Estimation of value-at-risk for energy commodities via fat-tailed GARCH models

The choice of an appropriate distribution for return innovations is important in VaR applications owing to its ability to directly affect the estimation quality of the required quantiles. This study investigates the influence of fat-tailed innovation process on the performance of one-day-ahead VaR e...

Full description

Saved in:
Bibliographic Details
Published inEnergy economics Vol. 30; no. 3; pp. 1173 - 1191
Main Authors Hung, Jui-Cheng, Lee, Ming-Chih, Liu, Hung-Chun
Format Journal Article
LanguageEnglish
Published Amsterdam Elsevier B.V 01.05.2008
Elsevier Science
Elsevier
Elsevier Science Ltd
SeriesEnergy Economics
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The choice of an appropriate distribution for return innovations is important in VaR applications owing to its ability to directly affect the estimation quality of the required quantiles. This study investigates the influence of fat-tailed innovation process on the performance of one-day-ahead VaR estimates using three GARCH models (GARCH- N, GARCH- t and GARCH-HT). Daily spot prices of five energy commodities (WTI crude oil, Brent crude oil, heating oil #2, propane and New York Harbor Conventional Gasoline Regular) are used to compare the accuracy and efficiency of the VaR models. Empirical results suggest that for asset returns that exhibit leptokurtic and fat-tailed features, the VaR estimates generated by the GARCH-HT models have good accuracy at both low and high confidence levels. Additionally, MRSB indicates that the GARCH-HT model is more efficient than alternatives for most cases at high confidence levels. These findings suggest that the heavy-tailed distribution is more suitable for energy commodities, particularly VaR calculation.
AbstractList The choice of an appropriate distribution for return innovations is important in VaR applications owing to its ability to directly affect the estimation quality of the required quantiles. This study investigates the influence of fat-tailed innovation process on the performance of one-day-ahead VaR estimates using three GARCH models (GARCH-N, GARCH-t and GARCH-HT). Daily spot prices of five energy commodities (WTI crude oil, Brent crude oil, heating oil #2, propane and New York Harbor Conventional Gasoline Regular) are used to compare the accuracy and efficiency of the VaR models. Empirical results suggest that for asset returns that exhibit leptokurtic and fat-tailed features, the VaR estimates generated by the GARCH-HT models have good accuracy at both low and high confidence levels. Additionally, MRSB indicates that the GARCH-HT model is more efficient than alternatives for most cases at high confidence levels. These findings suggest that the heavy-tailed distribution is more suitable for energy commodities, particularly VaR calculation.
Influence of fat-tailed innovation process on the performance of one-day-ahead Value-at-Risk (VaR) estimates using three GARCH models is investigated. It suggests that the VaR forecasts obtained by the GARCH-HT model provide more satisfactory results in both accurate and efficient concerns as a whole. On the aspect of statistical significance, the superiority test indicates that models that succeed in accuracy tests are found to be indifferent with the competing models when risk managers employ a quadratic loss function to reflect their preferences. Findings imply that fat tails in return innovation process indeed play an important role in VaR estimates and should be considered in risk management.
The choice of an appropriate distribution for return innovations is important in VaR applications owing to its ability to directly affect the estimation quality of the required quantiles. This study investigates the influence of fat-tailed innovation process on the performance of one-day-ahead VaR estimates using three GARCH models (GARCH-N, GARCH-t and GARCH-HT). Daily spot prices of five energy commodities (WTI crude oil, Brent crude oil, heating oil #2, propane and New York Harbor Conventional Gasoline Regular) are used to compare the accuracy and efficiency of the VaR models. Empirical results suggest that for asset returns that exhibit leptokurtic and fat-tailed features, the VaR estimates generated by the GARCH-HT models have good accuracy at both low and high confidence levels. Additionally, MRSB indicates that the GARCH-HT model is more efficient than alternatives for most cases at high confidence levels. These findings suggest that the heavy-tailed distribution is more suitable for energy commodities, particularly VaR calculation. [PUBLICATION ABSTRACT]
The choice of an appropriate distribution for return innovations is important in VaR applications owing to its ability to directly affect the estimation quality of the required quantiles. This study investigates the influence of fat-tailed innovation process on the performance of one-day-ahead VaR estimateis using three GARCH models (GARCH-N, GARCH-t and GARCH-HT). Daily spot prices of five energy commodities (WTI crude oil, Brent crude oil, heating oil #2, propane and New York Harbor Conventional Gasoline Regular) are used to compare the accuracy and efficiency of the VaR models. Empirical results suggest that for asset returns that exhibit leptokurtic and fat-tailed features, the VaR estimates generated by the GARCH-HT models have good accuracy at both low and high confidence levels. Additionally, MRSB indicates that the GARCH-HT model is more efficient than alternatives for most cases at high confidence levels. These findings suggest that the heavy-tailed distribution is more suitable for energy commodities, particularly VaR calculation.
The choice of an appropriate distribution for return innovations is important in VaR applications owing to its ability to directly affect the estimation quality of the required quantiles. This study investigates the influence of fat-tailed innovation process on the performance of one-day-ahead VaR estimates using three GARCH models (GARCH-N, GARCH-t and GARCH-HT). Daily spot prices of five energy commodities (WTI crude oil, Brent crude oil, heating oil #2, propane and New York Harbor Conventional Gasoline Regular) are used to compare the accuracy and efficiency of the VaR models. Empirical results suggest that for asset returns that exhibit leptokurtic and fat-tailed features, the VaR estimates generated by the GARCH-HT models have good accuracy at both low and high confidence levels. Additionally, MRSB indicates that the GARCH-HT model is more efficient than alternatives for most cases at high confidence levels. These findings suggest that the heavy-tailed distribution is more suitable for energy commodities, particularly VaR calculation. All rights reserved, Elsevier
The choice of an appropriate distribution for return innovations is important in VaR applications owing to its ability to directly affect the estimation quality of the required quantiles. This study investigates the influence of fat-tailed innovation process on the performance of one-day-ahead VaR estimates using three GARCH models (GARCH- N, GARCH- t and GARCH-HT). Daily spot prices of five energy commodities (WTI crude oil, Brent crude oil, heating oil #2, propane and New York Harbor Conventional Gasoline Regular) are used to compare the accuracy and efficiency of the VaR models. Empirical results suggest that for asset returns that exhibit leptokurtic and fat-tailed features, the VaR estimates generated by the GARCH-HT models have good accuracy at both low and high confidence levels. Additionally, MRSB indicates that the GARCH-HT model is more efficient than alternatives for most cases at high confidence levels. These findings suggest that the heavy-tailed distribution is more suitable for energy commodities, particularly VaR calculation.
Author Lee, Ming-Chih
Hung, Jui-Cheng
Liu, Hung-Chun
Author_xml – sequence: 1
  givenname: Jui-Cheng
  surname: Hung
  fullname: Hung, Jui-Cheng
  email: hongrc@mail.ypu.edu.tw
  organization: Department of Finance, Yuanpei University, N0.306. Yuanpei St. Hsin Chu 300, Taiwan
– sequence: 2
  givenname: Ming-Chih
  surname: Lee
  fullname: Lee, Ming-Chih
  organization: Department of Banking & Finance, Tamkang University, 151 Ying-Chuan Road, Tamsui 251, Taipei County, Taiwan
– sequence: 3
  givenname: Hung-Chun
  surname: Liu
  fullname: Liu, Hung-Chun
  organization: Department of Banking & Finance, Tamkang University, 151 Ying-Chuan Road, Tamsui 251, Taipei County, Taiwan
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=20183908$$DView record in Pascal Francis
http://econpapers.repec.org/article/eeeeneeco/v_3a30_3ay_3a2008_3ai_3a3_3ap_3a1173-1191.htm$$DView record in RePEc
BookMark eNqFkUFr3DAQhU1JoZu0v6AXU2hvdmcsW5YOPYQlTQpLC6U9C1ket9p6ra3kXdh_n3E25NBDIxgNSN97jPQus4spTJRlbxFKBJQftyVN5EJZAbQlYglQv8hWqFpRSFR4ka0Aayi0UuJVdpnSFgAa2ahV9vUmzX5nZx-mPAz50Y4HKuxcRJ_-5EOIORvHX6fchd0u9H72lPKjt_nAzGz9SH1-e_19fZfzLY3pdfZysGOiN4_9Kvv5-ebH-q7YfLv9sr7eFK5R9Vy42naCFNrKSucaSX0LCjrsdNNrcFVH4CQJoTslhLLCKpDdMGiqO-Y1iqvsw9l3H8PfA6XZ7HxyNI52onBIRkiFrdLiWRC1kFoqeB6s1YMng-_-AbfhECd-rakQJTYCa4bEGXIxpBRpMPvI3xxPBsEskZmteYjMLJEZRMORsWpzVkXak3uSEK-JFvhohBXA24mLlYqbX8649lyIrWAzjeb3vGO794-T2uTsOEQ7OZ-ebCtAJTQsL_p05jhAOnqKJjlPk6PeR3Kz6YP_79j317PHIQ
CODEN EECODR
CitedBy_id crossref_primary_10_1016_j_eneco_2019_03_019
crossref_primary_10_1109_ACCESS_2023_3285082
crossref_primary_10_1016_j_econmod_2015_06_005
crossref_primary_10_3390_risks9080144
crossref_primary_10_1002_ijfe_2214
crossref_primary_10_1016_j_eneco_2011_01_007
crossref_primary_10_1016_j_eneco_2022_106119
crossref_primary_10_2139_ssrn_3013807
crossref_primary_10_1016_j_eneco_2010_11_002
crossref_primary_10_1080_00036846_2019_1644442
crossref_primary_10_1002_for_2249
crossref_primary_10_1016_j_eneco_2017_01_012
crossref_primary_10_1016_j_ijhydene_2023_08_253
crossref_primary_10_1016_j_najef_2012_06_012
crossref_primary_10_1016_j_ribaf_2014_09_010
crossref_primary_10_1016_j_eneco_2011_11_009
crossref_primary_10_2139_ssrn_2275428
crossref_primary_10_3390_jrfm11020030
crossref_primary_10_2139_ssrn_2138734
crossref_primary_10_1016_j_eneco_2015_08_007
crossref_primary_10_1016_j_eneco_2009_03_009
crossref_primary_10_1007_s41096_019_00065_8
crossref_primary_10_1016_j_jcomm_2024_100391
crossref_primary_10_1002_ijfe_2602
crossref_primary_10_1080_1540496X_2016_1142218
crossref_primary_10_1016_j_reseneeco_2020_101163
crossref_primary_10_1016_j_eneco_2019_01_001
crossref_primary_10_1016_j_cam_2016_10_012
crossref_primary_10_1016_j_resourpol_2023_104426
crossref_primary_10_1016_j_eneco_2012_03_010
crossref_primary_10_3390_su11030720
crossref_primary_10_1108_03684921011043233
crossref_primary_10_1016_j_ijinfomgt_2018_12_013
crossref_primary_10_1371_journal_pone_0295853
crossref_primary_10_1016_j_pacfin_2018_06_003
crossref_primary_10_1016_j_ijforecast_2011_10_002
crossref_primary_10_2139_ssrn_2758373
crossref_primary_10_1080_1351847X_2013_862173
crossref_primary_10_1007_s10479_022_04971_2
crossref_primary_10_18261_ISSN1504_3134_2014_01_02
crossref_primary_10_1016_j_crm_2022_100435
crossref_primary_10_1016_j_iref_2022_11_035
crossref_primary_10_1016_j_jempfin_2019_12_004
crossref_primary_10_1016_j_eneco_2024_107500
crossref_primary_10_1016_j_eneco_2009_02_005
crossref_primary_10_3390_buildings14010182
crossref_primary_10_1016_j_eswa_2009_12_022
crossref_primary_10_1080_1351847X_2023_2241516
crossref_primary_10_3390_su11143892
crossref_primary_10_1016_j_omega_2022_102672
crossref_primary_10_1016_j_resglo_2024_100229
crossref_primary_10_1142_S0219477519500251
crossref_primary_10_1016_j_jcomm_2023_100351
crossref_primary_10_3390_economies12060140
crossref_primary_10_1016_j_energy_2020_118796
crossref_primary_10_1007_s10690_018_9260_7
crossref_primary_10_1016_j_apenergy_2012_01_070
crossref_primary_10_1016_j_eneco_2023_106643
crossref_primary_10_1108_RAF_01_2017_0006
crossref_primary_10_1016_j_resourpol_2021_102220
crossref_primary_10_5547_01956574_37_1_dbun
crossref_primary_10_2139_ssrn_3015077
crossref_primary_10_1080_02331888_2018_1551895
crossref_primary_10_1002_fut_22017
crossref_primary_10_1002_rfe_1139
crossref_primary_10_1111_opec_12024
crossref_primary_10_1016_S2110_7017_13_60051_7
crossref_primary_10_1108_JIABR_07_2019_0122
crossref_primary_10_2139_ssrn_2870521
crossref_primary_10_1057_s41283_022_00100_2
crossref_primary_10_4236_jfrm_2022_111008
crossref_primary_10_1016_j_eneco_2013_10_011
crossref_primary_10_1007_s40995_018_0484_1
crossref_primary_10_1016_j_energy_2021_120327
crossref_primary_10_2139_ssrn_1698159
crossref_primary_10_1016_j_jbankfin_2017_10_004
crossref_primary_10_1016_j_econmod_2013_12_023
crossref_primary_10_2139_ssrn_2949767
crossref_primary_10_1016_j_eneco_2017_06_015
crossref_primary_10_3390_su12093908
crossref_primary_10_35774_jee2023_03_430
crossref_primary_10_1016_j_eneco_2015_12_003
crossref_primary_10_1016_j_physa_2022_127526
crossref_primary_10_1016_j_econmod_2016_11_003
crossref_primary_10_1080_03610926_2018_1481970
crossref_primary_10_1016_j_ribaf_2020_101197
crossref_primary_10_1080_00036846_2024_2331970
crossref_primary_10_1016_j_eneco_2015_06_010
crossref_primary_10_3390_en15239003
crossref_primary_10_1016_j_jempfin_2010_05_004
crossref_primary_10_30586_pek_1362268
crossref_primary_10_1016_j_eneco_2017_04_027
crossref_primary_10_1016_j_eneco_2021_105452
crossref_primary_10_1002_asmb_2828
crossref_primary_10_1016_j_eneco_2014_02_019
crossref_primary_10_1016_j_jeconbus_2013_04_005
crossref_primary_10_1016_j_cor_2015_05_001
crossref_primary_10_2139_ssrn_1701703
crossref_primary_10_1080_03610918_2018_1535069
crossref_primary_10_1016_j_eneco_2018_07_009
crossref_primary_10_1016_j_physa_2021_126546
crossref_primary_10_1111_acfi_13032
crossref_primary_10_1002_fut_22154
crossref_primary_10_2139_ssrn_3519642
crossref_primary_10_1016_j_eneco_2019_07_025
crossref_primary_10_3917_ecoi_129_0119
crossref_primary_10_1002_fut_20487
crossref_primary_10_29121_granthaalayah_v4_i9_2016_2550
crossref_primary_10_1080_00949655_2018_1427240
crossref_primary_10_1016_j_eneco_2009_06_018
crossref_primary_10_1016_j_econmod_2010_11_016
crossref_primary_10_1016_j_eneco_2010_11_013
crossref_primary_10_1016_j_iref_2024_103434
crossref_primary_10_1016_j_rfe_2010_03_001
crossref_primary_10_2139_ssrn_3037158
crossref_primary_10_2139_ssrn_2402622
crossref_primary_10_1016_j_econmod_2012_06_029
crossref_primary_10_1016_j_irfa_2017_11_007
crossref_primary_10_2139_ssrn_3389599
crossref_primary_10_1016_j_eneco_2018_03_032
crossref_primary_10_1016_j_eneco_2010_07_010
crossref_primary_10_1016_j_eswa_2011_09_108
crossref_primary_10_1016_j_eap_2019_03_002
crossref_primary_10_1016_j_eneco_2019_104481
Cites_doi 10.1016/S0927-5398(00)00022-0
10.2307/2527341
10.1016/0304-4076(92)90064-X
10.1023/B:REQU.0000015851.78720.a9
10.1016/S0140-9883(03)00052-5
10.1002/jae.710
10.1016/S0140-9883(02)00111-1
10.2307/2329368
10.2307/1403192
10.2307/1925546
10.2307/1392185
10.1002/for.868
10.1016/S0140-9883(99)00020-1
10.1016/S1058-3300(02)00071-X
10.1080/09603100500108410
10.1162/003465300558597
10.3905/jpm.24.2.102
10.1016/j.eneco.2006.04.005
10.2469/faj.v58.n5.2471
10.1016/j.jempfin.2003.04.003
10.3905/jod.1995.407942
10.1016/0304-4076(86)90063-1
10.2307/1912773
ContentType Journal Article
Copyright 2007 Elsevier B.V.
2008 INIST-CNRS
Copyright Elsevier Science Ltd. May 2008
Copyright_xml – notice: 2007 Elsevier B.V.
– notice: 2008 INIST-CNRS
– notice: Copyright Elsevier Science Ltd. May 2008
DBID IQODW
DKI
X2L
AAYXX
CITATION
7ST
7TA
7TQ
8BJ
8FD
C1K
DHY
DON
FQK
JBE
JG9
SOI
7U1
7U2
DOI 10.1016/j.eneco.2007.11.004
DatabaseName Pascal-Francis
RePEc IDEAS
RePEc
CrossRef
Environment Abstracts
Materials Business File
PAIS Index
International Bibliography of the Social Sciences (IBSS)
Technology Research Database
Environmental Sciences and Pollution Management
PAIS International
PAIS International (Ovid)
International Bibliography of the Social Sciences
International Bibliography of the Social Sciences
Materials Research Database
Environment Abstracts
Risk Abstracts
Safety Science and Risk
DatabaseTitle CrossRef
Materials Research Database
International Bibliography of the Social Sciences (IBSS)
Technology Research Database
PAIS International
Environment Abstracts
Materials Business File
Environmental Sciences and Pollution Management
Risk Abstracts
Safety Science and Risk
DatabaseTitleList
Environment Abstracts
Materials Research Database
Risk Abstracts
International Bibliography of the Social Sciences (IBSS)

Database_xml – sequence: 1
  dbid: DKI
  name: RePEc IDEAS
  url: http://ideas.repec.org/
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Economics
Applied Sciences
EISSN 1873-6181
EndPage 1191
ExternalDocumentID 1451003731
10_1016_j_eneco_2007_11_004
eeeeneeco_v_3a30_3ay_3a2008_3ai_3a3_3ap_3a1173_1191_htm
20183908
S0140988307001442
Genre Feature
GeographicLocations USA, New York, New York, New York Harbor
GeographicLocations_xml – name: USA, New York, New York, New York Harbor
GroupedDBID --K
--M
.~1
0R~
1B1
1RT
1~.
1~5
29G
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
9JO
AABNK
AACTN
AAEDT
AAEDW
AAFFL
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAPFB
AAQFI
AAQXK
AARJD
AAXUO
ABFNM
ABFRF
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACHQT
ACIWK
ACRLP
ACROA
ADBBV
ADEZE
ADFHU
ADIYS
ADMUD
AEBSH
AEFWE
AEKER
AEYQN
AFKWA
AFODL
AFRAH
AFTJW
AGHFR
AGTHC
AGUBO
AGYEJ
AHHHB
AHIDL
AIEXJ
AIIAU
AIKHN
AITUG
AJBFU
AJOXV
AJWLA
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AXLSJ
AZFZN
BEHZQ
BELTK
BEZPJ
BGSCR
BKOJK
BKOMP
BLXMC
BNTGB
BPUDD
BULVW
BZJEE
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HMB
HVGLF
HZ~
IHE
IXIXF
J1W
JARJE
KOM
KZ1
LY5
LY6
M41
MO0
MS~
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
R2-
RIG
ROL
RPZ
SAC
SCC
SDF
SDG
SDP
SEB
SEE
SES
SEW
SPC
SPCBC
SSB
SSF
SSR
SSZ
T5K
TN5
U5U
WH7
WUQ
YK3
~02
~G-
ABPIF
IQODW
02
0R
1
8P
ADALY
DKI
G-
HZ
IPNFZ
K
M
MS
PQEST
X2L
AAXKI
AAYXX
AFJKZ
AKRWK
CITATION
7ST
7TA
7TQ
8BJ
8FD
ADMHG
C1K
DHY
DON
FQK
JBE
JG9
SOI
7U1
7U2
ID FETCH-LOGICAL-c584t-c4ab3e81a2a6cc56ed7080b1b95d90c2be0c6e339b8338a3a806bff9e4b6cc913
IEDL.DBID AIKHN
ISSN 0140-9883
IngestDate Sat Oct 26 00:34:10 EDT 2024
Thu Oct 24 23:09:31 EDT 2024
Fri Oct 25 10:41:18 EDT 2024
Thu Oct 10 16:04:26 EDT 2024
Thu Sep 26 18:56:22 EDT 2024
Wed Aug 18 04:17:45 EDT 2021
Sun Oct 22 16:09:01 EDT 2023
Fri Feb 23 02:34:11 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords C53
MRSB
C52
Energy commodities
VaR
G15
Fat tails
GARCH-HT
Performance evaluation
Volatility
Econometric model
C52; C53; G15
Fuel oil
Petroleum
Return on investment
GARCH modele
VaR; GARCH-HT; Energy commodities; MRSB; Fat tails
Gasoline
Distribution function
Profit
Spot price
Risk management
Portfolio management
Propane
Language English
License CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c584t-c4ab3e81a2a6cc56ed7080b1b95d90c2be0c6e339b8338a3a806bff9e4b6cc913
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
PQID 211615314
PQPubID 23462
PageCount 19
ParticipantIDs proquest_miscellaneous_36817893
proquest_miscellaneous_19369680
proquest_miscellaneous_14868178
proquest_journals_211615314
crossref_primary_10_1016_j_eneco_2007_11_004
repec_primary_eeeeneeco_v_3a30_3ay_3a2008_3ai_3a3_3ap_3a1173_1191_htm
pascalfrancis_primary_20183908
elsevier_sciencedirect_doi_10_1016_j_eneco_2007_11_004
PublicationCentury 2000
PublicationDate 2008-05-01
PublicationDateYYYYMMDD 2008-05-01
PublicationDate_xml – month: 05
  year: 2008
  text: 2008-05-01
  day: 01
PublicationDecade 2000
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
– name: Kidlington
PublicationSeriesTitle Energy Economics
PublicationTitle Energy economics
PublicationYear 2008
Publisher Elsevier B.V
Elsevier Science
Elsevier
Elsevier Science Ltd
Publisher_xml – name: Elsevier B.V
– name: Elsevier Science
– name: Elsevier
– name: Elsevier Science Ltd
References Sarma, Thomas, Shah (bib30) 2003; 22
Bollerslev, Chou, Kroner (bib5) 1992; 52
Jorion (bib22) 2000
Huang, Lin (bib19) 2004; 22
Brooks, Persand (bib6) 2002; 58
Politis (bib26) 2004; 5
Lopez (bib24) 1999; 2
Bollerslev (bib3) 1986; 31
Christoffersen, Diebold (bib10) 2000; 82
Bollerslev (bib4) 1987; 69
Diebold, Mariano (bib11) 1995; 13
Cabedo, Moya (bib7) 2003; 25
van den Goorbergh, Vlaar (bib31) 1999
Giot, Laurent (bib15) 2003; 25
Giot, Laurent (bib16) 2003; 18
Jarque, Bera (bib20) 1987; 55
Christoffersen (bib9) 1998; 39
Bekaert, Erb, Harvey, Viskanta (bib1) 1998; 24
Giot (bib14) 2000
Giot, Laurent (bib17) 2004; 11
Kupiec (bib23) 1995; 3
Billio, Pelizon (bib2) 2000; 7
Hendricks (bib18) 1996
Engel, Gizycki (bib12) 1999
Sadorsky (bib28) 2003; 12
Sadorsky (bib27) 1999; 21
Chiu, Lee, Hung (bib8) 2005; 15
Jones, Kaul (bib21) 1996; 51
Marcucci (bib25) 2005; 9
Sadorsky (bib29) 2006; 28
Engle (bib13) 1982; 50
Giot (10.1016/j.eneco.2007.11.004_bib15) 2003; 25
Giot (10.1016/j.eneco.2007.11.004_bib16) 2003; 18
Kupiec (10.1016/j.eneco.2007.11.004_bib23) 1995; 3
Politis (10.1016/j.eneco.2007.11.004_bib26) 2004; 5
Bollerslev (10.1016/j.eneco.2007.11.004_bib4) 1987; 69
Giot (10.1016/j.eneco.2007.11.004_bib14) 2000
Giot (10.1016/j.eneco.2007.11.004_bib17) 2004; 11
Engle (10.1016/j.eneco.2007.11.004_bib13) 1982; 50
Bollerslev (10.1016/j.eneco.2007.11.004_bib3) 1986; 31
Bekaert (10.1016/j.eneco.2007.11.004_bib1) 1998; 24
Lopez (10.1016/j.eneco.2007.11.004_bib24) 1999; 2
Sadorsky (10.1016/j.eneco.2007.11.004_bib28) 2003; 12
Marcucci (10.1016/j.eneco.2007.11.004_bib25) 2005; 9
Jones (10.1016/j.eneco.2007.11.004_bib21) 1996; 51
Sadorsky (10.1016/j.eneco.2007.11.004_bib29) 2006; 28
Brooks (10.1016/j.eneco.2007.11.004_bib6) 2002; 58
Christoffersen (10.1016/j.eneco.2007.11.004_bib9) 1998; 39
Diebold (10.1016/j.eneco.2007.11.004_bib11) 1995; 13
Billio (10.1016/j.eneco.2007.11.004_bib2) 2000; 7
Chiu (10.1016/j.eneco.2007.11.004_bib8) 2005; 15
van den Goorbergh (10.1016/j.eneco.2007.11.004_bib31) 1999
Bollerslev (10.1016/j.eneco.2007.11.004_bib5) 1992; 52
Christoffersen (10.1016/j.eneco.2007.11.004_bib10) 2000; 82
Jarque (10.1016/j.eneco.2007.11.004_bib20) 1987; 55
Sadorsky (10.1016/j.eneco.2007.11.004_bib27) 1999; 21
Sarma (10.1016/j.eneco.2007.11.004_bib30) 2003; 22
Hendricks (10.1016/j.eneco.2007.11.004_bib18) 1996
Jorion (10.1016/j.eneco.2007.11.004_bib22) 2000
Cabedo (10.1016/j.eneco.2007.11.004_bib7) 2003; 25
Engel (10.1016/j.eneco.2007.11.004_bib12) 1999
Huang (10.1016/j.eneco.2007.11.004_bib19) 2004; 22
References_xml – start-page: 39
  year: 1996
  end-page: 69
  ident: bib18
  article-title: Evaluation of value-at-risk models using historical data
  publication-title: Federal Reserve Bank of New York, Economic Policy Review
  contributor:
    fullname: Hendricks
– volume: 58
  start-page: 87
  year: 2002
  end-page: 97
  ident: bib6
  article-title: Model choice and value-at-risk performance
  publication-title: Financial Analysts Journal
  contributor:
    fullname: Persand
– volume: 25
  start-page: 435
  year: 2003
  end-page: 457
  ident: bib15
  article-title: Market risk in commodity markets: a VaR approach
  publication-title: Energy Economics
  contributor:
    fullname: Laurent
– volume: 69
  start-page: 542
  year: 1987
  end-page: 547
  ident: bib4
  article-title: A conditionally heteroskedastic time series model for speculative prices and rates of return
  publication-title: Review of Economics and Statistics
  contributor:
    fullname: Bollerslev
– volume: 25
  start-page: 239
  year: 2003
  end-page: 253
  ident: bib7
  article-title: Estimating oil price ‘value at risk’ using the historical simulation approach
  publication-title: Energy Economics
  contributor:
    fullname: Moya
– volume: 31
  start-page: 307
  year: 1986
  end-page: 327
  ident: bib3
  article-title: Generalized autoregressive conditional heteroskedasticity
  publication-title: Journal of Econometrics
  contributor:
    fullname: Bollerslev
– volume: 50
  start-page: 987
  year: 1982
  end-page: 1008
  ident: bib13
  article-title: Autoregressive conditional heteroskedasticity with estimates of variance of UK inflation
  publication-title: Econometrica
  contributor:
    fullname: Engle
– volume: 51
  start-page: 463
  year: 1996
  end-page: 491
  ident: bib21
  article-title: Oil and the stock markets
  publication-title: Journal of Finance
  contributor:
    fullname: Kaul
– volume: 15
  start-page: 1095
  year: 2005
  end-page: 1106
  ident: bib8
  article-title: Estimation of value-at-risk under jump dynamics and asymmetric information
  publication-title: Applied Financial Economics
  contributor:
    fullname: Hung
– volume: 22
  start-page: 79
  year: 2004
  end-page: 95
  ident: bib19
  article-title: Value-at-risk analysis for Taiwan stock index futures: fat tails and conditional asymmetries in return innovations
  publication-title: Review of Quantitative Finance and Accounting
  contributor:
    fullname: Lin
– year: 2000
  ident: bib22
  article-title: Value at Risk: The New Benchmark for Managing Financial Risk
  contributor:
    fullname: Jorion
– year: 1999
  ident: bib31
  article-title: Value-at-risk analysis of stock returns: historical simulation, variance techniques or tail index estimation?
  publication-title: De Nederlandsche Bank, DNB Staff Reports 40
  contributor:
    fullname: Vlaar
– volume: 9
  start-page: 1
  year: 2005
  end-page: 53
  ident: bib25
  article-title: Forecasting stock market volatility with regime-switching garch models
  publication-title: Studies in Nonlinear Dynamics and Econometrics
  contributor:
    fullname: Marcucci
– volume: 22
  start-page: 337
  year: 2003
  end-page: 358
  ident: bib30
  article-title: Selection of value-at-risk models
  publication-title: Journal of Forecasting
  contributor:
    fullname: Shah
– volume: 39
  start-page: 841
  year: 1998
  end-page: 862
  ident: bib9
  article-title: Evaluating interval forecasts
  publication-title: International Economic Review
  contributor:
    fullname: Christoffersen
– volume: 5
  start-page: 283
  year: 2004
  end-page: 298
  ident: bib26
  article-title: A heavy-tailed distribution for arch residuals with application to volatility prediction
  publication-title: Annals of Economics and Finance
  contributor:
    fullname: Politis
– volume: 24
  start-page: 102
  year: 1998
  end-page: 116
  ident: bib1
  article-title: Distributional characteristics of emerging market returns and asset allocation
  publication-title: Journal of Portfolio Management
  contributor:
    fullname: Viskanta
– volume: 7
  start-page: 531
  year: 2000
  end-page: 554
  ident: bib2
  article-title: Value-at-risk: a multivariate switching regime approach
  publication-title: Journal of Empirical Finance
  contributor:
    fullname: Pelizon
– year: 2000
  ident: bib14
  article-title: Intraday Value-At-Risk. CORE DP 2045, Maastricht University METEOR RM/00/030
  contributor:
    fullname: Giot
– volume: 28
  start-page: 467
  year: 2006
  end-page: 488
  ident: bib29
  article-title: Modeling and forecasting petroleum futures volatility
  publication-title: Energy Economics
  contributor:
    fullname: Sadorsky
– volume: 82
  start-page: 12
  year: 2000
  end-page: 22
  ident: bib10
  article-title: How relevant is volatility forecasting for financial risk management?
  publication-title: Review of Economics and Statistics
  contributor:
    fullname: Diebold
– volume: 12
  start-page: 191
  year: 2003
  end-page: 205
  ident: bib28
  article-title: The macroeconomic determinants of technology stock price volatility
  publication-title: Review of Financial Economics
  contributor:
    fullname: Sadorsky
– year: 1999
  ident: bib12
  article-title: Conservatism, accuracy and efficiency: comparing value-at-risk models. Working Paper Series Number wp0002
  contributor:
    fullname: Gizycki
– volume: 11
  start-page: 379
  year: 2004
  end-page: 398
  ident: bib17
  article-title: Modeling daily value-at-risk using realized volatility and arch type models
  publication-title: Journal of Empirical Finance
  contributor:
    fullname: Laurent
– volume: 3
  start-page: 73
  year: 1995
  end-page: 84
  ident: bib23
  article-title: Techniques for verifying the accuracy of risk management models
  publication-title: Journal of Derivatives
  contributor:
    fullname: Kupiec
– volume: 55
  start-page: 163
  year: 1987
  end-page: 172
  ident: bib20
  article-title: A test for normality of observations and regression residuals
  publication-title: International Statistical Review
  contributor:
    fullname: Bera
– volume: 52
  start-page: 5
  year: 1992
  end-page: 59
  ident: bib5
  article-title: ARCH modeling in finance: a review of the theory and empirical evidence
  publication-title: Journal of Econometrics
  contributor:
    fullname: Kroner
– volume: 2
  start-page: 3
  year: 1999
  end-page: 17
  ident: bib24
  article-title: Methods for evaluating value-at-risk estimates
  publication-title: Federal Reserve Bank of San Francisco, Economic Review
  contributor:
    fullname: Lopez
– volume: 18
  start-page: 641
  year: 2003
  end-page: 664
  ident: bib16
  article-title: Value-at-risk for long and short trading positions
  publication-title: Journal of Applied Econometrics
  contributor:
    fullname: Laurent
– volume: 21
  start-page: 449
  year: 1999
  end-page: 469
  ident: bib27
  article-title: Oil price shocks and stock market activity
  publication-title: Energy Economics
  contributor:
    fullname: Sadorsky
– volume: 13
  start-page: 253
  year: 1995
  end-page: 263
  ident: bib11
  article-title: Comparing predictive accuracy
  publication-title: Journal of Business and Economic Statistics
  contributor:
    fullname: Mariano
– volume: 7
  start-page: 531
  year: 2000
  ident: 10.1016/j.eneco.2007.11.004_bib2
  article-title: Value-at-risk: a multivariate switching regime approach
  publication-title: Journal of Empirical Finance
  doi: 10.1016/S0927-5398(00)00022-0
  contributor:
    fullname: Billio
– volume: 39
  start-page: 841
  year: 1998
  ident: 10.1016/j.eneco.2007.11.004_bib9
  article-title: Evaluating interval forecasts
  publication-title: International Economic Review
  doi: 10.2307/2527341
  contributor:
    fullname: Christoffersen
– year: 1999
  ident: 10.1016/j.eneco.2007.11.004_bib12
  contributor:
    fullname: Engel
– volume: 52
  start-page: 5
  year: 1992
  ident: 10.1016/j.eneco.2007.11.004_bib5
  article-title: ARCH modeling in finance: a review of the theory and empirical evidence
  publication-title: Journal of Econometrics
  doi: 10.1016/0304-4076(92)90064-X
  contributor:
    fullname: Bollerslev
– volume: 2
  start-page: 3
  year: 1999
  ident: 10.1016/j.eneco.2007.11.004_bib24
  article-title: Methods for evaluating value-at-risk estimates
  publication-title: Federal Reserve Bank of San Francisco, Economic Review
  contributor:
    fullname: Lopez
– volume: 22
  start-page: 79
  year: 2004
  ident: 10.1016/j.eneco.2007.11.004_bib19
  article-title: Value-at-risk analysis for Taiwan stock index futures: fat tails and conditional asymmetries in return innovations
  publication-title: Review of Quantitative Finance and Accounting
  doi: 10.1023/B:REQU.0000015851.78720.a9
  contributor:
    fullname: Huang
– volume: 25
  start-page: 435
  issue: 5
  year: 2003
  ident: 10.1016/j.eneco.2007.11.004_bib15
  article-title: Market risk in commodity markets: a VaR approach
  publication-title: Energy Economics
  doi: 10.1016/S0140-9883(03)00052-5
  contributor:
    fullname: Giot
– volume: 18
  start-page: 641
  year: 2003
  ident: 10.1016/j.eneco.2007.11.004_bib16
  article-title: Value-at-risk for long and short trading positions
  publication-title: Journal of Applied Econometrics
  doi: 10.1002/jae.710
  contributor:
    fullname: Giot
– volume: 25
  start-page: 239
  issue: 3
  year: 2003
  ident: 10.1016/j.eneco.2007.11.004_bib7
  article-title: Estimating oil price ‘value at risk’ using the historical simulation approach
  publication-title: Energy Economics
  doi: 10.1016/S0140-9883(02)00111-1
  contributor:
    fullname: Cabedo
– volume: 51
  start-page: 463
  year: 1996
  ident: 10.1016/j.eneco.2007.11.004_bib21
  article-title: Oil and the stock markets
  publication-title: Journal of Finance
  doi: 10.2307/2329368
  contributor:
    fullname: Jones
– volume: 55
  start-page: 163
  year: 1987
  ident: 10.1016/j.eneco.2007.11.004_bib20
  article-title: A test for normality of observations and regression residuals
  publication-title: International Statistical Review
  doi: 10.2307/1403192
  contributor:
    fullname: Jarque
– volume: 5
  start-page: 283
  year: 2004
  ident: 10.1016/j.eneco.2007.11.004_bib26
  article-title: A heavy-tailed distribution for arch residuals with application to volatility prediction
  publication-title: Annals of Economics and Finance
  contributor:
    fullname: Politis
– volume: 69
  start-page: 542
  year: 1987
  ident: 10.1016/j.eneco.2007.11.004_bib4
  article-title: A conditionally heteroskedastic time series model for speculative prices and rates of return
  publication-title: Review of Economics and Statistics
  doi: 10.2307/1925546
  contributor:
    fullname: Bollerslev
– volume: 13
  start-page: 253
  year: 1995
  ident: 10.1016/j.eneco.2007.11.004_bib11
  article-title: Comparing predictive accuracy
  publication-title: Journal of Business and Economic Statistics
  doi: 10.2307/1392185
  contributor:
    fullname: Diebold
– volume: 22
  start-page: 337
  year: 2003
  ident: 10.1016/j.eneco.2007.11.004_bib30
  article-title: Selection of value-at-risk models
  publication-title: Journal of Forecasting
  doi: 10.1002/for.868
  contributor:
    fullname: Sarma
– volume: 21
  start-page: 449
  issue: 5
  year: 1999
  ident: 10.1016/j.eneco.2007.11.004_bib27
  article-title: Oil price shocks and stock market activity
  publication-title: Energy Economics
  doi: 10.1016/S0140-9883(99)00020-1
  contributor:
    fullname: Sadorsky
– volume: 12
  start-page: 191
  year: 2003
  ident: 10.1016/j.eneco.2007.11.004_bib28
  article-title: The macroeconomic determinants of technology stock price volatility
  publication-title: Review of Financial Economics
  doi: 10.1016/S1058-3300(02)00071-X
  contributor:
    fullname: Sadorsky
– volume: 15
  start-page: 1095
  year: 2005
  ident: 10.1016/j.eneco.2007.11.004_bib8
  article-title: Estimation of value-at-risk under jump dynamics and asymmetric information
  publication-title: Applied Financial Economics
  doi: 10.1080/09603100500108410
  contributor:
    fullname: Chiu
– volume: 82
  start-page: 12
  issue: 1
  year: 2000
  ident: 10.1016/j.eneco.2007.11.004_bib10
  article-title: How relevant is volatility forecasting for financial risk management?
  publication-title: Review of Economics and Statistics
  doi: 10.1162/003465300558597
  contributor:
    fullname: Christoffersen
– volume: 24
  start-page: 102
  issue: 2
  year: 1998
  ident: 10.1016/j.eneco.2007.11.004_bib1
  article-title: Distributional characteristics of emerging market returns and asset allocation
  publication-title: Journal of Portfolio Management
  doi: 10.3905/jpm.24.2.102
  contributor:
    fullname: Bekaert
– volume: 28
  start-page: 467
  issue: 4
  year: 2006
  ident: 10.1016/j.eneco.2007.11.004_bib29
  article-title: Modeling and forecasting petroleum futures volatility
  publication-title: Energy Economics
  doi: 10.1016/j.eneco.2006.04.005
  contributor:
    fullname: Sadorsky
– volume: 58
  start-page: 87
  issue: 5
  year: 2002
  ident: 10.1016/j.eneco.2007.11.004_bib6
  article-title: Model choice and value-at-risk performance
  publication-title: Financial Analysts Journal
  doi: 10.2469/faj.v58.n5.2471
  contributor:
    fullname: Brooks
– volume: 11
  start-page: 379
  year: 2004
  ident: 10.1016/j.eneco.2007.11.004_bib17
  article-title: Modeling daily value-at-risk using realized volatility and arch type models
  publication-title: Journal of Empirical Finance
  doi: 10.1016/j.jempfin.2003.04.003
  contributor:
    fullname: Giot
– year: 1999
  ident: 10.1016/j.eneco.2007.11.004_bib31
  article-title: Value-at-risk analysis of stock returns: historical simulation, variance techniques or tail index estimation?
  contributor:
    fullname: van den Goorbergh
– volume: 3
  start-page: 73
  year: 1995
  ident: 10.1016/j.eneco.2007.11.004_bib23
  article-title: Techniques for verifying the accuracy of risk management models
  publication-title: Journal of Derivatives
  doi: 10.3905/jod.1995.407942
  contributor:
    fullname: Kupiec
– start-page: 39
  year: 1996
  ident: 10.1016/j.eneco.2007.11.004_bib18
  article-title: Evaluation of value-at-risk models using historical data
  publication-title: Federal Reserve Bank of New York, Economic Policy Review
  contributor:
    fullname: Hendricks
– year: 2000
  ident: 10.1016/j.eneco.2007.11.004_bib22
  contributor:
    fullname: Jorion
– volume: 9
  start-page: 1
  year: 2005
  ident: 10.1016/j.eneco.2007.11.004_bib25
  article-title: Forecasting stock market volatility with regime-switching garch models
  publication-title: Studies in Nonlinear Dynamics and Econometrics
  contributor:
    fullname: Marcucci
– volume: 31
  start-page: 307
  year: 1986
  ident: 10.1016/j.eneco.2007.11.004_bib3
  article-title: Generalized autoregressive conditional heteroskedasticity
  publication-title: Journal of Econometrics
  doi: 10.1016/0304-4076(86)90063-1
  contributor:
    fullname: Bollerslev
– volume: 50
  start-page: 987
  year: 1982
  ident: 10.1016/j.eneco.2007.11.004_bib13
  article-title: Autoregressive conditional heteroskedasticity with estimates of variance of UK inflation
  publication-title: Econometrica
  doi: 10.2307/1912773
  contributor:
    fullname: Engle
– year: 2000
  ident: 10.1016/j.eneco.2007.11.004_bib14
  contributor:
    fullname: Giot
SSID ssj0005658
Score 2.3056126
Snippet The choice of an appropriate distribution for return innovations is important in VaR applications owing to its ability to directly affect the estimation...
Influence of fat-tailed innovation process on the performance of one-day-ahead Value-at-Risk (VaR) estimates using three GARCH models is investigated. It...
SourceID proquest
crossref
repec
pascalfrancis
elsevier
SourceType Aggregation Database
Index Database
Publisher
StartPage 1173
SubjectTerms Applied sciences
Commodities
Comparative analysis
Crude oil
Econometric models
Economic data
Energy
Energy commodities
Energy economics
Energy market
Estimating techniques
Estimation
Exact sciences and technology
Fat tails
Fossil fuels and derived products
GARCH models
GARCH-HT
General, economic and professional studies
Innovations
Methodology. Modelling
MRSB
Oil
Stochastic models
Studies
VaR
Vector-autoregressive models
Title Estimation of value-at-risk for energy commodities via fat-tailed GARCH models
URI https://dx.doi.org/10.1016/j.eneco.2007.11.004
http://econpapers.repec.org/article/eeeeneeco/v_3a30_3ay_3a2008_3ai_3a3_3ap_3a1173-1191.htm
https://www.proquest.com/docview/211615314
https://search.proquest.com/docview/14868178
https://search.proquest.com/docview/19369680
https://search.proquest.com/docview/36817893
Volume 30
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwELVK9wBSVfEplsLiA0fCxnHWsY9V2bKlYk9U6s2ynbFYpCZRk1bqhd_esZMsrAQ9EMmR4tiJM7bHb5TnGUI--IxxI1KZSAFFkivnEiN8nviwWKaltz0359tarC7yr5eLyz1yMu6FCbTKQff3Oj1q6yFnPkhz3mw280hLUlKGQRvMAtTDE1yOMhzak-Oz89X6N9NDxDCdkckYKozOhyLNCzWKq3tXhsGb5xCw7S8L1EFjWhSb7-Nd7ADSyTU04P5Yl06fksMBUNLjvs3PyB5Uz8njcb9x-4KslziL-w2KtPY0ePeGxHRJIJVThKwU4vY_ihK4qsvoYJXebgz1WCbQS6GkX8IvJRqD5rQvycXp8vvJKhmiKCQOwUWXuNxYDpKZzAjnFgLKAlGiZVYtSpW6zELqBHCurERz1XAjU2G9V5BbLK8Yf0X2q7qC14Ti83gOigfQlUNaWukz7E6Xe7Rz3MJPycdRdLrpnWXokUX2U0dJh7CXBZodGiU9JWIUr97pc43q_OGKs53O2L4M0QwCvlROydHYO3qYk61GUzegW4bV32_v4mQKf0hMBfVNi3aQFJIV8oESMQCiTP9dgscnKD4lyzgsto0DPCoIn3KrueEpnu4wxTig3GxCHqYGE2MF18Hznv7RXb35XykdkSc9uSWwM9-S_e76Bt4hgursjDz69IvNhnmCV5_Pz-4BiB0bEg
link.rule.ids 315,783,787,4017,4510,24129,27937,27938,45598,45692
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Na9wwEBUhOaRQSj_pJm2iQ49V1155ZflYwqbbNtlTArkJSR7RLcQ2sRPoJb89M7K9ZKHNoQb5YI9teSSN3qCnGcY-hVkqrUq00ApykRXeC6tCJgJNlkkZXM_NOV-p5WX242p-tcNOxr0wRKscbH9v06O1Hq5MB21Om_V6GmlJhdbUacktQDu8l1G4cezUX-4f8TxUTNIZeYwkPoYeiiQvtCe-7gMZUizPIV3bX6an541tUWmhz3axBUf3bqAB_2hWOn3JXgxwkn_ta_yK7UD1mu2Pu43bN2y1wDHcb0_kdeAU2xuE7QRRyjkCVg5x8x_H_7-uyxheld-tLQ8oQ-RSKPk3WlDiMWVO-5Zdni4uTpZiyKEgPEKLTvjMOgk6tTOrvJ8rKHPEiC51xbwsEj9zkHgFUhZOo7NqpdWJciEUkDmUL1L5ju1WdQXvGcf3yQwKSZArg6R0OsywMX0W0Mvx8zBhn0fVmaYPlWFGDtlvEzVNSS9zdDoManrC1Khes9XiBo350w8ebTXG5mOIZRDuJXrCDsfWMcOIbA06uoRtU3z8eHMXhxKtj9gK6tsWvSCtdJrrJyRi-kOd_FtCxjcUcsIWsVtsKgd4VEC_cmeklQme_mCJWUClXdM1LA2WNM2lobh75ld3ffC_Wjpm-8uL8zNz9n3185A962kuxNP8wHa7m1v4iFiqc0dxrDwAfLAa8g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Estimation+of+value-at-risk+for+energy+commodities+via+fat-tailed+GARCH+models&rft.jtitle=Energy+economics&rft.au=Hung%2C+Jui-cheng&rft.au=Lee%2C+M+C&rft.au=Liu%2C+H+C&rft.date=2008-05-01&rft.issn=0140-9883&rft.volume=30&rft.issue=3&rft.spage=1173&rft.epage=1191&rft_id=info:doi/10.1016%2Fj.eneco.2007.11.004&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0140-9883&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0140-9883&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0140-9883&client=summon