Determining effective subject-specific strength levels for forward dives using computer simulations of recorded performances
This study used optimisation procedures in conjunction with an 8-segment torque-driven computer simulation model of the takeoff phase in springboard diving to determine appropriate subject-specific strength parameters for use in the simulation of forward dives. Kinematic data were obtained using hig...
Saved in:
Published in | Journal of biomechanics Vol. 42; no. 16; pp. 2672 - 2677 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Ltd
11.12.2009
Elsevier Limited |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | This study used optimisation procedures in conjunction with an 8-segment torque-driven computer simulation model of the takeoff phase in springboard diving to determine appropriate subject-specific strength parameters for use in the simulation of forward dives. Kinematic data were obtained using high-speed video recordings of performances of a forward dive pike (101B) and a forward
2
1
2
somersault pike dive (105B) by an elite diver. Nine parameters for each torque generator were taken from dynamometer measurements on an elite gymnast. The isometric torque parameter for each torque generator was then varied together with torque activation timings until the root mean squared (RMS) percentage difference between simulation and performance in terms of joint angles, orientation, linear momentum, angular momentum, and duration of springboard contact was minimised for each of the two dives. The two sets of isometric torque parameters were combined into a single set by choosing the larger value from the two sets for each parameter. Simulations using the combined set of isometric torque parameters matched the two performances closely with RMS percentage differences of 2.6% for 101B and 3.7% for 105B. Maximising the height reached by the mass centre during the flight phase for 101B using the combined set of isometric parameters and by varying torque generator activation timings during takeoff resulted in a credible height increase of 38
mm compared to the matching simulation. It is concluded that the procedure is able to determine appropriate effective strength levels suitable for use in the optimisation of simulated forward rotating dive performances. |
---|---|
AbstractList | This study used optimisation procedures in conjunction with an 8-segment torque-driven computer simulation model of the takeoff phase in springboard diving to determine appropriate subject-specific strength parameters for use in the simulation of forward dives. Kinematic data were obtained using high-speed video recordings of performances of a forward dive pike (101B) and a forward 2 1/2 somersault pike dive (105B) by an elite diver. Nine parameters for each torque generator were taken from dynamometer measurements on an elite gymnast. The isometric torque parameter for each torque generator was then varied together with torque activation timings until the root mean squared (RMS) percentage difference between simulation and performance in terms of joint angles, orientation, linear momentum, angular momentum, and duration of springboard contact was minimised for each of the two dives. The two sets of isometric torque parameters were combined into a single set by choosing the larger value from the two sets for each parameter. Simulations using the combined set of isometric torque parameters matched the two performances closely with RMS percentage differences of 2.6% for 101B and 3.7% for 105B. Maximising the height reached by the mass centre during the flight phase for 101B using the combined set of isometric parameters and by varying torque generator activation timings during takeoff resulted in a credible height increase of 38 mm compared to the matching simulation. It is concluded that the procedure is able to determine appropriate effective strength levels suitable for use in the optimisation of simulated forward rotating dive performances.This study used optimisation procedures in conjunction with an 8-segment torque-driven computer simulation model of the takeoff phase in springboard diving to determine appropriate subject-specific strength parameters for use in the simulation of forward dives. Kinematic data were obtained using high-speed video recordings of performances of a forward dive pike (101B) and a forward 2 1/2 somersault pike dive (105B) by an elite diver. Nine parameters for each torque generator were taken from dynamometer measurements on an elite gymnast. The isometric torque parameter for each torque generator was then varied together with torque activation timings until the root mean squared (RMS) percentage difference between simulation and performance in terms of joint angles, orientation, linear momentum, angular momentum, and duration of springboard contact was minimised for each of the two dives. The two sets of isometric torque parameters were combined into a single set by choosing the larger value from the two sets for each parameter. Simulations using the combined set of isometric torque parameters matched the two performances closely with RMS percentage differences of 2.6% for 101B and 3.7% for 105B. Maximising the height reached by the mass centre during the flight phase for 101B using the combined set of isometric parameters and by varying torque generator activation timings during takeoff resulted in a credible height increase of 38 mm compared to the matching simulation. It is concluded that the procedure is able to determine appropriate effective strength levels suitable for use in the optimisation of simulated forward rotating dive performances. This study used optimisation procedures in conjunction with an 8-segment torque-driven computer simulation model of the takeoff phase in springboard diving to determine appropriate subject-specific strength parameters for use in the simulation of forward dives. Kinematic data were obtained using high-speed video recordings of performances of a forward dive pike (101B) and a forward 2 1 2 somersault pike dive (105B) by an elite diver. Nine parameters for each torque generator were taken from dynamometer measurements on an elite gymnast. The isometric torque parameter for each torque generator was then varied together with torque activation timings until the root mean squared (RMS) percentage difference between simulation and performance in terms of joint angles, orientation, linear momentum, angular momentum, and duration of springboard contact was minimised for each of the two dives. The two sets of isometric torque parameters were combined into a single set by choosing the larger value from the two sets for each parameter. Simulations using the combined set of isometric torque parameters matched the two performances closely with RMS percentage differences of 2.6% for 101B and 3.7% for 105B. Maximising the height reached by the mass centre during the flight phase for 101B using the combined set of isometric parameters and by varying torque generator activation timings during takeoff resulted in a credible height increase of 38 mm compared to the matching simulation. It is concluded that the procedure is able to determine appropriate effective strength levels suitable for use in the optimisation of simulated forward rotating dive performances. Abstract This study used optimisation procedures in conjunction with an 8-segment torque-driven computer simulation model of the takeoff phase in springboard diving to determine appropriate subject-specific strength parameters for use in the simulation of forward dives. Kinematic data were obtained using high-speed video recordings of performances of a forward dive pike (101B) and a forward 2 1 2 somersault pike dive (105B) by an elite diver. Nine parameters for each torque generator were taken from dynamometer measurements on an elite gymnast. The isometric torque parameter for each torque generator was then varied together with torque activation timings until the root mean squared (RMS) percentage difference between simulation and performance in terms of joint angles, orientation, linear momentum, angular momentum, and duration of springboard contact was minimised for each of the two dives. The two sets of isometric torque parameters were combined into a single set by choosing the larger value from the two sets for each parameter. Simulations using the combined set of isometric torque parameters matched the two performances closely with RMS percentage differences of 2.6% for 101B and 3.7% for 105B. Maximising the height reached by the mass centre during the flight phase for 101B using the combined set of isometric parameters and by varying torque generator activation timings during takeoff resulted in a credible height increase of 38 mm compared to the matching simulation. It is concluded that the procedure is able to determine appropriate effective strength levels suitable for use in the optimisation of simulated forward rotating dive performances. This study used optimisation procedures in conjunction with an 8-segment torque-driven computer simulation model of the takeoff phase in springboard diving to determine appropriate subject-specific strength parameters for use in the simulation of forward dives. Kinematic data were obtained using high-speed video recordings of performances of a forward dive pike (101B) and a forward somersault pike dive (105B) by an elite diver. Nine parameters for each torque generator were taken from dynamometer measurements on an elite gymnast. The isometric torque parameter for each torque generator was then varied together with torque activation timings until the root mean squared (RMS) percentage difference between simulation and performance in terms of joint angles, orientation, linear momentum, angular momentum, and duration of springboard contact was minimised for each of the two dives. The two sets of isometric torque parameters were combined into a single set by choosing the larger value from the two sets for each parameter. Simulations using the combined set of isometric torque parameters matched the two performances closely with RMS percentage differences of 2.6% for 101B and 3.7% for 105B. Maximising the height reached by the mass centre during the flight phase for 101B using the combined set of isometric parameters and by varying torque generator activation timings during takeoff resulted in a credible height increase of 38mm compared to the matching simulation. It is concluded that the procedure is able to determine appropriate effective strength levels suitable for use in the optimisation of simulated forward rotating dive performances. This study used optimisation procedures in conjunction with an 8-segment torque-driven computer simulation model of the takeoff phase in springboard diving to determine appropriate subject-specific strength parameters for use in the simulation of forward dives. Kinematic data were obtained using high-speed video recordings of performances of a forward dive pike (101B) and a forward 2 1/2 somersault pike dive (105B) by an elite diver. Nine parameters for each torque generator were taken from dynamometer measurements on an elite gymnast. The isometric torque parameter for each torque generator was then varied together with torque activation timings until the root mean squared (RMS) percentage difference between simulation and performance in terms of joint angles, orientation, linear momentum, angular momentum, and duration of springboard contact was minimised for each of the two dives. The two sets of isometric torque parameters were combined into a single set by choosing the larger value from the two sets for each parameter. Simulations using the combined set of isometric torque parameters matched the two performances closely with RMS percentage differences of 2.6% for 101B and 3.7% for 105B. Maximising the height reached by the mass centre during the flight phase for 101B using the combined set of isometric parameters and by varying torque generator activation timings during takeoff resulted in a credible height increase of 38 mm compared to the matching simulation. It is concluded that the procedure is able to determine appropriate effective strength levels suitable for use in the optimisation of simulated forward rotating dive performances. This study used optimisation procedures in conjunction with an 8-segment torque-driven computer simulation model of the takeoff phase in springboard diving to determine appropriate subject-specific strength parameters for use in the simulation of forward dives. Kinematic data were obtained using high-speed video recordings of performances of a forward dive pike (101B) and a forward [MathML equation] somersault pike dive (105B) by an elite diver. Nine parameters for each torque generator were taken from dynamometer measurements on an elite gymnast. The isometric torque parameter for each torque generator was then varied together with torque activation timings until the root mean squared (RMS) percentage difference between simulation and performance in terms of joint angles, orientation, linear momentum, angular momentum, and duration of springboard contact was minimised for each of the two dives. The two sets of isometric torque parameters were combined into a single set by choosing the larger value from the two sets for each parameter. Simulations using the combined set of isometric torque parameters matched the two performances closely with RMS percentage differences of 2.6% for 101B and 3.7% for 105B. Maximising the height reached by the mass centre during the flight phase for 101B using the combined set of isometric parameters and by varying torque generator activation timings during takeoff resulted in a credible height increase of 38 mm compared to the matching simulation. It is concluded that the procedure is able to determine appropriate effective strength levels suitable for use in the optimisation of simulated forward rotating dive performances. |
Author | Yeadon, Maurice R. Kong, Pui W. King, Mark A. |
Author_xml | – sequence: 1 givenname: Mark A. surname: King fullname: King, Mark A. email: M.A.King@lboro.ac.uk organization: School of Sport and Exercise Sciences, Loughborough University, Loughborough LE11 3TU, UK – sequence: 2 givenname: Pui W. surname: Kong fullname: Kong, Pui W. organization: National Institute of Education, Nanyang Technological University, 1 Nanyang Walk, 637616, Singapore – sequence: 3 givenname: Maurice R. surname: Yeadon fullname: Yeadon, Maurice R. organization: School of Sport and Exercise Sciences, Loughborough University, Loughborough LE11 3TU, UK |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/19767003$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkl1rFDEUhoNU7Hb1L5QBQa9mPfmYLxBRav2AghfqdcgkJ23GmcmazKwU_PHNuC2FvWiFhATyvC8n5z0n5Gj0IxJySmFDgZZvuk3XOj-gvtowgGYD9QagekJWtK54zngNR2QFwGjesAaOyUmMHSRCVM0zckybqqwA-Ir8_YgThsGNbrzM0FrUk9thFue2S9c8blE763QWp4Dj5XSV9bjDPmbWh2X_UcFkJiliNsfFQvthOyfHLLph7tXk_Bgzb7OA2geDJttiSLpBjRrjc_LUqj7ii9tzTX5-Ov9x9iW_-Pb569mHi1wXtZjy1lqKjLEGhRDatIWyVKjGVoUpmeEVL7mwTEF64UaxuhWFYVUrOFANTBR8TV7vfbfB_54xTnJwUWPfqxH9HGXFeV2XRfJZk1cPkgnhRcOqBL48ADs_hzH9QlLgohFlUbBEnd5SczugkdvgBhWu5V3_E1DuAR18jAHtPQJyCVp28i5ouQQtoZYpxiR8eyDUbvrX7iko1z8uf7-Xpyxx5zDIqB2mTIxLSU3SePe4xbsDC92nMdKq_4XXGO_bISOTIL8vw7jMIqQlSk4fNvifCm4Aubn0gA |
CitedBy_id | crossref_primary_10_1016_j_humov_2017_12_001 crossref_primary_10_1051_sm_2011121 crossref_primary_10_1016_j_jbiomech_2019_01_033 crossref_primary_10_1051_sm_2013048 crossref_primary_10_1016_j_humov_2011_08_009 crossref_primary_10_1016_j_humov_2015_05_006 crossref_primary_10_3390_app11041450 crossref_primary_10_1016_j_humov_2012_11_004 crossref_primary_10_1080_02640414_2020_1770407 crossref_primary_10_1016_j_jbiomech_2014_06_020 crossref_primary_10_1080_14763141_2022_2034929 crossref_primary_10_1016_j_jbiomech_2016_11_048 crossref_primary_10_1016_j_matcom_2020_03_007 crossref_primary_10_1123_jab_2013_0282 crossref_primary_10_1080_02640414_2015_1057211 crossref_primary_10_1016_j_jbiomech_2019_04_004 crossref_primary_10_1080_14763141_2021_2018030 crossref_primary_10_1007_s12283_022_00388_z crossref_primary_10_1016_j_jbiomech_2023_111666 crossref_primary_10_1016_j_jbiomech_2023_111765 crossref_primary_10_4028_p_7QwXVo crossref_primary_10_1080_02640414_2025_2480921 |
Cites_doi | 10.1016/j.jbiomech.2007.03.030 10.1123/jab.22.4.264 10.1145/29380.29864 10.1007/s00421-002-0673-6 10.1123/jab.19.3.187 10.1123/jab.18.3.195 10.1016/0021-9290(90)90370-I 10.1016/S0167-9457(00)00008-7 10.1016/j.humov.2004.04.002 10.1123/jab.18.3.207 10.1016/0021-9290(90)90372-A 10.1016/j.jbiomech.2007.10.001 10.1016/j.jbiomech.2004.12.012 10.1111/j.1469-7793.2000.t01-1-00457.x 10.1152/jn.1994.71.4.1390 10.1016/j.jbiomech.2003.09.008 10.1123/jab.20.3.275 10.1098/rstb.1990.0144 10.1123/jab.22.3.167 |
ContentType | Journal Article |
Copyright | 2009 Elsevier Ltd Elsevier Ltd |
Copyright_xml | – notice: 2009 Elsevier Ltd – notice: Elsevier Ltd |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7QP 7TB 7TS 7X7 7XB 88E 8AO 8FD 8FE 8FH 8FI 8FJ 8FK 8G5 ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ GUQSH HCIFZ K9. LK8 M0S M1P M2O M7P MBDVC PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 |
DOI | 10.1016/j.jbiomech.2009.08.007 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Calcium & Calcified Tissue Abstracts Mechanical & Transportation Engineering Abstracts Physical Education Index Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Research Library (Alumni Edition) ProQuest Central (Alumni Edition) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student Research Library Prep SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) ProQuest Biological Science Collection Health & Medical Collection (Alumni Edition) Medical Database Research Library Biological Science Database Research Library (Corporate) ProQuest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Research Library Prep ProQuest Central Student Technology Research Database ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing Research Library (Alumni Edition) ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central China Physical Education Index ProQuest Central ProQuest One Applied & Life Sciences ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Research Library ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Biological Science Collection ProQuest Central Basic ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Research Library Prep MEDLINE Technology Research Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Engineering Anatomy & Physiology |
EISSN | 1873-2380 |
EndPage | 2677 |
ExternalDocumentID | 2744241381 19767003 10_1016_j_jbiomech_2009_08_007 S0021929009004631 1_s2_0_S0021929009004631 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- --K --M --Z -~X .1- .55 .FO .GJ .~1 0R~ 1B1 1P~ 1RT 1~. 1~5 29J 4.4 457 4G. 53G 5GY 5VS 7-5 71M 7X7 88E 8AO 8FE 8FH 8FI 8FJ 8G5 8P~ 9JM 9JN AABNK AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAQQT AAQXK AATTM AAXKI AAXUO AAYWO ABBQC ABFNM ABJNI ABMAC ABMZM ABUWG ABWVN ABXDB ACDAQ ACGFS ACIEU ACIUM ACIWK ACNNM ACPRK ACRLP ACRPL ACVFH ADBBV ADCNI ADEZE ADMUD ADNMO ADTZH AEBSH AECPX AEIPS AEKER AENEX AEUPX AEVXI AFJKZ AFKRA AFPUW AFRHN AFTJW AFXIZ AGCQF AGHFR AGQPQ AGUBO AGYEJ AHHHB AHJVU AHMBA AI. AIEXJ AIGII AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX APXCP ASPBG AVWKF AXJTR AZFZN AZQEC BBNVY BENPR BHPHI BJAXD BKOJK BLXMC BNPGV BPHCQ BVXVI CCPQU CS3 DU5 DWQXO EBD EBS EFJIC EFKBS EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN FYUFA G-2 G-Q GBLVA GNUQQ GUQSH HCIFZ HEE HMCUK HMK HMO HVGLF HZ~ H~9 I-F IHE J1W JJJVA KOM LK8 M1P M29 M2O M31 M41 M7P ML~ MO0 MVM N9A O-L O9- OAUVE OH. OHT OT. OZT P-8 P-9 P2P PC. PHGZM PHGZT PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PUEGO Q38 R2- ROL RPZ SAE SCC SDF SDG SDP SEL SES SEW SJN SPC SPCBC SSH SST SSZ T5K UKHRP UPT VH1 WUQ X7M XOL XPP YQT Z5R ZGI ZMT ~G- 3V. AACTN AFCTW AFFDN AFKWA AJOXV ALIPV AMFUW PKN RIG YCJ AAIAV ABLVK ABYKQ AHPSJ AJBFU EFLBG F3I LCYCR AAYXX AGRNS CITATION CGR CUY CVF ECM EIF NPM 7QP 7TB 7TS 7XB 8FD 8FK FR3 K9. MBDVC PKEHL PQEST PQUKI PRINS Q9U 7X8 |
ID | FETCH-LOGICAL-c584t-bff1e2229e444cdb5af14a9f75d62d373634f2a0db53da28b45d27b4301c02453 |
IEDL.DBID | AIKHN |
ISSN | 0021-9290 1873-2380 |
IngestDate | Fri Jul 11 16:10:00 EDT 2025 Fri Jul 11 01:27:30 EDT 2025 Wed Aug 13 11:18:30 EDT 2025 Mon Jul 21 06:02:12 EDT 2025 Tue Jul 01 01:13:53 EDT 2025 Thu Apr 24 23:06:14 EDT 2025 Fri Feb 23 02:28:28 EST 2024 Sun Feb 23 10:20:42 EST 2025 Tue Aug 26 16:44:18 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 16 |
Keywords | Evaluation Height Parameters Subject-specific Strength |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c584t-bff1e2229e444cdb5af14a9f75d62d373634f2a0db53da28b45d27b4301c02453 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 content type line 14 ObjectType-Undefined-1 ObjectType-Feature-3 ObjectType-Feature-1 content type line 23 ObjectType-Article-1 ObjectType-Feature-2 |
OpenAccessLink | https://dspace.lboro.ac.uk/2134/5825 |
PMID | 19767003 |
PQID | 1034946552 |
PQPubID | 1226346 |
PageCount | 6 |
ParticipantIDs | proquest_miscellaneous_733886536 proquest_miscellaneous_36335927 proquest_journals_1034946552 pubmed_primary_19767003 crossref_primary_10_1016_j_jbiomech_2009_08_007 crossref_citationtrail_10_1016_j_jbiomech_2009_08_007 elsevier_sciencedirect_doi_10_1016_j_jbiomech_2009_08_007 elsevier_clinicalkeyesjournals_1_s2_0_S0021929009004631 elsevier_clinicalkey_doi_10_1016_j_jbiomech_2009_08_007 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2009-12-11 |
PublicationDateYYYYMMDD | 2009-12-11 |
PublicationDate_xml | – month: 12 year: 2009 text: 2009-12-11 day: 11 |
PublicationDecade | 2000 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Kidlington |
PublicationTitle | Journal of biomechanics |
PublicationTitleAlternate | J Biomech |
PublicationYear | 2009 |
Publisher | Elsevier Ltd Elsevier Limited |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier Limited |
References | van Soest, Bobbert, van Ingen Schenau (bib14) 1994; 71 King, Wilson, Yeadon (bib11) 2006; 22 Corana, Marchesi, Martini, Ridella (bib3) 1987; 13 Kane, Levinson (bib8) 1985 Koh, Jennings, Elliott, Lloyd (bib12) 2003; 19 Yeadon, Hiley (bib18) 2000; 19 Yeadon, Kong, King (bib22) 2006; 22 Wilson, Yeadon, King (bib23) 2007; 40 . King, Yeadon (bib9) 2002; 18 Yeadon, Atha, Hales (bib17) 1990; 23 Yeadon, King (bib20) 2008 Horita, Komi, Nicol, Kyrolainen (bib7) 2002; 88 Duncan, McDonagh (bib5) 2000; 526 Cheng, Hubbard (bib2) 2004; 23 Yeadon (bib16) 1990; 23 Mills, Pain, Yeadon (bib13) 2008; 41 Alexander (bib1) 1990; 329 FINA, 2009. Yeadon, King, Wilson (bib21) 2006; 39 Sprigings, Miller (bib15) 2004; 20 Dapena, J., 1999. A biomechanical explanation of the effect of arm actions on the vertical velocity of a standing jump. In International Society of Biomechanics XVIIth Congress Book of Abstracts. University of Calgary, p. 100. King, Yeadon (bib10) 2004; 37 Yeadon, King (bib19) 2002; 18 King (10.1016/j.jbiomech.2009.08.007_bib10) 2004; 37 Yeadon (10.1016/j.jbiomech.2009.08.007_bib21) 2006; 39 King (10.1016/j.jbiomech.2009.08.007_bib11) 2006; 22 Horita (10.1016/j.jbiomech.2009.08.007_bib7) 2002; 88 10.1016/j.jbiomech.2009.08.007_bib6 Yeadon (10.1016/j.jbiomech.2009.08.007_bib17) 1990; 23 Alexander (10.1016/j.jbiomech.2009.08.007_bib1) 1990; 329 Yeadon (10.1016/j.jbiomech.2009.08.007_bib20) 2008 Yeadon (10.1016/j.jbiomech.2009.08.007_bib22) 2006; 22 Sprigings (10.1016/j.jbiomech.2009.08.007_bib15) 2004; 20 Mills (10.1016/j.jbiomech.2009.08.007_bib13) 2008; 41 King (10.1016/j.jbiomech.2009.08.007_bib9) 2002; 18 van Soest (10.1016/j.jbiomech.2009.08.007_bib14) 1994; 71 10.1016/j.jbiomech.2009.08.007_bib4 Yeadon (10.1016/j.jbiomech.2009.08.007_bib19) 2002; 18 Yeadon (10.1016/j.jbiomech.2009.08.007_bib18) 2000; 19 Kane (10.1016/j.jbiomech.2009.08.007_bib8) 1985 Yeadon (10.1016/j.jbiomech.2009.08.007_bib16) 1990; 23 Koh (10.1016/j.jbiomech.2009.08.007_bib12) 2003; 19 Cheng (10.1016/j.jbiomech.2009.08.007_bib2) 2004; 23 Corana (10.1016/j.jbiomech.2009.08.007_bib3) 1987; 13 Duncan (10.1016/j.jbiomech.2009.08.007_bib5) 2000; 526 Wilson (10.1016/j.jbiomech.2009.08.007_bib23) 2007; 40 |
References_xml | – volume: 40 start-page: 3155 year: 2007 end-page: 3161 ident: bib23 article-title: Considerations that affect optimised simulation in a running jump for height publication-title: Journal of Biomechanics – volume: 13 start-page: 262 year: 1987 end-page: 280 ident: bib3 article-title: Minimising multimodal functions of continuous variables with the “simulated annealing” algorithm publication-title: ACM Transactions on Mathematical Software – year: 1985 ident: bib8 article-title: Dynamics: Theory and Implementations – volume: 18 start-page: 195 year: 2002 end-page: 206 ident: bib19 article-title: Evaluation of a torque driven simulation model of tumbling publication-title: Journal of Applied Biomechanics – volume: 39 start-page: 476 year: 2006 end-page: 482 ident: bib21 article-title: Modelling the maximum voluntary joint torque/angular velocity relationship in human movement publication-title: Journal of Biomechanics – volume: 41 start-page: 620 year: 2008 end-page: 628 ident: bib13 article-title: The influence of simulation model complexity on the estimation of internal loading in gymnastics landings publication-title: Journal of Biomechanics – volume: 18 start-page: 207 year: 2002 end-page: 217 ident: bib9 article-title: Determining subject-specific torque parameters for use in a torque-driven simulation model of dynamic jumping publication-title: Journal of Applied Biomechanics – start-page: 176 year: 2008 end-page: 205 ident: bib20 article-title: Computer simulation modelling in sport publication-title: Biomechanical Evaluation of Movement in Sport and Exercise: BASES Guidelines – volume: 23 start-page: 67 year: 1990 end-page: 74 ident: bib16 article-title: The simulation of aerial movement—II. A mathematical inertia model of the human body publication-title: Journal of Biomechanics – volume: 23 start-page: 35 year: 2004 end-page: 48 ident: bib2 article-title: Optimal jumping strategies from compliant surfaces: a simple model of springboard standing jumps publication-title: Human Movement Science – reference: FINA, 2009. 〈 – volume: 22 start-page: 264 year: 2006 end-page: 274 ident: bib11 article-title: Evaluation of a torque-driven model of jumping for height publication-title: Journal of Applied Biomechanics – volume: 526 start-page: 457 year: 2000 end-page: 468 ident: bib5 article-title: Stretch reflex distinguished from pre-programmed muscle activations following landing impacts in man publication-title: Journal of Physiology – volume: 37 start-page: 471 year: 2004 end-page: 477 ident: bib10 article-title: Maximising somersault rotation in tumbling publication-title: Journal of Biomechanics – volume: 20 start-page: 275 year: 2004 end-page: 290 ident: bib15 article-title: Optimal knee extension timing in springboard and platform dives from the reverse group publication-title: Journal of Applied Biomechanics – reference: Dapena, J., 1999. A biomechanical explanation of the effect of arm actions on the vertical velocity of a standing jump. In International Society of Biomechanics XVIIth Congress Book of Abstracts. University of Calgary, p. 100. – reference: 〉. – volume: 88 start-page: 76 year: 2002 end-page: 84 ident: bib7 article-title: Interaction between pre-landing activities and stiffness regulation of the knee joint musculoskeletal system in the drop jump: implications to performance publication-title: European Journal of Applied Physiology – volume: 19 start-page: 187 year: 2003 end-page: 204 ident: bib12 article-title: A predicted optimal performance of the Yurchenko layout vault in women's artistic gymnastics publication-title: Journal of Applied Biomechanics – volume: 71 start-page: 1390 year: 1994 end-page: 1402 ident: bib14 article-title: A control strategy for the execution of explosive movements from varying starting positions publication-title: Journal of Neurophysiology – volume: 23 start-page: 85 year: 1990 end-page: 89 ident: bib17 article-title: The simulation of aerial movement—IV. A computer simulation model publication-title: Journal of Biomechanics – volume: 329 start-page: 3 year: 1990 end-page: 10 ident: bib1 article-title: Optimum take-off techniques for high and long jumps publication-title: Philosophical Transactions of the Royal Society of London—Series B – volume: 19 start-page: 153 year: 2000 end-page: 173 ident: bib18 article-title: The mechanics of the backward giant circle on the high bar publication-title: Human Movement Science – volume: 22 start-page: 167 year: 2006 end-page: 176 ident: bib22 article-title: Parameter determination for a computer simulation model of a diver and a springboard publication-title: Journal of Applied Biomechanics – volume: 40 start-page: 3155 year: 2007 ident: 10.1016/j.jbiomech.2009.08.007_bib23 article-title: Considerations that affect optimised simulation in a running jump for height publication-title: Journal of Biomechanics doi: 10.1016/j.jbiomech.2007.03.030 – volume: 22 start-page: 264 year: 2006 ident: 10.1016/j.jbiomech.2009.08.007_bib11 article-title: Evaluation of a torque-driven model of jumping for height publication-title: Journal of Applied Biomechanics doi: 10.1123/jab.22.4.264 – volume: 13 start-page: 262 year: 1987 ident: 10.1016/j.jbiomech.2009.08.007_bib3 article-title: Minimising multimodal functions of continuous variables with the “simulated annealing” algorithm publication-title: ACM Transactions on Mathematical Software doi: 10.1145/29380.29864 – ident: 10.1016/j.jbiomech.2009.08.007_bib4 – volume: 88 start-page: 76 year: 2002 ident: 10.1016/j.jbiomech.2009.08.007_bib7 article-title: Interaction between pre-landing activities and stiffness regulation of the knee joint musculoskeletal system in the drop jump: implications to performance publication-title: European Journal of Applied Physiology doi: 10.1007/s00421-002-0673-6 – ident: 10.1016/j.jbiomech.2009.08.007_bib6 – volume: 19 start-page: 187 year: 2003 ident: 10.1016/j.jbiomech.2009.08.007_bib12 article-title: A predicted optimal performance of the Yurchenko layout vault in women's artistic gymnastics publication-title: Journal of Applied Biomechanics doi: 10.1123/jab.19.3.187 – volume: 18 start-page: 195 year: 2002 ident: 10.1016/j.jbiomech.2009.08.007_bib19 article-title: Evaluation of a torque driven simulation model of tumbling publication-title: Journal of Applied Biomechanics doi: 10.1123/jab.18.3.195 – volume: 23 start-page: 67 year: 1990 ident: 10.1016/j.jbiomech.2009.08.007_bib16 article-title: The simulation of aerial movement—II. A mathematical inertia model of the human body publication-title: Journal of Biomechanics doi: 10.1016/0021-9290(90)90370-I – volume: 19 start-page: 153 year: 2000 ident: 10.1016/j.jbiomech.2009.08.007_bib18 article-title: The mechanics of the backward giant circle on the high bar publication-title: Human Movement Science doi: 10.1016/S0167-9457(00)00008-7 – volume: 23 start-page: 35 year: 2004 ident: 10.1016/j.jbiomech.2009.08.007_bib2 article-title: Optimal jumping strategies from compliant surfaces: a simple model of springboard standing jumps publication-title: Human Movement Science doi: 10.1016/j.humov.2004.04.002 – year: 1985 ident: 10.1016/j.jbiomech.2009.08.007_bib8 – volume: 18 start-page: 207 year: 2002 ident: 10.1016/j.jbiomech.2009.08.007_bib9 article-title: Determining subject-specific torque parameters for use in a torque-driven simulation model of dynamic jumping publication-title: Journal of Applied Biomechanics doi: 10.1123/jab.18.3.207 – volume: 23 start-page: 85 year: 1990 ident: 10.1016/j.jbiomech.2009.08.007_bib17 article-title: The simulation of aerial movement—IV. A computer simulation model publication-title: Journal of Biomechanics doi: 10.1016/0021-9290(90)90372-A – volume: 41 start-page: 620 year: 2008 ident: 10.1016/j.jbiomech.2009.08.007_bib13 article-title: The influence of simulation model complexity on the estimation of internal loading in gymnastics landings publication-title: Journal of Biomechanics doi: 10.1016/j.jbiomech.2007.10.001 – start-page: 176 year: 2008 ident: 10.1016/j.jbiomech.2009.08.007_bib20 article-title: Computer simulation modelling in sport – volume: 39 start-page: 476 year: 2006 ident: 10.1016/j.jbiomech.2009.08.007_bib21 article-title: Modelling the maximum voluntary joint torque/angular velocity relationship in human movement publication-title: Journal of Biomechanics doi: 10.1016/j.jbiomech.2004.12.012 – volume: 526 start-page: 457 issue: Pt 2 year: 2000 ident: 10.1016/j.jbiomech.2009.08.007_bib5 article-title: Stretch reflex distinguished from pre-programmed muscle activations following landing impacts in man publication-title: Journal of Physiology doi: 10.1111/j.1469-7793.2000.t01-1-00457.x – volume: 71 start-page: 1390 year: 1994 ident: 10.1016/j.jbiomech.2009.08.007_bib14 article-title: A control strategy for the execution of explosive movements from varying starting positions publication-title: Journal of Neurophysiology doi: 10.1152/jn.1994.71.4.1390 – volume: 37 start-page: 471 year: 2004 ident: 10.1016/j.jbiomech.2009.08.007_bib10 article-title: Maximising somersault rotation in tumbling publication-title: Journal of Biomechanics doi: 10.1016/j.jbiomech.2003.09.008 – volume: 20 start-page: 275 year: 2004 ident: 10.1016/j.jbiomech.2009.08.007_bib15 article-title: Optimal knee extension timing in springboard and platform dives from the reverse group publication-title: Journal of Applied Biomechanics doi: 10.1123/jab.20.3.275 – volume: 329 start-page: 3 year: 1990 ident: 10.1016/j.jbiomech.2009.08.007_bib1 article-title: Optimum take-off techniques for high and long jumps publication-title: Philosophical Transactions of the Royal Society of London—Series B doi: 10.1098/rstb.1990.0144 – volume: 22 start-page: 167 year: 2006 ident: 10.1016/j.jbiomech.2009.08.007_bib22 article-title: Parameter determination for a computer simulation model of a diver and a springboard publication-title: Journal of Applied Biomechanics doi: 10.1123/jab.22.3.167 |
SSID | ssj0007479 |
Score | 2.071559 |
Snippet | This study used optimisation procedures in conjunction with an 8-segment torque-driven computer simulation model of the takeoff phase in springboard diving to... Abstract This study used optimisation procedures in conjunction with an 8-segment torque-driven computer simulation model of the takeoff phase in springboard... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 2672 |
SubjectTerms | Ankle Computer Simulation Diving - physiology Elbow Evaluation Generators Height Humans Image Interpretation, Computer-Assisted - methods Joints - physiology Models, Biological Muscle Strength - physiology Muscle, Skeletal - physiology Parameters Physical Medicine and Rehabilitation Strength Studies Subject-specific Task Performance and Analysis |
SummonAdditionalLinks | – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwEB1BkRAcEGyhBAr4gLgFkvgj8QlVQFUhlROV9mbZsVNYtdkF7x6Q-PHMJM5uDxQQh5yciaWMPR7PvJkH8FJ3obJly3NpncpFwAtrI1zIiyCUtWgqW03Fyaef1MmZ-DiX8xRwiwlWOdnEwVD7ZUsxctzd1EhFSVm9XX3LiTWKsquJQuMm3KLWZQTpqufbCxf1hk8QjzJHN6C4UiG8eL0Y6tvHhIQe2ngSpezvD6frnM_hEDq-D_eS98iORnU_gBuhn8H-UY8358sf7BUb8JxDoHwGd6-0GpzB7dOURN-Hn-8TBAYH2IjnQJPH4sZRTCan2kvCDzEqI-nP11_YBQGLIkP3lh6C2TJP3WoZgebPWZuIIVj8epnIwCJbdmyM_wTPVrvihPgQzo4_fH53kicShrxF32Sdu64rA5F-ByFE6520XSms7mrpVeV5zRUXXWULHOHeVo0T0le1E2g4Wkrr8kew1y_78BiY9wqdH-91JzvRukYroZy1Q0cdIj_LQE5_37SpQzkRZVyYCYq2MJPWiD5TG2LQLOoM3mzlVmOPjr9K1JNyzVSBijbT4DHyf5Ihpq0fTWliZQpDWfCSFl2hKQbBywz0VjJ5N6PX8k-zHk4r0Owm2u6IDF5sh9E6UMrH9mG5iQa1w6Wu8APsmjdqzptGSa4yOBiX9u4forZqtPpP_jz7U7hTJVKNsjyEvfX3TXiGntraPR-24y-3FT9I priority: 102 providerName: ProQuest |
Title | Determining effective subject-specific strength levels for forward dives using computer simulations of recorded performances |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S0021929009004631 https://www.clinicalkey.es/playcontent/1-s2.0-S0021929009004631 https://dx.doi.org/10.1016/j.jbiomech.2009.08.007 https://www.ncbi.nlm.nih.gov/pubmed/19767003 https://www.proquest.com/docview/1034946552 https://www.proquest.com/docview/36335927 https://www.proquest.com/docview/733886536 |
Volume | 42 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3Pb9MwFLbGJiE4IOj4ERjDB8Qta-NfqY9lbCqgVQgxqTfLjp3Raksr0h6QEH877yVOOwQTCA5tpbqvieyXz8_2-95HyEtdBmazgqfSOpWKAAvWoXAhHQShrAWoLDSSk88manwu3k3ldIccd1wYTKuM2N9ieoPW8Zt-7M3-cjZDji88bUxDkICLPORS7zGuFbj23ujt-_FkA8gQMcdMjyxFg2tE4fnRvKG5t-cSuqnmicqyv5-jbopBm7no9D65F4NIOmrv8wHZCVWP7I8qWEBffaWvaJPW2eyX98jdaxUHe-T2WTxL3yff3sRMGGigbVoHIB-t1w63ZlKkYGIaEUU2SXWx-kwvMb-ophDl4guzbanHorUUc-cvaBH1IWg9u4qaYDVdlLTdBgqeLrcchfohOT89-XQ8TqMWQ1pAiLJKXVlmAbW_gxCi8E7aMhNWl7n0inmec8VFyewAWri3bOiE9Cx3AvCjwNNd_ojsVosqPCHUewUxkPe6lKUo3FAroZy1TWEd1EBLiOx63xSxUDnqZVyaLiNtbrpRQxVNbVBIc5AnpL-xW7alOv5okXeDazoiKkCngdnk3yxDHRGgNpmpmRmYX7w0IXpj-ZOj_9VVDzoPNNsLNRWGlJQsIS82zQASePJjq7BY1wZGh0vN4A_oDb_IOR8OleQqIY9b1972IYxWDuD_9D_u_Bm5w6LwRpYdkN3Vl3V4DtHcyh2SW0ffM3jPp_lhfHLh8_XJ5MPHHwFGTpU |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VVOJxQJACDRS6B-BmsPdhxweECm2V0iZCqJV6W9bedWnUOgEnQpX4TfxGZux10gMFhNSDT-v1Sp7Zmdmdb-YDeJ4WjpsoF4EyWRxIhwfWvsxcEDoZG4OmMk-pOHk4igdH8sOxOl6Bn20tDMEqW5tYG2o7yemOHHc3NVKJleJvp18DYo2i7GpLodGoxb67-I5HturN3jbK9wXnuzuH7weBZxUIcnS2syArisgRi7WTUuY2U6aIpEmLRNmYW5GIWMiCmxBHhDW8n0lleZJJ3Ak55SkFfvcGrEqBR5kOrL7bGX38tLD9GJx7UEkUYOARXqpJHr8a1xX1TQokrRuHEont793hVeFu7fZ278FdH6-yrUbB7sOKK7uwtlXiWf38gr1kNYK0vprvwp1LzQ27cHPo0_Zr8GPbg25wgDUIEjSyrJpndAsUULUnIZYYFa6UJ7Mv7IygTBXDgJoeAvYyS_1xGcH0T1juqShYdXru6ccqNilYc-PkLJsuyyGqB3B0LQJ6CJ1yUrp1YNbGGG5ZmxaqkHnWT2MZZ8bUPXyIbq0Hqv37Ovc90Yma40y34LexbqVGhJ2pJs7OMOnB68W8adMV5K8zkla4uq15RSut0XH930xXeWNT6UhXXIea8u4RKV2Y0q2HiHqQLmb6eKqJk_5p1Y1WA_VyocUe7MHmYhjtESWZTOkm80qjdIRKOX6AXfFGIkS_HysR9-BRo9rLf4jSStDPPP7z6ptwa3A4PNAHe6P9J3Cbe0qPKNqAzuzb3D3FOHGWPfObk8Hn67YHvwCuAn0h |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9QwEB2VIlVwQLCFslCoD8AtNPFXNgeEKpZVS2nFgUp7M07sFFZtdiG7QpX4Zfw6ZhJntwcKCKmHnBzHUsaeGc-8mQfwLCs9t0khImVzHUmPF9aBzH0Ue6mtRVVZZFScfHSs90_ku7Ear8HPrhaGYJWdTmwUtZsWFCPH002NVLRSfLcMsIgPw9Hr2deIGKQo09rRabRb5NBffMfrW_3qYIiyfs756O3HN_tRYBiICjS88ygvy8QTo7WXUhYuV7ZMpM3KVDnNnUiFFrLkNsYR4Swf5FI5nuYST0VBOUuB370BN1OhEjpj6Xh52aO-9AFekkTogsSXqpMnLydNbX2bDMmaFqJEZ_t7w3iV49sYwNFduBM8V7bXbrV7sOarHmzuVXhrP79gL1iDJW2C9D24fanNYQ82jkICfxN-DAP8BgdYiyVBdcvqRU7xoIjqPgm7xKiEpTqdf2ZnBGqqGbrW9BDElznqlMsIsH_KikBKweov54GIrGbTkrWxJ-_YbFUYUd-Hk2sRzwNYr6aVfwjMOY2Ol3NZqUpZ5INMS51b23TzIeK1Pqju75sidEcnko4z08HgJqaTGlF3ZobYO-O0D7vLebO2P8hfZ6SdcE1X_Yr62qAJ-7-Zvg5qpzaJqbmJDWXgE9p0cUbxD5H0IVvODJ5V6zH906rb3Q40q4WWp7EPO8th1EyUbrKVny5qg9IRKuP4AXbFG6kQg4FWQvdhq93aq3-I0krR4jz68-o7sIFawLw_OD58DLd44PZIkm1Yn39b-CfoMM7zp83JZPDpulXBLwJhf_E |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Determining+effective+subject-specific+strength+levels+for+forward+dives+using+computer+simulations+of+recorded+performances&rft.jtitle=Journal+of+biomechanics&rft.au=King%2C+Mark+A.&rft.au=Kong%2C+Pui+W.&rft.au=Yeadon%2C+Maurice+R.&rft.date=2009-12-11&rft.pub=Elsevier+Ltd&rft.issn=0021-9290&rft.eissn=1873-2380&rft.volume=42&rft.issue=16&rft.spage=2672&rft.epage=2677&rft_id=info:doi/10.1016%2Fj.jbiomech.2009.08.007&rft.externalDocID=S0021929009004631 |
thumbnail_m | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F00219290%2FS0021929009X00151%2Fcov150h.gif |