Molecular Controls of Lymphatic VEGFR3 Signaling
OBJECTIVES—Vascular endothelial growth factor receptor 3 (VEGFR3) plays important roles both in lymphangiogenesis and angiogenesis. On stimulation by its ligand VEGF-C, VEGFR3 is able to form both homodimers as well as heterodimers with VEGFR2 and activates several downstream signal pathways, includ...
Saved in:
Published in | Arteriosclerosis, thrombosis, and vascular biology Vol. 35; no. 2; pp. 421 - 429 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
United States
American Heart Association, Inc
01.02.2015
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | OBJECTIVES—Vascular endothelial growth factor receptor 3 (VEGFR3) plays important roles both in lymphangiogenesis and angiogenesis. On stimulation by its ligand VEGF-C, VEGFR3 is able to form both homodimers as well as heterodimers with VEGFR2 and activates several downstream signal pathways, including extracellular signal-regulated kinases (ERK)1/2 and protein kinase B (AKT). Despite certain similarities with VEGFR2, molecular features of VEGFR3 signaling are still largely unknown.
APPROACH AND RESULTS—Human dermal lymphatic endothelial cells were used to examine VEGF-C–driven activation of signaling. Compared with VEGF-A activation of VEGFR2, VEGF-C–induced VEGFR3 activation led to a more extensive AKT activation, whereas activation of ERK1/2 displayed a distinctly different kinetics. Furthermore, VEGF-C, but not VEGF-A, induced formation of VEGFR3/VEGFR2 complexes. Silencing VEGFR2 or its partner neuropilin 1 specifically abolished VEGF-C–induced AKT but not ERK activation, whereas silencing of neuropilin 2 had little effect on either signaling pathway. Finally, suppression of vascular endothelial phosphotyrosine phosphatase but not other phosphotyrosine phosphatases enhanced VEGF-C–induced activation of both ERK and AKT pathways. Functionally, both ERK and AKT pathways are important for lymphatic endothelial cells migration.
CONCLUSIONS—VEGF-C activates AKT signaling via formation of VEGFR3/VEGFR2 complex, whereas ERK is activated by VEGFR3 homodimer. Neuropilin 1 and vascular endothelial phosphotyrosine phosphatase are involved in regulation of VEGFR3 signaling. |
---|---|
AbstractList | OBJECTIVES—Vascular endothelial growth factor receptor 3 (VEGFR3) plays important roles both in lymphangiogenesis and angiogenesis. On stimulation by its ligand VEGF-C, VEGFR3 is able to form both homodimers as well as heterodimers with VEGFR2 and activates several downstream signal pathways, including extracellular signal-regulated kinases (ERK)1/2 and protein kinase B (AKT). Despite certain similarities with VEGFR2, molecular features of VEGFR3 signaling are still largely unknown.
APPROACH AND RESULTS—Human dermal lymphatic endothelial cells were used to examine VEGF-C–driven activation of signaling. Compared with VEGF-A activation of VEGFR2, VEGF-C–induced VEGFR3 activation led to a more extensive AKT activation, whereas activation of ERK1/2 displayed a distinctly different kinetics. Furthermore, VEGF-C, but not VEGF-A, induced formation of VEGFR3/VEGFR2 complexes. Silencing VEGFR2 or its partner neuropilin 1 specifically abolished VEGF-C–induced AKT but not ERK activation, whereas silencing of neuropilin 2 had little effect on either signaling pathway. Finally, suppression of vascular endothelial phosphotyrosine phosphatase but not other phosphotyrosine phosphatases enhanced VEGF-C–induced activation of both ERK and AKT pathways. Functionally, both ERK and AKT pathways are important for lymphatic endothelial cells migration.
CONCLUSIONS—VEGF-C activates AKT signaling via formation of VEGFR3/VEGFR2 complex, whereas ERK is activated by VEGFR3 homodimer. Neuropilin 1 and vascular endothelial phosphotyrosine phosphatase are involved in regulation of VEGFR3 signaling. Vascular endothelial growth factor receptor 3 (VEGFR3) plays important roles both in lymphangiogenesis and angiogenesis. On stimulation by its ligand VEGF-C, VEGFR3 is able to form both homodimers as well as heterodimers with VEGFR2 and activates several downstream signal pathways, including extracellular signal-regulated kinases (ERK)1/2 and protein kinase B (AKT). Despite certain similarities with VEGFR2, molecular features of VEGFR3 signaling are still largely unknown.OBJECTIVESVascular endothelial growth factor receptor 3 (VEGFR3) plays important roles both in lymphangiogenesis and angiogenesis. On stimulation by its ligand VEGF-C, VEGFR3 is able to form both homodimers as well as heterodimers with VEGFR2 and activates several downstream signal pathways, including extracellular signal-regulated kinases (ERK)1/2 and protein kinase B (AKT). Despite certain similarities with VEGFR2, molecular features of VEGFR3 signaling are still largely unknown.Human dermal lymphatic endothelial cells were used to examine VEGF-C-driven activation of signaling. Compared with VEGF-A activation of VEGFR2, VEGF-C-induced VEGFR3 activation led to a more extensive AKT activation, whereas activation of ERK1/2 displayed a distinctly different kinetics. Furthermore, VEGF-C, but not VEGF-A, induced formation of VEGFR3/VEGFR2 complexes. Silencing VEGFR2 or its partner neuropilin 1 specifically abolished VEGF-C-induced AKT but not ERK activation, whereas silencing of neuropilin 2 had little effect on either signaling pathway. Finally, suppression of vascular endothelial phosphotyrosine phosphatase but not other phosphotyrosine phosphatases enhanced VEGF-C-induced activation of both ERK and AKT pathways. Functionally, both ERK and AKT pathways are important for lymphatic endothelial cells migration.APPROACH AND RESULTSHuman dermal lymphatic endothelial cells were used to examine VEGF-C-driven activation of signaling. Compared with VEGF-A activation of VEGFR2, VEGF-C-induced VEGFR3 activation led to a more extensive AKT activation, whereas activation of ERK1/2 displayed a distinctly different kinetics. Furthermore, VEGF-C, but not VEGF-A, induced formation of VEGFR3/VEGFR2 complexes. Silencing VEGFR2 or its partner neuropilin 1 specifically abolished VEGF-C-induced AKT but not ERK activation, whereas silencing of neuropilin 2 had little effect on either signaling pathway. Finally, suppression of vascular endothelial phosphotyrosine phosphatase but not other phosphotyrosine phosphatases enhanced VEGF-C-induced activation of both ERK and AKT pathways. Functionally, both ERK and AKT pathways are important for lymphatic endothelial cells migration.VEGF-C activates AKT signaling via formation of VEGFR3/VEGFR2 complex, whereas ERK is activated by VEGFR3 homodimer. Neuropilin 1 and vascular endothelial phosphotyrosine phosphatase are involved in regulation of VEGFR3 signaling.CONCLUSIONSVEGF-C activates AKT signaling via formation of VEGFR3/VEGFR2 complex, whereas ERK is activated by VEGFR3 homodimer. Neuropilin 1 and vascular endothelial phosphotyrosine phosphatase are involved in regulation of VEGFR3 signaling. Vascular endothelial growth factor receptor 3 (VEGFR3) plays important roles both in lymphangiogenesis and angiogenesis. On stimulation by its ligand VEGF-C, VEGFR3 is able to form both homodimers as well as heterodimers with VEGFR2 and activates several downstream signal pathways, including extracellular signal-regulated kinases (ERK)1/2 and protein kinase B (AKT). Despite certain similarities with VEGFR2, molecular features of VEGFR3 signaling are still largely unknown. Human dermal lymphatic endothelial cells were used to examine VEGF-C-driven activation of signaling. Compared with VEGF-A activation of VEGFR2, VEGF-C-induced VEGFR3 activation led to a more extensive AKT activation, whereas activation of ERK1/2 displayed a distinctly different kinetics. Furthermore, VEGF-C, but not VEGF-A, induced formation of VEGFR3/VEGFR2 complexes. Silencing VEGFR2 or its partner neuropilin 1 specifically abolished VEGF-C-induced AKT but not ERK activation, whereas silencing of neuropilin 2 had little effect on either signaling pathway. Finally, suppression of vascular endothelial phosphotyrosine phosphatase but not other phosphotyrosine phosphatases enhanced VEGF-C-induced activation of both ERK and AKT pathways. Functionally, both ERK and AKT pathways are important for lymphatic endothelial cells migration. VEGF-C activates AKT signaling via formation of VEGFR3/VEGFR2 complex, whereas ERK is activated by VEGFR3 homodimer. Neuropilin 1 and vascular endothelial phosphotyrosine phosphatase are involved in regulation of VEGFR3 signaling. |
Author | Simons, Michael Deng, Yong Zhang, Xi |
AuthorAffiliation | From the Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine (Y.D., X.Z., M.S.) and Department of Cell Biology (X.Z., M.S.), Yale University School of Medicine, New Haven, CT |
AuthorAffiliation_xml | – name: From the Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine (Y.D., X.Z., M.S.) and Department of Cell Biology (X.Z., M.S.), Yale University School of Medicine, New Haven, CT – name: 2 Department of Cell Biology, Yale University School of Medicine, New Haven, United States – name: 1 Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, United States |
Author_xml | – sequence: 1 givenname: Yong surname: Deng fullname: Deng, Yong organization: From the Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine (Y.D., X.Z., M.S.) and Department of Cell Biology (X.Z., M.S.), Yale University School of Medicine, New Haven, CT – sequence: 2 givenname: Xi surname: Zhang fullname: Zhang, Xi – sequence: 3 givenname: Michael surname: Simons fullname: Simons, Michael |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/25524775$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kUtP4zAUhS0E4v0HWKAsZxO4dmwn2SB1Kl5SERKvreUkN63BjTt2AuLf46oFwSxY2Vf-zrnWOXtks3MdEnJE4YRSSU9HD09_R1ejOPCTDHhR0A2ySwXjKZeZ3Ix3yMtUSM52yF4IzwDAGYNtssNEpPJc7BK4cRbrwWqfjF3Xe2dD4tpk8j5fzHRv6uTp_PLiLkvuzbTT1nTTA7LVahvwcH3uk8eL84fxVTq5vbwejyZpLQpB0yKTVStlXkHbCJQcK8gB2ow3FDPdNoyxXGgQka5kQ-ucg-BYlAxKqSnSbJ-crXwXQzXHpsb4OW3Vwpu59u_KaaN-vnRmpqbuVfEYRcmWBn_WBt79GzD0am5CjdbqDt0QFJWCZaWEvIjo8fddX0s-Y4pAsQJq70Lw2Kra9DGeZWLaWEVBLRtR60biwNWqkShl_0k_3X8VyZXozdkefXixwxt6NUNt-9lvwg9BMp4n |
CitedBy_id | crossref_primary_10_1016_j_bbrc_2017_02_001 crossref_primary_10_1161_ATVBAHA_121_316707 crossref_primary_10_1016_j_yexcr_2020_111816 crossref_primary_10_3389_fphys_2020_00003 crossref_primary_10_3390_ijms20030639 crossref_primary_10_1007_s11033_020_05741_8 crossref_primary_10_3390_microorganisms12061132 crossref_primary_10_1002_jcb_29352 crossref_primary_10_1002_EXP_70004 crossref_primary_10_3390_ijms20081901 crossref_primary_10_1186_s12951_024_02304_y crossref_primary_10_1111_febs_13545 crossref_primary_10_3389_fcvm_2020_597374 crossref_primary_10_1111_bph_13488 crossref_primary_10_1172_JCI99027 crossref_primary_10_1134_S0022093021050100 crossref_primary_10_1016_j_jcmgh_2018_12_002 crossref_primary_10_1172_JCI155478 crossref_primary_10_1007_s10911_023_09554_w crossref_primary_10_1016_j_coi_2018_05_003 crossref_primary_10_1016_j_lpmfor_2023_07_014 crossref_primary_10_1016_j_biopha_2024_117585 crossref_primary_10_1186_s12920_024_01859_x crossref_primary_10_1089_neu_2022_0150 crossref_primary_10_1152_physiol_00026_2020 crossref_primary_10_3390_ph14070614 crossref_primary_10_3389_fonc_2022_817660 crossref_primary_10_1016_j_canlet_2016_05_037 crossref_primary_10_1016_j_yexcr_2018_04_007 crossref_primary_10_3389_fimmu_2024_1349500 crossref_primary_10_1038_s41388_022_02449_w crossref_primary_10_1126_scisignal_abc0836 crossref_primary_10_3390_ijms22147760 crossref_primary_10_7554_eLife_42881 crossref_primary_10_1152_ajpheart_00023_2023 crossref_primary_10_2174_1570159X21666221115150253 crossref_primary_10_1042_BSR20150171 crossref_primary_10_4014_jmb_2409_09060 crossref_primary_10_3389_fphys_2021_672987 crossref_primary_10_1016_j_celrep_2019_07_055 crossref_primary_10_1515_med_2024_1089 crossref_primary_10_1126_scisignal_abc6612 crossref_primary_10_1016_j_bbagen_2016_05_027 crossref_primary_10_3389_fonc_2021_772305 crossref_primary_10_1016_j_devcel_2021_01_018 crossref_primary_10_1111_cpr_13009 crossref_primary_10_1038_s44161_022_00147_0 crossref_primary_10_3389_fphys_2023_1124696 crossref_primary_10_3390_ijms22168862 crossref_primary_10_1038_s41427_023_00527_3 crossref_primary_10_3389_fphys_2022_1021038 crossref_primary_10_1093_eurheartj_ehad377 crossref_primary_10_3390_cancers12082297 crossref_primary_10_1093_cvr_cvaa291 crossref_primary_10_1161_CIRCRESAHA_121_318142 crossref_primary_10_1007_s10456_021_09774_w crossref_primary_10_1096_fj_202100773RRR crossref_primary_10_3390_ijms18081786 crossref_primary_10_1161_CIRCRESAHA_123_322607 crossref_primary_10_3389_fbioe_2018_00007 crossref_primary_10_3390_ijms22020520 crossref_primary_10_1111_jfbc_14233 crossref_primary_10_3389_fonc_2019_01188 crossref_primary_10_1016_j_survophthal_2021_03_007 crossref_primary_10_3389_fcell_2025_1527971 crossref_primary_10_1038_nrm_2016_87 crossref_primary_10_1016_j_jvs_2018_06_195 crossref_primary_10_3389_fphys_2023_1198052 crossref_primary_10_1186_s12929_022_00875_2 crossref_primary_10_1089_lrb_2015_1312 crossref_primary_10_1073_pnas_1714446115 crossref_primary_10_1172_JCI96063 crossref_primary_10_1371_journal_pone_0210060 crossref_primary_10_1172_JCI85145 crossref_primary_10_3389_fphys_2020_00114 crossref_primary_10_1136_bmjophth_2019_000273 crossref_primary_10_1016_j_euf_2017_02_009 crossref_primary_10_1038_s41598_017_03280_0 crossref_primary_10_1242_dev_200560 crossref_primary_10_1016_j_jhepr_2023_100816 crossref_primary_10_1080_08977194_2018_1520229 crossref_primary_10_1007_s11010_018_3481_y crossref_primary_10_3389_fonc_2022_862326 crossref_primary_10_1111_micc_12802 crossref_primary_10_1167_iovs_61_14_12 crossref_primary_10_1016_j_biocel_2019_105562 crossref_primary_10_3390_cells13010068 crossref_primary_10_1038_s41392_023_01571_9 crossref_primary_10_1186_s12943_018_0801_5 |
Cites_doi | 10.1016/j.devcel.2010.02.016 10.1074/jbc.M609048200 10.1093/emboj/20.17.4762 10.1182/blood-2005-04-1388 10.1038/ncomms2683 10.1161/CIRCRESAHA.112.269316 10.1038/nature10908 10.1016/j.cell.2011.08.039 10.1038/emboj.2010.30 10.1152/physiol.00016.2012 10.1371/journal.pone.0074686 10.1083/jcb.200602080 10.1083/jcb.200903137 10.1096/fj.05-5646com 10.1038/nm.2545 10.1016/j.semcdb.2013.01.001 10.1093/jb/mvs136 10.1016/j.devcel.2013.03.019 10.1161/CIRCULATIONAHA.114.009683 10.1016/j.ajhg.2010.08.008 10.1083/jcb.200209019 10.1042/BST20110689 10.1042/BJ20110301 10.1074/jbc.M304499200 10.1096/fj.08-123810 |
ContentType | Journal Article |
Copyright | 2015 American Heart Association, Inc. 2014 American Heart Association, Inc. |
Copyright_xml | – notice: 2015 American Heart Association, Inc. – notice: 2014 American Heart Association, Inc. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
DOI | 10.1161/ATVBAHA.114.304881 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1524-4636 |
EndPage | 429 |
ExternalDocumentID | PMC4304921 25524775 10_1161_ATVBAHA_114_304881 10.1161/ATVBAHA.114.304881 |
Genre | Comparative Study Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NHLBI NIH HHS grantid: HL107205 – fundername: NHLBI NIH HHS grantid: R01 HL053793 – fundername: NHLBI NIH HHS grantid: HL084619 – fundername: NHLBI NIH HHS grantid: R01 HL084619 – fundername: NHLBI NIH HHS grantid: P01 HL107205 |
GroupedDBID | --- .3C .55 .GJ .Z2 01R 0R~ 1J1 23N 2WC 3O- 40H 4Q1 4Q2 4Q3 53G 5GY 5RE 5VS 71W 77Y 7O~ AAAAV AAAXR AAGIX AAHPQ AAIQE AAMOA AAMTA AAQKA AARTV AASCR AASOK AAXQO ABASU ABBUW ABDIG ABJNI ABPXF ABQRW ABVCZ ABXVJ ABZAD ABZZY ACCJW ACDDN ACEWG ACGFS ACGOD ACILI ACLDA ACPRK ACWDW ACWRI ACXJB ACXNZ ACZKN ADBBV ADFPA ADGGA ADHPY ADNKB AE3 AE6 AEETU AENEX AFBFQ AFDTB AFFNX AFUWQ AGINI AHJKT AHMBA AHOMT AHQNM AHRYX AHVBC AIJEX AINUH AJCLO AJIOK AJNWD AJNYG AJZMW AKCTQ AKULP ALKUP ALMA_UNASSIGNED_HOLDINGS ALMTX AMJPA AMKUR AMNEI AOHHW AOQMC AYCSE BAWUL BOYCO BQLVK BS7 C1A C45 CS3 DIK DIWNM DUNZO E.X E3Z EBS EEVPB EJD ERAAH EX3 F2K F2L F2M F2N F5P FCALG FL- FRP FW0 GNXGY GQDEL GX1 H0~ H13 HLJTE HZ~ IKREB IKYAY IN~ IPNFZ J5H JF9 JG8 JK3 JK8 K8S KD2 KMI KQ8 L-C L7B N9A N~7 N~B N~M O9- OAG OAH OB2 OCUKA ODA OL1 OLG OLH OLU OLV OLY OLZ OPUJH ORVUJ OUVQU OVD OVDNE OVIDH OVLEI OWU OWV OWW OWX OWY OWZ OXXIT P-K P2P PQQKQ PZZ RAH RIG RLZ S4R S4S T8P TEORI TR2 TSPGW V2I VVN W3M W8F WOQ WOW X3V X3W X7M XXN XYM YFH ZGI ZZMQN AAYXX ADGHP CITATION ACIJW CGR CUY CVF ECM EIF NPM 7X8 5PM |
ID | FETCH-LOGICAL-c5851-836bf667b0fd5e64eb0700f34d1e3afd22275a05c58b6d1c74054e892096a1e13 |
ISSN | 1079-5642 1524-4636 |
IngestDate | Thu Aug 21 14:03:49 EDT 2025 Fri Jul 11 04:41:07 EDT 2025 Thu Apr 03 07:02:09 EDT 2025 Tue Jul 01 02:21:54 EDT 2025 Thu Apr 24 22:57:52 EDT 2025 Fri May 16 03:54:36 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | VEGFR2 NRP1 VEGFR3 NRP2 VEGF-C VE-PTP |
Language | English |
License | 2014 American Heart Association, Inc. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c5851-836bf667b0fd5e64eb0700f34d1e3afd22275a05c58b6d1c74054e892096a1e13 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
OpenAccessLink | https://www.ahajournals.org/doi/pdf/10.1161/ATVBAHA.114.304881 |
PMID | 25524775 |
PQID | 1652396078 |
PQPubID | 23479 |
PageCount | 9 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_4304921 proquest_miscellaneous_1652396078 pubmed_primary_25524775 crossref_citationtrail_10_1161_ATVBAHA_114_304881 crossref_primary_10_1161_ATVBAHA_114_304881 wolterskluwer_health_10_1161_ATVBAHA_114_304881 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2015-February |
PublicationDateYYYYMMDD | 2015-02-01 |
PublicationDate_xml | – month: 02 year: 2015 text: 2015-February |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Arteriosclerosis, thrombosis, and vascular biology |
PublicationTitleAlternate | Arterioscler Thromb Vasc Biol |
PublicationYear | 2015 |
Publisher | American Heart Association, Inc |
Publisher_xml | – name: American Heart Association, Inc |
References | e_1_3_5_26_2 e_1_3_5_25_2 e_1_3_5_24_2 e_1_3_5_23_2 e_1_3_5_22_2 e_1_3_5_21_2 e_1_3_5_2_2 e_1_3_5_8_2 e_1_3_5_20_2 e_1_3_5_7_2 e_1_3_5_9_2 e_1_3_5_4_2 e_1_3_5_3_2 e_1_3_5_6_2 e_1_3_5_5_2 e_1_3_5_17_2 e_1_3_5_16_2 e_1_3_5_15_2 e_1_3_5_14_2 e_1_3_5_12_2 e_1_3_5_13_2 e_1_3_5_10_2 e_1_3_5_11_2 e_1_3_5_19_2 e_1_3_5_18_2 22064427 - Nat Med. 2011;17(11):1371-80 24023956 - PLoS One. 2013;8(9):e74686 24982127 - Circulation. 2014 Sep 9;130(11):902-9 20065093 - J Cell Biol. 2010 Jan 11;188(1):115-30 20224550 - EMBO J. 2010 Apr 21;29(8):1377-88 23639442 - Dev Cell. 2013 Apr 29;25(2):156-68 12771128 - J Cell Biol. 2003 May 26;161(4):793-804 20434959 - Dev Cell. 2010 May 18;18(5):713-24 22723296 - Circ Res. 2012 Aug 3;111(4):437-45 16816121 - FASEB J. 2006 Jul;20(9):1462-72 21925313 - Cell. 2011 Sep 16;146(6):873-87 22426001 - Nature. 2012 Apr 5;484(7392):110-4 12881528 - J Biol Chem. 2003 Oct 17;278(42):40973-9 19136612 - FASEB J. 2009 May;23(5):1490-502 16076871 - Blood. 2005 Nov 15;106(10):3423-31 16893970 - J Cell Biol. 2006 Aug 14;174(4):593-604 22875452 - Physiology (Bethesda). 2012 Aug;27(4):213-22 11532940 - EMBO J. 2001 Sep 3;20(17):4762-73 21711246 - Biochem J. 2011 Jul 15;437(2):169-83 20826270 - Am J Hum Genet. 2010 Sep 10;87(3):436-44 23172303 - J Biochem. 2013 Jan;153(1):13-9 17303569 - J Biol Chem. 2007 Apr 6;282(14):10660-9 23575676 - Nat Commun. 2013;4:1672 23319134 - Semin Cell Dev Biol. 2013 Mar;24(3):172-8 22260660 - Biochem Soc Trans. 2012 Feb;40(1):20-5 |
References_xml | – ident: e_1_3_5_12_2 doi: 10.1016/j.devcel.2010.02.016 – ident: e_1_3_5_24_2 doi: 10.1074/jbc.M609048200 – ident: e_1_3_5_22_2 doi: 10.1093/emboj/20.17.4762 – ident: e_1_3_5_13_2 doi: 10.1182/blood-2005-04-1388 – ident: e_1_3_5_10_2 doi: 10.1038/ncomms2683 – ident: e_1_3_5_18_2 doi: 10.1161/CIRCRESAHA.112.269316 – ident: e_1_3_5_6_2 doi: 10.1038/nature10908 – ident: e_1_3_5_5_2 doi: 10.1016/j.cell.2011.08.039 – ident: e_1_3_5_15_2 doi: 10.1038/emboj.2010.30 – ident: e_1_3_5_23_2 doi: 10.1152/physiol.00016.2012 – ident: e_1_3_5_25_2 doi: 10.1371/journal.pone.0074686 – ident: e_1_3_5_7_2 doi: 10.1083/jcb.200602080 – ident: e_1_3_5_19_2 doi: 10.1083/jcb.200903137 – ident: e_1_3_5_26_2 doi: 10.1096/fj.05-5646com – ident: e_1_3_5_4_2 doi: 10.1038/nm.2545 – ident: e_1_3_5_17_2 doi: 10.1016/j.semcdb.2013.01.001 – ident: e_1_3_5_2_2 doi: 10.1093/jb/mvs136 – ident: e_1_3_5_8_2 doi: 10.1016/j.devcel.2013.03.019 – ident: e_1_3_5_11_2 doi: 10.1161/CIRCULATIONAHA.114.009683 – ident: e_1_3_5_21_2 doi: 10.1016/j.ajhg.2010.08.008 – ident: e_1_3_5_9_2 doi: 10.1083/jcb.200209019 – ident: e_1_3_5_16_2 doi: 10.1042/BST20110689 – ident: e_1_3_5_3_2 doi: 10.1042/BJ20110301 – ident: e_1_3_5_14_2 doi: 10.1074/jbc.M304499200 – ident: e_1_3_5_20_2 doi: 10.1096/fj.08-123810 – reference: 23575676 - Nat Commun. 2013;4:1672 – reference: 12771128 - J Cell Biol. 2003 May 26;161(4):793-804 – reference: 11532940 - EMBO J. 2001 Sep 3;20(17):4762-73 – reference: 22875452 - Physiology (Bethesda). 2012 Aug;27(4):213-22 – reference: 16893970 - J Cell Biol. 2006 Aug 14;174(4):593-604 – reference: 20224550 - EMBO J. 2010 Apr 21;29(8):1377-88 – reference: 21711246 - Biochem J. 2011 Jul 15;437(2):169-83 – reference: 12881528 - J Biol Chem. 2003 Oct 17;278(42):40973-9 – reference: 24023956 - PLoS One. 2013;8(9):e74686 – reference: 20434959 - Dev Cell. 2010 May 18;18(5):713-24 – reference: 22426001 - Nature. 2012 Apr 5;484(7392):110-4 – reference: 22064427 - Nat Med. 2011;17(11):1371-80 – reference: 20065093 - J Cell Biol. 2010 Jan 11;188(1):115-30 – reference: 20826270 - Am J Hum Genet. 2010 Sep 10;87(3):436-44 – reference: 17303569 - J Biol Chem. 2007 Apr 6;282(14):10660-9 – reference: 22723296 - Circ Res. 2012 Aug 3;111(4):437-45 – reference: 21925313 - Cell. 2011 Sep 16;146(6):873-87 – reference: 24982127 - Circulation. 2014 Sep 9;130(11):902-9 – reference: 19136612 - FASEB J. 2009 May;23(5):1490-502 – reference: 23172303 - J Biochem. 2013 Jan;153(1):13-9 – reference: 16816121 - FASEB J. 2006 Jul;20(9):1462-72 – reference: 23639442 - Dev Cell. 2013 Apr 29;25(2):156-68 – reference: 16076871 - Blood. 2005 Nov 15;106(10):3423-31 – reference: 23319134 - Semin Cell Dev Biol. 2013 Mar;24(3):172-8 – reference: 22260660 - Biochem Soc Trans. 2012 Feb;40(1):20-5 |
SSID | ssj0004220 |
Score | 2.4762807 |
Snippet | OBJECTIVES—Vascular endothelial growth factor receptor 3 (VEGFR3) plays important roles both in lymphangiogenesis and angiogenesis. On stimulation by its... Vascular endothelial growth factor receptor 3 (VEGFR3) plays important roles both in lymphangiogenesis and angiogenesis. On stimulation by its ligand VEGF-C,... |
SourceID | pubmedcentral proquest pubmed crossref wolterskluwer |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 421 |
SubjectTerms | Cell Movement Cells, Cultured Endocytosis Endothelial Cells - metabolism Enzyme Activation Humans Kinetics Ligands Lymphangiogenesis Lymphatic Vessels - metabolism Mitogen-Activated Protein Kinase 1 - metabolism Mitogen-Activated Protein Kinase 3 - metabolism Neuropilin-1 - genetics Neuropilin-1 - metabolism Neuropilin-2 - genetics Neuropilin-2 - metabolism Protein Multimerization Proto-Oncogene Proteins c-akt - metabolism Receptor-Like Protein Tyrosine Phosphatases, Class 3 - metabolism RNA Interference Signal Transduction Transfection Vascular Endothelial Growth Factor A - metabolism Vascular Endothelial Growth Factor C - metabolism Vascular Endothelial Growth Factor Receptor-2 - metabolism Vascular Endothelial Growth Factor Receptor-3 - genetics Vascular Endothelial Growth Factor Receptor-3 - metabolism |
Title | Molecular Controls of Lymphatic VEGFR3 Signaling |
URI | https://www.ncbi.nlm.nih.gov/pubmed/25524775 https://www.proquest.com/docview/1652396078 https://pubmed.ncbi.nlm.nih.gov/PMC4304921 |
Volume | 35 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3rb9MwELdgSAgJIZ6j46Eg8W3KFid-NB8L2qiAIgHdVD5FceJABSRo7YS2v567-NFEQRXjS9S6jhv5fjnfne9-JuRljKTkjOYhFbkKmY5UqGQJrorSYC0UmkuNccjZBzE9YW8XfLFJG2urS9bqoLj8a13J_0gV2kCuWCV7Bcn6QaEBPoN84QoShus_yXjmzrbFwj3MOG_zMt5fgIRaItbTozfHn5L9z8uvaG7bNcpTziJLc7OCIWGhNEwDeGbCT-W-YUjdJ6pasiZv92qjI740dtRu7Hmx9HEbQIKNZ3fS822QgXKXl-xg4XaPpvD6rbvIGWRsgjuZhlywnoo1jCQWSnFHXzJTHm2XXmaCH0OtLlCrT-anrybTCbIbHySoeOhmDfOZhdu6Xyc3YnAm8JyLdx87nPJxbDgr7IO70ipBD4dj9M2XgU8yTK29_bvBtIfV97bqoWO7zO-SO9bpCCYGQffINV3fJzdnNq3iAYk8kAIHpKCpAg-kwAAp8EB6SE6Oj-avp6E9SiMscN83HCdCVUJIFVUl14JpBao-qhJWUp3kVYkV0TyPOPRWoqSFBDue6XEag4ebU02TR2Snbmr9mAS5BKszrcooLQoW5VpBAzg9qc5lqeDVHxHqZigrLM88HnfyI2v9TUEzO6tYEJ-ZWR2RfX_PL8OysrX3CzfxGShD3OHKa92crzIqeJyATy7HI7JrBOHHA985ZlLyEZE9EfkOSLTe_6VefmsJ1xnuRcfwv4c9YWamVHnLk-5d-Y4n5Nbm_XtKdtZn5_oZmL1r9bxF7R_vC6b0 |
linkProvider | Colorado Alliance of Research Libraries |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Molecular+Controls+of+Lymphatic+VEGFR3+Signaling&rft.jtitle=Arteriosclerosis%2C+thrombosis%2C+and+vascular+biology&rft.au=Deng%2C+Yong&rft.au=Zhang%2C+Xi&rft.au=Simons%2C+Michael&rft.date=2015-02-01&rft.pub=American+Heart+Association%2C+Inc&rft.issn=1079-5642&rft.volume=35&rft.issue=2&rft.spage=421&rft.epage=429&rft_id=info:doi/10.1161%2FATVBAHA.114.304881&rft.externalDocID=10.1161%2FATVBAHA.114.304881 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1079-5642&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1079-5642&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1079-5642&client=summon |