经验模态分解法在大气时间序列预测中的应用

介绍了一种可以提高非平稳时间序列预测精度的新方法,该方法应用Hilbert-Huang变换的核心内容-经验模态分解法(Empirical mode decomposition,EMD)对非平稳时间序列进行分解,以降低被预测信号中的非平稳性,利用神经网络对分解后的各分量进行预测,再将预测结果叠加.利用该方法对石家庄市年逐月降水量进行预测,预测结果显示,其预测精度比直接用神经网络预测的预测精度有较明显的提高....

Full description

Saved in:
Bibliographic Details
Published inZi dong hua xue bao Vol. 34; no. 1; pp. 97 - 101
Main Author 玄兆燕 杨公训
Format Journal Article
LanguageChinese
Published 河北理工大学机械工程学院,唐山,063009%中国矿业大学,北京,100080 2008
中国矿业大学,北京,100080
Subjects
Online AccessGet full text
ISSN0254-4156
1874-1029
DOI10.3724/SP.J.1004.2008.00097

Cover

Abstract 介绍了一种可以提高非平稳时间序列预测精度的新方法,该方法应用Hilbert-Huang变换的核心内容-经验模态分解法(Empirical mode decomposition,EMD)对非平稳时间序列进行分解,以降低被预测信号中的非平稳性,利用神经网络对分解后的各分量进行预测,再将预测结果叠加.利用该方法对石家庄市年逐月降水量进行预测,预测结果显示,其预测精度比直接用神经网络预测的预测精度有较明显的提高.
AbstractList 介绍了一种可以提高非平稳时间序列预测精度的新方法,该方法应用Hilbert-Huang变换的核心内容-经验模态分解法(Empirical mode decomposition,EMD)对非平稳时间序列进行分解,以降低被预测信号中的非平稳性,利用神经网络对分解后的各分量进行预测,再将预测结果叠加.利用该方法对石家庄市年逐月降水量进行预测,预测结果显示,其预测精度比直接用神经网络预测的预测精度有较明显的提高.
TP13; 介绍了一种可以提高非平稳时间序列预测精度的新方法,该方法应用Hilbert-Huang变换的核心内容-经验模态分解法(Empirical mode decomposition,EMD)对非平稳时间序列进行分解,以降低被预测信号中的非平稳性,利用神经网络对分解后的各分量进行预测,再将预测结果叠加.利用该方法对石家庄市年逐月降水量进行预测,预测结果显示,其预测精度比直接用神经网络预测的预测精度有较明显的提高.
Author 玄兆燕 杨公训
AuthorAffiliation 中国矿业大学,北京100080 河北理工大学机械工程学院,唐山063009
AuthorAffiliation_xml – name: 中国矿业大学,北京,100080;河北理工大学机械工程学院,唐山,063009%中国矿业大学,北京,100080
Author_FL XUAN Zhao-Yan
YANG Gong-Xun
Author_FL_xml – sequence: 1
  fullname: XUAN Zhao-Yan
– sequence: 2
  fullname: YANG Gong-Xun
Author_xml – sequence: 1
  fullname: 玄兆燕 杨公训
BookMark eNotz0tLAlEcBfBLGGTmN2jVot1M__ua_73QJqQnQkHuZe51Ri0ZKYmiVYGEUODGEKJND1CCIOhB2NdpxvwWGbY6mx_ncGZJKqpHASHzFFyOTCzt7rhbLgUQLgNQLgBonCJpqlA4FJhOkTQwKRxBpTdDso1G1QBFgZpxSJPl4Vd79HSV9O-Ss_O4dfHTe0her-PbfvzYS146Sfdj1H2LB-241R3dN5P3y-_P5-FNMx50hp3-HJkO_VojyP5nhhTWVgu5DSe_vb6ZW8k7VirpKOoJZDIMFaOUy1BrVMh9LlQpkIHyAQNrKDfKeIYBl9IqixhwKtFDtJpnyOKk9tiPQj8qF_fqR4fReLB4WqqcmL_bQIHKMVyYQFupR-WD6pga3-6H1VpQZB7TwJjgvwMxbEA
ClassificationCodes TP13
ContentType Journal Article
Copyright Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID 2RA
92L
CQIGP
W92
~WA
2B.
4A8
92I
93N
PSX
TCJ
DOI 10.3724/SP.J.1004.2008.00097
DatabaseName 维普期刊资源整合服务平台
中文科技期刊数据库-CALIS站点
中文科技期刊数据库-7.0平台
中文科技期刊数据库-工程技术
中文科技期刊数据库- 镜像站点
Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
DocumentTitleAlternate Application of EMD in the Atmosphere Time Series Prediction
DocumentTitle_FL Application of EMD in the Atmosphere Time Series Prediction
EISSN 1874-1029
EndPage 101
ExternalDocumentID zdhxb200801015
26290224
GroupedDBID --K
-0Y
.~1
0R~
1B1
1~.
1~5
2B.
2C0
2RA
4.4
457
4G.
5GY
5VS
5XA
5XJ
7-5
71M
8P~
92H
92I
92L
AAIKJ
AALRI
AAQFI
AAXUO
ACGFS
ADEZE
ADTZH
AECPX
AEKER
AFTJW
AGHFR
AGYEJ
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
BLXMC
CCEZO
CDYEO
CJLMK
CQIGP
CS3
CUBFJ
CW9
EBS
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FNPLU
GBLVA
HVGLF
HZ~
IHE
J1W
JJJVA
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SDF
SDG
SES
TCJ
TGT
U1G
U5S
W92
~WA
4A8
93N
ABJNI
ABWVN
ACRPL
ADNMO
PSX
ID FETCH-LOGICAL-c585-8164725ff821135f997873a348de5e8a07ecb13b8b6b20355c8c77e3157677c93
ISSN 0254-4156
IngestDate Thu May 29 04:10:30 EDT 2025
Fri Nov 25 17:03:34 EST 2022
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords 非线性
时间序列
Hilbert-Huang变换
经验模态分解法(EMD)
预测
非平稳性
人工神经网络(ANN)
Language Chinese
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c585-8164725ff821135f997873a348de5e8a07ecb13b8b6b20355c8c77e3157677c93
Notes TP13
Hilbert-Huang transform, prediction, nonstationary, non-linear, empirical mode decomposition (EMD), artificial neural network (ANN), time series
11-2109/TP
PageCount 5
ParticipantIDs wanfang_journals_zdhxb200801015
chongqing_backfile_26290224
PublicationCentury 2000
PublicationDate 2008
PublicationDateYYYYMMDD 2008-01-01
PublicationDate_xml – year: 2008
  text: 2008
PublicationDecade 2000
PublicationTitle Zi dong hua xue bao
PublicationTitleAlternate Acta Automatica Sinica
PublicationTitle_FL ACTA AUTOMATICA SINICA
PublicationYear 2008
Publisher 河北理工大学机械工程学院,唐山,063009%中国矿业大学,北京,100080
中国矿业大学,北京,100080
Publisher_xml – name: 河北理工大学机械工程学院,唐山,063009%中国矿业大学,北京,100080
– name: 中国矿业大学,北京,100080
SSID ssib017479230
ssib001102911
ssib006576350
ssib007293330
ssj0059721
ssib007290157
ssib023646446
ssib005904210
ssib051375349
Score 1.8114644
Snippet 介绍了一种可以提高非平稳时间序列预测精度的新方法,该方法应用Hilbert-Huang变换的核心内容-经验模态分解法(Empirical mode...
TP13; 介绍了一种可以提高非平稳时间序列预测精度的新方法,该方法应用Hilbert-Huang变换的核心内容-经验模态分解法(Empirical mode...
SourceID wanfang
chongqing
SourceType Aggregation Database
Publisher
StartPage 97
SubjectTerms Hilbert-Huang变换
人工神经网络(ANN)
时间序列
经验模态分解法(EMD)
非平稳性
非线性
预测
Title 经验模态分解法在大气时间序列预测中的应用
URI http://lib.cqvip.com/qk/90250X/20081/26290224.html
https://d.wanfangdata.com.cn/periodical/zdhxb200801015
Volume 34
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9VAFB7autGF-MRaH104y9RkHpkZcJOkuZSC4qJCdyXJTVoQbqm2IF2IQpGCQkEqBXHjA1oEQfCB1L_jvbX_wnMmubdTKfiAECYzJ9-cRzJzZjJzQsg1jNrE83bhZdoIT2Qs8zIRVp4EV5YVnKmqjbuRb94Kp-6I6Vk5OzT83Fm1tLKcTxSrR-4r-R-rQh7YFXfJ_oNlB6CQAWmwL5zBwnD-KxvTVNE4prpFU0OjiOqEpiGNNI0CTGgf_ESaSqo11SFNIV_RiGNRzKmRWGQSpIdEJLAUi3xqBCYMgIeIjAmBNHFk67KAkImVMqotcQyZMU0FjaGWSWTMRLbI3oWACs-Rdr1hZEkr5Bwxo4YTkMKElqVJGoVWECiS_UcDkXTaYGtpJVMIYxwS4H6yDwdAiRU-pU3wyf4shx48kVYEhmppGFCWYd-igwjApHS05PAGCgQBUe0MVXdArLB-1MmAGDRpNcYSq3mB-Egf4MESG5fMUCYdNQJZTONany0at5oiEx3BTA3bMC-QK5CbJYH1150GHwbrHg6o3d6pmep138K6q6mXNTdOS1DPCP3eH3LFBH6Rvz0xjcthRH_tsN-_-VCk8dX2woMcKTDuoBwmx5hSAS6TnXjohgj0mXH6BGmg2XdcyFBiiMODa4Uf6p0v63DN-cGQFf9fEDpTEjLgMIDGKYHam5IYXcrOkza6qbe_omDXjxILQ6QsLHbml8Dxs_vwOlXWmXdcxplT5GQz1huP6hf3NBlaXThDTjgRQM-SG3vfN_bfP-vtvO49etxdf_Jz-23v04vuq53uu-3ex83e1tf9rc_d3Y3u-tb-m7Xel6c_vn3Ye7nW3d3c29w5R2Za6Uwy5TU_NPEKGJV7GmP3MVlVmgUBl5Ux0FvyjAvdLmWpM1-VRR7wXOchmAEGAoUulCo5qC9UqjD8PBnpLHbKC2S8yGRZ-KVgLBdCB1WWQb8tDDj_JcDnwSgZG6gB_OHiLkZ5m4Pm16DPPkquNoqZa1qz-3OHjX_xjxRj5Hi9dApnIy-RkeV7K-Vl8M-X8yv2gfkF2Vam0Q
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E7%BB%8F%E9%AA%8C%E6%A8%A1%E6%80%81%E5%88%86%E8%A7%A3%E6%B3%95%E5%9C%A8%E5%A4%A7%E6%B0%94%E6%97%B6%E9%97%B4%E5%BA%8F%E5%88%97%E9%A2%84%E6%B5%8B%E4%B8%AD%E7%9A%84%E5%BA%94%E7%94%A8&rft.jtitle=%E8%87%AA%E5%8A%A8%E5%8C%96%E5%AD%A6%E6%8A%A5&rft.au=%E7%8E%84%E5%85%86%E7%87%95&rft.au=%E6%9D%A8%E5%85%AC%E8%AE%AD&rft.date=2008&rft.pub=%E6%B2%B3%E5%8C%97%E7%90%86%E5%B7%A5%E5%A4%A7%E5%AD%A6%E6%9C%BA%E6%A2%B0%E5%B7%A5%E7%A8%8B%E5%AD%A6%E9%99%A2%2C%E5%94%90%E5%B1%B1%2C063009%25%E4%B8%AD%E5%9B%BD%E7%9F%BF%E4%B8%9A%E5%A4%A7%E5%AD%A6%2C%E5%8C%97%E4%BA%AC%2C100080&rft.issn=0254-4156&rft.volume=34&rft.issue=1&rft.spage=97&rft.epage=101&rft_id=info:doi/10.3724%2FSP.J.1004.2008.00097&rft.externalDocID=zdhxb200801015
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F90250X%2F90250X.jpg
http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fzdhxb%2Fzdhxb.jpg