Propionic acid affects immune status and metabolism in adipose tissue from overweight subjects
Eur J Clin Invest 2012; 42 (4): 357–364 Background Adipose tissue is a primary site of obesity‐induced inflammation, which is emerging as an important contributor to obesity‐related diseases such as type 2 diabetes. Dietary fibre consumption appears to be protective. Short‐chain fatty acids, e.g. p...
Saved in:
Published in | European journal of clinical investigation Vol. 42; no. 4; pp. 357 - 364 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Oxford, UK
Blackwell Publishing Ltd
01.04.2012
Wiley-Blackwell |
Subjects | |
Online Access | Get full text |
ISSN | 0014-2972 1365-2362 1365-2362 |
DOI | 10.1111/j.1365-2362.2011.02590.x |
Cover
Loading…
Abstract | Eur J Clin Invest 2012; 42 (4): 357–364
Background Adipose tissue is a primary site of obesity‐induced inflammation, which is emerging as an important contributor to obesity‐related diseases such as type 2 diabetes. Dietary fibre consumption appears to be protective. Short‐chain fatty acids, e.g. propionic acid, are the principal products of the colonic fermentation of dietary fibre and may have beneficial effects on adipose tissue inflammation.
Materials and methods Human omental adipose tissue explants were obtained from overweight (mean BMI 28·8) gynaecological patients who underwent surgery. Explants were incubated for 24 h with propionic acid. Human THP‐1 monocytic cells were differentiated to macrophages and incubated with LPS in the presence and absence of propionic acid. Cytokine and chemokine production were determined by multiplex‐ELISA, and mRNA expression of metabolic and macrophages genes was determined by RT‐PCR.
Results Treatment of adipose tissue explants with propionic acid results in a significant down‐regulation of several inflammatory cytokines and chemokines such as TNF‐α and CCL5. In addition, expression of lipoprotein lipase and GLUT4, associated with lipogenesis and glucose uptake, respectively, increased. Similar effects on cytokine and chemokine production by macrophages were observed.
Conclusion We show that propionic acid, normally produced in the colon, may have a direct beneficial effect on visceral adipose tissue, reducing obesity‐associated inflammation and increasing lipogenesis and glucose uptake. Effects on adipose tissue as a whole are at least partially explained by effects on macrophages but likely also adipocytes are involved. This suggests that, in vivo, propionic acid and dietary fibres may have potential in preventing obesity‐related inflammation and associated diseases. |
---|---|
AbstractList | Adipose tissue is a primary site of obesity-induced inflammation, which is emerging as an important contributor to obesity-related diseases such as type 2 diabetes. Dietary fibre consumption appears to be protective. Short-chain fatty acids, e.g. propionic acid, are the principal products of the colonic fermentation of dietary fibre and may have beneficial effects on adipose tissue inflammation.
Human omental adipose tissue explants were obtained from overweight (mean BMI 28·8) gynaecological patients who underwent surgery. Explants were incubated for 24 h with propionic acid. Human THP-1 monocytic cells were differentiated to macrophages and incubated with LPS in the presence and absence of propionic acid. Cytokine and chemokine production were determined by multiplex-ELISA, and mRNA expression of metabolic and macrophages genes was determined by RT-PCR.
Treatment of adipose tissue explants with propionic acid results in a significant down-regulation of several inflammatory cytokines and chemokines such as TNF-α and CCL5. In addition, expression of lipoprotein lipase and GLUT4, associated with lipogenesis and glucose uptake, respectively, increased. Similar effects on cytokine and chemokine production by macrophages were observed.
We show that propionic acid, normally produced in the colon, may have a direct beneficial effect on visceral adipose tissue, reducing obesity-associated inflammation and increasing lipogenesis and glucose uptake. Effects on adipose tissue as a whole are at least partially explained by effects on macrophages but likely also adipocytes are involved. This suggests that, in vivo, propionic acid and dietary fibres may have potential in preventing obesity-related inflammation and associated diseases. Eur J Clin Invest 2012; 42 (4): 357–364 Background Adipose tissue is a primary site of obesity‐induced inflammation, which is emerging as an important contributor to obesity‐related diseases such as type 2 diabetes. Dietary fibre consumption appears to be protective. Short‐chain fatty acids, e.g. propionic acid, are the principal products of the colonic fermentation of dietary fibre and may have beneficial effects on adipose tissue inflammation. Materials and methods Human omental adipose tissue explants were obtained from overweight (mean BMI 28·8) gynaecological patients who underwent surgery. Explants were incubated for 24 h with propionic acid. Human THP‐1 monocytic cells were differentiated to macrophages and incubated with LPS in the presence and absence of propionic acid. Cytokine and chemokine production were determined by multiplex‐ELISA, and mRNA expression of metabolic and macrophages genes was determined by RT‐PCR. Results Treatment of adipose tissue explants with propionic acid results in a significant down‐regulation of several inflammatory cytokines and chemokines such as TNF‐α and CCL5. In addition, expression of lipoprotein lipase and GLUT4, associated with lipogenesis and glucose uptake, respectively, increased. Similar effects on cytokine and chemokine production by macrophages were observed. Conclusion We show that propionic acid, normally produced in the colon, may have a direct beneficial effect on visceral adipose tissue, reducing obesity‐associated inflammation and increasing lipogenesis and glucose uptake. Effects on adipose tissue as a whole are at least partially explained by effects on macrophages but likely also adipocytes are involved. This suggests that, in vivo, propionic acid and dietary fibres may have potential in preventing obesity‐related inflammation and associated diseases. Background Adipose tissue is a primary site of obesity-induced inflammation, which is emerging as an important contributor to obesity-related diseases such as type 2 diabetes. Dietary fibre consumption appears to be protective. Short-chain fatty acids, e.g. propionic acid, are the principal products of the colonic fermentation of dietary fibre and may have beneficial effects on adipose tissue inflammation. Materials and methods Human omental adipose tissue explants were obtained from overweight (mean BMI 28.8) gynaecological patients who underwent surgery. Explants were incubated for 24h with propionic acid. Human THP-1 monocytic cells were differentiated to macrophages and incubated with LPS in the presence and absence of propionic acid. Cytokine and chemokine production were determined by multiplex-ELISA, and mRNA expression of metabolic and macrophages genes was determined by RT-PCR. Results Treatment of adipose tissue explants with propionic acid results in a significant down-regulation of several inflammatory cytokines and chemokines such as TNF- alpha and CCL5. In addition, expression of lipoprotein lipase and GLUT4, associated with lipogenesis and glucose uptake, respectively, increased. Similar effects on cytokine and chemokine production by macrophages were observed. Conclusion We show that propionic acid, normally produced in the colon, may have a direct beneficial effect on visceral adipose tissue, reducing obesity-associated inflammation and increasing lipogenesis and glucose uptake. Effects on adipose tissue as a whole are at least partially explained by effects on macrophages but likely also adipocytes are involved. This suggests that, in vivo, propionic acid and dietary fibres may have potential in preventing obesity-related inflammation and associated diseases.Original Abstract: Eur J Clin Invest 2012; 42 (4): 357-364 Adipose tissue is a primary site of obesity-induced inflammation, which is emerging as an important contributor to obesity-related diseases such as type 2 diabetes. Dietary fibre consumption appears to be protective. Short-chain fatty acids, e.g. propionic acid, are the principal products of the colonic fermentation of dietary fibre and may have beneficial effects on adipose tissue inflammation.BACKGROUNDAdipose tissue is a primary site of obesity-induced inflammation, which is emerging as an important contributor to obesity-related diseases such as type 2 diabetes. Dietary fibre consumption appears to be protective. Short-chain fatty acids, e.g. propionic acid, are the principal products of the colonic fermentation of dietary fibre and may have beneficial effects on adipose tissue inflammation.Human omental adipose tissue explants were obtained from overweight (mean BMI 28·8) gynaecological patients who underwent surgery. Explants were incubated for 24 h with propionic acid. Human THP-1 monocytic cells were differentiated to macrophages and incubated with LPS in the presence and absence of propionic acid. Cytokine and chemokine production were determined by multiplex-ELISA, and mRNA expression of metabolic and macrophages genes was determined by RT-PCR.MATERIALS AND METHODSHuman omental adipose tissue explants were obtained from overweight (mean BMI 28·8) gynaecological patients who underwent surgery. Explants were incubated for 24 h with propionic acid. Human THP-1 monocytic cells were differentiated to macrophages and incubated with LPS in the presence and absence of propionic acid. Cytokine and chemokine production were determined by multiplex-ELISA, and mRNA expression of metabolic and macrophages genes was determined by RT-PCR.Treatment of adipose tissue explants with propionic acid results in a significant down-regulation of several inflammatory cytokines and chemokines such as TNF-α and CCL5. In addition, expression of lipoprotein lipase and GLUT4, associated with lipogenesis and glucose uptake, respectively, increased. Similar effects on cytokine and chemokine production by macrophages were observed.RESULTSTreatment of adipose tissue explants with propionic acid results in a significant down-regulation of several inflammatory cytokines and chemokines such as TNF-α and CCL5. In addition, expression of lipoprotein lipase and GLUT4, associated with lipogenesis and glucose uptake, respectively, increased. Similar effects on cytokine and chemokine production by macrophages were observed.We show that propionic acid, normally produced in the colon, may have a direct beneficial effect on visceral adipose tissue, reducing obesity-associated inflammation and increasing lipogenesis and glucose uptake. Effects on adipose tissue as a whole are at least partially explained by effects on macrophages but likely also adipocytes are involved. This suggests that, in vivo, propionic acid and dietary fibres may have potential in preventing obesity-related inflammation and associated diseases.CONCLUSIONWe show that propionic acid, normally produced in the colon, may have a direct beneficial effect on visceral adipose tissue, reducing obesity-associated inflammation and increasing lipogenesis and glucose uptake. Effects on adipose tissue as a whole are at least partially explained by effects on macrophages but likely also adipocytes are involved. This suggests that, in vivo, propionic acid and dietary fibres may have potential in preventing obesity-related inflammation and associated diseases. |
Author | Al-Lahham, Sa'ad Rezaee, Farhad Weening, Desiree Roelofsen, Han Venema, Koen Hoek, Annemieke Vonk, Roel |
Author_xml | – sequence: 1 givenname: Sa'ad surname: Al-Lahham fullname: Al-Lahham, Sa'ad organization: Top Institute Food and Nutrition, Wageningen, The Netherlands – sequence: 2 givenname: Han surname: Roelofsen fullname: Roelofsen, Han organization: Centre for Medical Biomics, University Medical Centre Groningen, University of Groningen, Groningen, The Netherlands – sequence: 3 givenname: Farhad surname: Rezaee fullname: Rezaee, Farhad organization: Centre for Medical Biomics, University Medical Centre Groningen, University of Groningen, Groningen, The Netherlands – sequence: 4 givenname: Desiree surname: Weening fullname: Weening, Desiree organization: Centre for Medical Biomics, University Medical Centre Groningen, University of Groningen, Groningen, The Netherlands – sequence: 5 givenname: Annemieke surname: Hoek fullname: Hoek, Annemieke organization: Department of Obstetrics and Gynecology, University Medical Centre Groningen, Groningen, The Netherlands – sequence: 6 givenname: Roel surname: Vonk fullname: Vonk, Roel organization: Centre for Medical Biomics, University Medical Centre Groningen, University of Groningen, Groningen, The Netherlands – sequence: 7 givenname: Koen surname: Venema fullname: Venema, Koen organization: Top Institute Food and Nutrition, Wageningen, The Netherlands |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=25589714$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/21913915$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkc1u1DAURi1URKeFV0DeINgk3GvHSbwAqRqVtlLFTwVih-VxHPCQxIOd0Onb4zDDILFA9cK25PN9V_I5IUeDHywhFCHHtF6uc-SlyBgvWc4AMQcmJOTbB2RxeDgiCwAsMiYrdkxOYlwDQI2cPSLHDCVyiWJBvrwPfuP84AzVxjVUt601Y6Su76fB0jjqcYpUDw3t7ahXvnOxp26gunEbHy0dXYyTpW3wPfU_bbi17uu3kcZptZ57HpOHre6ifbI_T8mnN-cfl5fZ9buLq-XZdWZELSBDzlGUAgSvVqyqZVs0KETaLROaA2-kgRY51lVrhIWyMQwBSlkbxnTRMH5Knu96N8H_mGwcVe-isV2nB-unqCSrJdRFWSbyxX9JBJZAIRES-nSPTqveNmoTXK_Dnfrzewl4tgd0NLprgx6Mi385IWpZYZG4eseZ4GMMtj0gCGoWqtZq9qZmb2oWqn4LVdsUff1P1LjkJBkbg3bdfQpe7QpuXWfv7j1YnS-v5lvKZ7u8i6PdHvI6fFdlxSuhPr-9UMubSyZF-UHd8F-47MbY |
CitedBy_id | crossref_primary_10_3390_nu15092211 crossref_primary_10_3389_fgene_2024_1362139 crossref_primary_10_1007_s11427_016_0155_1 crossref_primary_10_1038_s41398_017_0089_z crossref_primary_10_1126_scitranslmed_aav0120 crossref_primary_10_1186_s40478_024_01877_x crossref_primary_10_1007_s12094_012_0896_x crossref_primary_10_1080_19490976_2021_1897212 crossref_primary_10_1155_2014_162021 crossref_primary_10_3390_biomedicines12112621 crossref_primary_10_1016_j_jff_2016_01_018 crossref_primary_10_1152_physrev_00015_2017 crossref_primary_10_1155_2024_8859312 crossref_primary_10_3390_fermentation9020110 crossref_primary_10_1038_s41598_022_06648_z crossref_primary_10_1016_j_chroma_2021_462680 crossref_primary_10_1016_j_bcdf_2013_08_001 crossref_primary_10_1002_ejlt_202100131 crossref_primary_10_1016_j_eujim_2021_101400 crossref_primary_10_1002_mco2_171 crossref_primary_10_1016_j_ijbiomac_2021_05_209 crossref_primary_10_1016_j_scitotenv_2018_08_353 crossref_primary_10_1038_s41574_019_0156_z crossref_primary_10_1038_s41575_023_00891_z crossref_primary_10_1371_journal_ppat_1011665 crossref_primary_10_18632_aging_202968 crossref_primary_10_1016_j_ecoenv_2022_113809 crossref_primary_10_1016_j_jff_2015_11_011 crossref_primary_10_3390_nu16020267 crossref_primary_10_1016_j_bcp_2025_116791 crossref_primary_10_1016_j_foodhyd_2024_110842 crossref_primary_10_1155_2018_8261432 crossref_primary_10_3390_nu16172834 crossref_primary_10_1016_j_foodres_2020_109410 crossref_primary_10_1186_s12944_017_0452_3 crossref_primary_10_21518_ms2024_009 crossref_primary_10_3390_nu14040765 crossref_primary_10_1016_j_foodchem_2014_06_053 crossref_primary_10_3390_nu16081133 crossref_primary_10_1038_s41598_018_26327_2 crossref_primary_10_1186_s40168_021_01126_6 crossref_primary_10_1021_jf4021784 crossref_primary_10_1080_08905436_2022_2124520 crossref_primary_10_1021_acsomega_8b01360 crossref_primary_10_1371_journal_pone_0159236 crossref_primary_10_1016_j_bpg_2017_09_009 crossref_primary_10_1155_2022_6404964 crossref_primary_10_1021_acs_jafc_2c02326 crossref_primary_10_1080_09637486_2020_1773415 crossref_primary_10_2139_ssrn_4049556 crossref_primary_10_52601_bpr_2021_200045 crossref_primary_10_3390_foods12051023 crossref_primary_10_1097_CM9_0000000000000696 crossref_primary_10_1155_2021_9541725 crossref_primary_10_1093_nutrit_nuab059 crossref_primary_10_1111_anu_13192 crossref_primary_10_1177_0748233721996559 crossref_primary_10_1186_s12876_020_01194_2 crossref_primary_10_3390_vetsci9040169 crossref_primary_10_1016_j_ecoenv_2022_114157 crossref_primary_10_3390_ijms222312844 crossref_primary_10_3390_nu15020272 crossref_primary_10_1177_1535370219900898 crossref_primary_10_3389_fimmu_2017_00023 crossref_primary_10_1021_acs_jafc_8b03720 crossref_primary_10_3390_pathogens10020235 crossref_primary_10_1016_j_lfs_2022_121286 crossref_primary_10_3390_microorganisms11040951 crossref_primary_10_4161_21623945_2014_960694 crossref_primary_10_2139_ssrn_4170190 crossref_primary_10_1016_j_jff_2015_02_014 crossref_primary_10_3390_cancers13215329 crossref_primary_10_3389_fmicb_2023_1147067 crossref_primary_10_3389_fmicb_2022_1031498 crossref_primary_10_3923_pjn_2013_793_799 crossref_primary_10_3389_falgy_2021_737086 crossref_primary_10_3390_ijms22115986 crossref_primary_10_3390_nu6031115 crossref_primary_10_1016_j_actbio_2022_06_030 crossref_primary_10_1042_BST20150107 crossref_primary_10_1080_21623945_2016_1252011 crossref_primary_10_3390_nu13103666 crossref_primary_10_1007_s10620_013_2744_4 crossref_primary_10_4239_wjd_v12_i6_730 crossref_primary_10_1177_1721727X17731033 crossref_primary_10_1021_acs_jafc_5b06103 crossref_primary_10_1038_nrendo_2015_128 crossref_primary_10_1016_j_euroneuro_2021_10_247 crossref_primary_10_1016_j_ijbiomac_2017_09_112 crossref_primary_10_1039_D2FO01828D crossref_primary_10_1111_jam_15740 crossref_primary_10_15252_embr_202255664 crossref_primary_10_1002_mnfr_201900481 crossref_primary_10_3389_fcimb_2021_783323 crossref_primary_10_1016_j_idairyj_2011_10_011 crossref_primary_10_1038_s41598_019_48775_0 crossref_primary_10_1016_j_nutres_2021_08_007 crossref_primary_10_1017_S0029665113003911 crossref_primary_10_1016_j_biopha_2022_112839 crossref_primary_10_1017_S0007114516000520 crossref_primary_10_1016_j_marenvres_2023_106125 crossref_primary_10_1111_jre_12137 crossref_primary_10_3390_nu15163497 crossref_primary_10_1016_j_clineuro_2025_108725 crossref_primary_10_4093_dmj_2024_0382 crossref_primary_10_1080_15376516_2022_2137871 crossref_primary_10_3389_fimmu_2023_1171834 crossref_primary_10_1038_s41580_018_0044_8 crossref_primary_10_1016_j_scitotenv_2018_03_051 crossref_primary_10_3945_jn_113_189670 crossref_primary_10_1007_s40199_019_00294_z crossref_primary_10_1016_j_ijbiomac_2020_05_121 crossref_primary_10_1039_C8RA04358B crossref_primary_10_1371_journal_pone_0113864 crossref_primary_10_3390_life14111484 crossref_primary_10_3390_medicina54060098 crossref_primary_10_3390_ijms252212321 crossref_primary_10_1017_S0954422415000037 crossref_primary_10_1038_tp_2016_189 crossref_primary_10_1016_j_jchromb_2024_124191 crossref_primary_10_1177_2058739218774975 crossref_primary_10_1016_j_foodchem_2021_130434 crossref_primary_10_1016_j_aninu_2023_08_002 crossref_primary_10_1016_j_carbpol_2024_121829 crossref_primary_10_1016_j_ijbiomac_2019_04_085 crossref_primary_10_1038_cti_2016_29 crossref_primary_10_3389_fimmu_2025_1519925 crossref_primary_10_1016_j_aquaculture_2023_740469 crossref_primary_10_1124_molpharm_121_000338 crossref_primary_10_1186_s12986_016_0064_3 crossref_primary_10_3390_antiox12040903 crossref_primary_10_1021_jf404305y crossref_primary_10_1039_C9FO00793H crossref_primary_10_3389_fimmu_2023_1079277 crossref_primary_10_3390_nu17030571 crossref_primary_10_1016_j_phrs_2020_105314 crossref_primary_10_1016_j_xcrm_2024_101883 crossref_primary_10_1128_microbiolspec_BAD_0019_2017 crossref_primary_10_1093_toxsci_kfv115 crossref_primary_10_1371_journal_pone_0079718 crossref_primary_10_3390_biom13121692 crossref_primary_10_3389_fendo_2022_869951 crossref_primary_10_1002_mnfr_201900946 crossref_primary_10_1080_17446651_2017_1318060 crossref_primary_10_3390_microorganisms11051223 crossref_primary_10_2337_dc15_0628 crossref_primary_10_3390_metabo13090979 crossref_primary_10_1016_j_mimet_2015_07_019 crossref_primary_10_3390_microorganisms9051017 crossref_primary_10_3389_fmicb_2024_1433910 crossref_primary_10_1016_j_ecoenv_2022_114114 crossref_primary_10_3390_foods12091909 crossref_primary_10_1016_j_carbpol_2017_12_048 crossref_primary_10_3390_ijms26020534 crossref_primary_10_3389_fmicb_2020_01065 crossref_primary_10_1016_j_xcrm_2023_101051 crossref_primary_10_29254_2077_4214_2021_1_159_257_264 crossref_primary_10_1530_JOE_14_0283 crossref_primary_10_1186_s13098_024_01520_8 crossref_primary_10_1021_acs_jafc_7b04611 crossref_primary_10_1007_s00284_022_03025_x crossref_primary_10_3389_fimmu_2021_701626 crossref_primary_10_1016_j_plaphy_2016_06_006 crossref_primary_10_1080_10408398_2023_2248631 crossref_primary_10_3389_fphys_2021_625780 crossref_primary_10_1016_j_chemosphere_2018_11_070 crossref_primary_10_1016_j_phrs_2012_10_021 crossref_primary_10_1002_star_202300212 crossref_primary_10_1038_cddis_2014_90 crossref_primary_10_3390_ijms22062993 crossref_primary_10_1113_JP272476 crossref_primary_10_1152_ajpgi_00304_2019 |
Cites_doi | 10.1136/gut.33.9.1249 10.1172/JCI26498 10.3920/BM2010.0030 10.1136/gut.28.10.1221 10.1101/gad.10.9.1096 10.1210/jc.2006-1151 10.1016/S1590-8658(02)80183-9 10.1038/sj.ejcn.1602350 10.1186/gb-2002-3-7-research0034 10.1038/oby.2006.176 10.1111/j.1753-4887.2001.tb07001.x 10.1016/j.beem.2005.07.009 10.1097/MCO.0b013e32833eebe5 10.1152/ajpendo.00430.2004 10.1097/00004836-200603000-00015 10.1056/NEJMra043430 10.1016/j.jnutbio.2007.02.009 10.1016/0009-8981(81)90359-4 10.1079/BJN/2002545 10.1042/BJ20060696 10.1016/j.bbalip.2010.07.007 10.1016/j.jchromb.2009.01.039 10.1371/journal.pone.0017154 10.3920/BM2010.0028 10.1097/MCO.0b013e32833a8b60 10.1177/0148607196020005357 10.1007/978-1-4471-3443-5_2 10.1016/j.clnu.2009.05.011 10.1038/nature08530 10.1074/jbc.M601284200 10.1038/nature05487 10.3748/wjg.v13.i20.2826 10.1038/sj.ijo.0801792 10.1111/j.1365-2362.2010.02278.x 10.1172/JCI25102 10.1016/j.bcp.2005.04.030 10.1074/jbc.M211609200 10.2337/db05-1360 |
ContentType | Journal Article |
Copyright | 2011 The Authors. European Journal of Clinical Investigation © 2011 Stichting European Society for Clinical Investigation Journal Foundation 2015 INIST-CNRS 2011 The Authors. European Journal of Clinical Investigation © 2011 Stichting European Society for Clinical Investigation Journal Foundation. |
Copyright_xml | – notice: 2011 The Authors. European Journal of Clinical Investigation © 2011 Stichting European Society for Clinical Investigation Journal Foundation – notice: 2015 INIST-CNRS – notice: 2011 The Authors. European Journal of Clinical Investigation © 2011 Stichting European Society for Clinical Investigation Journal Foundation. |
DBID | BSCLL AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 7T5 H94 7X8 |
DOI | 10.1111/j.1365-2362.2011.02590.x |
DatabaseName | Istex CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Immunology Abstracts AIDS and Cancer Research Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) AIDS and Cancer Research Abstracts Immunology Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE AIDS and Cancer Research Abstracts MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1365-2362 |
EndPage | 364 |
ExternalDocumentID | 21913915 25589714 10_1111_j_1365_2362_2011_02590_x ECI2590 ark_67375_WNG_CRH2956Q_R |
Genre | article Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- -~X .3N .55 .GA .GJ .Y3 05W 0R~ 10A 1OB 1OC 29G 31~ 33P 36B 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52R 52S 52T 52U 52V 52W 52X 53G 5GY 5HH 5LA 5RE 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A01 A03 AAESR AAEVG AAHHS AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABDBF ABEML ABLJU ABPVW ABQWH ABXGK ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACGOF ACIWK ACMXC ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADBTR ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFEBI AFFNX AFFPM AFGKR AFPWT AFRAH AFZJQ AHBTC AHEFC AIACR AITYG AIURR AIWBW AJBDE ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ASPBG ATUGU AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMXJE BROTX BRXPI BSCLL BY8 C45 CAG COF CS3 D-6 D-7 D-E D-F DCZOG DPXWK DR2 DRFUL DRMAN DRSTM DU5 DUUFO EAD EAP EAS EBB EBC EBD EBS EBX EJD EMB EMK EMOBN EPT ESX EX3 F00 F01 F04 F5P FEDTE FUBAC FZ0 G-S G.N GODZA H.X HF~ HGLYW HVGLF HZI HZ~ IHE IX1 J0M K48 KBYEO LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK0 MK4 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MXFUL MXMAN MXSTM N04 N05 N9A NF~ O66 O9- OIG OVD P2P P2W P2X P2Z P4B P4D PALCI Q.N Q11 QB0 Q~Q R.K RIWAO RJQFR ROL RX1 SAMSI SUPJJ SV3 TEORI TUS UB1 W8V W99 WBKPD WH7 WHWMO WIH WIJ WIK WOHZO WOW WQJ WRC WUP WVDHM WXI WXSBR X7M XG1 YFH ZGI ZXP ZZTAW ~IA ~WT AAHQN AAIPD AAMNL AANHP AAYCA ACRPL ACUHS ACYXJ ADNMO AFWVQ ALVPJ AAYXX AEYWJ AGHNM AGQPQ AGYGG CITATION AAMMB AEFGJ AGXDD AIDQK AIDYY IQODW CGR CUY CVF ECM EIF NPM 7T5 H94 7X8 |
ID | FETCH-LOGICAL-c5850-13315650537b2789f4d155f4de25a303d9c0f13187fc5e06dc2100698c22a4d23 |
IEDL.DBID | DR2 |
ISSN | 0014-2972 1365-2362 |
IngestDate | Wed Jul 30 11:29:13 EDT 2025 Thu Jul 10 23:15:54 EDT 2025 Thu Apr 03 07:09:21 EDT 2025 Mon Jul 21 09:14:36 EDT 2025 Thu Apr 24 23:04:54 EDT 2025 Tue Jul 01 00:53:23 EDT 2025 Wed Jan 22 16:34:49 EST 2025 Wed Oct 30 09:49:42 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | Human Short chain Adipose tissue Nutrition Propionic acid Body weight Lipids Corporal biometry Inflammation Metabolism Fatty acids Immunity Feeding Overweight Medicine Diet therapy Diet dietary fibre short-chain fatty acids Food |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor CC BY 4.0 2011 The Authors. European Journal of Clinical Investigation © 2011 Stichting European Society for Clinical Investigation Journal Foundation. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5850-13315650537b2789f4d155f4de25a303d9c0f13187fc5e06dc2100698c22a4d23 |
Notes | ark:/67375/WNG-CRH2956Q-R istex:5E74F082FBB17A15C4D76E64AE587C67F51EAC7A ArticleID:ECI2590 ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 ObjectType-Article-1 ObjectType-Feature-2 |
OpenAccessLink | https://pure.rug.nl/ws/files/2472167/Al_Lahham_2012_Eur_J_Clin_Invest.pdf |
PMID | 21913915 |
PQID | 1020845910 |
PQPubID | 23462 |
PageCount | 8 |
ParticipantIDs | proquest_miscellaneous_928908466 proquest_miscellaneous_1020845910 pubmed_primary_21913915 pascalfrancis_primary_25589714 crossref_primary_10_1111_j_1365_2362_2011_02590_x crossref_citationtrail_10_1111_j_1365_2362_2011_02590_x wiley_primary_10_1111_j_1365_2362_2011_02590_x_ECI2590 istex_primary_ark_67375_WNG_CRH2956Q_R |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | April 2012 |
PublicationDateYYYYMMDD | 2012-04-01 |
PublicationDate_xml | – month: 04 year: 2012 text: April 2012 |
PublicationDecade | 2010 |
PublicationPlace | Oxford, UK |
PublicationPlace_xml | – name: Oxford, UK – name: Oxford – name: England |
PublicationTitle | European journal of clinical investigation |
PublicationTitleAlternate | Eur J Clin Invest |
PublicationYear | 2012 |
Publisher | Blackwell Publishing Ltd Wiley-Blackwell |
Publisher_xml | – name: Blackwell Publishing Ltd – name: Wiley-Blackwell |
References | Wellen KE, Hotamisligil GS. Inflammation, stress, and diabetes. J Clin Invest 2005;115:1111-9. Cani PD, Knauf C, Iglesias MA, Drucker DJ, Delzenne NM, Burcelin R. Improvement of glucose tolerance and hepatic insulin sensitivity by oligofructose requires a functional glucagon-like peptide 1 receptor. Diabetes 2006;55:1484-90. Bloemen JG, Venema K, van de Poll MC, Olde Damink SW, Buurman WA, Dejong CH. Short chain fatty acids exchange across the gut and liver in humans measured at surgery. Clin Nutr 2009;28:657-61. Delzenne NM, Daubioul C, Neyrinck A, Lasa M, Taper HS. Insulin and oligofructose modulate lipid metabolism in animals: review of biochemical events and future prospects. Br J Nutr 2002;87(Suppl. 2):S255-9. Lyra A, Lahtinen S, Tiihonen K, Ouwehand AC. Intestinal microbiota and overweight. Benef Microbes 2010;1:407-21. Howarth NC, Saltzman E, Roberts SB. Dietary fiber and weight regulation. Nutr Rev 2001;59:129-39. van Eijk HM, Bloemen JG, Dejong CH. Application of liquid chromatography-mass spectrometry to measure short chain fatty acids in blood. J Chromatogr B Analyt Technol Biomed Life Sci 2009;877:719-24. Al-Lahham SH, Peppelenbosch MP, Roelofsen H, Vonk RJ, Venema K. Biological effects of propionic acid in humans; metabolism, potential applications and underlying mechanisms. Biochim Biophys Acta 2010;1801:1175-83. Place RF, Noonan EJ, Giardina C. HDAC inhibition prevents NF-kappa B activation by suppressing proteasome activity: down-regulation of proteasome subunit expression stabilizes I kappa B alpha. Biochem Pharmacol 2005;70:394-406. Toeller M. Fibre consumption, metabolic effects and prevention of complications in diabetic patients: epidemiological evidence. Dig Liver Dis 2002;34(Suppl. 2):S145-9. Galisteo M, Duarte J, Zarzuelo A. Effects of dietary fibers on disturbances clustered in the metabolic syndrome. J Nutr Biochem 2008;19:71-84. Wong JM, de Souza R, Kendall CW, Emam A, Jenkins DJ. Colonic health: fermentation and short chain fatty acids. J Clin Gastroenterol 2006;40:235-43. Cummings JH, Pomare EW, Branch WJ, Naylor CP, Macfarlane GT. Short chain fatty acids in human large intestine, portal, hepatic and venous blood. Gut 1987;28:1221-7. Meijer K, de Vos P, Priebe MG. Butyrate and other short-chain fatty acids as modulators of immunity: what relevance for health? Curr Opin Clin Nutr Metab Care 2010;13:715-21. Hansson GK. Inflammation, atherosclerosis, and coronary artery disease. N Engl J Med 2005;352:1685-95. Festa A, D'Agostino R Jr, Williams K, Karter AJ, Mayer-Davis EJ, Tracy RP et al. The relation of body fat mass and distribution to markers of chronic inflammation. Int J Obes Relat Metab Disord 2001;25:1407-15. Tedelind S, Westberg F, Kjerrulf M, Vidal A. Anti-inflammatory properties of the short-chain fatty acids acetate and propionate: a study with relevance to inflammatory bowel disease. World J Gastroenterol 2007;13:2826-32. Peters SG, Pomare EW, Fisher CA. Portal and peripheral blood short chain fatty acid concentrations after caecal lactulose instillation at surgery. Gut 1992;33:1249-52. Tappenden KA, Thomson AB, Wild GE, McBurney MI. Short-chain fatty acids increase proglucagon and ornithine decarboxylase messenger RNAs after intestinal resection in rats. JPEN J Parenter Enteral Nutr 1996;20:357-62. Kusminski CM, da Silva NF, Creely SJ, Fisher FM, Harte AL, Baker AR et al. The in vitro effects of resistin on the innate immune signaling pathway in isolated human subcutaneous adipocytes. J Clin Endocrinol Metab 2007;92:270-6. Van Gaal LF, Mertens IL, De Block CE. Mechanisms linking obesity with cardiovascular disease. Nature 2006;444:875-80. Dankert J, Zijlstra JB, Wolthers BG. Volatile fatty acids in human peripheral and portal blood: quantitative determination vacuum distillation and gas chromatography. Clin Chim Acta 1981;110:301-7. Maslowski KM, Vieira AT, Ng A, Kranich J, Sierro F, Yu D et al. Regulation of inflammatory responses by gut microbiota and chemoattractant receptor GPR43. Nature 2009;461:1282-6. Venema K. Role of gut microbiota in the control of energy and carbohydrate metabolism. Curr Opin Clin Nutr Metab Care 2010;13:432-8. Keenan MJ, Zhou J, McCutcheon KL, Raggio AM, Bateman HG, Todd E et al. Effects of resistant starch, a non-digestible fermentable fiber, on reducing body fat. Obesity (Silver Spring) 2006;14:1523-34. Ferchaud-Roucher V, Pouteau E, Piloquet H, Zair Y, Krempf M. Colonic fermentation from lactulose inhibits lipolysis in overweight subjects. Am J Physiol Endocrinol Metab 2005;289:E716-20. Al-Lahham SH, Roelofsen H, Priebe M, Weening D, Dijkstra M, Hoek A et al. Regulation of adipokine production in human adipose tissue by propionic acid. Eur J Clin Invest 2010;40:401-7. Kamei N, Tobe K, Suzuki R, Ohsugi M, Watanabe T, Kubota N et al. Overexpression of monocyte chemoattractant protein-1 in adipose tissues causes macrophage recruitment and insulin resistance. J Biol Chem 2006;281:26602-14. Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A et al. Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol 2002;3, RESEARCH0034. Im SS, Kwon SK, Kang SY, Kim TH, Kim HI, Hur MW et al. Regulation of GLUT4 gene expression by SREBP-1c in adipocytes. Biochem J 2006;399:131-9. Kanda H, Tateya S, Tamori Y, Kotani K, Hiasa K, Kitazawa R et al. MCP-1 contributes to macrophage infiltration into adipose tissue, insulin resistance, and hepatic steatosis in obesity. J Clin Invest 2006;116:1494-505. Roelofsen H, Priebe MG, Vonk RJ. The interaction of short-chain fatty acids with adipose tissue: relevance for prevention of type 2 diabetes. Benef Microbes 2010;1:433-7. Cummings JH, Gibson GR, Macfarlane GT. Quantitative estimates of fermentation in the hind gut of man. Acta Vet Scand Suppl 1989;86:76-82. Meijer K, de Vries M, Al-Lahham S, Bruinenberg M, Weening D, Dijkstra M et al. Human primary adipocytes exhibit immune cell function: adipocytes prime inflammation independent of macrophages. PLoS ONE 2011;6:e17154. Brown AJ, Goldsworthy SM, Barnes AA, Eilert MM, Tcheang L, Daniels D et al. The Orphan G protein-coupled receptors GPR41 and GPR43 are activated by propionate and other short chain carboxylic acids. J Biol Chem 2003;278:11312-9. Juge-Aubry CE, Henrichot E, Meier CA. Adipose tissue: a regulator of inflammation. Best Pract Res Clin Endocrinol Metab 2005;19:547-66. Kim JB, Spiegelman BM. ADD1/SREBP1 promotes adipocyte differentiation and gene expression linked to fatty acid metabolism. Genes Dev 1996;10:1096-107. Cani PD, Joly E, Horsmans Y, Delzenne NM. Oligofructose promotes satiety in healthy human: a pilot study. Eur J Clin Nutr 2006;60:567-72. 1989; 86 2010; 13 2005; 352 2006; 55 2002; 34 2005; 115 2008; 19 2006; 14 2002; 3 2007; 92 1994 2009; 877 2006; 116 1992; 33 2003; 278 2011; 6 2001; 25 1996; 10 2007; 13 2010; 40 2009; 28 2006; 399 2006; 60 2005; 19 2010; 1 2006; 40 2005; 289 2002; 87 1981; 110 2010; 1801 2001; 59 2005; 70 2009; 461 2006; 281 1987; 28 1996; 20 2006; 444 e_1_2_7_5_2 Cummings JH (e_1_2_7_21_2) 1989; 86 e_1_2_7_4_2 e_1_2_7_3_2 e_1_2_7_2_2 e_1_2_7_9_2 e_1_2_7_8_2 e_1_2_7_7_2 e_1_2_7_6_2 e_1_2_7_19_2 e_1_2_7_18_2 e_1_2_7_17_2 e_1_2_7_16_2 e_1_2_7_15_2 e_1_2_7_14_2 e_1_2_7_40_2 e_1_2_7_13_2 e_1_2_7_12_2 e_1_2_7_11_2 e_1_2_7_10_2 e_1_2_7_26_2 e_1_2_7_27_2 e_1_2_7_28_2 e_1_2_7_29_2 e_1_2_7_25_2 e_1_2_7_24_2 e_1_2_7_30_2 e_1_2_7_23_2 e_1_2_7_31_2 e_1_2_7_22_2 e_1_2_7_32_2 e_1_2_7_33_2 e_1_2_7_20_2 e_1_2_7_34_2 e_1_2_7_35_2 e_1_2_7_36_2 e_1_2_7_37_2 e_1_2_7_38_2 e_1_2_7_39_2 |
References_xml | – reference: Kusminski CM, da Silva NF, Creely SJ, Fisher FM, Harte AL, Baker AR et al. The in vitro effects of resistin on the innate immune signaling pathway in isolated human subcutaneous adipocytes. J Clin Endocrinol Metab 2007;92:270-6. – reference: Van Gaal LF, Mertens IL, De Block CE. Mechanisms linking obesity with cardiovascular disease. Nature 2006;444:875-80. – reference: Tedelind S, Westberg F, Kjerrulf M, Vidal A. Anti-inflammatory properties of the short-chain fatty acids acetate and propionate: a study with relevance to inflammatory bowel disease. World J Gastroenterol 2007;13:2826-32. – reference: Maslowski KM, Vieira AT, Ng A, Kranich J, Sierro F, Yu D et al. Regulation of inflammatory responses by gut microbiota and chemoattractant receptor GPR43. Nature 2009;461:1282-6. – reference: Bloemen JG, Venema K, van de Poll MC, Olde Damink SW, Buurman WA, Dejong CH. Short chain fatty acids exchange across the gut and liver in humans measured at surgery. Clin Nutr 2009;28:657-61. – reference: Juge-Aubry CE, Henrichot E, Meier CA. Adipose tissue: a regulator of inflammation. Best Pract Res Clin Endocrinol Metab 2005;19:547-66. – reference: Delzenne NM, Daubioul C, Neyrinck A, Lasa M, Taper HS. Insulin and oligofructose modulate lipid metabolism in animals: review of biochemical events and future prospects. Br J Nutr 2002;87(Suppl. 2):S255-9. – reference: Lyra A, Lahtinen S, Tiihonen K, Ouwehand AC. Intestinal microbiota and overweight. Benef Microbes 2010;1:407-21. – reference: Brown AJ, Goldsworthy SM, Barnes AA, Eilert MM, Tcheang L, Daniels D et al. The Orphan G protein-coupled receptors GPR41 and GPR43 are activated by propionate and other short chain carboxylic acids. J Biol Chem 2003;278:11312-9. – reference: Place RF, Noonan EJ, Giardina C. HDAC inhibition prevents NF-kappa B activation by suppressing proteasome activity: down-regulation of proteasome subunit expression stabilizes I kappa B alpha. Biochem Pharmacol 2005;70:394-406. – reference: Festa A, D'Agostino R Jr, Williams K, Karter AJ, Mayer-Davis EJ, Tracy RP et al. The relation of body fat mass and distribution to markers of chronic inflammation. Int J Obes Relat Metab Disord 2001;25:1407-15. – reference: Tappenden KA, Thomson AB, Wild GE, McBurney MI. Short-chain fatty acids increase proglucagon and ornithine decarboxylase messenger RNAs after intestinal resection in rats. JPEN J Parenter Enteral Nutr 1996;20:357-62. – reference: Wellen KE, Hotamisligil GS. Inflammation, stress, and diabetes. J Clin Invest 2005;115:1111-9. – reference: Hansson GK. Inflammation, atherosclerosis, and coronary artery disease. N Engl J Med 2005;352:1685-95. – reference: Roelofsen H, Priebe MG, Vonk RJ. The interaction of short-chain fatty acids with adipose tissue: relevance for prevention of type 2 diabetes. Benef Microbes 2010;1:433-7. – reference: Dankert J, Zijlstra JB, Wolthers BG. Volatile fatty acids in human peripheral and portal blood: quantitative determination vacuum distillation and gas chromatography. Clin Chim Acta 1981;110:301-7. – reference: Cani PD, Knauf C, Iglesias MA, Drucker DJ, Delzenne NM, Burcelin R. Improvement of glucose tolerance and hepatic insulin sensitivity by oligofructose requires a functional glucagon-like peptide 1 receptor. Diabetes 2006;55:1484-90. – reference: Kamei N, Tobe K, Suzuki R, Ohsugi M, Watanabe T, Kubota N et al. Overexpression of monocyte chemoattractant protein-1 in adipose tissues causes macrophage recruitment and insulin resistance. J Biol Chem 2006;281:26602-14. – reference: Cummings JH, Pomare EW, Branch WJ, Naylor CP, Macfarlane GT. Short chain fatty acids in human large intestine, portal, hepatic and venous blood. Gut 1987;28:1221-7. – reference: Cani PD, Joly E, Horsmans Y, Delzenne NM. Oligofructose promotes satiety in healthy human: a pilot study. Eur J Clin Nutr 2006;60:567-72. – reference: Galisteo M, Duarte J, Zarzuelo A. Effects of dietary fibers on disturbances clustered in the metabolic syndrome. J Nutr Biochem 2008;19:71-84. – reference: Keenan MJ, Zhou J, McCutcheon KL, Raggio AM, Bateman HG, Todd E et al. Effects of resistant starch, a non-digestible fermentable fiber, on reducing body fat. Obesity (Silver Spring) 2006;14:1523-34. – reference: Peters SG, Pomare EW, Fisher CA. Portal and peripheral blood short chain fatty acid concentrations after caecal lactulose instillation at surgery. Gut 1992;33:1249-52. – reference: Meijer K, de Vries M, Al-Lahham S, Bruinenberg M, Weening D, Dijkstra M et al. Human primary adipocytes exhibit immune cell function: adipocytes prime inflammation independent of macrophages. PLoS ONE 2011;6:e17154. – reference: Toeller M. Fibre consumption, metabolic effects and prevention of complications in diabetic patients: epidemiological evidence. Dig Liver Dis 2002;34(Suppl. 2):S145-9. – reference: Howarth NC, Saltzman E, Roberts SB. Dietary fiber and weight regulation. Nutr Rev 2001;59:129-39. – reference: Meijer K, de Vos P, Priebe MG. Butyrate and other short-chain fatty acids as modulators of immunity: what relevance for health? Curr Opin Clin Nutr Metab Care 2010;13:715-21. – reference: Wong JM, de Souza R, Kendall CW, Emam A, Jenkins DJ. Colonic health: fermentation and short chain fatty acids. J Clin Gastroenterol 2006;40:235-43. – reference: Ferchaud-Roucher V, Pouteau E, Piloquet H, Zair Y, Krempf M. Colonic fermentation from lactulose inhibits lipolysis in overweight subjects. Am J Physiol Endocrinol Metab 2005;289:E716-20. – reference: Kim JB, Spiegelman BM. ADD1/SREBP1 promotes adipocyte differentiation and gene expression linked to fatty acid metabolism. Genes Dev 1996;10:1096-107. – reference: Cummings JH, Gibson GR, Macfarlane GT. Quantitative estimates of fermentation in the hind gut of man. Acta Vet Scand Suppl 1989;86:76-82. – reference: van Eijk HM, Bloemen JG, Dejong CH. Application of liquid chromatography-mass spectrometry to measure short chain fatty acids in blood. J Chromatogr B Analyt Technol Biomed Life Sci 2009;877:719-24. – reference: Venema K. Role of gut microbiota in the control of energy and carbohydrate metabolism. Curr Opin Clin Nutr Metab Care 2010;13:432-8. – reference: Kanda H, Tateya S, Tamori Y, Kotani K, Hiasa K, Kitazawa R et al. MCP-1 contributes to macrophage infiltration into adipose tissue, insulin resistance, and hepatic steatosis in obesity. J Clin Invest 2006;116:1494-505. – reference: Al-Lahham SH, Roelofsen H, Priebe M, Weening D, Dijkstra M, Hoek A et al. Regulation of adipokine production in human adipose tissue by propionic acid. Eur J Clin Invest 2010;40:401-7. – reference: Im SS, Kwon SK, Kang SY, Kim TH, Kim HI, Hur MW et al. Regulation of GLUT4 gene expression by SREBP-1c in adipocytes. Biochem J 2006;399:131-9. – reference: Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A et al. Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol 2002;3, RESEARCH0034. – reference: Al-Lahham SH, Peppelenbosch MP, Roelofsen H, Vonk RJ, Venema K. Biological effects of propionic acid in humans; metabolism, potential applications and underlying mechanisms. Biochim Biophys Acta 2010;1801:1175-83. – volume: 115 start-page: 1111 year: 2005 end-page: 9 article-title: Inflammation, stress, and diabetes publication-title: J Clin Invest – volume: 34 start-page: S145 issue: Suppl. 2 year: 2002 end-page: 9 article-title: Fibre consumption, metabolic effects and prevention of complications in diabetic patients: epidemiological evidence publication-title: Dig Liver Dis – volume: 461 start-page: 1282 year: 2009 end-page: 6 article-title: Regulation of inflammatory responses by gut microbiota and chemoattractant receptor GPR43 publication-title: Nature – volume: 281 start-page: 26602 year: 2006 end-page: 14 article-title: Overexpression of monocyte chemoattractant protein‐1 in adipose tissues causes macrophage recruitment and insulin resistance publication-title: J Biol Chem – volume: 3 year: 2002 article-title: Accurate normalization of real‐time quantitative RT‐PCR data by geometric averaging of multiple internal control genes publication-title: Genome Biol – volume: 55 start-page: 1484 year: 2006 end-page: 90 article-title: Improvement of glucose tolerance and hepatic insulin sensitivity by oligofructose requires a functional glucagon‐like peptide 1 receptor publication-title: Diabetes – volume: 28 start-page: 1221 year: 1987 end-page: 7 article-title: Short chain fatty acids in human large intestine, portal, hepatic and venous blood publication-title: Gut – volume: 33 start-page: 1249 year: 1992 end-page: 52 article-title: Portal and peripheral blood short chain fatty acid concentrations after caecal lactulose instillation at surgery publication-title: Gut – volume: 70 start-page: 394 year: 2005 end-page: 406 article-title: HDAC inhibition prevents NF‐kappa B activation by suppressing proteasome activity: down‐regulation of proteasome subunit expression stabilizes I kappa B alpha publication-title: Biochem Pharmacol – volume: 19 start-page: 547 year: 2005 end-page: 66 article-title: Adipose tissue: a regulator of inflammation publication-title: Best Pract Res Clin Endocrinol Metab – volume: 352 start-page: 1685 year: 2005 end-page: 95 article-title: Inflammation, atherosclerosis, and coronary artery disease publication-title: N Engl J Med – volume: 289 start-page: E716 year: 2005 end-page: 20 article-title: Colonic fermentation from lactulose inhibits lipolysis in overweight subjects publication-title: Am J Physiol Endocrinol Metab – volume: 59 start-page: 129 year: 2001 end-page: 39 article-title: Dietary fiber and weight regulation publication-title: Nutr Rev – start-page: 17 year: 1994 end-page: 52 – volume: 13 start-page: 715 year: 2010 end-page: 21 article-title: Butyrate and other short‐chain fatty acids as modulators of immunity: what relevance for health? publication-title: Curr Opin Clin Nutr Metab Care – volume: 6 start-page: e17154 year: 2011 article-title: Human primary adipocytes exhibit immune cell function: adipocytes prime inflammation independent of macrophages publication-title: PLoS ONE – volume: 92 start-page: 270 year: 2007 end-page: 6 article-title: The in vitro effects of resistin on the innate immune signaling pathway in isolated human subcutaneous adipocytes publication-title: J Clin Endocrinol Metab – volume: 110 start-page: 301 year: 1981 end-page: 7 article-title: Volatile fatty acids in human peripheral and portal blood: quantitative determination vacuum distillation and gas chromatography publication-title: Clin Chim Acta – volume: 14 start-page: 1523 year: 2006 end-page: 34 article-title: Effects of resistant starch, a non‐digestible fermentable fiber, on reducing body fat publication-title: Obesity (Silver Spring) – volume: 1 start-page: 433 year: 2010 end-page: 7 article-title: The interaction of short‐chain fatty acids with adipose tissue: relevance for prevention of type 2 diabetes publication-title: Benef Microbes – volume: 444 start-page: 875 year: 2006 end-page: 80 article-title: Mechanisms linking obesity with cardiovascular disease publication-title: Nature – volume: 20 start-page: 357 year: 1996 end-page: 62 article-title: Short‐chain fatty acids increase proglucagon and ornithine decarboxylase messenger RNAs after intestinal resection in rats publication-title: JPEN J Parenter Enteral Nutr – volume: 86 start-page: 76 year: 1989 end-page: 82 article-title: Quantitative estimates of fermentation in the hind gut of man publication-title: Acta Vet Scand Suppl – volume: 19 start-page: 71 year: 2008 end-page: 84 article-title: Effects of dietary fibers on disturbances clustered in the metabolic syndrome publication-title: J Nutr Biochem – volume: 399 start-page: 131 year: 2006 end-page: 9 article-title: Regulation of GLUT4 gene expression by SREBP‐1c in adipocytes publication-title: Biochem J – volume: 1 start-page: 407 year: 2010 end-page: 21 article-title: Intestinal microbiota and overweight publication-title: Benef Microbes – volume: 1801 start-page: 1175 year: 2010 end-page: 83 article-title: Biological effects of propionic acid in humans; metabolism, potential applications and underlying mechanisms publication-title: Biochim Biophys Acta – volume: 40 start-page: 401 year: 2010 end-page: 7 article-title: Regulation of adipokine production in human adipose tissue by propionic acid publication-title: Eur J Clin Invest – volume: 13 start-page: 2826 year: 2007 end-page: 32 article-title: Anti‐inflammatory properties of the short‐chain fatty acids acetate and propionate: a study with relevance to inflammatory bowel disease publication-title: World J Gastroenterol – volume: 13 start-page: 432 year: 2010 end-page: 8 article-title: Role of gut microbiota in the control of energy and carbohydrate metabolism publication-title: Curr Opin Clin Nutr Metab Care – volume: 877 start-page: 719 year: 2009 end-page: 24 article-title: Application of liquid chromatography‐mass spectrometry to measure short chain fatty acids in blood publication-title: J Chromatogr B Analyt Technol Biomed Life Sci – volume: 28 start-page: 657 year: 2009 end-page: 61 article-title: Short chain fatty acids exchange across the gut and liver in humans measured at surgery publication-title: Clin Nutr – volume: 278 start-page: 11312 year: 2003 end-page: 9 article-title: The Orphan G protein‐coupled receptors GPR41 and GPR43 are activated by propionate and other short chain carboxylic acids publication-title: J Biol Chem – volume: 60 start-page: 567 year: 2006 end-page: 72 article-title: Oligofructose promotes satiety in healthy human: a pilot study publication-title: Eur J Clin Nutr – volume: 40 start-page: 235 year: 2006 end-page: 43 article-title: Colonic health: fermentation and short chain fatty acids publication-title: J Clin Gastroenterol – volume: 116 start-page: 1494 year: 2006 end-page: 505 article-title: MCP‐1 contributes to macrophage infiltration into adipose tissue, insulin resistance, and hepatic steatosis in obesity publication-title: J Clin Invest – volume: 25 start-page: 1407 year: 2001 end-page: 15 article-title: The relation of body fat mass and distribution to markers of chronic inflammation publication-title: Int J Obes Relat Metab Disord – volume: 10 start-page: 1096 year: 1996 end-page: 107 article-title: ADD1/SREBP1 promotes adipocyte differentiation and gene expression linked to fatty acid metabolism publication-title: Genes Dev – volume: 87 start-page: S255 issue: Suppl. 2 year: 2002 end-page: 9 article-title: Insulin and oligofructose modulate lipid metabolism in animals: review of biochemical events and future prospects publication-title: Br J Nutr – ident: e_1_2_7_23_2 doi: 10.1136/gut.33.9.1249 – ident: e_1_2_7_35_2 doi: 10.1172/JCI26498 – ident: e_1_2_7_14_2 doi: 10.3920/BM2010.0030 – ident: e_1_2_7_17_2 doi: 10.1136/gut.28.10.1221 – ident: e_1_2_7_32_2 doi: 10.1101/gad.10.9.1096 – ident: e_1_2_7_30_2 doi: 10.1210/jc.2006-1151 – ident: e_1_2_7_11_2 doi: 10.1016/S1590-8658(02)80183-9 – ident: e_1_2_7_33_2 doi: 10.1038/sj.ejcn.1602350 – ident: e_1_2_7_29_2 doi: 10.1186/gb-2002-3-7-research0034 – ident: e_1_2_7_9_2 doi: 10.1038/oby.2006.176 – ident: e_1_2_7_7_2 doi: 10.1111/j.1753-4887.2001.tb07001.x – ident: e_1_2_7_28_2 doi: 10.1016/j.beem.2005.07.009 – ident: e_1_2_7_36_2 doi: 10.1097/MCO.0b013e32833eebe5 – ident: e_1_2_7_10_2 doi: 10.1152/ajpendo.00430.2004 – ident: e_1_2_7_19_2 doi: 10.1097/00004836-200603000-00015 – ident: e_1_2_7_4_2 doi: 10.1056/NEJMra043430 – ident: e_1_2_7_6_2 doi: 10.1016/j.jnutbio.2007.02.009 – ident: e_1_2_7_22_2 doi: 10.1016/0009-8981(81)90359-4 – ident: e_1_2_7_40_2 doi: 10.1079/BJN/2002545 – volume: 86 start-page: 76 year: 1989 ident: e_1_2_7_21_2 article-title: Quantitative estimates of fermentation in the hind gut of man publication-title: Acta Vet Scand Suppl – ident: e_1_2_7_31_2 doi: 10.1042/BJ20060696 – ident: e_1_2_7_15_2 doi: 10.1016/j.bbalip.2010.07.007 – ident: e_1_2_7_24_2 doi: 10.1016/j.jchromb.2009.01.039 – ident: e_1_2_7_39_2 doi: 10.1371/journal.pone.0017154 – ident: e_1_2_7_16_2 doi: 10.3920/BM2010.0028 – ident: e_1_2_7_12_2 doi: 10.1097/MCO.0b013e32833a8b60 – ident: e_1_2_7_13_2 doi: 10.1177/0148607196020005357 – ident: e_1_2_7_18_2 doi: 10.1007/978-1-4471-3443-5_2 – ident: e_1_2_7_20_2 doi: 10.1016/j.clnu.2009.05.011 – ident: e_1_2_7_26_2 doi: 10.1038/nature08530 – ident: e_1_2_7_34_2 doi: 10.1074/jbc.M601284200 – ident: e_1_2_7_5_2 doi: 10.1038/nature05487 – ident: e_1_2_7_37_2 doi: 10.3748/wjg.v13.i20.2826 – ident: e_1_2_7_2_2 doi: 10.1038/sj.ijo.0801792 – ident: e_1_2_7_27_2 doi: 10.1111/j.1365-2362.2010.02278.x – ident: e_1_2_7_3_2 doi: 10.1172/JCI25102 – ident: e_1_2_7_38_2 doi: 10.1016/j.bcp.2005.04.030 – ident: e_1_2_7_25_2 doi: 10.1074/jbc.M211609200 – ident: e_1_2_7_8_2 doi: 10.2337/db05-1360 |
SSID | ssj0008132 |
Score | 2.438302 |
Snippet | Eur J Clin Invest 2012; 42 (4): 357–364
Background Adipose tissue is a primary site of obesity‐induced inflammation, which is emerging as an important... Adipose tissue is a primary site of obesity-induced inflammation, which is emerging as an important contributor to obesity-related diseases such as type 2... Background Adipose tissue is a primary site of obesity-induced inflammation, which is emerging as an important contributor to obesity-related diseases such as... |
SourceID | proquest pubmed pascalfrancis crossref wiley istex |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 357 |
SubjectTerms | Adipocytes Adipose tissue Adipose Tissue - drug effects Adipose Tissue - immunology Adipose Tissue - metabolism Biological and medical sciences Body weight Cells, Cultured - metabolism Chemokines Colon Cytokines Cytokines - genetics Cytokines - metabolism Diabetes mellitus Diabetes Mellitus, Type 2 - complications Diabetes Mellitus, Type 2 - metabolism Dietary fiber dietary fibre Diseases of the digestive system Enzyme-Linked Immunosorbent Assay Explants Fatty acids Female Fermentation Gene expression General aspects Glucose Glucose Transporter Type 4 - metabolism Humans Immune status Inflammation Lipogenesis Lipopolysaccharides Lipoprotein lipase Lipoprotein Lipase - metabolism Macrophages Macrophages - immunology Medical sciences Metabolic diseases Metabolism Monocytes Obesity Omentum - metabolism Overweight - immunology Polymerase chain reaction Propionates - pharmacology Propionic acid Radiotherapy. Instrumental treatment. Physiotherapy. Reeducation. Rehabilitation, orthophony, crenotherapy. Diet therapy and various other treatments (general aspects) Reverse Transcriptase Polymerase Chain Reaction RNA, Messenger - metabolism short-chain fatty acids Surgery Tumor necrosis factor- alpha |
Title | Propionic acid affects immune status and metabolism in adipose tissue from overweight subjects |
URI | https://api.istex.fr/ark:/67375/WNG-CRH2956Q-R/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1365-2362.2011.02590.x https://www.ncbi.nlm.nih.gov/pubmed/21913915 https://www.proquest.com/docview/1020845910 https://www.proquest.com/docview/928908466 |
Volume | 42 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3da9swEBejhb1ta_fltisajL05SI7kj8cS2maDljasrE8TsiSDSWuH2Iayv753spMupYMy9mIMziXR-U763enuJ0K-aMMF5yYKmZU2FDm3oc7RryzAAT2WsfC9MGfn8fRKfL-W10P9E_bC9PwQ64Qbeoafr9HBdd5sOrmv0IIZeGDiBCTPRogn8QHio9kDk1TKxz1xOBdhlCWPinqe_KKNlWoblX6HlZO6AeUV_akXT8HSTZTrl6mT12S-GmBfnTIfdW0-Mr8fcT_-Hw28Ia8GNEuPevPbIS9ctUteng379W_Jr4tlvcCMr6HalJbqvnqEltiV4ih2M3UN1ZWlt64Fc7wpm1taVlTbclE3jrbeLCj2wNDal3BjLoE2XY7po-YduTo5_jGZhsOJDqGBsISFEBBDvCiRQybHFtxCWMAzcHWR1LCY2sywgsM0kxRGOhZbAxEpi7PURJEWNhq_J1tVXbmPhDpkxs9i6XKMq5nTIpVG2jQVohDMsoAkq7enzEB3jqdu3Kg_wh5Qn0L1KVSf8upTdwHha8lFT_nxDJmv3kDWAno5x5K5RKqf56dqMptGEIheqllADjcsaC0AoV2aJVwE5PPKpBR4Om7f6MrVXQP_IWKpkIDvAkL_8pkM940BUsYB-dCb48MPcGSA5TIgsTeqZ49NHU--4d3evwruYzIEs1ZY73RAttpl5z4BlGvzQ--k94Z_NaU |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwELfQJgEvfDPCxzAS4i2Vndr5eERlo4O1gmoTe8JybFeK1iVVk0gTfz13TtrRaUgT4qXKQ65prnf27853vyPkvTZccG6ikFlpQ5FzG-oc_coCHNBDGQvfCzOZxuNT8eVMnvXjgLAXpuOH2CTc0DP8eo0OjgnpbS_3JVqwBPdUnADl2QAA5S4O-MZxBp9mV1xSKR921OFchFGWXCvrufGbtvaqXVT7JdZO6hrUN-_mXtwETLdxrt-oDh-SxfoVu_qU80Hb5APz6xr743_SwSPyoAe09GNngY_JHVc-IXcn_ZH9U_Lz26paYtLXUG0KS3VXQEILbExxFBua2prq0tIL14BFLor6ghYl1bZYVrWjjbcMim0wtPJV3JhOoHWbYwapfkZODw9ORuOwH-oQGohMWAgxMYSMEmlkcuzCnQsLkAY-XSQ17Kc2M2zOYaVJ5kY6FlsDQSmLs9REkRY2Gj4nO2VVuheEOiTHz2LpcgytmdMilUbaNBViLphlAUnWf58yPeM5Dt5YqD8iH1CfQvUpVJ_y6lOXAeEbyWXH-nELmQ_eQjYCenWOVXOJVD-mn9VoNo4gFv2uZgHZ3zKhjQBEd2mWcBGQd2ubUuDseIKjS1e1NfyGiKVCAsQLCP3LPRkeHQOqjAOy19nj1QM4ksByGZDYW9Wt300djI7w6uW_Cr4l98Ynk2N1fDT9-orch1uirvzpNdlpVq17A8iuyfe9x_4G4pY5ww |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fa9swEBajhbKXrfvt_eg0GHtzkBzJsR9H1izd1tCFlfVpQpZkMGntENtQ-tfvTnbSpXRQxl6CH3xxfLmTvpO--0TIe2244NxEIbPShiLjNtQZ5pUFOKCHMha-F-Z4Fk9PxZczedbzn7AXptOH2Cy4YWb48RoTfGnz7ST3DC0YgXslTkDybAB4clfEkDsIkObXUlIJH3bK4VyEUTq6weq59Zu2pqpd9PolUid1Dd7Lu2MvbsOl2zDXz1OTh2SxfsOOnrIYtE02MFc3xB__jwv2yYMeztKPXfw9Ivdc-ZjsHfcb9k_Ir5NVtcQlX0O1KSzVHX2EFtiW4ii2M7U11aWlF66BeDwv6gtalFTbYlnVjjY-Lig2wdDKc7hxMYHWbYbrR_VTcjo5_DGehv2RDqGBuoSFUBFDwShRRCbDHtxcWAA08OkiqWE2talhOYdxZpQb6VhsDZSkLE4TE0Va2Gj4jOyUVeleEOpQGj-NpcuwsGZOi0QaaZNEiFwwywIyWv97yvR653jsxrn6o-4B9yl0n0L3Ke8-dRkQvrFcdpofd7D54ANkY6BXC-TMjaT6OfusxvNpBJXodzUPyMFWBG0MoLZL0hEXAXm3DikFqY77N7p0VVvDb4hYIiQAvIDQv9yT4sYxYMo4IM-7cLx-AEcJWC4DEvuguvO7qcPxEV69_FfDt2Tv5NNEfTuafX1F7sMdUcd9ek12mlXr3gCsa7IDn6-_AQyjOHs |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Propionic+acid+affects+immune+status+and+metabolism+in+adipose+tissue+from+overweight+subjects&rft.jtitle=European+journal+of+clinical+investigation&rft.au=Al-Lahham%2C+Sa%27ad&rft.au=Roelofsen%2C+Han&rft.au=Rezaee%2C+Farhad&rft.au=Weening%2C+Desiree&rft.date=2012-04-01&rft.eissn=1365-2362&rft.volume=42&rft.issue=4&rft.spage=357&rft_id=info:doi/10.1111%2Fj.1365-2362.2011.02590.x&rft_id=info%3Apmid%2F21913915&rft.externalDocID=21913915 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0014-2972&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0014-2972&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0014-2972&client=summon |