Interneuron‐mediated inhibition synchronizes neuronal activity during slow oscillation

Key points •  A signature of deep sleep in the EEG is large‐amplitude fluctuation of field potential, which reflects alternating periods of activity and silence in the thalamocortical network. •  Transitions between active and silent states of sleep slow oscillation are well synchronous between remo...

Full description

Saved in:
Bibliographic Details
Published inThe Journal of physiology Vol. 590; no. 16; pp. 3987 - 4010
Main Authors Chen, Jen‐Yung, Chauvette, Sylvain, Skorheim, Steven, Timofeev, Igor, Bazhenov, Maxim
Format Journal Article
LanguageEnglish
Published Oxford, UK Blackwell Publishing Ltd 01.08.2012
Wiley Subscription Services, Inc
Blackwell Science Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Key points •  A signature of deep sleep in the EEG is large‐amplitude fluctuation of field potential, which reflects alternating periods of activity and silence in the thalamocortical network. •  Transitions between active and silent states of sleep slow oscillation are well synchronous between remote populations of neurons with the onsets of silent states synchronized better than the onsets of activity. •  We found that synaptic inhibition plays a major role in terminating active cortical states; strong synaptic inhibition is necessary to synchronize onsets of silent states during normal sleep slow oscillation. •  We further show that when synaptic inhibition is significantly reduced, active state termination is mediated by intrinsic hyperpolarizing conductances. •  Our study suggests that inhibitory interaction in the cortical network actively mediates the patterns of neural activity during slow‐wave sleep and may, therefore, contribute to various brain functions developed during deep sleep.   The signature of slow‐wave sleep in the electroencephalogram (EEG) is large‐amplitude fluctuation of the field potential, which reflects synchronous alternation of activity and silence across cortical neurons. While initiation of the active cortical states during sleep slow oscillation has been intensively studied, the biological mechanisms which drive the network transition from an active state to silence remain poorly understood. In the current study, using a combination of in vivo electrophysiology and thalamocortical network simulation, we explored the impact of intrinsic and synaptic inhibition on state transition during sleep slow oscillation. We found that in normal physiological conditions, synaptic inhibition controls the duration and the synchrony of active state termination. The decline of interneuron‐mediated inhibition led to asynchronous downward transition across the cortical network and broke the regular slow oscillation pattern. Furthermore, in both in vivo experiment and computational modelling, we revealed that when the level of synaptic inhibition was reduced significantly, it led to a recovery of synchronized oscillations in the form of seizure‐like bursting activity. In this condition, the fast active state termination was mediated by intrinsic hyperpolarizing conductances. Our study highlights the significance of both intrinsic and synaptic inhibition in manipulating sleep slow rhythms.
AbstractList The signature of slow-wave sleep in the electroencephalogram (EEG) is large-amplitude fluctuation of the field potential, which reflects synchronous alternation of activity and silence across cortical neurons. While initiation of the active cortical states during sleep slow oscillation has been intensively studied, the biological mechanisms which drive the network transition from an active state to silence remain poorly understood. In the current study, using a combination of in vivo electrophysiology and thalamocortical network simulation, we explored the impact of intrinsic and synaptic inhibition on state transition during sleep slow oscillation. We found that in normal physiological conditions, synaptic inhibition controls the duration and the synchrony of active state termination. The decline of interneuron-mediated inhibition led to asynchronous downward transition across the cortical network and broke the regular slow oscillation pattern. Furthermore, in both in vivo experiment and computational modelling, we revealed that when the level of synaptic inhibition was reduced significantly, it led to a recovery of synchronized oscillations in the form of seizure-like bursting activity. In this condition, the fast active state termination was mediated by intrinsic hyperpolarizing conductances. Our study highlights the significance of both intrinsic and synaptic inhibition in manipulating sleep slow rhythms.
A signature of deep sleep in the EEG is large‐amplitude fluctuation of field potential, which reflects alternating periods of activity and silence in the thalamocortical network. Transitions between active and silent states of sleep slow oscillation are well synchronous between remote populations of neurons with the onsets of silent states synchronized better than the onsets of activity. We found that synaptic inhibition plays a major role in terminating active cortical states; strong synaptic inhibition is necessary to synchronize onsets of silent states during normal sleep slow oscillation. We further show that when synaptic inhibition is significantly reduced, active state termination is mediated by intrinsic hyperpolarizing conductances. Our study suggests that inhibitory interaction in the cortical network actively mediates the patterns of neural activity during slow‐wave sleep and may, therefore, contribute to various brain functions developed during deep sleep. Abstract  The signature of slow‐wave sleep in the electroencephalogram (EEG) is large‐amplitude fluctuation of the field potential, which reflects synchronous alternation of activity and silence across cortical neurons. While initiation of the active cortical states during sleep slow oscillation has been intensively studied, the biological mechanisms which drive the network transition from an active state to silence remain poorly understood. In the current study, using a combination of in vivo electrophysiology and thalamocortical network simulation, we explored the impact of intrinsic and synaptic inhibition on state transition during sleep slow oscillation. We found that in normal physiological conditions, synaptic inhibition controls the duration and the synchrony of active state termination. The decline of interneuron‐mediated inhibition led to asynchronous downward transition across the cortical network and broke the regular slow oscillation pattern. Furthermore, in both in vivo experiment and computational modelling, we revealed that when the level of synaptic inhibition was reduced significantly, it led to a recovery of synchronized oscillations in the form of seizure‐like bursting activity. In this condition, the fast active state termination was mediated by intrinsic hyperpolarizing conductances. Our study highlights the significance of both intrinsic and synaptic inhibition in manipulating sleep slow rhythms.
times A signature of deep sleep in the EEG is large-amplitude fluctuation of field potential, which reflects alternating periods of activity and silence in the thalamocortical network. Abstract The signature of slow-wave sleep in the electroencephalogram (EEG) is large-amplitude fluctuation of the field potential, which reflects synchronous alternation of activity and silence across cortical neurons. While initiation of the active cortical states during sleep slow oscillation has been intensively studied, the biological mechanisms which drive the network transition from an active state to silence remain poorly understood. In the current study, using a combination of in vivo electrophysiology and thalamocortical network simulation, we explored the impact of intrinsic and synaptic inhibition on state transition during sleep slow oscillation. We found that in normal physiological conditions, synaptic inhibition controls the duration and the synchrony of active state termination. The decline of interneuron-mediated inhibition led to asynchronous downward transition across the cortical network and broke the regular slow oscillation pattern. Furthermore, in both in vivo experiment and computational modelling, we revealed that when the level of synaptic inhibition was reduced significantly, it led to a recovery of synchronized oscillations in the form of seizure-like bursting activity. In this condition, the fast active state termination was mediated by intrinsic hyperpolarizing conductances. Our study highlights the significance of both intrinsic and synaptic inhibition in manipulating sleep slow rhythms.
The signature of slow-wave sleep in the electroencephalogram (EEG) is large-amplitude fluctuation of the field potential, which reflects synchronous alternation of activity and silence across cortical neurons. While initiation of the active cortical states during sleep slow oscillation has been intensively studied, the biological mechanisms which drive the network transition from an active state to silence remain poorly understood. In the current study, using a combination of in vivo electrophysiology and thalamocortical network simulation, we explored the impact of intrinsic and synaptic inhibition on state transition during sleep slow oscillation. We found that in normal physiological conditions, synaptic inhibition controls the duration and the synchrony of active state termination. The decline of interneuron-mediated inhibition led to asynchronous downward transition across the cortical network and broke the regular slow oscillation pattern. Furthermore, in both in vivo experiment and computational modelling, we revealed that when the level of synaptic inhibition was reduced significantly, it led to a recovery of synchronized oscillations in the form of seizure-like bursting activity. In this condition, the fast active state termination was mediated by intrinsic hyperpolarizing conductances. Our study highlights the significance of both intrinsic and synaptic inhibition in manipulating sleep slow rhythms.The signature of slow-wave sleep in the electroencephalogram (EEG) is large-amplitude fluctuation of the field potential, which reflects synchronous alternation of activity and silence across cortical neurons. While initiation of the active cortical states during sleep slow oscillation has been intensively studied, the biological mechanisms which drive the network transition from an active state to silence remain poorly understood. In the current study, using a combination of in vivo electrophysiology and thalamocortical network simulation, we explored the impact of intrinsic and synaptic inhibition on state transition during sleep slow oscillation. We found that in normal physiological conditions, synaptic inhibition controls the duration and the synchrony of active state termination. The decline of interneuron-mediated inhibition led to asynchronous downward transition across the cortical network and broke the regular slow oscillation pattern. Furthermore, in both in vivo experiment and computational modelling, we revealed that when the level of synaptic inhibition was reduced significantly, it led to a recovery of synchronized oscillations in the form of seizure-like bursting activity. In this condition, the fast active state termination was mediated by intrinsic hyperpolarizing conductances. Our study highlights the significance of both intrinsic and synaptic inhibition in manipulating sleep slow rhythms.
Key points •  A signature of deep sleep in the EEG is large‐amplitude fluctuation of field potential, which reflects alternating periods of activity and silence in the thalamocortical network. •  Transitions between active and silent states of sleep slow oscillation are well synchronous between remote populations of neurons with the onsets of silent states synchronized better than the onsets of activity. •  We found that synaptic inhibition plays a major role in terminating active cortical states; strong synaptic inhibition is necessary to synchronize onsets of silent states during normal sleep slow oscillation. •  We further show that when synaptic inhibition is significantly reduced, active state termination is mediated by intrinsic hyperpolarizing conductances. •  Our study suggests that inhibitory interaction in the cortical network actively mediates the patterns of neural activity during slow‐wave sleep and may, therefore, contribute to various brain functions developed during deep sleep.   The signature of slow‐wave sleep in the electroencephalogram (EEG) is large‐amplitude fluctuation of the field potential, which reflects synchronous alternation of activity and silence across cortical neurons. While initiation of the active cortical states during sleep slow oscillation has been intensively studied, the biological mechanisms which drive the network transition from an active state to silence remain poorly understood. In the current study, using a combination of in vivo electrophysiology and thalamocortical network simulation, we explored the impact of intrinsic and synaptic inhibition on state transition during sleep slow oscillation. We found that in normal physiological conditions, synaptic inhibition controls the duration and the synchrony of active state termination. The decline of interneuron‐mediated inhibition led to asynchronous downward transition across the cortical network and broke the regular slow oscillation pattern. Furthermore, in both in vivo experiment and computational modelling, we revealed that when the level of synaptic inhibition was reduced significantly, it led to a recovery of synchronized oscillations in the form of seizure‐like bursting activity. In this condition, the fast active state termination was mediated by intrinsic hyperpolarizing conductances. Our study highlights the significance of both intrinsic and synaptic inhibition in manipulating sleep slow rhythms.
Key points * A signature of deep sleep in the EEG is large-amplitude fluctuation of field potential, which reflects alternating periods of activity and silence in the thalamocortical network. * Transitions between active and silent states of sleep slow oscillation are well synchronous between remote populations of neurons with the onsets of silent states synchronized better than the onsets of activity. * We found that synaptic inhibition plays a major role in terminating active cortical states; strong synaptic inhibition is necessary to synchronize onsets of silent states during normal sleep slow oscillation. * We further show that when synaptic inhibition is significantly reduced, active state termination is mediated by intrinsic hyperpolarizing conductances. * Our study suggests that inhibitory interaction in the cortical network actively mediates the patterns of neural activity during slow-wave sleep and may, therefore, contribute to various brain functions developed during deep sleep. Abstract The signature of slow-wave sleep in the electroencephalogram (EEG) is large-amplitude fluctuation of the field potential, which reflects synchronous alternation of activity and silence across cortical neurons. While initiation of the active cortical states during sleep slow oscillation has been intensively studied, the biological mechanisms which drive the network transition from an active state to silence remain poorly understood. In the current study, using a combination of in vivo electrophysiology and thalamocortical network simulation, we explored the impact of intrinsic and synaptic inhibition on state transition during sleep slow oscillation. We found that in normal physiological conditions, synaptic inhibition controls the duration and the synchrony of active state termination. The decline of interneuron-mediated inhibition led to asynchronous downward transition across the cortical network and broke the regular slow oscillation pattern. Furthermore, in both in vivo experiment and computational modelling, we revealed that when the level of synaptic inhibition was reduced significantly, it led to a recovery of synchronized oscillations in the form of seizure-like bursting activity. In this condition, the fast active state termination was mediated by intrinsic hyperpolarizing conductances. Our study highlights the significance of both intrinsic and synaptic inhibition in manipulating sleep slow rhythms.
The signature of slow-wave sleep in the electroencephalogram (EEG) is large-amplitude fluctuation of the field potential, which reflects synchronous alternation of activity and silence across cortical neurons. While initiation of the active cortical states during sleep slow oscillation has been intensively studied, the biological mechanisms which drive the network transition from an active state to silence remain poorly understood. In the current study, using a combination of in vivo electrophysiology and thalamocortical network simulation, we explored the impact of intrinsic and synaptic inhibition on state transition during sleep slow oscillation. We found that in normal physiological conditions, synaptic inhibition controls the duration and the synchrony of active state termination. The decline of interneuron-mediated inhibition led to asynchronous downward transition across the cortical network and broke the regular slow oscillation pattern. Furthermore, in both in vivo experiment and computational modelling, we revealed that when the level of synaptic inhibition was reduced significantly, it led to a recovery of synchronized oscillations in the form of seizure-like bursting activity. In this condition, the fast active state termination was mediated by intrinsic hyperpolarizing conductances. Our study highlights the significance of both intrinsic and synaptic inhibition in manipulating sleep slow rhythms.
Author Skorheim, Steven
Chen, Jen‐Yung
Timofeev, Igor
Bazhenov, Maxim
Chauvette, Sylvain
Author_xml – sequence: 1
  givenname: Jen‐Yung
  surname: Chen
  fullname: Chen, Jen‐Yung
– sequence: 2
  givenname: Sylvain
  surname: Chauvette
  fullname: Chauvette, Sylvain
– sequence: 3
  givenname: Steven
  surname: Skorheim
  fullname: Skorheim, Steven
– sequence: 4
  givenname: Igor
  surname: Timofeev
  fullname: Timofeev, Igor
– sequence: 5
  givenname: Maxim
  surname: Bazhenov
  fullname: Bazhenov, Maxim
BackLink https://www.ncbi.nlm.nih.gov/pubmed/22641778$$D View this record in MEDLINE/PubMed
BookMark eNqNkstu1DAUhi1URKeFN0AoEhs2GXyNxyyQUMWlqBIsisTOchync0Yee7CTVmHFI_CMPAke0lbQTZEsnYW__5z_XI7QQYjBIfSU4CUhhL3c7NZThuiXFBO6pFTyhj5AC8IbVUup2AFaYExpzaQgh-go5w3GhGGlHqFDShtOpFwt0NfTMLgU3Jhi-PXj59Z1YAbXVRDW0MIAMVR5CnZdvuG7y9VMGl8ZO8AlDFPVjQnCRZV9vKpituC92cseo4e98dk9uY7H6Mu7t-cnH-qzT-9PT96c1VasBK2VVIIYSZxquk62mNGeY9O2DaVYrkprzKmu48ZYzokyomtZCX1PuewUK-8YvZ7z7sa2uLcuDMl4vUuwNWnS0YD-9yfAWl_ES824bBrOS4IX1wlS_Da6POgtZOtKG8HFMWtS6jKhBCf3o5hxQSRVsqDP76CbOKYyuEIxIrkqze3NP_vb_K3rm_0UgM-ATTHn5PpbhGC9PwN9cwZ6fwZ6PoMie3VHZmH4s5YyAvD3idUsvgLvpv8qqM8_fhZEUfYbUrfQPw
CODEN JPHYA7
CitedBy_id crossref_primary_10_21926_obm_neurobiol_2304185
crossref_primary_10_1111_ejn_15836
crossref_primary_10_1113_JP279476
crossref_primary_10_1113_JP284587
crossref_primary_10_1523_JNEUROSCI_2513_17_2018
crossref_primary_10_1016_j_neures_2024_12_002
crossref_primary_10_1111_jsr_12009
crossref_primary_10_1162_NECO_a_00513
crossref_primary_10_1523_JNEUROSCI_3648_15_2016
crossref_primary_10_3389_fnsys_2022_1059421
crossref_primary_10_1523_JNEUROSCI_1359_15_2015
crossref_primary_10_1016_j_neures_2017_03_012
crossref_primary_10_1038_ncomms15499
crossref_primary_10_1016_j_isci_2025_111904
crossref_primary_10_7554_eLife_18607
crossref_primary_10_1103_PhysRevE_107_024415
crossref_primary_10_1016_j_jneumeth_2018_08_016
crossref_primary_10_1152_jn_00069_2016
crossref_primary_10_1016_j_jneumeth_2015_08_030
crossref_primary_10_1186_s13024_023_00682_9
crossref_primary_10_1162_neco_a_01323
crossref_primary_10_1111_ejn_12533
crossref_primary_10_1162_neco_a_01008
crossref_primary_10_1016_j_brs_2016_08_014
crossref_primary_10_1523_JNEUROSCI_2984_16_2016
crossref_primary_10_1016_j_cels_2017_11_011
crossref_primary_10_7554_eLife_63329
crossref_primary_10_1371_journal_pone_0170275
crossref_primary_10_3389_fncir_2015_00088
crossref_primary_10_1371_journal_pcbi_1005022
crossref_primary_10_1523_JNEUROSCI_3133_14_2015
crossref_primary_10_1038_nrn3494
crossref_primary_10_1523_JNEUROSCI_1689_21_2022
crossref_primary_10_1002_bies_201700105
crossref_primary_10_7554_eLife_26177
crossref_primary_10_1007_s11571_023_09980_w
crossref_primary_10_1038_srep36837
crossref_primary_10_1038_s42003_019_0664_3
crossref_primary_10_1038_s41598_022_16478_8
crossref_primary_10_1007_s10827_018_0688_6
crossref_primary_10_1093_sleep_zsz170
crossref_primary_10_1523_JNEUROSCI_5088_12_2013
crossref_primary_10_2139_ssrn_3982271
crossref_primary_10_1007_s10827_017_0663_7
crossref_primary_10_1162_NECO_a_00932
crossref_primary_10_1111_epi_18282
crossref_primary_10_1523_JNEUROSCI_1156_13_2014
crossref_primary_10_1152_jn_00858_2013
crossref_primary_10_1016_j_neuron_2016_02_032
crossref_primary_10_1523_JNEUROSCI_1427_19_2019
crossref_primary_10_1093_cercor_bhx020
crossref_primary_10_1111_jsr_12532
crossref_primary_10_3389_fnins_2020_00705
crossref_primary_10_1117_1_NPh_12_S1_S14604
crossref_primary_10_1152_physrev_00032_2012
crossref_primary_10_1523_JNEUROSCI_2279_14_2015
crossref_primary_10_1038_s41593_020_0625_7
crossref_primary_10_1073_pnas_1806486115
crossref_primary_10_1152_jn_00460_2014
crossref_primary_10_7554_eLife_22425
crossref_primary_10_1016_j_smrv_2018_01_008
crossref_primary_10_1162_jocn_a_01591
crossref_primary_10_1371_journal_pcbi_1003855
crossref_primary_10_1016_j_jneumeth_2018_10_002
crossref_primary_10_1038_s41386_022_01355_9
crossref_primary_10_3389_fncom_2018_00044
crossref_primary_10_1093_cercor_bhaa228
crossref_primary_10_1016_j_simpa_2024_100667
crossref_primary_10_1083_jcb_202401041
crossref_primary_10_1371_journal_pcbi_1012245
crossref_primary_10_1038_s41598_019_44964_z
crossref_primary_10_1371_journal_pcbi_1006171
Cites_doi 10.1038/35077566
10.1152/jn.1998.79.5.2730
10.1523/JNEUROSCI.4263-07.2008
10.1523/JNEUROSCI.13-08-03252.1993
10.1083/jcb.53.2.271
10.1113/jphysiol.1996.sp021488
10.1523/JNEUROSCI.22-19-08691.2002
10.1016/j.neuron.2005.06.016
10.1017/CBO9780511895401
10.1523/JNEUROSCI.3987-06.2006
10.1007/BF00237198
10.1007/978-1-4757-2421-9
10.1016/S0092-8674(05)80028-5
10.1152/jn.1989.61.4.747
10.1038/47035
10.1016/j.neuron.2010.07.023
10.1007/s10827-009-0164-4
10.1523/JNEUROSCI.1239-10.2010
10.1152/ajplegacy.1937.119.4.692
10.1523/JNEUROSCI.17-07-02348.1997
10.5664/jcsm.5.2S.S27
10.1152/jn.1997.78.3.1199
10.1113/jphysiol.1996.sp021489
10.1523/JNEUROSCI.16-07-02397.1996
10.1113/jphysiol.1990.sp018331
10.1073/pnas.94.2.719
10.1523/JNEUROSCI.13-08-03284.1993
10.1523/JNEUROSCI.15-01-00604.1995
10.1016/0006-8993(86)91593-3
10.1098/rstb.2002.1168
10.1113/jphysiol.2004.071381
10.1152/jn.1998.80.3.1456
10.1016/0014-4886(64)90025-1
10.1152/jn.1996.76.3.2049
10.1152/jn.00845.2002
10.1523/JNEUROSCI.1318-04.2004
10.1038/73936
10.1073/pnas.98.4.1924
10.1007/BF00961734
10.1073/pnas.2235811100
10.1038/nature01616
10.1016/0006-8993(72)90327-7
10.1093/cercor/10.12.1185
10.1523/JNEUROSCI.0279-06.2006
10.1038/78809
10.1152/jn.2001.85.5.1969
10.1038/2822
10.1038/382363a0
10.1152/jn.1996.76.6.4152
10.1093/cercor/bhj008
10.1152/jn.00915.2004
10.1093/cercor/bhq009
10.1152/jn.1998.80.3.1167
10.1016/S0197-4580(00)00232-3
10.1523/JNEUROSCI.12-10-03804.1992
10.1523/JNEUROSCI.4652-06.2007
10.1038/nn.2445
10.1523/JNEUROSCI.5297-05.2006
10.1152/jn.00178.2010
10.1016/S0306-4522(97)00186-3
10.1523/JNEUROSCI.13-02-00660.1993
10.1016/S0896-6273(02)00623-2
10.1523/JNEUROSCI.6162-08.2009
10.1146/annurev.ne.01.030178.002143
10.1126/science.275.5297.221
10.1016/0301-0082(92)90012-4
10.1093/sleep/30.3.281
10.1038/332156a0
10.1523/JNEUROSCI.13-08-03266.1993
10.1038/79848
10.1103/PhysRevE.74.031922
ContentType Journal Article
Copyright 2012 The Authors. The Journal of Physiology © 2012 The Physiological Society
2012 The Authors. The Journal of Physiology © 2012 The Physiological Society 2012
Copyright_xml – notice: 2012 The Authors. The Journal of Physiology © 2012 The Physiological Society
– notice: 2012 The Authors. The Journal of Physiology © 2012 The Physiological Society 2012
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QP
7QR
7TK
7TS
8FD
FR3
P64
7X8
5PM
DOI 10.1113/jphysiol.2012.227462
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Neurosciences Abstracts
Physical Education Index
Technology Research Database
Engineering Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Technology Research Database
Chemoreception Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
Neurosciences Abstracts
Physical Education Index
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE
CrossRef
Neurosciences Abstracts
MEDLINE - Academic

Technology Research Database

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 1469-7793
EndPage 4010
ExternalDocumentID PMC3476644
2920265221
22641778
10_1113_jphysiol_2012_227462
TJP5192
Genre article
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: Canadian Institutes of Health Research
  grantid: MOP-67175
– fundername: NINDS NIH HHS
  grantid: R01 NS060870
– fundername: Canadian Institutes of Health Research
  grantid: MOP-37862
– fundername: NINDS NIH HHS
  grantid: 1R01NS060870
GroupedDBID ---
-DZ
-~X
.3N
.55
.GA
.GJ
.Y3
05W
0R~
0YM
10A
123
18M
1OB
1OC
24P
29L
2WC
31~
33P
36B
3EH
3O-
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5GY
5HH
5LA
5RE
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAFWJ
AAHHS
AAHQN
AAIPD
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAYJJ
AAZKR
ABCQN
ABCUV
ABEML
ABITZ
ABIVO
ABJNI
ABOCM
ABPPZ
ABPVW
ABQWH
ABXGK
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFO
ACGFS
ACGOF
ACIWK
ACMXC
ACNCT
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AEIMD
AEQDE
AEUQT
AEUYR
AFBPY
AFEBI
AFFNX
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AI.
AIACR
AIAGR
AITYG
AIURR
AIWBW
AJBDE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
AOIJS
ATUGU
AZBYB
AZVAB
BAFTC
BAWUL
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BY8
C1A
C45
CAG
CHEAL
COF
CS3
D-6
D-7
D-E
D-F
DCZOG
DIK
DPXWK
DR2
DRFUL
DRMAN
DRSTM
E3Z
EBS
EJD
EMOBN
EX3
F00
F01
F04
F5P
FA8
FIJ
FUBAC
G-S
G.N
GODZA
GX1
H.X
H13
HF~
HGLYW
HZI
HZ~
H~9
IHE
IPNFZ
IX1
J0M
K48
KBYEO
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MVM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NEJ
NF~
O66
O9-
OHT
OIG
OK1
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
Q.N
Q11
QB0
R.K
RIG
ROL
RPM
RX1
SAMSI
SUPJJ
TEORI
TLM
TN5
TR2
UB1
UKR
UPT
V8K
VH1
W8F
W8V
W99
WBKPD
WH7
WHG
WIH
WIJ
WIK
WIN
WNSPC
WOHZO
WOQ
WOW
WQJ
WRC
WXI
WXSBR
WYISQ
X7M
XG1
XOL
YBU
YHG
YKV
YQT
YSK
YXB
YYP
YZZ
ZGI
ZXP
ZZTAW
~IA
~WT
AAYXX
ADXHL
AEYWJ
AGHNM
AGYGG
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QP
7QR
7TK
7TS
8FD
FR3
P64
7X8
5PM
ID FETCH-LOGICAL-c5852-97951a71e96dd7b032f40abb6220782013e9dd4aac4419a5db319aff247d93d93
IEDL.DBID DR2
ISSN 0022-3751
1469-7793
IngestDate Thu Aug 21 14:13:08 EDT 2025
Fri Jul 11 08:08:25 EDT 2025
Fri Jul 11 06:04:36 EDT 2025
Fri Jul 25 12:21:47 EDT 2025
Wed Feb 19 01:51:16 EST 2025
Tue Jul 01 04:29:05 EDT 2025
Thu Apr 24 23:04:10 EDT 2025
Wed Jan 22 16:51:16 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 16
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5852-97951a71e96dd7b032f40abb6220782013e9dd4aac4419a5db319aff247d93d93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/3476644
PMID 22641778
PQID 1317497829
PQPubID 1086388
PageCount 24
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_3476644
proquest_miscellaneous_1419359541
proquest_miscellaneous_1034517297
proquest_journals_1317497829
pubmed_primary_22641778
crossref_primary_10_1113_jphysiol_2012_227462
crossref_citationtrail_10_1113_jphysiol_2012_227462
wiley_primary_10_1113_jphysiol_2012_227462_TJP5192
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate August 2012
PublicationDateYYYYMMDD 2012-08-01
PublicationDate_xml – month: 08
  year: 2012
  text: August 2012
PublicationDecade 2010
PublicationPlace Oxford, UK
PublicationPlace_xml – name: Oxford, UK
– name: England
– name: London
PublicationTitle The Journal of physiology
PublicationTitleAlternate J Physiol
PublicationYear 2012
Publisher Blackwell Publishing Ltd
Wiley Subscription Services, Inc
Blackwell Science Inc
Publisher_xml – name: Blackwell Publishing Ltd
– name: Wiley Subscription Services, Inc
– name: Blackwell Science Inc
References 1993b; 13
2006; 74
1997; 81
2010; 13
1964; 9
2000; 3
1997; 275
2010; 104
2004; 24
1996; 382
2002; 357
1983; 51
1998; 80
1978; 1
2007; 30
1999; 402
1992; 12
1972; 44
2000a; 10
1996; 76
1993c; 13
2001; 85
2010; 67
2010; 20
1993; 72S
1997; 94
2000b; 94
2008; 28
2006; 26
1988; 332
1997; 17
1972; 53
1996; 494
2010; 30
2003; 89
2007; 27
2001; 98
1989; 61
1995; 15
2006; 16
2002; 33
1992; 39
1995
1991
2001; 22
1996; 16
2009; 27
2009; 29
2005; 47
1993; 13
1986; 367
2005; 562
1937; 119
2002; 22
1997; 78
2001; 2
1998; 1
2005; 93
2009; 5
1994; 1
1990; 431
2003; 423
2003; 100
1993a; 13
1998; 79
e_1_2_6_51_1
e_1_2_6_53_1
e_1_2_6_32_1
e_1_2_6_30_1
e_1_2_6_72_1
e_1_2_6_19_1
e_1_2_6_13_1
e_1_2_6_36_1
e_1_2_6_59_1
e_1_2_6_11_1
e_1_2_6_34_1
e_1_2_6_17_1
e_1_2_6_55_1
e_1_2_6_15_1
e_1_2_6_38_1
e_1_2_6_57_1
e_1_2_6_62_1
e_1_2_6_64_1
e_1_2_6_43_1
e_1_2_6_20_1
e_1_2_6_41_1
e_1_2_6_60_1
e_1_2_6_9_1
e_1_2_6_5_1
e_1_2_6_7_1
e_1_2_6_24_1
e_1_2_6_49_1
e_1_2_6_3_1
Ulrich D (e_1_2_6_68_1) 1997; 17
e_1_2_6_22_1
e_1_2_6_66_1
e_1_2_6_28_1
e_1_2_6_45_1
e_1_2_6_26_1
e_1_2_6_47_1
e_1_2_6_52_1
e_1_2_6_73_1
e_1_2_6_54_1
e_1_2_6_10_1
e_1_2_6_31_1
e_1_2_6_50_1
Timofeev I (e_1_2_6_65_1) 1996; 76
e_1_2_6_71_1
e_1_2_6_14_1
e_1_2_6_35_1
e_1_2_6_12_1
e_1_2_6_33_1
e_1_2_6_18_1
e_1_2_6_39_1
e_1_2_6_56_1
e_1_2_6_16_1
e_1_2_6_37_1
e_1_2_6_58_1
e_1_2_6_42_1
e_1_2_6_21_1
e_1_2_6_40_1
e_1_2_6_61_1
Timofeev I (e_1_2_6_63_1) 2000; 94
e_1_2_6_8_1
e_1_2_6_4_1
e_1_2_6_6_1
e_1_2_6_25_1
e_1_2_6_48_1
e_1_2_6_23_1
e_1_2_6_2_1
e_1_2_6_29_1
e_1_2_6_44_1
e_1_2_6_67_1
e_1_2_6_27_1
e_1_2_6_46_1
e_1_2_6_69_1
Walsh JK (e_1_2_6_70_1) 2009; 5
11353014 - J Neurophysiol. 2001 May;85(5):1969-85
17425224 - Sleep. 2007 Mar;30(3):281-7
10573419 - Nature. 1999 Nov 4;402(6757):75-9
17507551 - J Neurosci. 2007 May 16;27(20):5280-90
8340806 - J Neurosci. 1993 Aug;13(8):3252-65
12351744 - J Neurosci. 2002 Oct 1;22(19):8691-704
8601819 - J Neurosci. 1996 Apr 1;16(7):2397-410
14595013 - Proc Natl Acad Sci U S A. 2003 Nov 11;100(23):13638-43
19998872 - J Clin Sleep Med. 2009 Apr 15;5(2 Suppl):S27-32
9582241 - J Neurophysiol. 1998 May;79(5):2730-48
8985908 - J Neurophysiol. 1996 Dec;76(6):4152-68
16641233 - J Neurosci. 2006 Apr 26;26(17):4535-45
11073868 - Cereb Cortex. 2000 Dec;10(12):1185-99
8094037 - Cell. 1993 Jan;72 Suppl:55-63
20702704 - J Neurosci. 2010 Aug 11;30(32):10734-43
8340808 - J Neurosci. 1993 Aug;13(8):3284-99
16049189 - Cereb Cortex. 2006 May;16(5):618-31
9300413 - Neuroscience. 1997 Nov;81(1):213-22
11165905 - J Physiol Paris. 2000 Sep-Dec;94(5-6):343-55
12612051 - J Neurophysiol. 2003 May;89(5):2707-25
1354387 - Prog Neurobiol. 1992 Oct;39(4):337-88
9065495 - J Neurosci. 1997 Apr 1;17(7):2348-54
15537811 - J Neurophysiol. 2005 Mar;93(3):1671-98
8890314 - J Neurophysiol. 1996 Sep;76(3):2049-70
17025682 - Phys Rev E Stat Nonlin Soft Matter Phys. 2006 Sep;74(3 Pt 1):031922
19966841 - Nat Neurosci. 2010 Jan;13(1):9-17
6194008 - Exp Brain Res. 1983;51(2):227-35
386906 - Annu Rev Neurosci. 1978;1:395-415
8340807 - J Neurosci. 1993 Aug;13(8):3266-83
11389476 - Nat Rev Neurosci. 2001 Jun;2(6):425-33
12626002 - Philos Trans R Soc Lond B Biol Sci. 2002 Dec 29;357(1428):1659-73
15528249 - J Physiol. 2005 Jan 15;562(Pt 2):569-82
11172052 - Proc Natl Acad Sci U S A. 2001 Feb 13;98(4):1924-9
19515919 - J Neurosci. 2009 Jun 10;29(23):7513-8
8985017 - Science. 1997 Jan 10;275(5297):220-4
14145629 - Exp Neurol. 1964 Apr;9:286-304
4537207 - J Cell Biol. 1972 May;53(2):271-89
9012851 - Proc Natl Acad Sci U S A. 1997 Jan 21;94(2):719-23
2831457 - Nature. 1988 Mar 10;332(6160):156-8
11906700 - Neuron. 2002 Mar 14;33(6):947-58
8381170 - J Neurosci. 1993 Feb;13(2):660-73
18272691 - J Neurosci. 2008 Feb 13;28(7):1709-20
3008920 - Brain Res. 1986 Mar 5;367(1-2):201-13
8684467 - Nature. 1996 Jul 25;382(6589):363-6
8814619 - J Physiol. 1996 Jul 1;494 ( Pt 1):251-64
16055065 - Neuron. 2005 Aug 4;47(3):423-35
8814620 - J Physiol. 1996 Jul 1;494 ( Pt 1):265-78
17135420 - J Neurosci. 2006 Nov 29;26(48):12587-95
9310412 - J Neurophysiol. 1997 Sep;78(3):1199-211
20554835 - J Neurophysiol. 2010 Sep;104(3):1314-24
16723523 - J Neurosci. 2006 May 24;26(21):5665-72
7823167 - J Neurosci. 1995 Jan;15(1 Pt 2):604-22
20200108 - Cereb Cortex. 2010 Nov;20(11):2660-74
19499317 - J Comput Neurosci. 2009 Dec;27(3):493-506
1712843 - J Physiol. 1990 Dec;431:291-318
4342445 - Brain Res. 1972 Sep 29;44(2):641-6
10725926 - Nat Neurosci. 2000 Apr;3(4):366-71
9744952 - J Neurophysiol. 1998 Sep;80(3):1456-79
20696373 - Neuron. 2010 Aug 12;67(3):357-8
11182474 - Neurobiol Aging. 2001 Mar-Apr;22(2):247-53
11017176 - Nat Neurosci. 2000 Oct;3(10):1027-34
10966621 - Nat Neurosci. 2000 Sep;3(9):904-10
10196566 - Nat Neurosci. 1998 Nov;1(7):587-94
15295020 - J Neurosci. 2004 Aug 4;24(31):6862-70
8792231 - J Comput Neurosci. 1994 Aug;1(3):195-230
9744930 - J Neurophysiol. 1998 Sep;80(3):1167-79
1403085 - J Neurosci. 1992 Oct;12(10):3804-17
2542471 - J Neurophysiol. 1989 Apr;61(4):747-58
12748642 - Nature. 2003 May 15;423(6937):288-93
References_xml – volume: 13
  start-page: 9
  year: 2010
  end-page: 17
  article-title: The slow (<1 Hz) rhythm of non‐REM sleep: a dislogue between three cardinal oscillations
  publication-title: Nat Neurosci
– volume: 13
  start-page: 3252
  year: 1993b
  end-page: 3265
  article-title: A novel slow (<1 Hz) oscillation of neocortical neurons in vivo : depolarizing and hyperpolarizing components
  publication-title: J Neurosci
– volume: 47
  start-page: 423
  year: 2005
  end-page: 435
  article-title: Inhibitory postsynaptic potentials carry synchronized frequency information in active cortical networks
  publication-title: Neuron
– volume: 332
  start-page: 156
  year: 1988
  end-page: 158
  article-title: A physiological role for GABA receptors in the central nervous system
  publication-title: Nature
– volume: 29
  start-page: 7513
  year: 2009
  end-page: 7518
  article-title: Distinct roles of GABA and GABA receptors in balancing and terminating persistent cortical activity
  publication-title: J Neurosci
– volume: 17
  start-page: 2348
  year: 1997
  end-page: 2354
  article-title: Nucleus‐specific chloride homeostasis in rat thalamus
  publication-title: J Neurosci
– volume: 12
  start-page: 3804
  year: 1992
  end-page: 3817
  article-title: A novel T‐type current underlies prolonged Ca ‐dependent burst firing in GABAergic neurons of rat thalamic reticular nucleus
  publication-title: J Neurosci
– volume: 1
  start-page: 195
  year: 1994
  end-page: 230
  article-title: Synthesis of models for excitable membrane, synaptic transmission and neuromodulation using a common kinetic formalism
  publication-title: J Comp Neurosci
– volume: 27
  start-page: 493
  year: 2009
  end-page: 506
  article-title: Self‐sustained asynchronous irregular states and Up‐Down states in thalamic, cortical and thalamocortical networks of nonlinear integrate‐and‐fire neurons
  publication-title: J Comput Neurosci
– volume: 1
  start-page: 395
  year: 1978
  end-page: 415
  article-title: Neurophysiology of epilepsy
  publication-title: Annu Rev Neurosci
– volume: 104
  start-page: 1314
  year: 2010
  end-page: 1324
  article-title: Inhibitory modulation of cortical up states
  publication-title: J Neurophysiol
– volume: 72S
  start-page: 55
  year: 1993
  end-page: 63
  article-title: Quantal release of neurotransmitter and long‐term potentiation
  publication-title: Cell
– volume: 494
  start-page: 251
  year: 1996
  end-page: 264
  article-title: Mechanisms of long‐lasting hyperpolarizations underlying slow sleep oscillations in cat corticothalamic networks
  publication-title: J Physiol
– volume: 30
  start-page: 10734
  year: 2010
  end-page: 10743
  article-title: Network bistability mediates spontaneous transitions between normal and pathological brain states
  publication-title: J Neurosci
– volume: 1
  start-page: 587
  year: 1998
  end-page: 594
  article-title: Frequency‐dependent synaptic depression and the balance of excitation and inhibition in the neocortex
  publication-title: Nat Neurosci
– volume: 16
  start-page: 2397
  year: 1996
  end-page: 2410
  article-title: The origins of two‐state spontaneous membrane potential fluctuations of neostriatal spiny neurons
  publication-title: J Neurosci
– volume: 85
  start-page: 1969
  year: 2001
  end-page: 1985
  article-title: Natural waking and sleep states: a view from inside neocortical neurons
  publication-title: J Neurophysiol
– volume: 3
  start-page: 366
  year: 2000
  end-page: 371
  article-title: Proximal targeted GABAergic synapses and gap junctions synchronize cortical interneurons
  publication-title: Nat Neurosci
– volume: 367
  start-page: 201
  year: 1986
  end-page: 213
  article-title: Postsynaptic potentials evoked in spiny neostriatal projection neurons by stimulation of ipsilateral and contralateral neocortex
  publication-title: Brain Res
– volume: 26
  start-page: 5665
  year: 2006
  end-page: 5672
  article-title: Precise long‐range synchronization of activity and silence in neocortical neurons during slow‐wave sleep
  publication-title: J Neurosci
– volume: 275
  start-page: 220
  year: 1997
  end-page: 224
  article-title: Synaptic depression and cortical gain control
  publication-title: Science
– volume: 44
  start-page: 641
  year: 1972
  end-page: 646
  article-title: Gap junctions between dendrites in the primate neocortex
  publication-title: Brain Res
– volume: 382
  start-page: 363
  year: 1996
  end-page: 366
  article-title: Influence of dendritic structure of firing pattern in model neocortical neurons
  publication-title: Nature
– volume: 67
  start-page: 357
  year: 2010
  end-page: 358
  article-title: Forward and back: motifs of inhibition in olfactory processing
  publication-title: Neuron
– volume: 100
  start-page: 13638
  year: 2003
  end-page: 13643
  article-title: Interaction of sensory responses with spontaneous depolarization in layer 2/3 barrel cortex
  publication-title: Proc Natl Acad Sci U S A
– volume: 51
  start-page: 227
  year: 1983
  end-page: 235
  article-title: Disfacilitation and long‐lasting inhibition of neostriatal neurons in the rat
  publication-title: Exp Brain Res
– volume: 76
  start-page: 2049
  year: 1996
  end-page: 2070
  article-title: Ionic mechanisms underlying synchronized oscillation and propagating waves in a model of ferret thalamic slices
  publication-title: J Neurophysiol
– volume: 562
  start-page: 569
  year: 2005
  end-page: 582
  article-title: Neuronal mechanisms mediating the variability of somatosensory evoked potentials during sleep oscillations in cats
  publication-title: J Physiol
– volume: 33
  start-page: 947
  year: 2002
  end-page: 958
  article-title: Cellular mechanisms of the slow (<1 Hz) oscillation in thalamocortical neurons in vitro
  publication-title: Neuron
– volume: 39
  start-page: 337
  year: 1992
  end-page: 388
  article-title: Neurotransmitter actions in the thalamus and cerebral cortex and their role in neuromodulation of thalamocortical activity
  publication-title: Prog Neurrobiol
– volume: 13
  start-page: 3284
  year: 1993a
  end-page: 3299
  article-title: The slow (<1 Hz) oscillation in reticular thalamic and thalamo‐cortical neurons: scenario of sleep rhythm generation in interacting thalamic and neocortical networks
  publication-title: J Neurosci
– volume: 16
  start-page: 618
  year: 2006
  end-page: 631
  article-title: Synaptic plasticity in local cortical network in vivo and its modulation by the level of neuronal activity
  publication-title: Cereb Cortex
– volume: 10
  start-page: 1185
  year: 2000a
  end-page: 1199
  article-title: Origin of slow cortical oscillations in deafferented cortical slabs
  publication-title: Cereb Cortex
– volume: 80
  start-page: 1167
  year: 1998
  end-page: 1179
  article-title: Kinetic and stochastic properties of a persistent sodium current in mature guinea pig cerebellar Purkinje cells
  publication-title: J Neurophysiol
– volume: 78
  start-page: 1199
  year: 1997
  end-page: 1211
  article-title: Propagating neuronal discharges in neocortical slices: computational and experimental study
  publication-title: J Neurophysiol
– volume: 22
  start-page: 247
  year: 2001
  end-page: 253
  article-title: The GABA uptake inhibitor tiagabine promotes slow wave sleep in normal elderly subjects
  publication-title: Neurobiol Aging
– volume: 13
  start-page: 660
  year: 1993
  end-page: 673
  article-title: Modal gating of Na channels as a mechanism of persistent Na current in pyramidal neurons from rat and cat sensorimotor cortex
  publication-title: J Neurosci
– volume: 423
  start-page: 288
  year: 2003
  end-page: 293
  article-title: Tuning on and off recurrent balanced cortical activity
  publication-title: Nature
– volume: 89
  start-page: 2707
  year: 2003
  end-page: 2725
  article-title: Cellular and network mechanisms of slow oscillatory activity (< 1 Hz) in a cortical network model
  publication-title: J Neurophysiol
– volume: 431
  start-page: 291
  year: 1990
  end-page: 318
  article-title: Properties of a hyperpolarization activated cation current and its role in rhythmic oscillation in thalamic relay neurons
  publication-title: J Physiol
– volume: 61
  start-page: 747
  year: 1989
  end-page: 758
  article-title: Horizontal spread of synchronized activity in neocortex and its control by GABA‐mediated inhibition
  publication-title: J Neurophysiol
– volume: 93
  start-page: 1671
  year: 2005
  end-page: 1698
  article-title: Modeling sleep and wakefulness in the thalamocortical system
  publication-title: J Neurophysiol
– volume: 20
  start-page: 2660
  year: 2010
  end-page: 2674
  article-title: Origin of active states in local neocortical networks during slow sleep oscillation
  publication-title: Cereb Cortex
– volume: 30
  start-page: 281
  year: 2007
  end-page: 287
  article-title: Effect of short‐term treatment with gaboxadol on sleep maintenance and initiation in patients with primary insomnia
  publication-title: Sleep
– volume: 9
  start-page: 286
  year: 1964
  end-page: 304
  article-title: Cortical cellular phenomena in experimental epilepsy: interictal manifestations
  publication-title: Exp Neurol
– volume: 3
  start-page: 904
  year: 2000
  end-page: 910
  article-title: A network of electrically coupled interneurons drives synchronized inhibition in neocortex
  publication-title: Nat Neurosci
– volume: 2
  start-page: 425
  year: 2001
  end-page: 433
  article-title: Electrical synapses between GABA‐releasing interneurons
  publication-title: Nat Rev Neurosci
– volume: 22
  start-page: 8691
  year: 2002
  end-page: 8704
  article-title: Model of thalamocortical slow‐wave sleep oscillations and transitions to activated states
  publication-title: J Neurosci
– volume: 94
  start-page: 343
  year: 2000b
  end-page: 355
  article-title: Impact of intrinsic properties and synaptic factors on the activity of neocortical networks in vivo
  publication-title: J Physiol
– volume: 28
  start-page: 1709
  year: 2008
  end-page: 1720
  article-title: Pathological effect of homeostatic synaptic scaling on network dynamics in diseases of the cortex
  publication-title: J Neurosci
– volume: 53
  start-page: 271
  year: 1972
  end-page: 289
  article-title: Specialized membrane junctions between neurons in the vertebrate cerebellar cortex
  publication-title: J Cell Biol
– volume: 5
  start-page: S27
  year: 2009
  end-page: S32
  article-title: Enhancement of slow wave sleep: implications for insomnia
  publication-title: J Clin Sleep Med
– volume: 26
  start-page: 12587
  year: 2006
  end-page: 12595
  article-title: Distinct patterns of striatal medium spiny neuron activity during the natural sleep‐wake cycle
  publication-title: J Neurosci
– volume: 94
  start-page: 719
  year: 1997
  end-page: 723
  article-title: The neural code between neocortical, pyramidal neurons depends on neurotransmitter release probability
  publication-title: Proc Natl Acad Sci U S A
– volume: 24
  start-page: 6862
  year: 2004
  end-page: 6870
  article-title: The sleep slow oscillation as a traveling wave
  publication-title: J Neurosci
– volume: 79
  start-page: 2730
  year: 1998
  end-page: 2748
  article-title: Cellular and network models for intrathalamic augmenting responses during 10 Hz stimulation
  publication-title: J Neurophysiol
– volume: 27
  start-page: 5280
  year: 2007
  end-page: 5290
  article-title: Inhibition determines membrane potential dynamics and controls action potential generation in awake and sleeping cat cortex
  publication-title: J Neurosci
– volume: 402
  start-page: 75
  year: 1999
  end-page: 79
  article-title: Two networks of electrically coupled inhibitory neurons in neocortex
  publication-title: Nature
– volume: 98
  start-page: 1924
  year: 2001
  end-page: 1929
  article-title: Disfacilitation and active inhibition in the neocortex during the natural sleep‐wake cycle: An intracellular study
  publication-title: Proc Natl Acad Sci U S A
– volume: 74
  start-page: 031922
  year: 2006
  article-title: Coexistence of tonic firing and bursting in cortical neurons
  publication-title: Physical Review E
– volume: 3
  start-page: 1027
  year: 2000
  end-page: 1034
  article-title: Cellular and network mechanisms of rhythmic recurrent activity in the neocortex
  publication-title: Nat Neurosci
– volume: 13
  start-page: 3266
  year: 1993c
  end-page: 3283
  article-title: Intracellular analysis of relations between the slow (<1 Hz) neocortical oscillations and other sleep rhythms of electroencephalogram
  publication-title: J Neurosci
– year: 1995
– volume: 494
  start-page: 265
  year: 1996
  end-page: 278
  article-title: Synaptic responsiveness of cortical and thalamic neurones during various phases of slow sleep oscillation in cat
  publication-title: J Physiol
– volume: 357
  start-page: 1659
  year: 2002
  end-page: 73
  article-title: Thalamic circuitry and thalamocortical synchrony
  publication-title: Philos Trans R Soc Lond B Biol Sci
– volume: 119
  start-page: 692
  year: 1937
  end-page: 703
  article-title: Brain potentials during sleep
  publication-title: Am J Physiol
– volume: 81
  start-page: 213
  year: 1997
  end-page: 222
  article-title: Low‐frequency (< 1 Hz) oscillations in the human sleep electroencephalogram
  publication-title: Neuroscience
– year: 1991
– volume: 26
  start-page: 4535
  year: 2006
  end-page: 4545
  article-title: Neocortical network activity in vivo is generated through a dynamic balance of excitation and inhibition
  publication-title: J Neurosci
– volume: 80
  start-page: 1456
  year: 1998
  end-page: 1479
  article-title: Spike‐wave complexes and fast components of cortically generated seizures. II. Extra‐ and intracellular patterns
  publication-title: J Neurophysiol
– volume: 76
  start-page: 4152
  year: 1996
  end-page: 4168
  article-title: Low‐frequency rhythms in the thalamus of intact‐cortex and decorticated cats
  publication-title: J Neurophysiol
– volume: 15
  start-page: 604
  year: 1995
  end-page: 622
  article-title: Cellular basis of EEG slow rhythms: a study of dynamic corticothalamic relationships
  publication-title: J Neurosci
– ident: e_1_2_6_25_1
  doi: 10.1038/35077566
– ident: e_1_2_6_5_1
  doi: 10.1152/jn.1998.79.5.2730
– ident: e_1_2_6_22_1
  doi: 10.1523/JNEUROSCI.4263-07.2008
– ident: e_1_2_6_55_1
  doi: 10.1523/JNEUROSCI.13-08-03252.1993
– ident: e_1_2_6_52_1
  doi: 10.1083/jcb.53.2.271
– ident: e_1_2_6_13_1
  doi: 10.1113/jphysiol.1996.sp021488
– ident: e_1_2_6_6_1
  doi: 10.1523/JNEUROSCI.22-19-08691.2002
– ident: e_1_2_6_29_1
  doi: 10.1016/j.neuron.2005.06.016
– ident: e_1_2_6_66_1
  doi: 10.1017/CBO9780511895401
– ident: e_1_2_6_36_1
  doi: 10.1523/JNEUROSCI.3987-06.2006
– ident: e_1_2_6_73_1
  doi: 10.1007/BF00237198
– ident: e_1_2_6_35_1
  doi: 10.1007/978-1-4757-2421-9
– ident: e_1_2_6_58_1
  doi: 10.1016/S0092-8674(05)80028-5
– ident: e_1_2_6_9_1
  doi: 10.1152/jn.1989.61.4.747
– ident: e_1_2_6_26_1
  doi: 10.1038/47035
– ident: e_1_2_6_59_1
  doi: 10.1016/j.neuron.2010.07.023
– ident: e_1_2_6_17_1
  doi: 10.1007/s10827-009-0164-4
– ident: e_1_2_6_23_1
  doi: 10.1523/JNEUROSCI.1239-10.2010
– ident: e_1_2_6_8_1
  doi: 10.1152/ajplegacy.1937.119.4.692
– volume: 17
  start-page: 2348
  year: 1997
  ident: e_1_2_6_68_1
  article-title: Nucleus‐specific chloride homeostasis in rat thalamus
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.17-07-02348.1997
– volume: 5
  start-page: S27
  year: 2009
  ident: e_1_2_6_70_1
  article-title: Enhancement of slow wave sleep: implications for insomnia
  publication-title: J Clin Sleep Med
  doi: 10.5664/jcsm.5.2S.S27
– ident: e_1_2_6_27_1
  doi: 10.1152/jn.1997.78.3.1199
– ident: e_1_2_6_61_1
  doi: 10.1113/jphysiol.1996.sp021489
– ident: e_1_2_6_71_1
  doi: 10.1523/JNEUROSCI.16-07-02397.1996
– ident: e_1_2_6_43_1
  doi: 10.1113/jphysiol.1990.sp018331
– ident: e_1_2_6_67_1
  doi: 10.1073/pnas.94.2.719
– ident: e_1_2_6_54_1
  doi: 10.1523/JNEUROSCI.13-08-03284.1993
– ident: e_1_2_6_12_1
  doi: 10.1523/JNEUROSCI.15-01-00604.1995
– ident: e_1_2_6_72_1
  doi: 10.1016/0006-8993(86)91593-3
– ident: e_1_2_6_33_1
  doi: 10.1098/rstb.2002.1168
– ident: e_1_2_6_46_1
  doi: 10.1113/jphysiol.2004.071381
– ident: e_1_2_6_53_1
  doi: 10.1152/jn.1998.80.3.1456
– ident: e_1_2_6_41_1
  doi: 10.1016/0014-4886(64)90025-1
– ident: e_1_2_6_18_1
  doi: 10.1152/jn.1996.76.3.2049
– ident: e_1_2_6_11_1
  doi: 10.1152/jn.00845.2002
– ident: e_1_2_6_39_1
  doi: 10.1523/JNEUROSCI.1318-04.2004
– ident: e_1_2_6_60_1
  doi: 10.1038/73936
– ident: e_1_2_6_64_1
  doi: 10.1073/pnas.98.4.1924
– ident: e_1_2_6_19_1
  doi: 10.1007/BF00961734
– ident: e_1_2_6_44_1
  doi: 10.1073/pnas.2235811100
– ident: e_1_2_6_50_1
  doi: 10.1038/nature01616
– ident: e_1_2_6_51_1
  doi: 10.1016/0006-8993(72)90327-7
– ident: e_1_2_6_62_1
  doi: 10.1093/cercor/10.12.1185
– ident: e_1_2_6_69_1
  doi: 10.1523/JNEUROSCI.0279-06.2006
– ident: e_1_2_6_7_1
  doi: 10.1038/78809
– ident: e_1_2_6_57_1
  doi: 10.1152/jn.2001.85.5.1969
– ident: e_1_2_6_24_1
  doi: 10.1038/2822
– ident: e_1_2_6_37_1
  doi: 10.1038/382363a0
– volume: 76
  start-page: 4152
  year: 1996
  ident: e_1_2_6_65_1
  article-title: Low‐frequency rhythms in the thalamus of intact‐cortex and decorticated cats
  publication-title: J Neurophysiol
  doi: 10.1152/jn.1996.76.6.4152
– ident: e_1_2_6_14_1
  doi: 10.1093/cercor/bhj008
– ident: e_1_2_6_30_1
  doi: 10.1152/jn.00915.2004
– ident: e_1_2_6_10_1
  doi: 10.1093/cercor/bhq009
– ident: e_1_2_6_34_1
  doi: 10.1152/jn.1998.80.3.1167
– ident: e_1_2_6_40_1
  doi: 10.1016/S0197-4580(00)00232-3
– ident: e_1_2_6_32_1
  doi: 10.1523/JNEUROSCI.12-10-03804.1992
– ident: e_1_2_6_47_1
  doi: 10.1523/JNEUROSCI.4652-06.2007
– ident: e_1_2_6_15_1
  doi: 10.1038/nn.2445
– ident: e_1_2_6_28_1
  doi: 10.1523/JNEUROSCI.5297-05.2006
– ident: e_1_2_6_48_1
  doi: 10.1152/jn.00178.2010
– ident: e_1_2_6_3_1
  doi: 10.1016/S0306-4522(97)00186-3
– ident: e_1_2_6_4_1
  doi: 10.1523/JNEUROSCI.13-02-00660.1993
– ident: e_1_2_6_31_1
  doi: 10.1016/S0896-6273(02)00623-2
– ident: e_1_2_6_38_1
  doi: 10.1523/JNEUROSCI.6162-08.2009
– ident: e_1_2_6_45_1
  doi: 10.1146/annurev.ne.01.030178.002143
– ident: e_1_2_6_2_1
  doi: 10.1126/science.275.5297.221
– ident: e_1_2_6_42_1
  doi: 10.1016/0301-0082(92)90012-4
– ident: e_1_2_6_16_1
  doi: 10.1093/sleep/30.3.281
– ident: e_1_2_6_20_1
  doi: 10.1038/332156a0
– ident: e_1_2_6_56_1
  doi: 10.1523/JNEUROSCI.13-08-03266.1993
– ident: e_1_2_6_49_1
  doi: 10.1038/79848
– ident: e_1_2_6_21_1
  doi: 10.1103/PhysRevE.74.031922
– volume: 94
  start-page: 343
  year: 2000
  ident: e_1_2_6_63_1
  article-title: Impact of intrinsic properties and synaptic factors on the activity of neocortical networks in vivo
  publication-title: J Physiol
– reference: 15528249 - J Physiol. 2005 Jan 15;562(Pt 2):569-82
– reference: 8985017 - Science. 1997 Jan 10;275(5297):220-4
– reference: 10573419 - Nature. 1999 Nov 4;402(6757):75-9
– reference: 12612051 - J Neurophysiol. 2003 May;89(5):2707-25
– reference: 19499317 - J Comput Neurosci. 2009 Dec;27(3):493-506
– reference: 14595013 - Proc Natl Acad Sci U S A. 2003 Nov 11;100(23):13638-43
– reference: 8601819 - J Neurosci. 1996 Apr 1;16(7):2397-410
– reference: 16723523 - J Neurosci. 2006 May 24;26(21):5665-72
– reference: 17135420 - J Neurosci. 2006 Nov 29;26(48):12587-95
– reference: 11017176 - Nat Neurosci. 2000 Oct;3(10):1027-34
– reference: 4342445 - Brain Res. 1972 Sep 29;44(2):641-6
– reference: 9012851 - Proc Natl Acad Sci U S A. 1997 Jan 21;94(2):719-23
– reference: 10196566 - Nat Neurosci. 1998 Nov;1(7):587-94
– reference: 8814619 - J Physiol. 1996 Jul 1;494 ( Pt 1):251-64
– reference: 10725926 - Nat Neurosci. 2000 Apr;3(4):366-71
– reference: 9744952 - J Neurophysiol. 1998 Sep;80(3):1456-79
– reference: 14145629 - Exp Neurol. 1964 Apr;9:286-304
– reference: 12626002 - Philos Trans R Soc Lond B Biol Sci. 2002 Dec 29;357(1428):1659-73
– reference: 8340808 - J Neurosci. 1993 Aug;13(8):3284-99
– reference: 1403085 - J Neurosci. 1992 Oct;12(10):3804-17
– reference: 20702704 - J Neurosci. 2010 Aug 11;30(32):10734-43
– reference: 17025682 - Phys Rev E Stat Nonlin Soft Matter Phys. 2006 Sep;74(3 Pt 1):031922
– reference: 2831457 - Nature. 1988 Mar 10;332(6160):156-8
– reference: 16049189 - Cereb Cortex. 2006 May;16(5):618-31
– reference: 15295020 - J Neurosci. 2004 Aug 4;24(31):6862-70
– reference: 9582241 - J Neurophysiol. 1998 May;79(5):2730-48
– reference: 6194008 - Exp Brain Res. 1983;51(2):227-35
– reference: 1712843 - J Physiol. 1990 Dec;431:291-318
– reference: 4537207 - J Cell Biol. 1972 May;53(2):271-89
– reference: 10966621 - Nat Neurosci. 2000 Sep;3(9):904-10
– reference: 16055065 - Neuron. 2005 Aug 4;47(3):423-35
– reference: 11182474 - Neurobiol Aging. 2001 Mar-Apr;22(2):247-53
– reference: 11073868 - Cereb Cortex. 2000 Dec;10(12):1185-99
– reference: 11165905 - J Physiol Paris. 2000 Sep-Dec;94(5-6):343-55
– reference: 8684467 - Nature. 1996 Jul 25;382(6589):363-6
– reference: 20200108 - Cereb Cortex. 2010 Nov;20(11):2660-74
– reference: 8340806 - J Neurosci. 1993 Aug;13(8):3252-65
– reference: 17425224 - Sleep. 2007 Mar;30(3):281-7
– reference: 9744930 - J Neurophysiol. 1998 Sep;80(3):1167-79
– reference: 8381170 - J Neurosci. 1993 Feb;13(2):660-73
– reference: 11353014 - J Neurophysiol. 2001 May;85(5):1969-85
– reference: 8985908 - J Neurophysiol. 1996 Dec;76(6):4152-68
– reference: 11389476 - Nat Rev Neurosci. 2001 Jun;2(6):425-33
– reference: 8814620 - J Physiol. 1996 Jul 1;494 ( Pt 1):265-78
– reference: 9300413 - Neuroscience. 1997 Nov;81(1):213-22
– reference: 19998872 - J Clin Sleep Med. 2009 Apr 15;5(2 Suppl):S27-32
– reference: 7823167 - J Neurosci. 1995 Jan;15(1 Pt 2):604-22
– reference: 3008920 - Brain Res. 1986 Mar 5;367(1-2):201-13
– reference: 386906 - Annu Rev Neurosci. 1978;1:395-415
– reference: 20554835 - J Neurophysiol. 2010 Sep;104(3):1314-24
– reference: 9065495 - J Neurosci. 1997 Apr 1;17(7):2348-54
– reference: 15537811 - J Neurophysiol. 2005 Mar;93(3):1671-98
– reference: 12351744 - J Neurosci. 2002 Oct 1;22(19):8691-704
– reference: 16641233 - J Neurosci. 2006 Apr 26;26(17):4535-45
– reference: 11172052 - Proc Natl Acad Sci U S A. 2001 Feb 13;98(4):1924-9
– reference: 9310412 - J Neurophysiol. 1997 Sep;78(3):1199-211
– reference: 8890314 - J Neurophysiol. 1996 Sep;76(3):2049-70
– reference: 1354387 - Prog Neurobiol. 1992 Oct;39(4):337-88
– reference: 2542471 - J Neurophysiol. 1989 Apr;61(4):747-58
– reference: 20696373 - Neuron. 2010 Aug 12;67(3):357-8
– reference: 8340807 - J Neurosci. 1993 Aug;13(8):3266-83
– reference: 8094037 - Cell. 1993 Jan;72 Suppl:55-63
– reference: 8792231 - J Comput Neurosci. 1994 Aug;1(3):195-230
– reference: 18272691 - J Neurosci. 2008 Feb 13;28(7):1709-20
– reference: 19515919 - J Neurosci. 2009 Jun 10;29(23):7513-8
– reference: 12748642 - Nature. 2003 May 15;423(6937):288-93
– reference: 17507551 - J Neurosci. 2007 May 16;27(20):5280-90
– reference: 19966841 - Nat Neurosci. 2010 Jan;13(1):9-17
– reference: 11906700 - Neuron. 2002 Mar 14;33(6):947-58
SSID ssj0013099
Score 2.3672998
Snippet Key points •  A signature of deep sleep in the EEG is large‐amplitude fluctuation of field potential, which reflects alternating periods of activity and...
A signature of deep sleep in the EEG is large‐amplitude fluctuation of field potential, which reflects alternating periods of activity and silence in the...
The signature of slow-wave sleep in the electroencephalogram (EEG) is large-amplitude fluctuation of the field potential, which reflects synchronous...
Key points * A signature of deep sleep in the EEG is large-amplitude fluctuation of field potential, which reflects alternating periods of activity and silence...
times A signature of deep sleep in the EEG is large-amplitude fluctuation of field potential, which reflects alternating periods of activity and silence in the...
SourceID pubmedcentral
proquest
pubmed
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 3987
SubjectTerms Action Potentials
Animals
Biological Clocks - physiology
Cats - physiology
Cerebral Cortex - physiology
Cortical Synchronization - physiology
Interneurons - physiology
Nerve Net - physiology
Neurons - physiology
Neuroscience: Behavioural/Systems/Cognitive
Sleep
Sleep - physiology
Title Interneuron‐mediated inhibition synchronizes neuronal activity during slow oscillation
URI https://onlinelibrary.wiley.com/doi/abs/10.1113%2Fjphysiol.2012.227462
https://www.ncbi.nlm.nih.gov/pubmed/22641778
https://www.proquest.com/docview/1317497829
https://www.proquest.com/docview/1034517297
https://www.proquest.com/docview/1419359541
https://pubmed.ncbi.nlm.nih.gov/PMC3476644
Volume 590
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwELaqnrjwV34CpTIS4pYldpw4PlaIVdUDqlAr7S2yY6ddWBzE7gptT32EPiNPwoydBJYiQCDtaTO21rMzzjf2zDeEvGBlpdqMtWnm2ioVjShSraRNnWhlZSoLmDZk-b4tj87E8ayY7ZDpUAsT-SHGAzf0jLBfo4Nr03chYUg28D6E_h1eHzA-4RBdha0Y07YQG73j3y8TMqVG0nBZsL6CDqZ59atJtt9QN2DnzezJH1FteC1N75DzYUExG-XDZL0yk-byJ67H_1_xXXK7R670MJraPbLj_H2yd-ghav-4oS_pSRzWnW_2yCweNCLxh_96dR3KUwDa0rm_mJuQJEaXG98EYt5Lt6RREmbHMgvsZkFj-SRdLrovFPk2FzFn7wE5m745fX2U9j0c0gYCEZ4qCRBOS-ZUaa00Wc5bkWljSs4DVR_LnbJWaN0ALlO6sAb2BN22XEircvg8JLu-8-4xoWVheQv2gxGlcLlRrkW6RFPoAkCaLROSD_9b3fQE59hnY1HHQCevBwXWqMA6KjAh6TjqUyT4-IP8_mASde_uy5oBCsNWfVwl5Pn4GBwVb1-0d90aZLJcFAAXlfyNDOgAK6UFS8ijaGXjj8KKZyZllRC5ZX-jABKFbz_x84tAGJ4LWYLWEsKDef3VOuvT4xNA9_zJvwx6Sm7htzFRcp_srj6v3TMAbytzEFzzIJyqfQNKAEQE
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1fb9MwED9N4wFeGDD-BAYYCfGWkjhOHD9OiFHGmCbUSX2L4tihhS5BtBXqnvgIfEY-CXd2GihDgBBS33K26sud8zv77ncAj-MsV3UU12Fk6zwUlUjDUkkTWlHLXOcGMa3L8j3OhqficJyOt-DFuhbG80P0B27kGW6_JgenA-nOy4lt4J2L_Vu6P4j5gGN4RXvxJWru7WKrN_z7dUKkVE8bLtO4q6HDeZ7-apbNb9QF4Hkxf_JHXOs-TAc7MFkvyeejvB8sF3pQnf_E9vgf1nwNrnbgle17a7sOW7a5Abv7DQbuZyv2hJ34Ye3b1S6M_VkjcX80Xz9_cRUqiG7ZtJlMtcsTY_NVUzlu3nM7Z14SZ6dKC2powXwFJZvP2k-MKDdnPm3vJpwePB89G4ZdG4ewwliEh0oiiitlbFVmjNRRwmsRlVpnnDu2vjixyhhRlhVCM1WmRuO2UNY1F9KoBH-3YLtpG3sHWJYaXqMJUVApbKKVrYkxUadlijjNZAEk6xdXVB3HObXamBU-1kmKtQILUmDhFRhA2I_64Dk-_iC_t7aJovP4eREjEKNufVwF8Kh_jL5KFzBlY9slykSJSBExKvkbGdQBFUuLOIDb3sz6P0VFz7GUeQBywwB7AeIK33zSTCeOMzwRMkOtBcCdff3VOovR4QkCfH73XwY9hMvD0euj4ujl8at7cIUkfN7kHmwvPi7tfcRyC_3A-ek3rIVHDw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwEB5VRUJcKFB-AgWChLhlSRwnjo8VZVUKqlaolfYWxbHdbtkmFbsrtD3xCDwjT8KMnQ0sRYBAys1jK57MON_YM58Bnid5IW2c2Cg2toh4zbOokkJHhltRqEIjpnVZvof5_jE_GGfjDRiuamE8P0S_4Uae4dZrcvALbTsnJ7KBMxf6t3R8kLABw-iKluJrPI8Lsu699-z7aUIsZc8aLrKkK6HDcV7-apT1X9QV3Hk1ffJHWOv-S8MtOFnNyKejfBgs5mpQX_5E9vj_U74FNzvoGu56W7sNG6a5A9u7DYbt58vwRTjy3dqT5TaM_U4jMX80Xz9_cfUpiG3DSXM6US5LLJwtm9ox816aWeglcXSqs6DrLEJfPxnOpu2nkAg3pz5p7y4cD18fvdqPukscohojERZJgRiuEomRudZCxSmzPK6UyhlzXH1JaqTWvKpqBGayyrTCRaGylnGhZYrPPdhs2sY8gDDPNLNoQBRScpMqaSzxJaqsyhCl6TyAdPXdyrpjOKeLNqalj3TScqXAkhRYegUGEPW9LjzDxx_kd1YmUXb-PisThGF0Vx-TATzrm9FT6filaky7QJk45RniRSl-I4M6oFJpngRw31tZ_1JU8pwIUQQg1uyvFyCm8PWWZnLqGMNTLnLUWgDMmddfzbM8OhghvGcP_6XTU7g-2huW794cvn0EN0jAJ03uwOb848I8RiA3V0-cl34DzzxFxw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Interneuron-mediated+inhibition+synchronizes+neuronal+activity+during+slow+oscillation&rft.jtitle=The+Journal+of+physiology&rft.au=Chen%2C+Jen-Yung&rft.au=Chauvette%2C+Sylvain&rft.au=Skorheim%2C+Steven&rft.au=Timofeev%2C+Igor&rft.date=2012-08-01&rft.issn=1469-7793&rft.eissn=1469-7793&rft.volume=590&rft.issue=16&rft.spage=3987&rft_id=info:doi/10.1113%2Fjphysiol.2012.227462&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-3751&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-3751&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-3751&client=summon