Natural gas purification and olefin/paraffin separation using thermal cross-linkable co-polyimide/ZIF-8 mixed matrix membranes
Using three 6FDA-based polyimides (6FDA-Durene, 6FDA-Durene/DABA (9/1), 6FDA-Durene/DABA (7/3)) and nano-size zeolitic imidazolate framework-8 (ZIF-8), we have fabricated mixed matrix membranes (MMMs) with uniform morphology comprising ZIF-8as high as 40wt% loading by directly mixing as-synthesized...
Saved in:
Published in | Journal of membrane science Vol. 444; pp. 173 - 183 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Amsterdam
Elsevier B.V
01.10.2013
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Using three 6FDA-based polyimides (6FDA-Durene, 6FDA-Durene/DABA (9/1), 6FDA-Durene/DABA (7/3)) and nano-size zeolitic imidazolate framework-8 (ZIF-8), we have fabricated mixed matrix membranes (MMMs) with uniform morphology comprising ZIF-8as high as 40wt% loading by directly mixing as-synthesized ZIF-8 suspension into the polymer solution. Permeability of all gases (CO2, CH4, C3H6, and C3H8) increases rapidly with an increase in ZIF-8 loading. However, the addition of ZIF-8 nano-particles into the polymer matrix increases the ideal CO2/CH4 selectivity of only 6.87%, while the ideal C3H6/C3H8 selectivity improves 134% from 11.68 to 27.38 for the MMM made of 6FDA-Durene/DABA (9/1) and 40wt% ZIF-8. Experimental data show that the plasticization resistance and gas pair selectivity of MMMs are strongly dependent on the amount of cross-linkable moiety and annealing temperature. MMMs made of 6FDA-Durene do not show considerable improvements on resistance against CO2-induced plasticization after annealing at 200–400°C, while MMMs synthesized from cross-linkable co-polyimides (6FDA-Durene/DABA (9/1) and 6FDA-Durene/DABA (7/3)) show significant enhancements in CO2/CH4 and C3H6/C3H8 selectivity as well as plasticization suppression characteristics up to a CO2 pressure of 30atm after annealing at 400°C due to the cross-linking reaction of the carboxyl acid (COOH) in the DABA moiety. The MMM made of 6FDA-Durene/DABA (9/1) and 40wt% ZIF-8 possess a notable ideal C3H6/C3H8 selectivity of 27.38 and a remarkable C3H6 permeability of 47.3 Barrer. After thermally annealed at 400°C, the MMM made of 6FDA-Durene/DABA (9/1) and 20wt% ZIF-8 shows a CO2/CH4 selectivity of 19.61 and an impressive CO2 permeability 728 Barrer in mixed gas tests. The newly developed MMMs may have great potential for industrial nature gas purification and C3H6/C3H8 separation.
[Display omitted]
•Cross-linkable co-polyimide/ZIF-8 mixed matrix membranes (MMMs) are fabricated.•Effects of diamine ratio on polymer structure and gas separation performance are studied.•Effect of heat treatment temperature on MMM performance is investigated.•Increasing ZIF-8 loading leads to increase MMM permeability for all gasses.•Cross-linkable co-polyimides thermally treated at 400°C have shown selectivity enhancement. |
---|---|
AbstractList | Using three 6FDA-based polyimides (6FDA-Durene, 6FDA-Durene/DABA (9/1), 6FDA-Durene/DABA (7/3)) and nano-size zeolitic imidazolate framework-8 (ZIF-8), we have fabricated mixed matrix membranes (MMMs) with uniform morphology comprising ZIF-8 as high as 40 wt% loading by directly mixing as-synthesized ZIF-8 suspension into the polymer solution. Permeability of all gases (CO2, CH4, C3H6, and C3H8) increases rapidly with an increase in ZIF-8 loading. However, the addition of ZIF-8 nano-particles into the polymer matrix increases the ideal CO2/CH4 selectivity of only 6.87%, while the ideal C3H6/C3H8 selectivity improves 134% from 11.68 to 27.38 for the MMM made of 6FDA-Durene/DABA (9/1) and 40 wt% ZIF-8. Experimental data show that the plasticization resistance and gas pair selectivity of MMMs are strongly dependent on the amount of cross-linkable moiety and annealing temperature. MMMs made of 6FDA-Durene do not show considerable improvements on resistance against CO2-induced plasticization after annealing at 200a400 degree C, while MMMs synthesized from cross-linkable co-polyimides (6FDA-Durene/DABA (9/1) and 6FDA-Durene/DABA (7/3)) show significant enhancements in CO2/CH4 and C3H6/C3H8 selectivity as well as plasticization suppression characteristics up to a CO2 pressure of 30 atm after annealing at 400 degree C due to the cross-linking reaction of the carboxyl acid (COOH) in the DABA moiety. The MMM made of 6FDA-Durene/DABA (9/1) and 40 wt% ZIF-8 possess a notable ideal C3H6/C3H8 selectivity of 27.38 and a remarkable C3H6 permeability of 47.3 Barrer. After thermally annealed at 400 degree C, the MMM made of 6FDA-Durene/DABA (9/1) and 20 wt% ZIF-8 shows a CO2/CH4 selectivity of 19.61 and an impressive CO2 permeability 728 Barrer in mixed gas tests. The newly developed MMMs may have great potential for industrial nature gas purification and C3H6/C3H8 separation. Using three 6FDA-based polyimides (6FDA-Durene, 6FDA-Durene/DABA (9/1), 6FDA-Durene/DABA (7/3)) and nano-size zeolitic imidazolate framework-8 (ZIF-8), we have fabricated mixed matrix membranes (MMMs) with uniform morphology comprising ZIF-8as high as 40wt% loading by directly mixing as-synthesized ZIF-8 suspension into the polymer solution. Permeability of all gases (CO₂, CH₄, C₃H₆, and C₃H₈) increases rapidly with an increase in ZIF-8 loading. However, the addition of ZIF-8 nano-particles into the polymer matrix increases the ideal CO₂/CH₄ selectivity of only 6.87%, while the ideal C₃H₆/C₃H₈ selectivity improves 134% from 11.68 to 27.38 for the MMM made of 6FDA-Durene/DABA (9/1) and 40wt% ZIF-8. Experimental data show that the plasticization resistance and gas pair selectivity of MMMs are strongly dependent on the amount of cross-linkable moiety and annealing temperature. MMMs made of 6FDA-Durene do not show considerable improvements on resistance against CO₂-induced plasticization after annealing at 200–400°C, while MMMs synthesized from cross-linkable co-polyimides (6FDA-Durene/DABA (9/1) and 6FDA-Durene/DABA (7/3)) show significant enhancements in CO₂/CH₄ and C₃H₆/C₃H₈ selectivity as well as plasticization suppression characteristics up to a CO₂ pressure of 30atm after annealing at 400°C due to the cross-linking reaction of the carboxyl acid (COOH) in the DABA moiety. The MMM made of 6FDA-Durene/DABA (9/1) and 40wt% ZIF-8 possess a notable ideal C₃H₆/C₃H₈ selectivity of 27.38 and a remarkable C₃H₆ permeability of 47.3 Barrer. After thermally annealed at 400°C, the MMM made of 6FDA-Durene/DABA (9/1) and 20wt% ZIF-8 shows a CO₂/CH₄ selectivity of 19.61 and an impressive CO₂ permeability 728 Barrer in mixed gas tests. The newly developed MMMs may have great potential for industrial nature gas purification and C₃H₆/C₃H₈ separation. Using three 6FDA-based polyimides (6FDA-Durene, 6FDA-Durene/DABA (9/1), 6FDA-Durene/DABA (7/3)) and nano-size zeolitic imidazolate framework-8 (ZIF-8), we have fabricated mixed matrix membranes (MMMs) with uniform morphology comprising ZIF-8as high as 40wt% loading by directly mixing as-synthesized ZIF-8 suspension into the polymer solution. Permeability of all gases (CO2, CH4, C3H6, and C3H8) increases rapidly with an increase in ZIF-8 loading. However, the addition of ZIF-8 nano-particles into the polymer matrix increases the ideal CO2/CH4 selectivity of only 6.87%, while the ideal C3H6/C3H8 selectivity improves 134% from 11.68 to 27.38 for the MMM made of 6FDA-Durene/DABA (9/1) and 40wt% ZIF-8. Experimental data show that the plasticization resistance and gas pair selectivity of MMMs are strongly dependent on the amount of cross-linkable moiety and annealing temperature. MMMs made of 6FDA-Durene do not show considerable improvements on resistance against CO2-induced plasticization after annealing at 200–400°C, while MMMs synthesized from cross-linkable co-polyimides (6FDA-Durene/DABA (9/1) and 6FDA-Durene/DABA (7/3)) show significant enhancements in CO2/CH4 and C3H6/C3H8 selectivity as well as plasticization suppression characteristics up to a CO2 pressure of 30atm after annealing at 400°C due to the cross-linking reaction of the carboxyl acid (COOH) in the DABA moiety. The MMM made of 6FDA-Durene/DABA (9/1) and 40wt% ZIF-8 possess a notable ideal C3H6/C3H8 selectivity of 27.38 and a remarkable C3H6 permeability of 47.3 Barrer. After thermally annealed at 400°C, the MMM made of 6FDA-Durene/DABA (9/1) and 20wt% ZIF-8 shows a CO2/CH4 selectivity of 19.61 and an impressive CO2 permeability 728 Barrer in mixed gas tests. The newly developed MMMs may have great potential for industrial nature gas purification and C3H6/C3H8 separation. [Display omitted] •Cross-linkable co-polyimide/ZIF-8 mixed matrix membranes (MMMs) are fabricated.•Effects of diamine ratio on polymer structure and gas separation performance are studied.•Effect of heat treatment temperature on MMM performance is investigated.•Increasing ZIF-8 loading leads to increase MMM permeability for all gasses.•Cross-linkable co-polyimides thermally treated at 400°C have shown selectivity enhancement. |
Author | Askari, Mohammad Chung, Tai-Shung |
Author_xml | – sequence: 1 givenname: Mohammad surname: Askari fullname: Askari, Mohammad – sequence: 2 givenname: Tai-Shung surname: Chung fullname: Chung, Tai-Shung email: chencts@nus.edu.sg |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27574545$$DView record in Pascal Francis |
BookMark | eNqFkT1vFDEQhrcIEkngH1C4QaLZPX-ufRRIKCIQKYIGGhrL6x2HObwf2LtR0vDb8d2FhoKrPBo_76uZeS-qs3EaoapeMdowytrNrhlgyB4bTploqGpK86w6p0K3tRbGPK8uct5RyjQ12_Pq92e3rMlFcucymdeEAb1bcBqJG3syRQg4bmaXXCgFybAvD99rxvGOLD8gDUXt05RzHXH86boIxE_1PMVHHLCHzfeb69qQAR-gJ4NbEj6QMmKX3Aj5RfUsuJjh5dN7WX27_vD16lN9--XjzdX729orI5e6D1tHfSccZZ3UXnvDOJctZwIUsOB5HwwVoevMtvPc8DbQljGQ1EgGgrfisnpz9J3T9GuFvNgBs4cYyxDTmi0rcrrVXIrTaKtZy7nS8jSqmJCKKU0L-voJddm7GMr2HrOdEw4uPVqui5-SqnBvj9zhogmC9bgcLr4kh9Eyavcx2509xmz3MVuqbGkWsfxH_Nf_hOzdUQYlgXuEZAsBo4ceE_jF9hP-3-APQmzIvg |
CODEN | JMESDO |
CitedBy_id | crossref_primary_10_1002_ghg_1760 crossref_primary_10_1016_j_seppur_2021_118860 crossref_primary_10_1007_s13369_016_2096_4 crossref_primary_10_1016_j_memsci_2023_122246 crossref_primary_10_1039_C6TA09751K crossref_primary_10_1016_j_cej_2021_128807 crossref_primary_10_1016_j_jiec_2018_06_026 crossref_primary_10_2139_ssrn_4193777 crossref_primary_10_1016_j_memsci_2014_06_034 crossref_primary_10_1016_j_seppur_2017_01_016 crossref_primary_10_1002_cite_202300033 crossref_primary_10_1016_j_seppur_2014_03_006 crossref_primary_10_1016_j_cej_2021_133606 crossref_primary_10_1016_j_seppur_2017_02_050 crossref_primary_10_1016_j_jngse_2021_103941 crossref_primary_10_1016_j_memsci_2017_09_083 crossref_primary_10_1016_j_memsci_2020_118019 crossref_primary_10_1016_j_seppur_2023_123656 crossref_primary_10_1016_j_ccr_2023_215435 crossref_primary_10_1016_j_ces_2017_12_051 crossref_primary_10_1016_j_ces_2019_04_032 crossref_primary_10_1002_app_45728 crossref_primary_10_1016_j_jclepro_2017_08_080 crossref_primary_10_3390_polym15041011 crossref_primary_10_1016_j_gce_2020_11_009 crossref_primary_10_1002_er_5448 crossref_primary_10_1016_j_seppur_2023_125843 crossref_primary_10_1590_0104_6632_20140314s00003031 crossref_primary_10_1016_j_memsci_2019_04_003 crossref_primary_10_1039_C5RA19207B crossref_primary_10_3390_membranes12070646 crossref_primary_10_1016_j_memsci_2020_118288 crossref_primary_10_1021_acs_iecr_9b01568 crossref_primary_10_1016_j_cherd_2017_05_010 crossref_primary_10_1038_s42004_017_0002_y crossref_primary_10_1080_15422119_2016_1146149 crossref_primary_10_1016_j_seppur_2017_10_039 crossref_primary_10_1007_s13726_016_0484_y crossref_primary_10_1016_j_ces_2015_04_011 crossref_primary_10_1016_j_jtice_2019_08_012 crossref_primary_10_3390_pr6090172 crossref_primary_10_1016_j_memsci_2014_03_046 crossref_primary_10_1002_pol_20200122 crossref_primary_10_1590_0104_6632_20180351s20150595 crossref_primary_10_1016_j_seppur_2021_119707 crossref_primary_10_1016_j_rineng_2025_104686 crossref_primary_10_1002_adma_201606949 crossref_primary_10_1016_j_memsci_2021_119555 crossref_primary_10_1002_cssc_201402647 crossref_primary_10_1016_j_memsci_2014_05_025 crossref_primary_10_1039_C9TA05401D crossref_primary_10_1007_s13203_016_0164_z crossref_primary_10_1016_j_polymer_2022_124789 crossref_primary_10_1126_sciadv_adk5846 crossref_primary_10_1016_j_jiec_2017_11_014 crossref_primary_10_1002_asia_202100096 crossref_primary_10_1016_j_seppur_2020_117979 crossref_primary_10_1016_j_seppur_2024_128586 crossref_primary_10_1016_j_memsci_2015_04_069 crossref_primary_10_1021_acs_energyfuels_2c01427 crossref_primary_10_3390_membranes12100964 crossref_primary_10_1016_j_memsci_2021_119963 crossref_primary_10_1002_adfm_202207775 crossref_primary_10_1021_am500081e crossref_primary_10_1007_s11814_018_0081_1 crossref_primary_10_1002_mats_202000092 crossref_primary_10_1590_1980_5373_MR_2015_0621 crossref_primary_10_1016_j_jechem_2017_04_016 crossref_primary_10_1021_acs_langmuir_5b02907 crossref_primary_10_1126_science_abe0192 crossref_primary_10_1002_cplu_202300173 crossref_primary_10_1016_j_seppur_2017_06_021 crossref_primary_10_1039_C7TA07294E crossref_primary_10_1016_j_memsci_2019_117772 crossref_primary_10_1016_j_memsci_2021_119175 crossref_primary_10_1515_revce_2018_0091 crossref_primary_10_1016_j_memsci_2015_08_016 crossref_primary_10_1039_C4RA01595A crossref_primary_10_1016_j_cherd_2019_10_009 crossref_primary_10_1016_j_ccr_2016_11_004 crossref_primary_10_3390_membranes13110858 crossref_primary_10_1002_ange_202015635 crossref_primary_10_3390_cryst9010015 crossref_primary_10_1016_j_memsci_2018_04_040 crossref_primary_10_1016_j_proeng_2016_06_499 crossref_primary_10_1039_C3CS60480B crossref_primary_10_1016_j_advmem_2024_100092 crossref_primary_10_1016_j_cherd_2018_07_011 crossref_primary_10_1016_j_jechem_2018_02_002 crossref_primary_10_1515_revce_2015_0031 crossref_primary_10_1016_j_seppur_2016_09_015 crossref_primary_10_1002_aic_14496 crossref_primary_10_1016_j_memsci_2017_08_068 crossref_primary_10_1080_15422119_2021_1874415 crossref_primary_10_1016_j_cjche_2017_07_006 crossref_primary_10_1515_polyeng_2020_0288 crossref_primary_10_1016_j_seppur_2015_08_020 crossref_primary_10_1080_15422119_2018_1532911 crossref_primary_10_1016_j_ces_2018_04_037 crossref_primary_10_1021_acsami_8b20151 crossref_primary_10_1016_j_cattod_2020_07_081 crossref_primary_10_1016_j_seppur_2019_115687 crossref_primary_10_1134_S0965544114080180 crossref_primary_10_1002_anie_202015635 crossref_primary_10_1002_cjce_23170 crossref_primary_10_1038_s41598_019_40185_6 crossref_primary_10_1016_j_jece_2024_113753 crossref_primary_10_1016_j_memsci_2015_03_028 crossref_primary_10_1039_C7TA07261A crossref_primary_10_1002_app_52309 crossref_primary_10_1016_j_seppur_2023_124330 crossref_primary_10_1016_j_memsci_2016_05_032 crossref_primary_10_1016_j_polymertesting_2020_106415 crossref_primary_10_3390_membranes12090836 crossref_primary_10_1039_C6RA00553E crossref_primary_10_1002_ejic_201600695 crossref_primary_10_1016_j_memsci_2020_118785 crossref_primary_10_1007_s11814_021_0968_0 crossref_primary_10_1002_app_50251 crossref_primary_10_1016_j_memsci_2014_12_015 crossref_primary_10_1016_j_reactfunctpolym_2017_09_002 crossref_primary_10_1002_app_48968 crossref_primary_10_1002_app_55707 crossref_primary_10_1016_j_seppur_2016_09_037 crossref_primary_10_1021_ie403505u crossref_primary_10_1016_j_memsci_2016_08_045 crossref_primary_10_1016_j_memsci_2019_117201 crossref_primary_10_1002_adma_201802401 crossref_primary_10_1016_j_memsci_2016_04_023 crossref_primary_10_1016_j_jclepro_2017_02_069 crossref_primary_10_1016_j_memsci_2021_119124 crossref_primary_10_1016_j_memsci_2018_04_025 crossref_primary_10_1016_j_memsci_2019_02_013 crossref_primary_10_1016_j_memsci_2017_11_054 crossref_primary_10_1016_j_jiec_2016_08_030 crossref_primary_10_1016_j_memsci_2016_04_029 crossref_primary_10_1002_cssc_201402677 crossref_primary_10_1016_j_memsci_2022_120610 crossref_primary_10_1016_j_memsci_2022_121146 crossref_primary_10_1016_j_memsci_2022_121267 crossref_primary_10_1016_j_jiec_2016_01_032 crossref_primary_10_1016_j_jiec_2020_10_033 crossref_primary_10_1016_j_memsci_2024_123331 crossref_primary_10_1016_j_memsci_2017_11_069 crossref_primary_10_1016_j_memsci_2018_04_016 crossref_primary_10_1016_j_jcis_2016_09_035 crossref_primary_10_1007_s13369_021_05996_8 crossref_primary_10_1039_C9CS00756C crossref_primary_10_1039_C4RA06792D crossref_primary_10_3390_membranes8030050 crossref_primary_10_1039_C6EE00811A crossref_primary_10_1021_acs_jpcc_5b01519 crossref_primary_10_1039_D0SM01356K crossref_primary_10_1021_acsanm_8b00682 crossref_primary_10_1002_cssc_201701405 crossref_primary_10_1039_D1TA07093B crossref_primary_10_1016_j_matpr_2021_02_453 crossref_primary_10_3390_membranes10070154 crossref_primary_10_1016_j_memsci_2018_07_025 crossref_primary_10_1016_j_memsci_2022_121127 crossref_primary_10_1016_j_seppur_2020_118279 crossref_primary_10_1039_C4CS00437J crossref_primary_10_1016_j_memsci_2013_10_043 crossref_primary_10_1016_j_memsci_2022_121125 crossref_primary_10_1039_C5TA10553F crossref_primary_10_1002_adma_202104606 crossref_primary_10_1016_j_seppur_2018_06_067 crossref_primary_10_1007_s00289_018_2301_6 crossref_primary_10_1016_j_memsci_2018_05_032 crossref_primary_10_1016_j_memsci_2024_123231 crossref_primary_10_1016_j_memsci_2017_03_023 crossref_primary_10_1021_acs_iecr_0c05413 crossref_primary_10_1007_s11696_017_0177_9 crossref_primary_10_1038_s41563_020_0764_y crossref_primary_10_3390_polym13172946 crossref_primary_10_1126_sciadv_abl6841 crossref_primary_10_1021_acssuschemeng_7b03613 crossref_primary_10_1016_j_memsci_2023_122326 crossref_primary_10_1016_j_cej_2020_124927 crossref_primary_10_1016_j_eng_2022_07_022 crossref_primary_10_1016_j_cej_2025_159352 crossref_primary_10_1016_j_memsci_2023_122204 crossref_primary_10_1016_j_memsci_2013_10_059 crossref_primary_10_1016_j_seppur_2024_126561 crossref_primary_10_1021_acs_jpclett_5b01602 crossref_primary_10_1002_aic_17707 crossref_primary_10_1016_j_micromeso_2017_04_001 crossref_primary_10_3390_pr7010051 crossref_primary_10_1016_j_cherd_2020_09_033 crossref_primary_10_1007_s42114_022_00459_6 crossref_primary_10_1039_C5TA01597A crossref_primary_10_1016_j_progpolymsci_2014_01_003 crossref_primary_10_1039_C9SE00857H crossref_primary_10_1002_slct_202000240 crossref_primary_10_1016_j_jngse_2019_103072 crossref_primary_10_1039_C4TA04114C crossref_primary_10_1016_j_memsci_2015_01_014 crossref_primary_10_1016_j_memsci_2016_10_044 crossref_primary_10_1016_j_jwpe_2018_11_012 crossref_primary_10_1016_j_memsci_2018_06_007 crossref_primary_10_1021_acs_chemrev_8b00091 crossref_primary_10_1039_D3DT01878D crossref_primary_10_1016_j_memsci_2023_121370 crossref_primary_10_1021_acs_chemrev_0c00119 crossref_primary_10_1021_acs_iecr_0c03456 crossref_primary_10_1016_j_memsci_2017_11_020 crossref_primary_10_1016_j_cej_2018_03_153 crossref_primary_10_1039_C5RA26076K crossref_primary_10_1016_j_jiec_2015_08_014 crossref_primary_10_1021_acs_energyfuels_7b01305 crossref_primary_10_1016_j_progpolymsci_2019_06_001 crossref_primary_10_1039_C5RA26077A crossref_primary_10_1016_j_memsci_2017_11_037 crossref_primary_10_1016_j_memsci_2019_05_081 crossref_primary_10_1039_C5RA05556C crossref_primary_10_1007_s10965_021_02500_6 crossref_primary_10_1039_C7CE01438D crossref_primary_10_1016_j_memsci_2015_01_038 crossref_primary_10_1039_C4TA02984D crossref_primary_10_1039_C9RA06358G crossref_primary_10_1016_j_seppur_2017_04_013 crossref_primary_10_3390_membranes9120157 crossref_primary_10_14478_ace_2015_1041 crossref_primary_10_1021_acs_jpcc_1c03897 crossref_primary_10_1016_j_seppur_2018_12_016 |
Cites_doi | 10.1063/1.363118 10.1126/science.1118079 10.1021/ma801586f 10.1039/c2ee21996d 10.1016/j.progpolymsci.2007.01.008 10.1016/0376-7388(93)E0098-X 10.1039/c1cc14051e 10.1021/ma025938m 10.1021/ie0108088 10.1021/ma1010205 10.1016/S0376-7388(02)00430-1 10.1039/c1ee01324f 10.1016/j.polymer.2012.11.056 10.1016/j.memsci.2012.05.052 10.1016/j.ijhydene.2012.10.045 10.1016/S0376-7388(03)00215-1 10.1021/ja909263x 10.1016/S0376-7388(96)00182-2 10.1021/ar900116g 10.1016/j.polymer.2008.01.004 10.1021/ja805222x 10.1016/j.memsci.2006.05.003 10.1016/j.memsci.2004.06.014 10.1002/aic.11198 10.1002/aic.10909 10.1002/app.10998 10.1016/j.micromeso.2005.04.026 10.1021/ja109268m 10.1016/j.memsci.2005.10.008 10.1016/j.memsci.2012.05.022 10.1016/S1383-5866(98)00057-4 10.1016/j.memsci.2010.06.017 10.1016/j.memsci.2007.06.062 10.1016/j.memsci.2011.11.030 10.1016/j.memsci.2012.08.036 10.1016/S0376-7388(02)00429-5 10.1016/j.memsci.2011.10.003 10.1016/j.memsci.2011.11.024 10.1016/j.memsci.2005.08.015 10.1002/aenm.201100195 10.1016/j.ijhydene.2010.07.124 10.1016/S0376-7388(02)00535-5 10.1016/j.memsci.2011.04.010 10.1039/C0EE00278J 10.1021/ma9814548 10.1016/S0376-7388(02)00374-5 10.1016/j.memsci.2004.05.015 10.1016/j.coche.2011.08.007 10.1016/j.memsci.2007.06.068 10.1021/ie0713689 10.1021/ja9039983 10.1073/pnas.0602439103 10.1021/ja907359t 10.1016/j.ijhydene.2009.05.137 10.1016/j.progpolymsci.2008.12.004 10.1021/ja202154j 10.1016/S0376-7388(01)00333-7 10.1021/ma201033j 10.1016/0376-7388(92)80122-Z 10.1007/s10853-011-6138-8 10.1016/j.memsci.2010.12.001 |
ContentType | Journal Article |
Copyright | 2013 Elsevier B.V. 2014 INIST-CNRS |
Copyright_xml | – notice: 2013 Elsevier B.V. – notice: 2014 INIST-CNRS |
DBID | AAYXX CITATION IQODW 7QH 7UA C1K F1W H97 L.G 7SR 8FD JG9 7S9 L.6 |
DOI | 10.1016/j.memsci.2013.05.016 |
DatabaseName | CrossRef Pascal-Francis Aqualine Water Resources Abstracts Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality Aquatic Science & Fisheries Abstracts (ASFA) Professional Engineered Materials Abstracts Technology Research Database Materials Research Database AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef Aquatic Science & Fisheries Abstracts (ASFA) Professional Aqualine Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality ASFA: Aquatic Sciences and Fisheries Abstracts Water Resources Abstracts Environmental Sciences and Pollution Management Materials Research Database Technology Research Database Engineered Materials Abstracts AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | Materials Research Database AGRICOLA Aquatic Science & Fisheries Abstracts (ASFA) Professional |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry |
EndPage | 183 |
ExternalDocumentID | 27574545 10_1016_j_memsci_2013_05_016 S0376738813004031 |
GroupedDBID | --- --K --M -~X .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ 9JN AABNK AABXZ AAEDT AAEDW AAEPC AAHBH AAIKJ AAKOC AALRI AAOAW AAQFI AATTM AAXKI AAXUO AAYWO ABFNM ABJNI ABMAC ABNUV ABWVN ABXDB ABXRA ACDAQ ACGFS ACRLP ACVFH ADBBV ADCNI ADEWK ADEZE AEBSH AEIPS AEKER AENEX AEUPX AEZYN AFPUW AFRZQ AFTJW AFXIZ AGCQF AGHFR AGRNS AGUBO AGYEJ AHHHB AHPOS AIEXJ AIIUN AIKHN AITUG AKBMS AKRWK AKURH AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU AXJTR BKOJK BLXMC CS3 DU5 EBS EFJIC EFKBS ENUVR EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W KOM LX7 M41 MAGPM MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG RNS ROL RPZ SCC SDF SDG SDP SES SPC SPCBC SSG SSH SSM SSZ T5K XPP Y6R ZMT ~G- 29L AAQXK AAYXX ACNNM ACRPL ADMUD ADNMO AFJKZ AGQPQ AI. AIGII APXCP ASPBG AVWKF AZFZN BBWZM BNPGV CITATION EJD FEDTE FGOYB HLY HVGLF HZ~ NDZJH R2- SCE SEW VH1 WUQ AACTN IQODW 7QH 7UA C1K F1W H97 L.G 7SR 8FD JG9 7S9 L.6 |
ID | FETCH-LOGICAL-c584t-df9a0cb3a01b47c7c812246213e5e1fc2df803fbb89bc2826f0611e40841e3263 |
IEDL.DBID | .~1 |
ISSN | 0376-7388 |
IngestDate | Fri Jul 11 07:48:15 EDT 2025 Fri Jul 11 02:17:13 EDT 2025 Thu Jul 10 23:50:05 EDT 2025 Wed Apr 02 07:25:18 EDT 2025 Tue Jul 01 03:37:53 EDT 2025 Thu Apr 24 22:51:34 EDT 2025 Thu Jul 17 02:00:43 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Mixed matrix membrane Olefin/paraffin separation Thermal cross-linking Natural gas purification Metal organic framework Polyimide Separation Paraffin Olefin Gas purification Membrane Ethylenic compound Natural gas |
Language | English |
License | CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c584t-df9a0cb3a01b47c7c812246213e5e1fc2df803fbb89bc2826f0611e40841e3263 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | http://scholarbank.nus.edu.sg/handle/10635/89572 |
PQID | 1513451570 |
PQPubID | 23462 |
PageCount | 11 |
ParticipantIDs | proquest_miscellaneous_1803097243 proquest_miscellaneous_1671622574 proquest_miscellaneous_1513451570 pascalfrancis_primary_27574545 crossref_citationtrail_10_1016_j_memsci_2013_05_016 crossref_primary_10_1016_j_memsci_2013_05_016 elsevier_sciencedirect_doi_10_1016_j_memsci_2013_05_016 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2013-10-01 |
PublicationDateYYYYMMDD | 2013-10-01 |
PublicationDate_xml | – month: 10 year: 2013 text: 2013-10-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Amsterdam |
PublicationPlace_xml | – name: Amsterdam |
PublicationTitle | Journal of membrane science |
PublicationYear | 2013 |
Publisher | Elsevier B.V Elsevier |
Publisher_xml | – name: Elsevier B.V – name: Elsevier |
References | Song, Nataraj, Roussenova, Tan, Hughes, Li, Bourgoin, Alam, Cheetham, Al-Muhtaseb, Sivaniah (bib2) 2012; 5 Neyertz, Brown, Pandiyan, van der Vegt (bib8) 2010; 43 Li, Chung, Huang, Kulprathipanja (bib14) 2006; 277 Zhang, Musselman, Ferraris, Balkus (bib25) 2008; 47 S. Kulprathipanja, R.W. Neuzil, N.N. Li, Gas separation by means of mixed matrix membranes, US Patent 4,740,219, 1988. Shao, Chung (bib18) 2009; 34 Li, Olson, Seidel, Emge, Gong, Zeng, Li (bib34) 2009; 131 Zhang, Dai, Johnson, Karvan, Koros (bib6) 2012; 389 Lin, Chung (bib54) 2001; 186 Li, Chung (bib24) 2010; 35 Burns, Koros (bib61) 2003; 211 Mahajan, Burns, Schaeffer, Koros (bib12) 2002; 86 Xiao, Chung (bib49) 2011; 4 Askari, Xiao, Li, Chung (bib50) 2012; 390–391 Ordoňez, Balkus, Ferraris, Musselman (bib26) 2010; 361 Matteucci, Kusuma, Kelman, Freeman (bib22) 2008; 49 Morris, Doonan, Furukawa, Banerjee, Yaghi (bib33) 2008; 130 Yang, Xiao, Chung (bib27) 2011; 4 Bux, Liang, Li, Cravillon, Wiebcke, Caro (bib37) 2009; 131 Yang, Chung (bib40) 2013; 38 Bos, Pünt, Wessling, Strathmann (bib7) 1998; 14 Kim, Koros, Paul (bib45) 2006; 282 Park, Kim, Nam, Lee (bib16) 2003; 220 Chung, Jiang, Li, Kulprathipanja (bib29) 2007; 32 Venna, Carreon (bib36) 2010; 132 Jiang, Chung, Kulprathipanja (bib13) 2006; 52 Fairen-Jimenez, Moggach, Wharmby, Wright, Parsons, Duren (bib38) 2011; 133 Xiao, Chung, Guan, Guiver (bib44) 2007; 302 Kratochvil, Koros (bib48) 2008; 41 Shao, Chung, Pramoda (bib57) 2005; 84 Gomes, Nunes, Peinemann (bib17) 2005; 246 Baker (bib1) 2002; 41 Chung, Ren, Wang, Li, Liu, Pramoda, Cao, Loh (bib47) 2003; 214 Garcia, Marchese, Ochoa (bib21) 2012; 47 Phan, Doonan, Uribe-Romo, Knobler, O'Keeffe, Yaghi (bib32) 2010; 43 Xiao, Low, Hosseini, Chung, Paul (bib3) 2009; 34 Vu, Koros, Miller (bib20) 2003; 211 Kita, Inada, Tanaka, Okamoto (bib9) 1994; 87 Li, Chung, Wang (bib55) 2004; 243 Wind, Staudt-Bickel, Paul, Koros (bib46) 2003; 36 Chan, Wang, Chung, Liu (bib60) 2002; 210 Bux, Chmelik, Krishna, Caro (bib35) 2011; 369 Chua, Xiao, Chung (bib51) 2012; 415–416 Freeman (bib5) 1999; 32 Shi, Chen, Jean, Chung (bib28) 2013; 54 Shi, Yang, Chung (bib41) 2012; 415–416 Hosseini, Li, Chung, Liu (bib23) 2007; 302 Li, Guan, Chung, Kulprathipanja (bib58) 2006; 275 Askari, Yang, Chung (bib52) 2012; 423–424 Courteille, Hollenstein, Dorier, Gay, Schwarzenbach, Howling, Bertran, Viera, Martins, Macarico (bib56) 1996; 80 Park, Ni, Cote, Choi, Huang, Uribe-Romo, Chae, Keeffe, Yaghi (bib31) 2006; 103 Jiang, Chung, Rajagopalan (bib59) 2007; 53 Caro (bib30) 2011; 1 Lin, Wagner, Freeman, Toy, Gupta (bib15) 2006; 311 Pan, Li, Lestari, Lai (bib43) 2012; 390–391 Tanaka, Taguchi, Hao, Kita, Okamoto (bib4) 1996; 121 Ward, Koros (bib53) 2011; 377 Jia, Peinemann, Behling (bib11) 1992; 73 Venna, Jasinski, Carreon (bib39) 2010; 132 Pan, Lai (bib42) 2011; 47 Lau, Liu, Paul, Xia, Jean, Chen, Shao, Chung (bib19) 2011; 1 Qiu, Chen, Xu, Cui, Paul, Koros (bib62) 2011; 44 Zhang (10.1016/j.memsci.2013.05.016_bib6) 2012; 389 Baker (10.1016/j.memsci.2013.05.016_bib1) 2002; 41 Tanaka (10.1016/j.memsci.2013.05.016_bib4) 1996; 121 Zhang (10.1016/j.memsci.2013.05.016_bib25) 2008; 47 10.1016/j.memsci.2013.05.016_bib10 Garcia (10.1016/j.memsci.2013.05.016_bib21) 2012; 47 Xiao (10.1016/j.memsci.2013.05.016_bib44) 2007; 302 Jia (10.1016/j.memsci.2013.05.016_bib11) 1992; 73 Lau (10.1016/j.memsci.2013.05.016_bib19) 2011; 1 Freeman (10.1016/j.memsci.2013.05.016_bib5) 1999; 32 Chua (10.1016/j.memsci.2013.05.016_bib51) 2012; 415–416 Bux (10.1016/j.memsci.2013.05.016_bib35) 2011; 369 Chan (10.1016/j.memsci.2013.05.016_bib60) 2002; 210 Caro (10.1016/j.memsci.2013.05.016_bib30) 2011; 1 Burns (10.1016/j.memsci.2013.05.016_bib61) 2003; 211 Kita (10.1016/j.memsci.2013.05.016_bib9) 1994; 87 Jiang (10.1016/j.memsci.2013.05.016_bib13) 2006; 52 Phan (10.1016/j.memsci.2013.05.016_bib32) 2010; 43 Pan (10.1016/j.memsci.2013.05.016_bib42) 2011; 47 Yang (10.1016/j.memsci.2013.05.016_bib27) 2011; 4 Shao (10.1016/j.memsci.2013.05.016_bib18) 2009; 34 Matteucci (10.1016/j.memsci.2013.05.016_bib22) 2008; 49 Li (10.1016/j.memsci.2013.05.016_bib58) 2006; 275 Park (10.1016/j.memsci.2013.05.016_bib16) 2003; 220 Song (10.1016/j.memsci.2013.05.016_bib2) 2012; 5 Venna (10.1016/j.memsci.2013.05.016_bib39) 2010; 132 Mahajan (10.1016/j.memsci.2013.05.016_bib12) 2002; 86 Bux (10.1016/j.memsci.2013.05.016_bib37) 2009; 131 Xiao (10.1016/j.memsci.2013.05.016_bib49) 2011; 4 Pan (10.1016/j.memsci.2013.05.016_bib43) 2012; 390–391 Shi (10.1016/j.memsci.2013.05.016_bib41) 2012; 415–416 Chung (10.1016/j.memsci.2013.05.016_bib47) 2003; 214 Kim (10.1016/j.memsci.2013.05.016_bib45) 2006; 282 Askari (10.1016/j.memsci.2013.05.016_bib50) 2012; 390–391 Neyertz (10.1016/j.memsci.2013.05.016_bib8) 2010; 43 Qiu (10.1016/j.memsci.2013.05.016_bib62) 2011; 44 Li (10.1016/j.memsci.2013.05.016_bib14) 2006; 277 Li (10.1016/j.memsci.2013.05.016_bib34) 2009; 131 Venna (10.1016/j.memsci.2013.05.016_bib36) 2010; 132 Shi (10.1016/j.memsci.2013.05.016_bib28) 2013; 54 Shao (10.1016/j.memsci.2013.05.016_bib57) 2005; 84 Jiang (10.1016/j.memsci.2013.05.016_bib59) 2007; 53 Li (10.1016/j.memsci.2013.05.016_bib24) 2010; 35 Li (10.1016/j.memsci.2013.05.016_bib55) 2004; 243 Vu (10.1016/j.memsci.2013.05.016_bib20) 2003; 211 Fairen-Jimenez (10.1016/j.memsci.2013.05.016_bib38) 2011; 133 Ward (10.1016/j.memsci.2013.05.016_bib53) 2011; 377 Park (10.1016/j.memsci.2013.05.016_bib31) 2006; 103 Kratochvil (10.1016/j.memsci.2013.05.016_bib48) 2008; 41 Lin (10.1016/j.memsci.2013.05.016_bib54) 2001; 186 Lin (10.1016/j.memsci.2013.05.016_bib15) 2006; 311 Ordoňez (10.1016/j.memsci.2013.05.016_bib26) 2010; 361 Yang (10.1016/j.memsci.2013.05.016_bib40) 2013; 38 Morris (10.1016/j.memsci.2013.05.016_bib33) 2008; 130 Courteille (10.1016/j.memsci.2013.05.016_bib56) 1996; 80 Bos (10.1016/j.memsci.2013.05.016_bib7) 1998; 14 Askari (10.1016/j.memsci.2013.05.016_bib52) 2012; 423–424 Hosseini (10.1016/j.memsci.2013.05.016_bib23) 2007; 302 Chung (10.1016/j.memsci.2013.05.016_bib29) 2007; 32 Xiao (10.1016/j.memsci.2013.05.016_bib3) 2009; 34 Gomes (10.1016/j.memsci.2013.05.016_bib17) 2005; 246 Wind (10.1016/j.memsci.2013.05.016_bib46) 2003; 36 |
References_xml | – volume: 4 start-page: 4171 year: 2011 end-page: 4180 ident: bib27 article-title: Poly-/metal-benzimidazole nano-composite membranes for hydrogen purification publication-title: Energy Environ. Sci. – volume: 369 start-page: 284 year: 2011 end-page: 289 ident: bib35 article-title: Ethene/ethane separation by the MOF membrane ZIF-8: molecular correlation of permeation, adsorption, diffusion publication-title: J. Membr. Sci. – volume: 103 start-page: 10186 year: 2006 end-page: 10191 ident: bib31 article-title: Exceptional chemical and thermal stability of zeolitic imidazolate frameworks publication-title: PNAS – volume: 390–391 start-page: 93 year: 2012 end-page: 98 ident: bib43 article-title: Effective separation of propylene/propane binary mixtures by ZIF-8 membranes publication-title: J. Membr. Sci. – volume: 54 start-page: 774 year: 2013 end-page: 783 ident: bib28 article-title: Sorption, swelling, and free volume of polybenzimidazole (PBI) and PBI/zeolitic imidazolate framework (ZIF-8) nano-composite membranes for pervaporation publication-title: Polymer – volume: 43 start-page: 7813 year: 2010 end-page: 7827 ident: bib8 article-title: Carbon dioxide diffusion and plasticization in fluorinated polyimides publication-title: Macromolecules – reference: S. Kulprathipanja, R.W. Neuzil, N.N. Li, Gas separation by means of mixed matrix membranes, US Patent 4,740,219, 1988. – volume: 1 start-page: 634 year: 2011 end-page: 642 ident: bib19 article-title: Silica nanohybrid membranes with high CO publication-title: Adv. Energy Mater. – volume: 4 start-page: 201 year: 2011 end-page: 208 ident: bib49 article-title: Grafting thermally labile molecules on cross-linkable polyimide to design membrane materials for natural gas purification and CO publication-title: Energy Environ. Sci. – volume: 423–424 start-page: 392 year: 2012 end-page: 403 ident: bib52 article-title: Natural gas purification and olefin/paraffin separation using cross-linkable dual-layer hollow fiber membranes comprising β-cyclodextrin publication-title: J. Membr. Sci. – volume: 52 start-page: 2898 year: 2006 end-page: 2908 ident: bib13 article-title: Fabrication of mixed matrix hollow fibers with intimate polymer-zeolite interface for gas separation publication-title: AIChE J. – volume: 34 start-page: 6492 year: 2009 end-page: 6504 ident: bib18 article-title: In-situ fabrication of cross-linked PEO/silica reverse-selective membranes for hydrogen purification publication-title: Int. J. Hydrogen Energy – volume: 87 start-page: 139 year: 1994 end-page: 147 ident: bib9 article-title: Effect of photocrosslinking on permeability and permoselectivity of gases through benzophenone-containing polyimide publication-title: J. Membr. Sci. – volume: 35 start-page: 10560 year: 2010 end-page: 10568 ident: bib24 article-title: Molecular-level mixed matrix membranes comprising Pebax publication-title: Int. J. Hydrogen Energy – volume: 275 start-page: 17 year: 2006 end-page: 28 ident: bib58 article-title: Effects of novel silane modification of zeolite surface on polymer chain rigidification and partial pore blockage in polyethersulfone (PES)–zeolite A mixed matrix membranes publication-title: J. Membr. Sci. – volume: 377 start-page: 75 year: 2011 end-page: 81 ident: bib53 article-title: Crosslinkable mixed matrix membranes with surface modified molecular sieves for natural gas purification: I. Preparation and experimental results publication-title: J. Membr. Sci. – volume: 277 start-page: 28 year: 2006 end-page: 37 ident: bib14 article-title: Dual-layer polyethersulfone (PES)/BTDA-TDI/MDI co-polyimide (P84) hollow fiber membranes with a submicron PES–zeolite beta mixed matrix dense-selective layer for gas separation publication-title: J. Membr. Sci. – volume: 80 start-page: 2069 year: 1996 end-page: 2078 ident: bib56 article-title: Particle agglomeration study in rf silane plasmas: in situ study by polarization-sensitive laser light scattering publication-title: J. Appl. Phys. – volume: 43 start-page: 58 year: 2010 end-page: 67 ident: bib32 article-title: Synthesis, structure, and carbon dioxide capture properties of zeolitic imidazolate frameworks publication-title: Acc. Chem. Res. – volume: 311 start-page: 639 year: 2006 end-page: 642 ident: bib15 article-title: Plasticization-enhanced hydrogen purification using polymeric membranes publication-title: Science – volume: 282 start-page: 32 year: 2006 end-page: 43 ident: bib45 article-title: Effects of CO publication-title: J. Membr. Sci. – volume: 133 start-page: 8900 year: 2011 end-page: 8902 ident: bib38 article-title: Opening the gate: framework flexibility in ZIF-8 explored by experiments and simulations publication-title: J. Am. Chem. Soc. – volume: 132 start-page: 18030 year: 2010 end-page: 18033 ident: bib39 article-title: Structural evolution of zeolitic imidazolate framework-8 publication-title: J. Am. Chem. Soc. – volume: 243 start-page: 155 year: 2004 end-page: 175 ident: bib55 article-title: Morphological aspects and structure control of dual-layer asymmetric hollow fiber membranes formed by a simultaneous co-extrusion approach publication-title: J. Membr. Sci. – volume: 41 start-page: 7920 year: 2008 end-page: 7927 ident: bib48 article-title: Decarboxylation-induced cross-linking of a polyimide for enhanced CO publication-title: Macromolecules – volume: 211 start-page: 311 year: 2003 end-page: 334 ident: bib20 article-title: Mixed matrix membranes using carbon molecular sieves I. Preparation and experimental results publication-title: J. Membr. Sci. – volume: 211 start-page: 299 year: 2003 end-page: 309 ident: bib61 article-title: Defining the challenges for C publication-title: J. Membr. Sci. – volume: 220 start-page: 59 year: 2003 end-page: 73 ident: bib16 article-title: Imide-siloxane block copolymer/silica hybrid membranes: preparation, characterization and gas separation properties publication-title: J. Membr. Sci. – volume: 84 start-page: 59 year: 2005 end-page: 68 ident: bib57 article-title: The evolution of physicochemical and transport properties of 6FDA-durene toward carbon membranes; from polymer, intermediate to carbon publication-title: Microporous Mesoporous Mater. – volume: 302 start-page: 207 year: 2007 end-page: 217 ident: bib23 article-title: Enhanced gas separation performance of nanocomposite membranes using MgO nanoparticles publication-title: J. Membr. Sci. – volume: 41 start-page: 1393 year: 2002 end-page: 1411 ident: bib1 article-title: Reviews future directions of membrane gas separation technology publication-title: Ind. Eng. Chem. Res. – volume: 131 start-page: 16000 year: 2009 end-page: 16001 ident: bib37 article-title: Zeolitic imidazolate framework membrane with molecular sieving properties by microwave-assisted solvothermal synthesis publication-title: J. Am. Chem. Soc. – volume: 47 start-page: 2794 year: 2008 end-page: 2802 ident: bib25 article-title: Gas permeability properties of mixed-matrix Matrimid membranes containing carbon aerogel: a material with both micropores and mesopores publication-title: Ind. Eng. Chem. Res. – volume: 47 start-page: 10275 year: 2011 end-page: 10277 ident: bib42 article-title: Sharp separation of C publication-title: Chem. Commun. – volume: 49 start-page: 1659 year: 2008 end-page: 1675 ident: bib22 article-title: Gas transport properties of MgO filled poly (1-trimethylsilyl-1-propyne) nanocomposites publication-title: Polymer – volume: 38 start-page: 229 year: 2013 end-page: 239 ident: bib40 article-title: High performance ZIF-8/PBI nano-composite membranes for high temperature hydrogen separation consisting of carbon monoxide and water vapor publication-title: Int. J. Hydrogen Energy – volume: 186 start-page: 183 year: 2001 end-page: 193 ident: bib54 article-title: Gas permeability, diffusivity, solubility, and aging characteristics of 6FDA-durene polyimide membranes publication-title: J. Membr. Sci. – volume: 53 start-page: 1745 year: 2007 end-page: 1757 ident: bib59 article-title: Matrimid publication-title: AIChE J. – volume: 73 start-page: 119 year: 1992 end-page: 128 ident: bib11 article-title: Preparation and characterization of thin-film zeolite-PDMS composite membranes publication-title: J. Membr. Sci. – volume: 415–416 start-page: 375 year: 2012 end-page: 382 ident: bib51 article-title: Effects of thermally labile saccharide units on the gas separation performance of highly permeable polyimide membranes publication-title: J. Membr. Sci. – volume: 32 start-page: 375 year: 1999 end-page: 380 ident: bib5 article-title: Basis of permeability/selectivity tradeoff relations in polymeric gas separation membranes publication-title: Macromolecules – volume: 361 start-page: 28 year: 2010 end-page: 37 ident: bib26 article-title: Molecular sieving realized with ZIF-8/Matrimid mixed-matrix membranes publication-title: J. Membr. Sci. – volume: 36 start-page: 1882 year: 2003 end-page: 1888 ident: bib46 article-title: Solid-state covalent cross-linking of polyimide membranes for carbon dioxide plasticization reduction publication-title: Macromolecules – volume: 34 start-page: 561 year: 2009 end-page: 580 ident: bib3 article-title: The strategies of molecular architecture and modification of polyimide based membranes for CO publication-title: Prog. Polym. Sci. – volume: 47 start-page: 3064 year: 2012 end-page: 3075 ident: bib21 article-title: High activated carbon loading mixed matrix membranes for gas separations publication-title: J. Mater. Sci. – volume: 415–416 start-page: 577 year: 2012 end-page: 586 ident: bib41 article-title: Polybenzimidazole (PBI)/zeolitic imidazolate frameworks (ZIF-8) mixed matrix membranes for pervaporation dehydration of alcohols publication-title: J. Membr. Sci. – volume: 389 start-page: 34 year: 2012 end-page: 42 ident: bib6 article-title: High performance ZIF-8/6FDA-DAM mixed matrix membrane for propylene/propane separation publication-title: J. Membr. Sci. – volume: 1 start-page: 77 year: 2011 end-page: 83 ident: bib30 article-title: Are MOF membranes better in gas separation than those made of zeolites publication-title: Curr. Opinion Chem. Eng. – volume: 302 start-page: 254 year: 2007 end-page: 264 ident: bib44 article-title: Synthesis, cross-linking and carbonization of co-polyimides containing internal acetylene units for gas separation publication-title: J. Membr. Sci. – volume: 210 start-page: 55 year: 2002 end-page: 64 ident: bib60 article-title: C publication-title: J. Membr. Sci. – volume: 131 start-page: 10368 year: 2009 end-page: 10369 ident: bib34 article-title: Zeolitic imidazolate frameworks for kinetic separation of propane and propene publication-title: J. Am. Chem. Soc. – volume: 14 start-page: 27 year: 1998 end-page: 39 ident: bib7 article-title: Plasticization-resistant glassy polyimide membranes for CO publication-title: Sep. Purif. Technol. – volume: 132 start-page: 76 year: 2010 end-page: 78 ident: bib36 article-title: Highly permeable zeolite imidazolate framework-8 membranes for CO publication-title: J. Am. Chem. Soc. – volume: 390–391 start-page: 141 year: 2012 end-page: 151 ident: bib50 article-title: Natural gas purification and olefin/paraffin separation using cross-linkable 6FDA-Durene/DABA co-polyimides grafted with publication-title: J. Membr. Sci. – volume: 121 start-page: 197 year: 1996 end-page: 207 ident: bib4 article-title: Permeation and separation properties of polyimide membranes to olefins and paraffins publication-title: J. Membr. Sci. – volume: 32 start-page: 483 year: 2007 end-page: 507 ident: bib29 article-title: Mixed matrix membranes (MMMs) comprising organic polymers with dispersed inorganic fillers for gas separation publication-title: Prog. Polym. Sci. – volume: 130 start-page: 12626 year: 2008 end-page: 12627 ident: bib33 article-title: Crystals as molecules: post synthesis covalent functionalization of zeolitic imidazolate frameworks publication-title: J. Am. Chem. Soc. – volume: 44 start-page: 6046 year: 2011 end-page: 6056 ident: bib62 article-title: Sub-T publication-title: Macromolecules – volume: 5 start-page: 8359 year: 2012 end-page: 8369 ident: bib2 article-title: Zeolitic imidazolate framework (ZIF-8) based polymer nanocomposite membranes for gas separation publication-title: Energy Environ. Sci. – volume: 246 start-page: 13 year: 2005 end-page: 25 ident: bib17 article-title: Membranes for gas separation based on poly (1-trimethylsilyl-1-propyne)-silica nanocomposites publication-title: J. Membr. Sci. – volume: 86 start-page: 881 year: 2002 end-page: 890 ident: bib12 article-title: Challenges in forming successful mixed matrix membranes with rigid polymeric materials publication-title: J. Appl. Polym. Sci. – volume: 214 start-page: 57 year: 2003 end-page: 69 ident: bib47 article-title: Development of asymmetric 6FDA-2,6DAT hollow fiber membranes for CO2/CH4 separation: Part 2. Suppression of plasticization publication-title: J. Membr. Sci. – volume: 80 start-page: 2069 year: 1996 ident: 10.1016/j.memsci.2013.05.016_bib56 article-title: Particle agglomeration study in rf silane plasmas: in situ study by polarization-sensitive laser light scattering publication-title: J. Appl. Phys. doi: 10.1063/1.363118 – volume: 311 start-page: 639 year: 2006 ident: 10.1016/j.memsci.2013.05.016_bib15 article-title: Plasticization-enhanced hydrogen purification using polymeric membranes publication-title: Science doi: 10.1126/science.1118079 – volume: 41 start-page: 7920 year: 2008 ident: 10.1016/j.memsci.2013.05.016_bib48 article-title: Decarboxylation-induced cross-linking of a polyimide for enhanced CO2 plasticization resistance publication-title: Macromolecules doi: 10.1021/ma801586f – volume: 5 start-page: 8359 year: 2012 ident: 10.1016/j.memsci.2013.05.016_bib2 article-title: Zeolitic imidazolate framework (ZIF-8) based polymer nanocomposite membranes for gas separation publication-title: Energy Environ. Sci. doi: 10.1039/c2ee21996d – volume: 32 start-page: 483 year: 2007 ident: 10.1016/j.memsci.2013.05.016_bib29 article-title: Mixed matrix membranes (MMMs) comprising organic polymers with dispersed inorganic fillers for gas separation publication-title: Prog. Polym. Sci. doi: 10.1016/j.progpolymsci.2007.01.008 – volume: 87 start-page: 139 year: 1994 ident: 10.1016/j.memsci.2013.05.016_bib9 article-title: Effect of photocrosslinking on permeability and permoselectivity of gases through benzophenone-containing polyimide publication-title: J. Membr. Sci. doi: 10.1016/0376-7388(93)E0098-X – volume: 47 start-page: 10275 year: 2011 ident: 10.1016/j.memsci.2013.05.016_bib42 article-title: Sharp separation of C2/C3 hydrocarbon mixtures by zeolitic imidazolate framework-8 (ZIF-8) membranes synthesized in aqueous solutions publication-title: Chem. Commun. doi: 10.1039/c1cc14051e – volume: 36 start-page: 1882 year: 2003 ident: 10.1016/j.memsci.2013.05.016_bib46 article-title: Solid-state covalent cross-linking of polyimide membranes for carbon dioxide plasticization reduction publication-title: Macromolecules doi: 10.1021/ma025938m – volume: 41 start-page: 1393 year: 2002 ident: 10.1016/j.memsci.2013.05.016_bib1 article-title: Reviews future directions of membrane gas separation technology publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie0108088 – volume: 43 start-page: 7813 year: 2010 ident: 10.1016/j.memsci.2013.05.016_bib8 article-title: Carbon dioxide diffusion and plasticization in fluorinated polyimides publication-title: Macromolecules doi: 10.1021/ma1010205 – volume: 211 start-page: 299 year: 2003 ident: 10.1016/j.memsci.2013.05.016_bib61 article-title: Defining the challenges for C3H6/C3H8 separation using polymeric membranes publication-title: J. Membr. Sci. doi: 10.1016/S0376-7388(02)00430-1 – volume: 4 start-page: 4171 year: 2011 ident: 10.1016/j.memsci.2013.05.016_bib27 article-title: Poly-/metal-benzimidazole nano-composite membranes for hydrogen purification publication-title: Energy Environ. Sci. doi: 10.1039/c1ee01324f – volume: 54 start-page: 774 year: 2013 ident: 10.1016/j.memsci.2013.05.016_bib28 article-title: Sorption, swelling, and free volume of polybenzimidazole (PBI) and PBI/zeolitic imidazolate framework (ZIF-8) nano-composite membranes for pervaporation publication-title: Polymer doi: 10.1016/j.polymer.2012.11.056 – volume: 415–416 start-page: 577 year: 2012 ident: 10.1016/j.memsci.2013.05.016_bib41 article-title: Polybenzimidazole (PBI)/zeolitic imidazolate frameworks (ZIF-8) mixed matrix membranes for pervaporation dehydration of alcohols publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2012.05.052 – volume: 38 start-page: 229 year: 2013 ident: 10.1016/j.memsci.2013.05.016_bib40 article-title: High performance ZIF-8/PBI nano-composite membranes for high temperature hydrogen separation consisting of carbon monoxide and water vapor publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2012.10.045 – volume: 220 start-page: 59 year: 2003 ident: 10.1016/j.memsci.2013.05.016_bib16 article-title: Imide-siloxane block copolymer/silica hybrid membranes: preparation, characterization and gas separation properties publication-title: J. Membr. Sci. doi: 10.1016/S0376-7388(03)00215-1 – volume: 132 start-page: 76 year: 2010 ident: 10.1016/j.memsci.2013.05.016_bib36 article-title: Highly permeable zeolite imidazolate framework-8 membranes for CO2/CH4 separation publication-title: J. Am. Chem. Soc. doi: 10.1021/ja909263x – volume: 121 start-page: 197 year: 1996 ident: 10.1016/j.memsci.2013.05.016_bib4 article-title: Permeation and separation properties of polyimide membranes to olefins and paraffins publication-title: J. Membr. Sci. doi: 10.1016/S0376-7388(96)00182-2 – volume: 43 start-page: 58 year: 2010 ident: 10.1016/j.memsci.2013.05.016_bib32 article-title: Synthesis, structure, and carbon dioxide capture properties of zeolitic imidazolate frameworks publication-title: Acc. Chem. Res. doi: 10.1021/ar900116g – volume: 49 start-page: 1659 year: 2008 ident: 10.1016/j.memsci.2013.05.016_bib22 article-title: Gas transport properties of MgO filled poly (1-trimethylsilyl-1-propyne) nanocomposites publication-title: Polymer doi: 10.1016/j.polymer.2008.01.004 – volume: 130 start-page: 12626 year: 2008 ident: 10.1016/j.memsci.2013.05.016_bib33 article-title: Crystals as molecules: post synthesis covalent functionalization of zeolitic imidazolate frameworks publication-title: J. Am. Chem. Soc. doi: 10.1021/ja805222x – volume: 282 start-page: 32 year: 2006 ident: 10.1016/j.memsci.2013.05.016_bib45 article-title: Effects of CO2 exposure and physical aging on the gas permeability of thin 6FDA-based polyimide membranes. Part 2. With crosslinking publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2006.05.003 – volume: 243 start-page: 155 year: 2004 ident: 10.1016/j.memsci.2013.05.016_bib55 article-title: Morphological aspects and structure control of dual-layer asymmetric hollow fiber membranes formed by a simultaneous co-extrusion approach publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2004.06.014 – volume: 53 start-page: 1745 year: 2007 ident: 10.1016/j.memsci.2013.05.016_bib59 article-title: Matrimid®/MgO mixed matrix membranes for pervaporation publication-title: AIChE J. doi: 10.1002/aic.11198 – volume: 52 start-page: 2898 year: 2006 ident: 10.1016/j.memsci.2013.05.016_bib13 article-title: Fabrication of mixed matrix hollow fibers with intimate polymer-zeolite interface for gas separation publication-title: AIChE J. doi: 10.1002/aic.10909 – volume: 86 start-page: 881 year: 2002 ident: 10.1016/j.memsci.2013.05.016_bib12 article-title: Challenges in forming successful mixed matrix membranes with rigid polymeric materials publication-title: J. Appl. Polym. Sci. doi: 10.1002/app.10998 – volume: 84 start-page: 59 year: 2005 ident: 10.1016/j.memsci.2013.05.016_bib57 article-title: The evolution of physicochemical and transport properties of 6FDA-durene toward carbon membranes; from polymer, intermediate to carbon publication-title: Microporous Mesoporous Mater. doi: 10.1016/j.micromeso.2005.04.026 – volume: 132 start-page: 18030 year: 2010 ident: 10.1016/j.memsci.2013.05.016_bib39 article-title: Structural evolution of zeolitic imidazolate framework-8 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja109268m – volume: 277 start-page: 28 year: 2006 ident: 10.1016/j.memsci.2013.05.016_bib14 article-title: Dual-layer polyethersulfone (PES)/BTDA-TDI/MDI co-polyimide (P84) hollow fiber membranes with a submicron PES–zeolite beta mixed matrix dense-selective layer for gas separation publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2005.10.008 – volume: 415–416 start-page: 375 year: 2012 ident: 10.1016/j.memsci.2013.05.016_bib51 article-title: Effects of thermally labile saccharide units on the gas separation performance of highly permeable polyimide membranes publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2012.05.022 – volume: 14 start-page: 27 year: 1998 ident: 10.1016/j.memsci.2013.05.016_bib7 article-title: Plasticization-resistant glassy polyimide membranes for CO2/CO4 separations publication-title: Sep. Purif. Technol. doi: 10.1016/S1383-5866(98)00057-4 – volume: 361 start-page: 28 year: 2010 ident: 10.1016/j.memsci.2013.05.016_bib26 article-title: Molecular sieving realized with ZIF-8/Matrimid mixed-matrix membranes publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2010.06.017 – volume: 302 start-page: 207 year: 2007 ident: 10.1016/j.memsci.2013.05.016_bib23 article-title: Enhanced gas separation performance of nanocomposite membranes using MgO nanoparticles publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2007.06.062 – volume: 390–391 start-page: 141 year: 2012 ident: 10.1016/j.memsci.2013.05.016_bib50 article-title: Natural gas purification and olefin/paraffin separation using cross-linkable 6FDA-Durene/DABA co-polyimides grafted with α, β, and γ-cyclodextrin publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2011.11.030 – volume: 423–424 start-page: 392 year: 2012 ident: 10.1016/j.memsci.2013.05.016_bib52 article-title: Natural gas purification and olefin/paraffin separation using cross-linkable dual-layer hollow fiber membranes comprising β-cyclodextrin publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2012.08.036 – volume: 211 start-page: 311 year: 2003 ident: 10.1016/j.memsci.2013.05.016_bib20 article-title: Mixed matrix membranes using carbon molecular sieves I. Preparation and experimental results publication-title: J. Membr. Sci. doi: 10.1016/S0376-7388(02)00429-5 – volume: 389 start-page: 34 year: 2012 ident: 10.1016/j.memsci.2013.05.016_bib6 article-title: High performance ZIF-8/6FDA-DAM mixed matrix membrane for propylene/propane separation publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2011.10.003 – volume: 390–391 start-page: 93 year: 2012 ident: 10.1016/j.memsci.2013.05.016_bib43 article-title: Effective separation of propylene/propane binary mixtures by ZIF-8 membranes publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2011.11.024 – volume: 275 start-page: 17 year: 2006 ident: 10.1016/j.memsci.2013.05.016_bib58 article-title: Effects of novel silane modification of zeolite surface on polymer chain rigidification and partial pore blockage in polyethersulfone (PES)–zeolite A mixed matrix membranes publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2005.08.015 – volume: 1 start-page: 634 year: 2011 ident: 10.1016/j.memsci.2013.05.016_bib19 article-title: Silica nanohybrid membranes with high CO2 affinity for green hydrogen purification publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201100195 – volume: 35 start-page: 10560 year: 2010 ident: 10.1016/j.memsci.2013.05.016_bib24 article-title: Molecular-level mixed matrix membranes comprising Pebax® and POSS for hydrogen purification via preferential CO2 removal publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2010.07.124 – volume: 214 start-page: 57 year: 2003 ident: 10.1016/j.memsci.2013.05.016_bib47 article-title: Development of asymmetric 6FDA-2,6DAT hollow fiber membranes for CO2/CH4 separation: Part 2. Suppression of plasticization publication-title: J. Membr. Sci. doi: 10.1016/S0376-7388(02)00535-5 – volume: 377 start-page: 75 year: 2011 ident: 10.1016/j.memsci.2013.05.016_bib53 article-title: Crosslinkable mixed matrix membranes with surface modified molecular sieves for natural gas purification: I. Preparation and experimental results publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2011.04.010 – ident: 10.1016/j.memsci.2013.05.016_bib10 – volume: 4 start-page: 201 year: 2011 ident: 10.1016/j.memsci.2013.05.016_bib49 article-title: Grafting thermally labile molecules on cross-linkable polyimide to design membrane materials for natural gas purification and CO2 capture publication-title: Energy Environ. Sci. doi: 10.1039/C0EE00278J – volume: 32 start-page: 375 year: 1999 ident: 10.1016/j.memsci.2013.05.016_bib5 article-title: Basis of permeability/selectivity tradeoff relations in polymeric gas separation membranes publication-title: Macromolecules doi: 10.1021/ma9814548 – volume: 210 start-page: 55 year: 2002 ident: 10.1016/j.memsci.2013.05.016_bib60 article-title: C2 and C3 hydrocarbon separations in poly (1,5-naphthalene-2,2'-bis(3,4-phthalic) hexafluoropropane) diimide (6FDA-1,5-NDA) dense membranes publication-title: J. Membr. Sci. doi: 10.1016/S0376-7388(02)00374-5 – volume: 246 start-page: 13 year: 2005 ident: 10.1016/j.memsci.2013.05.016_bib17 article-title: Membranes for gas separation based on poly (1-trimethylsilyl-1-propyne)-silica nanocomposites publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2004.05.015 – volume: 1 start-page: 77 year: 2011 ident: 10.1016/j.memsci.2013.05.016_bib30 article-title: Are MOF membranes better in gas separation than those made of zeolites publication-title: Curr. Opinion Chem. Eng. doi: 10.1016/j.coche.2011.08.007 – volume: 302 start-page: 254 year: 2007 ident: 10.1016/j.memsci.2013.05.016_bib44 article-title: Synthesis, cross-linking and carbonization of co-polyimides containing internal acetylene units for gas separation publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2007.06.068 – volume: 47 start-page: 2794 year: 2008 ident: 10.1016/j.memsci.2013.05.016_bib25 article-title: Gas permeability properties of mixed-matrix Matrimid membranes containing carbon aerogel: a material with both micropores and mesopores publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie0713689 – volume: 131 start-page: 10368 year: 2009 ident: 10.1016/j.memsci.2013.05.016_bib34 article-title: Zeolitic imidazolate frameworks for kinetic separation of propane and propene publication-title: J. Am. Chem. Soc. doi: 10.1021/ja9039983 – volume: 103 start-page: 10186 year: 2006 ident: 10.1016/j.memsci.2013.05.016_bib31 article-title: Exceptional chemical and thermal stability of zeolitic imidazolate frameworks publication-title: PNAS doi: 10.1073/pnas.0602439103 – volume: 131 start-page: 16000 year: 2009 ident: 10.1016/j.memsci.2013.05.016_bib37 article-title: Zeolitic imidazolate framework membrane with molecular sieving properties by microwave-assisted solvothermal synthesis publication-title: J. Am. Chem. Soc. doi: 10.1021/ja907359t – volume: 34 start-page: 6492 year: 2009 ident: 10.1016/j.memsci.2013.05.016_bib18 article-title: In-situ fabrication of cross-linked PEO/silica reverse-selective membranes for hydrogen purification publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2009.05.137 – volume: 34 start-page: 561 year: 2009 ident: 10.1016/j.memsci.2013.05.016_bib3 article-title: The strategies of molecular architecture and modification of polyimide based membranes for CO2 removal from natural gas-A review publication-title: Prog. Polym. Sci. doi: 10.1016/j.progpolymsci.2008.12.004 – volume: 133 start-page: 8900 year: 2011 ident: 10.1016/j.memsci.2013.05.016_bib38 article-title: Opening the gate: framework flexibility in ZIF-8 explored by experiments and simulations publication-title: J. Am. Chem. Soc. doi: 10.1021/ja202154j – volume: 186 start-page: 183 year: 2001 ident: 10.1016/j.memsci.2013.05.016_bib54 article-title: Gas permeability, diffusivity, solubility, and aging characteristics of 6FDA-durene polyimide membranes publication-title: J. Membr. Sci. doi: 10.1016/S0376-7388(01)00333-7 – volume: 44 start-page: 6046 year: 2011 ident: 10.1016/j.memsci.2013.05.016_bib62 article-title: Sub-Tg cross-linking of a polyimide membrane for enhanced CO2 plasticization resistance for natural gas separation publication-title: Macromolecules doi: 10.1021/ma201033j – volume: 73 start-page: 119 year: 1992 ident: 10.1016/j.memsci.2013.05.016_bib11 article-title: Preparation and characterization of thin-film zeolite-PDMS composite membranes publication-title: J. Membr. Sci. doi: 10.1016/0376-7388(92)80122-Z – volume: 47 start-page: 3064 year: 2012 ident: 10.1016/j.memsci.2013.05.016_bib21 article-title: High activated carbon loading mixed matrix membranes for gas separations publication-title: J. Mater. Sci. doi: 10.1007/s10853-011-6138-8 – volume: 369 start-page: 284 year: 2011 ident: 10.1016/j.memsci.2013.05.016_bib35 article-title: Ethene/ethane separation by the MOF membrane ZIF-8: molecular correlation of permeation, adsorption, diffusion publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2010.12.001 |
SSID | ssj0017089 |
Score | 2.532623 |
Snippet | Using three 6FDA-based polyimides (6FDA-Durene, 6FDA-Durene/DABA (9/1), 6FDA-Durene/DABA (7/3)) and nano-size zeolitic imidazolate framework-8 (ZIF-8), we have... |
SourceID | proquest pascalfrancis crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 173 |
SubjectTerms | Annealing artificial membranes Carbon dioxide Chemistry Colloidal state and disperse state Crosslinking Exact sciences and technology gases General and physical chemistry Membranes methane Mixed matrix membrane mixing nanoparticles Nanostructure natural gas Natural gas purification olefin Olefin/paraffin separation Permeability polymers Purification Selectivity temperature Thermal cross-linking |
Title | Natural gas purification and olefin/paraffin separation using thermal cross-linkable co-polyimide/ZIF-8 mixed matrix membranes |
URI | https://dx.doi.org/10.1016/j.memsci.2013.05.016 https://www.proquest.com/docview/1513451570 https://www.proquest.com/docview/1671622574 https://www.proquest.com/docview/1803097243 |
Volume | 444 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEBYhvbSU0ifdpF1U6FVd25It-RhCw6ale2kDoRchyVJwWa_NPiC95LdnRraXhtIEevNjZMua8egTM_OJkI-ZLApVVWC8pckYWEjOjCwrJkJayVLlkkfK_G-LYn4hvlzmlwfkdKyFwbTKwff3Pj166-HKbBjNWVfXs-8JEpFwpTAgI5JYSy2ERCv_dLNP80hlErfBQ2GG0mP5XMzxanwDj8YEL97zdxb_mp6edmYDgxb63S7-ctxxNjp7Tp4NMJKe9D19QQ786iV58ge54CtyszCRU4NemQ3tdmvMCYpqoGZV0XbpAxbimbUJcEA3vicBh9uYCn9FERg20Dr2k2GcF4usqGtZ1y5_101d-dnPc7Bt2tTXvqINcv1fU_hWWH-D_3xNLs4-_zids2G3BeYAhGxZFUqTOMtNklohnXQKg25FlnKf-zS4rAoq4cFaVVoHC7UiABRIvUiUSD2AQP6GHK7alX9LqHfSeltkpfIWln9GBXxyxkNSOiulmhA-DrJ2AxU57oix1GPO2S_dq0ajanSSa7g4IWzfquupOB6Ql6P-9B2T0jBbPNByekfd-9dlMpcCMOeEfBj1r-F3xBgLjGy722gAUFwARpTJPTIF0naBrxT3yCiMfclM8KP__oxj8hjP-tTDd-Rwu9759wChtnYa_5EpeXRy_nW-uAWo3x1y |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEBZhc2hLKX3S7SNVoVexsmVb8jGEht0m2UsTCL0ISZaCw3pt9gHpJb89M34sDaUJ9GakkSxpRqMRM_OJkG-xzDJVFCC8uYkZSEjKjMwLloSokLlKpWgh88_m2fQi-XGZXu6RoyEXBsMqe93f6fRWW_clk341J01ZTn5yBCIRSqFDJuGYS72P6FTpiOwfzk6m850zQfL2JTykZ9hgyKBrw7wqX0HvGOMlOgjP7F8n1PPGrGHdQvfgxV-6uz2Qjl-SF70lSQ-7wb4ie375mjz7A1_wDbmdmxZWg16ZNW22KwwLajlBzbKg9cIHzMUzKxPgg659hwMO1RgNf0XRNqygdTtOhq5ezLOirmZNvfhdVmXhJ79mIN60Km98QSuE-7-hMFe4goMKfUsujr-fH01Z_-ACc2CHbFgRcsOdFYZHNpFOOoV-tyyOhE99FFxcBMVFsFbl1sFdLQtgDUQ-4SqJPNiB4h0ZLeulf0-od9J6m8W58hZugEYF7DkWgefOSqnGRAyLrF2PRo6PYiz0EHZ2rTvWaGSN5qmGwjFhu1ZNh8bxCL0c-KfvSZWGA-ORlgf32L37XSxTCWKWjsnXgf8adiS6WWBl6-1agw0lEjATJX-AJkPkLlCXyQM0Ct1fMk7Eh_-exhfyZHp-dqpPZ_OTj-Qp1nSRiJ_IaLPa-s9gUW3sQb9j7gBWfiAj |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Natural+gas+purification+and+olefin%2Fparaffin+separation+using+thermal+cross-linkable+co-polyimide%2FZIF-8+mixed+matrix+membranes&rft.jtitle=Journal+of+membrane+science&rft.au=ASKARI%2C+Mohammad&rft.au=CHUNG%2C+Tai-Shung&rft.date=2013-10-01&rft.pub=Elsevier&rft.issn=0376-7388&rft.volume=444&rft.spage=173&rft.epage=183&rft_id=info:doi/10.1016%2Fj.memsci.2013.05.016&rft.externalDBID=n%2Fa&rft.externalDocID=27574545 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0376-7388&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0376-7388&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0376-7388&client=summon |