Inefficient functional sympatholysis is an overlooked cause of malperfusion in contracting skeletal muscle
Contracting skeletal muscle can overcome sympathetic vasoconstrictor activity (functional sympatholysis), which allows for a blood supply that matches the metabolic demand. This ability is thought to be mediated by locally released substances that modulate the effect of noradrenaline (NA) on the α‐r...
Saved in:
Published in | The Journal of physiology Vol. 590; no. 24; pp. 6269 - 6275 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Oxford, UK
Blackwell Publishing Ltd
01.12.2012
Wiley Subscription Services, Inc Blackwell Science Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Contracting skeletal muscle can overcome sympathetic vasoconstrictor activity (functional sympatholysis), which allows for a blood supply that matches the metabolic demand. This ability is thought to be mediated by locally released substances that modulate the effect of noradrenaline (NA) on the α‐receptor. Tyramine induces local NA release and can be used in humans to investigate the underlying mechanisms and physiological importance of functional sympatholysis in the muscles of healthy and diseased individuals as well as the impact of the active muscles’ training status. In sedentary elderly men, functional sympatholysis and muscle blood flow are impaired compared to young men, but regular physical activity can prevent these age related impairments. In young subjects, two weeks of leg immobilization causes a reduced ability for functional sympatholysis, whereas the trained leg maintained this function. Patients with essential hypertension have impaired functional sympatholysis in the forearm, and reduced exercise hyperaemia in the leg, but this can be normalized by aerobic exercise training. The effect of physical activity on the local mechanisms that modulate sympathetic vasoconstriction is clear, but it remains uncertain which locally released substance(s) block the effect of NA and how this is accomplished. NO and ATP have been proposed as important inhibitors of NA mediated vasoconstriction and presently an inhibitory effect of ATP on NA signalling via P2 receptors appears most likely. |
---|---|
AbstractList | Contracting skeletal muscle can overcome sympathetic vasoconstrictor activity (functional sympatholysis), which allows for a blood supply that matches the metabolic demand. This ability is thought to be mediated by locally released substances that modulate the effect of noradrenaline (NA) on the α‐receptor. Tyramine induces local NA release and can be used in humans to investigate the underlying mechanisms and physiological importance of functional sympatholysis in the muscles of healthy and diseased individuals as well as the impact of the active muscles’ training status. In sedentary elderly men, functional sympatholysis and muscle blood flow are impaired compared to young men, but regular physical activity can prevent these age related impairments. In young subjects, two weeks of leg immobilization causes a reduced ability for functional sympatholysis, whereas the trained leg maintained this function. Patients with essential hypertension have impaired functional sympatholysis in the forearm, and reduced exercise hyperaemia in the leg, but this can be normalized by aerobic exercise training. The effect of physical activity on the local mechanisms that modulate sympathetic vasoconstriction is clear, but it remains uncertain which locally released substance(s) block the effect of NA and how this is accomplished. NO and ATP have been proposed as important inhibitors of NA mediated vasoconstriction and presently an inhibitory effect of ATP on NA signalling via P2 receptors appears most likely. Abstract Contracting skeletal muscle can overcome sympathetic vasoconstrictor activity (functional sympatholysis), which allows for a blood supply that matches the metabolic demand. This ability is thought to be mediated by locally released substances that modulate the effect of noradrenaline (NA) on the [alpha]-receptor. Tyramine induces local NA release and can be used in humans to investigate the underlying mechanisms and physiological importance of functional sympatholysis in the muscles of healthy and diseased individuals as well as the impact of the active muscles' training status. In sedentary elderly men, functional sympatholysis and muscle blood flow are impaired compared to young men, but regular physical activity can prevent these age related impairments. In young subjects, two weeks of leg immobilization causes a reduced ability for functional sympatholysis, whereas the trained leg maintained this function. Patients with essential hypertension have impaired functional sympatholysis in the forearm, and reduced exercise hyperaemia in the leg, but this can be normalized by aerobic exercise training. The effect of physical activity on the local mechanisms that modulate sympathetic vasoconstriction is clear, but it remains uncertain which locally released substance(s) block the effect of NA and how this is accomplished. NO and ATP have been proposed as important inhibitors of NA mediated vasoconstriction and presently an inhibitory effect of ATP on NA signalling via P2 receptors appears most likely. Contracting skeletal muscle can overcome sympathetic vasoconstrictor activity (functional sympatholysis), which allows for a blood supply that matches the metabolic demand. This ability is thought to be mediated by locally released substances that modulate the effect of noradrenaline (NA) on the α-receptor. Tyramine induces local NA release and can be used in humans to investigate the underlying mechanisms and physiological importance of functional sympatholysis in the muscles of healthy and diseased individuals as well as the impact of the active muscles' training status. In sedentary elderly men, functional sympatholysis and muscle blood flow are impaired compared to young men, but regular physical activity can prevent these age related impairments. In young subjects, two weeks of leg immobilization causes a reduced ability for functional sympatholysis, whereas the trained leg maintained this function. Patients with essential hypertension have impaired functional sympatholysis in the forearm, and reduced exercise hyperaemia in the leg, but this can be normalized by aerobic exercise training. The effect of physical activity on the local mechanisms that modulate sympathetic vasoconstriction is clear, but it remains uncertain which locally released substance(s) block the effect of NA and how this is accomplished. NO and ATP have been proposed as important inhibitors of NA mediated vasoconstriction and presently an inhibitory effect of ATP on NA signalling via P2 receptors appears most likely.Contracting skeletal muscle can overcome sympathetic vasoconstrictor activity (functional sympatholysis), which allows for a blood supply that matches the metabolic demand. This ability is thought to be mediated by locally released substances that modulate the effect of noradrenaline (NA) on the α-receptor. Tyramine induces local NA release and can be used in humans to investigate the underlying mechanisms and physiological importance of functional sympatholysis in the muscles of healthy and diseased individuals as well as the impact of the active muscles' training status. In sedentary elderly men, functional sympatholysis and muscle blood flow are impaired compared to young men, but regular physical activity can prevent these age related impairments. In young subjects, two weeks of leg immobilization causes a reduced ability for functional sympatholysis, whereas the trained leg maintained this function. Patients with essential hypertension have impaired functional sympatholysis in the forearm, and reduced exercise hyperaemia in the leg, but this can be normalized by aerobic exercise training. The effect of physical activity on the local mechanisms that modulate sympathetic vasoconstriction is clear, but it remains uncertain which locally released substance(s) block the effect of NA and how this is accomplished. NO and ATP have been proposed as important inhibitors of NA mediated vasoconstriction and presently an inhibitory effect of ATP on NA signalling via P2 receptors appears most likely. Contracting skeletal muscle can overcome sympathetic vasoconstrictor activity (functional sympatholysis), which allows for a blood supply that matches the metabolic demand. This ability is thought to be mediated by locally released substances that modulate the effect of noradrenaline (NA) on the alpha -receptor. Tyramine induces local NA release and can be used in humans to investigate the underlying mechanisms and physiological importance of functional sympatholysis in the muscles of healthy and diseased individuals as well as the impact of the active muscles' training status. In sedentary elderly men, functional sympatholysis and muscle blood flow are impaired compared to young men, but regular physical activity can prevent these age related impairments. In young subjects, two weeks of leg immobilization causes a reduced ability for functional sympatholysis, whereas the trained leg maintained this function. Patients with essential hypertension have impaired functional sympatholysis in the forearm, and reduced exercise hyperaemia in the leg, but this can be normalized by aerobic exercise training. The effect of physical activity on the local mechanisms that modulate sympathetic vasoconstriction is clear, but it remains uncertain which locally released substance(s) block the effect of NA and how this is accomplished. NO and ATP have been proposed as important inhibitors of NA mediated vasoconstriction and presently an inhibitory effect of ATP on NA signalling via P2 receptors appears most likely. Abstract Contracting skeletal muscle can overcome sympathetic vasoconstrictor activity (functional sympatholysis), which allows for a blood supply that matches the metabolic demand. This ability is thought to be mediated by locally released substances that modulate the effect of noradrenaline (NA) on the α‐receptor. Tyramine induces local NA release and can be used in humans to investigate the underlying mechanisms and physiological importance of functional sympatholysis in the muscles of healthy and diseased individuals as well as the impact of the active muscles’ training status. In sedentary elderly men, functional sympatholysis and muscle blood flow are impaired compared to young men, but regular physical activity can prevent these age related impairments. In young subjects, two weeks of leg immobilization causes a reduced ability for functional sympatholysis, whereas the trained leg maintained this function. Patients with essential hypertension have impaired functional sympatholysis in the forearm, and reduced exercise hyperaemia in the leg, but this can be normalized by aerobic exercise training. The effect of physical activity on the local mechanisms that modulate sympathetic vasoconstriction is clear, but it remains uncertain which locally released substance(s) block the effect of NA and how this is accomplished. NO and ATP have been proposed as important inhibitors of NA mediated vasoconstriction and presently an inhibitory effect of ATP on NA signalling via P2 receptors appears most likely. |
Author | Saltin, Bengt Mortensen, Stefan P. |
Author_xml | – sequence: 1 givenname: Bengt surname: Saltin fullname: Saltin, Bengt – sequence: 2 givenname: Stefan P. surname: Mortensen fullname: Mortensen, Stefan P. |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/22988143$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkktv1DAUhS1URKeFf4CQJTZsMvidmAUSqngUVYJFWVue5LrjqWOHOCmaf4-j6SDohkqWvPA5n499zxk6iSkCQi8pWVNK-dvdsN1nn8KaEcrWTFDC1BO0okLpqq41P0ErQhireC3pKTrLeUcI5UTrZ-iUMd00VPAV2l1GcM63HuKE3RzbyadoA877frDTNoVyR8Zl2YjTHYwhpVvocGvnDDg53NswwOjmkiRiH3Gb4jTaQok3ON9CgKnA-jm3AZ6jp86GDC_u93P049PH64sv1dW3z5cXH66qVjaSVSCIUwBKO2pdw3itOgGd3jTg6q7kpryjG8Gs6jTj3EnVyYaxRlghFaXl-By9P3CHedND18KSKJhh9L0d9yZZb_49iX5rbtKd4ZJz2ugCeHMPGNPPGfJkep9bCMFGSHM2lNWspqxR5BFSQRitFauL9PUD6S7NY_nropJCckFqvQBf_R3-T-rjxIrg3UHQjinnEZxp_WSXqZW3-GAoMUs9zLEeZqmHOdSjmMUD85H_H5s-2H75APtHecz11--SK8Z_A8Il1P0 |
CODEN | JPHYA7 |
CitedBy_id | crossref_primary_10_1152_japplphysiol_00205_2021 crossref_primary_10_1152_japplphysiol_00787_2014 crossref_primary_10_3389_fphys_2022_898395 crossref_primary_10_1152_japplphysiol_00057_2016 crossref_primary_10_1016_j_autneu_2022_102969 crossref_primary_10_1152_ajpheart_00103_2014 crossref_primary_10_14814_phy2_14068 crossref_primary_10_14814_phy2_12164 crossref_primary_10_1152_ajpheart_00877_2013 crossref_primary_10_1155_2018_4081802 crossref_primary_10_1016_j_autneu_2014_10_019 crossref_primary_10_1139_apnm_2019_0130 crossref_primary_10_1016_j_niox_2022_06_002 crossref_primary_10_3109_10715762_2013_835045 crossref_primary_10_1113_EP091656 crossref_primary_10_1139_apnm_2016_0393 crossref_primary_10_1152_japplphysiol_00726_2020 crossref_primary_10_1111_cpf_12919 crossref_primary_10_1152_ajpheart_00283_2023 crossref_primary_10_1249_MSS_0000000000001857 crossref_primary_10_1152_ajpregu_00042_2017 crossref_primary_10_1152_japplphysiol_00005_2017 crossref_primary_10_1016_j_autneu_2014_10_010 crossref_primary_10_1152_ajpregu_00380_2018 crossref_primary_10_1113_jphysiol_2014_285411 crossref_primary_10_1111_sms_12591 crossref_primary_10_1016_j_jsams_2022_10_009 crossref_primary_10_1152_ajpheart_00474_2016 crossref_primary_10_1113_expphysiol_2014_081620 crossref_primary_10_1093_eurheartj_ehae798 crossref_primary_10_1161_HYPERTENSIONAHA_117_09558 crossref_primary_10_1152_ajprenal_00302_2023 crossref_primary_10_1016_j_crphys_2021_01_002 crossref_primary_10_1113_jphysiol_2014_286815 crossref_primary_10_1152_ajpheart_00532_2020 crossref_primary_10_1007_s00424_018_2206_0 crossref_primary_10_3390_nu16121935 crossref_primary_10_1080_10408363_2017_1394267 crossref_primary_10_1113_JP270594 crossref_primary_10_12965_jer_1735114_557 crossref_primary_10_1016_j_mam_2016_06_001 crossref_primary_10_1113_jphysiol_2013_262246 crossref_primary_10_1152_japplphysiol_00568_2019 crossref_primary_10_3389_fcvm_2023_1148324 crossref_primary_10_1113_JP281730 crossref_primary_10_1113_jphysiol_2014_273722 crossref_primary_10_31083_j_rcm2403064 crossref_primary_10_1111_cpf_12739 crossref_primary_10_14814_phy2_70180 crossref_primary_10_1152_ajpheart_00398_2017 crossref_primary_10_14814_phy2_15133 crossref_primary_10_1016_j_coph_2019_04_002 crossref_primary_10_1038_s41366_024_01462_1 crossref_primary_10_1152_ajpheart_00653_2015 crossref_primary_10_1152_japplphysiol_00671_2019 crossref_primary_10_1152_japplphysiol_00993_2013 crossref_primary_10_1007_s00125_018_4790_0 crossref_primary_10_1126_scisignal_aaa7312 crossref_primary_10_1152_ajpheart_00214_2023 crossref_primary_10_1016_j_cophys_2019_05_001 crossref_primary_10_1113_JP272829 crossref_primary_10_3389_fphys_2014_00192 crossref_primary_10_1002_tsm2_1 crossref_primary_10_1007_s00421_021_04756_8 crossref_primary_10_1152_ajpheart_00649_2019 crossref_primary_10_1113_JP275777 crossref_primary_10_1186_s40101_015_0075_1 crossref_primary_10_14814_phy2_13703 crossref_primary_10_1007_s00421_017_3660_7 crossref_primary_10_1016_j_diabres_2019_03_007 crossref_primary_10_1152_ajpheart_00208_2020 crossref_primary_10_1113_JP279462 crossref_primary_10_1161_HYPERTENSIONAHA_111_00328 crossref_primary_10_1016_j_cjca_2020_12_006 crossref_primary_10_3389_fphys_2021_628840 crossref_primary_10_3389_fphys_2024_1495648 crossref_primary_10_1113_EP092100 crossref_primary_10_1113_JP286912 crossref_primary_10_1152_physrev_00035_2013 crossref_primary_10_1161_HYPERTENSIONAHA_113_01302 crossref_primary_10_1139_apnm_2019_0445 crossref_primary_10_1111_apha_12325 crossref_primary_10_1113_jphysiol_2012_246934 crossref_primary_10_1152_ajpheart_00925_2012 crossref_primary_10_1152_japplphysiol_00634_2017 |
Cites_doi | 10.1093/eurheartj/ehs041 10.1113/jphysiol.2011.225136 10.1152/japplphysiol.01025.2001 10.1113/jphysiol.2010.203034 10.1113/jphysiol.2007.136309 10.1007/BF01755017 10.1113/jphysiol.2010.195255 10.1113/jphysiol.2010.204081 10.1152/japplphysiol.00290.2011 10.2337/db09-1068 10.1113/jphysiol.2012.240093 10.1113/jphysiol.2003.059717 10.1113/jphysiol.2012.234963 10.1073/pnas.250379497 10.1113/jphysiol.2006.127423 10.1111/j.1469-7793.1998.817bv.x 10.1113/jphysiol.2010.197814 10.1161/01.CIR.91.7.1981 10.1111/j.1469-7793.2003.00337.x 10.1113/jphysiol.2008.155432 10.1152/jappl.1998.85.1.68 10.1152/ajpheart.1999.276.6.H1951 10.1007/BF00497004 10.1113/jphysiol.2005.087668 10.1152/ajpheart.00729.2011 10.1113/jphysiol.2004.068262 10.1113/jphysiol.2011.218917 10.1152/ajpheart.1992.263.4.H1078 10.1152/ajpheart.1989.257.6.H1812 10.1113/jphysiol.2004.072900 10.1113/jphysiol.2001.013153 10.1161/01.RES.0000061570.83105.52 10.1152/japplphysiol.00638.2009 10.1161/01.RES.11.3.370 10.1152/japplphysiol.00634.2003 10.1152/ajpheart.01204.2011 10.1111/j.1469-7793.1999.283af.x 10.1038/icb.1968.36 10.1016/j.jacc.2011.06.025 10.1113/jphysiol.2010.203026 10.1113/jphysiol.2003.049940 10.1161/01.RES.16.2.174 10.1152/japplphysiol.00179.2004 10.1152/ajpheart.00621.2004 10.1152/ajpregu.90822.2008 10.1113/jphysiol.2004.063107 10.2337/dc10-2129 10.3109/00365517409114201 |
ContentType | Journal Article |
Copyright | 2012 The Authors. The Journal of Physiology © 2012 The Physiological Society 2012 The Authors. The Journal of Physiology © 2012 The Physiological Society 2012 |
Copyright_xml | – notice: 2012 The Authors. The Journal of Physiology © 2012 The Physiological Society – notice: 2012 The Authors. The Journal of Physiology © 2012 The Physiological Society 2012 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QP 7QR 7TK 7TS 8FD FR3 P64 7X8 5PM |
DOI | 10.1113/jphysiol.2012.241026 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Neurosciences Abstracts Physical Education Index Technology Research Database Engineering Research Database Biotechnology and BioEngineering Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Technology Research Database Chemoreception Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts Neurosciences Abstracts Physical Education Index Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitleList | Technology Research Database MEDLINE MEDLINE - Academic Physical Education Index CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology |
EISSN | 1469-7793 |
EndPage | 6275 |
ExternalDocumentID | PMC3533189 3374395301 22988143 10_1113_jphysiol_2012_241026 TJP5362 |
Genre | reviewArticle Research Support, Non-U.S. Gov't Journal Article Review |
GroupedDBID | --- -DZ -~X .3N .55 .GA .GJ .Y3 05W 0R~ 0YM 10A 123 18M 1OB 1OC 24P 29L 2WC 31~ 33P 36B 3EH 3O- 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52R 52S 52T 52U 52V 52W 52X 53G 5GY 5HH 5LA 5RE 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A01 A03 AAESR AAEVG AAFWJ AAHHS AAHQN AAIPD AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAYJJ AAZKR ABCQN ABCUV ABEML ABITZ ABIVO ABJNI ABOCM ABPPZ ABPVW ABQWH ABXGK ACAHQ ACCFJ ACCZN ACFBH ACGFO ACGFS ACGOF ACIWK ACMXC ACNCT ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADBTR ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEGXH AEIGN AEIMD AEQDE AEUQT AEUYR AFBPY AFEBI AFFNX AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AI. AIACR AIAGR AITYG AIURR AIWBW AJBDE ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB AOIJS ATUGU AZBYB AZVAB BAFTC BAWUL BFHJK BHBCM BMXJE BROTX BRXPI BY8 C1A C45 CAG CHEAL COF CS3 D-6 D-7 D-E D-F DCZOG DIK DPXWK DR2 DRFUL DRMAN DRSTM E3Z EBS EJD EMOBN EX3 F00 F01 F04 F5P FA8 FIJ FUBAC G-S G.N GODZA GX1 H.X H13 HF~ HGLYW HZI HZ~ H~9 IHE IPNFZ IX1 J0M K48 KBYEO LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MVM MXFUL MXMAN MXSTM N04 N05 N9A NEJ NF~ O66 O9- OHT OIG OK1 OVD P2P P2W P2X P2Z P4B P4D Q.N Q11 QB0 R.K RIG ROL RPM RX1 SAMSI SUPJJ TEORI TLM TN5 TR2 UB1 UKR UPT V8K VH1 W8F W8V W99 WBKPD WH7 WHG WIH WIJ WIK WIN WNSPC WOHZO WOQ WOW WQJ WRC WXI WXSBR WYISQ X7M XG1 XOL YBU YHG YKV YQT YSK YXB YYP YZZ ZGI ZXP ZZTAW ~IA ~WT AAYXX ADXHL AEYWJ AGHNM AGYGG CITATION CGR CUY CVF ECM EIF NPM 7QP 7QR 7TK 7TS 8FD FR3 P64 7X8 5PM |
ID | FETCH-LOGICAL-c5852-e40f6ee69f1af82376d4ed9b8ef7d29813d1b42a6d9233f56d582284a45611813 |
IEDL.DBID | DR2 |
ISSN | 0022-3751 1469-7793 |
IngestDate | Thu Aug 21 18:40:51 EDT 2025 Thu Jul 10 18:42:08 EDT 2025 Fri Jul 11 13:47:40 EDT 2025 Fri Jul 25 12:06:03 EDT 2025 Thu Apr 03 06:59:55 EDT 2025 Tue Jul 01 04:29:06 EDT 2025 Thu Apr 24 22:56:16 EDT 2025 Wed Jan 22 16:45:49 EST 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 24 |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5852-e40f6ee69f1af82376d4ed9b8ef7d29813d1b42a6d9233f56d582284a45611813 |
Notes | The Journal of Physiology which took place at the Main Meeting of The Physiological Society, Edinburgh, UK on 3 July 2012. It was commissioned by the Editorial Board and reflects the views of the authors. Blood flow regulation: from rest to maximal exercise This report was presented at Symposium on ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 ObjectType-Article-2 ObjectType-Feature-1 This report was presented at The Journal of Physiology Symposium on Blood flow regulation: from rest to maximal exercise, which took place at the Main Meeting of The Physiological Society, Edinburgh, UK on 3 July 2012. It was commissioned by the Editorial Board and reflects the views of the authors. |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/3533189 |
PMID | 22988143 |
PQID | 1545340790 |
PQPubID | 1086388 |
PageCount | 7 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_3533189 proquest_miscellaneous_1272712860 proquest_miscellaneous_1240217627 proquest_journals_1545340790 pubmed_primary_22988143 crossref_citationtrail_10_1113_jphysiol_2012_241026 crossref_primary_10_1113_jphysiol_2012_241026 wiley_primary_10_1113_jphysiol_2012_241026_TJP5362 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | December 2012 |
PublicationDateYYYYMMDD | 2012-12-01 |
PublicationDate_xml | – month: 12 year: 2012 text: December 2012 |
PublicationDecade | 2010 |
PublicationPlace | Oxford, UK |
PublicationPlace_xml | – name: Oxford, UK – name: England – name: London |
PublicationTitle | The Journal of physiology |
PublicationTitleAlternate | J Physiol |
PublicationYear | 2012 |
Publisher | Blackwell Publishing Ltd Wiley Subscription Services, Inc Blackwell Science Inc |
Publisher_xml | – name: Blackwell Publishing Ltd – name: Wiley Subscription Services, Inc – name: Blackwell Science Inc |
References | 2004; 287 2004; 561 1968; 46 2010; 59 1974; 33 1995; 91 1992; 263 2009b; 107 1989; 257 2007; 583 2010; 588 2009a; 296 2007; 581 1972 2011; 34 2011; 58 1962; 11 2008; 586 1998; 85 1965; 16 2003; 553 2003; 95 2012; 33 2003; 551 2011; 111 2012; 590 2011; 589 2011; 301 2004; 97 2004; 556 1937; 239 2003; 92 2005; 563 2002; 540 2005; 567 2000; 97 1998; 506 2002; 92 2012b 1999; 276 1999; 514 2004; 558 1978; 305 2012a; 302 1929; 30 e_1_2_4_40_1 e_1_2_4_21_1 e_1_2_4_44_1 e_1_2_4_23_1 e_1_2_4_25_1 e_1_2_4_27_1 e_1_2_4_46_1 e_1_2_4_29_1 e_1_2_4_3_1 e_1_2_4_5_1 e_1_2_4_7_1 e_1_2_4_9_1 e_1_2_4_50_1 e_1_2_4_10_1 e_1_2_4_31_1 e_1_2_4_12_1 e_1_2_4_33_1 e_1_2_4_14_1 e_1_2_4_35_1 e_1_2_4_16_1 Tainter M (e_1_2_4_42_1) 1929; 30 e_1_2_4_37_1 e_1_2_4_18_1 Savard GK (e_1_2_4_38_1) 1989; 257 e_1_2_4_39_1 e_1_2_4_41_1 e_1_2_4_20_1 e_1_2_4_45_1 e_1_2_4_22_1 e_1_2_4_43_1 e_1_2_4_24_1 e_1_2_4_49_1 e_1_2_4_26_1 e_1_2_4_47_1 Rådegran G (e_1_2_4_30_1) 1999; 276 e_1_2_4_28_1 e_1_2_4_2_1 e_1_2_4_4_1 e_1_2_4_6_1 e_1_2_4_8_1 e_1_2_4_51_1 e_1_2_4_32_1 e_1_2_4_11_1 e_1_2_4_34_1 e_1_2_4_13_1 e_1_2_4_36_1 e_1_2_4_15_1 e_1_2_4_17_1 Trendelenburg U (e_1_2_4_48_1) 1972 e_1_2_4_19_1 19797688 - J Appl Physiol (1985). 2009 Dec;107(6):1757-62 22408019 - Am J Physiol Heart Circ Physiol. 2012 May 15;302(10):H2074-82 15271659 - Am J Physiol Heart Circ Physiol. 2004 Dec;287(6):H2576-84 17347273 - J Physiol. 2007 Jun 1;581(Pt 2):853-61 11087833 - Proc Natl Acad Sci U S A. 2000 Dec 5;97(25):13818-23 21920265 - J Am Coll Cardiol. 2011 Sep 20;58(13):1353-62 17640931 - J Physiol. 2007 Sep 15;583(Pt 3):819-23 13981593 - Circ Res. 1962 Sep;11:370-80 21963837 - Am J Physiol Heart Circ Physiol. 2011 Dec;301(6):H2466-72 15576454 - J Physiol. 2005 Mar 1;563(Pt 2):541-55 723969 - Naunyn Schmiedebergs Arch Pharmacol. 1978 Oct;305(1):37-40 22733661 - J Physiol. 2012 Oct 15;590(20):5015-23 19118095 - Am J Physiol Regul Integr Comp Physiol. 2009 Apr;296(4):R1140-8 21224235 - J Physiol. 2011 Mar 1;589(Pt 5):1209-20 10362675 - Am J Physiol. 1999 Jun;276(6 Pt 2):H1951-60 9503340 - J Physiol. 1998 Feb 1;506 ( Pt 3):817-26 14990681 - J Physiol. 2004 May 1;556(Pt 3):1001-11 15388783 - J Physiol. 2004 Dec 1;561(Pt 2):535-45 21300753 - J Physiol. 2011 Apr 1;589(Pt 7):1847-57 18703581 - J Physiol. 2008 Oct 15;586(20):4993-5002 21447654 - Diabetes Care. 2011 May;34(5):1186-91 4827762 - Scand J Clin Lab Invest. 1974 Feb;33(1):79-86 2603969 - Am J Physiol. 1989 Dec;257(6 Pt 2):H1812-8 12923119 - J Appl Physiol (1985). 2003 Dec;95(6):2370-4 12824451 - J Physiol. 2003 Aug 15;551(Pt 1):337-44 9831733 - J Physiol. 1999 Jan 1;514 ( Pt 1):283-91 21486772 - J Physiol. 2011 May 15;589(Pt 10):2641-53 12600881 - Circ Res. 2003 Mar 21;92(5):554-60 15220322 - J Appl Physiol (1985). 2004 Jul;97(1):393-403 1415755 - Am J Physiol. 1992 Oct;263(4 Pt 2):H1078-83 14259357 - Circ Res. 1965 Feb;16:174-82 15946964 - J Physiol. 2005 Aug 15;567(Pt 1):311-21 22271868 - J Physiol. 2012 Mar 15;590(6):1481-94 22106180 - J Physiol. 2012 Jan 15;590(2):395-407 21512151 - J Appl Physiol (1985). 2011 Jul;111(1):244-50 20807789 - J Physiol. 2010 Oct 15;588(Pt 20):4017-27 22507981 - Eur Heart J. 2012 May;33(9):1058-66 7895356 - Circulation. 1995 Apr 1;91(7):1981-7 12949223 - J Physiol. 2003 Nov 15;553(Pt 1):281-92 20819945 - J Physiol. 2010 Nov 15;588(Pt 22):4563-78 11927694 - J Physiol. 2002 Apr 1;540(Pt 1):377-86 9655757 - J Appl Physiol (1985). 1998 Jul;85(1):68-75 19808895 - Diabetes. 2010 Jan;59(1):182-9 5683498 - Aust J Exp Biol Med Sci. 1968 Aug;46(4):425-34 11960953 - J Appl Physiol (1985). 2002 May;92(5):2019-25 15155791 - J Physiol. 2004 Jul 1;558(Pt 1):351-65 |
References_xml | – volume: 16 start-page: 174 year: 1965 end-page: 182 article-title: Comparative cardiovascular effects of tyramine, ephedrine, and norepinephrine in man publication-title: Circ Res – volume: 590 start-page: 1481 year: 2012 end-page: 1494 article-title: Role of nitric oxide and prostanoids in the regulation of leg blood flow and blood pressure in humans with essential hypertension: effect of high‐intensity aerobic training publication-title: J Physiol – volume: 239 start-page: 464 year: 1937 article-title: Die lokale Stoffwechseleinschrankung bei reflektoriseh‐nervoser Durehblutungdrosselung publication-title: Arch Ges Physiol – volume: 46 start-page: 425 year: 1968 end-page: 434 article-title: The action of ephedrine on forearm blood vessels in man publication-title: Aust J Exp Biol Med Sci – volume: 305 start-page: 37 year: 1978 end-page: 40 article-title: Differences in the metabolic fate of noradrenaline released by electrical stimulation or by tyramine publication-title: Naunyn Schmiedebergs Arch Pharmacol – volume: 107 start-page: 1757 year: 2009b end-page: 1762 article-title: Muscle interstitial ATP and norepinephrine concentrations in the human leg during exercise and ATP infusion publication-title: J Appl Physiol – volume: 514 start-page: 283 year: 1999 end-page: 291 article-title: Cardiovascular control during concomitant dynamic leg exercise and static arm exercise in humans publication-title: J Physiol – volume: 263 start-page: H1078 year: 1992 end-page: H1083 article-title: Sympathetic modulation of blood flow and O uptake in rhythmically contracting human forearm muscles publication-title: Am J Physiol Heart Circ Physiol – volume: 34 start-page: 1186 year: 2011 end-page: 1191 article-title: Functional sympatholysis during exercise in patients with type 2 diabetes with intact response to acetylcholine publication-title: Diabetes Care – volume: 586 start-page: 4993 year: 2008 end-page: 5002 article-title: Activation of ATP/UTP selective receptors increase blood flow and blunt sympathetic vasoconstriction in human skeletal muscle publication-title: J Physiol – volume: 551 start-page: 337 year: 2003 end-page: 344 article-title: Augmented leg vasoconstriction in dynamically exercising older men during acute sympathetic stimulation publication-title: J Physiol – volume: 95 start-page: 2370 year: 2003 end-page: 2374 article-title: Exogenous NO administration and α‐adrenergic vasoconstriction in human limbs publication-title: J Appl Physiol – volume: 558 start-page: 351 year: 2004 end-page: 365 article-title: Circulating ATP‐induced vasodilatation overrides sympathetic vasoconstrictor activity in human skeletal muscle publication-title: J Physiol – volume: 589 start-page: 1209 year: 2011 end-page: 1220 article-title: Functional sympatholysis is impaired in hypertensive humans publication-title: J Physiol – volume: 257 start-page: H1812 year: 1989 end-page: H1818 article-title: Norepinephrine spillover from skeletal muscle during exercise in humans: role of muscle mass publication-title: Am J Physiol Heart Circ Physiol – volume: 276 start-page: H1951 year: 1999 end-page: H1960 article-title: Nitric oxide in the regulation of vasomotor tone in human skeletal muscle publication-title: Am J Physiol Heart Circ Physiol – volume: 590 start-page: 395 year: 2012 end-page: 407 article-title: Oxidative stress and enhanced sympathetic vasoconstriction in contracting muscles of nitrate tolerant rats and humans publication-title: J Physiol – volume: 588 start-page: 4017 year: 2010 end-page: 4027 article-title: Vasodilatory responsiveness to adenosine triphosphate in ageing humans publication-title: J Physiol – volume: 85 start-page: 68 year: 1998 end-page: 75 article-title: Reduced leg blood flow during dynamic exercise in older endurance‐trained men publication-title: J Appl Physiol – volume: 540 start-page: 377 year: 2002 end-page: 386 article-title: Nitric oxide‐dependent modulation of sympathetic neural control of oxygenation in exercising human skeletal muscle publication-title: J Physiol – volume: 589 start-page: 2641 year: 2011 end-page: 2653 article-title: Modulation of postjunctional α‐adrenergic vasoconstriction during exercise and exogenous ATP infusions in ageing humans publication-title: J Physiol – volume: 302 start-page: H2074 year: 2012a end-page: H2082 article-title: Two weeks of muscle immobilization impairs functional sympatholysis, but increases exercise hyperemia and the vasodilatory responsiveness to infused ATP publication-title: Am J Physiol Heart Circ Physiol – volume: 111 start-page: 244 year: 2011 end-page: 250 article-title: Relationship between upper and lower limb conduit artery vasodilator function in humans publication-title: J Appl Physiol – year: 2012b – volume: 92 start-page: 554 year: 2003 end-page: 560 article-title: Vasomodulation by skeletal muscle‐derived nitric oxide requires α‐syntrophin‐mediated sarcolemmal localization of neuronal nitric oxide synthase publication-title: Circ Res – start-page: 336 year: 1972 end-page: 362 – volume: 97 start-page: 393 year: 2004 end-page: 403 article-title: Vasodilatory mechanisms in contracting skeletal muscle publication-title: J Appl Physiol – volume: 11 start-page: 370 year: 1962 end-page: 380 article-title: Functional sympatholysis during muscular activity. Observations on influence of carotid sinus on oxygen uptake publication-title: Circ Res – volume: 590 start-page: 5015 year: 2012 end-page: 5023 article-title: Contribution of intravascular interstitial purines and nitric oxide in the regulation of exercise hyperaemia in humans publication-title: J Physiol – volume: 588 start-page: 4563 year: 2010 end-page: 4578 article-title: Involvement of the cystic fibrosis transmembrane conductance regulator in the acidosis‐induced efflux of ATP from rat skeletal muscle publication-title: J Physiol – volume: 567 start-page: 311 year: 2005 end-page: 321 article-title: Impaired modulation of sympathetic α‐adrenergic vasoconstriction in contracting forearm muscle of ageing men publication-title: J Physiol – volume: 58 start-page: 1353 year: 2011 end-page: 1362 article-title: Isolated quadriceps training increases maximal exercise capacity in chronic heart failure: the role of skeletal muscle convective and diffusive oxygen transport publication-title: J Am Coll Cardiol – volume: 92 start-page: 2019 year: 2002 end-page: 2025 article-title: Effects of chronic sympathectomy on vascular function in the human forearm publication-title: J Appl Physiol – volume: 33 start-page: 79 year: 1974 end-page: 86 article-title: Influence of age on the local circulatory adaptation to leg exercise publication-title: Scand J Clin Lab Invest – volume: 589 start-page: 1847 year: 2011 end-page: 1857 article-title: Local release of ATP into the arterial inflow and venous drainage of human skeletal muscle: insight from ATP determination with the intravascular microdialysis technique publication-title: J Physiol – volume: 553 start-page: 281 year: 2003 end-page: 292 article-title: Blunted sympathetic vasoconstriction in contracting skeletal muscle of healthy humans: is nitric oxide obligatory publication-title: J Physiol – volume: 563 start-page: 541 year: 2005 end-page: 555 article-title: Sympathetic neural inhibition of conducted vasodilatation along hamster feed arteries: complementary effects of α ‐ and α ‐adrenoreceptor activation publication-title: J Physiol – volume: 561 start-page: 535 year: 2004 end-page: 545 article-title: Arteriolar network architecture and vasomotor function with ageing in mouse gluteus maximus muscle publication-title: J Physiol – volume: 287 start-page: H2576 year: 2004 end-page: H2584 article-title: Combined NO and PG inhibition augments α‐adrenergic vasoconstriction in contracting human skeletal muscle publication-title: Am J Physiol Heart Circ Physiol – volume: 556 start-page: 1001 year: 2004 end-page: 1011 article-title: Different vasodilator responses of human arms and legs publication-title: J Physiol – volume: 97 start-page: 13818 year: 2000 end-page: 13823 article-title: Functional muscle ischemia in neuronal nitric oxide synthase‐deficient skeletal muscle of children with Duchenne muscular dystrophy publication-title: Proc Natl Acad Sci U S A – volume: 301 start-page: H2466 year: 2011 end-page: H2472 article-title: A selective phosphodiesterase 3 inhibitor rescues low PO ‐induced ATP release from erythrocytes of humans with type 2 diabetes: implication for vascular control publication-title: Am J Physiol Heart Circ Physiol – volume: 91 start-page: 1981 year: 1995 end-page: 1987 article-title: Aging and endothelial function in normotensive subjects and patients with essential hypertension publication-title: Circulation – volume: 581 start-page: 853 year: 2007 end-page: 861 article-title: Inhibition of nitric oxide and prostaglandins, but not endothelial‐derived hyperpolarizing factors, reduces blood flow and aerobic energy turnover in the exercising human leg publication-title: J Physiol – volume: 59 start-page: 182 year: 2010 end-page: 189 article-title: Attenuated purinergic receptor function in patients with type 2 diabetes publication-title: Diabetes – volume: 33 start-page: 1058 year: 2012 end-page: 1066 article-title: The human sympathetic nervous system: its relevance in hypertension and heart failure publication-title: Eur Heart J – volume: 583 start-page: 819 year: 2007 end-page: 823 article-title: Exercise hyperaemia: magnitude and aspects on regulation in humans publication-title: J Physiol – volume: 506 start-page: 817 year: 1998 end-page: 826 article-title: Nitric oxide mediates contraction‐induced attenuation of sympathetic vasoconstriction in rat skeletal muscle publication-title: J Physiol – volume: 296 start-page: R1140 year: 2009a end-page: R1148 article-title: ATP‐induced vasodilation and purinergic receptors in the human leg: roles of nitric oxide, prostaglandins, and adenosine publication-title: Am J Physiol Regul Integr Comp Physiol – volume: 30 start-page: 163 year: 1929 end-page: 184 article-title: The actions of tyramine on the circulation and smooth muscle publication-title: J Pharmacol – ident: e_1_2_4_28_1 doi: 10.1093/eurheartj/ehs041 – ident: e_1_2_4_27_1 doi: 10.1113/jphysiol.2011.225136 – ident: e_1_2_4_10_1 doi: 10.1152/japplphysiol.01025.2001 – ident: e_1_2_4_25_1 doi: 10.1113/jphysiol.2010.203034 – ident: e_1_2_4_36_1 doi: 10.1113/jphysiol.2007.136309 – ident: e_1_2_4_31_1 doi: 10.1007/BF01755017 – ident: e_1_2_4_49_1 doi: 10.1113/jphysiol.2010.195255 – ident: e_1_2_4_18_1 doi: 10.1113/jphysiol.2010.204081 – ident: e_1_2_4_45_1 doi: 10.1152/japplphysiol.00290.2011 – ident: e_1_2_4_44_1 doi: 10.2337/db09-1068 – ident: e_1_2_4_24_1 doi: 10.1113/jphysiol.2012.240093 – ident: e_1_2_4_26_1 doi: 10.1113/jphysiol.2003.059717 – ident: e_1_2_4_15_1 doi: 10.1113/jphysiol.2012.234963 – ident: e_1_2_4_37_1 doi: 10.1073/pnas.250379497 – start-page: 336 volume-title: Handbook of Experimental Pharmacology year: 1972 ident: e_1_2_4_48_1 – ident: e_1_2_4_20_1 doi: 10.1113/jphysiol.2006.127423 – ident: e_1_2_4_47_1 doi: 10.1111/j.1469-7793.1998.817bv.x – ident: e_1_2_4_17_1 doi: 10.1113/jphysiol.2010.197814 – ident: e_1_2_4_41_1 doi: 10.1161/01.CIR.91.7.1981 – ident: e_1_2_4_19_1 doi: 10.1111/j.1469-7793.2003.00337.x – ident: e_1_2_4_34_1 doi: 10.1113/jphysiol.2008.155432 – ident: e_1_2_4_29_1 doi: 10.1152/jappl.1998.85.1.68 – volume: 276 start-page: H1951 year: 1999 ident: e_1_2_4_30_1 article-title: Nitric oxide in the regulation of vasomotor tone in human skeletal muscle publication-title: Am J Physiol Heart Circ Physiol doi: 10.1152/ajpheart.1999.276.6.H1951 – ident: e_1_2_4_3_1 doi: 10.1007/BF00497004 – ident: e_1_2_4_9_1 doi: 10.1113/jphysiol.2005.087668 – ident: e_1_2_4_39_1 doi: 10.1152/ajpheart.00729.2011 – ident: e_1_2_4_2_1 doi: 10.1113/jphysiol.2004.068262 – ident: e_1_2_4_12_1 doi: 10.1113/jphysiol.2011.218917 – ident: e_1_2_4_16_1 doi: 10.1152/ajpheart.1992.263.4.H1078 – volume: 257 start-page: H1812 year: 1989 ident: e_1_2_4_38_1 article-title: Norepinephrine spillover from skeletal muscle during exercise in humans: role of muscle mass publication-title: Am J Physiol Heart Circ Physiol doi: 10.1152/ajpheart.1989.257.6.H1812 – ident: e_1_2_4_14_1 doi: 10.1113/jphysiol.2004.072900 – ident: e_1_2_4_4_1 doi: 10.1113/jphysiol.2001.013153 – ident: e_1_2_4_46_1 doi: 10.1161/01.RES.0000061570.83105.52 – ident: e_1_2_4_22_1 doi: 10.1152/japplphysiol.00638.2009 – volume: 30 start-page: 163 year: 1929 ident: e_1_2_4_42_1 article-title: The actions of tyramine on the circulation and smooth muscle publication-title: J Pharmacol – ident: e_1_2_4_32_1 doi: 10.1161/01.RES.11.3.370 – ident: e_1_2_4_35_1 doi: 10.1152/japplphysiol.00634.2003 – ident: e_1_2_4_23_1 doi: 10.1152/ajpheart.01204.2011 – ident: e_1_2_4_40_1 doi: 10.1111/j.1469-7793.1999.283af.x – ident: e_1_2_4_13_1 doi: 10.1038/icb.1968.36 – ident: e_1_2_4_11_1 doi: 10.1016/j.jacc.2011.06.025 – ident: e_1_2_4_50_1 doi: 10.1113/jphysiol.2010.203026 – ident: e_1_2_4_7_1 doi: 10.1113/jphysiol.2003.049940 – ident: e_1_2_4_6_1 doi: 10.1161/01.RES.16.2.174 – ident: e_1_2_4_5_1 doi: 10.1152/japplphysiol.00179.2004 – ident: e_1_2_4_8_1 doi: 10.1152/ajpheart.00621.2004 – ident: e_1_2_4_21_1 doi: 10.1152/ajpregu.90822.2008 – ident: e_1_2_4_33_1 doi: 10.1113/jphysiol.2004.063107 – ident: e_1_2_4_43_1 doi: 10.2337/dc10-2129 – ident: e_1_2_4_51_1 doi: 10.3109/00365517409114201 – reference: 12600881 - Circ Res. 2003 Mar 21;92(5):554-60 – reference: 14259357 - Circ Res. 1965 Feb;16:174-82 – reference: 15388783 - J Physiol. 2004 Dec 1;561(Pt 2):535-45 – reference: 22271868 - J Physiol. 2012 Mar 15;590(6):1481-94 – reference: 1415755 - Am J Physiol. 1992 Oct;263(4 Pt 2):H1078-83 – reference: 17347273 - J Physiol. 2007 Jun 1;581(Pt 2):853-61 – reference: 12949223 - J Physiol. 2003 Nov 15;553(Pt 1):281-92 – reference: 13981593 - Circ Res. 1962 Sep;11:370-80 – reference: 21224235 - J Physiol. 2011 Mar 1;589(Pt 5):1209-20 – reference: 21963837 - Am J Physiol Heart Circ Physiol. 2011 Dec;301(6):H2466-72 – reference: 22408019 - Am J Physiol Heart Circ Physiol. 2012 May 15;302(10):H2074-82 – reference: 9655757 - J Appl Physiol (1985). 1998 Jul;85(1):68-75 – reference: 15220322 - J Appl Physiol (1985). 2004 Jul;97(1):393-403 – reference: 12824451 - J Physiol. 2003 Aug 15;551(Pt 1):337-44 – reference: 21920265 - J Am Coll Cardiol. 2011 Sep 20;58(13):1353-62 – reference: 5683498 - Aust J Exp Biol Med Sci. 1968 Aug;46(4):425-34 – reference: 2603969 - Am J Physiol. 1989 Dec;257(6 Pt 2):H1812-8 – reference: 21486772 - J Physiol. 2011 May 15;589(Pt 10):2641-53 – reference: 15155791 - J Physiol. 2004 Jul 1;558(Pt 1):351-65 – reference: 19118095 - Am J Physiol Regul Integr Comp Physiol. 2009 Apr;296(4):R1140-8 – reference: 14990681 - J Physiol. 2004 May 1;556(Pt 3):1001-11 – reference: 11927694 - J Physiol. 2002 Apr 1;540(Pt 1):377-86 – reference: 4827762 - Scand J Clin Lab Invest. 1974 Feb;33(1):79-86 – reference: 723969 - Naunyn Schmiedebergs Arch Pharmacol. 1978 Oct;305(1):37-40 – reference: 10362675 - Am J Physiol. 1999 Jun;276(6 Pt 2):H1951-60 – reference: 22106180 - J Physiol. 2012 Jan 15;590(2):395-407 – reference: 18703581 - J Physiol. 2008 Oct 15;586(20):4993-5002 – reference: 20819945 - J Physiol. 2010 Nov 15;588(Pt 22):4563-78 – reference: 20807789 - J Physiol. 2010 Oct 15;588(Pt 20):4017-27 – reference: 22733661 - J Physiol. 2012 Oct 15;590(20):5015-23 – reference: 15576454 - J Physiol. 2005 Mar 1;563(Pt 2):541-55 – reference: 7895356 - Circulation. 1995 Apr 1;91(7):1981-7 – reference: 17640931 - J Physiol. 2007 Sep 15;583(Pt 3):819-23 – reference: 11087833 - Proc Natl Acad Sci U S A. 2000 Dec 5;97(25):13818-23 – reference: 19797688 - J Appl Physiol (1985). 2009 Dec;107(6):1757-62 – reference: 22507981 - Eur Heart J. 2012 May;33(9):1058-66 – reference: 9831733 - J Physiol. 1999 Jan 1;514 ( Pt 1):283-91 – reference: 21447654 - Diabetes Care. 2011 May;34(5):1186-91 – reference: 12923119 - J Appl Physiol (1985). 2003 Dec;95(6):2370-4 – reference: 21512151 - J Appl Physiol (1985). 2011 Jul;111(1):244-50 – reference: 11960953 - J Appl Physiol (1985). 2002 May;92(5):2019-25 – reference: 15946964 - J Physiol. 2005 Aug 15;567(Pt 1):311-21 – reference: 9503340 - J Physiol. 1998 Feb 1;506 ( Pt 3):817-26 – reference: 15271659 - Am J Physiol Heart Circ Physiol. 2004 Dec;287(6):H2576-84 – reference: 19808895 - Diabetes. 2010 Jan;59(1):182-9 – reference: 21300753 - J Physiol. 2011 Apr 1;589(Pt 7):1847-57 |
SSID | ssj0013099 |
Score | 2.394297 |
SecondaryResourceType | review_article |
Snippet | Contracting skeletal muscle can overcome sympathetic vasoconstrictor activity (functional sympatholysis), which allows for a blood supply that matches the... Abstract Contracting skeletal muscle can overcome sympathetic vasoconstrictor activity (functional sympatholysis), which allows for a blood supply that... Abstract Contracting skeletal muscle can overcome sympathetic vasoconstrictor activity (functional sympatholysis), which allows for a blood supply that matches... |
SourceID | pubmedcentral proquest pubmed crossref wiley |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 6269 |
SubjectTerms | Adenosine Triphosphate - metabolism Age Factors Aging Animals Biochemistry Blood Vessels - innervation Cardiovascular Diseases - metabolism Cardiovascular Diseases - physiopathology Energy Metabolism Exercise Exercise (effects) Female Hemodynamics Humans Legs Male Men Muscle Contraction Muscle, Skeletal - blood supply Muscle, Skeletal - innervation Muscle, Skeletal - metabolism Muscles (activity) Musculoskeletal system Nitric Oxide - metabolism Physical fitness Physiology Receptors, Purinergic P2 - metabolism Regional Blood Flow Sympathetic Nervous System - metabolism Sympathetic Nervous System - physiopathology Symposium Section Reviews: Blood Flow Regulation: From Rest to Maximal Exercise Tyramine - metabolism Vasoconstriction Vasodilation Youth |
Title | Inefficient functional sympatholysis is an overlooked cause of malperfusion in contracting skeletal muscle |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1113%2Fjphysiol.2012.241026 https://www.ncbi.nlm.nih.gov/pubmed/22988143 https://www.proquest.com/docview/1545340790 https://www.proquest.com/docview/1240217627 https://www.proquest.com/docview/1272712860 https://pubmed.ncbi.nlm.nih.gov/PMC3533189 |
Volume | 590 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELaqnrjwKo-UUhkJccsSO7ETHyvEqlQCVaiVeoucxF7a7jpVszksv54ZOwksRYBAyil-xHbGnm8848-EvOYGgL01IgbjooqzWvJY6xoWQ5mJXNVNlXs6ho-f5PF5dnIhLnbIfDwLE_ghpg03nBl-vcYJrqvhFhKGZANX3vRv0X3A-AwUEXwUlmIM20Js9Jl_dyYkSk2k4blgwwk6qObtryrZ1lB3YOfd6MkfUa1XS_MHZDF2KESjXM_6dTWrv_7E9fj_PX5I7g_IlR4FUXtEdox7TPaOHFjtqw19Q09DsXax2SNXH5zx3BTQeIqqM-w40m6zwiuQW8-DQuHRjmIM6RKJPxta674ztLV0pZc35tb2uJVHLx31AfV4BMMtaHcNmhJMBrrqO2jIE3I-f3_27jgebnWIazBNeGyyxEpjpLJMW6TKkU1mGlUVxuYNVwVLG1ZlXMsGsGdqhWwEgJgi0wj1AI-kT8mua515TqjJAG5YrSTTaWZUUoma1VLUVZo0ueUiIun4J8t6oDzHmzeWZTB90nIc0hKHtAxDGpF4KnUTKD_-kP9gFJJyWAC6EpFpCsaySiLyakqGqYv-GO1M20Me9Gwx0Eb57_IAwAQMIaGeZ0HupkZxGK0C8G5E8i2JnDIgdfh2irv84inEU0D5rFAR4V7g_qqf5dnJqQC8s_8vhV6Qe_g2BAIdkN31bW9eApxbV4d-sh76fbZvqepI3g |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZKOcCFAuURKGAkxC1L4sTO-lghyra0VYW2Um-R49h97TpVszlsfz0zzgOWIkAIKbeMHduZ8Xxjjz8T8o4ZAPbW8BCCiyJMtWChUhomQ5HyTOqyyDwdw8GhmByneyf8ZI187s_CtPwQw4IbWoafr9HAcUG6s3JkG7jwsX-F-wcxG4Engq_eIXfxcm8fW31l37cTIikH2vCMx90ZOqjnw69qWfVRt4Dn7fzJH3Gtd0w7G-Ss71Kbj3I5ahbFSN_8xPb4H_r8kDzowCvdbrXtEVkz7jHZ3HYQuM-X9D09aotVp8tNcrHrjKengNZT9J7toiOtl3O8BbnyVCgUHuUoppHOkPuzpFo1taGVpXM1uzLXtsHVPHruqM-px1MY7pTWl-AsIWqg86aGhjwhxzufph8nYXexQ6ghOmGhSSMrjBHSxsoiW44oU1PKYmxsVjI5jpMyLlKmRAnwM7FclBxwzDhViPYAkiRPybqrnHlOqEkBcVglRayS1Mio4DrWgusiicrMMh6QpP-Vue5Yz_HyjVneRj9J3g9pjkOat0MakHAoddWyfvxBfqvXkrybA-ocwWkC8bKMAvJ2eA3Wi1syypmqARnc3IrBIWW_kwGMCTBCQD3PWsUbGsVgtMYAeQOSrajkIIDs4atv3PmZZxFPAOjHYxkQ5jXur_qZT_eOOECeF_9S6A25N5ke7Of7u4dfXpL7KNHmBW2R9cV1Y14BulsUr73lfgM-9Evp |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZKkRAXXuURKGAkxC1L4thOfKwoq7ZAtUKt1FvkOPbSdtdZNZvD8usZ29nAUgQIpNwydmxnxvONPf6M0GuiAdgbzWIILqqYKk5iKRVMhpyyXKi6yj0dw6djfnBKj87Y2RYar8_CBH6IYcHNWYafr52BL2rTG7kjG7jwoX_jtg9SMgJHBB-9gW5SnhROu_c_k--7CYkQA2t4ztL-CB3U8_ZXtWy6qGu483r65I-w1vul8V00XfcopKNcjrplNVJffyJ7_P8u30N3euiK94Ku3Udb2j5AO3sWwvb5Cr_Bk1Csma520MWh1Z6cAhqPne8MS464Xc3dHciNJ0LB8EiLXRLpzDF_1ljJrtW4MXguZwt9ZTq3lofPLfYZ9e4Mhp3i9hJcJcQMeN610JCH6HT8_uTdQdxf6xAriE1IrGliuNZcmFQax5XDa6prURXa5DURRZrVaUWJ5DWAz8wwXjNAMQWVDusBIMkeoW3bWP0EYU0BbxgpeCozqkVSMZUqzlSVJXVuCItQtv6Tpeo5z93VG7MyxD5ZuR7S0g1pGYY0QvFQahE4P_4gv7tWkrKfAdrSQdMMomWRROjV8Bps123ISKubDmTc1lYK7ij_nQwgTAARHOp5HPRuaBSB0SoA8EYo39DIQcBxh2--sedfPId4BjA_LUSEiFe4v-pneXI0YQB4nv5LoZfo1mR_XH48PP7wDN12AiEpaBdtL686_Ryg3bJ64e32G0xsSqE |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Inefficient+functional+sympatholysis+is+an+overlooked+cause+of+malperfusion+in+contracting+skeletal+muscle&rft.jtitle=The+Journal+of+physiology&rft.au=Saltin%2C+Bengt&rft.au=Mortensen%2C+Stefan+P&rft.date=2012-12-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=0022-3751&rft.eissn=1469-7793&rft.volume=590&rft.issue=24&rft.spage=6269&rft_id=info:doi/10.1113%2Fjphysiol.2012.241026&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=3374395301 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-3751&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-3751&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-3751&client=summon |