基于机器视觉的幼苗自动嫁接参数提取

为提高果蔬嫁接机器人的自动化水平,该文提出一种基于机器视觉用椭圆拟合的方法恢复幼苗叶面并提取用于机器人自动嫁接的参数的方法。俯视采集幼苗图像,提取叶面轮廓并根据轮廓上的拐点对组合相同叶面上的轮廓弧段。应用椭圆拟合的方法参数化叶面形状,提取幼苗的叶面参数,包括生长方向、生长点和叶面面积。再由生长点准确定位培育幼苗的穴孔位置,从而为砧穗配对和取苗定位提供依据。试验结果表明提出的算法能够克服叶面相互遮挡的问题,幼苗识别且定位的成功率达到97.5%,能满足嫁接机器人自动作业的要求。...

Full description

Saved in:
Bibliographic Details
Published in农业工程学报 Vol. 29; no. 24; pp. 190 - 195
Main Author 贺磊盈 蔡丽苑 武传宇
Format Journal Article
LanguageChinese
Published 浙江理工大学机械与自动控制学院,杭州,310018 2013
Subjects
Online AccessGet full text
ISSN1002-6819
DOI10.3969/j.issn.1002-6819.2013.24.025

Cover

More Information
Summary:为提高果蔬嫁接机器人的自动化水平,该文提出一种基于机器视觉用椭圆拟合的方法恢复幼苗叶面并提取用于机器人自动嫁接的参数的方法。俯视采集幼苗图像,提取叶面轮廓并根据轮廓上的拐点对组合相同叶面上的轮廓弧段。应用椭圆拟合的方法参数化叶面形状,提取幼苗的叶面参数,包括生长方向、生长点和叶面面积。再由生长点准确定位培育幼苗的穴孔位置,从而为砧穗配对和取苗定位提供依据。试验结果表明提出的算法能够克服叶面相互遮挡的问题,幼苗识别且定位的成功率达到97.5%,能满足嫁接机器人自动作业的要求。
Bibliography:11-2047/S
computer vision, parameter extraction, grafting, ellipse fitting, cotyledon restoration, comer extraction
To achieve full automation of a grafting robot for fruits and vegetables, this paper presented a machine vision system for restoring the cotyledons of seedlings and extracting their parameters by ellipse fitting. Overlooking images of seedlings were captured by a gray camera. After doing a fast median filter, bright areas composed of cotyledons were segmented by an auto-threshold binarization algorithm with Otsu. Moreover, their contours could be easily found by an edge trace algorithm. Each corner representing the intersection of two different cotyledons was detected by finding the local maximum of the curvature in the contours. Under the constraints of distance and arc length, two corners which belong to the same two cotyledons were made a pair. Thus, all contour segments belonging to the same cotyledon could be retrieved. To restore the shape of the cotyledon, its contour was parameterized by a
ISSN:1002-6819
DOI:10.3969/j.issn.1002-6819.2013.24.025