经验模态分解法在大气时间序列预测中的应用
介绍了一种可以提高非平稳时间序列预测精度的新方法,该方法应用Hilbert-Huang变换的核心内容-经验模态分解法(Empirical mode decomposition,EMD)对非平稳时间序列进行分解,以降低被预测信号中的非平稳性,利用神经网络对分解后的各分量进行预测,再将预测结果叠加.利用该方法对石家庄市年逐月降水量进行预测,预测结果显示,其预测精度比直接用神经网络预测的预测精度有较明显的提高....
Saved in:
Published in | Zi dong hua xue bao Vol. 34; no. 1; pp. 97 - 101 |
---|---|
Main Author | |
Format | Journal Article |
Language | Chinese |
Published |
河北理工大学机械工程学院,唐山,063009%中国矿业大学,北京,100080
2008
中国矿业大学,北京,100080 |
Subjects | |
Online Access | Get full text |
ISSN | 0254-4156 1874-1029 |
DOI | 10.3724/SP.J.1004.2008.00097 |
Cover
Abstract | 介绍了一种可以提高非平稳时间序列预测精度的新方法,该方法应用Hilbert-Huang变换的核心内容-经验模态分解法(Empirical mode decomposition,EMD)对非平稳时间序列进行分解,以降低被预测信号中的非平稳性,利用神经网络对分解后的各分量进行预测,再将预测结果叠加.利用该方法对石家庄市年逐月降水量进行预测,预测结果显示,其预测精度比直接用神经网络预测的预测精度有较明显的提高. |
---|---|
AbstractList | 介绍了一种可以提高非平稳时间序列预测精度的新方法,该方法应用Hilbert-Huang变换的核心内容-经验模态分解法(Empirical mode decomposition,EMD)对非平稳时间序列进行分解,以降低被预测信号中的非平稳性,利用神经网络对分解后的各分量进行预测,再将预测结果叠加.利用该方法对石家庄市年逐月降水量进行预测,预测结果显示,其预测精度比直接用神经网络预测的预测精度有较明显的提高. TP13; 介绍了一种可以提高非平稳时间序列预测精度的新方法,该方法应用Hilbert-Huang变换的核心内容-经验模态分解法(Empirical mode decomposition,EMD)对非平稳时间序列进行分解,以降低被预测信号中的非平稳性,利用神经网络对分解后的各分量进行预测,再将预测结果叠加.利用该方法对石家庄市年逐月降水量进行预测,预测结果显示,其预测精度比直接用神经网络预测的预测精度有较明显的提高. |
Author | 玄兆燕 杨公训 |
AuthorAffiliation | 中国矿业大学,北京100080 河北理工大学机械工程学院,唐山063009 |
AuthorAffiliation_xml | – name: 中国矿业大学,北京,100080;河北理工大学机械工程学院,唐山,063009%中国矿业大学,北京,100080 |
Author_FL | XUAN Zhao-Yan YANG Gong-Xun |
Author_FL_xml | – sequence: 1 fullname: XUAN Zhao-Yan – sequence: 2 fullname: YANG Gong-Xun |
Author_xml | – sequence: 1 fullname: 玄兆燕 杨公训 |
BookMark | eNotz0tLAlEcBfBLGGTmN2jVot1M__ua_73QJqQnQkHuZe51Ri0ZKYmiVYGEUODGEKJND1CCIOhB2NdpxvwWGbY6mx_ncGZJKqpHASHzFFyOTCzt7rhbLgUQLgNQLgBonCJpqlA4FJhOkTQwKRxBpTdDso1G1QBFgZpxSJPl4Vd79HSV9O-Ss_O4dfHTe0her-PbfvzYS146Sfdj1H2LB-241R3dN5P3y-_P5-FNMx50hp3-HJkO_VojyP5nhhTWVgu5DSe_vb6ZW8k7VirpKOoJZDIMFaOUy1BrVMh9LlQpkIHyAQNrKDfKeIYBl9IqixhwKtFDtJpnyOKk9tiPQj8qF_fqR4fReLB4WqqcmL_bQIHKMVyYQFupR-WD6pga3-6H1VpQZB7TwJjgvwMxbEA |
ClassificationCodes | TP13 |
ContentType | Journal Article |
Copyright | Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
Copyright_xml | – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
DBID | 2RA 92L CQIGP W92 ~WA 2B. 4A8 92I 93N PSX TCJ |
DOI | 10.3724/SP.J.1004.2008.00097 |
DatabaseName | 维普期刊资源整合服务平台 中文科技期刊数据库-CALIS站点 中文科技期刊数据库-7.0平台 中文科技期刊数据库-工程技术 中文科技期刊数据库- 镜像站点 Wanfang Data Journals - Hong Kong WANFANG Data Centre Wanfang Data Journals 万方数据期刊 - 香港版 China Online Journals (COJ) China Online Journals (COJ) |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
DocumentTitleAlternate | Application of EMD in the Atmosphere Time Series Prediction |
DocumentTitle_FL | Application of EMD in the Atmosphere Time Series Prediction |
EISSN | 1874-1029 |
EndPage | 101 |
ExternalDocumentID | zdhxb200801015 26290224 |
GroupedDBID | --K -0Y .~1 0R~ 1B1 1~. 1~5 2B. 2C0 2RA 4.4 457 4G. 5GY 5VS 5XA 5XJ 7-5 71M 8P~ 92H 92I 92L AAIKJ AALRI AAQFI AAXUO ACGFS ADEZE ADTZH AECPX AEKER AFTJW AGHFR AGYEJ AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS BLXMC CCEZO CDYEO CJLMK CQIGP CS3 CUBFJ CW9 EBS EJD EO8 EO9 EP2 EP3 FDB FEDTE FNPLU GBLVA HVGLF HZ~ IHE J1W JJJVA M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 ROL RPZ SDF SDG SES TCJ TGT U1G U5S W92 ~WA 4A8 93N ABJNI ABWVN ACRPL ADNMO PSX |
ID | FETCH-LOGICAL-c585-8164725ff821135f997873a348de5e8a07ecb13b8b6b20355c8c77e3157677c93 |
ISSN | 0254-4156 |
IngestDate | Thu May 29 04:10:30 EDT 2025 Fri Nov 25 17:03:34 EST 2022 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | 非线性 时间序列 Hilbert-Huang变换 经验模态分解法(EMD) 预测 非平稳性 人工神经网络(ANN) |
Language | Chinese |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c585-8164725ff821135f997873a348de5e8a07ecb13b8b6b20355c8c77e3157677c93 |
Notes | TP13 Hilbert-Huang transform, prediction, nonstationary, non-linear, empirical mode decomposition (EMD), artificial neural network (ANN), time series 11-2109/TP |
PageCount | 5 |
ParticipantIDs | wanfang_journals_zdhxb200801015 chongqing_backfile_26290224 |
PublicationCentury | 2000 |
PublicationDate | 2008 |
PublicationDateYYYYMMDD | 2008-01-01 |
PublicationDate_xml | – year: 2008 text: 2008 |
PublicationDecade | 2000 |
PublicationTitle | Zi dong hua xue bao |
PublicationTitleAlternate | Acta Automatica Sinica |
PublicationTitle_FL | ACTA AUTOMATICA SINICA |
PublicationYear | 2008 |
Publisher | 河北理工大学机械工程学院,唐山,063009%中国矿业大学,北京,100080 中国矿业大学,北京,100080 |
Publisher_xml | – name: 河北理工大学机械工程学院,唐山,063009%中国矿业大学,北京,100080 – name: 中国矿业大学,北京,100080 |
SSID | ssib017479230 ssib001102911 ssib006576350 ssib007293330 ssj0059721 ssib007290157 ssib023646446 ssib005904210 ssib051375349 |
Score | 1.8114644 |
Snippet | 介绍了一种可以提高非平稳时间序列预测精度的新方法,该方法应用Hilbert-Huang变换的核心内容-经验模态分解法(Empirical mode... TP13; 介绍了一种可以提高非平稳时间序列预测精度的新方法,该方法应用Hilbert-Huang变换的核心内容-经验模态分解法(Empirical mode... |
SourceID | wanfang chongqing |
SourceType | Aggregation Database Publisher |
StartPage | 97 |
SubjectTerms | Hilbert-Huang变换 人工神经网络(ANN) 时间序列 经验模态分解法(EMD) 非平稳性 非线性 预测 |
Title | 经验模态分解法在大气时间序列预测中的应用 |
URI | http://lib.cqvip.com/qk/90250X/20081/26290224.html https://d.wanfangdata.com.cn/periodical/zdhxb200801015 |
Volume | 34 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9VAFB7autGF-MRaH104y9RkHpkZcJOkuZSC4qJCdyXJTVoQbqm2IF2IQpGCQkEqBXHjA1oEQfCB1L_jvbX_wnMmubdTKfiAECYzJ9-cRzJzZjJzQsg1jNrE83bhZdoIT2Qs8zIRVp4EV5YVnKmqjbuRb94Kp-6I6Vk5OzT83Fm1tLKcTxSrR-4r-R-rQh7YFXfJ_oNlB6CQAWmwL5zBwnD-KxvTVNE4prpFU0OjiOqEpiGNNI0CTGgf_ESaSqo11SFNIV_RiGNRzKmRWGQSpIdEJLAUi3xqBCYMgIeIjAmBNHFk67KAkImVMqotcQyZMU0FjaGWSWTMRLbI3oWACs-Rdr1hZEkr5Bwxo4YTkMKElqVJGoVWECiS_UcDkXTaYGtpJVMIYxwS4H6yDwdAiRU-pU3wyf4shx48kVYEhmppGFCWYd-igwjApHS05PAGCgQBUe0MVXdArLB-1MmAGDRpNcYSq3mB-Egf4MESG5fMUCYdNQJZTONany0at5oiEx3BTA3bMC-QK5CbJYH1150GHwbrHg6o3d6pmep138K6q6mXNTdOS1DPCP3eH3LFBH6Rvz0xjcthRH_tsN-_-VCk8dX2woMcKTDuoBwmx5hSAS6TnXjohgj0mXH6BGmg2XdcyFBiiMODa4Uf6p0v63DN-cGQFf9fEDpTEjLgMIDGKYHam5IYXcrOkza6qbe_omDXjxILQ6QsLHbml8Dxs_vwOlXWmXdcxplT5GQz1huP6hf3NBlaXThDTjgRQM-SG3vfN_bfP-vtvO49etxdf_Jz-23v04vuq53uu-3ex83e1tf9rc_d3Y3u-tb-m7Xel6c_vn3Ye7nW3d3c29w5R2Za6Uwy5TU_NPEKGJV7GmP3MVlVmgUBl5Ux0FvyjAvdLmWpM1-VRR7wXOchmAEGAoUulCo5qC9UqjD8PBnpLHbKC2S8yGRZ-KVgLBdCB1WWQb8tDDj_JcDnwSgZG6gB_OHiLkZ5m4Pm16DPPkquNoqZa1qz-3OHjX_xjxRj5Hi9dApnIy-RkeV7K-Vl8M-X8yv2gfkF2Vam0Q |
linkProvider | Elsevier |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E7%BB%8F%E9%AA%8C%E6%A8%A1%E6%80%81%E5%88%86%E8%A7%A3%E6%B3%95%E5%9C%A8%E5%A4%A7%E6%B0%94%E6%97%B6%E9%97%B4%E5%BA%8F%E5%88%97%E9%A2%84%E6%B5%8B%E4%B8%AD%E7%9A%84%E5%BA%94%E7%94%A8&rft.jtitle=%E8%87%AA%E5%8A%A8%E5%8C%96%E5%AD%A6%E6%8A%A5&rft.au=%E7%8E%84%E5%85%86%E7%87%95&rft.au=%E6%9D%A8%E5%85%AC%E8%AE%AD&rft.date=2008&rft.pub=%E6%B2%B3%E5%8C%97%E7%90%86%E5%B7%A5%E5%A4%A7%E5%AD%A6%E6%9C%BA%E6%A2%B0%E5%B7%A5%E7%A8%8B%E5%AD%A6%E9%99%A2%2C%E5%94%90%E5%B1%B1%2C063009%25%E4%B8%AD%E5%9B%BD%E7%9F%BF%E4%B8%9A%E5%A4%A7%E5%AD%A6%2C%E5%8C%97%E4%BA%AC%2C100080&rft.issn=0254-4156&rft.volume=34&rft.issue=1&rft.spage=97&rft.epage=101&rft_id=info:doi/10.3724%2FSP.J.1004.2008.00097&rft.externalDocID=zdhxb200801015 |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F90250X%2F90250X.jpg http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fzdhxb%2Fzdhxb.jpg |