Inefficient functional sympatholysis is an overlooked cause of malperfusion in contracting skeletal muscle

Contracting skeletal muscle can overcome sympathetic vasoconstrictor activity (functional sympatholysis), which allows for a blood supply that matches the metabolic demand. This ability is thought to be mediated by locally released substances that modulate the effect of noradrenaline (NA) on the α‐r...

Full description

Saved in:
Bibliographic Details
Published inThe Journal of physiology Vol. 590; no. 24; pp. 6269 - 6275
Main Authors Saltin, Bengt, Mortensen, Stefan P.
Format Journal Article
LanguageEnglish
Published Oxford, UK Blackwell Publishing Ltd 01.12.2012
Wiley Subscription Services, Inc
Blackwell Science Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Contracting skeletal muscle can overcome sympathetic vasoconstrictor activity (functional sympatholysis), which allows for a blood supply that matches the metabolic demand. This ability is thought to be mediated by locally released substances that modulate the effect of noradrenaline (NA) on the α‐receptor. Tyramine induces local NA release and can be used in humans to investigate the underlying mechanisms and physiological importance of functional sympatholysis in the muscles of healthy and diseased individuals as well as the impact of the active muscles’ training status. In sedentary elderly men, functional sympatholysis and muscle blood flow are impaired compared to young men, but regular physical activity can prevent these age related impairments. In young subjects, two weeks of leg immobilization causes a reduced ability for functional sympatholysis, whereas the trained leg maintained this function. Patients with essential hypertension have impaired functional sympatholysis in the forearm, and reduced exercise hyperaemia in the leg, but this can be normalized by aerobic exercise training. The effect of physical activity on the local mechanisms that modulate sympathetic vasoconstriction is clear, but it remains uncertain which locally released substance(s) block the effect of NA and how this is accomplished. NO and ATP have been proposed as important inhibitors of NA mediated vasoconstriction and presently an inhibitory effect of ATP on NA signalling via P2 receptors appears most likely.
AbstractList Contracting skeletal muscle can overcome sympathetic vasoconstrictor activity (functional sympatholysis), which allows for a blood supply that matches the metabolic demand. This ability is thought to be mediated by locally released substances that modulate the effect of noradrenaline (NA) on the α‐receptor. Tyramine induces local NA release and can be used in humans to investigate the underlying mechanisms and physiological importance of functional sympatholysis in the muscles of healthy and diseased individuals as well as the impact of the active muscles’ training status. In sedentary elderly men, functional sympatholysis and muscle blood flow are impaired compared to young men, but regular physical activity can prevent these age related impairments. In young subjects, two weeks of leg immobilization causes a reduced ability for functional sympatholysis, whereas the trained leg maintained this function. Patients with essential hypertension have impaired functional sympatholysis in the forearm, and reduced exercise hyperaemia in the leg, but this can be normalized by aerobic exercise training. The effect of physical activity on the local mechanisms that modulate sympathetic vasoconstriction is clear, but it remains uncertain which locally released substance(s) block the effect of NA and how this is accomplished. NO and ATP have been proposed as important inhibitors of NA mediated vasoconstriction and presently an inhibitory effect of ATP on NA signalling via P2 receptors appears most likely.
Abstract Contracting skeletal muscle can overcome sympathetic vasoconstrictor activity (functional sympatholysis), which allows for a blood supply that matches the metabolic demand. This ability is thought to be mediated by locally released substances that modulate the effect of noradrenaline (NA) on the [alpha]-receptor. Tyramine induces local NA release and can be used in humans to investigate the underlying mechanisms and physiological importance of functional sympatholysis in the muscles of healthy and diseased individuals as well as the impact of the active muscles' training status. In sedentary elderly men, functional sympatholysis and muscle blood flow are impaired compared to young men, but regular physical activity can prevent these age related impairments. In young subjects, two weeks of leg immobilization causes a reduced ability for functional sympatholysis, whereas the trained leg maintained this function. Patients with essential hypertension have impaired functional sympatholysis in the forearm, and reduced exercise hyperaemia in the leg, but this can be normalized by aerobic exercise training. The effect of physical activity on the local mechanisms that modulate sympathetic vasoconstriction is clear, but it remains uncertain which locally released substance(s) block the effect of NA and how this is accomplished. NO and ATP have been proposed as important inhibitors of NA mediated vasoconstriction and presently an inhibitory effect of ATP on NA signalling via P2 receptors appears most likely.
Contracting skeletal muscle can overcome sympathetic vasoconstrictor activity (functional sympatholysis), which allows for a blood supply that matches the metabolic demand. This ability is thought to be mediated by locally released substances that modulate the effect of noradrenaline (NA) on the α-receptor. Tyramine induces local NA release and can be used in humans to investigate the underlying mechanisms and physiological importance of functional sympatholysis in the muscles of healthy and diseased individuals as well as the impact of the active muscles' training status. In sedentary elderly men, functional sympatholysis and muscle blood flow are impaired compared to young men, but regular physical activity can prevent these age related impairments. In young subjects, two weeks of leg immobilization causes a reduced ability for functional sympatholysis, whereas the trained leg maintained this function. Patients with essential hypertension have impaired functional sympatholysis in the forearm, and reduced exercise hyperaemia in the leg, but this can be normalized by aerobic exercise training. The effect of physical activity on the local mechanisms that modulate sympathetic vasoconstriction is clear, but it remains uncertain which locally released substance(s) block the effect of NA and how this is accomplished. NO and ATP have been proposed as important inhibitors of NA mediated vasoconstriction and presently an inhibitory effect of ATP on NA signalling via P2 receptors appears most likely.Contracting skeletal muscle can overcome sympathetic vasoconstrictor activity (functional sympatholysis), which allows for a blood supply that matches the metabolic demand. This ability is thought to be mediated by locally released substances that modulate the effect of noradrenaline (NA) on the α-receptor. Tyramine induces local NA release and can be used in humans to investigate the underlying mechanisms and physiological importance of functional sympatholysis in the muscles of healthy and diseased individuals as well as the impact of the active muscles' training status. In sedentary elderly men, functional sympatholysis and muscle blood flow are impaired compared to young men, but regular physical activity can prevent these age related impairments. In young subjects, two weeks of leg immobilization causes a reduced ability for functional sympatholysis, whereas the trained leg maintained this function. Patients with essential hypertension have impaired functional sympatholysis in the forearm, and reduced exercise hyperaemia in the leg, but this can be normalized by aerobic exercise training. The effect of physical activity on the local mechanisms that modulate sympathetic vasoconstriction is clear, but it remains uncertain which locally released substance(s) block the effect of NA and how this is accomplished. NO and ATP have been proposed as important inhibitors of NA mediated vasoconstriction and presently an inhibitory effect of ATP on NA signalling via P2 receptors appears most likely.
Contracting skeletal muscle can overcome sympathetic vasoconstrictor activity (functional sympatholysis), which allows for a blood supply that matches the metabolic demand. This ability is thought to be mediated by locally released substances that modulate the effect of noradrenaline (NA) on the alpha -receptor. Tyramine induces local NA release and can be used in humans to investigate the underlying mechanisms and physiological importance of functional sympatholysis in the muscles of healthy and diseased individuals as well as the impact of the active muscles' training status. In sedentary elderly men, functional sympatholysis and muscle blood flow are impaired compared to young men, but regular physical activity can prevent these age related impairments. In young subjects, two weeks of leg immobilization causes a reduced ability for functional sympatholysis, whereas the trained leg maintained this function. Patients with essential hypertension have impaired functional sympatholysis in the forearm, and reduced exercise hyperaemia in the leg, but this can be normalized by aerobic exercise training. The effect of physical activity on the local mechanisms that modulate sympathetic vasoconstriction is clear, but it remains uncertain which locally released substance(s) block the effect of NA and how this is accomplished. NO and ATP have been proposed as important inhibitors of NA mediated vasoconstriction and presently an inhibitory effect of ATP on NA signalling via P2 receptors appears most likely.
Abstract  Contracting skeletal muscle can overcome sympathetic vasoconstrictor activity (functional sympatholysis), which allows for a blood supply that matches the metabolic demand. This ability is thought to be mediated by locally released substances that modulate the effect of noradrenaline (NA) on the α‐receptor. Tyramine induces local NA release and can be used in humans to investigate the underlying mechanisms and physiological importance of functional sympatholysis in the muscles of healthy and diseased individuals as well as the impact of the active muscles’ training status. In sedentary elderly men, functional sympatholysis and muscle blood flow are impaired compared to young men, but regular physical activity can prevent these age related impairments. In young subjects, two weeks of leg immobilization causes a reduced ability for functional sympatholysis, whereas the trained leg maintained this function. Patients with essential hypertension have impaired functional sympatholysis in the forearm, and reduced exercise hyperaemia in the leg, but this can be normalized by aerobic exercise training. The effect of physical activity on the local mechanisms that modulate sympathetic vasoconstriction is clear, but it remains uncertain which locally released substance(s) block the effect of NA and how this is accomplished. NO and ATP have been proposed as important inhibitors of NA mediated vasoconstriction and presently an inhibitory effect of ATP on NA signalling via P2 receptors appears most likely.
Author Saltin, Bengt
Mortensen, Stefan P.
Author_xml – sequence: 1
  givenname: Bengt
  surname: Saltin
  fullname: Saltin, Bengt
– sequence: 2
  givenname: Stefan P.
  surname: Mortensen
  fullname: Mortensen, Stefan P.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/22988143$$D View this record in MEDLINE/PubMed
BookMark eNqNkktv1DAUhS1URKeFf4CQJTZsMvidmAUSqngUVYJFWVue5LrjqWOHOCmaf4-j6SDohkqWvPA5n499zxk6iSkCQi8pWVNK-dvdsN1nn8KaEcrWTFDC1BO0okLpqq41P0ErQhireC3pKTrLeUcI5UTrZ-iUMd00VPAV2l1GcM63HuKE3RzbyadoA877frDTNoVyR8Zl2YjTHYwhpVvocGvnDDg53NswwOjmkiRiH3Gb4jTaQok3ON9CgKnA-jm3AZ6jp86GDC_u93P049PH64sv1dW3z5cXH66qVjaSVSCIUwBKO2pdw3itOgGd3jTg6q7kpryjG8Gs6jTj3EnVyYaxRlghFaXl-By9P3CHedND18KSKJhh9L0d9yZZb_49iX5rbtKd4ZJz2ugCeHMPGNPPGfJkep9bCMFGSHM2lNWspqxR5BFSQRitFauL9PUD6S7NY_nropJCckFqvQBf_R3-T-rjxIrg3UHQjinnEZxp_WSXqZW3-GAoMUs9zLEeZqmHOdSjmMUD85H_H5s-2H75APtHecz11--SK8Z_A8Il1P0
CODEN JPHYA7
CitedBy_id crossref_primary_10_1152_japplphysiol_00205_2021
crossref_primary_10_1152_japplphysiol_00787_2014
crossref_primary_10_3389_fphys_2022_898395
crossref_primary_10_1152_japplphysiol_00057_2016
crossref_primary_10_1016_j_autneu_2022_102969
crossref_primary_10_1152_ajpheart_00103_2014
crossref_primary_10_14814_phy2_14068
crossref_primary_10_14814_phy2_12164
crossref_primary_10_1152_ajpheart_00877_2013
crossref_primary_10_1155_2018_4081802
crossref_primary_10_1016_j_autneu_2014_10_019
crossref_primary_10_1139_apnm_2019_0130
crossref_primary_10_1016_j_niox_2022_06_002
crossref_primary_10_3109_10715762_2013_835045
crossref_primary_10_1113_EP091656
crossref_primary_10_1139_apnm_2016_0393
crossref_primary_10_1152_japplphysiol_00726_2020
crossref_primary_10_1111_cpf_12919
crossref_primary_10_1152_ajpheart_00283_2023
crossref_primary_10_1249_MSS_0000000000001857
crossref_primary_10_1152_ajpregu_00042_2017
crossref_primary_10_1152_japplphysiol_00005_2017
crossref_primary_10_1016_j_autneu_2014_10_010
crossref_primary_10_1152_ajpregu_00380_2018
crossref_primary_10_1113_jphysiol_2014_285411
crossref_primary_10_1111_sms_12591
crossref_primary_10_1016_j_jsams_2022_10_009
crossref_primary_10_1152_ajpheart_00474_2016
crossref_primary_10_1113_expphysiol_2014_081620
crossref_primary_10_1093_eurheartj_ehae798
crossref_primary_10_1161_HYPERTENSIONAHA_117_09558
crossref_primary_10_1152_ajprenal_00302_2023
crossref_primary_10_1016_j_crphys_2021_01_002
crossref_primary_10_1113_jphysiol_2014_286815
crossref_primary_10_1152_ajpheart_00532_2020
crossref_primary_10_1007_s00424_018_2206_0
crossref_primary_10_3390_nu16121935
crossref_primary_10_1080_10408363_2017_1394267
crossref_primary_10_1113_JP270594
crossref_primary_10_12965_jer_1735114_557
crossref_primary_10_1016_j_mam_2016_06_001
crossref_primary_10_1113_jphysiol_2013_262246
crossref_primary_10_1152_japplphysiol_00568_2019
crossref_primary_10_3389_fcvm_2023_1148324
crossref_primary_10_1113_JP281730
crossref_primary_10_1113_jphysiol_2014_273722
crossref_primary_10_31083_j_rcm2403064
crossref_primary_10_1111_cpf_12739
crossref_primary_10_14814_phy2_70180
crossref_primary_10_1152_ajpheart_00398_2017
crossref_primary_10_14814_phy2_15133
crossref_primary_10_1016_j_coph_2019_04_002
crossref_primary_10_1038_s41366_024_01462_1
crossref_primary_10_1152_ajpheart_00653_2015
crossref_primary_10_1152_japplphysiol_00671_2019
crossref_primary_10_1152_japplphysiol_00993_2013
crossref_primary_10_1007_s00125_018_4790_0
crossref_primary_10_1126_scisignal_aaa7312
crossref_primary_10_1152_ajpheart_00214_2023
crossref_primary_10_1016_j_cophys_2019_05_001
crossref_primary_10_1113_JP272829
crossref_primary_10_3389_fphys_2014_00192
crossref_primary_10_1002_tsm2_1
crossref_primary_10_1007_s00421_021_04756_8
crossref_primary_10_1152_ajpheart_00649_2019
crossref_primary_10_1113_JP275777
crossref_primary_10_1186_s40101_015_0075_1
crossref_primary_10_14814_phy2_13703
crossref_primary_10_1007_s00421_017_3660_7
crossref_primary_10_1016_j_diabres_2019_03_007
crossref_primary_10_1152_ajpheart_00208_2020
crossref_primary_10_1113_JP279462
crossref_primary_10_1161_HYPERTENSIONAHA_111_00328
crossref_primary_10_1016_j_cjca_2020_12_006
crossref_primary_10_3389_fphys_2021_628840
crossref_primary_10_3389_fphys_2024_1495648
crossref_primary_10_1113_EP092100
crossref_primary_10_1113_JP286912
crossref_primary_10_1152_physrev_00035_2013
crossref_primary_10_1161_HYPERTENSIONAHA_113_01302
crossref_primary_10_1139_apnm_2019_0445
crossref_primary_10_1111_apha_12325
crossref_primary_10_1113_jphysiol_2012_246934
crossref_primary_10_1152_ajpheart_00925_2012
crossref_primary_10_1152_japplphysiol_00634_2017
Cites_doi 10.1093/eurheartj/ehs041
10.1113/jphysiol.2011.225136
10.1152/japplphysiol.01025.2001
10.1113/jphysiol.2010.203034
10.1113/jphysiol.2007.136309
10.1007/BF01755017
10.1113/jphysiol.2010.195255
10.1113/jphysiol.2010.204081
10.1152/japplphysiol.00290.2011
10.2337/db09-1068
10.1113/jphysiol.2012.240093
10.1113/jphysiol.2003.059717
10.1113/jphysiol.2012.234963
10.1073/pnas.250379497
10.1113/jphysiol.2006.127423
10.1111/j.1469-7793.1998.817bv.x
10.1113/jphysiol.2010.197814
10.1161/01.CIR.91.7.1981
10.1111/j.1469-7793.2003.00337.x
10.1113/jphysiol.2008.155432
10.1152/jappl.1998.85.1.68
10.1152/ajpheart.1999.276.6.H1951
10.1007/BF00497004
10.1113/jphysiol.2005.087668
10.1152/ajpheart.00729.2011
10.1113/jphysiol.2004.068262
10.1113/jphysiol.2011.218917
10.1152/ajpheart.1992.263.4.H1078
10.1152/ajpheart.1989.257.6.H1812
10.1113/jphysiol.2004.072900
10.1113/jphysiol.2001.013153
10.1161/01.RES.0000061570.83105.52
10.1152/japplphysiol.00638.2009
10.1161/01.RES.11.3.370
10.1152/japplphysiol.00634.2003
10.1152/ajpheart.01204.2011
10.1111/j.1469-7793.1999.283af.x
10.1038/icb.1968.36
10.1016/j.jacc.2011.06.025
10.1113/jphysiol.2010.203026
10.1113/jphysiol.2003.049940
10.1161/01.RES.16.2.174
10.1152/japplphysiol.00179.2004
10.1152/ajpheart.00621.2004
10.1152/ajpregu.90822.2008
10.1113/jphysiol.2004.063107
10.2337/dc10-2129
10.3109/00365517409114201
ContentType Journal Article
Copyright 2012 The Authors. The Journal of Physiology © 2012 The Physiological Society
2012 The Authors. The Journal of Physiology © 2012 The Physiological Society 2012
Copyright_xml – notice: 2012 The Authors. The Journal of Physiology © 2012 The Physiological Society
– notice: 2012 The Authors. The Journal of Physiology © 2012 The Physiological Society 2012
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QP
7QR
7TK
7TS
8FD
FR3
P64
7X8
5PM
DOI 10.1113/jphysiol.2012.241026
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Neurosciences Abstracts
Physical Education Index
Technology Research Database
Engineering Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Technology Research Database
Chemoreception Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
Neurosciences Abstracts
Physical Education Index
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList
Technology Research Database

MEDLINE
MEDLINE - Academic
Physical Education Index
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 1469-7793
EndPage 6275
ExternalDocumentID PMC3533189
3374395301
22988143
10_1113_jphysiol_2012_241026
TJP5362
Genre reviewArticle
Research Support, Non-U.S. Gov't
Journal Article
Review
GroupedDBID ---
-DZ
-~X
.3N
.55
.GA
.GJ
.Y3
05W
0R~
0YM
10A
123
18M
1OB
1OC
24P
29L
2WC
31~
33P
36B
3EH
3O-
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5GY
5HH
5LA
5RE
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAFWJ
AAHHS
AAHQN
AAIPD
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAYJJ
AAZKR
ABCQN
ABCUV
ABEML
ABITZ
ABIVO
ABJNI
ABOCM
ABPPZ
ABPVW
ABQWH
ABXGK
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFO
ACGFS
ACGOF
ACIWK
ACMXC
ACNCT
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AEIMD
AEQDE
AEUQT
AEUYR
AFBPY
AFEBI
AFFNX
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AI.
AIACR
AIAGR
AITYG
AIURR
AIWBW
AJBDE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
AOIJS
ATUGU
AZBYB
AZVAB
BAFTC
BAWUL
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BY8
C1A
C45
CAG
CHEAL
COF
CS3
D-6
D-7
D-E
D-F
DCZOG
DIK
DPXWK
DR2
DRFUL
DRMAN
DRSTM
E3Z
EBS
EJD
EMOBN
EX3
F00
F01
F04
F5P
FA8
FIJ
FUBAC
G-S
G.N
GODZA
GX1
H.X
H13
HF~
HGLYW
HZI
HZ~
H~9
IHE
IPNFZ
IX1
J0M
K48
KBYEO
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MVM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NEJ
NF~
O66
O9-
OHT
OIG
OK1
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
Q.N
Q11
QB0
R.K
RIG
ROL
RPM
RX1
SAMSI
SUPJJ
TEORI
TLM
TN5
TR2
UB1
UKR
UPT
V8K
VH1
W8F
W8V
W99
WBKPD
WH7
WHG
WIH
WIJ
WIK
WIN
WNSPC
WOHZO
WOQ
WOW
WQJ
WRC
WXI
WXSBR
WYISQ
X7M
XG1
XOL
YBU
YHG
YKV
YQT
YSK
YXB
YYP
YZZ
ZGI
ZXP
ZZTAW
~IA
~WT
AAYXX
ADXHL
AEYWJ
AGHNM
AGYGG
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QP
7QR
7TK
7TS
8FD
FR3
P64
7X8
5PM
ID FETCH-LOGICAL-c5852-e40f6ee69f1af82376d4ed9b8ef7d29813d1b42a6d9233f56d582284a45611813
IEDL.DBID DR2
ISSN 0022-3751
1469-7793
IngestDate Thu Aug 21 18:40:51 EDT 2025
Thu Jul 10 18:42:08 EDT 2025
Fri Jul 11 13:47:40 EDT 2025
Fri Jul 25 12:06:03 EDT 2025
Thu Apr 03 06:59:55 EDT 2025
Tue Jul 01 04:29:06 EDT 2025
Thu Apr 24 22:56:16 EDT 2025
Wed Jan 22 16:45:49 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 24
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5852-e40f6ee69f1af82376d4ed9b8ef7d29813d1b42a6d9233f56d582284a45611813
Notes The Journal of Physiology
which took place at the Main Meeting of The Physiological Society, Edinburgh, UK on 3 July 2012. It was commissioned by the Editorial Board and reflects the views of the authors.
Blood flow regulation: from rest to maximal exercise
This report was presented at
Symposium on
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
This report was presented at The Journal of Physiology Symposium on Blood flow regulation: from rest to maximal exercise, which took place at the Main Meeting of The Physiological Society, Edinburgh, UK on 3 July 2012. It was commissioned by the Editorial Board and reflects the views of the authors.
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/3533189
PMID 22988143
PQID 1545340790
PQPubID 1086388
PageCount 7
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_3533189
proquest_miscellaneous_1272712860
proquest_miscellaneous_1240217627
proquest_journals_1545340790
pubmed_primary_22988143
crossref_citationtrail_10_1113_jphysiol_2012_241026
crossref_primary_10_1113_jphysiol_2012_241026
wiley_primary_10_1113_jphysiol_2012_241026_TJP5362
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate December 2012
PublicationDateYYYYMMDD 2012-12-01
PublicationDate_xml – month: 12
  year: 2012
  text: December 2012
PublicationDecade 2010
PublicationPlace Oxford, UK
PublicationPlace_xml – name: Oxford, UK
– name: England
– name: London
PublicationTitle The Journal of physiology
PublicationTitleAlternate J Physiol
PublicationYear 2012
Publisher Blackwell Publishing Ltd
Wiley Subscription Services, Inc
Blackwell Science Inc
Publisher_xml – name: Blackwell Publishing Ltd
– name: Wiley Subscription Services, Inc
– name: Blackwell Science Inc
References 2004; 287
2004; 561
1968; 46
2010; 59
1974; 33
1995; 91
1992; 263
2009b; 107
1989; 257
2007; 583
2010; 588
2009a; 296
2007; 581
1972
2011; 34
2011; 58
1962; 11
2008; 586
1998; 85
1965; 16
2003; 553
2003; 95
2012; 33
2003; 551
2011; 111
2012; 590
2011; 589
2011; 301
2004; 97
2004; 556
1937; 239
2003; 92
2005; 563
2002; 540
2005; 567
2000; 97
1998; 506
2002; 92
2012b
1999; 276
1999; 514
2004; 558
1978; 305
2012a; 302
1929; 30
e_1_2_4_40_1
e_1_2_4_21_1
e_1_2_4_44_1
e_1_2_4_23_1
e_1_2_4_25_1
e_1_2_4_27_1
e_1_2_4_46_1
e_1_2_4_29_1
e_1_2_4_3_1
e_1_2_4_5_1
e_1_2_4_7_1
e_1_2_4_9_1
e_1_2_4_50_1
e_1_2_4_10_1
e_1_2_4_31_1
e_1_2_4_12_1
e_1_2_4_33_1
e_1_2_4_14_1
e_1_2_4_35_1
e_1_2_4_16_1
Tainter M (e_1_2_4_42_1) 1929; 30
e_1_2_4_37_1
e_1_2_4_18_1
Savard GK (e_1_2_4_38_1) 1989; 257
e_1_2_4_39_1
e_1_2_4_41_1
e_1_2_4_20_1
e_1_2_4_45_1
e_1_2_4_22_1
e_1_2_4_43_1
e_1_2_4_24_1
e_1_2_4_49_1
e_1_2_4_26_1
e_1_2_4_47_1
Rådegran G (e_1_2_4_30_1) 1999; 276
e_1_2_4_28_1
e_1_2_4_2_1
e_1_2_4_4_1
e_1_2_4_6_1
e_1_2_4_8_1
e_1_2_4_51_1
e_1_2_4_32_1
e_1_2_4_11_1
e_1_2_4_34_1
e_1_2_4_13_1
e_1_2_4_36_1
e_1_2_4_15_1
e_1_2_4_17_1
Trendelenburg U (e_1_2_4_48_1) 1972
e_1_2_4_19_1
19797688 - J Appl Physiol (1985). 2009 Dec;107(6):1757-62
22408019 - Am J Physiol Heart Circ Physiol. 2012 May 15;302(10):H2074-82
15271659 - Am J Physiol Heart Circ Physiol. 2004 Dec;287(6):H2576-84
17347273 - J Physiol. 2007 Jun 1;581(Pt 2):853-61
11087833 - Proc Natl Acad Sci U S A. 2000 Dec 5;97(25):13818-23
21920265 - J Am Coll Cardiol. 2011 Sep 20;58(13):1353-62
17640931 - J Physiol. 2007 Sep 15;583(Pt 3):819-23
13981593 - Circ Res. 1962 Sep;11:370-80
21963837 - Am J Physiol Heart Circ Physiol. 2011 Dec;301(6):H2466-72
15576454 - J Physiol. 2005 Mar 1;563(Pt 2):541-55
723969 - Naunyn Schmiedebergs Arch Pharmacol. 1978 Oct;305(1):37-40
22733661 - J Physiol. 2012 Oct 15;590(20):5015-23
19118095 - Am J Physiol Regul Integr Comp Physiol. 2009 Apr;296(4):R1140-8
21224235 - J Physiol. 2011 Mar 1;589(Pt 5):1209-20
10362675 - Am J Physiol. 1999 Jun;276(6 Pt 2):H1951-60
9503340 - J Physiol. 1998 Feb 1;506 ( Pt 3):817-26
14990681 - J Physiol. 2004 May 1;556(Pt 3):1001-11
15388783 - J Physiol. 2004 Dec 1;561(Pt 2):535-45
21300753 - J Physiol. 2011 Apr 1;589(Pt 7):1847-57
18703581 - J Physiol. 2008 Oct 15;586(20):4993-5002
21447654 - Diabetes Care. 2011 May;34(5):1186-91
4827762 - Scand J Clin Lab Invest. 1974 Feb;33(1):79-86
2603969 - Am J Physiol. 1989 Dec;257(6 Pt 2):H1812-8
12923119 - J Appl Physiol (1985). 2003 Dec;95(6):2370-4
12824451 - J Physiol. 2003 Aug 15;551(Pt 1):337-44
9831733 - J Physiol. 1999 Jan 1;514 ( Pt 1):283-91
21486772 - J Physiol. 2011 May 15;589(Pt 10):2641-53
12600881 - Circ Res. 2003 Mar 21;92(5):554-60
15220322 - J Appl Physiol (1985). 2004 Jul;97(1):393-403
1415755 - Am J Physiol. 1992 Oct;263(4 Pt 2):H1078-83
14259357 - Circ Res. 1965 Feb;16:174-82
15946964 - J Physiol. 2005 Aug 15;567(Pt 1):311-21
22271868 - J Physiol. 2012 Mar 15;590(6):1481-94
22106180 - J Physiol. 2012 Jan 15;590(2):395-407
21512151 - J Appl Physiol (1985). 2011 Jul;111(1):244-50
20807789 - J Physiol. 2010 Oct 15;588(Pt 20):4017-27
22507981 - Eur Heart J. 2012 May;33(9):1058-66
7895356 - Circulation. 1995 Apr 1;91(7):1981-7
12949223 - J Physiol. 2003 Nov 15;553(Pt 1):281-92
20819945 - J Physiol. 2010 Nov 15;588(Pt 22):4563-78
11927694 - J Physiol. 2002 Apr 1;540(Pt 1):377-86
9655757 - J Appl Physiol (1985). 1998 Jul;85(1):68-75
19808895 - Diabetes. 2010 Jan;59(1):182-9
5683498 - Aust J Exp Biol Med Sci. 1968 Aug;46(4):425-34
11960953 - J Appl Physiol (1985). 2002 May;92(5):2019-25
15155791 - J Physiol. 2004 Jul 1;558(Pt 1):351-65
References_xml – volume: 16
  start-page: 174
  year: 1965
  end-page: 182
  article-title: Comparative cardiovascular effects of tyramine, ephedrine, and norepinephrine in man
  publication-title: Circ Res
– volume: 590
  start-page: 1481
  year: 2012
  end-page: 1494
  article-title: Role of nitric oxide and prostanoids in the regulation of leg blood flow and blood pressure in humans with essential hypertension: effect of high‐intensity aerobic training
  publication-title: J Physiol
– volume: 239
  start-page: 464
  year: 1937
  article-title: Die lokale Stoffwechseleinschrankung bei reflektoriseh‐nervoser Durehblutungdrosselung
  publication-title: Arch Ges Physiol
– volume: 46
  start-page: 425
  year: 1968
  end-page: 434
  article-title: The action of ephedrine on forearm blood vessels in man
  publication-title: Aust J Exp Biol Med Sci
– volume: 305
  start-page: 37
  year: 1978
  end-page: 40
  article-title: Differences in the metabolic fate of noradrenaline released by electrical stimulation or by tyramine
  publication-title: Naunyn Schmiedebergs Arch Pharmacol
– volume: 107
  start-page: 1757
  year: 2009b
  end-page: 1762
  article-title: Muscle interstitial ATP and norepinephrine concentrations in the human leg during exercise and ATP infusion
  publication-title: J Appl Physiol
– volume: 514
  start-page: 283
  year: 1999
  end-page: 291
  article-title: Cardiovascular control during concomitant dynamic leg exercise and static arm exercise in humans
  publication-title: J Physiol
– volume: 263
  start-page: H1078
  year: 1992
  end-page: H1083
  article-title: Sympathetic modulation of blood flow and O uptake in rhythmically contracting human forearm muscles
  publication-title: Am J Physiol Heart Circ Physiol
– volume: 34
  start-page: 1186
  year: 2011
  end-page: 1191
  article-title: Functional sympatholysis during exercise in patients with type 2 diabetes with intact response to acetylcholine
  publication-title: Diabetes Care
– volume: 586
  start-page: 4993
  year: 2008
  end-page: 5002
  article-title: Activation of ATP/UTP selective receptors increase blood flow and blunt sympathetic vasoconstriction in human skeletal muscle
  publication-title: J Physiol
– volume: 551
  start-page: 337
  year: 2003
  end-page: 344
  article-title: Augmented leg vasoconstriction in dynamically exercising older men during acute sympathetic stimulation
  publication-title: J Physiol
– volume: 95
  start-page: 2370
  year: 2003
  end-page: 2374
  article-title: Exogenous NO administration and α‐adrenergic vasoconstriction in human limbs
  publication-title: J Appl Physiol
– volume: 558
  start-page: 351
  year: 2004
  end-page: 365
  article-title: Circulating ATP‐induced vasodilatation overrides sympathetic vasoconstrictor activity in human skeletal muscle
  publication-title: J Physiol
– volume: 589
  start-page: 1209
  year: 2011
  end-page: 1220
  article-title: Functional sympatholysis is impaired in hypertensive humans
  publication-title: J Physiol
– volume: 257
  start-page: H1812
  year: 1989
  end-page: H1818
  article-title: Norepinephrine spillover from skeletal muscle during exercise in humans: role of muscle mass
  publication-title: Am J Physiol Heart Circ Physiol
– volume: 276
  start-page: H1951
  year: 1999
  end-page: H1960
  article-title: Nitric oxide in the regulation of vasomotor tone in human skeletal muscle
  publication-title: Am J Physiol Heart Circ Physiol
– volume: 590
  start-page: 395
  year: 2012
  end-page: 407
  article-title: Oxidative stress and enhanced sympathetic vasoconstriction in contracting muscles of nitrate tolerant rats and humans
  publication-title: J Physiol
– volume: 588
  start-page: 4017
  year: 2010
  end-page: 4027
  article-title: Vasodilatory responsiveness to adenosine triphosphate in ageing humans
  publication-title: J Physiol
– volume: 85
  start-page: 68
  year: 1998
  end-page: 75
  article-title: Reduced leg blood flow during dynamic exercise in older endurance‐trained men
  publication-title: J Appl Physiol
– volume: 540
  start-page: 377
  year: 2002
  end-page: 386
  article-title: Nitric oxide‐dependent modulation of sympathetic neural control of oxygenation in exercising human skeletal muscle
  publication-title: J Physiol
– volume: 589
  start-page: 2641
  year: 2011
  end-page: 2653
  article-title: Modulation of postjunctional α‐adrenergic vasoconstriction during exercise and exogenous ATP infusions in ageing humans
  publication-title: J Physiol
– volume: 302
  start-page: H2074
  year: 2012a
  end-page: H2082
  article-title: Two weeks of muscle immobilization impairs functional sympatholysis, but increases exercise hyperemia and the vasodilatory responsiveness to infused ATP
  publication-title: Am J Physiol Heart Circ Physiol
– volume: 111
  start-page: 244
  year: 2011
  end-page: 250
  article-title: Relationship between upper and lower limb conduit artery vasodilator function in humans
  publication-title: J Appl Physiol
– year: 2012b
– volume: 92
  start-page: 554
  year: 2003
  end-page: 560
  article-title: Vasomodulation by skeletal muscle‐derived nitric oxide requires α‐syntrophin‐mediated sarcolemmal localization of neuronal nitric oxide synthase
  publication-title: Circ Res
– start-page: 336
  year: 1972
  end-page: 362
– volume: 97
  start-page: 393
  year: 2004
  end-page: 403
  article-title: Vasodilatory mechanisms in contracting skeletal muscle
  publication-title: J Appl Physiol
– volume: 11
  start-page: 370
  year: 1962
  end-page: 380
  article-title: Functional sympatholysis during muscular activity. Observations on influence of carotid sinus on oxygen uptake
  publication-title: Circ Res
– volume: 590
  start-page: 5015
  year: 2012
  end-page: 5023
  article-title: Contribution of intravascular interstitial purines and nitric oxide in the regulation of exercise hyperaemia in humans
  publication-title: J Physiol
– volume: 588
  start-page: 4563
  year: 2010
  end-page: 4578
  article-title: Involvement of the cystic fibrosis transmembrane conductance regulator in the acidosis‐induced efflux of ATP from rat skeletal muscle
  publication-title: J Physiol
– volume: 567
  start-page: 311
  year: 2005
  end-page: 321
  article-title: Impaired modulation of sympathetic α‐adrenergic vasoconstriction in contracting forearm muscle of ageing men
  publication-title: J Physiol
– volume: 58
  start-page: 1353
  year: 2011
  end-page: 1362
  article-title: Isolated quadriceps training increases maximal exercise capacity in chronic heart failure: the role of skeletal muscle convective and diffusive oxygen transport
  publication-title: J Am Coll Cardiol
– volume: 92
  start-page: 2019
  year: 2002
  end-page: 2025
  article-title: Effects of chronic sympathectomy on vascular function in the human forearm
  publication-title: J Appl Physiol
– volume: 33
  start-page: 79
  year: 1974
  end-page: 86
  article-title: Influence of age on the local circulatory adaptation to leg exercise
  publication-title: Scand J Clin Lab Invest
– volume: 589
  start-page: 1847
  year: 2011
  end-page: 1857
  article-title: Local release of ATP into the arterial inflow and venous drainage of human skeletal muscle: insight from ATP determination with the intravascular microdialysis technique
  publication-title: J Physiol
– volume: 553
  start-page: 281
  year: 2003
  end-page: 292
  article-title: Blunted sympathetic vasoconstriction in contracting skeletal muscle of healthy humans: is nitric oxide obligatory
  publication-title: J Physiol
– volume: 563
  start-page: 541
  year: 2005
  end-page: 555
  article-title: Sympathetic neural inhibition of conducted vasodilatation along hamster feed arteries: complementary effects of α ‐ and α ‐adrenoreceptor activation
  publication-title: J Physiol
– volume: 561
  start-page: 535
  year: 2004
  end-page: 545
  article-title: Arteriolar network architecture and vasomotor function with ageing in mouse gluteus maximus muscle
  publication-title: J Physiol
– volume: 287
  start-page: H2576
  year: 2004
  end-page: H2584
  article-title: Combined NO and PG inhibition augments α‐adrenergic vasoconstriction in contracting human skeletal muscle
  publication-title: Am J Physiol Heart Circ Physiol
– volume: 556
  start-page: 1001
  year: 2004
  end-page: 1011
  article-title: Different vasodilator responses of human arms and legs
  publication-title: J Physiol
– volume: 97
  start-page: 13818
  year: 2000
  end-page: 13823
  article-title: Functional muscle ischemia in neuronal nitric oxide synthase‐deficient skeletal muscle of children with Duchenne muscular dystrophy
  publication-title: Proc Natl Acad Sci U S A
– volume: 301
  start-page: H2466
  year: 2011
  end-page: H2472
  article-title: A selective phosphodiesterase 3 inhibitor rescues low PO ‐induced ATP release from erythrocytes of humans with type 2 diabetes: implication for vascular control
  publication-title: Am J Physiol Heart Circ Physiol
– volume: 91
  start-page: 1981
  year: 1995
  end-page: 1987
  article-title: Aging and endothelial function in normotensive subjects and patients with essential hypertension
  publication-title: Circulation
– volume: 581
  start-page: 853
  year: 2007
  end-page: 861
  article-title: Inhibition of nitric oxide and prostaglandins, but not endothelial‐derived hyperpolarizing factors, reduces blood flow and aerobic energy turnover in the exercising human leg
  publication-title: J Physiol
– volume: 59
  start-page: 182
  year: 2010
  end-page: 189
  article-title: Attenuated purinergic receptor function in patients with type 2 diabetes
  publication-title: Diabetes
– volume: 33
  start-page: 1058
  year: 2012
  end-page: 1066
  article-title: The human sympathetic nervous system: its relevance in hypertension and heart failure
  publication-title: Eur Heart J
– volume: 583
  start-page: 819
  year: 2007
  end-page: 823
  article-title: Exercise hyperaemia: magnitude and aspects on regulation in humans
  publication-title: J Physiol
– volume: 506
  start-page: 817
  year: 1998
  end-page: 826
  article-title: Nitric oxide mediates contraction‐induced attenuation of sympathetic vasoconstriction in rat skeletal muscle
  publication-title: J Physiol
– volume: 296
  start-page: R1140
  year: 2009a
  end-page: R1148
  article-title: ATP‐induced vasodilation and purinergic receptors in the human leg: roles of nitric oxide, prostaglandins, and adenosine
  publication-title: Am J Physiol Regul Integr Comp Physiol
– volume: 30
  start-page: 163
  year: 1929
  end-page: 184
  article-title: The actions of tyramine on the circulation and smooth muscle
  publication-title: J Pharmacol
– ident: e_1_2_4_28_1
  doi: 10.1093/eurheartj/ehs041
– ident: e_1_2_4_27_1
  doi: 10.1113/jphysiol.2011.225136
– ident: e_1_2_4_10_1
  doi: 10.1152/japplphysiol.01025.2001
– ident: e_1_2_4_25_1
  doi: 10.1113/jphysiol.2010.203034
– ident: e_1_2_4_36_1
  doi: 10.1113/jphysiol.2007.136309
– ident: e_1_2_4_31_1
  doi: 10.1007/BF01755017
– ident: e_1_2_4_49_1
  doi: 10.1113/jphysiol.2010.195255
– ident: e_1_2_4_18_1
  doi: 10.1113/jphysiol.2010.204081
– ident: e_1_2_4_45_1
  doi: 10.1152/japplphysiol.00290.2011
– ident: e_1_2_4_44_1
  doi: 10.2337/db09-1068
– ident: e_1_2_4_24_1
  doi: 10.1113/jphysiol.2012.240093
– ident: e_1_2_4_26_1
  doi: 10.1113/jphysiol.2003.059717
– ident: e_1_2_4_15_1
  doi: 10.1113/jphysiol.2012.234963
– ident: e_1_2_4_37_1
  doi: 10.1073/pnas.250379497
– start-page: 336
  volume-title: Handbook of Experimental Pharmacology
  year: 1972
  ident: e_1_2_4_48_1
– ident: e_1_2_4_20_1
  doi: 10.1113/jphysiol.2006.127423
– ident: e_1_2_4_47_1
  doi: 10.1111/j.1469-7793.1998.817bv.x
– ident: e_1_2_4_17_1
  doi: 10.1113/jphysiol.2010.197814
– ident: e_1_2_4_41_1
  doi: 10.1161/01.CIR.91.7.1981
– ident: e_1_2_4_19_1
  doi: 10.1111/j.1469-7793.2003.00337.x
– ident: e_1_2_4_34_1
  doi: 10.1113/jphysiol.2008.155432
– ident: e_1_2_4_29_1
  doi: 10.1152/jappl.1998.85.1.68
– volume: 276
  start-page: H1951
  year: 1999
  ident: e_1_2_4_30_1
  article-title: Nitric oxide in the regulation of vasomotor tone in human skeletal muscle
  publication-title: Am J Physiol Heart Circ Physiol
  doi: 10.1152/ajpheart.1999.276.6.H1951
– ident: e_1_2_4_3_1
  doi: 10.1007/BF00497004
– ident: e_1_2_4_9_1
  doi: 10.1113/jphysiol.2005.087668
– ident: e_1_2_4_39_1
  doi: 10.1152/ajpheart.00729.2011
– ident: e_1_2_4_2_1
  doi: 10.1113/jphysiol.2004.068262
– ident: e_1_2_4_12_1
  doi: 10.1113/jphysiol.2011.218917
– ident: e_1_2_4_16_1
  doi: 10.1152/ajpheart.1992.263.4.H1078
– volume: 257
  start-page: H1812
  year: 1989
  ident: e_1_2_4_38_1
  article-title: Norepinephrine spillover from skeletal muscle during exercise in humans: role of muscle mass
  publication-title: Am J Physiol Heart Circ Physiol
  doi: 10.1152/ajpheart.1989.257.6.H1812
– ident: e_1_2_4_14_1
  doi: 10.1113/jphysiol.2004.072900
– ident: e_1_2_4_4_1
  doi: 10.1113/jphysiol.2001.013153
– ident: e_1_2_4_46_1
  doi: 10.1161/01.RES.0000061570.83105.52
– ident: e_1_2_4_22_1
  doi: 10.1152/japplphysiol.00638.2009
– volume: 30
  start-page: 163
  year: 1929
  ident: e_1_2_4_42_1
  article-title: The actions of tyramine on the circulation and smooth muscle
  publication-title: J Pharmacol
– ident: e_1_2_4_32_1
  doi: 10.1161/01.RES.11.3.370
– ident: e_1_2_4_35_1
  doi: 10.1152/japplphysiol.00634.2003
– ident: e_1_2_4_23_1
  doi: 10.1152/ajpheart.01204.2011
– ident: e_1_2_4_40_1
  doi: 10.1111/j.1469-7793.1999.283af.x
– ident: e_1_2_4_13_1
  doi: 10.1038/icb.1968.36
– ident: e_1_2_4_11_1
  doi: 10.1016/j.jacc.2011.06.025
– ident: e_1_2_4_50_1
  doi: 10.1113/jphysiol.2010.203026
– ident: e_1_2_4_7_1
  doi: 10.1113/jphysiol.2003.049940
– ident: e_1_2_4_6_1
  doi: 10.1161/01.RES.16.2.174
– ident: e_1_2_4_5_1
  doi: 10.1152/japplphysiol.00179.2004
– ident: e_1_2_4_8_1
  doi: 10.1152/ajpheart.00621.2004
– ident: e_1_2_4_21_1
  doi: 10.1152/ajpregu.90822.2008
– ident: e_1_2_4_33_1
  doi: 10.1113/jphysiol.2004.063107
– ident: e_1_2_4_43_1
  doi: 10.2337/dc10-2129
– ident: e_1_2_4_51_1
  doi: 10.3109/00365517409114201
– reference: 12600881 - Circ Res. 2003 Mar 21;92(5):554-60
– reference: 14259357 - Circ Res. 1965 Feb;16:174-82
– reference: 15388783 - J Physiol. 2004 Dec 1;561(Pt 2):535-45
– reference: 22271868 - J Physiol. 2012 Mar 15;590(6):1481-94
– reference: 1415755 - Am J Physiol. 1992 Oct;263(4 Pt 2):H1078-83
– reference: 17347273 - J Physiol. 2007 Jun 1;581(Pt 2):853-61
– reference: 12949223 - J Physiol. 2003 Nov 15;553(Pt 1):281-92
– reference: 13981593 - Circ Res. 1962 Sep;11:370-80
– reference: 21224235 - J Physiol. 2011 Mar 1;589(Pt 5):1209-20
– reference: 21963837 - Am J Physiol Heart Circ Physiol. 2011 Dec;301(6):H2466-72
– reference: 22408019 - Am J Physiol Heart Circ Physiol. 2012 May 15;302(10):H2074-82
– reference: 9655757 - J Appl Physiol (1985). 1998 Jul;85(1):68-75
– reference: 15220322 - J Appl Physiol (1985). 2004 Jul;97(1):393-403
– reference: 12824451 - J Physiol. 2003 Aug 15;551(Pt 1):337-44
– reference: 21920265 - J Am Coll Cardiol. 2011 Sep 20;58(13):1353-62
– reference: 5683498 - Aust J Exp Biol Med Sci. 1968 Aug;46(4):425-34
– reference: 2603969 - Am J Physiol. 1989 Dec;257(6 Pt 2):H1812-8
– reference: 21486772 - J Physiol. 2011 May 15;589(Pt 10):2641-53
– reference: 15155791 - J Physiol. 2004 Jul 1;558(Pt 1):351-65
– reference: 19118095 - Am J Physiol Regul Integr Comp Physiol. 2009 Apr;296(4):R1140-8
– reference: 14990681 - J Physiol. 2004 May 1;556(Pt 3):1001-11
– reference: 11927694 - J Physiol. 2002 Apr 1;540(Pt 1):377-86
– reference: 4827762 - Scand J Clin Lab Invest. 1974 Feb;33(1):79-86
– reference: 723969 - Naunyn Schmiedebergs Arch Pharmacol. 1978 Oct;305(1):37-40
– reference: 10362675 - Am J Physiol. 1999 Jun;276(6 Pt 2):H1951-60
– reference: 22106180 - J Physiol. 2012 Jan 15;590(2):395-407
– reference: 18703581 - J Physiol. 2008 Oct 15;586(20):4993-5002
– reference: 20819945 - J Physiol. 2010 Nov 15;588(Pt 22):4563-78
– reference: 20807789 - J Physiol. 2010 Oct 15;588(Pt 20):4017-27
– reference: 22733661 - J Physiol. 2012 Oct 15;590(20):5015-23
– reference: 15576454 - J Physiol. 2005 Mar 1;563(Pt 2):541-55
– reference: 7895356 - Circulation. 1995 Apr 1;91(7):1981-7
– reference: 17640931 - J Physiol. 2007 Sep 15;583(Pt 3):819-23
– reference: 11087833 - Proc Natl Acad Sci U S A. 2000 Dec 5;97(25):13818-23
– reference: 19797688 - J Appl Physiol (1985). 2009 Dec;107(6):1757-62
– reference: 22507981 - Eur Heart J. 2012 May;33(9):1058-66
– reference: 9831733 - J Physiol. 1999 Jan 1;514 ( Pt 1):283-91
– reference: 21447654 - Diabetes Care. 2011 May;34(5):1186-91
– reference: 12923119 - J Appl Physiol (1985). 2003 Dec;95(6):2370-4
– reference: 21512151 - J Appl Physiol (1985). 2011 Jul;111(1):244-50
– reference: 11960953 - J Appl Physiol (1985). 2002 May;92(5):2019-25
– reference: 15946964 - J Physiol. 2005 Aug 15;567(Pt 1):311-21
– reference: 9503340 - J Physiol. 1998 Feb 1;506 ( Pt 3):817-26
– reference: 15271659 - Am J Physiol Heart Circ Physiol. 2004 Dec;287(6):H2576-84
– reference: 19808895 - Diabetes. 2010 Jan;59(1):182-9
– reference: 21300753 - J Physiol. 2011 Apr 1;589(Pt 7):1847-57
SSID ssj0013099
Score 2.394297
SecondaryResourceType review_article
Snippet Contracting skeletal muscle can overcome sympathetic vasoconstrictor activity (functional sympatholysis), which allows for a blood supply that matches the...
Abstract  Contracting skeletal muscle can overcome sympathetic vasoconstrictor activity (functional sympatholysis), which allows for a blood supply that...
Abstract Contracting skeletal muscle can overcome sympathetic vasoconstrictor activity (functional sympatholysis), which allows for a blood supply that matches...
SourceID pubmedcentral
proquest
pubmed
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 6269
SubjectTerms Adenosine Triphosphate - metabolism
Age Factors
Aging
Animals
Biochemistry
Blood Vessels - innervation
Cardiovascular Diseases - metabolism
Cardiovascular Diseases - physiopathology
Energy Metabolism
Exercise
Exercise (effects)
Female
Hemodynamics
Humans
Legs
Male
Men
Muscle Contraction
Muscle, Skeletal - blood supply
Muscle, Skeletal - innervation
Muscle, Skeletal - metabolism
Muscles (activity)
Musculoskeletal system
Nitric Oxide - metabolism
Physical fitness
Physiology
Receptors, Purinergic P2 - metabolism
Regional Blood Flow
Sympathetic Nervous System - metabolism
Sympathetic Nervous System - physiopathology
Symposium Section Reviews: Blood Flow Regulation: From Rest to Maximal Exercise
Tyramine - metabolism
Vasoconstriction
Vasodilation
Youth
Title Inefficient functional sympatholysis is an overlooked cause of malperfusion in contracting skeletal muscle
URI https://onlinelibrary.wiley.com/doi/abs/10.1113%2Fjphysiol.2012.241026
https://www.ncbi.nlm.nih.gov/pubmed/22988143
https://www.proquest.com/docview/1545340790
https://www.proquest.com/docview/1240217627
https://www.proquest.com/docview/1272712860
https://pubmed.ncbi.nlm.nih.gov/PMC3533189
Volume 590
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELaqnrjwKo-UUhkJccsSO7ETHyvEqlQCVaiVeoucxF7a7jpVszksv54ZOwksRYBAyil-xHbGnm8848-EvOYGgL01IgbjooqzWvJY6xoWQ5mJXNVNlXs6ho-f5PF5dnIhLnbIfDwLE_ghpg03nBl-vcYJrqvhFhKGZANX3vRv0X3A-AwUEXwUlmIM20Js9Jl_dyYkSk2k4blgwwk6qObtryrZ1lB3YOfd6MkfUa1XS_MHZDF2KESjXM_6dTWrv_7E9fj_PX5I7g_IlR4FUXtEdox7TPaOHFjtqw19Q09DsXax2SNXH5zx3BTQeIqqM-w40m6zwiuQW8-DQuHRjmIM6RKJPxta674ztLV0pZc35tb2uJVHLx31AfV4BMMtaHcNmhJMBrrqO2jIE3I-f3_27jgebnWIazBNeGyyxEpjpLJMW6TKkU1mGlUVxuYNVwVLG1ZlXMsGsGdqhWwEgJgi0wj1AI-kT8mua515TqjJAG5YrSTTaWZUUoma1VLUVZo0ueUiIun4J8t6oDzHmzeWZTB90nIc0hKHtAxDGpF4KnUTKD_-kP9gFJJyWAC6EpFpCsaySiLyakqGqYv-GO1M20Me9Gwx0Eb57_IAwAQMIaGeZ0HupkZxGK0C8G5E8i2JnDIgdfh2irv84inEU0D5rFAR4V7g_qqf5dnJqQC8s_8vhV6Qe_g2BAIdkN31bW9eApxbV4d-sh76fbZvqepI3g
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZKOcCFAuURKGAkxC1L4sTO-lghyra0VYW2Um-R49h97TpVszlsfz0zzgOWIkAIKbeMHduZ8Xxjjz8T8o4ZAPbW8BCCiyJMtWChUhomQ5HyTOqyyDwdw8GhmByneyf8ZI187s_CtPwQw4IbWoafr9HAcUG6s3JkG7jwsX-F-wcxG4Engq_eIXfxcm8fW31l37cTIikH2vCMx90ZOqjnw69qWfVRt4Dn7fzJH3Gtd0w7G-Ss71Kbj3I5ahbFSN_8xPb4H_r8kDzowCvdbrXtEVkz7jHZ3HYQuM-X9D09aotVp8tNcrHrjKengNZT9J7toiOtl3O8BbnyVCgUHuUoppHOkPuzpFo1taGVpXM1uzLXtsHVPHruqM-px1MY7pTWl-AsIWqg86aGhjwhxzufph8nYXexQ6ghOmGhSSMrjBHSxsoiW44oU1PKYmxsVjI5jpMyLlKmRAnwM7FclBxwzDhViPYAkiRPybqrnHlOqEkBcVglRayS1Mio4DrWgusiicrMMh6QpP-Vue5Yz_HyjVneRj9J3g9pjkOat0MakHAoddWyfvxBfqvXkrybA-ocwWkC8bKMAvJ2eA3Wi1syypmqARnc3IrBIWW_kwGMCTBCQD3PWsUbGsVgtMYAeQOSrajkIIDs4atv3PmZZxFPAOjHYxkQ5jXur_qZT_eOOECeF_9S6A25N5ke7Of7u4dfXpL7KNHmBW2R9cV1Y14BulsUr73lfgM-9Evp
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZKkRAXXuURKGAkxC1L4thOfKwoq7ZAtUKt1FvkOPbSdtdZNZvD8usZ29nAUgQIpNwydmxnxvONPf6M0GuiAdgbzWIILqqYKk5iKRVMhpyyXKi6yj0dw6djfnBKj87Y2RYar8_CBH6IYcHNWYafr52BL2rTG7kjG7jwoX_jtg9SMgJHBB-9gW5SnhROu_c_k--7CYkQA2t4ztL-CB3U8_ZXtWy6qGu483r65I-w1vul8V00XfcopKNcjrplNVJffyJ7_P8u30N3euiK94Ku3Udb2j5AO3sWwvb5Cr_Bk1Csma520MWh1Z6cAhqPne8MS464Xc3dHciNJ0LB8EiLXRLpzDF_1ljJrtW4MXguZwt9ZTq3lofPLfYZ9e4Mhp3i9hJcJcQMeN610JCH6HT8_uTdQdxf6xAriE1IrGliuNZcmFQax5XDa6prURXa5DURRZrVaUWJ5DWAz8wwXjNAMQWVDusBIMkeoW3bWP0EYU0BbxgpeCozqkVSMZUqzlSVJXVuCItQtv6Tpeo5z93VG7MyxD5ZuR7S0g1pGYY0QvFQahE4P_4gv7tWkrKfAdrSQdMMomWRROjV8Bps123ISKubDmTc1lYK7ij_nQwgTAARHOp5HPRuaBSB0SoA8EYo39DIQcBxh2--sedfPId4BjA_LUSEiFe4v-pneXI0YQB4nv5LoZfo1mR_XH48PP7wDN12AiEpaBdtL686_Ryg3bJ64e32G0xsSqE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Inefficient+functional+sympatholysis+is+an+overlooked+cause+of+malperfusion+in+contracting+skeletal+muscle&rft.jtitle=The+Journal+of+physiology&rft.au=Saltin%2C+Bengt&rft.au=Mortensen%2C+Stefan+P&rft.date=2012-12-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=0022-3751&rft.eissn=1469-7793&rft.volume=590&rft.issue=24&rft.spage=6269&rft_id=info:doi/10.1113%2Fjphysiol.2012.241026&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=3374395301
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-3751&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-3751&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-3751&client=summon