we report is that the spectra of both the rectified and the raw EMG contain input spectral components to motor neurons. However, they differ by the contribution of amplitude cancellation which influences the rectified EMG spectrum when extracting common oscillatory inputs. Therefore, the degree of amplitude cancellation has an impact on the effectiveness of EMG rectification in extracting input spectral peaks. The theoretical predictions were exactly confirmed by realistic simulations of a pool of motor neurons innervating a muscle in a cylindrical volume conductor of EMG generation and by experiments conducted on the first dorsal interosseous and the abductor pollicis brevis muscles of seven healthy subjects during pinching. It was concluded that when the contraction level is relatively low, EMG rectification may be preferable for identifying common inputs to motor neurons, especially when the energy of the action potentials in the low frequency range is low. Nonetheless, different levels of cancellation across conditions influence the relative estimates of the degree of linear transmission of oscillatory inputs to motor neurons when using the rectified EMG.
Oscillatory common inputs of cortical or peripheral origin can be identified from the motor neuron output with coherence analysis. Linear transmission is possible despite the motor neuron non-linearity because the same input is sent commonly to several neurons. Because of the linear transmission, common input components to motor neurons can be investigated from the surface EMG, for example by EEG-EMG or EMG-EMG coherence. In these studies, there is an open debate on the utility and appropriateness of EMG rectification. The present study addresses this issue using an analytical, simulation and experimental approach. The main novel theoretical contribution that we report is that the spectra of both the rectified and the raw EMG contain input spectral components to motor neurons. However, they differ by the contribution of amplitude cancellation which influences the rectified EMG spectrum when extracting common oscillatory inputs. Therefore, the degree of amplitude cancellation has an impact on the effectiveness of EMG rectification in extracting input spectral peaks. The theoretical predictions were exactly confirmed by realistic simulations of a pool of motor neurons innervating a muscle in a cylindrical volume conductor of EMG generation and by experiments conducted on the first dorsal interosseous and the abductor pollicis brevis muscles of seven healthy subjects during pinching. It was concluded that when the contraction level is relatively low, EMG rectification may be preferable for identifying common inputs to motor neurons, especially when the energy of the action potentials in the low frequency range is low. Nonetheless, different levels of cancellation across conditions influence the relative estimates of the degree of linear transmission of oscillatory inputs to motor neurons when using the rectified EMG.Oscillatory common inputs of cortical or peripheral origin can be identified from the motor neuron output with coherence analysis. Linear transmission is possible despite the motor neuron non-linearity because the same input is sent commonly to several neurons. Because of the linear transmission, common input components to motor neurons can be investigated from the surface EMG, for example by EEG-EMG or EMG-EMG coherence. In these studies, there is an open debate on the utility and appropriateness of EMG rectification. The present study addresses this issue using an analytical, simulation and experimental approach. The main novel theoretical contribution that we report is that the spectra of both the rectified and the raw EMG contain input spectral components to motor neurons. However, they differ by the contribution of amplitude cancellation which influences the rectified EMG spectrum when extracting common oscillatory inputs. Therefore, the degree of amplitude cancellation has an impact on the effectiveness of EMG rectification in extracting input spectral peaks. The theoretical predictions were exactly confirmed by realistic simulations of a pool of motor neurons innervating a muscle in a cylindrical volume conductor of EMG generation and by experiments conducted on the first dorsal interosseous and the abductor pollicis brevis muscles of seven healthy subjects during pinching. It was concluded that when the contraction level is relatively low, EMG rectification may be preferable for identifying common inputs to motor neurons, especially when the energy of the action potentials in the low frequency range is low. Nonetheless, different levels of cancellation across conditions influence the relative estimates of the degree of linear transmission of oscillatory inputs to motor neurons when using the rectified EMG.
Oscillatory drives at the input of a pool of motor neurons are transmitted to the motor neuron output (neural drive to the muscle) in an approximately linear way if these inputs are common to all motor neurons. The neural drive to the muscle is transformed in the EMG signal that can be thus used to extract information on the oscillatory inputs to motor neurons. The transmission of oscillatory inputs is closer to a linear transmission for the raw or for the rectified EMG depending on the energy of the raw and rectified motor unit action potentials at the input frequency and on the degree of amplitude cancellation. Amplitude cancellation negatively influences the effectiveness of EMG rectification in identifying with linear methods oscillatory inputs to motor neurons, so that rectification is preferable over the raw EMG only when the degree of cancellation is low. Abstract  Oscillatory common inputs of cortical or peripheral origin can be identified from the motor neuron output with coherence analysis. Linear transmission is possible despite the motor neuron non‐linearity because the same input is sent commonly to several neurons. Because of the linear transmission, common input components to motor neurons can be investigated from the surface EMG, for example by EEG–EMG or EMG–EMG coherence. In these studies, there is an open debate on the utility and appropriateness of EMG rectification. The present study addresses this issue using an analytical, simulation and experimental approach. The main novel theoretical contribution that we report is that the spectra of both the rectified and the raw EMG contain input spectral components to motor neurons. However, they differ by the contribution of amplitude cancellation which influences the rectified EMG spectrum when extracting common oscillatory inputs. Therefore, the degree of amplitude cancellation has an impact on the effectiveness of EMG rectification in extracting input spectral peaks. The theoretical predictions were exactly confirmed by realistic simulations of a pool of motor neurons innervating a muscle in a cylindrical volume conductor of EMG generation and by experiments conducted on the first dorsal interosseous and the abductor pollicis brevis muscles of seven healthy subjects during pinching. It was concluded that when the contraction level is relatively low, EMG rectification may be preferable for identifying common inputs to motor neurons, especially when the energy of the action potentials in the low frequency range is low. Nonetheless, different levels of cancellation across conditions influence the relative estimates of the degree of linear transmission of oscillatory inputs to motor neurons when using the rectified EMG.
Key points •  Oscillatory drives at the input of a pool of motor neurons are transmitted to the motor neuron output (neural drive to the muscle) in an approximately linear way if these inputs are common to all motor neurons. •  The neural drive to the muscle is transformed in the EMG signal that can be thus used to extract information on the oscillatory inputs to motor neurons. •  The transmission of oscillatory inputs is closer to a linear transmission for the raw or for the rectified EMG depending on the energy of the raw and rectified motor unit action potentials at the input frequency and on the degree of amplitude cancellation. •  Amplitude cancellation negatively influences the effectiveness of EMG rectification in identifying with linear methods oscillatory inputs to motor neurons, so that rectification is preferable over the raw EMG only when the degree of cancellation is low.   Oscillatory common inputs of cortical or peripheral origin can be identified from the motor neuron output with coherence analysis. Linear transmission is possible despite the motor neuron non‐linearity because the same input is sent commonly to several neurons. Because of the linear transmission, common input components to motor neurons can be investigated from the surface EMG, for example by EEG–EMG or EMG–EMG coherence. In these studies, there is an open debate on the utility and appropriateness of EMG rectification. The present study addresses this issue using an analytical, simulation and experimental approach. The main novel theoretical contribution that we report is that the spectra of both the rectified and the raw EMG contain input spectral components to motor neurons. However, they differ by the contribution of amplitude cancellation which influences the rectified EMG spectrum when extracting common oscillatory inputs. Therefore, the degree of amplitude cancellation has an impact on the effectiveness of EMG rectification in extracting input spectral peaks. The theoretical predictions were exactly confirmed by realistic simulations of a pool of motor neurons innervating a muscle in a cylindrical volume conductor of EMG generation and by experiments conducted on the first dorsal interosseous and the abductor pollicis brevis muscles of seven healthy subjects during pinching. It was concluded that when the contraction level is relatively low, EMG rectification may be preferable for identifying common inputs to motor neurons, especially when the energy of the action potentials in the low frequency range is low. Nonetheless, different levels of cancellation across conditions influence the relative estimates of the degree of linear transmission of oscillatory inputs to motor neurons when using the rectified EMG.
times Oscillatory drives at the input of a pool of motor neurons are transmitted to the motor neuron output (neural drive to the muscle) in an approximately linear way if these inputs are common to all motor neurons. Abstract Oscillatory common inputs of cortical or peripheral origin can be identified from the motor neuron output with coherence analysis. Linear transmission is possible despite the motor neuron non-linearity because the same input is sent commonly to several neurons. Because of the linear transmission, common input components to motor neurons can be investigated from the surface EMG, for example by EEG-EMG or EMG-EMG coherence. In these studies, there is an open debate on the utility and appropriateness of EMG rectification. The present study addresses this issue using an analytical, simulation and experimental approach. The main novel theoretical contribution that we report is that the spectra of both the rectified and the raw EMG contain input spectral components to motor neurons. However, they differ by the contribution of amplitude cancellation which influences the rectified EMG spectrum when extracting common oscillatory inputs. Therefore, the degree of amplitude cancellation has an impact on the effectiveness of EMG rectification in extracting input spectral peaks. The theoretical predictions were exactly confirmed by realistic simulations of a pool of motor neurons innervating a muscle in a cylindrical volume conductor of EMG generation and by experiments conducted on the first dorsal interosseous and the abductor pollicis brevis muscles of seven healthy subjects during pinching. It was concluded that when the contraction level is relatively low, EMG rectification may be preferable for identifying common inputs to motor neurons, especially when the energy of the action potentials in the low frequency range is low. Nonetheless, different levels of cancellation across conditions influence the relative estimates of the degree of linear transmission of oscillatory inputs to motor neurons when using the rectified EMG.
Author Negro, Francesco
Jiang, Ning
Farina, Dario
Author_xml – sequence: 1
  givenname: Dario
  surname: Farina
  fullname: Farina, Dario
– sequence: 2
  givenname: Francesco
  surname: Negro
  fullname: Negro, Francesco
– sequence: 3
  givenname: Ning
  surname: Jiang
  fullname: Jiang, Ning
BackLink https://www.ncbi.nlm.nih.gov/pubmed/23507877$$D View this record in MEDLINE/PubMed
BookMark eNqNkktv1DAUhS1URKeFf4CQJTZsZvD1I45ZIFUVj6JKsCgrFpbjOB2PEjvYCSj_Hg_TQdBNWfnK_s7Rvb7nDJ2EGBxCz4FsAIC93o3bJfvYbygBuqG8IjV9hFbAK7WWUrETtCKE0jWTAk7RWc47QoARpZ6gU8oEkbWUK_TtqnVh8p23ZvIx4NhhG4ehVHkJZpy8xT6M85TxFPEQp5hwcHOKIeMuxQFPW4eTs3sH12LXl7JcL_E2meEpetyZPrtnd-c5-vr-3c3lx_X15w9XlxfXaytqwdZd5ygn0DhjakV43Sola85MZXnLFJCGVkpUohXKdrK1wBvowFHaCEoUgGTn6O3Bd5ybwbW2DJRMr8fkB5MWHY3X_74Ev9W38YdmlawJY8Xg1Z1Bit9nlyc9-Gxd35vg4pw1cFBMqIrBwygTjDAlgBb05T10F-cUyk9oEFwwzoWqC_Xi7-b_dH1cUQHeHACbYs7Jddr66feyyiy-10D0Pg_6mAe9z4M-5KGI-T3x0f8BmTrIfvreLf-l0TefvoiKM_YL3A3POw
CODEN JPHYA7
CitedBy_id crossref_primary_10_1007_s00221_024_06953_1
crossref_primary_10_1088_1741_2560_12_3_036008
crossref_primary_10_1113_JP273090
crossref_primary_10_3389_fspor_2023_1251089
crossref_primary_10_1016_j_neulet_2023_137132
crossref_primary_10_1007_s00221_014_4145_0
crossref_primary_10_1016_j_humov_2020_102614
crossref_primary_10_1038_s41598_017_14555_x
crossref_primary_10_1111_apha_12133
crossref_primary_10_1152_japplphysiol_00453_2024
crossref_primary_10_1007_s12311_020_01149_z
crossref_primary_10_1152_jn_00296_2013
crossref_primary_10_1109_TNSRE_2021_3101615
crossref_primary_10_1152_jn_00296_2014
crossref_primary_10_3389_fphys_2023_1266085
crossref_primary_10_3389_fnrgo_2022_1046695
crossref_primary_10_1016_j_neures_2017_09_004
crossref_primary_10_3390_s20133754
crossref_primary_10_1371_journal_pone_0093159
crossref_primary_10_1016_j_jelekin_2024_102971
crossref_primary_10_3233_JPD_191715
crossref_primary_10_3389_fncom_2016_00126
crossref_primary_10_1002_acn3_681
crossref_primary_10_1152_jn_00398_2022
crossref_primary_10_1016_j_clinph_2013_11_006
crossref_primary_10_1371_journal_pone_0303053
crossref_primary_10_1371_journal_pcbi_1006985
crossref_primary_10_1152_jn_00801_2013
crossref_primary_10_1007_s00221_013_3689_8
crossref_primary_10_1152_jn_00204_2017
crossref_primary_10_1152_jn_00309_2024
crossref_primary_10_1016_j_neuroimage_2021_118209
crossref_primary_10_1016_j_bbr_2021_113563
crossref_primary_10_2139_ssrn_4160694
crossref_primary_10_7600_jpfsm_10_171
crossref_primary_10_1007_s00221_016_4602_z
crossref_primary_10_1109_TBME_2020_2989311
crossref_primary_10_3389_fneur_2018_00879
crossref_primary_10_1016_j_marpolbul_2016_06_029
crossref_primary_10_1016_j_ynirp_2021_100075
crossref_primary_10_1152_jn_00018_2017
crossref_primary_10_3389_fneur_2017_00202
crossref_primary_10_1371_journal_pone_0157239
crossref_primary_10_3389_fphys_2022_994857
crossref_primary_10_1007_s00221_015_4262_4
crossref_primary_10_1007_s00221_023_06635_4
crossref_primary_10_1016_j_jelekin_2024_102881
crossref_primary_10_1109_TNSRE_2017_2701149
crossref_primary_10_1186_s13102_021_00369_y
crossref_primary_10_1109_JBHI_2021_3135575
crossref_primary_10_1113_jphysiol_2013_265181
crossref_primary_10_1038_s41598_020_72839_1
crossref_primary_10_1007_s00421_022_05087_y
crossref_primary_10_1186_s12984_019_0590_0
crossref_primary_10_3389_fbioe_2020_01007
crossref_primary_10_1152_japplphysiol_00162_2014
crossref_primary_10_1088_1741_2552_abf186
crossref_primary_10_1371_journal_pone_0088428
crossref_primary_10_1016_j_bspc_2023_104897
crossref_primary_10_1038_srep17830
crossref_primary_10_1088_0967_3334_35_7_R143
crossref_primary_10_1152_jn_00613_2017
crossref_primary_10_1152_jn_00431_2023
crossref_primary_10_1152_jn_00835_2012
crossref_primary_10_1007_s00221_020_05987_5
crossref_primary_10_3389_fnhum_2019_00223
crossref_primary_10_1080_00222895_2024_2332767
crossref_primary_10_1016_j_humov_2022_102952
crossref_primary_10_1016_j_neuroimage_2020_117089
crossref_primary_10_1016_j_neuroimage_2014_06_050
crossref_primary_10_1016_j_neuroimage_2019_116177
crossref_primary_10_1152_jn_00574_2015
crossref_primary_10_1155_2018_4759232
crossref_primary_10_1249_MSS_0000000000001117
crossref_primary_10_1007_s12311_023_01585_7
crossref_primary_10_3389_fnhum_2024_1354332
crossref_primary_10_1152_japplphysiol_00139_2019
crossref_primary_10_1186_1743_0003_11_23
crossref_primary_10_3389_fncom_2017_00017
crossref_primary_10_1007_s00221_014_4172_x
crossref_primary_10_1016_j_clinph_2020_01_012
crossref_primary_10_1113_jphysiol_2013_267070
crossref_primary_10_1152_jn_00873_2013
crossref_primary_10_14814_phy2_70237
crossref_primary_10_1016_j_aquatox_2017_07_006
crossref_primary_10_1016_j_bspc_2024_106719
crossref_primary_10_3389_fnhum_2025_1556325
crossref_primary_10_1113_JP271748
crossref_primary_10_1007_s00221_023_06706_6
crossref_primary_10_3389_fnhum_2018_00207
crossref_primary_10_1152_jn_00531_2014
crossref_primary_10_3389_fnins_2022_896933
crossref_primary_10_1523_JNEUROSCI_1463_19_2020
crossref_primary_10_1152_japplphysiol_01092_2013
crossref_primary_10_1038_s41598_021_85851_w
Cites_doi 10.1109/TBME.2003.820998
10.1113/jphysiol.2010.202473
10.1523/JNEUROSCI.21-09-03215.2001
10.1016/j.jneumeth.2011.11.001
10.1152/jn.00832.2002
10.1111/j.1469-7793.1997.225bo.x
10.1152/jn.00336.2011
10.1046/j.1460-9568.2003.02751.x
10.1016/S0165-0270(03)00004-9
10.1152/jn.00844.2002
10.1109/10.568918
10.1152/jn.00583.2010
10.1007/s00221-006-0713-2
10.1152/jn.1991.66.2.635
10.1097/00001756-200303030-00005
10.1016/j.jneumeth.2006.07.008
10.1152/jn.1998.80.1.309
10.1007/s10827-008-0092-8
10.1152/jn.00792.2009
10.1016/S1388-2457(99)00141-8
10.1152/jn.01011.2011
10.1152/jn.1993.70.6.2470
10.1113/jphysiol.2005.089607
10.1152/japplphysiol.00894.2004
10.1152/japplphysiol.00491.2006
10.1371/journal.pone.0044894
10.1152/jn.00185.2010
10.1097/00004691-199911000-00002
10.1152/jn.00066.2011
10.1016/j.clinph.2009.10.040
10.1113/jphysiol.1995.sp021104
10.1055/s-0038-1633419
10.1152/jn.1997.78.5.2336
10.1016/j.clinph.2010.03.052
10.1152/jn.00222.2010
10.1152/jn.90365.2008
10.1152/japplphysiol.01282.2005
10.1152/japplphysiol.01070.2003
10.1152/jn.2001.86.5.2144
10.1109/TBME.1968.4502576
ContentType Journal Article
Copyright 2013 The Authors. The Journal of Physiology © 2013 The Physiological Society
2013 The Authors. The Journal of Physiology © 2013 The Physiological Society 2013
Copyright_xml – notice: 2013 The Authors. The Journal of Physiology © 2013 The Physiological Society
– notice: 2013 The Authors. The Journal of Physiology © 2013 The Physiological Society 2013
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QP
7QR
7TK
7TS
8FD
FR3
P64
7X8
5PM
DOI 10.1113/jphysiol.2012.246082
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Neurosciences Abstracts
Physical Education Index
Technology Research Database
Engineering Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Technology Research Database
Chemoreception Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
Neurosciences Abstracts
Physical Education Index
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList Technology Research Database

MEDLINE - Academic
CrossRef

Neurosciences Abstracts
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 1469-7793
EndPage 2418
ExternalDocumentID PMC3678033
3374429441
23507877
10_1113_jphysiol_2012_246082
TJP5643
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
-DZ
-~X
.3N
.55
.GA
.GJ
.Y3
05W
0R~
0YM
10A
123
18M
1OB
1OC
24P
29L
2WC
31~
33P
36B
3EH
3O-
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5GY
5HH
5LA
5RE
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAFWJ
AAHHS
AAHQN
AAIPD
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAYJJ
AAZKR
ABCQN
ABCUV
ABEML
ABITZ
ABIVO
ABJNI
ABOCM
ABPPZ
ABPVW
ABQWH
ABXGK
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFO
ACGFS
ACGOF
ACIWK
ACMXC
ACNCT
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AEIMD
AEQDE
AEUQT
AEUYR
AFBPY
AFEBI
AFFNX
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AI.
AIACR
AIAGR
AITYG
AIURR
AIWBW
AJBDE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
AOIJS
ATUGU
AZBYB
AZVAB
BAFTC
BAWUL
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BY8
C1A
C45
CAG
CHEAL
COF
CS3
D-6
D-7
D-E
D-F
DCZOG
DIK
DPXWK
DR2
DRFUL
DRMAN
DRSTM
E3Z
EBS
EJD
EMOBN
EX3
F00
F01
F04
F5P
FA8
FIJ
FUBAC
G-S
G.N
GODZA
GX1
H.X
H13
HF~
HGLYW
HZI
HZ~
H~9
IHE
IPNFZ
IX1
J0M
K48
KBYEO
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MVM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NEJ
NF~
O66
O9-
OHT
OIG
OK1
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
Q.N
Q11
QB0
R.K
RIG
ROL
RPM
RX1
SAMSI
SUPJJ
TEORI
TLM
TN5
TR2
UB1
UKR
UPT
V8K
VH1
W8F
W8V
W99
WBKPD
WH7
WHG
WIH
WIJ
WIK
WIN
WNSPC
WOHZO
WOQ
WOW
WQJ
WRC
WXI
WXSBR
WYISQ
X7M
XG1
XOL
YBU
YHG
YKV
YQT
YSK
YXB
YYP
YZZ
ZGI
ZXP
ZZTAW
~IA
~WT
AAYXX
ADXHL
AEYWJ
AGHNM
AGYGG
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QP
7QR
7TK
7TS
8FD
FR3
P64
7X8
5PM
ID FETCH-LOGICAL-c5853-ffe2401beaa89048d997843a6c4d3910b269565d59cf7dc14b1f1e22b52091173
IEDL.DBID DR2
ISSN 0022-3751
1469-7793
IngestDate Thu Aug 21 18:21:57 EDT 2025
Fri Jul 11 05:26:18 EDT 2025
Fri Jul 11 01:05:40 EDT 2025
Fri Jul 25 12:14:39 EDT 2025
Thu Apr 03 07:00:58 EDT 2025
Thu Apr 24 22:55:55 EDT 2025
Tue Jul 01 04:29:08 EDT 2025
Wed Jan 22 16:35:43 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 10
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5853-ffe2401beaa89048d997843a6c4d3910b269565d59cf7dc14b1f1e22b52091173
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
OpenAccessLink http://doi.org/10.1113/jphysiol.2012.246082
PMID 23507877
PQID 1545344598
PQPubID 1086388
PageCount 16
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_3678033
proquest_miscellaneous_1419359631
proquest_miscellaneous_1353039512
proquest_journals_1545344598
pubmed_primary_23507877
crossref_citationtrail_10_1113_jphysiol_2012_246082
crossref_primary_10_1113_jphysiol_2012_246082
wiley_primary_10_1113_jphysiol_2012_246082_TJP5643
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate May 2013
PublicationDateYYYYMMDD 2013-05-01
PublicationDate_xml – month: 05
  year: 2013
  text: May 2013
PublicationDecade 2010
PublicationPlace Oxford, UK
PublicationPlace_xml – name: Oxford, UK
– name: England
– name: London
PublicationTitle The Journal of physiology
PublicationTitleAlternate J Physiol
PublicationYear 2013
Publisher Blackwell Publishing Ltd
Wiley Subscription Services, Inc
Blackwell Science Inc
Publisher_xml – name: Blackwell Publishing Ltd
– name: Wiley Subscription Services, Inc
– name: Blackwell Science Inc
References 2011a; 589
2007; 102
1997; 44
2004c; 51
2010; 103
2010; 104
2010; 121
2003; 14
1975
2003; 18
1998; 80
2008; 100
2004b; 43
2012; 205
2012; 107
2001; 86
2001; 21
1968; 15
2007; 159
2007; 178
1997; 501
1993; 70
1991; 66
1999; 16
2005; 566
2004a; 96
2011b; 106
1997; 78
2008; 25
1999; 110
1995; 489
2005; 98
2012; 7
2003; 124
2006; 100
2003; 89
e_1_2_6_32_1
e_1_2_6_10_1
e_1_2_6_31_1
e_1_2_6_30_1
Machens CK (e_1_2_6_25_1) 2001; 21
e_1_2_6_19_1
e_1_2_6_13_1
e_1_2_6_36_1
e_1_2_6_14_1
e_1_2_6_35_1
e_1_2_6_11_1
e_1_2_6_34_1
e_1_2_6_12_1
e_1_2_6_33_1
e_1_2_6_17_1
e_1_2_6_18_1
e_1_2_6_39_1
e_1_2_6_15_1
e_1_2_6_16_1
e_1_2_6_37_1
e_1_2_6_42_1
e_1_2_6_21_1
e_1_2_6_20_1
e_1_2_6_41_1
e_1_2_6_40_1
e_1_2_6_9_1
e_1_2_6_8_1
Shampine L (e_1_2_6_38_1) 1975
e_1_2_6_5_1
e_1_2_6_4_1
e_1_2_6_7_1
e_1_2_6_6_1
e_1_2_6_24_1
e_1_2_6_3_1
e_1_2_6_23_1
e_1_2_6_2_1
e_1_2_6_22_1
e_1_2_6_29_1
e_1_2_6_28_1
e_1_2_6_27_1
e_1_2_6_26_1
21135042 - J Physiol. 2011 Feb 1;589(Pt 3):629-37
20434397 - Clin Neurophysiol. 2010 Oct;121(10):1633-42
16949676 - J Neurosci Methods. 2007 Jan 30;159(2):215-23
24382922 - J Physiol. 2014 Jan 1;592(1):251-2
15919711 - J Physiol. 2005 Jul 15;566(Pt 2):625-39
15026832 - Methods Inf Med. 2004;43(1):30-5
12686573 - J Neurophysiol. 2003 Apr;89(4):1941-53
15377649 - J Appl Physiol (1985). 2005 Jan;98(1):120-31
16397060 - J Appl Physiol (1985). 2006 Jun;100(6):1928-37
18506610 - J Comput Neurosci. 2008 Dec;25(3):520-42
17068220 - J Appl Physiol (1985). 2007 Mar;102(3):1193-201
12706845 - J Neurosci Methods. 2003 Apr 15;124(2):157-65
22072508 - J Neurophysiol. 2012 Feb;107(3):796-807
12574472 - J Neurophysiol. 2003 Feb;89(2):960-8
21795617 - J Neurophysiol. 2011 Nov;106(5):2688-97
18463179 - J Neurophysiol. 2008 Jul;100(1):431-40
20530508 - J Neurophysiol. 2010 Jun;103(6):3547; author reply 3548-9
22120690 - J Neurosci Methods. 2012 Mar 30;205(1):190-201
1663538 - J Neurophysiol. 1991 Aug;66(2):635-50
9125827 - IEEE Trans Biomed Eng. 1997 May;44(5):419-26
10600018 - J Clin Neurophysiol. 1999 Nov;16(6):501-11
11312306 - J Neurosci. 2001 May 1;21(9):3215-27
17109111 - Exp Brain Res. 2007 Mar;178(1):79-88
24382921 - J Physiol. 2014 Jan 1;592(1):249-50
9356386 - J Neurophysiol. 1997 Nov;78(5):2336-50
20444646 - Clin Neurophysiol. 2010 Oct;121(10):1616-23
20505123 - J Neurophysiol. 2010 Aug;104(2):1141-54
8788955 - J Physiol. 1995 Dec 15;489 ( Pt 3):917-24
20926609 - J Neurophysiol. 2010 Dec;104(6):3576-87
15000373 - IEEE Trans Biomed Eng. 2004 Mar;51(3):415-26
22378168 - J Neurophysiol. 2012 May;107(10):2866-75
5699902 - IEEE Trans Biomed Eng. 1968 Oct;15(4):257-65
12634476 - Neuroreport. 2003 Mar 3;14(3):321-4
15016793 - J Appl Physiol (1985). 2004 Apr;96(4):1486-95
8120594 - J Neurophysiol. 1993 Dec;70(6):2470-88
23049762 - PLoS One. 2012;7(9):e44894
10576479 - Clin Neurophysiol. 1999 Nov;110(11):1842-57
9175005 - J Physiol. 1997 May 15;501 ( Pt 1):225-41
9658052 - J Neurophysiol. 1998 Jul;80(1):309-23
11698507 - J Neurophysiol. 2001 Nov;86(5):2144-58
12887428 - Eur J Neurosci. 2003 Jul;18(2):453-6
20032241 - J Neurophysiol. 2010 Feb;103(2):1093-103
References_xml – volume: 107
  start-page: 796
  year: 2012
  end-page: 807
  article-title: Neural mechanisms of intermuscular coherence: implications for the rectification of surface electromyography
  publication-title: J Neurophysiol
– volume: 106
  start-page: 2688
  year: 2011b
  end-page: 2697
  article-title: Decorrelation of cortical inputs and motoneuron output
  publication-title: J Neurophysiol
– volume: 589
  start-page: 629
  year: 2011a
  end-page: 637
  article-title: Linear transmission of cortical oscillations to the neural drive to muscles is mediated by common projections to populations of motoneurons in humans
  publication-title: J Physiol
– volume: 21
  start-page: 3215
  year: 2001
  end-page: 3227
  article-title: Representation of acoustic communication signals by insect auditory receptor neurons
  publication-title: J Neurosci
– volume: 501
  start-page: 225
  year: 1997
  end-page: 241
  article-title: Coherent oscillations in monkey motor cortex and hand muscle EMG show task‐dependent modulation
  publication-title: J Physiol
– volume: 205
  start-page: 190
  year: 2012
  end-page: 201
  article-title: Rectification of the EMG is an unnecessary and inappropriate step in the calculation of corticomuscular coherence
  publication-title: J Neurosci Methods
– volume: 25
  start-page: 520
  year: 2008
  end-page: 542
  article-title: Simulation system of spinal cord motor nuclei and associated nerves and muscles, in a Web‐based architecture
  publication-title: J Comput Neurosci
– volume: 66
  start-page: 635
  year: 1991
  end-page: 650
  article-title: A model of a CA3 hippocampal pyramidal neuron incorporating voltage‐clamp data on intrinsic conductances
  publication-title: J Neurophysiol
– volume: 86
  start-page: 2144
  year: 2001
  end-page: 2158
  article-title: Experimental simulation of cat electromyogram: evidence for algebraic summation of motor‐unit action‐potential trains
  publication-title: J Neurophysiol
– volume: 104
  start-page: 1141
  year: 2010
  end-page: 1154
  article-title: Force‐independent distribution of correlated neural inputs to hand muscles during three‐digit grasping
  publication-title: J Neurophysiol
– volume: 178
  start-page: 79
  year: 2007
  end-page: 88
  article-title: Bilateral motor unit synchronization is functionally organized
  publication-title: Exp Brain Res
– volume: 15
  start-page: 257
  year: 1968
  end-page: 265
  article-title: Spectral analysis of pulse frequency modulation in the nervous systems
  publication-title: IEEE Trans Biomed Eng
– volume: 107
  start-page: 2866
  year: 2012
  end-page: 2875
  article-title: Sensitivity of EMG‐EMG coherence to detect the common oscillatory drive to hand muscles in young and older adults
  publication-title: J Neurophysiol
– volume: 44
  start-page: 419
  year: 1997
  end-page: 426
  article-title: Spectral distortion properties of the integral pulse frequency modulation model
  publication-title: IEEE Trans Biomed Eng
– volume: 103
  start-page: 1093
  year: 2010
  end-page: 1103
  article-title: Rectification of the EMG signal impairs the identification of oscillatory input to the muscle
  publication-title: J Neurophysiol
– year: 1975
– volume: 98
  start-page: 120
  year: 2005
  end-page: 131
  article-title: Influence of amplitude cancellation on the simulated surface electromyogram
  publication-title: J Appl Physiol
– volume: 80
  start-page: 309
  year: 1998
  end-page: 323
  article-title: Decorrelating actions of Renshaw interneurons on the firing of spinal motoneurons within a motor nucleus: A simulation study
  publication-title: J Neurophysiol
– volume: 18
  start-page: 453
  year: 2003
  end-page: 456
  article-title: Task‐dependent intermanual coupling of 8‐Hz discontinuities during slow finger movements
  publication-title: Eur J Neurosci
– volume: 70
  start-page: 2470
  year: 1993
  end-page: 2488
  article-title: Models of recruitment and rate coding organization in motor‐unit pools
  publication-title: J Neurophysiol
– volume: 124
  start-page: 157
  year: 2003
  end-page: 165
  article-title: Rectification and non‐linear pre‐processing of EMG signals for cortico‐muscular analysis
  publication-title: J Neurosci Methods
– volume: 100
  start-page: 431
  year: 2008
  end-page: 440
  article-title: Amplitude cancellation of motor‐unit action potentials in the surface electromyogram can be estimated with spike‐triggered averaging
  publication-title: J Neurophysiol
– volume: 489
  start-page: 917
  year: 1995
  end-page: 924
  article-title: Synchronization between motor cortex and spinal motoneuronal pool during the performance of a maintained motor task in man
  publication-title: J Physiol
– volume: 110
  start-page: 1842
  year: 1999
  end-page: 1857
  article-title: Event‐related EEG/MEG synchronization and desynchronization: Basic principles
  publication-title: Clin Neurophysiol
– volume: 14
  start-page: 321
  year: 2003
  end-page: 324
  article-title: Modulation of cortex‐muscle oscillatory interaction by ischaemia‐induced deafferentation
  publication-title: Neuroreport
– volume: 51
  start-page: 415
  year: 2004c
  end-page: 426
  article-title: A surface EMG generation model with multilayer cylindrical description of the volume conductor
  publication-title: IEEE Trans Biomed Eng
– volume: 78
  start-page: 2336
  year: 1997
  end-page: 2350
  article-title: Decoding visual information from a population of retinal ganglion cells
  publication-title: J Neurophysiol
– volume: 102
  start-page: 1193
  year: 2007
  end-page: 1201
  article-title: Sensitivity of the cross‐correlation between simulated surface EMGs for two muscles to detect motor unit synchronization
  publication-title: J Appl Physiol
– volume: 43
  start-page: 30
  year: 2004b
  end-page: 35
  article-title: Surface EMG crosstalk evaluated from experimental recordings and simulated signals. Reflections on crosstalk interpretation, quantification and reduction
  publication-title: Methods Inf Med
– volume: 103
  start-page: 3547
  year: 2010
  article-title: On the need for rectification of surface EMG
  publication-title: J Neurophysiol
– volume: 566
  start-page: 625
  year: 2005
  end-page: 639
  article-title: Manipulation of peripheral neural feedback loops alters human corticomuscular coherence
  publication-title: J Physiol
– volume: 100
  start-page: 1928
  year: 2006
  end-page: 1937
  article-title: Amplitude cancellation reduces the size of motor unit potentials averaged from the surface EMG
  publication-title: J Appl Physiol
– volume: 96
  start-page: 1486
  year: 2004a
  end-page: 1495
  article-title: The extraction of neural strategies from the surface EMG
  publication-title: J Appl Physiol
– volume: 159
  start-page: 215
  year: 2007
  end-page: 223
  article-title: Effects of surface EMG rectification on power and coherence analyses: an EEG and MEG study
  publication-title: J Neurosci Methods
– volume: 7
  start-page: e44894
  year: 2012
  article-title: Factors influencing the estimates of correlation between motor unit activities in humans
  publication-title: PLoS One
– volume: 89
  start-page: 960
  year: 2003
  end-page: 968
  article-title: Functional coupling of motor units is modulated during walking in human subjects
  publication-title: J Neurophysiol
– volume: 121
  start-page: 1616
  year: 2010
  end-page: 1623
  article-title: Decoding the neural drive to muscles from the surface electromyogram
  publication-title: Clin Neurophysiol
– volume: 104
  start-page: 3576
  year: 2010
  end-page: 3587
  article-title: Influence of fatigue on hand muscle coordination and EMG‐EMG coherence during three‐digit grasping
  publication-title: J Neurophysiol
– volume: 16
  start-page: 501
  year: 1999
  end-page: 511
  article-title: Corticomuscular coherence: a review
  publication-title: J Clin Neurophysiol
– volume: 121
  start-page: 1633
  year: 2010
  end-page: 1642
  article-title: The α‐motoneuron pool as transmitter of rhythmicities in cortical motor drive
  publication-title: Clin Neurophysiol
– volume: 89
  start-page: 1941
  year: 2003
  end-page: 1953
  article-title: Synchronization in monkey motor cortex during a precision grip task. II. Effect of oscillatory activity on corticospinal output
  publication-title: J Neurophysiol
– ident: e_1_2_6_16_1
  doi: 10.1109/TBME.2003.820998
– ident: e_1_2_6_30_1
  doi: 10.1113/jphysiol.2010.202473
– volume: 21
  start-page: 3215
  year: 2001
  ident: e_1_2_6_25_1
  article-title: Representation of acoustic communication signals by insect auditory receptor neurons
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.21-09-03215.2001
– ident: e_1_2_6_24_1
  doi: 10.1016/j.jneumeth.2011.11.001
– ident: e_1_2_6_3_1
  doi: 10.1152/jn.00832.2002
– ident: e_1_2_6_2_1
  doi: 10.1111/j.1469-7793.1997.225bo.x
– ident: e_1_2_6_31_1
  doi: 10.1152/jn.00336.2011
– ident: e_1_2_6_11_1
  doi: 10.1046/j.1460-9568.2003.02751.x
– ident: e_1_2_6_28_1
  doi: 10.1016/S0165-0270(03)00004-9
– ident: e_1_2_6_18_1
  doi: 10.1152/jn.00844.2002
– ident: e_1_2_6_29_1
  doi: 10.1109/10.568918
– ident: e_1_2_6_9_1
  doi: 10.1152/jn.00583.2010
– ident: e_1_2_6_6_1
  doi: 10.1007/s00221-006-0713-2
– volume-title: Computer Solution of Ordinary Differential Equations: The Initial Value Problem
  year: 1975
  ident: e_1_2_6_38_1
– ident: e_1_2_6_40_1
  doi: 10.1152/jn.1991.66.2.635
– ident: e_1_2_6_35_1
  doi: 10.1097/00001756-200303030-00005
– ident: e_1_2_6_42_1
  doi: 10.1016/j.jneumeth.2006.07.008
– ident: e_1_2_6_26_1
  doi: 10.1152/jn.1998.80.1.309
– ident: e_1_2_6_7_1
  doi: 10.1007/s10827-008-0092-8
– ident: e_1_2_6_33_1
  doi: 10.1152/jn.00792.2009
– ident: e_1_2_6_34_1
  doi: 10.1016/S1388-2457(99)00141-8
– ident: e_1_2_6_23_1
  doi: 10.1152/jn.01011.2011
– ident: e_1_2_6_17_1
  doi: 10.1152/jn.1993.70.6.2470
– ident: e_1_2_6_37_1
  doi: 10.1113/jphysiol.2005.089607
– ident: e_1_2_6_20_1
  doi: 10.1152/japplphysiol.00894.2004
– ident: e_1_2_6_22_1
  doi: 10.1152/japplphysiol.00491.2006
– ident: e_1_2_6_32_1
  doi: 10.1371/journal.pone.0044894
– ident: e_1_2_6_36_1
  doi: 10.1152/jn.00185.2010
– ident: e_1_2_6_27_1
  doi: 10.1097/00004691-199911000-00002
– ident: e_1_2_6_5_1
  doi: 10.1152/jn.00066.2011
– ident: e_1_2_6_13_1
  doi: 10.1016/j.clinph.2009.10.040
– ident: e_1_2_6_8_1
  doi: 10.1113/jphysiol.1995.sp021104
– ident: e_1_2_6_15_1
  doi: 10.1055/s-0038-1633419
– ident: e_1_2_6_41_1
  doi: 10.1152/jn.1997.78.5.2336
– ident: e_1_2_6_39_1
  doi: 10.1016/j.clinph.2010.03.052
– ident: e_1_2_6_19_1
  doi: 10.1152/jn.00222.2010
– ident: e_1_2_6_12_1
  doi: 10.1152/jn.90365.2008
– ident: e_1_2_6_21_1
  doi: 10.1152/japplphysiol.01282.2005
– ident: e_1_2_6_14_1
  doi: 10.1152/japplphysiol.01070.2003
– ident: e_1_2_6_10_1
  doi: 10.1152/jn.2001.86.5.2144
– ident: e_1_2_6_4_1
  doi: 10.1109/TBME.1968.4502576
– reference: 12574472 - J Neurophysiol. 2003 Feb;89(2):960-8
– reference: 23049762 - PLoS One. 2012;7(9):e44894
– reference: 20505123 - J Neurophysiol. 2010 Aug;104(2):1141-54
– reference: 9125827 - IEEE Trans Biomed Eng. 1997 May;44(5):419-26
– reference: 10600018 - J Clin Neurophysiol. 1999 Nov;16(6):501-11
– reference: 10576479 - Clin Neurophysiol. 1999 Nov;110(11):1842-57
– reference: 12706845 - J Neurosci Methods. 2003 Apr 15;124(2):157-65
– reference: 18463179 - J Neurophysiol. 2008 Jul;100(1):431-40
– reference: 15000373 - IEEE Trans Biomed Eng. 2004 Mar;51(3):415-26
– reference: 9356386 - J Neurophysiol. 1997 Nov;78(5):2336-50
– reference: 15919711 - J Physiol. 2005 Jul 15;566(Pt 2):625-39
– reference: 11698507 - J Neurophysiol. 2001 Nov;86(5):2144-58
– reference: 22378168 - J Neurophysiol. 2012 May;107(10):2866-75
– reference: 21795617 - J Neurophysiol. 2011 Nov;106(5):2688-97
– reference: 12887428 - Eur J Neurosci. 2003 Jul;18(2):453-6
– reference: 9175005 - J Physiol. 1997 May 15;501 ( Pt 1):225-41
– reference: 16397060 - J Appl Physiol (1985). 2006 Jun;100(6):1928-37
– reference: 9658052 - J Neurophysiol. 1998 Jul;80(1):309-23
– reference: 17068220 - J Appl Physiol (1985). 2007 Mar;102(3):1193-201
– reference: 5699902 - IEEE Trans Biomed Eng. 1968 Oct;15(4):257-65
– reference: 11312306 - J Neurosci. 2001 May 1;21(9):3215-27
– reference: 12634476 - Neuroreport. 2003 Mar 3;14(3):321-4
– reference: 15377649 - J Appl Physiol (1985). 2005 Jan;98(1):120-31
– reference: 24382921 - J Physiol. 2014 Jan 1;592(1):249-50
– reference: 20444646 - Clin Neurophysiol. 2010 Oct;121(10):1616-23
– reference: 15016793 - J Appl Physiol (1985). 2004 Apr;96(4):1486-95
– reference: 15026832 - Methods Inf Med. 2004;43(1):30-5
– reference: 20530508 - J Neurophysiol. 2010 Jun;103(6):3547; author reply 3548-9
– reference: 8788955 - J Physiol. 1995 Dec 15;489 ( Pt 3):917-24
– reference: 22120690 - J Neurosci Methods. 2012 Mar 30;205(1):190-201
– reference: 24382922 - J Physiol. 2014 Jan 1;592(1):251-2
– reference: 20032241 - J Neurophysiol. 2010 Feb;103(2):1093-103
– reference: 17109111 - Exp Brain Res. 2007 Mar;178(1):79-88
– reference: 20926609 - J Neurophysiol. 2010 Dec;104(6):3576-87
– reference: 12686573 - J Neurophysiol. 2003 Apr;89(4):1941-53
– reference: 20434397 - Clin Neurophysiol. 2010 Oct;121(10):1633-42
– reference: 16949676 - J Neurosci Methods. 2007 Jan 30;159(2):215-23
– reference: 22072508 - J Neurophysiol. 2012 Feb;107(3):796-807
– reference: 1663538 - J Neurophysiol. 1991 Aug;66(2):635-50
– reference: 18506610 - J Comput Neurosci. 2008 Dec;25(3):520-42
– reference: 8120594 - J Neurophysiol. 1993 Dec;70(6):2470-88
– reference: 21135042 - J Physiol. 2011 Feb 1;589(Pt 3):629-37
SSID ssj0013099
Score 2.4236224
Snippet Key points •  Oscillatory drives at the input of a pool of motor neurons are transmitted to the motor neuron output (neural drive to the muscle) in an...
Oscillatory drives at the input of a pool of motor neurons are transmitted to the motor neuron output (neural drive to the muscle) in an approximately linear...
Oscillatory common inputs of cortical or peripheral origin can be identified from the motor neuron output with coherence analysis. Linear transmission is...
Key points * Oscillatory drives at the input of a pool of motor neurons are transmitted to the motor neuron output (neural drive to the muscle) in an...
times Oscillatory drives at the input of a pool of motor neurons are transmitted to the motor neuron output (neural drive to the muscle) in an approximately...
SourceID pubmedcentral
proquest
pubmed
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2403
SubjectTerms Action Potentials
Adult
Amyotrophic lateral sclerosis
Computational Neuroscience and Modelling
Electromyography
Female
Fourier Analysis
Humans
Male
Models, Biological
Motor Neurons - physiology
Muscle, Skeletal - physiology
Neurons
Synaptic Transmission
Young Adult
Title Identification of common synaptic inputs to motor neurons from the rectified electromyogram
URI https://onlinelibrary.wiley.com/doi/abs/10.1113%2Fjphysiol.2012.246082
https://www.ncbi.nlm.nih.gov/pubmed/23507877
https://www.proquest.com/docview/1545344598
https://www.proquest.com/docview/1353039512
https://www.proquest.com/docview/1419359631
https://pubmed.ncbi.nlm.nih.gov/PMC3678033
Volume 591
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5VPXEBSnmElspIiFuW9SvZHCvUVVUJVKFWqsQhih27FKhTdbOH7a_vjPMoSxEgOGecXTsz42_smW8A3tRE-6SINnRmbaqs8akxZpoaX7lciyrLLZ13fPiYHZ6qozN9tgHzoRam44cYD9zIMqK_JgOvTN-FhBPZwNcY-jd0fcDFRKgMNzN0xZS2Rdjok7i7TJgWxUganmveV9Dha9796iXrO9Q92Hk_e_JHVBu3pfkjOB8m1GWjfJssWzOxNz9xPf7_jB_Dwx65sv1O1bZgw4UnsL0fMGq_XLG37Lgb1pyvtuFzV__r-wNB1niGP4YazxarUKGXsuwiXC3bBWsbhsrSXLNIrBkWjOpdGKJSFl2xR4TM-lY9l6uYSvYUTucHJ-8P076NQ2oxFpGp9w5hAzeuqmYFOoy6wMhVySqzqpaIVozIMEjTtS6sz2vLleGeOyEMZehwnstnsBma4F4AU7gS2ljPEXaoCiVzREe4BVMdlFNTn4AcPl1pe45zarXxvexiHVkOa1jSGpbdGiaQjqOuOo6PP8jvDlpR9ha_KAmKSqV0MUvg9fgYbZUuYKrgmiXKSI2IATGt-I2M4lQsnUmewPNO0cY_JSSi91meJ5CvqeAoQFzh60_CxZfIGS4RlEylTEBEDfureZYnR8caEevLfxm0Aw9E7BxCuaG7sNleL90rxG-t2YvWuRcP1m4B6aJC5A
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB6VcoALr0IJFDAS4pZl_UiyOVZAWUpbVWgrVeIQxU5MC9SputnD8uuZsZPAUgQIcc7YiZ0Z-xt75huAZxXRPimiDZ0YEyujbay1HsfalnWWiDLNDJ137B-k0yO1e5wcr8GbPhcm8EMMB25kGX69JgOnA-nOyolt4JP3_Ru6P-BiJFSKu9kVuErFvYlE_9V78f06YZznA214lvAuhw77efGrXlb3qEvA83L85I-41m9MOzfhpB9SiEf5PFq0emS-_sT2-B_GfAtudOCVbQdtuw1rtbsDG9sOHfezJXvODkOz5uNyAz6EFGDbnQmyxjJ8Gyo9my9diQuVYafufNHOWdsw1JfmgnluTTdnlPLCEJgyvxpbBMmsq9ZztvTRZHfhaOf17OU07io5xAbdERlbWyNy4Louy0mOa0aVo_OqZJkaVUkELFqk6KclVZIbm1WGK80tr4XQFKTDeSbvwbprXH0fmMKZSLSxHJGHKlEyQ4CEuzClQtVqbCOQ_b8rTEdzTtU2vhTB3ZFFP4cFzWER5jCCeGh1Hmg-_iC_1atF0Rn9vCA0KpVK8kkET4fHaK50B1O6ulmgjEwQNCCsFb-RUZzypVPJI9gMmjZ8lJAI4CdZFkG2ooODANGFrz5xpyeeNlwiLhlLGYHwKvZX4yxmu4cJgtYH_9LoCVybzvb3ir23B-8ewnXhC4lQqOgWrLcXi_oRwrlWP_am-g1OwkXw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6VIiEuvAolUMBIiFuW9SPJ5lhRVqVAtUKtVIlDFDtxKVBn1c0ell_PjJ0EliJAcMoh4yR2Zuxv7JlvAJ5VRPukiDZ0YkysjLax1noca1vWWSLKNDO03_HuMN0_VgcnyckGTPtcmMAPMWy4kWX4-ZoMfF7ZzsiJbOCTd_0bOj7gYiRUiovZFbiK15xKOOy9F99PE8Z5PrCGZwnvUujwOS9-9ZT1JeoS7rwcPvkjrPXr0vQmnPY9CuEon0fLVo_M15_IHv-_y7fgRgdd2W7QtduwUbs7sLXr0G0_X7HnbBaaNaerLfgQEoBttyPIGsvwZajybLFyJU5Thp25-bJdsLZhqC3NBfPMmm7BKOGFISxlfi62CJFZV6vnfOVjye7C8fTV0cv9uKvjEBt0RmRsbY24geu6LCc5zhhVjq6rkmVqVCURrmiRopeWVElubFYZrjS3vBZCU4gO55m8B5uucfV9YApHItHGcsQdqkTJDOERrsGUCFWrsY1A9r-uMB3JOdXa-FIEZ0cW_RgWNIZFGMMI4qHVPJB8_EF-p9eKojP5RUFYVCqV5JMIng630VjpBKZ0dbNEGZkgZEBQK34jozhlS6eSR7AdFG34KCERvk-yLIJsTQUHASILX7_jzj560nCJqGQsZQTCa9hf9bM4OpglCFkf_EujJ3Bttjct3r4-fPMQrgtfRYTiRHdgs71Y1o8Qy7X6sTfUb01YRJ8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Identification+of+common+synaptic+inputs+to+motor+neurons+from+the+rectified+electromyogram&rft.jtitle=The+Journal+of+physiology&rft.au=Farina%2C+Dario&rft.au=Negro%2C+Francesco&rft.au=Jiang%2C+Ning&rft.date=2013-05-01&rft.issn=1469-7793&rft.eissn=1469-7793&rft.volume=591&rft.issue=10&rft.spage=2403&rft_id=info:doi/10.1113%2Fjphysiol.2012.246082&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-3751&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-3751&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-3751&client=summon