Determining effective subject-specific strength levels for forward dives using computer simulations of recorded performances

This study used optimisation procedures in conjunction with an 8-segment torque-driven computer simulation model of the takeoff phase in springboard diving to determine appropriate subject-specific strength parameters for use in the simulation of forward dives. Kinematic data were obtained using hig...

Full description

Saved in:
Bibliographic Details
Published inJournal of biomechanics Vol. 42; no. 16; pp. 2672 - 2677
Main Authors King, Mark A., Kong, Pui W., Yeadon, Maurice R.
Format Journal Article
LanguageEnglish
Published United States Elsevier Ltd 11.12.2009
Elsevier Limited
Subjects
Online AccessGet full text

Cover

Loading…
Abstract This study used optimisation procedures in conjunction with an 8-segment torque-driven computer simulation model of the takeoff phase in springboard diving to determine appropriate subject-specific strength parameters for use in the simulation of forward dives. Kinematic data were obtained using high-speed video recordings of performances of a forward dive pike (101B) and a forward 2 1 2 somersault pike dive (105B) by an elite diver. Nine parameters for each torque generator were taken from dynamometer measurements on an elite gymnast. The isometric torque parameter for each torque generator was then varied together with torque activation timings until the root mean squared (RMS) percentage difference between simulation and performance in terms of joint angles, orientation, linear momentum, angular momentum, and duration of springboard contact was minimised for each of the two dives. The two sets of isometric torque parameters were combined into a single set by choosing the larger value from the two sets for each parameter. Simulations using the combined set of isometric torque parameters matched the two performances closely with RMS percentage differences of 2.6% for 101B and 3.7% for 105B. Maximising the height reached by the mass centre during the flight phase for 101B using the combined set of isometric parameters and by varying torque generator activation timings during takeoff resulted in a credible height increase of 38 mm compared to the matching simulation. It is concluded that the procedure is able to determine appropriate effective strength levels suitable for use in the optimisation of simulated forward rotating dive performances.
AbstractList This study used optimisation procedures in conjunction with an 8-segment torque-driven computer simulation model of the takeoff phase in springboard diving to determine appropriate subject-specific strength parameters for use in the simulation of forward dives. Kinematic data were obtained using high-speed video recordings of performances of a forward dive pike (101B) and a forward 2 1/2 somersault pike dive (105B) by an elite diver. Nine parameters for each torque generator were taken from dynamometer measurements on an elite gymnast. The isometric torque parameter for each torque generator was then varied together with torque activation timings until the root mean squared (RMS) percentage difference between simulation and performance in terms of joint angles, orientation, linear momentum, angular momentum, and duration of springboard contact was minimised for each of the two dives. The two sets of isometric torque parameters were combined into a single set by choosing the larger value from the two sets for each parameter. Simulations using the combined set of isometric torque parameters matched the two performances closely with RMS percentage differences of 2.6% for 101B and 3.7% for 105B. Maximising the height reached by the mass centre during the flight phase for 101B using the combined set of isometric parameters and by varying torque generator activation timings during takeoff resulted in a credible height increase of 38 mm compared to the matching simulation. It is concluded that the procedure is able to determine appropriate effective strength levels suitable for use in the optimisation of simulated forward rotating dive performances.This study used optimisation procedures in conjunction with an 8-segment torque-driven computer simulation model of the takeoff phase in springboard diving to determine appropriate subject-specific strength parameters for use in the simulation of forward dives. Kinematic data were obtained using high-speed video recordings of performances of a forward dive pike (101B) and a forward 2 1/2 somersault pike dive (105B) by an elite diver. Nine parameters for each torque generator were taken from dynamometer measurements on an elite gymnast. The isometric torque parameter for each torque generator was then varied together with torque activation timings until the root mean squared (RMS) percentage difference between simulation and performance in terms of joint angles, orientation, linear momentum, angular momentum, and duration of springboard contact was minimised for each of the two dives. The two sets of isometric torque parameters were combined into a single set by choosing the larger value from the two sets for each parameter. Simulations using the combined set of isometric torque parameters matched the two performances closely with RMS percentage differences of 2.6% for 101B and 3.7% for 105B. Maximising the height reached by the mass centre during the flight phase for 101B using the combined set of isometric parameters and by varying torque generator activation timings during takeoff resulted in a credible height increase of 38 mm compared to the matching simulation. It is concluded that the procedure is able to determine appropriate effective strength levels suitable for use in the optimisation of simulated forward rotating dive performances.
This study used optimisation procedures in conjunction with an 8-segment torque-driven computer simulation model of the takeoff phase in springboard diving to determine appropriate subject-specific strength parameters for use in the simulation of forward dives. Kinematic data were obtained using high-speed video recordings of performances of a forward dive pike (101B) and a forward 2 1 2 somersault pike dive (105B) by an elite diver. Nine parameters for each torque generator were taken from dynamometer measurements on an elite gymnast. The isometric torque parameter for each torque generator was then varied together with torque activation timings until the root mean squared (RMS) percentage difference between simulation and performance in terms of joint angles, orientation, linear momentum, angular momentum, and duration of springboard contact was minimised for each of the two dives. The two sets of isometric torque parameters were combined into a single set by choosing the larger value from the two sets for each parameter. Simulations using the combined set of isometric torque parameters matched the two performances closely with RMS percentage differences of 2.6% for 101B and 3.7% for 105B. Maximising the height reached by the mass centre during the flight phase for 101B using the combined set of isometric parameters and by varying torque generator activation timings during takeoff resulted in a credible height increase of 38 mm compared to the matching simulation. It is concluded that the procedure is able to determine appropriate effective strength levels suitable for use in the optimisation of simulated forward rotating dive performances.
Abstract This study used optimisation procedures in conjunction with an 8-segment torque-driven computer simulation model of the takeoff phase in springboard diving to determine appropriate subject-specific strength parameters for use in the simulation of forward dives. Kinematic data were obtained using high-speed video recordings of performances of a forward dive pike (101B) and a forward 2 1 2 somersault pike dive (105B) by an elite diver. Nine parameters for each torque generator were taken from dynamometer measurements on an elite gymnast. The isometric torque parameter for each torque generator was then varied together with torque activation timings until the root mean squared (RMS) percentage difference between simulation and performance in terms of joint angles, orientation, linear momentum, angular momentum, and duration of springboard contact was minimised for each of the two dives. The two sets of isometric torque parameters were combined into a single set by choosing the larger value from the two sets for each parameter. Simulations using the combined set of isometric torque parameters matched the two performances closely with RMS percentage differences of 2.6% for 101B and 3.7% for 105B. Maximising the height reached by the mass centre during the flight phase for 101B using the combined set of isometric parameters and by varying torque generator activation timings during takeoff resulted in a credible height increase of 38 mm compared to the matching simulation. It is concluded that the procedure is able to determine appropriate effective strength levels suitable for use in the optimisation of simulated forward rotating dive performances.
This study used optimisation procedures in conjunction with an 8-segment torque-driven computer simulation model of the takeoff phase in springboard diving to determine appropriate subject-specific strength parameters for use in the simulation of forward dives. Kinematic data were obtained using high-speed video recordings of performances of a forward dive pike (101B) and a forward somersault pike dive (105B) by an elite diver. Nine parameters for each torque generator were taken from dynamometer measurements on an elite gymnast. The isometric torque parameter for each torque generator was then varied together with torque activation timings until the root mean squared (RMS) percentage difference between simulation and performance in terms of joint angles, orientation, linear momentum, angular momentum, and duration of springboard contact was minimised for each of the two dives. The two sets of isometric torque parameters were combined into a single set by choosing the larger value from the two sets for each parameter. Simulations using the combined set of isometric torque parameters matched the two performances closely with RMS percentage differences of 2.6% for 101B and 3.7% for 105B. Maximising the height reached by the mass centre during the flight phase for 101B using the combined set of isometric parameters and by varying torque generator activation timings during takeoff resulted in a credible height increase of 38mm compared to the matching simulation. It is concluded that the procedure is able to determine appropriate effective strength levels suitable for use in the optimisation of simulated forward rotating dive performances.
This study used optimisation procedures in conjunction with an 8-segment torque-driven computer simulation model of the takeoff phase in springboard diving to determine appropriate subject-specific strength parameters for use in the simulation of forward dives. Kinematic data were obtained using high-speed video recordings of performances of a forward dive pike (101B) and a forward 2 1/2 somersault pike dive (105B) by an elite diver. Nine parameters for each torque generator were taken from dynamometer measurements on an elite gymnast. The isometric torque parameter for each torque generator was then varied together with torque activation timings until the root mean squared (RMS) percentage difference between simulation and performance in terms of joint angles, orientation, linear momentum, angular momentum, and duration of springboard contact was minimised for each of the two dives. The two sets of isometric torque parameters were combined into a single set by choosing the larger value from the two sets for each parameter. Simulations using the combined set of isometric torque parameters matched the two performances closely with RMS percentage differences of 2.6% for 101B and 3.7% for 105B. Maximising the height reached by the mass centre during the flight phase for 101B using the combined set of isometric parameters and by varying torque generator activation timings during takeoff resulted in a credible height increase of 38 mm compared to the matching simulation. It is concluded that the procedure is able to determine appropriate effective strength levels suitable for use in the optimisation of simulated forward rotating dive performances.
This study used optimisation procedures in conjunction with an 8-segment torque-driven computer simulation model of the takeoff phase in springboard diving to determine appropriate subject-specific strength parameters for use in the simulation of forward dives. Kinematic data were obtained using high-speed video recordings of performances of a forward dive pike (101B) and a forward [MathML equation] somersault pike dive (105B) by an elite diver. Nine parameters for each torque generator were taken from dynamometer measurements on an elite gymnast. The isometric torque parameter for each torque generator was then varied together with torque activation timings until the root mean squared (RMS) percentage difference between simulation and performance in terms of joint angles, orientation, linear momentum, angular momentum, and duration of springboard contact was minimised for each of the two dives. The two sets of isometric torque parameters were combined into a single set by choosing the larger value from the two sets for each parameter. Simulations using the combined set of isometric torque parameters matched the two performances closely with RMS percentage differences of 2.6% for 101B and 3.7% for 105B. Maximising the height reached by the mass centre during the flight phase for 101B using the combined set of isometric parameters and by varying torque generator activation timings during takeoff resulted in a credible height increase of 38 mm compared to the matching simulation. It is concluded that the procedure is able to determine appropriate effective strength levels suitable for use in the optimisation of simulated forward rotating dive performances.
Author Yeadon, Maurice R.
Kong, Pui W.
King, Mark A.
Author_xml – sequence: 1
  givenname: Mark A.
  surname: King
  fullname: King, Mark A.
  email: M.A.King@lboro.ac.uk
  organization: School of Sport and Exercise Sciences, Loughborough University, Loughborough LE11 3TU, UK
– sequence: 2
  givenname: Pui W.
  surname: Kong
  fullname: Kong, Pui W.
  organization: National Institute of Education, Nanyang Technological University, 1 Nanyang Walk, 637616, Singapore
– sequence: 3
  givenname: Maurice R.
  surname: Yeadon
  fullname: Yeadon, Maurice R.
  organization: School of Sport and Exercise Sciences, Loughborough University, Loughborough LE11 3TU, UK
BackLink https://www.ncbi.nlm.nih.gov/pubmed/19767003$$D View this record in MEDLINE/PubMed
BookMark eNqNkl1rFDEUhoNU7Hb1L5QBQa9mPfmYLxBRav2AghfqdcgkJ23GmcmazKwU_PHNuC2FvWiFhATyvC8n5z0n5Gj0IxJySmFDgZZvuk3XOj-gvtowgGYD9QagekJWtK54zngNR2QFwGjesAaOyUmMHSRCVM0zckybqqwA-Ir8_YgThsGNbrzM0FrUk9thFue2S9c8blE763QWp4Dj5XSV9bjDPmbWh2X_UcFkJiliNsfFQvthOyfHLLph7tXk_Bgzb7OA2geDJttiSLpBjRrjc_LUqj7ii9tzTX5-Ov9x9iW_-Pb569mHi1wXtZjy1lqKjLEGhRDatIWyVKjGVoUpmeEVL7mwTEF64UaxuhWFYVUrOFANTBR8TV7vfbfB_54xTnJwUWPfqxH9HGXFeV2XRfJZk1cPkgnhRcOqBL48ADs_hzH9QlLgohFlUbBEnd5SczugkdvgBhWu5V3_E1DuAR18jAHtPQJyCVp28i5ouQQtoZYpxiR8eyDUbvrX7iko1z8uf7-Xpyxx5zDIqB2mTIxLSU3SePe4xbsDC92nMdKq_4XXGO_bISOTIL8vw7jMIqQlSk4fNvifCm4Aubn0gA
CitedBy_id crossref_primary_10_1016_j_humov_2017_12_001
crossref_primary_10_1051_sm_2011121
crossref_primary_10_1016_j_jbiomech_2019_01_033
crossref_primary_10_1051_sm_2013048
crossref_primary_10_1016_j_humov_2011_08_009
crossref_primary_10_1016_j_humov_2015_05_006
crossref_primary_10_3390_app11041450
crossref_primary_10_1016_j_humov_2012_11_004
crossref_primary_10_1080_02640414_2020_1770407
crossref_primary_10_1016_j_jbiomech_2014_06_020
crossref_primary_10_1080_14763141_2022_2034929
crossref_primary_10_1016_j_jbiomech_2016_11_048
crossref_primary_10_1016_j_matcom_2020_03_007
crossref_primary_10_1123_jab_2013_0282
crossref_primary_10_1080_02640414_2015_1057211
crossref_primary_10_1016_j_jbiomech_2019_04_004
crossref_primary_10_1080_14763141_2021_2018030
crossref_primary_10_1007_s12283_022_00388_z
crossref_primary_10_1016_j_jbiomech_2023_111666
crossref_primary_10_1016_j_jbiomech_2023_111765
crossref_primary_10_4028_p_7QwXVo
crossref_primary_10_1080_02640414_2025_2480921
Cites_doi 10.1016/j.jbiomech.2007.03.030
10.1123/jab.22.4.264
10.1145/29380.29864
10.1007/s00421-002-0673-6
10.1123/jab.19.3.187
10.1123/jab.18.3.195
10.1016/0021-9290(90)90370-I
10.1016/S0167-9457(00)00008-7
10.1016/j.humov.2004.04.002
10.1123/jab.18.3.207
10.1016/0021-9290(90)90372-A
10.1016/j.jbiomech.2007.10.001
10.1016/j.jbiomech.2004.12.012
10.1111/j.1469-7793.2000.t01-1-00457.x
10.1152/jn.1994.71.4.1390
10.1016/j.jbiomech.2003.09.008
10.1123/jab.20.3.275
10.1098/rstb.1990.0144
10.1123/jab.22.3.167
ContentType Journal Article
Copyright 2009 Elsevier Ltd
Elsevier Ltd
Copyright_xml – notice: 2009 Elsevier Ltd
– notice: Elsevier Ltd
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QP
7TB
7TS
7X7
7XB
88E
8AO
8FD
8FE
8FH
8FI
8FJ
8FK
8G5
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
GUQSH
HCIFZ
K9.
LK8
M0S
M1P
M2O
M7P
MBDVC
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
DOI 10.1016/j.jbiomech.2009.08.007
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Calcium & Calcified Tissue Abstracts
Mechanical & Transportation Engineering Abstracts
Physical Education Index
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Research Library (Alumni Edition)
ProQuest Central (Alumni Edition)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
Research Library Prep
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Biological Science Collection
Health & Medical Collection (Alumni Edition)
Medical Database
Research Library
Biological Science Database
Research Library (Corporate)
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Research Library Prep
ProQuest Central Student
Technology Research Database
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
Research Library (Alumni Edition)
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central China
Physical Education Index
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Research Library
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic


Research Library Prep
MEDLINE
Technology Research Database

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Engineering
Anatomy & Physiology
EISSN 1873-2380
EndPage 2677
ExternalDocumentID 2744241381
19767003
10_1016_j_jbiomech_2009_08_007
S0021929009004631
1_s2_0_S0021929009004631
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
--K
--M
--Z
-~X
.1-
.55
.FO
.GJ
.~1
0R~
1B1
1P~
1RT
1~.
1~5
29J
4.4
457
4G.
53G
5GY
5VS
7-5
71M
7X7
88E
8AO
8FE
8FH
8FI
8FJ
8G5
8P~
9JM
9JN
AABNK
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQQT
AAQXK
AATTM
AAXKI
AAXUO
AAYWO
ABBQC
ABFNM
ABJNI
ABMAC
ABMZM
ABUWG
ABWVN
ABXDB
ACDAQ
ACGFS
ACIEU
ACIUM
ACIWK
ACNNM
ACPRK
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADEZE
ADMUD
ADNMO
ADTZH
AEBSH
AECPX
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AFJKZ
AFKRA
AFPUW
AFRHN
AFTJW
AFXIZ
AGCQF
AGHFR
AGQPQ
AGUBO
AGYEJ
AHHHB
AHJVU
AHMBA
AI.
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
AZQEC
BBNVY
BENPR
BHPHI
BJAXD
BKOJK
BLXMC
BNPGV
BPHCQ
BVXVI
CCPQU
CS3
DU5
DWQXO
EBD
EBS
EFJIC
EFKBS
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
FYUFA
G-2
G-Q
GBLVA
GNUQQ
GUQSH
HCIFZ
HEE
HMCUK
HMK
HMO
HVGLF
HZ~
H~9
I-F
IHE
J1W
JJJVA
KOM
LK8
M1P
M29
M2O
M31
M41
M7P
ML~
MO0
MVM
N9A
O-L
O9-
OAUVE
OH.
OHT
OT.
OZT
P-8
P-9
P2P
PC.
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PUEGO
Q38
R2-
ROL
RPZ
SAE
SCC
SDF
SDG
SDP
SEL
SES
SEW
SJN
SPC
SPCBC
SSH
SST
SSZ
T5K
UKHRP
UPT
VH1
WUQ
X7M
XOL
XPP
YQT
Z5R
ZGI
ZMT
~G-
3V.
AACTN
AFCTW
AFFDN
AFKWA
AJOXV
ALIPV
AMFUW
PKN
RIG
YCJ
AAIAV
ABLVK
ABYKQ
AHPSJ
AJBFU
EFLBG
F3I
LCYCR
AAYXX
AGRNS
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QP
7TB
7TS
7XB
8FD
8FK
FR3
K9.
MBDVC
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
ID FETCH-LOGICAL-c584t-bff1e2229e444cdb5af14a9f75d62d373634f2a0db53da28b45d27b4301c02453
IEDL.DBID AIKHN
ISSN 0021-9290
1873-2380
IngestDate Fri Jul 11 16:10:00 EDT 2025
Fri Jul 11 01:27:30 EDT 2025
Wed Aug 13 11:18:30 EDT 2025
Mon Jul 21 06:02:12 EDT 2025
Tue Jul 01 01:13:53 EDT 2025
Thu Apr 24 23:06:14 EDT 2025
Fri Feb 23 02:28:28 EST 2024
Sun Feb 23 10:20:42 EST 2025
Tue Aug 26 16:44:18 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 16
Keywords Evaluation
Height
Parameters
Subject-specific
Strength
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c584t-bff1e2229e444cdb5af14a9f75d62d373634f2a0db53da28b45d27b4301c02453
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
content type line 14
ObjectType-Undefined-1
ObjectType-Feature-3
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
OpenAccessLink https://dspace.lboro.ac.uk/2134/5825
PMID 19767003
PQID 1034946552
PQPubID 1226346
PageCount 6
ParticipantIDs proquest_miscellaneous_733886536
proquest_miscellaneous_36335927
proquest_journals_1034946552
pubmed_primary_19767003
crossref_primary_10_1016_j_jbiomech_2009_08_007
crossref_citationtrail_10_1016_j_jbiomech_2009_08_007
elsevier_sciencedirect_doi_10_1016_j_jbiomech_2009_08_007
elsevier_clinicalkeyesjournals_1_s2_0_S0021929009004631
elsevier_clinicalkey_doi_10_1016_j_jbiomech_2009_08_007
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2009-12-11
PublicationDateYYYYMMDD 2009-12-11
PublicationDate_xml – month: 12
  year: 2009
  text: 2009-12-11
  day: 11
PublicationDecade 2000
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Kidlington
PublicationTitle Journal of biomechanics
PublicationTitleAlternate J Biomech
PublicationYear 2009
Publisher Elsevier Ltd
Elsevier Limited
Publisher_xml – name: Elsevier Ltd
– name: Elsevier Limited
References van Soest, Bobbert, van Ingen Schenau (bib14) 1994; 71
King, Wilson, Yeadon (bib11) 2006; 22
Corana, Marchesi, Martini, Ridella (bib3) 1987; 13
Kane, Levinson (bib8) 1985
Koh, Jennings, Elliott, Lloyd (bib12) 2003; 19
Yeadon, Hiley (bib18) 2000; 19
Yeadon, Kong, King (bib22) 2006; 22
Wilson, Yeadon, King (bib23) 2007; 40
.
King, Yeadon (bib9) 2002; 18
Yeadon, Atha, Hales (bib17) 1990; 23
Yeadon, King (bib20) 2008
Horita, Komi, Nicol, Kyrolainen (bib7) 2002; 88
Duncan, McDonagh (bib5) 2000; 526
Cheng, Hubbard (bib2) 2004; 23
Yeadon (bib16) 1990; 23
Mills, Pain, Yeadon (bib13) 2008; 41
Alexander (bib1) 1990; 329
FINA, 2009.
Yeadon, King, Wilson (bib21) 2006; 39
Sprigings, Miller (bib15) 2004; 20
Dapena, J., 1999. A biomechanical explanation of the effect of arm actions on the vertical velocity of a standing jump. In International Society of Biomechanics XVIIth Congress Book of Abstracts. University of Calgary, p. 100.
King, Yeadon (bib10) 2004; 37
Yeadon, King (bib19) 2002; 18
King (10.1016/j.jbiomech.2009.08.007_bib10) 2004; 37
Yeadon (10.1016/j.jbiomech.2009.08.007_bib21) 2006; 39
King (10.1016/j.jbiomech.2009.08.007_bib11) 2006; 22
Horita (10.1016/j.jbiomech.2009.08.007_bib7) 2002; 88
10.1016/j.jbiomech.2009.08.007_bib6
Yeadon (10.1016/j.jbiomech.2009.08.007_bib17) 1990; 23
Alexander (10.1016/j.jbiomech.2009.08.007_bib1) 1990; 329
Yeadon (10.1016/j.jbiomech.2009.08.007_bib20) 2008
Yeadon (10.1016/j.jbiomech.2009.08.007_bib22) 2006; 22
Sprigings (10.1016/j.jbiomech.2009.08.007_bib15) 2004; 20
Mills (10.1016/j.jbiomech.2009.08.007_bib13) 2008; 41
King (10.1016/j.jbiomech.2009.08.007_bib9) 2002; 18
van Soest (10.1016/j.jbiomech.2009.08.007_bib14) 1994; 71
10.1016/j.jbiomech.2009.08.007_bib4
Yeadon (10.1016/j.jbiomech.2009.08.007_bib19) 2002; 18
Yeadon (10.1016/j.jbiomech.2009.08.007_bib18) 2000; 19
Kane (10.1016/j.jbiomech.2009.08.007_bib8) 1985
Yeadon (10.1016/j.jbiomech.2009.08.007_bib16) 1990; 23
Koh (10.1016/j.jbiomech.2009.08.007_bib12) 2003; 19
Cheng (10.1016/j.jbiomech.2009.08.007_bib2) 2004; 23
Corana (10.1016/j.jbiomech.2009.08.007_bib3) 1987; 13
Duncan (10.1016/j.jbiomech.2009.08.007_bib5) 2000; 526
Wilson (10.1016/j.jbiomech.2009.08.007_bib23) 2007; 40
References_xml – volume: 40
  start-page: 3155
  year: 2007
  end-page: 3161
  ident: bib23
  article-title: Considerations that affect optimised simulation in a running jump for height
  publication-title: Journal of Biomechanics
– volume: 13
  start-page: 262
  year: 1987
  end-page: 280
  ident: bib3
  article-title: Minimising multimodal functions of continuous variables with the “simulated annealing” algorithm
  publication-title: ACM Transactions on Mathematical Software
– year: 1985
  ident: bib8
  article-title: Dynamics: Theory and Implementations
– volume: 18
  start-page: 195
  year: 2002
  end-page: 206
  ident: bib19
  article-title: Evaluation of a torque driven simulation model of tumbling
  publication-title: Journal of Applied Biomechanics
– volume: 39
  start-page: 476
  year: 2006
  end-page: 482
  ident: bib21
  article-title: Modelling the maximum voluntary joint torque/angular velocity relationship in human movement
  publication-title: Journal of Biomechanics
– volume: 41
  start-page: 620
  year: 2008
  end-page: 628
  ident: bib13
  article-title: The influence of simulation model complexity on the estimation of internal loading in gymnastics landings
  publication-title: Journal of Biomechanics
– volume: 18
  start-page: 207
  year: 2002
  end-page: 217
  ident: bib9
  article-title: Determining subject-specific torque parameters for use in a torque-driven simulation model of dynamic jumping
  publication-title: Journal of Applied Biomechanics
– start-page: 176
  year: 2008
  end-page: 205
  ident: bib20
  article-title: Computer simulation modelling in sport
  publication-title: Biomechanical Evaluation of Movement in Sport and Exercise: BASES Guidelines
– volume: 23
  start-page: 67
  year: 1990
  end-page: 74
  ident: bib16
  article-title: The simulation of aerial movement—II. A mathematical inertia model of the human body
  publication-title: Journal of Biomechanics
– volume: 23
  start-page: 35
  year: 2004
  end-page: 48
  ident: bib2
  article-title: Optimal jumping strategies from compliant surfaces: a simple model of springboard standing jumps
  publication-title: Human Movement Science
– reference: FINA, 2009. 〈
– volume: 22
  start-page: 264
  year: 2006
  end-page: 274
  ident: bib11
  article-title: Evaluation of a torque-driven model of jumping for height
  publication-title: Journal of Applied Biomechanics
– volume: 526
  start-page: 457
  year: 2000
  end-page: 468
  ident: bib5
  article-title: Stretch reflex distinguished from pre-programmed muscle activations following landing impacts in man
  publication-title: Journal of Physiology
– volume: 37
  start-page: 471
  year: 2004
  end-page: 477
  ident: bib10
  article-title: Maximising somersault rotation in tumbling
  publication-title: Journal of Biomechanics
– volume: 20
  start-page: 275
  year: 2004
  end-page: 290
  ident: bib15
  article-title: Optimal knee extension timing in springboard and platform dives from the reverse group
  publication-title: Journal of Applied Biomechanics
– reference: Dapena, J., 1999. A biomechanical explanation of the effect of arm actions on the vertical velocity of a standing jump. In International Society of Biomechanics XVIIth Congress Book of Abstracts. University of Calgary, p. 100.
– reference: 〉.
– volume: 88
  start-page: 76
  year: 2002
  end-page: 84
  ident: bib7
  article-title: Interaction between pre-landing activities and stiffness regulation of the knee joint musculoskeletal system in the drop jump: implications to performance
  publication-title: European Journal of Applied Physiology
– volume: 19
  start-page: 187
  year: 2003
  end-page: 204
  ident: bib12
  article-title: A predicted optimal performance of the Yurchenko layout vault in women's artistic gymnastics
  publication-title: Journal of Applied Biomechanics
– volume: 71
  start-page: 1390
  year: 1994
  end-page: 1402
  ident: bib14
  article-title: A control strategy for the execution of explosive movements from varying starting positions
  publication-title: Journal of Neurophysiology
– volume: 23
  start-page: 85
  year: 1990
  end-page: 89
  ident: bib17
  article-title: The simulation of aerial movement—IV. A computer simulation model
  publication-title: Journal of Biomechanics
– volume: 329
  start-page: 3
  year: 1990
  end-page: 10
  ident: bib1
  article-title: Optimum take-off techniques for high and long jumps
  publication-title: Philosophical Transactions of the Royal Society of London—Series B
– volume: 19
  start-page: 153
  year: 2000
  end-page: 173
  ident: bib18
  article-title: The mechanics of the backward giant circle on the high bar
  publication-title: Human Movement Science
– volume: 22
  start-page: 167
  year: 2006
  end-page: 176
  ident: bib22
  article-title: Parameter determination for a computer simulation model of a diver and a springboard
  publication-title: Journal of Applied Biomechanics
– volume: 40
  start-page: 3155
  year: 2007
  ident: 10.1016/j.jbiomech.2009.08.007_bib23
  article-title: Considerations that affect optimised simulation in a running jump for height
  publication-title: Journal of Biomechanics
  doi: 10.1016/j.jbiomech.2007.03.030
– volume: 22
  start-page: 264
  year: 2006
  ident: 10.1016/j.jbiomech.2009.08.007_bib11
  article-title: Evaluation of a torque-driven model of jumping for height
  publication-title: Journal of Applied Biomechanics
  doi: 10.1123/jab.22.4.264
– volume: 13
  start-page: 262
  year: 1987
  ident: 10.1016/j.jbiomech.2009.08.007_bib3
  article-title: Minimising multimodal functions of continuous variables with the “simulated annealing” algorithm
  publication-title: ACM Transactions on Mathematical Software
  doi: 10.1145/29380.29864
– ident: 10.1016/j.jbiomech.2009.08.007_bib4
– volume: 88
  start-page: 76
  year: 2002
  ident: 10.1016/j.jbiomech.2009.08.007_bib7
  article-title: Interaction between pre-landing activities and stiffness regulation of the knee joint musculoskeletal system in the drop jump: implications to performance
  publication-title: European Journal of Applied Physiology
  doi: 10.1007/s00421-002-0673-6
– ident: 10.1016/j.jbiomech.2009.08.007_bib6
– volume: 19
  start-page: 187
  year: 2003
  ident: 10.1016/j.jbiomech.2009.08.007_bib12
  article-title: A predicted optimal performance of the Yurchenko layout vault in women's artistic gymnastics
  publication-title: Journal of Applied Biomechanics
  doi: 10.1123/jab.19.3.187
– volume: 18
  start-page: 195
  year: 2002
  ident: 10.1016/j.jbiomech.2009.08.007_bib19
  article-title: Evaluation of a torque driven simulation model of tumbling
  publication-title: Journal of Applied Biomechanics
  doi: 10.1123/jab.18.3.195
– volume: 23
  start-page: 67
  year: 1990
  ident: 10.1016/j.jbiomech.2009.08.007_bib16
  article-title: The simulation of aerial movement—II. A mathematical inertia model of the human body
  publication-title: Journal of Biomechanics
  doi: 10.1016/0021-9290(90)90370-I
– volume: 19
  start-page: 153
  year: 2000
  ident: 10.1016/j.jbiomech.2009.08.007_bib18
  article-title: The mechanics of the backward giant circle on the high bar
  publication-title: Human Movement Science
  doi: 10.1016/S0167-9457(00)00008-7
– volume: 23
  start-page: 35
  year: 2004
  ident: 10.1016/j.jbiomech.2009.08.007_bib2
  article-title: Optimal jumping strategies from compliant surfaces: a simple model of springboard standing jumps
  publication-title: Human Movement Science
  doi: 10.1016/j.humov.2004.04.002
– year: 1985
  ident: 10.1016/j.jbiomech.2009.08.007_bib8
– volume: 18
  start-page: 207
  year: 2002
  ident: 10.1016/j.jbiomech.2009.08.007_bib9
  article-title: Determining subject-specific torque parameters for use in a torque-driven simulation model of dynamic jumping
  publication-title: Journal of Applied Biomechanics
  doi: 10.1123/jab.18.3.207
– volume: 23
  start-page: 85
  year: 1990
  ident: 10.1016/j.jbiomech.2009.08.007_bib17
  article-title: The simulation of aerial movement—IV. A computer simulation model
  publication-title: Journal of Biomechanics
  doi: 10.1016/0021-9290(90)90372-A
– volume: 41
  start-page: 620
  year: 2008
  ident: 10.1016/j.jbiomech.2009.08.007_bib13
  article-title: The influence of simulation model complexity on the estimation of internal loading in gymnastics landings
  publication-title: Journal of Biomechanics
  doi: 10.1016/j.jbiomech.2007.10.001
– start-page: 176
  year: 2008
  ident: 10.1016/j.jbiomech.2009.08.007_bib20
  article-title: Computer simulation modelling in sport
– volume: 39
  start-page: 476
  year: 2006
  ident: 10.1016/j.jbiomech.2009.08.007_bib21
  article-title: Modelling the maximum voluntary joint torque/angular velocity relationship in human movement
  publication-title: Journal of Biomechanics
  doi: 10.1016/j.jbiomech.2004.12.012
– volume: 526
  start-page: 457
  issue: Pt 2
  year: 2000
  ident: 10.1016/j.jbiomech.2009.08.007_bib5
  article-title: Stretch reflex distinguished from pre-programmed muscle activations following landing impacts in man
  publication-title: Journal of Physiology
  doi: 10.1111/j.1469-7793.2000.t01-1-00457.x
– volume: 71
  start-page: 1390
  year: 1994
  ident: 10.1016/j.jbiomech.2009.08.007_bib14
  article-title: A control strategy for the execution of explosive movements from varying starting positions
  publication-title: Journal of Neurophysiology
  doi: 10.1152/jn.1994.71.4.1390
– volume: 37
  start-page: 471
  year: 2004
  ident: 10.1016/j.jbiomech.2009.08.007_bib10
  article-title: Maximising somersault rotation in tumbling
  publication-title: Journal of Biomechanics
  doi: 10.1016/j.jbiomech.2003.09.008
– volume: 20
  start-page: 275
  year: 2004
  ident: 10.1016/j.jbiomech.2009.08.007_bib15
  article-title: Optimal knee extension timing in springboard and platform dives from the reverse group
  publication-title: Journal of Applied Biomechanics
  doi: 10.1123/jab.20.3.275
– volume: 329
  start-page: 3
  year: 1990
  ident: 10.1016/j.jbiomech.2009.08.007_bib1
  article-title: Optimum take-off techniques for high and long jumps
  publication-title: Philosophical Transactions of the Royal Society of London—Series B
  doi: 10.1098/rstb.1990.0144
– volume: 22
  start-page: 167
  year: 2006
  ident: 10.1016/j.jbiomech.2009.08.007_bib22
  article-title: Parameter determination for a computer simulation model of a diver and a springboard
  publication-title: Journal of Applied Biomechanics
  doi: 10.1123/jab.22.3.167
SSID ssj0007479
Score 2.071559
Snippet This study used optimisation procedures in conjunction with an 8-segment torque-driven computer simulation model of the takeoff phase in springboard diving to...
Abstract This study used optimisation procedures in conjunction with an 8-segment torque-driven computer simulation model of the takeoff phase in springboard...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2672
SubjectTerms Ankle
Computer Simulation
Diving - physiology
Elbow
Evaluation
Generators
Height
Humans
Image Interpretation, Computer-Assisted - methods
Joints - physiology
Models, Biological
Muscle Strength - physiology
Muscle, Skeletal - physiology
Parameters
Physical Medicine and Rehabilitation
Strength
Studies
Subject-specific
Task Performance and Analysis
SummonAdditionalLinks – databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwEB1BkRAcEGyhBAr4gLgFkvgj8QlVQFUhlROV9mbZsVNYtdkF7x6Q-PHMJM5uDxQQh5yciaWMPR7PvJkH8FJ3obJly3NpncpFwAtrI1zIiyCUtWgqW03Fyaef1MmZ-DiX8xRwiwlWOdnEwVD7ZUsxctzd1EhFSVm9XX3LiTWKsquJQuMm3KLWZQTpqufbCxf1hk8QjzJHN6C4UiG8eL0Y6tvHhIQe2ngSpezvD6frnM_hEDq-D_eS98iORnU_gBuhn8H-UY8358sf7BUb8JxDoHwGd6-0GpzB7dOURN-Hn-8TBAYH2IjnQJPH4sZRTCan2kvCDzEqI-nP11_YBQGLIkP3lh6C2TJP3WoZgebPWZuIIVj8epnIwCJbdmyM_wTPVrvihPgQzo4_fH53kicShrxF32Sdu64rA5F-ByFE6520XSms7mrpVeV5zRUXXWULHOHeVo0T0le1E2g4Wkrr8kew1y_78BiY9wqdH-91JzvRukYroZy1Q0cdIj_LQE5_37SpQzkRZVyYCYq2MJPWiD5TG2LQLOoM3mzlVmOPjr9K1JNyzVSBijbT4DHyf5Ihpq0fTWliZQpDWfCSFl2hKQbBywz0VjJ5N6PX8k-zHk4r0Owm2u6IDF5sh9E6UMrH9mG5iQa1w6Wu8APsmjdqzptGSa4yOBiX9u4forZqtPpP_jz7U7hTJVKNsjyEvfX3TXiGntraPR-24y-3FT9I
  priority: 102
  providerName: ProQuest
Title Determining effective subject-specific strength levels for forward dives using computer simulations of recorded performances
URI https://www.clinicalkey.com/#!/content/1-s2.0-S0021929009004631
https://www.clinicalkey.es/playcontent/1-s2.0-S0021929009004631
https://dx.doi.org/10.1016/j.jbiomech.2009.08.007
https://www.ncbi.nlm.nih.gov/pubmed/19767003
https://www.proquest.com/docview/1034946552
https://www.proquest.com/docview/36335927
https://www.proquest.com/docview/733886536
Volume 42
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3Pb9MwFLbGJiE4IOj4ERjDB8Qta-NfqY9lbCqgVQgxqTfLjp3Raksr0h6QEH877yVOOwQTCA5tpbqvieyXz8_2-95HyEtdBmazgqfSOpWKAAvWoXAhHQShrAWoLDSSk88manwu3k3ldIccd1wYTKuM2N9ieoPW8Zt-7M3-cjZDji88bUxDkICLPORS7zGuFbj23ujt-_FkA8gQMcdMjyxFg2tE4fnRvKG5t-cSuqnmicqyv5-jbopBm7no9D65F4NIOmrv8wHZCVWP7I8qWEBffaWvaJPW2eyX98jdaxUHe-T2WTxL3yff3sRMGGigbVoHIB-t1w63ZlKkYGIaEUU2SXWx-kwvMb-ophDl4guzbanHorUUc-cvaBH1IWg9u4qaYDVdlLTdBgqeLrcchfohOT89-XQ8TqMWQ1pAiLJKXVlmAbW_gxCi8E7aMhNWl7n0inmec8VFyewAWri3bOiE9Cx3AvCjwNNd_ojsVosqPCHUewUxkPe6lKUo3FAroZy1TWEd1EBLiOx63xSxUDnqZVyaLiNtbrpRQxVNbVBIc5AnpL-xW7alOv5okXeDazoiKkCngdnk3yxDHRGgNpmpmRmYX7w0IXpj-ZOj_9VVDzoPNNsLNRWGlJQsIS82zQASePJjq7BY1wZGh0vN4A_oDb_IOR8OleQqIY9b1972IYxWDuD_9D_u_Bm5w6LwRpYdkN3Vl3V4DtHcyh2SW0ffM3jPp_lhfHLh8_XJ5MPHHwFGTpU
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VVOJxQJACDRS6B-BmsPdhxweECm2V0iZCqJV6W9bedWnUOgEnQpX4TfxGZux10gMFhNSDT-v1Sp7Zmdmdb-YDeJ4WjpsoF4EyWRxIhwfWvsxcEDoZG4OmMk-pOHk4igdH8sOxOl6Bn20tDMEqW5tYG2o7yemOHHc3NVKJleJvp18DYo2i7GpLodGoxb67-I5HturN3jbK9wXnuzuH7weBZxUIcnS2syArisgRi7WTUuY2U6aIpEmLRNmYW5GIWMiCmxBHhDW8n0lleZJJ3Ak55SkFfvcGrEqBR5kOrL7bGX38tLD9GJx7UEkUYOARXqpJHr8a1xX1TQokrRuHEont793hVeFu7fZ278FdH6-yrUbB7sOKK7uwtlXiWf38gr1kNYK0vprvwp1LzQ27cHPo0_Zr8GPbg25wgDUIEjSyrJpndAsUULUnIZYYFa6UJ7Mv7IygTBXDgJoeAvYyS_1xGcH0T1juqShYdXru6ccqNilYc-PkLJsuyyGqB3B0LQJ6CJ1yUrp1YNbGGG5ZmxaqkHnWT2MZZ8bUPXyIbq0Hqv37Ovc90Yma40y34LexbqVGhJ2pJs7OMOnB68W8adMV5K8zkla4uq15RSut0XH930xXeWNT6UhXXIea8u4RKV2Y0q2HiHqQLmb6eKqJk_5p1Y1WA_VyocUe7MHmYhjtESWZTOkm80qjdIRKOX6AXfFGIkS_HysR9-BRo9rLf4jSStDPPP7z6ptwa3A4PNAHe6P9J3Cbe0qPKNqAzuzb3D3FOHGWPfObk8Hn67YHvwCuAn0h
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9QwEB2VIlVwQLCFslCoD8AtNPFXNgeEKpZVS2nFgUp7M07sFFZtdiG7QpX4Zfw6ZhJntwcKCKmHnBzHUsaeGc-8mQfwLCs9t0khImVzHUmPF9aBzH0Ue6mtRVVZZFScfHSs90_ku7Ear8HPrhaGYJWdTmwUtZsWFCPH002NVLRSfLcMsIgPw9Hr2deIGKQo09rRabRb5NBffMfrW_3qYIiyfs756O3HN_tRYBiICjS88ygvy8QTo7WXUhYuV7ZMpM3KVDnNnUiFFrLkNsYR4Swf5FI5nuYST0VBOUuB370BN1OhEjpj6Xh52aO-9AFekkTogsSXqpMnLydNbX2bDMmaFqJEZ_t7w3iV49sYwNFduBM8V7bXbrV7sOarHmzuVXhrP79gL1iDJW2C9D24fanNYQ82jkICfxN-DAP8BgdYiyVBdcvqRU7xoIjqPgm7xKiEpTqdf2ZnBGqqGbrW9BDElznqlMsIsH_KikBKweov54GIrGbTkrWxJ-_YbFUYUd-Hk2sRzwNYr6aVfwjMOY2Ol3NZqUpZ5INMS51b23TzIeK1Pqju75sidEcnko4z08HgJqaTGlF3ZobYO-O0D7vLebO2P8hfZ6SdcE1X_Yr62qAJ-7-Zvg5qpzaJqbmJDWXgE9p0cUbxD5H0IVvODJ5V6zH906rb3Q40q4WWp7EPO8th1EyUbrKVny5qg9IRKuP4AXbFG6kQg4FWQvdhq93aq3-I0krR4jz68-o7sIFawLw_OD58DLd44PZIkm1Yn39b-CfoMM7zp83JZPDpulXBLwJhf_E
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Determining+effective+subject-specific+strength+levels+for+forward+dives+using+computer+simulations+of+recorded+performances&rft.jtitle=Journal+of+biomechanics&rft.au=King%2C+Mark+A.&rft.au=Kong%2C+Pui+W.&rft.au=Yeadon%2C+Maurice+R.&rft.date=2009-12-11&rft.pub=Elsevier+Ltd&rft.issn=0021-9290&rft.eissn=1873-2380&rft.volume=42&rft.issue=16&rft.spage=2672&rft.epage=2677&rft_id=info:doi/10.1016%2Fj.jbiomech.2009.08.007&rft.externalDocID=S0021929009004631
thumbnail_m http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F00219290%2FS0021929009X00151%2Fcov150h.gif