Interneuron‐mediated inhibition synchronizes neuronal activity during slow oscillation
Key points • A signature of deep sleep in the EEG is large‐amplitude fluctuation of field potential, which reflects alternating periods of activity and silence in the thalamocortical network. • Transitions between active and silent states of sleep slow oscillation are well synchronous between remo...
Saved in:
Published in | The Journal of physiology Vol. 590; no. 16; pp. 3987 - 4010 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Oxford, UK
Blackwell Publishing Ltd
01.08.2012
Wiley Subscription Services, Inc Blackwell Science Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Key points
•
A signature of deep sleep in the EEG is large‐amplitude fluctuation of field potential, which reflects alternating periods of activity and silence in the thalamocortical network.
•
Transitions between active and silent states of sleep slow oscillation are well synchronous between remote populations of neurons with the onsets of silent states synchronized better than the onsets of activity.
•
We found that synaptic inhibition plays a major role in terminating active cortical states; strong synaptic inhibition is necessary to synchronize onsets of silent states during normal sleep slow oscillation.
•
We further show that when synaptic inhibition is significantly reduced, active state termination is mediated by intrinsic hyperpolarizing conductances.
•
Our study suggests that inhibitory interaction in the cortical network actively mediates the patterns of neural activity during slow‐wave sleep and may, therefore, contribute to various brain functions developed during deep sleep.
The signature of slow‐wave sleep in the electroencephalogram (EEG) is large‐amplitude fluctuation of the field potential, which reflects synchronous alternation of activity and silence across cortical neurons. While initiation of the active cortical states during sleep slow oscillation has been intensively studied, the biological mechanisms which drive the network transition from an active state to silence remain poorly understood. In the current study, using a combination of in vivo electrophysiology and thalamocortical network simulation, we explored the impact of intrinsic and synaptic inhibition on state transition during sleep slow oscillation. We found that in normal physiological conditions, synaptic inhibition controls the duration and the synchrony of active state termination. The decline of interneuron‐mediated inhibition led to asynchronous downward transition across the cortical network and broke the regular slow oscillation pattern. Furthermore, in both in vivo experiment and computational modelling, we revealed that when the level of synaptic inhibition was reduced significantly, it led to a recovery of synchronized oscillations in the form of seizure‐like bursting activity. In this condition, the fast active state termination was mediated by intrinsic hyperpolarizing conductances. Our study highlights the significance of both intrinsic and synaptic inhibition in manipulating sleep slow rhythms. |
---|---|
AbstractList | The signature of slow-wave sleep in the electroencephalogram (EEG) is large-amplitude fluctuation of the field potential, which reflects synchronous alternation of activity and silence across cortical neurons. While initiation of the active cortical states during sleep slow oscillation has been intensively studied, the biological mechanisms which drive the network transition from an active state to silence remain poorly understood. In the current study, using a combination of in vivo electrophysiology and thalamocortical network simulation, we explored the impact of intrinsic and synaptic inhibition on state transition during sleep slow oscillation. We found that in normal physiological conditions, synaptic inhibition controls the duration and the synchrony of active state termination. The decline of interneuron-mediated inhibition led to asynchronous downward transition across the cortical network and broke the regular slow oscillation pattern. Furthermore, in both in vivo experiment and computational modelling, we revealed that when the level of synaptic inhibition was reduced significantly, it led to a recovery of synchronized oscillations in the form of seizure-like bursting activity. In this condition, the fast active state termination was mediated by intrinsic hyperpolarizing conductances. Our study highlights the significance of both intrinsic and synaptic inhibition in manipulating sleep slow rhythms. A signature of deep sleep in the EEG is large‐amplitude fluctuation of field potential, which reflects alternating periods of activity and silence in the thalamocortical network. Transitions between active and silent states of sleep slow oscillation are well synchronous between remote populations of neurons with the onsets of silent states synchronized better than the onsets of activity. We found that synaptic inhibition plays a major role in terminating active cortical states; strong synaptic inhibition is necessary to synchronize onsets of silent states during normal sleep slow oscillation. We further show that when synaptic inhibition is significantly reduced, active state termination is mediated by intrinsic hyperpolarizing conductances. Our study suggests that inhibitory interaction in the cortical network actively mediates the patterns of neural activity during slow‐wave sleep and may, therefore, contribute to various brain functions developed during deep sleep. Abstract The signature of slow‐wave sleep in the electroencephalogram (EEG) is large‐amplitude fluctuation of the field potential, which reflects synchronous alternation of activity and silence across cortical neurons. While initiation of the active cortical states during sleep slow oscillation has been intensively studied, the biological mechanisms which drive the network transition from an active state to silence remain poorly understood. In the current study, using a combination of in vivo electrophysiology and thalamocortical network simulation, we explored the impact of intrinsic and synaptic inhibition on state transition during sleep slow oscillation. We found that in normal physiological conditions, synaptic inhibition controls the duration and the synchrony of active state termination. The decline of interneuron‐mediated inhibition led to asynchronous downward transition across the cortical network and broke the regular slow oscillation pattern. Furthermore, in both in vivo experiment and computational modelling, we revealed that when the level of synaptic inhibition was reduced significantly, it led to a recovery of synchronized oscillations in the form of seizure‐like bursting activity. In this condition, the fast active state termination was mediated by intrinsic hyperpolarizing conductances. Our study highlights the significance of both intrinsic and synaptic inhibition in manipulating sleep slow rhythms. times A signature of deep sleep in the EEG is large-amplitude fluctuation of field potential, which reflects alternating periods of activity and silence in the thalamocortical network. Abstract The signature of slow-wave sleep in the electroencephalogram (EEG) is large-amplitude fluctuation of the field potential, which reflects synchronous alternation of activity and silence across cortical neurons. While initiation of the active cortical states during sleep slow oscillation has been intensively studied, the biological mechanisms which drive the network transition from an active state to silence remain poorly understood. In the current study, using a combination of in vivo electrophysiology and thalamocortical network simulation, we explored the impact of intrinsic and synaptic inhibition on state transition during sleep slow oscillation. We found that in normal physiological conditions, synaptic inhibition controls the duration and the synchrony of active state termination. The decline of interneuron-mediated inhibition led to asynchronous downward transition across the cortical network and broke the regular slow oscillation pattern. Furthermore, in both in vivo experiment and computational modelling, we revealed that when the level of synaptic inhibition was reduced significantly, it led to a recovery of synchronized oscillations in the form of seizure-like bursting activity. In this condition, the fast active state termination was mediated by intrinsic hyperpolarizing conductances. Our study highlights the significance of both intrinsic and synaptic inhibition in manipulating sleep slow rhythms. The signature of slow-wave sleep in the electroencephalogram (EEG) is large-amplitude fluctuation of the field potential, which reflects synchronous alternation of activity and silence across cortical neurons. While initiation of the active cortical states during sleep slow oscillation has been intensively studied, the biological mechanisms which drive the network transition from an active state to silence remain poorly understood. In the current study, using a combination of in vivo electrophysiology and thalamocortical network simulation, we explored the impact of intrinsic and synaptic inhibition on state transition during sleep slow oscillation. We found that in normal physiological conditions, synaptic inhibition controls the duration and the synchrony of active state termination. The decline of interneuron-mediated inhibition led to asynchronous downward transition across the cortical network and broke the regular slow oscillation pattern. Furthermore, in both in vivo experiment and computational modelling, we revealed that when the level of synaptic inhibition was reduced significantly, it led to a recovery of synchronized oscillations in the form of seizure-like bursting activity. In this condition, the fast active state termination was mediated by intrinsic hyperpolarizing conductances. Our study highlights the significance of both intrinsic and synaptic inhibition in manipulating sleep slow rhythms.The signature of slow-wave sleep in the electroencephalogram (EEG) is large-amplitude fluctuation of the field potential, which reflects synchronous alternation of activity and silence across cortical neurons. While initiation of the active cortical states during sleep slow oscillation has been intensively studied, the biological mechanisms which drive the network transition from an active state to silence remain poorly understood. In the current study, using a combination of in vivo electrophysiology and thalamocortical network simulation, we explored the impact of intrinsic and synaptic inhibition on state transition during sleep slow oscillation. We found that in normal physiological conditions, synaptic inhibition controls the duration and the synchrony of active state termination. The decline of interneuron-mediated inhibition led to asynchronous downward transition across the cortical network and broke the regular slow oscillation pattern. Furthermore, in both in vivo experiment and computational modelling, we revealed that when the level of synaptic inhibition was reduced significantly, it led to a recovery of synchronized oscillations in the form of seizure-like bursting activity. In this condition, the fast active state termination was mediated by intrinsic hyperpolarizing conductances. Our study highlights the significance of both intrinsic and synaptic inhibition in manipulating sleep slow rhythms. Key points • A signature of deep sleep in the EEG is large‐amplitude fluctuation of field potential, which reflects alternating periods of activity and silence in the thalamocortical network. • Transitions between active and silent states of sleep slow oscillation are well synchronous between remote populations of neurons with the onsets of silent states synchronized better than the onsets of activity. • We found that synaptic inhibition plays a major role in terminating active cortical states; strong synaptic inhibition is necessary to synchronize onsets of silent states during normal sleep slow oscillation. • We further show that when synaptic inhibition is significantly reduced, active state termination is mediated by intrinsic hyperpolarizing conductances. • Our study suggests that inhibitory interaction in the cortical network actively mediates the patterns of neural activity during slow‐wave sleep and may, therefore, contribute to various brain functions developed during deep sleep. The signature of slow‐wave sleep in the electroencephalogram (EEG) is large‐amplitude fluctuation of the field potential, which reflects synchronous alternation of activity and silence across cortical neurons. While initiation of the active cortical states during sleep slow oscillation has been intensively studied, the biological mechanisms which drive the network transition from an active state to silence remain poorly understood. In the current study, using a combination of in vivo electrophysiology and thalamocortical network simulation, we explored the impact of intrinsic and synaptic inhibition on state transition during sleep slow oscillation. We found that in normal physiological conditions, synaptic inhibition controls the duration and the synchrony of active state termination. The decline of interneuron‐mediated inhibition led to asynchronous downward transition across the cortical network and broke the regular slow oscillation pattern. Furthermore, in both in vivo experiment and computational modelling, we revealed that when the level of synaptic inhibition was reduced significantly, it led to a recovery of synchronized oscillations in the form of seizure‐like bursting activity. In this condition, the fast active state termination was mediated by intrinsic hyperpolarizing conductances. Our study highlights the significance of both intrinsic and synaptic inhibition in manipulating sleep slow rhythms. Key points * A signature of deep sleep in the EEG is large-amplitude fluctuation of field potential, which reflects alternating periods of activity and silence in the thalamocortical network. * Transitions between active and silent states of sleep slow oscillation are well synchronous between remote populations of neurons with the onsets of silent states synchronized better than the onsets of activity. * We found that synaptic inhibition plays a major role in terminating active cortical states; strong synaptic inhibition is necessary to synchronize onsets of silent states during normal sleep slow oscillation. * We further show that when synaptic inhibition is significantly reduced, active state termination is mediated by intrinsic hyperpolarizing conductances. * Our study suggests that inhibitory interaction in the cortical network actively mediates the patterns of neural activity during slow-wave sleep and may, therefore, contribute to various brain functions developed during deep sleep. Abstract The signature of slow-wave sleep in the electroencephalogram (EEG) is large-amplitude fluctuation of the field potential, which reflects synchronous alternation of activity and silence across cortical neurons. While initiation of the active cortical states during sleep slow oscillation has been intensively studied, the biological mechanisms which drive the network transition from an active state to silence remain poorly understood. In the current study, using a combination of in vivo electrophysiology and thalamocortical network simulation, we explored the impact of intrinsic and synaptic inhibition on state transition during sleep slow oscillation. We found that in normal physiological conditions, synaptic inhibition controls the duration and the synchrony of active state termination. The decline of interneuron-mediated inhibition led to asynchronous downward transition across the cortical network and broke the regular slow oscillation pattern. Furthermore, in both in vivo experiment and computational modelling, we revealed that when the level of synaptic inhibition was reduced significantly, it led to a recovery of synchronized oscillations in the form of seizure-like bursting activity. In this condition, the fast active state termination was mediated by intrinsic hyperpolarizing conductances. Our study highlights the significance of both intrinsic and synaptic inhibition in manipulating sleep slow rhythms. The signature of slow-wave sleep in the electroencephalogram (EEG) is large-amplitude fluctuation of the field potential, which reflects synchronous alternation of activity and silence across cortical neurons. While initiation of the active cortical states during sleep slow oscillation has been intensively studied, the biological mechanisms which drive the network transition from an active state to silence remain poorly understood. In the current study, using a combination of in vivo electrophysiology and thalamocortical network simulation, we explored the impact of intrinsic and synaptic inhibition on state transition during sleep slow oscillation. We found that in normal physiological conditions, synaptic inhibition controls the duration and the synchrony of active state termination. The decline of interneuron-mediated inhibition led to asynchronous downward transition across the cortical network and broke the regular slow oscillation pattern. Furthermore, in both in vivo experiment and computational modelling, we revealed that when the level of synaptic inhibition was reduced significantly, it led to a recovery of synchronized oscillations in the form of seizure-like bursting activity. In this condition, the fast active state termination was mediated by intrinsic hyperpolarizing conductances. Our study highlights the significance of both intrinsic and synaptic inhibition in manipulating sleep slow rhythms. |
Author | Skorheim, Steven Chen, Jen‐Yung Timofeev, Igor Bazhenov, Maxim Chauvette, Sylvain |
Author_xml | – sequence: 1 givenname: Jen‐Yung surname: Chen fullname: Chen, Jen‐Yung – sequence: 2 givenname: Sylvain surname: Chauvette fullname: Chauvette, Sylvain – sequence: 3 givenname: Steven surname: Skorheim fullname: Skorheim, Steven – sequence: 4 givenname: Igor surname: Timofeev fullname: Timofeev, Igor – sequence: 5 givenname: Maxim surname: Bazhenov fullname: Bazhenov, Maxim |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/22641778$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkstu1DAUhi1URKeFN0AoEhs2GXyNxyyQUMWlqBIsisTOchync0Yee7CTVmHFI_CMPAke0lbQTZEsnYW__5z_XI7QQYjBIfSU4CUhhL3c7NZThuiXFBO6pFTyhj5AC8IbVUup2AFaYExpzaQgh-go5w3GhGGlHqFDShtOpFwt0NfTMLgU3Jhi-PXj59Z1YAbXVRDW0MIAMVR5CnZdvuG7y9VMGl8ZO8AlDFPVjQnCRZV9vKpituC92cseo4e98dk9uY7H6Mu7t-cnH-qzT-9PT96c1VasBK2VVIIYSZxquk62mNGeY9O2DaVYrkprzKmu48ZYzokyomtZCX1PuewUK-8YvZ7z7sa2uLcuDMl4vUuwNWnS0YD-9yfAWl_ES824bBrOS4IX1wlS_Da6POgtZOtKG8HFMWtS6jKhBCf3o5hxQSRVsqDP76CbOKYyuEIxIrkqze3NP_vb_K3rm_0UgM-ATTHn5PpbhGC9PwN9cwZ6fwZ6PoMie3VHZmH4s5YyAvD3idUsvgLvpv8qqM8_fhZEUfYbUrfQPw |
CODEN | JPHYA7 |
CitedBy_id | crossref_primary_10_21926_obm_neurobiol_2304185 crossref_primary_10_1111_ejn_15836 crossref_primary_10_1113_JP279476 crossref_primary_10_1113_JP284587 crossref_primary_10_1523_JNEUROSCI_2513_17_2018 crossref_primary_10_1016_j_neures_2024_12_002 crossref_primary_10_1111_jsr_12009 crossref_primary_10_1162_NECO_a_00513 crossref_primary_10_1523_JNEUROSCI_3648_15_2016 crossref_primary_10_3389_fnsys_2022_1059421 crossref_primary_10_1523_JNEUROSCI_1359_15_2015 crossref_primary_10_1016_j_neures_2017_03_012 crossref_primary_10_1038_ncomms15499 crossref_primary_10_1016_j_isci_2025_111904 crossref_primary_10_7554_eLife_18607 crossref_primary_10_1103_PhysRevE_107_024415 crossref_primary_10_1016_j_jneumeth_2018_08_016 crossref_primary_10_1152_jn_00069_2016 crossref_primary_10_1016_j_jneumeth_2015_08_030 crossref_primary_10_1186_s13024_023_00682_9 crossref_primary_10_1162_neco_a_01323 crossref_primary_10_1111_ejn_12533 crossref_primary_10_1162_neco_a_01008 crossref_primary_10_1016_j_brs_2016_08_014 crossref_primary_10_1523_JNEUROSCI_2984_16_2016 crossref_primary_10_1016_j_cels_2017_11_011 crossref_primary_10_7554_eLife_63329 crossref_primary_10_1371_journal_pone_0170275 crossref_primary_10_3389_fncir_2015_00088 crossref_primary_10_1371_journal_pcbi_1005022 crossref_primary_10_1523_JNEUROSCI_3133_14_2015 crossref_primary_10_1038_nrn3494 crossref_primary_10_1523_JNEUROSCI_1689_21_2022 crossref_primary_10_1002_bies_201700105 crossref_primary_10_7554_eLife_26177 crossref_primary_10_1007_s11571_023_09980_w crossref_primary_10_1038_srep36837 crossref_primary_10_1038_s42003_019_0664_3 crossref_primary_10_1038_s41598_022_16478_8 crossref_primary_10_1007_s10827_018_0688_6 crossref_primary_10_1093_sleep_zsz170 crossref_primary_10_1523_JNEUROSCI_5088_12_2013 crossref_primary_10_2139_ssrn_3982271 crossref_primary_10_1007_s10827_017_0663_7 crossref_primary_10_1162_NECO_a_00932 crossref_primary_10_1111_epi_18282 crossref_primary_10_1523_JNEUROSCI_1156_13_2014 crossref_primary_10_1152_jn_00858_2013 crossref_primary_10_1016_j_neuron_2016_02_032 crossref_primary_10_1523_JNEUROSCI_1427_19_2019 crossref_primary_10_1093_cercor_bhx020 crossref_primary_10_1111_jsr_12532 crossref_primary_10_3389_fnins_2020_00705 crossref_primary_10_1117_1_NPh_12_S1_S14604 crossref_primary_10_1152_physrev_00032_2012 crossref_primary_10_1523_JNEUROSCI_2279_14_2015 crossref_primary_10_1038_s41593_020_0625_7 crossref_primary_10_1073_pnas_1806486115 crossref_primary_10_1152_jn_00460_2014 crossref_primary_10_7554_eLife_22425 crossref_primary_10_1016_j_smrv_2018_01_008 crossref_primary_10_1162_jocn_a_01591 crossref_primary_10_1371_journal_pcbi_1003855 crossref_primary_10_1016_j_jneumeth_2018_10_002 crossref_primary_10_1038_s41386_022_01355_9 crossref_primary_10_3389_fncom_2018_00044 crossref_primary_10_1093_cercor_bhaa228 crossref_primary_10_1016_j_simpa_2024_100667 crossref_primary_10_1083_jcb_202401041 crossref_primary_10_1371_journal_pcbi_1012245 crossref_primary_10_1038_s41598_019_44964_z crossref_primary_10_1371_journal_pcbi_1006171 |
Cites_doi | 10.1038/35077566 10.1152/jn.1998.79.5.2730 10.1523/JNEUROSCI.4263-07.2008 10.1523/JNEUROSCI.13-08-03252.1993 10.1083/jcb.53.2.271 10.1113/jphysiol.1996.sp021488 10.1523/JNEUROSCI.22-19-08691.2002 10.1016/j.neuron.2005.06.016 10.1017/CBO9780511895401 10.1523/JNEUROSCI.3987-06.2006 10.1007/BF00237198 10.1007/978-1-4757-2421-9 10.1016/S0092-8674(05)80028-5 10.1152/jn.1989.61.4.747 10.1038/47035 10.1016/j.neuron.2010.07.023 10.1007/s10827-009-0164-4 10.1523/JNEUROSCI.1239-10.2010 10.1152/ajplegacy.1937.119.4.692 10.1523/JNEUROSCI.17-07-02348.1997 10.5664/jcsm.5.2S.S27 10.1152/jn.1997.78.3.1199 10.1113/jphysiol.1996.sp021489 10.1523/JNEUROSCI.16-07-02397.1996 10.1113/jphysiol.1990.sp018331 10.1073/pnas.94.2.719 10.1523/JNEUROSCI.13-08-03284.1993 10.1523/JNEUROSCI.15-01-00604.1995 10.1016/0006-8993(86)91593-3 10.1098/rstb.2002.1168 10.1113/jphysiol.2004.071381 10.1152/jn.1998.80.3.1456 10.1016/0014-4886(64)90025-1 10.1152/jn.1996.76.3.2049 10.1152/jn.00845.2002 10.1523/JNEUROSCI.1318-04.2004 10.1038/73936 10.1073/pnas.98.4.1924 10.1007/BF00961734 10.1073/pnas.2235811100 10.1038/nature01616 10.1016/0006-8993(72)90327-7 10.1093/cercor/10.12.1185 10.1523/JNEUROSCI.0279-06.2006 10.1038/78809 10.1152/jn.2001.85.5.1969 10.1038/2822 10.1038/382363a0 10.1152/jn.1996.76.6.4152 10.1093/cercor/bhj008 10.1152/jn.00915.2004 10.1093/cercor/bhq009 10.1152/jn.1998.80.3.1167 10.1016/S0197-4580(00)00232-3 10.1523/JNEUROSCI.12-10-03804.1992 10.1523/JNEUROSCI.4652-06.2007 10.1038/nn.2445 10.1523/JNEUROSCI.5297-05.2006 10.1152/jn.00178.2010 10.1016/S0306-4522(97)00186-3 10.1523/JNEUROSCI.13-02-00660.1993 10.1016/S0896-6273(02)00623-2 10.1523/JNEUROSCI.6162-08.2009 10.1146/annurev.ne.01.030178.002143 10.1126/science.275.5297.221 10.1016/0301-0082(92)90012-4 10.1093/sleep/30.3.281 10.1038/332156a0 10.1523/JNEUROSCI.13-08-03266.1993 10.1038/79848 10.1103/PhysRevE.74.031922 |
ContentType | Journal Article |
Copyright | 2012 The Authors. The Journal of Physiology © 2012 The Physiological Society 2012 The Authors. The Journal of Physiology © 2012 The Physiological Society 2012 |
Copyright_xml | – notice: 2012 The Authors. The Journal of Physiology © 2012 The Physiological Society – notice: 2012 The Authors. The Journal of Physiology © 2012 The Physiological Society 2012 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QP 7QR 7TK 7TS 8FD FR3 P64 7X8 5PM |
DOI | 10.1113/jphysiol.2012.227462 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Neurosciences Abstracts Physical Education Index Technology Research Database Engineering Research Database Biotechnology and BioEngineering Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Technology Research Database Chemoreception Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts Neurosciences Abstracts Physical Education Index Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE CrossRef Neurosciences Abstracts MEDLINE - Academic Technology Research Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology |
EISSN | 1469-7793 |
EndPage | 4010 |
ExternalDocumentID | PMC3476644 2920265221 22641778 10_1113_jphysiol_2012_227462 TJP5192 |
Genre | article Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: Canadian Institutes of Health Research grantid: MOP-67175 – fundername: NINDS NIH HHS grantid: R01 NS060870 – fundername: Canadian Institutes of Health Research grantid: MOP-37862 – fundername: NINDS NIH HHS grantid: 1R01NS060870 |
GroupedDBID | --- -DZ -~X .3N .55 .GA .GJ .Y3 05W 0R~ 0YM 10A 123 18M 1OB 1OC 24P 29L 2WC 31~ 33P 36B 3EH 3O- 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52R 52S 52T 52U 52V 52W 52X 53G 5GY 5HH 5LA 5RE 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A01 A03 AAESR AAEVG AAFWJ AAHHS AAHQN AAIPD AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAYJJ AAZKR ABCQN ABCUV ABEML ABITZ ABIVO ABJNI ABOCM ABPPZ ABPVW ABQWH ABXGK ACAHQ ACCFJ ACCZN ACFBH ACGFO ACGFS ACGOF ACIWK ACMXC ACNCT ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADBTR ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEGXH AEIGN AEIMD AEQDE AEUQT AEUYR AFBPY AFEBI AFFNX AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AI. AIACR AIAGR AITYG AIURR AIWBW AJBDE ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB AOIJS ATUGU AZBYB AZVAB BAFTC BAWUL BFHJK BHBCM BMXJE BROTX BRXPI BY8 C1A C45 CAG CHEAL COF CS3 D-6 D-7 D-E D-F DCZOG DIK DPXWK DR2 DRFUL DRMAN DRSTM E3Z EBS EJD EMOBN EX3 F00 F01 F04 F5P FA8 FIJ FUBAC G-S G.N GODZA GX1 H.X H13 HF~ HGLYW HZI HZ~ H~9 IHE IPNFZ IX1 J0M K48 KBYEO LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MVM MXFUL MXMAN MXSTM N04 N05 N9A NEJ NF~ O66 O9- OHT OIG OK1 OVD P2P P2W P2X P2Z P4B P4D Q.N Q11 QB0 R.K RIG ROL RPM RX1 SAMSI SUPJJ TEORI TLM TN5 TR2 UB1 UKR UPT V8K VH1 W8F W8V W99 WBKPD WH7 WHG WIH WIJ WIK WIN WNSPC WOHZO WOQ WOW WQJ WRC WXI WXSBR WYISQ X7M XG1 XOL YBU YHG YKV YQT YSK YXB YYP YZZ ZGI ZXP ZZTAW ~IA ~WT AAYXX ADXHL AEYWJ AGHNM AGYGG CITATION CGR CUY CVF ECM EIF NPM 7QP 7QR 7TK 7TS 8FD FR3 P64 7X8 5PM |
ID | FETCH-LOGICAL-c5852-97951a71e96dd7b032f40abb6220782013e9dd4aac4419a5db319aff247d93d93 |
IEDL.DBID | DR2 |
ISSN | 0022-3751 1469-7793 |
IngestDate | Thu Aug 21 14:13:08 EDT 2025 Fri Jul 11 08:08:25 EDT 2025 Fri Jul 11 06:04:36 EDT 2025 Fri Jul 25 12:21:47 EDT 2025 Wed Feb 19 01:51:16 EST 2025 Tue Jul 01 04:29:05 EDT 2025 Thu Apr 24 23:04:10 EDT 2025 Wed Jan 22 16:51:16 EST 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 16 |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5852-97951a71e96dd7b032f40abb6220782013e9dd4aac4419a5db319aff247d93d93 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 ObjectType-Article-2 ObjectType-Feature-1 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/3476644 |
PMID | 22641778 |
PQID | 1317497829 |
PQPubID | 1086388 |
PageCount | 24 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_3476644 proquest_miscellaneous_1419359541 proquest_miscellaneous_1034517297 proquest_journals_1317497829 pubmed_primary_22641778 crossref_primary_10_1113_jphysiol_2012_227462 crossref_citationtrail_10_1113_jphysiol_2012_227462 wiley_primary_10_1113_jphysiol_2012_227462_TJP5192 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | August 2012 |
PublicationDateYYYYMMDD | 2012-08-01 |
PublicationDate_xml | – month: 08 year: 2012 text: August 2012 |
PublicationDecade | 2010 |
PublicationPlace | Oxford, UK |
PublicationPlace_xml | – name: Oxford, UK – name: England – name: London |
PublicationTitle | The Journal of physiology |
PublicationTitleAlternate | J Physiol |
PublicationYear | 2012 |
Publisher | Blackwell Publishing Ltd Wiley Subscription Services, Inc Blackwell Science Inc |
Publisher_xml | – name: Blackwell Publishing Ltd – name: Wiley Subscription Services, Inc – name: Blackwell Science Inc |
References | 1993b; 13 2006; 74 1997; 81 2010; 13 1964; 9 2000; 3 1997; 275 2010; 104 2004; 24 1996; 382 2002; 357 1983; 51 1998; 80 1978; 1 2007; 30 1999; 402 1992; 12 1972; 44 2000a; 10 1996; 76 1993c; 13 2001; 85 2010; 67 2010; 20 1993; 72S 1997; 94 2000b; 94 2008; 28 2006; 26 1988; 332 1997; 17 1972; 53 1996; 494 2010; 30 2003; 89 2007; 27 2001; 98 1989; 61 1995; 15 2006; 16 2002; 33 1992; 39 1995 1991 2001; 22 1996; 16 2009; 27 2009; 29 2005; 47 1993; 13 1986; 367 2005; 562 1937; 119 2002; 22 1997; 78 2001; 2 1998; 1 2005; 93 2009; 5 1994; 1 1990; 431 2003; 423 2003; 100 1993a; 13 1998; 79 e_1_2_6_51_1 e_1_2_6_53_1 e_1_2_6_32_1 e_1_2_6_30_1 e_1_2_6_72_1 e_1_2_6_19_1 e_1_2_6_13_1 e_1_2_6_36_1 e_1_2_6_59_1 e_1_2_6_11_1 e_1_2_6_34_1 e_1_2_6_17_1 e_1_2_6_55_1 e_1_2_6_15_1 e_1_2_6_38_1 e_1_2_6_57_1 e_1_2_6_62_1 e_1_2_6_64_1 e_1_2_6_43_1 e_1_2_6_20_1 e_1_2_6_41_1 e_1_2_6_60_1 e_1_2_6_9_1 e_1_2_6_5_1 e_1_2_6_7_1 e_1_2_6_24_1 e_1_2_6_49_1 e_1_2_6_3_1 Ulrich D (e_1_2_6_68_1) 1997; 17 e_1_2_6_22_1 e_1_2_6_66_1 e_1_2_6_28_1 e_1_2_6_45_1 e_1_2_6_26_1 e_1_2_6_47_1 e_1_2_6_52_1 e_1_2_6_73_1 e_1_2_6_54_1 e_1_2_6_10_1 e_1_2_6_31_1 e_1_2_6_50_1 Timofeev I (e_1_2_6_65_1) 1996; 76 e_1_2_6_71_1 e_1_2_6_14_1 e_1_2_6_35_1 e_1_2_6_12_1 e_1_2_6_33_1 e_1_2_6_18_1 e_1_2_6_39_1 e_1_2_6_56_1 e_1_2_6_16_1 e_1_2_6_37_1 e_1_2_6_58_1 e_1_2_6_42_1 e_1_2_6_21_1 e_1_2_6_40_1 e_1_2_6_61_1 Timofeev I (e_1_2_6_63_1) 2000; 94 e_1_2_6_8_1 e_1_2_6_4_1 e_1_2_6_6_1 e_1_2_6_25_1 e_1_2_6_48_1 e_1_2_6_23_1 e_1_2_6_2_1 e_1_2_6_29_1 e_1_2_6_44_1 e_1_2_6_67_1 e_1_2_6_27_1 e_1_2_6_46_1 e_1_2_6_69_1 Walsh JK (e_1_2_6_70_1) 2009; 5 11353014 - J Neurophysiol. 2001 May;85(5):1969-85 17425224 - Sleep. 2007 Mar;30(3):281-7 10573419 - Nature. 1999 Nov 4;402(6757):75-9 17507551 - J Neurosci. 2007 May 16;27(20):5280-90 8340806 - J Neurosci. 1993 Aug;13(8):3252-65 12351744 - J Neurosci. 2002 Oct 1;22(19):8691-704 8601819 - J Neurosci. 1996 Apr 1;16(7):2397-410 14595013 - Proc Natl Acad Sci U S A. 2003 Nov 11;100(23):13638-43 19998872 - J Clin Sleep Med. 2009 Apr 15;5(2 Suppl):S27-32 9582241 - J Neurophysiol. 1998 May;79(5):2730-48 8985908 - J Neurophysiol. 1996 Dec;76(6):4152-68 16641233 - J Neurosci. 2006 Apr 26;26(17):4535-45 11073868 - Cereb Cortex. 2000 Dec;10(12):1185-99 8094037 - Cell. 1993 Jan;72 Suppl:55-63 20702704 - J Neurosci. 2010 Aug 11;30(32):10734-43 8340808 - J Neurosci. 1993 Aug;13(8):3284-99 16049189 - Cereb Cortex. 2006 May;16(5):618-31 9300413 - Neuroscience. 1997 Nov;81(1):213-22 11165905 - J Physiol Paris. 2000 Sep-Dec;94(5-6):343-55 12612051 - J Neurophysiol. 2003 May;89(5):2707-25 1354387 - Prog Neurobiol. 1992 Oct;39(4):337-88 9065495 - J Neurosci. 1997 Apr 1;17(7):2348-54 15537811 - J Neurophysiol. 2005 Mar;93(3):1671-98 8890314 - J Neurophysiol. 1996 Sep;76(3):2049-70 17025682 - Phys Rev E Stat Nonlin Soft Matter Phys. 2006 Sep;74(3 Pt 1):031922 19966841 - Nat Neurosci. 2010 Jan;13(1):9-17 6194008 - Exp Brain Res. 1983;51(2):227-35 386906 - Annu Rev Neurosci. 1978;1:395-415 8340807 - J Neurosci. 1993 Aug;13(8):3266-83 11389476 - Nat Rev Neurosci. 2001 Jun;2(6):425-33 12626002 - Philos Trans R Soc Lond B Biol Sci. 2002 Dec 29;357(1428):1659-73 15528249 - J Physiol. 2005 Jan 15;562(Pt 2):569-82 11172052 - Proc Natl Acad Sci U S A. 2001 Feb 13;98(4):1924-9 19515919 - J Neurosci. 2009 Jun 10;29(23):7513-8 8985017 - Science. 1997 Jan 10;275(5297):220-4 14145629 - Exp Neurol. 1964 Apr;9:286-304 4537207 - J Cell Biol. 1972 May;53(2):271-89 9012851 - Proc Natl Acad Sci U S A. 1997 Jan 21;94(2):719-23 2831457 - Nature. 1988 Mar 10;332(6160):156-8 11906700 - Neuron. 2002 Mar 14;33(6):947-58 8381170 - J Neurosci. 1993 Feb;13(2):660-73 18272691 - J Neurosci. 2008 Feb 13;28(7):1709-20 3008920 - Brain Res. 1986 Mar 5;367(1-2):201-13 8684467 - Nature. 1996 Jul 25;382(6589):363-6 8814619 - J Physiol. 1996 Jul 1;494 ( Pt 1):251-64 16055065 - Neuron. 2005 Aug 4;47(3):423-35 8814620 - J Physiol. 1996 Jul 1;494 ( Pt 1):265-78 17135420 - J Neurosci. 2006 Nov 29;26(48):12587-95 9310412 - J Neurophysiol. 1997 Sep;78(3):1199-211 20554835 - J Neurophysiol. 2010 Sep;104(3):1314-24 16723523 - J Neurosci. 2006 May 24;26(21):5665-72 7823167 - J Neurosci. 1995 Jan;15(1 Pt 2):604-22 20200108 - Cereb Cortex. 2010 Nov;20(11):2660-74 19499317 - J Comput Neurosci. 2009 Dec;27(3):493-506 1712843 - J Physiol. 1990 Dec;431:291-318 4342445 - Brain Res. 1972 Sep 29;44(2):641-6 10725926 - Nat Neurosci. 2000 Apr;3(4):366-71 9744952 - J Neurophysiol. 1998 Sep;80(3):1456-79 20696373 - Neuron. 2010 Aug 12;67(3):357-8 11182474 - Neurobiol Aging. 2001 Mar-Apr;22(2):247-53 11017176 - Nat Neurosci. 2000 Oct;3(10):1027-34 10966621 - Nat Neurosci. 2000 Sep;3(9):904-10 10196566 - Nat Neurosci. 1998 Nov;1(7):587-94 15295020 - J Neurosci. 2004 Aug 4;24(31):6862-70 8792231 - J Comput Neurosci. 1994 Aug;1(3):195-230 9744930 - J Neurophysiol. 1998 Sep;80(3):1167-79 1403085 - J Neurosci. 1992 Oct;12(10):3804-17 2542471 - J Neurophysiol. 1989 Apr;61(4):747-58 12748642 - Nature. 2003 May 15;423(6937):288-93 |
References_xml | – volume: 13 start-page: 9 year: 2010 end-page: 17 article-title: The slow (<1 Hz) rhythm of non‐REM sleep: a dislogue between three cardinal oscillations publication-title: Nat Neurosci – volume: 13 start-page: 3252 year: 1993b end-page: 3265 article-title: A novel slow (<1 Hz) oscillation of neocortical neurons in vivo : depolarizing and hyperpolarizing components publication-title: J Neurosci – volume: 47 start-page: 423 year: 2005 end-page: 435 article-title: Inhibitory postsynaptic potentials carry synchronized frequency information in active cortical networks publication-title: Neuron – volume: 332 start-page: 156 year: 1988 end-page: 158 article-title: A physiological role for GABA receptors in the central nervous system publication-title: Nature – volume: 29 start-page: 7513 year: 2009 end-page: 7518 article-title: Distinct roles of GABA and GABA receptors in balancing and terminating persistent cortical activity publication-title: J Neurosci – volume: 17 start-page: 2348 year: 1997 end-page: 2354 article-title: Nucleus‐specific chloride homeostasis in rat thalamus publication-title: J Neurosci – volume: 12 start-page: 3804 year: 1992 end-page: 3817 article-title: A novel T‐type current underlies prolonged Ca ‐dependent burst firing in GABAergic neurons of rat thalamic reticular nucleus publication-title: J Neurosci – volume: 1 start-page: 195 year: 1994 end-page: 230 article-title: Synthesis of models for excitable membrane, synaptic transmission and neuromodulation using a common kinetic formalism publication-title: J Comp Neurosci – volume: 27 start-page: 493 year: 2009 end-page: 506 article-title: Self‐sustained asynchronous irregular states and Up‐Down states in thalamic, cortical and thalamocortical networks of nonlinear integrate‐and‐fire neurons publication-title: J Comput Neurosci – volume: 1 start-page: 395 year: 1978 end-page: 415 article-title: Neurophysiology of epilepsy publication-title: Annu Rev Neurosci – volume: 104 start-page: 1314 year: 2010 end-page: 1324 article-title: Inhibitory modulation of cortical up states publication-title: J Neurophysiol – volume: 72S start-page: 55 year: 1993 end-page: 63 article-title: Quantal release of neurotransmitter and long‐term potentiation publication-title: Cell – volume: 494 start-page: 251 year: 1996 end-page: 264 article-title: Mechanisms of long‐lasting hyperpolarizations underlying slow sleep oscillations in cat corticothalamic networks publication-title: J Physiol – volume: 30 start-page: 10734 year: 2010 end-page: 10743 article-title: Network bistability mediates spontaneous transitions between normal and pathological brain states publication-title: J Neurosci – volume: 1 start-page: 587 year: 1998 end-page: 594 article-title: Frequency‐dependent synaptic depression and the balance of excitation and inhibition in the neocortex publication-title: Nat Neurosci – volume: 16 start-page: 2397 year: 1996 end-page: 2410 article-title: The origins of two‐state spontaneous membrane potential fluctuations of neostriatal spiny neurons publication-title: J Neurosci – volume: 85 start-page: 1969 year: 2001 end-page: 1985 article-title: Natural waking and sleep states: a view from inside neocortical neurons publication-title: J Neurophysiol – volume: 3 start-page: 366 year: 2000 end-page: 371 article-title: Proximal targeted GABAergic synapses and gap junctions synchronize cortical interneurons publication-title: Nat Neurosci – volume: 367 start-page: 201 year: 1986 end-page: 213 article-title: Postsynaptic potentials evoked in spiny neostriatal projection neurons by stimulation of ipsilateral and contralateral neocortex publication-title: Brain Res – volume: 26 start-page: 5665 year: 2006 end-page: 5672 article-title: Precise long‐range synchronization of activity and silence in neocortical neurons during slow‐wave sleep publication-title: J Neurosci – volume: 275 start-page: 220 year: 1997 end-page: 224 article-title: Synaptic depression and cortical gain control publication-title: Science – volume: 44 start-page: 641 year: 1972 end-page: 646 article-title: Gap junctions between dendrites in the primate neocortex publication-title: Brain Res – volume: 382 start-page: 363 year: 1996 end-page: 366 article-title: Influence of dendritic structure of firing pattern in model neocortical neurons publication-title: Nature – volume: 67 start-page: 357 year: 2010 end-page: 358 article-title: Forward and back: motifs of inhibition in olfactory processing publication-title: Neuron – volume: 100 start-page: 13638 year: 2003 end-page: 13643 article-title: Interaction of sensory responses with spontaneous depolarization in layer 2/3 barrel cortex publication-title: Proc Natl Acad Sci U S A – volume: 51 start-page: 227 year: 1983 end-page: 235 article-title: Disfacilitation and long‐lasting inhibition of neostriatal neurons in the rat publication-title: Exp Brain Res – volume: 76 start-page: 2049 year: 1996 end-page: 2070 article-title: Ionic mechanisms underlying synchronized oscillation and propagating waves in a model of ferret thalamic slices publication-title: J Neurophysiol – volume: 562 start-page: 569 year: 2005 end-page: 582 article-title: Neuronal mechanisms mediating the variability of somatosensory evoked potentials during sleep oscillations in cats publication-title: J Physiol – volume: 33 start-page: 947 year: 2002 end-page: 958 article-title: Cellular mechanisms of the slow (<1 Hz) oscillation in thalamocortical neurons in vitro publication-title: Neuron – volume: 39 start-page: 337 year: 1992 end-page: 388 article-title: Neurotransmitter actions in the thalamus and cerebral cortex and their role in neuromodulation of thalamocortical activity publication-title: Prog Neurrobiol – volume: 13 start-page: 3284 year: 1993a end-page: 3299 article-title: The slow (<1 Hz) oscillation in reticular thalamic and thalamo‐cortical neurons: scenario of sleep rhythm generation in interacting thalamic and neocortical networks publication-title: J Neurosci – volume: 16 start-page: 618 year: 2006 end-page: 631 article-title: Synaptic plasticity in local cortical network in vivo and its modulation by the level of neuronal activity publication-title: Cereb Cortex – volume: 10 start-page: 1185 year: 2000a end-page: 1199 article-title: Origin of slow cortical oscillations in deafferented cortical slabs publication-title: Cereb Cortex – volume: 80 start-page: 1167 year: 1998 end-page: 1179 article-title: Kinetic and stochastic properties of a persistent sodium current in mature guinea pig cerebellar Purkinje cells publication-title: J Neurophysiol – volume: 78 start-page: 1199 year: 1997 end-page: 1211 article-title: Propagating neuronal discharges in neocortical slices: computational and experimental study publication-title: J Neurophysiol – volume: 22 start-page: 247 year: 2001 end-page: 253 article-title: The GABA uptake inhibitor tiagabine promotes slow wave sleep in normal elderly subjects publication-title: Neurobiol Aging – volume: 13 start-page: 660 year: 1993 end-page: 673 article-title: Modal gating of Na channels as a mechanism of persistent Na current in pyramidal neurons from rat and cat sensorimotor cortex publication-title: J Neurosci – volume: 423 start-page: 288 year: 2003 end-page: 293 article-title: Tuning on and off recurrent balanced cortical activity publication-title: Nature – volume: 89 start-page: 2707 year: 2003 end-page: 2725 article-title: Cellular and network mechanisms of slow oscillatory activity (< 1 Hz) in a cortical network model publication-title: J Neurophysiol – volume: 431 start-page: 291 year: 1990 end-page: 318 article-title: Properties of a hyperpolarization activated cation current and its role in rhythmic oscillation in thalamic relay neurons publication-title: J Physiol – volume: 61 start-page: 747 year: 1989 end-page: 758 article-title: Horizontal spread of synchronized activity in neocortex and its control by GABA‐mediated inhibition publication-title: J Neurophysiol – volume: 93 start-page: 1671 year: 2005 end-page: 1698 article-title: Modeling sleep and wakefulness in the thalamocortical system publication-title: J Neurophysiol – volume: 20 start-page: 2660 year: 2010 end-page: 2674 article-title: Origin of active states in local neocortical networks during slow sleep oscillation publication-title: Cereb Cortex – volume: 30 start-page: 281 year: 2007 end-page: 287 article-title: Effect of short‐term treatment with gaboxadol on sleep maintenance and initiation in patients with primary insomnia publication-title: Sleep – volume: 9 start-page: 286 year: 1964 end-page: 304 article-title: Cortical cellular phenomena in experimental epilepsy: interictal manifestations publication-title: Exp Neurol – volume: 3 start-page: 904 year: 2000 end-page: 910 article-title: A network of electrically coupled interneurons drives synchronized inhibition in neocortex publication-title: Nat Neurosci – volume: 2 start-page: 425 year: 2001 end-page: 433 article-title: Electrical synapses between GABA‐releasing interneurons publication-title: Nat Rev Neurosci – volume: 22 start-page: 8691 year: 2002 end-page: 8704 article-title: Model of thalamocortical slow‐wave sleep oscillations and transitions to activated states publication-title: J Neurosci – volume: 94 start-page: 343 year: 2000b end-page: 355 article-title: Impact of intrinsic properties and synaptic factors on the activity of neocortical networks in vivo publication-title: J Physiol – volume: 28 start-page: 1709 year: 2008 end-page: 1720 article-title: Pathological effect of homeostatic synaptic scaling on network dynamics in diseases of the cortex publication-title: J Neurosci – volume: 53 start-page: 271 year: 1972 end-page: 289 article-title: Specialized membrane junctions between neurons in the vertebrate cerebellar cortex publication-title: J Cell Biol – volume: 5 start-page: S27 year: 2009 end-page: S32 article-title: Enhancement of slow wave sleep: implications for insomnia publication-title: J Clin Sleep Med – volume: 26 start-page: 12587 year: 2006 end-page: 12595 article-title: Distinct patterns of striatal medium spiny neuron activity during the natural sleep‐wake cycle publication-title: J Neurosci – volume: 94 start-page: 719 year: 1997 end-page: 723 article-title: The neural code between neocortical, pyramidal neurons depends on neurotransmitter release probability publication-title: Proc Natl Acad Sci U S A – volume: 24 start-page: 6862 year: 2004 end-page: 6870 article-title: The sleep slow oscillation as a traveling wave publication-title: J Neurosci – volume: 79 start-page: 2730 year: 1998 end-page: 2748 article-title: Cellular and network models for intrathalamic augmenting responses during 10 Hz stimulation publication-title: J Neurophysiol – volume: 27 start-page: 5280 year: 2007 end-page: 5290 article-title: Inhibition determines membrane potential dynamics and controls action potential generation in awake and sleeping cat cortex publication-title: J Neurosci – volume: 402 start-page: 75 year: 1999 end-page: 79 article-title: Two networks of electrically coupled inhibitory neurons in neocortex publication-title: Nature – volume: 98 start-page: 1924 year: 2001 end-page: 1929 article-title: Disfacilitation and active inhibition in the neocortex during the natural sleep‐wake cycle: An intracellular study publication-title: Proc Natl Acad Sci U S A – volume: 74 start-page: 031922 year: 2006 article-title: Coexistence of tonic firing and bursting in cortical neurons publication-title: Physical Review E – volume: 3 start-page: 1027 year: 2000 end-page: 1034 article-title: Cellular and network mechanisms of rhythmic recurrent activity in the neocortex publication-title: Nat Neurosci – volume: 13 start-page: 3266 year: 1993c end-page: 3283 article-title: Intracellular analysis of relations between the slow (<1 Hz) neocortical oscillations and other sleep rhythms of electroencephalogram publication-title: J Neurosci – year: 1995 – volume: 494 start-page: 265 year: 1996 end-page: 278 article-title: Synaptic responsiveness of cortical and thalamic neurones during various phases of slow sleep oscillation in cat publication-title: J Physiol – volume: 357 start-page: 1659 year: 2002 end-page: 73 article-title: Thalamic circuitry and thalamocortical synchrony publication-title: Philos Trans R Soc Lond B Biol Sci – volume: 119 start-page: 692 year: 1937 end-page: 703 article-title: Brain potentials during sleep publication-title: Am J Physiol – volume: 81 start-page: 213 year: 1997 end-page: 222 article-title: Low‐frequency (< 1 Hz) oscillations in the human sleep electroencephalogram publication-title: Neuroscience – year: 1991 – volume: 26 start-page: 4535 year: 2006 end-page: 4545 article-title: Neocortical network activity in vivo is generated through a dynamic balance of excitation and inhibition publication-title: J Neurosci – volume: 80 start-page: 1456 year: 1998 end-page: 1479 article-title: Spike‐wave complexes and fast components of cortically generated seizures. II. Extra‐ and intracellular patterns publication-title: J Neurophysiol – volume: 76 start-page: 4152 year: 1996 end-page: 4168 article-title: Low‐frequency rhythms in the thalamus of intact‐cortex and decorticated cats publication-title: J Neurophysiol – volume: 15 start-page: 604 year: 1995 end-page: 622 article-title: Cellular basis of EEG slow rhythms: a study of dynamic corticothalamic relationships publication-title: J Neurosci – ident: e_1_2_6_25_1 doi: 10.1038/35077566 – ident: e_1_2_6_5_1 doi: 10.1152/jn.1998.79.5.2730 – ident: e_1_2_6_22_1 doi: 10.1523/JNEUROSCI.4263-07.2008 – ident: e_1_2_6_55_1 doi: 10.1523/JNEUROSCI.13-08-03252.1993 – ident: e_1_2_6_52_1 doi: 10.1083/jcb.53.2.271 – ident: e_1_2_6_13_1 doi: 10.1113/jphysiol.1996.sp021488 – ident: e_1_2_6_6_1 doi: 10.1523/JNEUROSCI.22-19-08691.2002 – ident: e_1_2_6_29_1 doi: 10.1016/j.neuron.2005.06.016 – ident: e_1_2_6_66_1 doi: 10.1017/CBO9780511895401 – ident: e_1_2_6_36_1 doi: 10.1523/JNEUROSCI.3987-06.2006 – ident: e_1_2_6_73_1 doi: 10.1007/BF00237198 – ident: e_1_2_6_35_1 doi: 10.1007/978-1-4757-2421-9 – ident: e_1_2_6_58_1 doi: 10.1016/S0092-8674(05)80028-5 – ident: e_1_2_6_9_1 doi: 10.1152/jn.1989.61.4.747 – ident: e_1_2_6_26_1 doi: 10.1038/47035 – ident: e_1_2_6_59_1 doi: 10.1016/j.neuron.2010.07.023 – ident: e_1_2_6_17_1 doi: 10.1007/s10827-009-0164-4 – ident: e_1_2_6_23_1 doi: 10.1523/JNEUROSCI.1239-10.2010 – ident: e_1_2_6_8_1 doi: 10.1152/ajplegacy.1937.119.4.692 – volume: 17 start-page: 2348 year: 1997 ident: e_1_2_6_68_1 article-title: Nucleus‐specific chloride homeostasis in rat thalamus publication-title: J Neurosci doi: 10.1523/JNEUROSCI.17-07-02348.1997 – volume: 5 start-page: S27 year: 2009 ident: e_1_2_6_70_1 article-title: Enhancement of slow wave sleep: implications for insomnia publication-title: J Clin Sleep Med doi: 10.5664/jcsm.5.2S.S27 – ident: e_1_2_6_27_1 doi: 10.1152/jn.1997.78.3.1199 – ident: e_1_2_6_61_1 doi: 10.1113/jphysiol.1996.sp021489 – ident: e_1_2_6_71_1 doi: 10.1523/JNEUROSCI.16-07-02397.1996 – ident: e_1_2_6_43_1 doi: 10.1113/jphysiol.1990.sp018331 – ident: e_1_2_6_67_1 doi: 10.1073/pnas.94.2.719 – ident: e_1_2_6_54_1 doi: 10.1523/JNEUROSCI.13-08-03284.1993 – ident: e_1_2_6_12_1 doi: 10.1523/JNEUROSCI.15-01-00604.1995 – ident: e_1_2_6_72_1 doi: 10.1016/0006-8993(86)91593-3 – ident: e_1_2_6_33_1 doi: 10.1098/rstb.2002.1168 – ident: e_1_2_6_46_1 doi: 10.1113/jphysiol.2004.071381 – ident: e_1_2_6_53_1 doi: 10.1152/jn.1998.80.3.1456 – ident: e_1_2_6_41_1 doi: 10.1016/0014-4886(64)90025-1 – ident: e_1_2_6_18_1 doi: 10.1152/jn.1996.76.3.2049 – ident: e_1_2_6_11_1 doi: 10.1152/jn.00845.2002 – ident: e_1_2_6_39_1 doi: 10.1523/JNEUROSCI.1318-04.2004 – ident: e_1_2_6_60_1 doi: 10.1038/73936 – ident: e_1_2_6_64_1 doi: 10.1073/pnas.98.4.1924 – ident: e_1_2_6_19_1 doi: 10.1007/BF00961734 – ident: e_1_2_6_44_1 doi: 10.1073/pnas.2235811100 – ident: e_1_2_6_50_1 doi: 10.1038/nature01616 – ident: e_1_2_6_51_1 doi: 10.1016/0006-8993(72)90327-7 – ident: e_1_2_6_62_1 doi: 10.1093/cercor/10.12.1185 – ident: e_1_2_6_69_1 doi: 10.1523/JNEUROSCI.0279-06.2006 – ident: e_1_2_6_7_1 doi: 10.1038/78809 – ident: e_1_2_6_57_1 doi: 10.1152/jn.2001.85.5.1969 – ident: e_1_2_6_24_1 doi: 10.1038/2822 – ident: e_1_2_6_37_1 doi: 10.1038/382363a0 – volume: 76 start-page: 4152 year: 1996 ident: e_1_2_6_65_1 article-title: Low‐frequency rhythms in the thalamus of intact‐cortex and decorticated cats publication-title: J Neurophysiol doi: 10.1152/jn.1996.76.6.4152 – ident: e_1_2_6_14_1 doi: 10.1093/cercor/bhj008 – ident: e_1_2_6_30_1 doi: 10.1152/jn.00915.2004 – ident: e_1_2_6_10_1 doi: 10.1093/cercor/bhq009 – ident: e_1_2_6_34_1 doi: 10.1152/jn.1998.80.3.1167 – ident: e_1_2_6_40_1 doi: 10.1016/S0197-4580(00)00232-3 – ident: e_1_2_6_32_1 doi: 10.1523/JNEUROSCI.12-10-03804.1992 – ident: e_1_2_6_47_1 doi: 10.1523/JNEUROSCI.4652-06.2007 – ident: e_1_2_6_15_1 doi: 10.1038/nn.2445 – ident: e_1_2_6_28_1 doi: 10.1523/JNEUROSCI.5297-05.2006 – ident: e_1_2_6_48_1 doi: 10.1152/jn.00178.2010 – ident: e_1_2_6_3_1 doi: 10.1016/S0306-4522(97)00186-3 – ident: e_1_2_6_4_1 doi: 10.1523/JNEUROSCI.13-02-00660.1993 – ident: e_1_2_6_31_1 doi: 10.1016/S0896-6273(02)00623-2 – ident: e_1_2_6_38_1 doi: 10.1523/JNEUROSCI.6162-08.2009 – ident: e_1_2_6_45_1 doi: 10.1146/annurev.ne.01.030178.002143 – ident: e_1_2_6_2_1 doi: 10.1126/science.275.5297.221 – ident: e_1_2_6_42_1 doi: 10.1016/0301-0082(92)90012-4 – ident: e_1_2_6_16_1 doi: 10.1093/sleep/30.3.281 – ident: e_1_2_6_20_1 doi: 10.1038/332156a0 – ident: e_1_2_6_56_1 doi: 10.1523/JNEUROSCI.13-08-03266.1993 – ident: e_1_2_6_49_1 doi: 10.1038/79848 – ident: e_1_2_6_21_1 doi: 10.1103/PhysRevE.74.031922 – volume: 94 start-page: 343 year: 2000 ident: e_1_2_6_63_1 article-title: Impact of intrinsic properties and synaptic factors on the activity of neocortical networks in vivo publication-title: J Physiol – reference: 15528249 - J Physiol. 2005 Jan 15;562(Pt 2):569-82 – reference: 8985017 - Science. 1997 Jan 10;275(5297):220-4 – reference: 10573419 - Nature. 1999 Nov 4;402(6757):75-9 – reference: 12612051 - J Neurophysiol. 2003 May;89(5):2707-25 – reference: 19499317 - J Comput Neurosci. 2009 Dec;27(3):493-506 – reference: 14595013 - Proc Natl Acad Sci U S A. 2003 Nov 11;100(23):13638-43 – reference: 8601819 - J Neurosci. 1996 Apr 1;16(7):2397-410 – reference: 16723523 - J Neurosci. 2006 May 24;26(21):5665-72 – reference: 17135420 - J Neurosci. 2006 Nov 29;26(48):12587-95 – reference: 11017176 - Nat Neurosci. 2000 Oct;3(10):1027-34 – reference: 4342445 - Brain Res. 1972 Sep 29;44(2):641-6 – reference: 9012851 - Proc Natl Acad Sci U S A. 1997 Jan 21;94(2):719-23 – reference: 10196566 - Nat Neurosci. 1998 Nov;1(7):587-94 – reference: 8814619 - J Physiol. 1996 Jul 1;494 ( Pt 1):251-64 – reference: 10725926 - Nat Neurosci. 2000 Apr;3(4):366-71 – reference: 9744952 - J Neurophysiol. 1998 Sep;80(3):1456-79 – reference: 14145629 - Exp Neurol. 1964 Apr;9:286-304 – reference: 12626002 - Philos Trans R Soc Lond B Biol Sci. 2002 Dec 29;357(1428):1659-73 – reference: 8340808 - J Neurosci. 1993 Aug;13(8):3284-99 – reference: 1403085 - J Neurosci. 1992 Oct;12(10):3804-17 – reference: 20702704 - J Neurosci. 2010 Aug 11;30(32):10734-43 – reference: 17025682 - Phys Rev E Stat Nonlin Soft Matter Phys. 2006 Sep;74(3 Pt 1):031922 – reference: 2831457 - Nature. 1988 Mar 10;332(6160):156-8 – reference: 16049189 - Cereb Cortex. 2006 May;16(5):618-31 – reference: 15295020 - J Neurosci. 2004 Aug 4;24(31):6862-70 – reference: 9582241 - J Neurophysiol. 1998 May;79(5):2730-48 – reference: 6194008 - Exp Brain Res. 1983;51(2):227-35 – reference: 1712843 - J Physiol. 1990 Dec;431:291-318 – reference: 4537207 - J Cell Biol. 1972 May;53(2):271-89 – reference: 10966621 - Nat Neurosci. 2000 Sep;3(9):904-10 – reference: 16055065 - Neuron. 2005 Aug 4;47(3):423-35 – reference: 11182474 - Neurobiol Aging. 2001 Mar-Apr;22(2):247-53 – reference: 11073868 - Cereb Cortex. 2000 Dec;10(12):1185-99 – reference: 11165905 - J Physiol Paris. 2000 Sep-Dec;94(5-6):343-55 – reference: 8684467 - Nature. 1996 Jul 25;382(6589):363-6 – reference: 20200108 - Cereb Cortex. 2010 Nov;20(11):2660-74 – reference: 8340806 - J Neurosci. 1993 Aug;13(8):3252-65 – reference: 17425224 - Sleep. 2007 Mar;30(3):281-7 – reference: 9744930 - J Neurophysiol. 1998 Sep;80(3):1167-79 – reference: 8381170 - J Neurosci. 1993 Feb;13(2):660-73 – reference: 11353014 - J Neurophysiol. 2001 May;85(5):1969-85 – reference: 8985908 - J Neurophysiol. 1996 Dec;76(6):4152-68 – reference: 11389476 - Nat Rev Neurosci. 2001 Jun;2(6):425-33 – reference: 8814620 - J Physiol. 1996 Jul 1;494 ( Pt 1):265-78 – reference: 9300413 - Neuroscience. 1997 Nov;81(1):213-22 – reference: 19998872 - J Clin Sleep Med. 2009 Apr 15;5(2 Suppl):S27-32 – reference: 7823167 - J Neurosci. 1995 Jan;15(1 Pt 2):604-22 – reference: 3008920 - Brain Res. 1986 Mar 5;367(1-2):201-13 – reference: 386906 - Annu Rev Neurosci. 1978;1:395-415 – reference: 20554835 - J Neurophysiol. 2010 Sep;104(3):1314-24 – reference: 9065495 - J Neurosci. 1997 Apr 1;17(7):2348-54 – reference: 15537811 - J Neurophysiol. 2005 Mar;93(3):1671-98 – reference: 12351744 - J Neurosci. 2002 Oct 1;22(19):8691-704 – reference: 16641233 - J Neurosci. 2006 Apr 26;26(17):4535-45 – reference: 11172052 - Proc Natl Acad Sci U S A. 2001 Feb 13;98(4):1924-9 – reference: 9310412 - J Neurophysiol. 1997 Sep;78(3):1199-211 – reference: 8890314 - J Neurophysiol. 1996 Sep;76(3):2049-70 – reference: 1354387 - Prog Neurobiol. 1992 Oct;39(4):337-88 – reference: 2542471 - J Neurophysiol. 1989 Apr;61(4):747-58 – reference: 20696373 - Neuron. 2010 Aug 12;67(3):357-8 – reference: 8340807 - J Neurosci. 1993 Aug;13(8):3266-83 – reference: 8094037 - Cell. 1993 Jan;72 Suppl:55-63 – reference: 8792231 - J Comput Neurosci. 1994 Aug;1(3):195-230 – reference: 18272691 - J Neurosci. 2008 Feb 13;28(7):1709-20 – reference: 19515919 - J Neurosci. 2009 Jun 10;29(23):7513-8 – reference: 12748642 - Nature. 2003 May 15;423(6937):288-93 – reference: 17507551 - J Neurosci. 2007 May 16;27(20):5280-90 – reference: 19966841 - Nat Neurosci. 2010 Jan;13(1):9-17 – reference: 11906700 - Neuron. 2002 Mar 14;33(6):947-58 |
SSID | ssj0013099 |
Score | 2.3672998 |
Snippet | Key points
•
A signature of deep sleep in the EEG is large‐amplitude fluctuation of field potential, which reflects alternating periods of activity and... A signature of deep sleep in the EEG is large‐amplitude fluctuation of field potential, which reflects alternating periods of activity and silence in the... The signature of slow-wave sleep in the electroencephalogram (EEG) is large-amplitude fluctuation of the field potential, which reflects synchronous... Key points * A signature of deep sleep in the EEG is large-amplitude fluctuation of field potential, which reflects alternating periods of activity and silence... times A signature of deep sleep in the EEG is large-amplitude fluctuation of field potential, which reflects alternating periods of activity and silence in the... |
SourceID | pubmedcentral proquest pubmed crossref wiley |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 3987 |
SubjectTerms | Action Potentials Animals Biological Clocks - physiology Cats - physiology Cerebral Cortex - physiology Cortical Synchronization - physiology Interneurons - physiology Nerve Net - physiology Neurons - physiology Neuroscience: Behavioural/Systems/Cognitive Sleep Sleep - physiology |
Title | Interneuron‐mediated inhibition synchronizes neuronal activity during slow oscillation |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1113%2Fjphysiol.2012.227462 https://www.ncbi.nlm.nih.gov/pubmed/22641778 https://www.proquest.com/docview/1317497829 https://www.proquest.com/docview/1034517297 https://www.proquest.com/docview/1419359541 https://pubmed.ncbi.nlm.nih.gov/PMC3476644 |
Volume | 590 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwELaqnrjwV34CpTIS4pYldpw4PlaIVdUDqlAr7S2yY6ddWBzE7gptT32EPiNPwoydBJYiQCDtaTO21rMzzjf2zDeEvGBlpdqMtWnm2ioVjShSraRNnWhlZSoLmDZk-b4tj87E8ayY7ZDpUAsT-SHGAzf0jLBfo4Nr03chYUg28D6E_h1eHzA-4RBdha0Y07YQG73j3y8TMqVG0nBZsL6CDqZ59atJtt9QN2DnzezJH1FteC1N75DzYUExG-XDZL0yk-byJ67H_1_xXXK7R670MJraPbLj_H2yd-ghav-4oS_pSRzWnW_2yCweNCLxh_96dR3KUwDa0rm_mJuQJEaXG98EYt5Lt6RREmbHMgvsZkFj-SRdLrovFPk2FzFn7wE5m745fX2U9j0c0gYCEZ4qCRBOS-ZUaa00Wc5bkWljSs4DVR_LnbJWaN0ALlO6sAb2BN22XEircvg8JLu-8-4xoWVheQv2gxGlcLlRrkW6RFPoAkCaLROSD_9b3fQE59hnY1HHQCevBwXWqMA6KjAh6TjqUyT4-IP8_mASde_uy5oBCsNWfVwl5Pn4GBwVb1-0d90aZLJcFAAXlfyNDOgAK6UFS8ijaGXjj8KKZyZllRC5ZX-jABKFbz_x84tAGJ4LWYLWEsKDef3VOuvT4xNA9_zJvwx6Sm7htzFRcp_srj6v3TMAbytzEFzzIJyqfQNKAEQE |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1fb9MwED9N4wFeGDD-BAYYCfGWkjhOHD9OiFHGmCbUSX2L4tihhS5BtBXqnvgIfEY-CXd2GihDgBBS33K26sud8zv77ncAj-MsV3UU12Fk6zwUlUjDUkkTWlHLXOcGMa3L8j3OhqficJyOt-DFuhbG80P0B27kGW6_JgenA-nOy4lt4J2L_Vu6P4j5gGN4RXvxJWru7WKrN_z7dUKkVE8bLtO4q6HDeZ7-apbNb9QF4Hkxf_JHXOs-TAc7MFkvyeejvB8sF3pQnf_E9vgf1nwNrnbgle17a7sOW7a5Abv7DQbuZyv2hJ34Ye3b1S6M_VkjcX80Xz9_cRUqiG7ZtJlMtcsTY_NVUzlu3nM7Z14SZ6dKC2powXwFJZvP2k-MKDdnPm3vJpwePB89G4ZdG4ewwliEh0oiiitlbFVmjNRRwmsRlVpnnDu2vjixyhhRlhVCM1WmRuO2UNY1F9KoBH-3YLtpG3sHWJYaXqMJUVApbKKVrYkxUadlijjNZAEk6xdXVB3HObXamBU-1kmKtQILUmDhFRhA2I_64Dk-_iC_t7aJovP4eREjEKNufVwF8Kh_jL5KFzBlY9slykSJSBExKvkbGdQBFUuLOIDb3sz6P0VFz7GUeQBywwB7AeIK33zSTCeOMzwRMkOtBcCdff3VOovR4QkCfH73XwY9hMvD0euj4ujl8at7cIUkfN7kHmwvPi7tfcRyC_3A-ek3rIVHDw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwEB5VRUJcKFB-AgWChLhlSRwnjo8VZVUKqlaolfYWxbHdbtkmFbsrtD3xCDwjT8KMnQ0sRYBAys1jK57MON_YM58Bnid5IW2c2Cg2toh4zbOokkJHhltRqEIjpnVZvof5_jE_GGfjDRiuamE8P0S_4Uae4dZrcvALbTsnJ7KBMxf6t3R8kLABw-iKluJrPI8Lsu699-z7aUIsZc8aLrKkK6HDcV7-apT1X9QV3Hk1ffJHWOv-S8MtOFnNyKejfBgs5mpQX_5E9vj_U74FNzvoGu56W7sNG6a5A9u7DYbt58vwRTjy3dqT5TaM_U4jMX80Xz9_cfUpiG3DSXM6US5LLJwtm9ox816aWeglcXSqs6DrLEJfPxnOpu2nkAg3pz5p7y4cD18fvdqPukscohojERZJgRiuEomRudZCxSmzPK6UyhlzXH1JaqTWvKpqBGayyrTCRaGylnGhZYrPPdhs2sY8gDDPNLNoQBRScpMqaSzxJaqsyhCl6TyAdPXdyrpjOKeLNqalj3TScqXAkhRYegUGEPW9LjzDxx_kd1YmUXb-PisThGF0Vx-TATzrm9FT6filaky7QJk45RniRSl-I4M6oFJpngRw31tZ_1JU8pwIUQQg1uyvFyCm8PWWZnLqGMNTLnLUWgDMmddfzbM8OhghvGcP_6XTU7g-2huW794cvn0EN0jAJ03uwOb848I8RiA3V0-cl34DzzxFxw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Interneuron-mediated+inhibition+synchronizes+neuronal+activity+during+slow+oscillation&rft.jtitle=The+Journal+of+physiology&rft.au=Chen%2C+Jen-Yung&rft.au=Chauvette%2C+Sylvain&rft.au=Skorheim%2C+Steven&rft.au=Timofeev%2C+Igor&rft.date=2012-08-01&rft.issn=1469-7793&rft.eissn=1469-7793&rft.volume=590&rft.issue=16&rft.spage=3987&rft_id=info:doi/10.1113%2Fjphysiol.2012.227462&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-3751&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-3751&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-3751&client=summon |