Molecular Controls of Lymphatic VEGFR3 Signaling

OBJECTIVES—Vascular endothelial growth factor receptor 3 (VEGFR3) plays important roles both in lymphangiogenesis and angiogenesis. On stimulation by its ligand VEGF-C, VEGFR3 is able to form both homodimers as well as heterodimers with VEGFR2 and activates several downstream signal pathways, includ...

Full description

Saved in:
Bibliographic Details
Published inArteriosclerosis, thrombosis, and vascular biology Vol. 35; no. 2; pp. 421 - 429
Main Authors Deng, Yong, Zhang, Xi, Simons, Michael
Format Journal Article
LanguageEnglish
Published United States American Heart Association, Inc 01.02.2015
Subjects
Online AccessGet full text

Cover

Loading…
Abstract OBJECTIVES—Vascular endothelial growth factor receptor 3 (VEGFR3) plays important roles both in lymphangiogenesis and angiogenesis. On stimulation by its ligand VEGF-C, VEGFR3 is able to form both homodimers as well as heterodimers with VEGFR2 and activates several downstream signal pathways, including extracellular signal-regulated kinases (ERK)1/2 and protein kinase B (AKT). Despite certain similarities with VEGFR2, molecular features of VEGFR3 signaling are still largely unknown. APPROACH AND RESULTS—Human dermal lymphatic endothelial cells were used to examine VEGF-C–driven activation of signaling. Compared with VEGF-A activation of VEGFR2, VEGF-C–induced VEGFR3 activation led to a more extensive AKT activation, whereas activation of ERK1/2 displayed a distinctly different kinetics. Furthermore, VEGF-C, but not VEGF-A, induced formation of VEGFR3/VEGFR2 complexes. Silencing VEGFR2 or its partner neuropilin 1 specifically abolished VEGF-C–induced AKT but not ERK activation, whereas silencing of neuropilin 2 had little effect on either signaling pathway. Finally, suppression of vascular endothelial phosphotyrosine phosphatase but not other phosphotyrosine phosphatases enhanced VEGF-C–induced activation of both ERK and AKT pathways. Functionally, both ERK and AKT pathways are important for lymphatic endothelial cells migration. CONCLUSIONS—VEGF-C activates AKT signaling via formation of VEGFR3/VEGFR2 complex, whereas ERK is activated by VEGFR3 homodimer. Neuropilin 1 and vascular endothelial phosphotyrosine phosphatase are involved in regulation of VEGFR3 signaling.
AbstractList OBJECTIVES—Vascular endothelial growth factor receptor 3 (VEGFR3) plays important roles both in lymphangiogenesis and angiogenesis. On stimulation by its ligand VEGF-C, VEGFR3 is able to form both homodimers as well as heterodimers with VEGFR2 and activates several downstream signal pathways, including extracellular signal-regulated kinases (ERK)1/2 and protein kinase B (AKT). Despite certain similarities with VEGFR2, molecular features of VEGFR3 signaling are still largely unknown. APPROACH AND RESULTS—Human dermal lymphatic endothelial cells were used to examine VEGF-C–driven activation of signaling. Compared with VEGF-A activation of VEGFR2, VEGF-C–induced VEGFR3 activation led to a more extensive AKT activation, whereas activation of ERK1/2 displayed a distinctly different kinetics. Furthermore, VEGF-C, but not VEGF-A, induced formation of VEGFR3/VEGFR2 complexes. Silencing VEGFR2 or its partner neuropilin 1 specifically abolished VEGF-C–induced AKT but not ERK activation, whereas silencing of neuropilin 2 had little effect on either signaling pathway. Finally, suppression of vascular endothelial phosphotyrosine phosphatase but not other phosphotyrosine phosphatases enhanced VEGF-C–induced activation of both ERK and AKT pathways. Functionally, both ERK and AKT pathways are important for lymphatic endothelial cells migration. CONCLUSIONS—VEGF-C activates AKT signaling via formation of VEGFR3/VEGFR2 complex, whereas ERK is activated by VEGFR3 homodimer. Neuropilin 1 and vascular endothelial phosphotyrosine phosphatase are involved in regulation of VEGFR3 signaling.
Vascular endothelial growth factor receptor 3 (VEGFR3) plays important roles both in lymphangiogenesis and angiogenesis. On stimulation by its ligand VEGF-C, VEGFR3 is able to form both homodimers as well as heterodimers with VEGFR2 and activates several downstream signal pathways, including extracellular signal-regulated kinases (ERK)1/2 and protein kinase B (AKT). Despite certain similarities with VEGFR2, molecular features of VEGFR3 signaling are still largely unknown.OBJECTIVESVascular endothelial growth factor receptor 3 (VEGFR3) plays important roles both in lymphangiogenesis and angiogenesis. On stimulation by its ligand VEGF-C, VEGFR3 is able to form both homodimers as well as heterodimers with VEGFR2 and activates several downstream signal pathways, including extracellular signal-regulated kinases (ERK)1/2 and protein kinase B (AKT). Despite certain similarities with VEGFR2, molecular features of VEGFR3 signaling are still largely unknown.Human dermal lymphatic endothelial cells were used to examine VEGF-C-driven activation of signaling. Compared with VEGF-A activation of VEGFR2, VEGF-C-induced VEGFR3 activation led to a more extensive AKT activation, whereas activation of ERK1/2 displayed a distinctly different kinetics. Furthermore, VEGF-C, but not VEGF-A, induced formation of VEGFR3/VEGFR2 complexes. Silencing VEGFR2 or its partner neuropilin 1 specifically abolished VEGF-C-induced AKT but not ERK activation, whereas silencing of neuropilin 2 had little effect on either signaling pathway. Finally, suppression of vascular endothelial phosphotyrosine phosphatase but not other phosphotyrosine phosphatases enhanced VEGF-C-induced activation of both ERK and AKT pathways. Functionally, both ERK and AKT pathways are important for lymphatic endothelial cells migration.APPROACH AND RESULTSHuman dermal lymphatic endothelial cells were used to examine VEGF-C-driven activation of signaling. Compared with VEGF-A activation of VEGFR2, VEGF-C-induced VEGFR3 activation led to a more extensive AKT activation, whereas activation of ERK1/2 displayed a distinctly different kinetics. Furthermore, VEGF-C, but not VEGF-A, induced formation of VEGFR3/VEGFR2 complexes. Silencing VEGFR2 or its partner neuropilin 1 specifically abolished VEGF-C-induced AKT but not ERK activation, whereas silencing of neuropilin 2 had little effect on either signaling pathway. Finally, suppression of vascular endothelial phosphotyrosine phosphatase but not other phosphotyrosine phosphatases enhanced VEGF-C-induced activation of both ERK and AKT pathways. Functionally, both ERK and AKT pathways are important for lymphatic endothelial cells migration.VEGF-C activates AKT signaling via formation of VEGFR3/VEGFR2 complex, whereas ERK is activated by VEGFR3 homodimer. Neuropilin 1 and vascular endothelial phosphotyrosine phosphatase are involved in regulation of VEGFR3 signaling.CONCLUSIONSVEGF-C activates AKT signaling via formation of VEGFR3/VEGFR2 complex, whereas ERK is activated by VEGFR3 homodimer. Neuropilin 1 and vascular endothelial phosphotyrosine phosphatase are involved in regulation of VEGFR3 signaling.
Vascular endothelial growth factor receptor 3 (VEGFR3) plays important roles both in lymphangiogenesis and angiogenesis. On stimulation by its ligand VEGF-C, VEGFR3 is able to form both homodimers as well as heterodimers with VEGFR2 and activates several downstream signal pathways, including extracellular signal-regulated kinases (ERK)1/2 and protein kinase B (AKT). Despite certain similarities with VEGFR2, molecular features of VEGFR3 signaling are still largely unknown. Human dermal lymphatic endothelial cells were used to examine VEGF-C-driven activation of signaling. Compared with VEGF-A activation of VEGFR2, VEGF-C-induced VEGFR3 activation led to a more extensive AKT activation, whereas activation of ERK1/2 displayed a distinctly different kinetics. Furthermore, VEGF-C, but not VEGF-A, induced formation of VEGFR3/VEGFR2 complexes. Silencing VEGFR2 or its partner neuropilin 1 specifically abolished VEGF-C-induced AKT but not ERK activation, whereas silencing of neuropilin 2 had little effect on either signaling pathway. Finally, suppression of vascular endothelial phosphotyrosine phosphatase but not other phosphotyrosine phosphatases enhanced VEGF-C-induced activation of both ERK and AKT pathways. Functionally, both ERK and AKT pathways are important for lymphatic endothelial cells migration. VEGF-C activates AKT signaling via formation of VEGFR3/VEGFR2 complex, whereas ERK is activated by VEGFR3 homodimer. Neuropilin 1 and vascular endothelial phosphotyrosine phosphatase are involved in regulation of VEGFR3 signaling.
Author Simons, Michael
Deng, Yong
Zhang, Xi
AuthorAffiliation From the Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine (Y.D., X.Z., M.S.) and Department of Cell Biology (X.Z., M.S.), Yale University School of Medicine, New Haven, CT
AuthorAffiliation_xml – name: From the Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine (Y.D., X.Z., M.S.) and Department of Cell Biology (X.Z., M.S.), Yale University School of Medicine, New Haven, CT
– name: 2 Department of Cell Biology, Yale University School of Medicine, New Haven, United States
– name: 1 Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, United States
Author_xml – sequence: 1
  givenname: Yong
  surname: Deng
  fullname: Deng, Yong
  organization: From the Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine (Y.D., X.Z., M.S.) and Department of Cell Biology (X.Z., M.S.), Yale University School of Medicine, New Haven, CT
– sequence: 2
  givenname: Xi
  surname: Zhang
  fullname: Zhang, Xi
– sequence: 3
  givenname: Michael
  surname: Simons
  fullname: Simons, Michael
BackLink https://www.ncbi.nlm.nih.gov/pubmed/25524775$$D View this record in MEDLINE/PubMed
BookMark eNp9kUtP4zAUhS0E4v0HWKAsZxO4dmwn2SB1Kl5SERKvreUkN63BjTt2AuLf46oFwSxY2Vf-zrnWOXtks3MdEnJE4YRSSU9HD09_R1ejOPCTDHhR0A2ySwXjKZeZ3Ix3yMtUSM52yF4IzwDAGYNtssNEpPJc7BK4cRbrwWqfjF3Xe2dD4tpk8j5fzHRv6uTp_PLiLkvuzbTT1nTTA7LVahvwcH3uk8eL84fxVTq5vbwejyZpLQpB0yKTVStlXkHbCJQcK8gB2ow3FDPdNoyxXGgQka5kQ-ucg-BYlAxKqSnSbJ-crXwXQzXHpsb4OW3Vwpu59u_KaaN-vnRmpqbuVfEYRcmWBn_WBt79GzD0am5CjdbqDt0QFJWCZaWEvIjo8fddX0s-Y4pAsQJq70Lw2Kra9DGeZWLaWEVBLRtR60biwNWqkShl_0k_3X8VyZXozdkefXixwxt6NUNt-9lvwg9BMp4n
CitedBy_id crossref_primary_10_1016_j_bbrc_2017_02_001
crossref_primary_10_1161_ATVBAHA_121_316707
crossref_primary_10_1016_j_yexcr_2020_111816
crossref_primary_10_3389_fphys_2020_00003
crossref_primary_10_3390_ijms20030639
crossref_primary_10_1007_s11033_020_05741_8
crossref_primary_10_3390_microorganisms12061132
crossref_primary_10_1002_jcb_29352
crossref_primary_10_1002_EXP_70004
crossref_primary_10_3390_ijms20081901
crossref_primary_10_1186_s12951_024_02304_y
crossref_primary_10_1111_febs_13545
crossref_primary_10_3389_fcvm_2020_597374
crossref_primary_10_1111_bph_13488
crossref_primary_10_1172_JCI99027
crossref_primary_10_1134_S0022093021050100
crossref_primary_10_1016_j_jcmgh_2018_12_002
crossref_primary_10_1172_JCI155478
crossref_primary_10_1007_s10911_023_09554_w
crossref_primary_10_1016_j_coi_2018_05_003
crossref_primary_10_1016_j_lpmfor_2023_07_014
crossref_primary_10_1016_j_biopha_2024_117585
crossref_primary_10_1186_s12920_024_01859_x
crossref_primary_10_1089_neu_2022_0150
crossref_primary_10_1152_physiol_00026_2020
crossref_primary_10_3390_ph14070614
crossref_primary_10_3389_fonc_2022_817660
crossref_primary_10_1016_j_canlet_2016_05_037
crossref_primary_10_1016_j_yexcr_2018_04_007
crossref_primary_10_3389_fimmu_2024_1349500
crossref_primary_10_1038_s41388_022_02449_w
crossref_primary_10_1126_scisignal_abc0836
crossref_primary_10_3390_ijms22147760
crossref_primary_10_7554_eLife_42881
crossref_primary_10_1152_ajpheart_00023_2023
crossref_primary_10_2174_1570159X21666221115150253
crossref_primary_10_1042_BSR20150171
crossref_primary_10_4014_jmb_2409_09060
crossref_primary_10_3389_fphys_2021_672987
crossref_primary_10_1016_j_celrep_2019_07_055
crossref_primary_10_1515_med_2024_1089
crossref_primary_10_1126_scisignal_abc6612
crossref_primary_10_1016_j_bbagen_2016_05_027
crossref_primary_10_3389_fonc_2021_772305
crossref_primary_10_1016_j_devcel_2021_01_018
crossref_primary_10_1111_cpr_13009
crossref_primary_10_1038_s44161_022_00147_0
crossref_primary_10_3389_fphys_2023_1124696
crossref_primary_10_3390_ijms22168862
crossref_primary_10_1038_s41427_023_00527_3
crossref_primary_10_3389_fphys_2022_1021038
crossref_primary_10_1093_eurheartj_ehad377
crossref_primary_10_3390_cancers12082297
crossref_primary_10_1093_cvr_cvaa291
crossref_primary_10_1161_CIRCRESAHA_121_318142
crossref_primary_10_1007_s10456_021_09774_w
crossref_primary_10_1096_fj_202100773RRR
crossref_primary_10_3390_ijms18081786
crossref_primary_10_1161_CIRCRESAHA_123_322607
crossref_primary_10_3389_fbioe_2018_00007
crossref_primary_10_3390_ijms22020520
crossref_primary_10_1111_jfbc_14233
crossref_primary_10_3389_fonc_2019_01188
crossref_primary_10_1016_j_survophthal_2021_03_007
crossref_primary_10_3389_fcell_2025_1527971
crossref_primary_10_1038_nrm_2016_87
crossref_primary_10_1016_j_jvs_2018_06_195
crossref_primary_10_3389_fphys_2023_1198052
crossref_primary_10_1186_s12929_022_00875_2
crossref_primary_10_1089_lrb_2015_1312
crossref_primary_10_1073_pnas_1714446115
crossref_primary_10_1172_JCI96063
crossref_primary_10_1371_journal_pone_0210060
crossref_primary_10_1172_JCI85145
crossref_primary_10_3389_fphys_2020_00114
crossref_primary_10_1136_bmjophth_2019_000273
crossref_primary_10_1016_j_euf_2017_02_009
crossref_primary_10_1038_s41598_017_03280_0
crossref_primary_10_1242_dev_200560
crossref_primary_10_1016_j_jhepr_2023_100816
crossref_primary_10_1080_08977194_2018_1520229
crossref_primary_10_1007_s11010_018_3481_y
crossref_primary_10_3389_fonc_2022_862326
crossref_primary_10_1111_micc_12802
crossref_primary_10_1167_iovs_61_14_12
crossref_primary_10_1016_j_biocel_2019_105562
crossref_primary_10_3390_cells13010068
crossref_primary_10_1038_s41392_023_01571_9
crossref_primary_10_1186_s12943_018_0801_5
Cites_doi 10.1016/j.devcel.2010.02.016
10.1074/jbc.M609048200
10.1093/emboj/20.17.4762
10.1182/blood-2005-04-1388
10.1038/ncomms2683
10.1161/CIRCRESAHA.112.269316
10.1038/nature10908
10.1016/j.cell.2011.08.039
10.1038/emboj.2010.30
10.1152/physiol.00016.2012
10.1371/journal.pone.0074686
10.1083/jcb.200602080
10.1083/jcb.200903137
10.1096/fj.05-5646com
10.1038/nm.2545
10.1016/j.semcdb.2013.01.001
10.1093/jb/mvs136
10.1016/j.devcel.2013.03.019
10.1161/CIRCULATIONAHA.114.009683
10.1016/j.ajhg.2010.08.008
10.1083/jcb.200209019
10.1042/BST20110689
10.1042/BJ20110301
10.1074/jbc.M304499200
10.1096/fj.08-123810
ContentType Journal Article
Copyright 2015 American Heart Association, Inc.
2014 American Heart Association, Inc.
Copyright_xml – notice: 2015 American Heart Association, Inc.
– notice: 2014 American Heart Association, Inc.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1161/ATVBAHA.114.304881
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1524-4636
EndPage 429
ExternalDocumentID PMC4304921
25524775
10_1161_ATVBAHA_114_304881
10.1161/ATVBAHA.114.304881
Genre Comparative Study
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NHLBI NIH HHS
  grantid: HL107205
– fundername: NHLBI NIH HHS
  grantid: R01 HL053793
– fundername: NHLBI NIH HHS
  grantid: HL084619
– fundername: NHLBI NIH HHS
  grantid: R01 HL084619
– fundername: NHLBI NIH HHS
  grantid: P01 HL107205
GroupedDBID ---
.3C
.55
.GJ
.Z2
01R
0R~
1J1
23N
2WC
3O-
40H
4Q1
4Q2
4Q3
53G
5GY
5RE
5VS
71W
77Y
7O~
AAAAV
AAAXR
AAGIX
AAHPQ
AAIQE
AAMOA
AAMTA
AAQKA
AARTV
AASCR
AASOK
AAXQO
ABASU
ABBUW
ABDIG
ABJNI
ABPXF
ABQRW
ABVCZ
ABXVJ
ABZAD
ABZZY
ACCJW
ACDDN
ACEWG
ACGFS
ACGOD
ACILI
ACLDA
ACPRK
ACWDW
ACWRI
ACXJB
ACXNZ
ACZKN
ADBBV
ADFPA
ADGGA
ADHPY
ADNKB
AE3
AE6
AEETU
AENEX
AFBFQ
AFDTB
AFFNX
AFUWQ
AGINI
AHJKT
AHMBA
AHOMT
AHQNM
AHRYX
AHVBC
AIJEX
AINUH
AJCLO
AJIOK
AJNWD
AJNYG
AJZMW
AKCTQ
AKULP
ALKUP
ALMA_UNASSIGNED_HOLDINGS
ALMTX
AMJPA
AMKUR
AMNEI
AOHHW
AOQMC
AYCSE
BAWUL
BOYCO
BQLVK
BS7
C1A
C45
CS3
DIK
DIWNM
DUNZO
E.X
E3Z
EBS
EEVPB
EJD
ERAAH
EX3
F2K
F2L
F2M
F2N
F5P
FCALG
FL-
FRP
FW0
GNXGY
GQDEL
GX1
H0~
H13
HLJTE
HZ~
IKREB
IKYAY
IN~
IPNFZ
J5H
JF9
JG8
JK3
JK8
K8S
KD2
KMI
KQ8
L-C
L7B
N9A
N~7
N~B
N~M
O9-
OAG
OAH
OB2
OCUKA
ODA
OL1
OLG
OLH
OLU
OLV
OLY
OLZ
OPUJH
ORVUJ
OUVQU
OVD
OVDNE
OVIDH
OVLEI
OWU
OWV
OWW
OWX
OWY
OWZ
OXXIT
P-K
P2P
PQQKQ
PZZ
RAH
RIG
RLZ
S4R
S4S
T8P
TEORI
TR2
TSPGW
V2I
VVN
W3M
W8F
WOQ
WOW
X3V
X3W
X7M
XXN
XYM
YFH
ZGI
ZZMQN
AAYXX
ADGHP
CITATION
ACIJW
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
ID FETCH-LOGICAL-c5851-836bf667b0fd5e64eb0700f34d1e3afd22275a05c58b6d1c74054e892096a1e13
ISSN 1079-5642
1524-4636
IngestDate Thu Aug 21 14:03:49 EDT 2025
Fri Jul 11 04:41:07 EDT 2025
Thu Apr 03 07:02:09 EDT 2025
Tue Jul 01 02:21:54 EDT 2025
Thu Apr 24 22:57:52 EDT 2025
Fri May 16 03:54:36 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords VEGFR2
NRP1
VEGFR3
NRP2
VEGF-C
VE-PTP
Language English
License 2014 American Heart Association, Inc.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c5851-836bf667b0fd5e64eb0700f34d1e3afd22275a05c58b6d1c74054e892096a1e13
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
OpenAccessLink https://www.ahajournals.org/doi/pdf/10.1161/ATVBAHA.114.304881
PMID 25524775
PQID 1652396078
PQPubID 23479
PageCount 9
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_4304921
proquest_miscellaneous_1652396078
pubmed_primary_25524775
crossref_citationtrail_10_1161_ATVBAHA_114_304881
crossref_primary_10_1161_ATVBAHA_114_304881
wolterskluwer_health_10_1161_ATVBAHA_114_304881
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2015-February
PublicationDateYYYYMMDD 2015-02-01
PublicationDate_xml – month: 02
  year: 2015
  text: 2015-February
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Arteriosclerosis, thrombosis, and vascular biology
PublicationTitleAlternate Arterioscler Thromb Vasc Biol
PublicationYear 2015
Publisher American Heart Association, Inc
Publisher_xml – name: American Heart Association, Inc
References e_1_3_5_26_2
e_1_3_5_25_2
e_1_3_5_24_2
e_1_3_5_23_2
e_1_3_5_22_2
e_1_3_5_21_2
e_1_3_5_2_2
e_1_3_5_8_2
e_1_3_5_20_2
e_1_3_5_7_2
e_1_3_5_9_2
e_1_3_5_4_2
e_1_3_5_3_2
e_1_3_5_6_2
e_1_3_5_5_2
e_1_3_5_17_2
e_1_3_5_16_2
e_1_3_5_15_2
e_1_3_5_14_2
e_1_3_5_12_2
e_1_3_5_13_2
e_1_3_5_10_2
e_1_3_5_11_2
e_1_3_5_19_2
e_1_3_5_18_2
22064427 - Nat Med. 2011;17(11):1371-80
24023956 - PLoS One. 2013;8(9):e74686
24982127 - Circulation. 2014 Sep 9;130(11):902-9
20065093 - J Cell Biol. 2010 Jan 11;188(1):115-30
20224550 - EMBO J. 2010 Apr 21;29(8):1377-88
23639442 - Dev Cell. 2013 Apr 29;25(2):156-68
12771128 - J Cell Biol. 2003 May 26;161(4):793-804
20434959 - Dev Cell. 2010 May 18;18(5):713-24
22723296 - Circ Res. 2012 Aug 3;111(4):437-45
16816121 - FASEB J. 2006 Jul;20(9):1462-72
21925313 - Cell. 2011 Sep 16;146(6):873-87
22426001 - Nature. 2012 Apr 5;484(7392):110-4
12881528 - J Biol Chem. 2003 Oct 17;278(42):40973-9
19136612 - FASEB J. 2009 May;23(5):1490-502
16076871 - Blood. 2005 Nov 15;106(10):3423-31
16893970 - J Cell Biol. 2006 Aug 14;174(4):593-604
22875452 - Physiology (Bethesda). 2012 Aug;27(4):213-22
11532940 - EMBO J. 2001 Sep 3;20(17):4762-73
21711246 - Biochem J. 2011 Jul 15;437(2):169-83
20826270 - Am J Hum Genet. 2010 Sep 10;87(3):436-44
23172303 - J Biochem. 2013 Jan;153(1):13-9
17303569 - J Biol Chem. 2007 Apr 6;282(14):10660-9
23575676 - Nat Commun. 2013;4:1672
23319134 - Semin Cell Dev Biol. 2013 Mar;24(3):172-8
22260660 - Biochem Soc Trans. 2012 Feb;40(1):20-5
References_xml – ident: e_1_3_5_12_2
  doi: 10.1016/j.devcel.2010.02.016
– ident: e_1_3_5_24_2
  doi: 10.1074/jbc.M609048200
– ident: e_1_3_5_22_2
  doi: 10.1093/emboj/20.17.4762
– ident: e_1_3_5_13_2
  doi: 10.1182/blood-2005-04-1388
– ident: e_1_3_5_10_2
  doi: 10.1038/ncomms2683
– ident: e_1_3_5_18_2
  doi: 10.1161/CIRCRESAHA.112.269316
– ident: e_1_3_5_6_2
  doi: 10.1038/nature10908
– ident: e_1_3_5_5_2
  doi: 10.1016/j.cell.2011.08.039
– ident: e_1_3_5_15_2
  doi: 10.1038/emboj.2010.30
– ident: e_1_3_5_23_2
  doi: 10.1152/physiol.00016.2012
– ident: e_1_3_5_25_2
  doi: 10.1371/journal.pone.0074686
– ident: e_1_3_5_7_2
  doi: 10.1083/jcb.200602080
– ident: e_1_3_5_19_2
  doi: 10.1083/jcb.200903137
– ident: e_1_3_5_26_2
  doi: 10.1096/fj.05-5646com
– ident: e_1_3_5_4_2
  doi: 10.1038/nm.2545
– ident: e_1_3_5_17_2
  doi: 10.1016/j.semcdb.2013.01.001
– ident: e_1_3_5_2_2
  doi: 10.1093/jb/mvs136
– ident: e_1_3_5_8_2
  doi: 10.1016/j.devcel.2013.03.019
– ident: e_1_3_5_11_2
  doi: 10.1161/CIRCULATIONAHA.114.009683
– ident: e_1_3_5_21_2
  doi: 10.1016/j.ajhg.2010.08.008
– ident: e_1_3_5_9_2
  doi: 10.1083/jcb.200209019
– ident: e_1_3_5_16_2
  doi: 10.1042/BST20110689
– ident: e_1_3_5_3_2
  doi: 10.1042/BJ20110301
– ident: e_1_3_5_14_2
  doi: 10.1074/jbc.M304499200
– ident: e_1_3_5_20_2
  doi: 10.1096/fj.08-123810
– reference: 23575676 - Nat Commun. 2013;4:1672
– reference: 12771128 - J Cell Biol. 2003 May 26;161(4):793-804
– reference: 11532940 - EMBO J. 2001 Sep 3;20(17):4762-73
– reference: 22875452 - Physiology (Bethesda). 2012 Aug;27(4):213-22
– reference: 16893970 - J Cell Biol. 2006 Aug 14;174(4):593-604
– reference: 20224550 - EMBO J. 2010 Apr 21;29(8):1377-88
– reference: 21711246 - Biochem J. 2011 Jul 15;437(2):169-83
– reference: 12881528 - J Biol Chem. 2003 Oct 17;278(42):40973-9
– reference: 24023956 - PLoS One. 2013;8(9):e74686
– reference: 20434959 - Dev Cell. 2010 May 18;18(5):713-24
– reference: 22426001 - Nature. 2012 Apr 5;484(7392):110-4
– reference: 22064427 - Nat Med. 2011;17(11):1371-80
– reference: 20065093 - J Cell Biol. 2010 Jan 11;188(1):115-30
– reference: 20826270 - Am J Hum Genet. 2010 Sep 10;87(3):436-44
– reference: 17303569 - J Biol Chem. 2007 Apr 6;282(14):10660-9
– reference: 22723296 - Circ Res. 2012 Aug 3;111(4):437-45
– reference: 21925313 - Cell. 2011 Sep 16;146(6):873-87
– reference: 24982127 - Circulation. 2014 Sep 9;130(11):902-9
– reference: 19136612 - FASEB J. 2009 May;23(5):1490-502
– reference: 23172303 - J Biochem. 2013 Jan;153(1):13-9
– reference: 16816121 - FASEB J. 2006 Jul;20(9):1462-72
– reference: 23639442 - Dev Cell. 2013 Apr 29;25(2):156-68
– reference: 16076871 - Blood. 2005 Nov 15;106(10):3423-31
– reference: 23319134 - Semin Cell Dev Biol. 2013 Mar;24(3):172-8
– reference: 22260660 - Biochem Soc Trans. 2012 Feb;40(1):20-5
SSID ssj0004220
Score 2.4762807
Snippet OBJECTIVES—Vascular endothelial growth factor receptor 3 (VEGFR3) plays important roles both in lymphangiogenesis and angiogenesis. On stimulation by its...
Vascular endothelial growth factor receptor 3 (VEGFR3) plays important roles both in lymphangiogenesis and angiogenesis. On stimulation by its ligand VEGF-C,...
SourceID pubmedcentral
proquest
pubmed
crossref
wolterskluwer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 421
SubjectTerms Cell Movement
Cells, Cultured
Endocytosis
Endothelial Cells - metabolism
Enzyme Activation
Humans
Kinetics
Ligands
Lymphangiogenesis
Lymphatic Vessels - metabolism
Mitogen-Activated Protein Kinase 1 - metabolism
Mitogen-Activated Protein Kinase 3 - metabolism
Neuropilin-1 - genetics
Neuropilin-1 - metabolism
Neuropilin-2 - genetics
Neuropilin-2 - metabolism
Protein Multimerization
Proto-Oncogene Proteins c-akt - metabolism
Receptor-Like Protein Tyrosine Phosphatases, Class 3 - metabolism
RNA Interference
Signal Transduction
Transfection
Vascular Endothelial Growth Factor A - metabolism
Vascular Endothelial Growth Factor C - metabolism
Vascular Endothelial Growth Factor Receptor-2 - metabolism
Vascular Endothelial Growth Factor Receptor-3 - genetics
Vascular Endothelial Growth Factor Receptor-3 - metabolism
Title Molecular Controls of Lymphatic VEGFR3 Signaling
URI https://www.ncbi.nlm.nih.gov/pubmed/25524775
https://www.proquest.com/docview/1652396078
https://pubmed.ncbi.nlm.nih.gov/PMC4304921
Volume 35
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3rb9MwELdgSAgJIZ6j46Eg8W3KFid-NB8L2qiAIgHdVD5FceJABSRo7YS2v567-NFEQRXjS9S6jhv5fjnfne9-JuRljKTkjOYhFbkKmY5UqGQJrorSYC0UmkuNccjZBzE9YW8XfLFJG2urS9bqoLj8a13J_0gV2kCuWCV7Bcn6QaEBPoN84QoShus_yXjmzrbFwj3MOG_zMt5fgIRaItbTozfHn5L9z8uvaG7bNcpTziJLc7OCIWGhNEwDeGbCT-W-YUjdJ6pasiZv92qjI740dtRu7Hmx9HEbQIKNZ3fS822QgXKXl-xg4XaPpvD6rbvIGWRsgjuZhlywnoo1jCQWSnFHXzJTHm2XXmaCH0OtLlCrT-anrybTCbIbHySoeOhmDfOZhdu6Xyc3YnAm8JyLdx87nPJxbDgr7IO70ipBD4dj9M2XgU8yTK29_bvBtIfV97bqoWO7zO-SO9bpCCYGQffINV3fJzdnNq3iAYk8kAIHpKCpAg-kwAAp8EB6SE6Oj-avp6E9SiMscN83HCdCVUJIFVUl14JpBao-qhJWUp3kVYkV0TyPOPRWoqSFBDue6XEag4ebU02TR2Snbmr9mAS5BKszrcooLQoW5VpBAzg9qc5lqeDVHxHqZigrLM88HnfyI2v9TUEzO6tYEJ-ZWR2RfX_PL8OysrX3CzfxGShD3OHKa92crzIqeJyATy7HI7JrBOHHA985ZlLyEZE9EfkOSLTe_6VefmsJ1xnuRcfwv4c9YWamVHnLk-5d-Y4n5Nbm_XtKdtZn5_oZmL1r9bxF7R_vC6b0
linkProvider Colorado Alliance of Research Libraries
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Molecular+Controls+of+Lymphatic+VEGFR3+Signaling&rft.jtitle=Arteriosclerosis%2C+thrombosis%2C+and+vascular+biology&rft.au=Deng%2C+Yong&rft.au=Zhang%2C+Xi&rft.au=Simons%2C+Michael&rft.date=2015-02-01&rft.pub=American+Heart+Association%2C+Inc&rft.issn=1079-5642&rft.volume=35&rft.issue=2&rft.spage=421&rft.epage=429&rft_id=info:doi/10.1161%2FATVBAHA.114.304881&rft.externalDocID=10.1161%2FATVBAHA.114.304881
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1079-5642&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1079-5642&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1079-5642&client=summon